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Zusammenfassung
In dieser Arbeit präsentieren wir eine quantentheoretische Darstellung der Zeitbereich-

Interferometrie mit harten Röntgenstrahlen und schlagen eine experimentelle Technik
zur Untersuchung der zeitlichen Korrelationen zwischen Teilchen in einem kondensierten
Materie-System über ihre Wechselwirkung mit harter Röntgenstrahlung vor.
Diese Technik wurde bereits erfolgreich auf klassische Systeme angewendet. Der jüng-
ste Vorschlag, die gleiche Technik für Systemen zu verwenden, in denen Quanteneffekte
eine große Rolle spielen, erfordert eine detaillierte Analyse aufgrund der dramatischen
Auswirkungen, die der Messakt auf die Dynamik eines Quantensystems haben kann. Ins-
besondere der Versuch, über direkte Messungen auf die Korrelationen in einem Quanten-
system zuzugreifen, würde nur unvollständige Informationen über sie liefern.
Indem wir sowohl das System der sondierten Materie als auch die sondierende Strahlung
als Quantensysteme betrachten, die schwach miteinander wechselwirken, zeigen wir, dass
die Strahlung in der Zeitbereich-Interferometrie das System im obigen Sinne nicht beein-
flusst, sodass die zeitlichen Korrelationen der Teilchen vollständig erfasst werden können.
Darüber hinaus wird im Hinblick auf aktuellen Fortschritt bei der Kontrolle von Rönt-
genpulsen vorgeschlagen, dass die Zeitbereich-Interferometrie für die Rekonstruktion von
Teilchenkorrelationen und für die Erkennung des Vorhandenseins von Quanteneffekten im
untersuchten System verwendet werden kann.

Abstract
In this work we present a quantum theoretical account of hard x-ray time-domain in-

terferometry, which is an experimental technique to probe the correlations in time between
particles in a condensed matter system via their interaction with hard x-radiation.
This technique has so far been successfully applied to classical systems. The recent pro-
posal of using the same technique on systems for which quantum effects play a major role
requires a detailed analysis due to the dramatic effect that the measurement act can have
on the dynamics of a quantum system. In particular, trying to access the correlations in a
quantum system via direct measurements would give only incomplete information about
them.
Treating both the probed matter system and the probing radiation as quantum systems
which interact weakly, we show that in time-domain interferometry the radiation does
not affect the system in the above sense, such that it can access the particles correlations
in time fully. Furthermore, in view of some recent advancements in x-ray control, it is
proposed that time-domain interferometry can be used for the reconstruction of particles
correlations and for detecting the presence of quantum effects in the probed system.
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Chapter 1

Introduction

The discovery in 1895 of x-rays by Wilhelm C. Röntgen paved the way to a
major breakthrough in our understanding of the structure of matter. Indeed
the successive intuition and demonstration in 1912 by Max von Laue that
the – at the time debated – wave nature of x-rays could be exploited to probe
the crystalline structure of some solids, consecrated x-rays as a fundamental
tool for the systematic experimental investigations of the atomic structure of
matter by x-rays. An account of the different possibilities offered by x-ray
scattering by matter for the exploration of static properties of the latter can
be found in [1].

X-ray scattering methods allow as well to probe dynamical properties
of condensed matter samples on several different length and time scales –
ranging from ∼ 0.1 Å to ∼ 1000 Å and from ∼ fs to 100s – and a big
effort is being done in the last years to push these limits further, since the
understanding of complex phenomena at microscopic scales is key for future
technological development[2, 3, 4].
One possibility to recover information about the dynamics in a sample is
represented by inelastic x-ray scattering techniques (IXS) [5], in which the
spectrum of excitation in the sample is retrieved by measuring the energy
losses of an x-ray beam during its scattering from matter. This technique
grants access to dynamics on timescales between ∼ fs and ∼ µs 1.

For probing phenomena that happen on slower time scales, like e.g. dif-
1This kind of experiments can be also run using neutrons as a probe, accessing com-

plementary length and time scales [6]

1



fusion dynamics [7] or glass formation and other phenomena [8], it may be
preferable to access them directly in the time domain. Two techniques are
available that can achieve this result. X-ray photon correlation spectroscopy
[9], is a technique in which the speckle patterns created at different times by
scattering of x-rays from particles in the sample are correlated. This tech-
nique grants access to dynamics happening on timescales slower than the
millisecond , and recently it has been demonstrated in the picoseconds to
nanosecond range [10].
The second technique, and the one on which the work in this thesis is
based, is Time-Domain Interferometry (TDI) [11]. This technique exploits
quasi-elastic scattering of hard x-rays from a sample to access dynamics on
timescales ranging from tens to hundreds of nanoseconds, and spatial scales
from fractions to tens of Ångstrom .
In this technique, the target system is placed between two parallel filtering
foils. A hard x-ray short pulse from a synchrotron source is split by the first
foil in two pulses of different duration, which are later scattered by the tar-
get at different times. The two scattered pulses will then extract information
on the spatial distribution of atoms in the target at different times, and are
recombined by the second foil in such a way to make them interfere at the
detector. The interference pattern generated in this way, will then give access
to the correlations among the positions of atoms in the target at different
times.
In particular via TDI, the spatial Fourier transform of the space-time correla-
tions among particles is probed, a quantity known as intermediate scattering
function (ISF).
TDI has been proposed and successfully demonstrated originally in [11] and
since then has been further developed [12, 13], and used to study slow diffu-
sion dynamics in glass-forming fluids [14, 15, 16] and crystalline solids [17].

In recent times TDI has been suggested for probing dynamics in strongly
correlated systems [2]. Indeed the interplay among the different degrees of
freedom of these systems can bring to the appearance of interesting dynam-
ics on a variety of different space and time scales [18]. However, in order to
understand the features of these systems a quantum description of matter is
needed [19, 20, 18]. The perspective of applying TDI to quantum systems
rises the problem of what will be actually measured in such experiments.
The measurement act on quantum systems is indeed one of the most con-
troversial and debated issues in the foundation of quantum theory [21, 22].
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In a classical framework, the back action of a measurement apparatus on a
system plays no major role as it can, at least in principle, made arbitrarily
small. In this case then a measurement on a system does not affect the out-
come of subsequent measurements on the same system, and time correlations
between physical observables can be obtained just by directly measuring the
physical quantities of interest at successive times and correlating the results
obtained.
If one tries to apply this scheme to obtain time correlations for a quantum
system, the back action of the first measurement would provoke an abrupt
change in the dynamics of the system [23], affecting thus all the outcomes
of subsequent measurements. Therefore, the result obtained by correlating
these outcomes is not a faithful representation of correlations that develop
spontaneously in the system, because it accounts for an external intervention
on the system itself that altered its dynamics.
The full correlation functions for a quantum system, that is the ones that do
not account for measurement back action, are thus different from the ones
obtained by direct measurements [24, 25].
Even in less extreme situations, in which the interaction between the mea-
suring apparatus and the system is weak, the interpretation of measurement
outcomes is a delicate issue [26]. For instance, in [27] it has been demon-
strated that, even for minimally disturbing measurements on quantum sys-
tems in thermal equilibrium, the measured time correlations between two
observables may not correspond to the full ones.
These issues are thus not only of foundational relevance, but pose also prac-
tical problems in devising experiments; recently a number of proposals for
the measurement of the full two-time correlation functions on ensembles of
quantum mechanical spin-1/2 systems has been put forward [28, 29, 25].

The main aim of the work on this thesis is thus to analyse the working
of TDI when used for measurements on ensembles of quantum particles, in
order to understand whether the full – in the sense that measurement back
action is not accounted for – space-time correlations between the particles,
or only a part of them, is accessed. In particular we present a theoretical
account of this technique in which both the target and the radiation are
considered as quantum systems in interaction. The main result presented in
this thesis is that TDI is suitable to access the full particles correlation of
the quantum system and not just parts of it.
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The structure of this work

In chapter 2 definitions of dynamical correlation functions are given for
generic pairs of physical observables, in both classical and quantum theo-
retical frameworks. It is shown that the full quantum dynamical correlation
functions are complex valued functions given by the sum of two contribu-
tions: the first one, called the projective part, which is accessed when direct
measurements of the correlated observables are done on the system, while
the second one originates from the fact that these values are in general un-
defined if the system is in a quantum superposition of states and thus would
be deleted by the back action of a direct measurement.
A first result of this work is then shown [25], i.e. that the projective part can
equal the real part of quantum dynamical correlations only if the correlated
observables can take only two possible values equal in magnitude and discord
in sign.
In the end a model experimental protocol to avoid measurement back action
by indirect coupling of the system to a measuring device is proposed and
discussed.

In chapter 3, the differences between classical and quantum dynamical
correlation functions are specialized to space-time correlations among par-
ticles in an ensemble, which are the correlations of interest for TDI experi-
ments. In particular the dynamical couple correlation function (DCF) and
its Fourier transforms are defined. These three functions enjoys some spatial
symmetries in the classical case, that can be violated in the quantum me-
chanical case.
It is then argued that a control of these symmetries for an unknown system,
can represent a method to experimentally assess whether a quantum model
is in order for its correct decription. By analysing two quantum mechanical
model systems, it is shown however that quantum systems can be in super-
position of states that give space-time correlations with the same symmetries
of the classical case.

In chapter 4, after a brief summary of the working principles of TDI, the
second, major result of this work is given: via an analysis of this technique
in which both the target sample and the probing hard x radiation are con-
sidered as quantum systems in weak interaction, it is shown that TDI can
access the full quantum space-time correlations among the particles of the
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sample – in particular the full ISF –, avoiding the measurement back action
that would give only a partial access to them [30].
The method of our analysis is first shown on a model scheme analogous to
TDI, in which the foils are substituted with split and delay units. After that
the method is specialized to the case of the actual TDI.
By a perturbative analysis of the interaction between the hard x radiation
and the electrons distribution in the sample, a picture of the photon-sample
dynamics happening in the scheme emerges: a photon has two different scat-
tering channels to reach the detector, each one extracting information from
the sample at a different time. The recombination of this channels at the
detector provokes a temporal interference in the signal generated by photon
detection, from which the spatial Fourier transform of the quantum DCF can
be extracted.
Moreover, some new usages of TDI are proposed.

Finally, in chapter 5, the work presented in this thesis is summarized and
some directions for new research are proposed.

Three appendices come with the main text. The first one briefly resumes
the time-dependent perturbation theory in quantum mechanics, whereas the
second resumes the quantization of the free electromagnetic field. These
two appendices contain no new results, their only function is to make the
text self-consistent. The third appendix contains the details of calculation of
some integrals that appear in chapter 4, which would have made the main
text more difficult to follow.
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Chapter 2

The dynamical correlation
functions in quantum theory

In this chapter we define dynamical correlation functions in both classical and
quantum theory. The differences between classical and quantum dynamical
correlation function is addressed starting from the different structures of the
two theories, in particular the origin of the difference between the quantum
dynamical correlations and their classical counterparts is traced back to the
fact that the configuration of a quantum system can be a superposition of
different configurations.
It is then shown that the quantum dynamical correlation function can be
split in the sum of a contribution related to the probabilities that the phys-
ical quantities take definite values in a direct measurement, and a second
contribution that accounts for the fact that for quantum superposition of
states the value of these quantities can be not defined.
Finally a model of experimental protocol, that we will call two-times ancilla
measurement, is illustrated that allows to retrieve the full quantum dynam-
ical autocorrelation function of an observable of a quantum system. This
model is actually an abstraction of the main features of Time Domain Inter-
ferometry, so that the analysis here proposed is nothing else than a transla-
tion on a more general level of the detailed calculations given in chapter 4
for the specific case of TDI.
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2.1 The Classical case dynamical correlations
Let us consider a classical system of which we want to determine the cor-
relations between the value of the quantity A at time t1 and the value of
quantity B at time t2. In a classical statistical theory A and B are random
variables defined over the sets of all their possible values. We will call these
values {ai}i and {bj}j respectively, with the labels i and j that can assume
continuous or discrete values.
At each instant of time, we can define a probability that A assumes a given
value ai and the same we can do for B and bj. Moreover we can assign a
probability for the joint event that A evaluates to ai at time t1 and B to bj
at time t2, that we will call P (A = ai, t1;B = bj, t2).
The classical dynamical correlation function is then calculated as the follow-
ing mean value

C
(cl)
AB (t1, t2) ≡

∑
i,j

ai bj P (A = ai, t1;B = bj, t2) (2.1)

The classical dynamical correlation function is directly accessible experimen-
tally. Indeed we can make in principle direct repeated measurement of A
at t1 and then of B at t2, obtaining for each measurement a couple of
values. Through the sequence of pairs of values {(ai(1), bj(1)), (ai(2), bj(2)),
. . .,(ai(n), bj(n))} obtained in this way, the function (2.1) can be reconstructed
as

C
(cl)
AB (t1, t2) =

1

n

n∑
α=1

ai(α) bj(α) (2.2)

This identification of the arithmetic average on the right hand side of (2.2)
and the definition given above of the classical dynamical correlation function,
is totally legit for classical systems because, in each run of the combined
measurements, the influence of the measuring apparatus at t1 on the outcome
of the measurement at t2 can be considered negligible in principle.

2.2 The Quantum dynamical correlations

2.2.1 The structure of quantum theory

What happen if we apply the same experimental protocol to a quantum sys-
tem? In order to understand that, it is useful to recall briefly the basic

8



postulates of quantum theory. In doing this we rely on the most common
interpretation of the theory, that is the so-called Copenhagen interpretation.

Postulate I The state of a system at a given time t is represented by a normalized
vector |ψ(t)〉 belonging to a suitably defined Hilbert space H.

Postulate II The physical observables of the system are represented by hermitian
linear operators defined over the Hilbert space of states. The set of
possible outcomes for a measurement of a physical quantity O is the
set of the eigenvalues of the corresponding operator Ô. We will refer
with the word "observable" interchangeably to both the operator and
the physical quantity it represents.

Postulate III Given that the system is in the state |ψ(t)〉, the probability that a
measurement of O gives the outcome oi is given by the Born rule

P (O = o1, t) = 〈ψ(t)|Π̂oi |ψ(t)〉 (2.3)

being Π̂oi the projector on the eigenspace of Ô in H corresponding to
the eigenvalue oi.

Postulate IV The evolution in time of the state of the system is given by the Schrödinger
equation

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 (2.4)

Here Ĥ is the hermitian operator corresponding to the Hamiltonian of
the system 1.

Postulate V During a measurement of an observable, the dynamics of the state
of the system is no more described by the Schrödinger equation. In
particular if a measurement of the observable O gives the value oi, the
state of the system after the measurement is

|ψ(t)〉 −→ Πoi |ψ(t)〉√
〈ψ(t)|Πoi |ψ(t)〉

(2.5)

1In what follows we assume that the systems are closed ones, so that thei hamitlonians
are time-independent.
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Some remarks on these postulates are in order.
The first two postulates represent a shift in the mathematical description of
physics. Whereas in a classical theory the state of a system corresponds with
the collection of values of relevant observables, in quantum mechanics the
concept of state is "detached" from that of observable. The state becomes
an abstract object in a linear space, this meaning, at variance with classical
theories, that a sum of states is as well a fair description of the system.

On the other hand postulate II and III help us to give a meaning to
these superposition of states. In fact, by virtue of postulate II, the set of
eigenvectors of an observable Ô – or of a system of observables mutually
commuting – is an orthonormal basis for the Hilbert space of states making
it possible to re-express at any time the quantum state |ψ(t)〉 as a sum of
eigenvectors of Ô with complex valued coefficients

|ψ(t)〉 =
∑
i

ci(t)|oi〉 (2.6)

Postulate III tells us how to interpret the coefficients ci(t) of such expansion:
substituting the right hand side of (2.6) in the expression (2.3) for the Born
rule, we obtain

P (O = oi, t) = |ci(t)|2 (2.7)

Formulae (2.6) and (2.7) inform us that the best knowledge we can ever have
about a quantum system is probabilistic in nature.
So in quantum theory the state of the system represents in general a multi-
plicity of possible values for its physical properties.
From the probability distribution defined by the coefficients ci(t) one can
calculate the average value of an observable expected in many measurements
as 〈O〉(t) = 〈ψ(t)|Ô|ψ(t)〉.

The only way we can be sure of the value of an observable is by measuring
it, but this action singles out one of the manifold possibilities expressed by
the quantum state, as stated by postulate V. A measurement spoils the linear
superposition of eigenstates that constitutes the state and this spoiling action
is what we referred to before as measurement back action on the system.
Actually one may be interested in measuring more than one observable. It
may happen that the operators corresponding to different observables do not
commute, this meaning that there is no common system of eigenvectors.
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To fix the ideas let us consider two non-commuting observables Â and B̂: the
state |ψ(t)〉 can be expanded in one or the other of the two sets of eigenvectors
{|ai〉}i or {|bj〉}j obtaining either the probability distribution for the values
of Â or for those of B̂, but determining one spoils the definition of the other.
This fact is more evident if we refer to what happens to B̂ in a measurement
of Â. A measurement of the latter provokes the collapse of the state in one of
the eigenvectors |ai〉, which in turn can be expanded as a linear combination
of eigenvectors of B̂ with coefficients c(ai)

j

|ai〉 =
∑
j

c
(ai)
j |bj〉 (2.8)

A probability distribution for the values of B̂ remains then defined as P (B =

bj) = |c(ai)
j |2, whereas the value of A is determined with certainty. It is then

said that two non-commuting observables are incompatible, as the determi-
nation of one of them by measurement forbids the knowledge of the values of
others non-commuting with the first, as stated in the famous indeterminacy
principle.
This fact is of capital importance for the properties of dynamical correlation
functions in quantum theory as will be shown below.

For what concerns the dynamics of a quantum system instead, postulate
IV tells us that the hamiltonian is the infinitesimal generator of the dynamics
of the system, which in turn can be represented by a unitary transformation
Û(t) of its initial state

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 (2.9)

The dynamical problem expressed by the Schrödinger equation can be trans-
lated in an initial value problem for Û(t){

i~ d
dt
Û(t) = ĤÛ(t)

Û0(t0, t0) = 1
(2.10)

The prediction of quantum theory are given in terms of expectation values
which can be re-expressed with the aid of the evolution operator as

〈ψ(t)|Ô|ψ(t)〉 = 〈ψ|Û(t, t0)†ÔÛ(t, t0)|ψ〉 (2.11)
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one can think of the initial state of the system as a static object and at-
tribute a dynamical nature to the observables defining the corresponding
time-dependent operators as

Ô(t) ≡ Û(t, t0)†ÔÛ(t, t0) (2.12)

In this way we can restate the problem of dynamics on the observables,
writing down the differential equations they obey

i~
d

dt
Ô(t) = [Ô(t), Ĥ] (2.13)

and considering the initial state as fixed.
These two different but equivalent perspectives on the dynamics, the one in
which the state evolves with time and the one in which observables evolve
instead, are known respectively as the Schrödinger and the Heisenberg pic-
ture of quantum theory.

2.2.2 The incomplete dynamical correlation function re-
trieved by projective measurements

Now we are able to understand the consequences of the experimental protocol
proposed in the beginning on a quantum system.
Let us assume that the system at time t0 = 0 is represented by the state

Figure 2.1: Schematic representation of the direct measurements of the two observables at different
times. The first measurement at t1 meakes the state of the system collapse into an eigenstate of Â,
whereas the second provokes a second collapse of the state at t2 into an eigenstate of B̂.

|ψ〉 and that the measurement of A is done at time t1 giving the value ai. By

12



postulate V we know that the state of the system after the measurement is

Π̂aiÛ(t1)|ψ〉√
〈ψ|Û(t1)†Π̂aiÛ(t1)|ψ〉

(2.14)

Then the probability of measuring at t2 the value bj for the observable B
having obtained ai at t1, that is the conditional probability P (B = bj, t2|A =
ai, t1), is obtained by the Born rule expressed in Postulate III and amounts
to [24, 25]

P (B = bj, t2|A = ai, t1) =
〈ψ|Û(t1)†Π̂aiÛ(t2, t1)†Π̂bj Û(t2, t1)Π̂aiÛ(t1)|ψ〉

〈ψ|Û(t1)†Π̂aiÛ(t1)|ψ〉
(2.15)

Again according to the Born rule, the denominator in the right hand side
of (2.15) is the probability P (A = ai, t1), so that bringing it to the left hand
side we obtain the chain rule for the joint probability for measuring ai at
time t1 and bj at t2

P (B = bj, t2;A = ai, t1) = P (B = bj, t2|A = ai, t1)P (A = ai, t1) =

= 〈ψ|Û(t1)†Π̂aiÛ(t2, t1)†Π̂bj Û(t2, t1)Π̂aiÛ(t1)|ψ〉
(2.16)

Actually (2.16) cannot be considered a proper joint probability distribu-
tion as it does not provide the correct marginal distribution for the outcomes
of measurements of B̂ at t2, that is∑

i

P (B = bj, t2;A = ai, t1) 6= P (B = bj, t2) (2.17)

This inequality is a consequence of the difference in the processes that define
the two sides. We have seen in fact that the terms in the sum of the left hand
side of (2.17) accounts for the outcomes of measurements of B̂ only after a
measurement of Â is performed, that is after a collapse of the state of the
system has taken place, while the right hand side of the inequality does not
consider any other action on the system before B̂ is measured.
Actually, no consistent way of defining a proper joint probability distribu-
tion exists for non-commuting observables, as is discussed and shown in
[31, 32, 33].
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The dynamical correlation function that we would obtain by making di-
rect subsequent measurements of Â and B̂ on a quantum system, is defined
analogously to the classical dynamical distribution function (2.1) using the
joint probability (2.16)

CAB(t1, t2) =
∑
i,j

ai bj〈ψ|Û(t1)†Π̂aiÛ(t2, t1)†Π̂bj Û(t2, t1)Π̂aiÛ(t1)|ψ〉 =

=
∑
i

ai 〈ψ|Û(t1)†Π̂aiÛ(t2, t1)†B̂Û(t2, t1)Π̂aiÛ(t1)|ψ〉

(2.18)

The quantity (2.18) will be called in the following projective correlation func-
tion. It accounts automatically for the measurement back action, and as such
it does not contain the full information stored in the initial linear superposi-
tion representing the initial quantum state.

2.2.3 The full quantum dynamical correlations and their
relationship with the pojective correlation func-
tion

The results cited in the introduction of this chapter, that is the ones about
coherences of the electromagnetic fields and the linear response theory for
thermodynamic systems, are actually not formulated in terms of correlations
of the kind of (2.18). Results like the fluctuation dissipation theorem and
the Kubo formula involve a different kind of correlation function which is
defined as

CAB(t1, t2) ≡ 〈ψ|Û(t1)†ÂÛ(t1)Û(t2)†B̂Û(t2)|ψ〉 (2.19)

and to which we will refer as the quantum dynamical correlation function.

The argument that brought to the definition (2.18) of projective correla-
tion function shows that one has to analyse carefully how dynamical correla-
tions are probed, as the outcome depends dramatically on the experimental
protocol.
The problem of a correct analysis of the measuring process is not only of
interest when considering correlation measurements. Actually the systemati-
zation of the measuring process in quantum theory is a major issue in the
debate on the foundations of the subject itself, and it is the main point on
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which different interpretations of the theory differentiate [22, 21].
Except the foundational issues, a detailed modelling of the measurement back
action on the system has also practical importance for the correct interpre-
tation and design of experiments [26, 34].
In the context of dynamical correlation measurements, this problem has been
addressed in [27], where the authors show that for a quantum system the mea-
sured dynamical correlation function does not correspond with (2.19).

The question then arise whether a kind of experiment able of measuring
the quantum dynamical correlation (2.19) is conceivable.
In order to address this problem, we first have to investigate the relationship
and differences between CAB(t1, t2) and CAB(t1, t2), in such a way that we
can understand why the direct measurement protocol described at the end
of the previous subsection forbids the access to the quantum dynamical cor-
relation function.
The most direct difference between these two quantities is that the projec-
tive correlation function is real valued, as can be immediately verified taking
the complex conjugate of (2.18), whereas the quantum dynamical one is a
complex valued quantity. Explicitly, the real and imaginary parts of the
quantum dynamical correlation function are given in terms of anticommuta-
tor and commutator of the operators involved

ReCAB(t1, t2) =
1

2
〈ψ|{Û(t1)†ÂÛ(t1), Û(t2)†B̂Û(t2)}|ψ〉

ImCAB(t1, t2) =
1

2i
〈ψ|[Û(t1)†ÂÛ(t1), Û(t2)†B̂Û(t2)]|ψ〉

(2.20)

The issue of the relationship between the projective and the quantum dy-
namical correlation functions has been addressed in [25] for the case in which
the correlated observables Â and B̂ are two Cartesian components of the spin
of two spin-1/2 particles. In that work, it has been found that for correla-
tions among spin-1/2 components, the real part of the quantum dynamical
correlation function equals the projective correlation function independently
of the state of the system.
Then the real part of quantum dynamical correlation function between com-
ponents of spin-1/2 observables is accessible via the direct measurement pro-
tocol, and it can be concluded that such real part is not affected from mea-
surement back action.
In the same work it has been further asked if interpreting ReCAB(t1, t2) as
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the back action-immune part of quantum dynamical correlations is correct
for generic systems and generic pairs of observables. The attempt to give an
answer produced a mathematical condition that the correlated observables
must satisfy in order to have ReCAB(t1, t2) = CAB(t1, t2). In the following
we give a derivation of this condition and, extending the result in [25], we
show that it can only be satisfied by operators whose spectrum is made of
just two eigenvalues with the same magnitude and opposite signs.

We start from the definition of quantum dynamical correlation function
(2.19) and substitute in it the decomposition of Â in the sum of its projectors

Â =
∑
i

aiΠ̂ai (2.21)

and introduce the following resolution of the identity operator

1 = Û(t1)†
(∑

l

Π̂al

)
Û(t1) (2.22)

CAB(t1, t2) can then be re-expressed in the following way

CAB(t1, t2) =〈ψ|Û(t1)†
(∑

i

aiΠ̂ai

)
Û(t2, t1)†B̂Û(t2, t1)

(∑
l

Π̂al

)
Û(t1)|ψ〉 =

=
∑
i

ai〈ψ|U(t1)†Π̂aiÛ(t2, t1)†B̂Û(t2, t1)Π̂aiÛ(t1)|ψ〉+

+
∑
i,l
i 6=l

ai〈ψ|Û(t1)†Π̂aiÛ(t2, t1)†B̂Û(t2, t1)Π̂alÛ(t1)|ψ〉

(2.23)

The first term on the right hand side of the last identity is nothing else
than the definition of CAB(t1, t2), formula (2.18), whereas the second term

KAB(t1, t2) ≡
∑
i,l
i 6=l

ai〈ψ|Û(t1)†Π̂aiÛ(t2, t1)†B̂Û(t2, t1)Π̂alÛ(t1)|ψ〉 (2.24)

is a complex quantity.
The real and imaginary parts of CAB(t1, t2) can then be re-expressed in terms
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of these two quantities

ReCAB(t1, t2) = CAB(t1, t2) + ReKAB(t1, t2)

ImCAB(t1, t2) = ImKAB(t1, t2)

(2.25)

The identity ReCAB(t1, t2) = CAB(t1, t2) that we are interested into, is satis-
fied when ReKAB(t1, t2) vanishes. Using the explicit form of KAB(t1, t2) this
condition amounts to

ReKAB(t1, t2) =

=
∑
i,l
i 6=l

(ai + al)〈ψ|Û(t1)†Π̂aiÛ(t2, t1)†B̂Û(t2, t1)Π̂alÛ(t1)|ψ〉 = 0

(2.26)

irrespective of the initial state |ψ〉 of the system.
It is convenient to expand the evolved state Û(t1)|ψ〉 in formula (2.26) on
the basis of eigenstates of Â

Û(t1)|ψ〉 =
∑
m

cm(t1)|am〉 (2.27)

so that it is immediate to evaluate the action of the projectors Π̂al , Π̂ai on it

Π̂alÛ(t1)|ψ〉 = cl(t1)|al〉
〈ψ|Û(t1)†Π̂ai = c∗i (t1)〈ai|

(2.28)

We obtain thus a new form of equation (2.26) by substitution of formulae
(2.28) into it, that is∑

i,l
i 6=l

c∗i (t1)cl(t1)(ai + al)〈ai|Π̂aiÛ(t2, t1)†B̂Û(t2, t1)Π̂al |al〉 = 0
(2.29)

We are momentarily interested in solving equation (2.29) with respect to
the observables alone, without any reference to the specific quantum state
|ψ〉 the system is in. In turn the quantum state figures in the equation
via the products of the expansion coefficients c∗i (t1)cl(t1), that we will call
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coherences, and then equation (2.29) must be valid whatever the value of
these coefficients is, and this implies that

(1− δi,l)(ai + al)〈ai|Û(t1)†Û(t2)B̂Û(t2)Û(t1)†|al〉 = 0 ∀ i, l (2.30)

The set of equations (2.30) is the condition for the observables that we were
looking for. The set of equations has two kinds of solutions.
The first and most trivial is

〈ai|Û(t1)Û(t2)†B̂Û(t2)Û(t1)†|al〉 = 0 for i 6= l (2.31)

At a closer look this equality means that Û(t2)†B̂Û(t2) is diagonal in the rep-
resentation of eigenvectors of Û(t1)†ÂÛ(t1), which equivalently means that
these two operators commute.
In this case the full quantum dynamical correlation function is exactly equal
to the projective one. This happens because the commutativity of Û(t1)†ÂÛ(t1)
with Û(t2)†B̂Û(t2) means that the measurement of Â does not influence the
later outcome for B̂, and then the probability (2.16) is well defined and can
be taken as the joint probability of measurement outcomes for the two ob-
servables.

The second and more interesting kind of solution is

ai = −al for i 6= l (2.32)

It is easy to verify that the above condition can be satisfied only if the whole
spectrum of Â is composed of two eigenvalues, which are equal in magnitude
and have opposite signs.
The Cartesian components of spin-1/2 operators evidently satisfy this con-
dition.

Next we investigate further the relationship between the projective and
the quantum dynamical correlation function, asking under what conditions
these two types of correlation functions are equal.
Looking back at formulae (2.25), this stricter condition of equality amounts
to

KAB(t1, t2) = 0 (2.33)

We have found previously that already the vanishing of ReKAB(t1, t2) inde-
pendently of the state is possible for a very small set of observables. Insisting
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on state-independency and imposing on this observables the additional con-
dition ImKAB(t1, t2) = 0, we would find at best that an even smaller set of
observables could satisfy equation (2.33).

For this reason we find more interesting to investigate condition (2.33) in
light of the features of the quantum state of the system.
From formulae (2.24) and (2.28) we find that

KAB(t1, t2) =
∑
i,l
i 6=l

aic
∗
i (t1)cl(t1)〈ai|Û(t2, t1)†B̂Û(t2, t1)|al〉 (2.34)

The dependency of the last formula on the coherences c∗i (t1)cl(t1), makes it
explicit that the difference between CAB(t1, t2) and CAB(t1, t2) is that the
first one accounts for the fact that the system at t1 can be in a linear super-
position of eigenstates of Â, whereas the second cannot because it is defined
considering the collapse of the state into only one of this eigenvalues provoked
by the measurement at t1.
In this sense CAB(t1, t2) is richer in information about the system than its
projective counterpart, and the only way they can be equal is that the state
of the system has evolved spontaneously at t1 in an eigenstate of Â, as in
this case the direct measurement of this observable would not affect the sub-
sequent evolution of the state.
Mathematically this means that the expansion coefficients reduce to cl(t1) =
δil, and this indeed satisfies equation (2.33). If the state is described more
generally by a density matrix, this last condition amounts to say that the
system is in a statistical mixture of eigenstates of Â.

2.2.4 Two-time ancilla measurement to access the quan-
tum dynamical correlation function

From the section 2.2.3 it is clear that if we wish to measure the full quantum
dynamical correlation function CAB(t1, t2), we have to find a way of probing
the system twice without spoiling the coherences of the state of the system
in the basis of eigenstates of Â. Thus a direct coupling of the system with a
measuring apparatus must be avoided.
Hereafter a measurement protocol based on an indirect coupling of the mea-
suring devices to the system is discussed. This protocol is an abstraction of
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the features of TDI technique and we will refer to this as two-time ancilla
measurement.

The basic idea of two-time ancilla measurement is to use an auxiliary
quantum system, the ancilla, which can interact weakly with the system for
a finite time.
The ancilla is initially prepared in a linear superposition of states, in such a
way to generate two parallel "histories" of the dynamics of composite system
made up of the ancilla and our system. In each of these two histories the two
subsystems begin to interact at a different instant for a finite time. Via the
interaction, in each of the parallel history the ancilla extract information on
the properties of the system around the time of interaction characteristic of
that history.
Later on a direct measurement of an observable of the ancilla is made. The
result of such measurement will depend on both the parallel histories of the
composite system, thus containing information on the properties of the sys-
tem at the two different interaction times.

In particular the result of the direct measurement on the ancilla depends
on the quantum dynamical correlation function of the observables of the
system involved in the interaction with the ancilla.
In the following we show the validity of this statement.
We call the states of the system and of the ancilla at the initial time t = 0
respectively |ψ〉 and |γ〉. Assuming that the two subsystems are initially
uncorrelated the state of the composite system is just the product

|Ψ〉 = |ψ〉|γ〉 (2.35)

The initial state of the ancilla is actually a linear superposition of two states

|γ〉 = |γα〉+ |γβ〉 (2.36)

and consequently (2.35) is also a superposition

|Ψ〉 = |ψ〉|γα〉+ |ψ〉|γβ〉 (2.37)

Now if the ancilla is in the state |γα〉 it interacts with the system from time
tα to time t1, whereas if it is in |γβ〉 the interaction takes place from tβ > t1
to t2.
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The evolution operator that rules the dynamic of the composite system dur-
ing these two interaction intervals, that we indicate by ÛI is generated by
the interaction hamiltonian

ĤI = gÂ⊗ R̂ (2.38)

where R̂ is an observable of the ancilla and Â is the observable of the sys-
tem whose dynamical correlation will be tested via this scheme2. Before, in
between and after the interaction intervals the hamiltonian of the composite
system is instead the sum of the free hamiltonians of the system and the
ancilla. This implies that, in this interaction-free intervals, the two subsys-
tems evolve independently from each other according to the free evolution
operator Û0.
The evolution of the state of composite system can thus be split in four steps:

1. Free evolution for 0 ≤ t ≤ tα

|ψ〉|γα〉+ |ψ〉|γβ〉 → Û0(tα)|ψ〉|γα〉+ Û0(tα)|ψ〉|γβ〉 (2.39)

2. Interaction in the first branch for tα ≤ t ≤ t1

Û0(tα)|ψ〉|γα〉+ Û0(tα)|ψ〉|γβ〉 → ÛI(t1, tα)Û0(tα)|ψ〉|γα〉+ Û0(t1)|ψ〉|γβ〉
(2.40)

3. Free evolution for t1 ≤ t ≤ tβ

ÛI(t1, tα)Û0(tα)|ψ〉|γα〉+ Û0(t1)|ψ〉|γβ〉 →
→ Û0(tβ, t1)ÛI(t1, tα)Û0(tα)|ψ〉|γα〉+ Û0(tβ)|ψ〉|γβ〉

(2.41)

4. Interaction in the second branch tβ ≤ t ≤ t2

Û0(tβ, t1)ÛI(t1, tα)Û0(tα)|ψ〉|γα〉+ Û0(tβ)|ψ〉|γβ〉 →
→ Û0(t2, t1)ÛI(t1, tα)Û0(tα)|ψ〉|γα〉+ ÛI(t2, tβ)Û0(tβ)|ψ〉|γβ〉

(2.42)
2For the sake of simplicity the form of the interaction hamiltonian has been taken as

a simple product of observables. The more general case is HI = g
∑

k Âk ⊗ R̂k and we
will see that this is the case in TDI, and the Fourier transform of dynamical correlation
function is obtained rather than the function itself.
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For t ≥ t2 the interaction does not contribute anymore to the dynamics
and the evolution of the composite system is free again.

The assumption of weak coupling of the ancilla means that the coupling
parameter g in the interaction hamiltonian (2.38) is small enough to allow a
perturbative evaluation of ÛI (see appendix A).
Thus the state at a time t > t4 is

|Ψ(t)〉 =Û0(t)|Ψ〉+

− ig

~
Û0(t, tα)

[∫ t1

tα

dt′ Û0(t′, tα)†
(
Â⊗ R̂

)
Û0(t′, tα)

]
Û0(tα)|ψ〉|γα〉+

− ig

~
Û0(t, tβ)

[∫ t2

tβ

dt′ Û0(t′, tβ)†
(
Â⊗ R̂

)
Û0(t′, tβ)

]
Û0(tβ, 0)|ψ〉|γβ〉

(2.43)

The last two terms in (2.43) can be usefully rewritten exploiting the unitarity
of the free evolution operator

|δΨα(t)〉 ≡ −ig
~
Û0(t, tα)

∫ t1

tα

dt′
[
Û0(t′, tα)Û0(tα)Û0(tα)†

]†(
Â⊗ R̂

)
[
Û0(t′, tα)Û0(tα)Û0(tα)†

]
Û0(tα)|ψ〉|γα〉 =

= −ig
~
Û0(t, 0)

[∫ t1

tα

dt′ Û0(t′)†
(
Â⊗ R̂

)
Û0(t′)

]
|ψ〉|γα〉

(2.44)

|δΨβ(t)〉 ≡ − ig
~
Û0(t, tβ)

∫ t2

tβ

dt′
[
Û0(t′, tβ)Û0(tβ)Û0(tβ)†

]†(
Â⊗ R̂

)
[
Û0(t′, tβ)Û0(tβ)Û0(tβ)†

]
Û0(tβ)|ψ〉|γα〉 =

= −ig
~
Û0(t)

[∫ t2

tβ

dt′ Û0(t′)†
(
Â⊗ R̂

)
Û0(t′)

]
|ψ〉|γβ〉

(2.45)

If Ŵ is the observable on the ancilla that we measure after the interaction
with the system, the average value for such an observable at t > t2 will be
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determined by the scalar product 〈Ψ(t)|(1⊗Ŵ )|Ψ(t)〉. Looking at expression
(2.43) for the the evolved state |Ψ(t)〉, we realize that the expectation value
of Ŵ is the sum of different contributions at different orders of the coupling
constant g:

• 0th order
〈Ψ|Û0(t, 0)†(1⊗ Ŵ )Û0(t, 0)|Ψ〉 (2.46)

• 1st order

〈Ψ|Û0(t, 0)†(1⊗Ŵ )|δΨα(t)〉+〈Ψ|Û0(t, 0)†(1⊗Ŵ )|δΨβ(t)〉+c.c. (2.47)

• 2nd order

〈δΨα(t)|(1⊗ Ŵ )|δΨα(t)〉+ 〈δΨβ(t)|(1⊗ Ŵ )|δΨβ(t)〉+
+〈δΨα(t)|(1⊗ Ŵ )|δΨβ(t)〉+ 〈δΨβ(t)|(1⊗ Ŵ )|δΨα(t)〉

(2.48)

It will be shown that the operators Ŵ and R̂, and the choice of the initial
state of the ancilla specific to the TDI technique make the 0th and 1st order
terms negligible, so that only the 2nd order terms are necessary for the
determination of the average value of W . Substitution of (2.44) into (2.48)
gives

〈W 〉(t) ' g2

~2

{∫ t1

tα

∫ t1

tα

dt′dt′′ 〈ψ|Â(t′)Â(t′′)|ψ〉〈γα|R̂(t′)Ŵ (t)R̂(t′′)|γα〉+

+

∫ t2

tβ

∫ tα

tβ

dt′dt′′ 〈ψ|Â(t′)Â(t′′)|ψ〉〈γβ|R̂(t′)Ŵ (t)R̂(t′′)|γβ〉+

+2Re
[ ∫ t1

tα

∫ t2

tβ

dt′dt′′ 〈ψ|Â(t′)Â(t′′)|ψ〉〈γα|R̂(t′)Ŵ (t)R̂(t′′)|γβ〉
]}
(2.49)

In the last formula we adopted for simplicity the notation Ô(t) = Û †0(t)ÔÛ0(t)
for the operators.
If the target free dynamics is slower than the ancilla free dynamics, the
correlation function 〈ψ|Â(t′)Â(t′′)|ψ〉 can be evaluated at one of the two
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edges of the time integration intervals and brought out of it, in such a way
that (2.49) becomes

〈W 〉(t) ' g2

~2

{
CAA(t1, t1)

∫ t1

tα

∫ t1

tα

dt′dt′′ 〈γα|R̂(t′)Ŵ (t)R̂(t′′)|γα〉+

+CAA(t2, t2)

∫ t2

tβ

∫ t2

tβ

dt′dt′′ 〈γβ|R̂(t′)Ŵ (t)R̂(t′′)|γβ〉+

+2Re
[
CAA(t1, t2)

]
Re
[ ∫ t1

tα

∫ t2

tβ

dt′dt′′ 〈γα|R̂(t′)Ŵ (t)R̂(t′′)|γβ〉
]
+

−2 Im
[
CAA(t1, t2)

]
Im
[ ∫ t1

tα

∫ t2

tβ

dt′dt′′ 〈γα|R̂(t′)Ŵ (t)R̂(t′′)|γβ〉
]}

(2.50)

This last formula tells us that from repeated measurement on the ancilla
system we can retrieve the dynamical quantum correlation function of the
observable Â through which the system couples to the ancilla.
We will see in chapter 4 how the result (2.50) can be firmly established for the
TDI technique. Moreover, in that case the assumption of a slow dynamical
variation of the internal dynamics of the target is not strictly necessary.
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Figure 2.2: Schematic representation of the two-time ancilla measurement. The dashed black lines
represent the two possible histories of the ancilla and the system under their mutual interaction. In the
upper history the ancilla interacts with the system at time t1 generating the contribution |δΨα(t)〉 to
the final state of the composite system, which depend on the Â(t1). Similarly in the second history the
interaction takes place at t2 bringing in the final state Â(t2)-dependent contribution |δΨβ(t)〉. The direct
measurement on the ancilla mixes the two contributions, so that the outcome will depend on the quantum
dynamical correlation function for Â evaluated at the two interaction times.

Differently from the the measurement of correlation described in section
2.2.2, where one truly has to act on the system twice, in the two-time ancilla
measurement there is only one intervention on the system by the ancilla but
it cannot be stated when this intervention takes place.
Indeed the form of the final state (2.43), neglecting the zero-th order con-
tribution, can be interpreted stating that either the ancilla has probed the
system at t1 or it has probed the system at t2 but this two possible events
do not mutually influence.
As suggested by figure 2.2, the two perturbative contributions |δΨα(t)〉 and
|δΨβ(t)〉 to the final state of the composite system can be thought as two
parallel histories, in each of which the ancilla has probed the system at a
different time.
The final measurement on the ancilla does not distinguish the two histories,
therefore the the outcome of it will depend on both the histories, that is on
the properties of the system at the two interaction times.
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Chapter 3

The Dynamical couple correlation
function and its Fourier
transforms

This chapter is dedicated to the dynamical couple correlation function of an
ensemble of particles (DCF), and its Fourier transforms.
In this chapter we give the generic definitions for the DCF, the ISF and the
dynamic structure factor which are valid irrespective of whether the system
is a classical or a quantum one. Then we show that if a system is classical,
these functions enjoy some symmetry properties, and that this same symme-
tries can be violated if the system is quantum mechanical as a consequence
of a non-vanishing imaginary part of the DCF.

This fact is of big relevance for TDI or inealstic x-ray or neutron scatter-
ing experiments. Indeed if an experimenter finds that the above mentioned
symmetries of the ISF or of the dynamic structure factor are violated, he
must conclude that the dynamics of the particles in the system is ruled by
quantum mechanical laws. It is then legit to ask if, on the contrary, it can
concluded that a classical model for the particles of a system is sufficient
when these functions are experimentally found to be symmetric.
We answer this question in the second part of the chapter by analysing two
model systems of quantum particles hopping between the minima of some
external potential. There we find that the particles can be in a state that
is a quantum superposition of different position configurations, but, despite
this, give a DCF and an ISF which are symmetric like the ones of a classical
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system.
These results for the first of the two model systems have been presented in
[30].

3.1 The definition and properties of the DCF
and its Fourier transforms

The DCF for a system of particles enclosed in a volume V is the correlation
function between the densities of particles at different points in the system
at different times, averaged over its whole volume.
Calling the density of particles at a given point and time ρ(r, t), the definition
of the DCF is1

G(r, t1, t2) ≡
∫
V

d3r′ 〈ρ(r′, t1)ρ(r′ + r, t2)〉 (3.1)

where the angular brackets have the meaning of a statistical average over dif-
ferent possible configurations of particles in the system, and therefore they
have to be intended as an ensemble average for a classical system and as an
expectation value for a quantum system.

The DCF tells us how likely is to have a particle somewhere in the target
at time t1 and to have a second particle at a distance r from the first at a
later time t2.

From the DCF we can define the ISF and the dynamic structure factor.
The ISF is the spatial Fourier transform of G(r, t1, t2)

S(Q, t1, t2) ≡
∫
V

d3r G(r, t1, t2)e−iQ·r (3.2)

The ISF represents the degree of correlations between two particles on a
length-scale λ = 2π/|Q| along the direction Q/|Q|.

The dynamic structure factor is usually defined for systems in states
whose statistical properties do not depend on time, like e.g. systems in

1Many different normalizations of the DCF are adopted in the scientific literature. Here
no special normalization is used in order not to make the notation cumbersome
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thermal equilibrium [35].
The stationarity condition implies that the DCF, and as a consequence the
ISF, do not depend on the two instants t1 and t2 separately but only on their
difference τ = t2 − t1. When such a condition holds, it is possible to define
the space-time Fourier transform of the DCF as

S(Q, ω) ≡
∫ +∞

−∞
dτ S(Q, τ)eiωτ (3.3)

3.1.1 The properties of the DCF, the ISF and the dy-
namic structure factor for classical systems

We know that dynamical correlation functions for classical systems are real
valued quantities (see chapter 2), so that the same can be said of the DCF.
From definition (3.1) of the DCF, it is easy to verify by the change of variables
r′ −→ r′ − r that the following relation holds

G(cl)(r, t1, t2) =

∫
V

d3r′〈ρ(r′, t2)ρ(r′ − r, t1)〉 = G(cl)(−r, t2, t1) (3.4)

The fact that G(cl)(r, t1, t2) is real valued and that it enjoys the inversion
symmetry (3.4), implies that the classical ISF satisfies two identities.
From the reality condition and the definition (3.2) it follows that the classi-
cal ISF is an hermitian function with respect to the variable Q, that is its
complex conjugate its equal to the original function evaluated at the inverse
value −Q, indeed we have

S(cl)∗(Q, t1, t2) =

∫
V

d3r G(r, t1, t2)eiQ·r ≡ S(cl)(−Q, t1, t2) (3.5)

which translates on its real and imaginary parts as

ReS(cl)(Q, t1, t2) = ReS(cl)(−Q, t1, t2) (3.6)
ImS(cl)(Q, t1, t2) = −ImS(cl)(−Q, t1, t2) (3.7)

From identity (3.4) instead it follows that

S(cl)(Q, t1, t2) =

∫
V

d3r G(−r, t2, t1)e−iQ·r =

=

∫
V

d3r′G(r′, t2, t1)eiQ·r
′ ≡ S(cl)(−Q, t2, t1)

(3.8)
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that is the classical ISF is symmetric with respect to the inversion of Q and
the exchange of the time arguments.
Moreover combining identities (3.5) and (3.8) we obtain that the ISF for
classical systems is also hermitian with respect to the exchange of time ar-
guments, that is

S(cl)∗(Q, t1, t2) = S(cl)(Q, t2, t1) (3.9)

The symmetry conditions (3.4) and (3.8) for stationary systems become

G(cl)(r, τ) = G(cl)(−r,−τ) (3.10)

S(cl)(Q, τ) = S(cl)(−Q,−τ) (3.11)

which imply that the dynamic structure factor must satisfy the following
conditions of reality and symmetry

S(cl)∗(Q, ω) = S(cl)(Q, ω) (3.12)

S(cl)(Q, ω) = S(cl)(−Q,−ω) (3.13)

The dynamic structure factor represent the excitation spectrum of the par-
ticles density in the system, e.g. the spectrum of phonon excitations in a
crystalline solid in thermal equilibrium at a given temperature [6, 36].

3.1.2 The properties of the DCF, the ISF and the dy-
namic structure factor for quantum systems

The DCF of a quantum system takes complex values. As a consequence not
all the symmetries for the ISF and the dynamic structure factor shown for
classical systems hold in this case.
The DCF of a quantum system in the initial state |ψ〉 is [37]

G(qu)(r, t1, t2) ≡
∫
V

d3r′ 〈ψ|Û(t1)†ρ̂(r′)Û(t1)Û(t2)†ρ̂(r′ + r)Û(t2)|ψ〉 (3.14)

with the particle-density operator being a function of the position operators
of all the N particles r̂1, . . . r̂N

ρ̂(r) =
N∑
j=1

δ(r− r̂j) (3.15)
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The G(qu)(r, t1, t2) enjoys the hermiticity property with respect to distance
and times, that is its complex conjugate is equal to the function itself evalu-
ated at −r and at times exchanged. In fact taking the complex conjugate of
(3.14) we get

G(qu)∗(r, t1, t2) =

∫
V

d3r′ 〈ψ|Û(t2)†ρ̂(r′ + r)Û(t2)Û(t1)†ρ̂(r′)Û(t1)|ψ〉 =

=

∫
V

d3r′′ 〈ψ|Û(t2)†ρ̂(r′′)Û(t2)Û(t1)†ρ̂(r′′ − r)Û(t1)|ψ〉 ≡ G(qu)(−r, t2, t1)

(3.16)

This hermiticity condition endows the quantum ISF with the same her-
mitian symmetry (3.9) with respect to times exchange that holds for classical
systems

S(qu)∗(Q, t1, t2) = S(qu)(Q, t2, t1) (3.17)

but conversely to the classical case, the presence of an imaginary part in the
DCF invalidates the identity (3.5), so that in general for quantum systems
we have

S(qu)∗(Q, t1, t2) 6= S(qu)(−Q, t1, t2) (3.18)

In the stationary case, the hermiticity condition on the quantum ISF
(3.17) still allows for the definition of a real valued dynamic structure fac-
tor, but the inequality (3.18) spoils the inversion symmetry (3.13) that the
dynamic structure factor enjoys in the classical case, so that for quantum
systems one in general has that

S(qu)(Q, ω) 6= S(qu)(−Q,−ω) (3.19)

3.1.3 The experimental relevance of the symmetry prop-
erties of the DCF and its transforms

The different properties and symmetries stated for the DCF of classical and
quantum systems and its Fourier transforms are summed up in the following
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table
Classical Quantum

Gcl(r, t1, t2) ∈ R Gqu(r, t1, t2) ∈ C
DCF

Gcl(r, t1, t2) = Gcl(−r, t2, t1) Gqu∗(r, t1, t2) = Gqu(−r, t2, t1)

Scl∗(Q, t1, t2) = Scl(−Q, t1, t2)
Squ∗(Q, t1, t2) 6= Squ(−Q, t1, t2)

ISF Scl(Q, t1, t2) = Scl(−Q, t2, t1)
Squ∗(Q, t1, t2) = Squ(Q, t2, t1)

Scl∗(Q, t1, t2) = Scl(Q, t2, t1)

Dynamical Scl(Q, ω) ∈ R Squ(Q, ω) ∈ R
structure
factor Scl(Q, ω) = Scl(−Q,−ω) Squ(Q, ω) 6= Squ(−Q,−ω)

In particular we have seen that the fact that G(cl) is real valued implies that

S(cl) is hermitian with respect to the momentum and this in turn implies
that the dynamic structure factor is symmetric with respect to inversion of
momentum and frequency.
Actually, also the opposite statements are valid. Indeed if the ISF is hermi-
tian with respect to the momentum, it follows that

G(cl)(r, t1, t2) =
1

(2π)3

∫
V

d3QS(cl)∗(−Q, t1, t2)eiQ·r =

=
1

(2π)3

(∫
V

d3Q′ S(cl)(Q′, t1, t2)eiQ
′·r

)∗
=

= G(cl)∗(r, t1, t2)

(3.20)
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Whereas, in the case of stationary system, a symmetric dynamic structure
factor implies an hermitian ISF

S(cl)(Q, τ) =
1

2π

∫ ∞
−∞

dω S(cl)(−Q,−ω)e−iωτ =
1

2π

∫ ∞
−∞

dω′ S(cl)(−Q, ω′)eiω′τ =

=
1

2π

(∫ ∞
−∞

dω S(cl)(−Q, ω)eiωτ

)∗
= S(cl)∗(−Q, τ)

(3.21)

Thus if in an experiment on a system it is found that the ISF is non-
hermitian, or that the dynamic structure factor is not symmetric, then it
can be stated that the corresponding DCF is complex valued, that is that a
classical model for the particles is not sufficient to describe their correlations
and that a quantum mechanical model instead is necessary.
In particular the need of taking into account quantum corrections to the
dynamic structure factor in order to correctly fit the data from inelastic x-
ray and neutron scattering experiments, has been recognized in [38, 39, 40],
and measurements of the asymmetry of such function have been performed
for different liquid systems in thermal equilibrium at low temperatures, e.g.
for liquid Neon [41], liquid Hydrogen and Deuterium [42].
In particular, for a generic quantum system in thermal equilibrium it can be
shown that the dynamic structure factor satisfies the identity [43]

S(qu)(Q, ω) = e
~ω
kBT S(qu)(−Q,−ω) (3.22)

which is evidently non-symmetrical with respect to inversion of the sign of
Q and ω.

Relation (3.22) provides us with an estimate of the temperature scales at
which we shall expect quantum effects to show up in the dynamic structure
factor.
If the temperature of a system is of order T ∼ o(~ω/kB), the asymmetric
character of the dynamic structure factor is not negligible. If we consider
the temperature of the system as fixed, the last condition means that the
asymmetry of the dynamic structure factor is more pronounced for frequen-
cies ω ≥ kB T/~. This also means that in the time domain we should expect
quantum effects to be non negligible on a time-scale τ ' ~/(kB T ), that is
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on such time-scales one should expect the ISF to be non-hermitian and the
DCF to be complex-valued.

Such an easy estimate of the time-scales of quantum features of the DCF
and ISF is not possible for systems out of thermal equilibrium. An experi-
mental assessment of this time-scale could then help in the understanding of
quantum effects in non-equilibrium physics.

In the next chapter we discuss the cases of two quantum model systems
which admit states with no classical features, being given by superpositions
of other states, that lead to real valued DCF. This means that if in an
experiment on a system it is found that its ISF is hermitian, or that its
dynamic structure factor is symmetric, it cannot be stated that the particles
in the system are classical only on the basis of such experiment.

3.2 Model systems

3.2.1 One particle in a 1D Double Well potential

The first model we consider is the minimal constituent block of more general
quantum systems, that is a single particle in a double well potential.

Figure 3.1: Particle trapped in a double well potential

In a simplified description of this system, we assume that the particle
subject to the double-well potential can only be found at two positions that
is, with reference to figure 3.1, either the left or the right minimum of the
potential which lie at a mutual distance d.
These two possible configurations of the particle, corresponding to two mu-
tually orthogonal quantum states |L〉 and |R〉 with L and R standing for
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"left" and "right", represent all the possibilities for the system. These two
quantum states then constitute a basis for the Hilbert space of the particle.

Assuming that the particle can hop from one position to the other, the
hamiltonian of the system can be represented in the {|L〉, |R〉} basis as

Ĥ = −~ω̃
2

(|L〉〈R|+ |R〉〈L|) (3.23)

Adapting the definition (3.14) for the case of a one-dimensional system in
which positions of particles can only take discrete values, the DCF for the
particle in the double well is defined as

GDW (x, t1, t2) =

=



〈ψ|Û(t1)†ρ̂(L)Û(t1)Û(t2)†ρ̂(R)Û(t2)|ψ〉 if x = d

〈ψ|Û(t1)†ρ̂(R)Û(t1)Û(t2)†ρ̂(L)Û(t2)|ψ〉 if x = −d

〈ψ|Û(t1)†ρ̂(L)Û(t1)Û(t2)†ρ̂(L)Û(t2)|ψ〉+
+ 〈ψ|Û(t1)†ρ̂(R)Û(t1)Û(t2)†ρ̂(R)Û(t2)|ψ〉 if x = 0

(3.24)

From the definition (3.15) for the particle density operator, we can find the
representations of ρ̂(L) and ρ̂(R) in the left/right basis

ρ̂(L) = δL,L|L〉〈L|+ δL,R|R〉〈R| = |L〉〈L|
ρ̂(R) = δR,L|L〉〈L|+ δR,R|R〉〈R| = |R〉〈R|

(3.25)

whereas the evolution operator corresponding to the hamiltonian (3.23) is

Û(t) = e−i
Ĥ
~ t = 1 cos

(
ω̃

2
t

)
+ i
(
|L〉〈R|+ |R〉〈L|

)
sin

(
ω̃

2
t

)
(3.26)

Having at hand the explicit forms of all the factors appearing in (3.24),
the DCF can be calculated for any initial state of the particle.
The generic initial state of the particle at time t = 0 is

|ψ〉 = cL|L〉+ cR|R〉 (3.27)
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where the complex coefficients cL and cR satisfy the normalization condition
|cL|2 + |cR|2 = 1, but are otherwise arbitrary.
The explicit form of the DCF of the particle is

GDW (x, t1, t2) =

=



sin2

[
ω̃(t2 − t1)

2

]
P (L, t1) +

1

2
sin
[
ω̃(t2 − t1)

]
ImΓ(t1)+

+
i

2
sin
[
ω̃(t2 − t1)

]
ReΓ(t1) if x = d

sin2

[
ω̃(t2 − t1)

2

]
P (R, t1)− 1

2
sin
[
ω̃(t2 − t1)

]
ImΓ(t1)+

+
i

2
sin
[
ω̃(t2 − t1)

]
ReΓ(t1) if x = −d

cos

[
ω̃(t2 − t1)

2

]
− i sin

[
ω̃(t2 − t1)

]
ReΓ(t1) if x = 0

(3.28)

Here P (L, t) and P (R, t) are the probabilities at time t for the particle
to be at the left or right minimum, and amount to

P (L, t) ≡ |〈L|Û(t1)|ψ〉|2 =

=
1

2

[
1 + (|cL|2 − |cR|2) cos(ω̃t)

]
+ Im (c∗LcR) sin(ω̃t)

(3.29)

P (R, t) ≡ |〈R|Û(t)|ψ〉|2 =

=
1

2

[
1− (|cL|2 − |cR|2) cos(ω̃t)

]
− Im (c∗LcR) sin(ω̃at)

(3.30)

while the quantity Γ(t) is the coherence of the state of the particle in the
{|L〉, |R〉} basis at t1, that is

Γ(t) ≡ 〈ψ|Û(t)|L〉〈R|Û(t)|ψ〉 =

= Re (c∗LcR) + i

[
Im (c∗LcR) cos(ω̃t) +

|cL|2 − |cR|2

2
sin(ω̃t)

] (3.31)

Expression (3.28) provides us with the explicit expression for the real and
imaginary parts of the DCF, and in particular we immediately see that the
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imaginary part is directly proportional to the real part of the coherence Γ(t1)
of the quantum state of the particle.
Therefore, consistently with the general discussion on quantum correlation
functions in section 2.2.3, we find that a non-vanishing ImGDW (x, t1, t2) is
a direct consequence of the fact that the particle can be in a superposition
of position eigenstates, which is possible only if the dynamics is ruled by
quantum mechanical law.

Moreover, the explicit for of ImGDW (x, t1, t2) allows us to inquiry if there
exist any quantum states which are still superposition of eigenstates of po-
sition, that is Γ(t) 6= 0 for some t, but that give a real-valued DCF so that
it would not be possible to spot the quantum nature of the particle by mea-
surements of this function or of the asymmetries in the corresponding ISF.
As stated above we have

ImGDW (x, t1, t2) ∝ ReΓ(t1) (3.32)

but from the expression for the coherence (3.31) it turns out that

ReΓ(t1) = Re (c∗LcR) (3.33)

that is, the real part of the coherence is constant during the dynamics of the
particle. Combining (3.32) and (3.33), we find that the condition to have a
real valued DCF is that the expansion coefficients of the initial state of the
particle |ψ〉 satisfy the equation

Re (c∗LcR) = 0 (3.34)

The coefficients satisfying this equation can be given in the form

cL = cos

(
θ

2

)
, cR = ±i sin

(
θ

2

)
(3.35)

with θ ∈ [0, π].
That the coherence corresponding to these coefficients does not identically
vanish, that is that the initial state corresponding to the coefficients (3.35) is
a legit superposition of quantum states, can be seen by a direct calculation.
Substitution of (3.35) into (3.31) leads to

Γθ,±(t) =
i

2
sin
(
θ ± ωt

)
(3.36)
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The ISF for the particle can also be explicitly calculated.
Because GDW (x, t1, t2) can only take three possible discrete values, then the
ISF is defined over this discrete values as the discrete sum

SDW (Q, t1, t2) =
∑

x=−d,0,d

GDW (x, t1, t2)e−ixQ·x̂ (3.37)

Substitution of (3.28) into (3.37) gives

SDW (Q, t1, t2) = sin

[
ω̃(t2 − t1)

2

]2

cos
(
dQ · x̂

)
+ cos

[
ω̃(t2 − t1)

2

]2

+

+i

{[
P (L, t1)− P (R, t1)

]
sin

[
ω̃(t2 − t1)

2

]2

sin
(
dQ · x̂

)
+

+

[
ImΓ(t1) sin

(
dQ · x̂

)
+ ReΓ(t1)

(
cos
(
dQ · x̂

)
− 2
)]sin

[
ω̃(t2 − t1)

]
2

}
(3.38)

We notice that if the condition (3.34) for the state of the particle holds, the
ISF is not hermitian with respect to Q as expected when the DCF is real
valued.

This simple model shows explicitly that a complex valued DCF, or equiv-
alently an hermitian ISF, is a consequence of the particle being in a coherent
superposition of position eigenstates. But we have also found that among
these coherent superpositions there are some for which such conditions on
the correlation functions can be violated.
This means that in principle it is not correct to claim that an hermitian ISF
is an exclusive property of classical systems.
This is anyway a very minimal system on which to base such a conclusion.
For this reason in the next section we analyse a generalization of this model.

3.2.2 Many particles in one dimensional periodic poten-
tial in tight binding approximation

A direct generalization of the previous system is given by particles in a pe-
riodic potential in the tight binding approximation [44]. In this model a
system of non-interacting particles, that we assume to be spin-0 bosons, is
trapped in a periodic potential. For simplicity we consider a one-dimensional
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potential with M minima in positions {xi}Mi=1, with two adjacent minima at
distance xi+1 − xi = d.
Additionally we consider the potential to satisfy periodic boundary condi-
tions, that is xM+1 = x1.

Figure 3.2: One-dimensional bosonic tight binding approximation.

Analogously to the case of a particle in a double well potential, we assume
that the particles can only be found at the minima of the potential, and that
they can hop between neighbouring minima.

As we are interested in treating the case of a generic number of particles
in the system it is useful to adopt a second quantization formalism [43].
We introduce then a set of M operators {ĉi}Mi=1 and their hermitian conju-
gates {ĉ†i}Mi=1. The operator ĉ†i creates a particle at position xi, whereas ĉi
destroys a particle at the same site.
These 2M operators obey bosonic commutation rules, that is[

ĉi, ĉj
]

=
[
ĉ†i , ĉ

†
j

]
= 0[

ĉi, ĉ
†
j

]
= δi,j

(3.39)

The hamiltonian of the N non-interacting bosons hopping between the posi-
tion of the minima of the potential can be expressed in terms of the creation
and destruction operators just introduced

Ĥ = −~ ω̃
2

M∑
i=1

ĉ†i ĉi+1 + ĉ†i+1ĉi (3.40)
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As for the case of a single particle in the double well potential, in order
to analyse the DCF for this model we need the explicit form of the number
of particle operators ρ̂(i) at each of the xi positions. Moreover we have to
find the time evolution of these operators.
The first task is straightforward, as we have that

ρ̂(i) = ĉ†i ĉi (3.41)

For the second task it is necessary to introduce a new set of creation and
destruction operators to recast the hamiltonian in diagonal form. This new
operators are given in terms of the old ones as

ĉ†k =
1√
Md

M∑
i=1

eikxi ĉ†i

ĉk =
1√
Md

M∑
i=1

e−ikxi ĉi

(3.42)

where the parameter k takes the discrete values

k =
2π

Md
m , m = 0,±1, . . . ,±M

2
(3.43)

The relations (3.42) can then be inverted to give

ĉ†i =
1√
Md

π/d∑
k=−π/d

e−ikxi ĉ†k

ĉi =
1√
Md

π/d∑
k=−π/d

eikxi ĉk

(3.44)

Substitution of relations (3.42) into (3.40) we arrive at the diagonal form of
the hamiltonian

Ĥ = −~ ω̃
2

π/d∑
k=−π/d

cos(kd)c†kck (3.45)

From this expression it is clear that the operators ĉk/ ĉ†k destroy/create a
particle in the eigenstate of the hamiltonian corresponding to the energy

εk = −~ ω̃
2

cos(kd) (3.46)
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Moreover we can calculate the evolution of the ĉk operators via the Heisenberg
equation {

d
dt
ĉk(t) = i

~ [Ĥ, ĉk(t)] = − i
~ ĉk(t)

ĉk(0) = ĉk
(3.47)

from which we obtain

ĉk(t) = ĉke
−i εk~ t ĉ†k(t) = ĉ†ke

i
εk
~ t (3.48)

The time dependency of ρ̂(i) can now be explicitly calculated by noticing
that

ρ̂(i, t) =
1

Md

π/d∑
k,k′=π/d

e−i(k−k
′)xi ĉ†k(t)ĉk′(t) =

=
1

Md

π/d∑
k,k′=π/d

e−i(k−k
′)xi e

i
~ (εk−εk′ )t ĉ†kĉk′

(3.49)

With the explicit form (3.49) we can calculate the imaginary part of the
DCF and find the conditions under which it vanishes. This quantity is given
by

ImGTB(l, t1, t2) =
1

2i

∑
i

〈ψ|
[
ρ̂(i, t1), ρ̂(i+ l, t2)]|ψ〉 =

=
1

Md
Im

(
π/d∑

k=−π/d

e−ikldeiεk(t2−t1)

π/d∑
k′=−π/d

eik
′lde−iεk′ (t2−t1)〈ψ|c†k′ck′ |ψ〉

)
(3.50)

Asking that (3.50) vanishes, means that the initial state |ψ〉 of the particles
must be such to make real valued the quantity

π/d∑
k=−π/d

e−ikldeiεk(t2−t1)

π/d∑
k′=−π/d

eik
′lde−iεk′ (t2−t1)〈ψ|c†k′ck′|ψ〉 ∈ R (3.51)

This last condition of reality can be satisfied if the state of the system is
such that the average population of all the energy eigenstates are equally
populated, namely if the expectation value 〈ψ|c†kck|ψ〉 has the same value for
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all the modes k.
We have at least two states satisfying the condition above, namely

|ψn〉 =

π/d∏
k=−π/d

(
c†k
)n

√
n!
|0〉 |ψN〉 =

1√
M

π/d∑
k=−π/d

(
c†k
)N

√
N !
|0〉 (3.52)

where |0〉 is the state with zero particles, and if the number of particles is
set to N , the number n is an integer such that nM = N . For the two states
(3.52) we have that the average population of the modes is

〈ψn|c†kck|ψn〉 = 〈ψN |c†kck|ψN〉 =
N

M
∀k ∈

[
− π

d
,
π

d

]
(3.53)

However the two states (3.52) are not necessarily the only ones that can
give a constant population for all the energy eigenstates, neither satisfying
such condition on populations is necessarily the only way to satisfy condition
(3.51).
This means that there could be many more quantum states for this system
that give a real valued DCF, hiding in this way the quantum nature of the
particles in scattering experiments.
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Chapter 4

The quantum theory of
Time-Domain interferometry with
filtering foils

We open this chapter with a brief account of the working principles of TDI
with filtering foils and after that, we present the results obtained in [30].
We provide our quantum theoretical analysis of this experimental technique.
As the method relies on a perturbative treatment of the interaction between
the target and the radiation, we identify the parts of the matter-radiation
hamiltonian that can account for the scattering of photons off of the target.
Before facing the quantum theoretical analysis of TDI with Mössbauer fil-
tering foils, we propose the analysis of a model scheme in which the foils are
substituted by split and delay lines, which are arrengements of beamsplitters
and mirrors. The action of these devices on the photons of the x-ray pulses
can be considered, for our ends, similar to the action of Mössbauer foils.
This alternative scheme does not only serve to illustrate the methods of our
analysis, but, given the progeress in the development of split and delay lines
for x-ray and gamma radiation [45], is a new concrete experimental proposal
for particles correlation measurements.
Then, it is shown how our analysis applies to the actual TDI with filtering
foils and the results obtained for the two schemes are explained in a unified
way as a “which path information” erasure experiment.
Exploiting the insights obtained via this interpretation, and considering some
recent developement in the control of Mössbauer emission by the filtering
foils, in the last part of the chapter we propose new usages of TDI.
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4.1 Working principle of TDI with Mössbauer
filtering foils

In TDI experiments with Mössbauer filtering foils, the target system whose
ISF we want to retrieve, is placed between two parallel foils enriched with
Mössbauer isotopes and one of the two foils is mounted on a drive.
A short hard x-ray synchrotron pulse, of duration of order ∼ 100ps, propa-
gates orthogonally toward the first foil, which is moved at constant velocity.
The Mössbauer isotopes present in the foil, are excited by the incoming
pulse from their ground state to a longlived excited state. Thus, the spectral
component of the incident pulse is partially absorbed, and then re-emitted
without recoil by the first foil on a timescale τ given by the lifetime of the
Mössbauer isotope.
As a consequence, downstream of the first foil, the radiation along the inci-
dence direction is split in two wave packets: a short wave packet, representing
the part of the incoming pulse that went through undisturbed through the
first foil, and a long wave packet resulting from excitation and de-excitation
of the nuclei, whose carrier frequency is given by the frequency ω0 of the
nuclear transition plus the Doppler shift Ω provoked by the motion of the
foil.

These two radiation wave packets interact then with the target, whose
excitation spectrum is assumed to be non-resonant with the spectra of the
wave packets. The radiation is then scattered quasi-elastically in different
directions by the electrons distribution in the target.
Each radiation wave packet is scattered at a different time, so that their
scattering amplitudes are proportional to the electron density of the target
ρ(r) at two distinct times.
In particular the short wave packet recovers information about the target at
its arrival time, whereas the long wave packet is scattered during a timelapse
τ which is supposed on the same timescale of the dynamics in the target, so
that the scattered amplitude in this second case is modulated in time.

The two scattered wave packets go then through the second Mössbauer
foil, which is at rest with respect to the first foil so that its resonance fre-
quency is ω0. Thus the second foil lets the scattered long wave packet prop-
agate undisturbed, while it absorbs and re-emit the ω0 component of the
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Figure 4.1: Schematics of TDI with Mössbauer filtering foils. The short incoming pulse (red) is split by
the first foil mounted on a moving drive. A part of the original pulse goes through the foil (purple) and is
scattered by the target at time t1. Another part excites the nuclei in the foil and is then reemitted in a
long pulse (blue) trailing the first one. This long pulse is scattered by the target throughout its duration
∼ τ . The short scattered pulse is split by the second foil, so that in the end two overlapping long pulses
interfere in the detector.

scattered short wave packet.
By suitably timing the detector, the part of the original incoming pulse that
does not interact with any of the two Mössbauer foils can be excluded. There-
fore, if we look at the radiation scattered along the direction connecting the
target and the detector, we will find two long wave packets: the one that
interacted with the first foil, with carrier frequency ω0 + Ω and amplitude
depending on instantaneous electron density ρ(r, t1), and the one that in-
teracted with the second foil, with carrier frequency ω0 and a time varying
amplitude depending on ρ(r, t).
Because of the frequency difference, the overlap of these wavepackets in the
detector will generate an interference pattern in the recorded signal, and
the amplitude of the pattern will depend on the electron density at different
times.

To fix the scales of frequencies and times involved in this kind of exper-
iments, we can take as an example the experiment in [11], where the foils
were enriched with the Mössbauer isotope 57Fe. For this nucleus we have
that ω0 ' 2, 2 × 107 THz, τ = 141ns, and the Doppler shift Ω of the reso-
nance frequency of the first foil is of order ∼ 102MHz.
The general considerations above are the basis for the classical analysis of
TDI that can be found in [11, 46, 47]. In the next section we will work on
this considerations to build our quantum theoretical analysis of TDI
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4.2 The quantum theoretical analysis of TDI
For a consistent analysis of TDI experiments in a quantum theoretical frame-
work, we need to treat both the ensemble of the electrons in the target and
the radiation wave packets as quantum systems in interaction.
When the radiation is considered as a quantum system, it can be shown that
the signal produced by a photon detector is proportional to the probability
per unit time that a photon is absorbed at a given time at the position of
the detector [48].
Then, fixing the initial time t0 at the instant at which the prompt wave
packet crosses the first foil, and calling |Ψ〉 the state of the joint quantum
system made up of the electrons in the target and a photon from the in-
coming x-ray pulse, the above mentioned probability at a time t for an ideal
photon detector placed at position R is

w(t) = 〈Ψ|Û(t, t0)† Ê(−)(R) · Ê(+)(R) Û(t, t0)|Ψ〉 (4.1)

Here Ê(±) are the positive/negative frequency part of the electric field op-
erator (see appendix B) and Û(t, t0) is the evolution operator of the joint
system.
The aim of the analysis that we propose here is to calculate w(t) for an initial
state |Ψ〉 that represents a situation in which the photon was acted upon by
the first foil, and for an evolution operator Û(t, t0) that can account for the
quasi-elastic scattering of the photon off of the electron distribution in the
target. The expression thus obtained for w(t), will be corrected for the action
of the second foil on the pulses.

4.2.1 The electron-photon interaction hamiltonian

In order to find the form of Û(t, t0) it is necessary to consider the hamiltonian
of the electrons of the target in the presence of an electromagnetic field,
and to isolate from it the terms that can contribute to photon scattering at
the lowest perturbative order. Considering the electrons as non-relativistic,
spinless particles, and assuming that the vector potential of the field satisfies
the Coulomb gauge, the hamiltonian is [49]

Ĥ = Ĥem +
N∑
j=1

p̂2
j

2m
+ V̂j +

e

m
p̂j · Â(rj) +

e2

2m
Â(rj)

2 (4.2)
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where p̂j is the momentum of the j-th electron, m and e its mass and charge
respectively and V̂j stands for all the interactions that the electron has with
the other electrons and constituent elements of the target. Ĥem is the hamil-
tonian of the free electromagnetic field and Â is its vector potential operator.

The p̂j · Â(rj) interaction term in (4.2) contributes to photon scattering
only at second order in perturbation theory, via virtual absorption and emis-
sion of one photon by the electrons. As we suppose that the spectrum of the
incoming radiation pulse is far away from any resonances in the target, this
probability of photon scattering via the abovementioned virtual processes is
heavily suppressed [50].
Therefore we will keep only the Â(rj)

2 interaction term. This term can be
recast using the normal mode expansion of Â in the following form (see
appendix B)

e2

2m
Â(rj)

2 =

= re
~c2

8π

N∑
j=1

∑
σ,σ′

∫
d3k

∫
d3k′

1
√
ωkωk′

(
ek,σ · ek′,σ′ âk,σak′,σ′ei(k+k′)·rj+

+e∗k,σ · e∗k′,σ′ â
†
k,σâ

†
k′,σ′e

−i(k+k′)·rj + ek,σ · e∗k′,σ′ âk,σâ
†
k′,σ′e

i(k−k′)·rj+

+e∗k,σ · ek′,σ′ â
†
k,σâk′,σ′e

−i(k−k′)·rj
) (4.3)

where re = e2/(4πε0mc
2) is the classical radius of the electron.

The operators âk,σ, â†k,σ destroy and create a photon with momentum k po-
larized in the direction ek,σ, thus the first two terms in (4.3) do not preserve
the number of photons and they cannot contribute to photon scattering, so
we drop them.
The last two terms are the only one we will keep from (4.3), because they
destroy and create one photoninstead contributing to photon scattering.
Rearranging the order of creation and destruction operators we obtain an
effective interaction hamiltonian

Ĥeff = re
~c2

4π

∑
σ,σ′

∫
d3k

∫
d3k′

∫
V

d3r
1

√
ωkωk′

e∗k,σ·ek′,σ′ â
†
k,σâk′,σ′ ρ̂(r)e−i(k−k

′)·r

(4.4)
where the density of electrons operator ρ̂(r) ≡

∑N
j=1 δ(r − rj) has been in-
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troduced. Through this operator we can make the substitution

N∑
j=1

e−i(k−k
′)·rl =

∫
V

d3rρ̂(r)e−i(k−k
′)·r (4.5)

with V the volume of the target.

The evolution operator Û(t, t0) appearing in (4.1), is then given at first
order in perturbation theory by (see appendix A)

Û(t, t0) ' Û0(t, t0)

[
1− i

~

∫ t

t0

dt′ Û0(t, t0)†Ĥeff Û0(t, t0)

]
(4.6)

4.2.2 A model of TDI with split and delay lines

For what concerns the initial state of the joint system, we assume in first
place that no correlations between the target and the radiation exist at time
t0, so that the |Ψ〉 is a product of a state for the electrons and a state for the
photon

|Ψ〉 = |ψ〉|γ〉 (4.7)

where |ψ〉 refers to the electrons and |γ〉 to the photon.

The state |γ〉 must represent the result of the action of a Mössbauer foil
on a photon from the incoming radiation pulse
To understand what this action amounts to, and also to show how the de-
tection probability w(t) is calculated, we analyze in the following a model
scheme in which the foils are substituted with two identical split and delay
lines (SDL).

A SDL is a device that splits an incoming radiation pulse in two, and
leads these two pulses on paths of different length before they are collimated
back on the same propagation direction.
As a result, at the end of the SDL the second pulse is delayed with respect
to the first (see figure 4.2)

Therefore when a photon enters a SDL, it can either propagate along
the shorter path or it gets delayed by going the longer path (see figure 4.2).
These two possibilities are represented by two quantum states for the photon,
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Figure 4.2: A split and delay is an arrangement of beam splitters and mirrors that splits an incoming
pulse (in red) in two pulses (in purple and blue). The blue pulse accumulates a delay during its propagation
as it follows a longer path with respect to the blue pulse. The two pulses are then collimated along the
same direction (the vertical distance between the pulses in the picture is introduced only for the sake of
clarity and has not to be meant as a distance between the directions of prpagation.

that we call |γ1〉 and |γ2〉, so that the state of the photon after the SDL is
the superposition of these two, that is

|γ〉 = |γ1〉+ |γ2〉 (4.8)

The two states |γl〉 (l = 1, 2) are photon wave packets with the same shape of
the incoming pulse, propagating along the same direction z. Assuming that
the polarization of the photon is fixed in the direction eσ0 , we can represent
these wave packets as follows

|γl〉 =
1√
A

∫ ∞
0

dkg(ωk − ω0)e−ikzl |1k,σ0〉 (4.9)

where |1k,σ0〉 are single photon states with momentum parallel to z, zl is the
distance the wave packet must travel to reach the target, A is the transverse
area of the wave packet and g(ωk−ω0) is a function reproducing the features
of the spectrum of the incoming pulse. For the sake of definiteness we can con-
sider the function g to be a gaussian centered at ω0 with a variance ∆ω � ω0

Taking then the superposition (4.8) as the initial state of the photon, also
the initial state of the joint system will be a superposition of quantum states

|Ψ〉 = |ψ〉|γ1〉+ |ψ〉|γ2〉 (4.10)

Applying the evolution operator (4.6) to this state, we obtain that the evolved
state of the joint system is the sum of three contributions

Û(t, t0)|Ψ〉 ' Û0(t, t0)

[
|Ψ〉+ |δΨ1(t)〉+ |δΨ2(t)〉

]
(4.11)
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where

|δΨl(t)〉 = − i
~

∫ t

0

dt′Û †0(t′)Ĥeff Û0(t′) dt′|γl〉|ψ〉. (4.12)

The first term in (4.11) represents a situation in which there is no inter-
action between the photon and the electrons so that the former cannot be
deflected towards the detector, and for this reason does not contribute to the
probability of detection. We will neglect this term in the following.
Therefore w(t) is

w(t) '
∑
l,l′=1,2

〈δΨl(t)|Ê(−)(R, t) · Ê(+)(R, t)|δΨl′(t)〉 (4.13)

with Ê(±)(R, t) = Û0(t, t0)† Ê(±)(R)Û0(t, t0).

Since |δΨl(t)〉 are single photon states and Ê(+) destroys one photon,
the quantity Ê(+)(R, t)|δΨl′(t)〉 is proportional to the vacuum state of the
electromagnetic field |0〉. Thus we can rewrite the expression (4.13) as [51]

w(t) '
∑
l,l′=1,2

〈δΨl(t)|Ê(−)(R, t)|0〉 · 〈0|Ê(+)(R, t)|δΨl′(t)〉 (4.14)

The quantities 〈0|Ê(+)(R, t)|δΨl(t)〉 represent the quantum probability am-
plitude of detecting the photon in the l-th scattering channel.

With the explicit form (4.4) for the effective interaction hamiltonian and
the form (4.9) for the single photon states we find that

|δΨl(t)〉 = −i rec
2

4π
√
A

∑
σ

∫ t

t0

dt′
∫
V

d3r

∫
d3k′

∫ ∞
0

dk
e−i(k

′·r−ωk′ t′)
√
ωk′

(ek′,σ · eσ0)
ei(kz−ωkt

′)

√
ωk

e−ikzlg(ωk − ω0)ρ̂(r, t′)|ψ〉|1k′,σ0〉

(4.15)

Using the explicit form of Ê(+) (see appendix B) and of |δΨl(t)〉 we obtain
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that the l-th detection amplitude is

〈0|Ê(+)(R, t)|δΨl(t)〉 = −rec
2

4π

√
~

2(2π)3Aε0

∑
σ

∫ t

t0

dt′
∫
V

d3rρ̂(r, t′)|ψ〉×

×
∫
d3q (eq,σ · eσ0)eq,σ ei[q·(R−r)−ωq(t−t′)]

∫
dke−i[ωkt

′−k(z+zl)]
g(ωk − ω0)
√
ωk

(4.16)

and being g(ωk − ω0) peaked around the value ω0 with a finite support, we
approximate the integral over dk with the Fourier transform of g∫

dke−i[ωkt
′−k(z+zl)]

g(ωk − ω0)
√
ωk

' 1
√
ω0

e−iω0

(
t′− z+zl

c

)
f

(
t′ − z + zl

c

)
(4.17)

Here the function f is the moving envelope of the photon wavepacket, which
again can be taken as a guassian whose maximum is at t′ = (z + zl)/c and
has a variance of order ∼ 1/∆ω. The physical dimension of f is that of an
inverse square root of a length.
Beacause of these features of the envelope, the integrand in the time integral
appearing in (4.16) is non-null while the envelope f is contained in the volume
occupied by the target, that is during the time that the envelope takes to
cross the transverse size of the target. Assuming that such crossing time is
shorter than the typical timescale of the dynamics in the target, the electron
density ρ̂(r, t′) can then be considered "frozen" at the instant of arrival of
the photon wave packet tl and brought out of the time integral.
Expression (4.16) then becomes

〈0|Ê(+)(R, t)|δΨl(t)〉 = −rec
2

4π

√
~

2(2π)3ω0Aε0

∑
σ

∫
V

d3rρ̂(r, tl)|ψ〉

∫
d3q (eq,σ · eσ0)eq,σ ei[q·(R−r)−ωqt]

∫ t

t0

dt′f

(
t′ − tl −

z

c

)
eiωqt

′
e−iω0

(
t′−tl− zc

)
(4.18)

Integrating over the directions of the wavevector q and the time t′, and
taking into account that the detector is placed far away from the target, that
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is |R| � 3
√
V the detection amplitude becomes

〈0|Ê(+)(R, t)|δΨl(t)〉 = −re
2

√
~ω0

2(2π)3Aε0
eiω0(R/c−t) − e−iω0(R/c+t)

R
eiω0tl

e⊥f

(
t− tl −

R

c

)∫
V

d3re−i(k̃0−k0)·rρ̂(r, tl)|ψ〉

(4.19)

where e⊥ is the projection of the photon polarization eσ0 on the direction of
R, k̃0 ≡ Rω0/(cR) and k0 ≡ zω0/(cz), by which we define the momentum
exchanged between the target and the photon as Q ≡ k̃0 − k0.

Expression (4.19) is a superposition of an outgoing and an ingoing spher-
ical wave propagating from/to the target. The ingoing spherical wave rep-
resents a path in which the photon propagates from infinity to the target,
which is a situation not compatible with our scattering problem, and there-
fore is dropped.
The final form of the detection amplitude is then

〈0|Ê(+)(R, t)|δΨl(t)〉 =

= −re
2

√
~ω0

2(2π)3Aε0
e⊥
eiω0(R/c−t)

R
eiω0tlf

(
t− tl −

R

c

)∫
V

d3re−iQ·rρ̂(r, tl)|ψ〉

(4.20)

Substitution of (4.20) into (4.13) brings to the explicit expression of the
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photon detection probability per time unit

w(t) ' r2
e

8

~ω0

(2π)3Aε0
|e⊥|2

R2

{∣∣∣∣f(t− t1 − R

c

)∣∣∣∣2 S(qu)(Q, t1, t1) +

∣∣∣∣f(t− t2 − R

c

)∣∣∣∣2 S(qu)(Q, t2, t2)+

+ 2Re

[
eiω0(t1−t2)f

(
t− t1 −

R

c

)
f ∗
(
t− t2 −

R

c

)
S(qu)(Q, t1, t2)

]}
(4.21)

where S(qu) stands for the quantum ISF of the electrons as defined in section
3.1.2, that is the space Fourier transform of the expectation value over the
quantum state of the product of the electron density operators at two different
times

S(qu)(Q, t1, t2) =

∫
V

d3r

∫
V

d3r′ e−iQ·|r−r
′|〈ψ|ρ̂(r, t1)ρ̂(Q, t2)|ψ〉 (4.22)

The first two terms in (4.21) give respectively the probability that the photon
is detected after it has been scattered in the channel 1 or 2. The third term
is instead an interference term between the two scattering channels, and
its magnitude depends on the product of the wave packets scattered in the
different channels and of the ISF of our interest. Thus the more these wave
packets overlap, the bigger the interference term and the more significant is
the contribution of the ISF to the interferogram. Hence, If we want to recover
the ISF, the overlap between the envelopes of the scattered wave packets has
to be enhanced.
This can be done if a second SDL, with same characteristics of the first, is
introduced just before of the detector. This second SDL splits each scattering
pathway into two other pathways

Thus the photon can take four possible pathways from the first SDL to
the detector (see figure 4.3) :

• it is scattered by the target at time t1 and goes straight through the
second SDL
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Figure 4.3: Time domain interferometry realized with split and delay lines. In blue and purple are
represented the envelopes of the single photon wave packets.

• it is scattered at time t1 and is delayed by the second SDL

• it is scattered at time t2 and goes straight through the second SDL

• it is scattered at time t2 and is delayed by the second SDL

Because the two SDLs are equal, the envelopes of the wave packets scattered
in the second and third pathways overlap completely and arrive at the same
time at the detector. The envelopes in the first and fourth path arrive instead
at the detector either before or after, and by a proper timing of the detector
their contribution to the detection probability can be neglected.
The final for of detection probability is [30]

w(t) ' r2
e

8

~ω0

(2π)3Aε0
|e⊥|2

R2

∣∣∣∣f(t− t2 − R

c

)∣∣∣∣2
{
S(qu)(Q, t1, t1) + S(qu)(Q, t2, t2) + 2Re

[
eiω0(t1−t2)S(qu)(Q, t1, t2)

]} (4.23)

4.2.3 TDI realization with Mössbauer filtering foils

The action of a Mössbauer foil on a single photon is analogous to the action of
a SDL: when a single photon wave packet containing the resonance frequency
of the foil goes through the foil, either it goes through undisturbed or the
foil absorbs the photon and starts immediately to re emit it during a time of
order of the lifetime of the excited state of 57Fe. Therefore, as in the case of
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the SDL, the state of the photon after downstram of the foil is a quantum
superposition of two single photon wavepackets

|γ〉 = |γ1〉+ |γ̃2〉 (4.24)

|γ1〉 is a short single photon wave packet of the same kind as (4.9), while |γ̃2〉
is the state of the photon re-emitted by the Mössbauer foil

|γ̃2〉 =
1

A

∫
dkL(ωk − ω0 − Ω)e−ikz1 |1k,σ0〉 (4.25)

The function L(ωk − ω0 − Ω) is a Lorentzian spectral shape centered at the
resonance frequency ω0 + Ω of the moving foil. The envelope of |γ̃2〉 is then
an exponential function decaying with time, with decay constant τ .
Moreover, because the re-emission of the photon starts immediately after
the photon hits the foil, the envelope of |γ̃2〉 and that of |γ1〉 are at the same
initial distance z1 from the target.

As in the previous case with SDLs, we can explicitly compute the detec-
tion amplitudes for the two scattering channels |δΨ1(t)〉 and |δΨ̃2(t)〉 corre-
sponding to |γ1〉 and |γ̃2〉.
The calculation of the amplitude for |δΨ̃2(t)〉 needs a slightly different treat-
ment than the one for |δΨ1(t)〉. This is due to the fact that the decay constant
τ of the exponential envelope, is comparable with the timescale of the inter-
nal dynamics of the target.
This fact does not allow us to assume that the electron density operator is
constant during the crossing time of the wave packet.

In order to take into account the time dependency of ρ̂ in the expression
for the scattering amplitude we introduce the energy eigenbasis of the target
{|εn〉}n and decompose on it the electron density operator

ρ̂(r, t′) =
∑
m,n

eiωmnt
′|εm〉〈εm|ρ̂(r)|εn〉〈εn| (4.26)

where ωmn ≡ (εm − εn)/~ are the characteristic frequencies of the target’s
internal dynamics. The assumption that the target is non resonant with the
radiation means that the ωmn do not fall within the support of the Lorentzian
spectral shape L(ω − ω0 − Ω).
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As a consequence, 〈0|Ê(+)(R, t)|δΨ̃2(t)〉 is

〈0|Ê(+)(R, t)|δΨ̃2(t)〉 = −rec
2

4π

√
~

2(2π)3Aε0∑
m,n

∫
V

d3r|εm〉〈εm|ρ̂(r)|εn〉〈εn|ψ〉
∫
d3q
∑
σ

(eq,σ · eσ0)eq,σ

ei[q·(R−r)−ωqt]
∫ t

0

dt′ei(ωq+ωmn)t′
∫
dke−i[ωkt

′−k(z+z1)]L
(
ωk − ω0 − Ω

)
√
ωk

=

= −rec
2

4π

√
~

2(2π)3ω0A(ω0 + Ω)ε0

∑
m,n

∫
V

d3r|εm〉〈εm|ρ̂(r)|εn〉〈εn|ψ〉eiωmn
z+z1
c

∫
d3q
∑
σ

(eq,σ · eσ0)eq,σe
i
[
q·(R−r)−ωq

(
t− z+z1

c

)]
L
(
ωq + ωmn − ω0 − Ω

)
(4.27)

Integration over the momentum q leads to (see appendix C)

〈0|Ê(+)(R, t)|δΨ̃2(t)〉 = −re
2

√
~

2(2π)3A(ω0 + Ω)ε0

e⊥
R

∑
m,n

(ω0 + Ω− ωmn)2

∫
V

d3r|εm〉〈εm|ρ̂(r)|εn〉〈εn|ψ〉eiωmn
(
t− |R−r|

c

)

ei(ω0+Ω)
(
|R−r|+z+z1

c
−t
)

|R− r|
Θ

(
t− |R− r|+ z + z1

c

)
e−

t−(|R−r|+z+z1)/c
τ

(4.28)

with Θ the Heaviside step function.

To obtain the final form of this detection amplitude, several considerations
are in order. In first place the Doppler shift Ω is big enough to set the two
Mössbauer foils off resonance, but it is anyways smaller than the resonance
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frequency at rest ω0. Indeed taking as a reference the experiments in [11], Ω
is of order ∼ 108Hz.
Also the characteristic frequencies of the target, ωmn, have to be compared to
ω0. The condition of non-resonance between the target and the pulse implies
that ωmn � ω0, and as a consequence we have that the sum over the energy
eigenstates of the target can be approximated as∑

m,n

(ω0 + Ω− ωmn)|εm〉〈εm|ρ̂(r)|εn〉〈εn|ψ〉eiωmn
(
t− |R−r|

c

)
'

' ω0 ρ̂

(
t− |R− r|

c

)
|ψ〉

(4.29)

Moreover, invoking again the hypothesis that R � V 1/3 and assuming that
the dynamics in the target has a typical timescale larger than V 1/3/c, we
simplify expression (4.28) as follows

〈0|Ê(+)(R, t)|δΨ̃2(t)〉 = −re
2

√
~ω0

2(2π)3Aε0
e⊥
ei(ω0+Ω)((R+z1)/c−t)

R

Θ

(
t− R + z1

c

)
e−

t−(R+z1)/c
τ

∫
V

d3rρ̂

(
r, t− R

c

)
|ψ〉e−i(k̃0−k)·r

(4.30)

where again we defined the wave vectors k̃0 ≡ (ω0 + Ω)R/(cR) ' ω0R/(cR)
and k0 ≡ (ω0 + Ω)x/(cx) ' ω0z/(cz)

Expression (4.30) is the final form of the detection amplitude in the sec-
ond scattering channel. We find that it has the form of a spherical wave of
frequency ω0 + Ω, being then non resonant with the second Mössbauer foil.

On the other hand, if there were not the second foil, the detection ampli-
tude 〈0|Ê(+)(R, t)|δΨ1(t)〉 would be similar to expression (4.16). However,
the second foil modifies it by scattering its component at frequency ω0, so
that the envelope f that appears in (4.16) must be substituted in this case
with the same exponentially decaying function appearing in (4.30), that is

f

(
t− R + z1

c

)
−→ Θ

(
t− R + z1

c

)
e−

t−(R+z1)/c
τ (4.31)
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Again the part of the photon wave packet |γ1〉 that is not affected by none
of the two foils can be excluded from detection by timing the detector, so
that the detection probability is

w(t) ' −r
2
e

8

~ω0

(2π)3Aε0
|e⊥|2 Θ

(
t− t1 +

R

c

)
e−2

t−t1+R/c
τ

R2

{
S(qu)(Q, t1, t1)+

+S(qu)

(
Q, t1, t−

R

c

)
+ 2Re

[
eiΩ
(
t−t1+R

c

)
S(qu)

(
Q, t1, t−

R

c

)]}
(4.32)

with t1 = z1/c.
Also in this case we obtain an interference term in the photon detection
probabilty which is proportional to the ISF of the electrons. This shows that
in principle TDI with Mössbauer filtering foil is fit to study the dynamical
correlations of particles even if the target is a quantum system.

The results so far obtained for the detection probability w(t) in the two
cases of TDI realized with SDLs and Mössbauer filtering foils, expressions
(4.23) and (4.32), can be understood in a unifying picture of the experi-
mental schemes that follows the line of reasoning proposed by Feynman for
calculating probabilities of events in quantum theory [52].
Following Feynman, given an event that can occur via different indistinguish-
able paths (for instance an electron can get from a source to a detector placed
behind a screen, through two holes pinched in the screen), each of this paths
has an amplitude probability associated with it, and the total probability
that the event occurs is given by the modulus square of the sum of these
amplitudes.
Therefore the different amplitudes will give rise to interference terms in the
expression for the probability of occurrence of the event. However if the
different paths through which the event can occur can be somehow experi-
mentally discriminated, the probability for the event is just the sum of the
squares of their amplitudes.

In our case, for both the realization of TDI technique, the photon can be
absorbed by the detector following two different paths: either the photon is
scattered by the target at time t1 and then reaches the detector, or it scatters
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at time t2 and then get to the detector1.
We have seen that these amplitude amounts to

Amp1 ∝ f(t1)

∫
V

d3r e−iQ·rρ̂(r, t1)|ψ〉 (4.33)

Amp2 ∝ eiφ(t1,t2)f(t2)

∫
V

d3r e−iQ·rρ̂(r, t2)|ψ〉 (4.34)

where φ(t1, t2) is the relative phase between the two paths, and amounts to
ω0(t1 − t2) for the SDL realization and to Ω(t− t1 −R/c) for the realization
with the Mössbauer foils .
The only information that could allow us to understand what path the pho-
ton took to the detector, and thus to destroy the interference between the
probability amplitudes forbidding us to retrieve the ISF, are the different
scattering instants and therefore the times of arrival of the photon at the
detector.

From this point of view, the overlap of the scattered wavepackets caused
by the SDL, or by the Mössbauer foil placed before the detector, make the
paths experimentally indistinguishable by erasing the information about the
scattering times.
Thus, the photon detection probability is

w(t) = |Amp1 + Amp2|2 ∝ S(qu)(Q, t1, t1) + S(qu)(Q, t2, t2)+

+ cos φ(t1, t2) ReS(qu)(Q, t1, t2)− sin φ(t1, t2) ImS(qu)(Q, t1, t2)

(4.35)

4.2.4 The reconstruction of the ISF via relative phase
control

In both the schemes we have found that the relative phase φ(t1, t2) strictly
depends from the scattering times.
However it has been demonstrated recently that it is possible to control the
phase of the pulse emitted by Mössbauer foils by controlling their motion
with sub-Ångstrom precision [53]. This means that it is in principle possi-
ble to introduce in TDI with Mössbauer filtering foils an additional relative

1We will use t2 also for the Mössbauer case, with the understanding that for this case
t2 = t−R/c as follows from (4.32)
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phase φ0 between the paths that can be controlled and is independent of the
scattering times.

The introduction of the controllable relative phase φ0 opens up the possi-
bility of assessing experimentally the quantum nature of correlations among
particles in a target whose nature is not known a priori.
Let us consider a TDI experiment in which two detectors are placed behind
the second foil, in correspondence of two opposite values of the exchanged
momentum Q.
The sum and the difference of the signals recorded by the two detectors will
be

I(±)(φ0, t1, t2) ∝
∑
l=1,2

S(Q, tl, tl)± S(−Q, tl, tl)+

+ 2

{
cos
(
φ(t1, t2) + φ0

)[
ReS(Q, t1, t2)± ReS(−Q, t1, t2)

]
+

− sin
(
φ(t1, t2) + φ0

)[
ImS(Q, t1, t2)± ImS(−Q, t1, t2)

]}
(4.36)

In section 3.1 we have seen that when the DCF is real-valued, the corre-
sponding ISF satisfies the following symmetries

ReS(Q, t1, t2) = ReS(−Q, t1, t2)

ImS(Q, t1, t2) = −ImS(−Q, t1, t2)
(4.37)

this meaning that in this case the signals I(±) become

I(+)(φ0, t1, t2) ∝ 2
∑
l=1,2

S(Q, tl, tl) + 4 cos
(
φ(t1, t2) + φ0

)
ReS(Q, t1, t2)

(4.38)

I(−)(φ0, t1, t2) ∝ −4 sin
(
φ(t1, t2) + φ0

)
ImS(Q, t1, t2) (4.39)

As φ0 can be controlled, one could record the signals I(±)(φ0, t1, t2) for dif-
ferent values of the phase φ0.
Then, if for some pairs of scattering instants t1 and t2, the dependency of
I(±) on φ0 is not compatible with the sinusoidal behaviours (4.38)- (4.39), the
experimenter must conclude that the ISF of the target does not satisfy the
symmetries (4.37), this meaning that a quantum mechanical model is needed
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to correctly describe correlations among particles. For instance such a check
can be done even just by looking at the values of φ0 for which I(−) is null: if
these values are not φ(m)

0 = −φ(t1, t2) +mπ it can be claimed straight away
that quantum phenomena determine the behaviour of the target.

On the other hand, finding out that the behaviour of I(±) is compatible
with (4.38), (4.39), that is finding that the ISF is symmetrical according to
(4.37), does not automatically imply that a classical model for particles cor-
relation is sufficient.

Another possibility offered by the control of the relative phase φ0 is the
reconstruction of the ISF from the data, as will be shown below.
At the knowledge of the authors, there is no other proposals in the literature
for operating such reconstruction. Indeed usually, in TDI experiments, a
classical model for the ISF of the target is presumed and the data are used
to extract the value of the parameters appearing in the model. For instance,
in the application of TDI for the study of diffusive dynamics already cited
[14, 15, 16, 17], an exponentially decaying behaviour of the ISF with time
is assumed, and the decaying constant, as well as other parameters, are ex-
tracted from the data.
The reconstruction of the ISF can be useful if no clues are available to suggest
a model for the features of the target, or to obtain more accurate validations
of existing models when these exist.

Let us imagine that a TDI experiment is done on a generic target, whose
features are unknown. Its ISF S(Q, t1, t2) is also unknown and in principle
it can be a complex valued function, so that the signal at the detector will
be

I(φ0, t1, t2) ∝
∑
l=1,2

S(Q, tl, tl)+

+ cos
(
φ(t1, t2) + φ0

)
ReS(Q, t1, t2)− sin

(
φ(t1, t2) + φ0

)
ImS(Q, t1, t2)

(4.40)

By measuring the signal (4.40) for different values of φ0, an interferogram is
obtained whose visibility is given by

V =
Imax − Imin
Imax + Imin

=
|S(Q, t1, t2)|

2
∑

l=1,2 S(Q, tl, tl)
(4.41)
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The denominator in (4.41) can be estimated from the average value of the
interferogram, being it

Ī(t1, t2) =
1

2π

∫ 2π

0

dφ0 I(φ0, t1, t2) ∝
∑
l=1,2

S(Q, tl, tl) (4.42)

and thus the modulus of the ISF can be extracted from the visibility of the
interferogram
Moreover the argument of the ISF, that is the arcotangent of the ratio be-
tween its imaginary and real part, can also be obtained from (4.40). Indeed
by subtracting to I its average value (4.42), the following signal is obtained

I(φ0, t1, t2)− Ī(t1, t2) ∝ cos
(
φ(t1, t2) + φ0

)
ReS(Q, t1, t2)+

− sin
(
φ(t1, t2) + φ0

)
ImS(Q, t1, t2)

(4.43)

which vanishes for values of φ0 given by

φ
(m)
0 = arctan

[
ImS(Q, t1, t2)

ReS(Q, t1, t2)

]
− φ(t1, t2) +mπ (4.44)

Therefore extrapolating the values of V and φ(m)
0 from data, an experimenter

can extract both the real and the imaginary part of the ISF at a given pair
of scattering times, obtaining such function entirely from the experimental
data.
This reconstruction strategy works of course also when the target is known
to be a classical system, and can be particularly useful to face the study of
target systems out of equilibrium. Indeed in this context, the modelling of
particles correlations can be a very though task and an experimental study of
them could be of great help giving inputs for the theoretical understanding
of non-equilibrium.
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Chapter 5

Conclusions and Outlooks

Time-Domain interferometry with Mössbauer filtering foils (TDI) can access
the dynamical pair correlation function (DCF) of condensed matter systems
by probing the space Fourier transform of this function, known as the in-
termediate scattering function (ISF). This experimental technique has been
demonstrated so far only for classical systems. Therefore, in the theoretical
accounts of this experimental technique treat the probing radiation and the
probed systems as classical systems.
The suggestion [2] that TDI could be suited to measure the ISF of systems
that exhibit quantum features calls for an anlysis of this technique in a quan-
tum theoretical framework, which still lacks in the current literature.

The special role played by the act of measurement in quantum theory
requires special attention in the analysis of experimental schemes in which
a quantum system is probed. This situation is even more delicate when one
considers successive measurement on the same system, such as for measure-
ments of dynamical correlation functions like the DCF.
In chapter 2 it has been illustrated that dynamical correlation functions be-
tween two non-commuting observables of a quantum system are in general
complex valued, and that these functions can be given as a sum of two parts:
a part that we called projective, which depends only on the probabilities
that the observables have definite values, and a part that originates from
the possibility that these values are in general undefined if the system is in
a quantum superposition of states, and therefore will be called the coherent
part.
Measuring dynamical correlations by direct action of the measurements ap-
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paratus on the system can only give access to the projective part [24, ?].
Therefore the projective part is immune to measurement backaction and the
possibility has been investigated in [?] that the real part of dynamical correla-
tions is always equal the projective part. In that work it has been concluded
that this claim is true only if the correlated observables have two eigenvalues,
equal in magnitude but with opposite signs, like spin-1/2 components.
Pushing this analysis further, it has been asked if a generic quantum sys-
tem can be in a state for which the dynamical correlation between two
non-commuting observables exactly equals the projective part. The result
obtained is that only eigenstates of one of the observables have this property,
as in that case the coherence part of the correlation function must be zero,
as one would expect. From this we conclude that in general terms the quan-
tum dynamical correlation functions are richer in information with respect
to their projective part, and that direct measurements reduce the accessible
information.
Therefore, in order to access to the complete dynamical correlation of quan-
tum systems, the direct coupling of the measurement apparatus to the system
has to be avoided. The two-time ancilla protocol proposed in the final part
of chapter 1, is a model of experimental protocol that can accomplish this
direct coupling. This protocol can be taken as a paradigm to understand the
TDI technique when operated on quantum systems; moreover, it could serve
as a guideline for devising new experiments for the measurement of quantum
dynamical correlation functions.

In chapter 3 we considered the dynamical pair correlation function for
an ensemble of particles, and its Fourier transforms. When these functions
are defined for ensembles of classical particles, they enjoy some spatial and
temporal symmetries. In particular the ISF enjoys hermitian symmetry with
respect to reflection of the exchanged momentum (see chapter 2 for a defini-
tion of hermiticity).
This symmetries are no more granted when a quantum mechanical descrip-
tion of the particles is adopted. In particular, the appearence of an imaginary
part of the DCF breaks the hermiticity of the ISF. In section 3.1.3 it is argued
that the hermiticity of the ISF can be exploited in experiments to assess the
quantum or classical nature of the particles composing a system. In partic-
ular it is concluded that if an experimenter finds a non-hermitian ISF, any
classical model for the target can be ruled out.
On the contrary however, it is not correct to claim that the behaviour of a
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system is classical only on the basis of the experimental finding of an her-
mitian ISF. In order to explicitly show this, two model systems of quantum
particles hopping between the minima of potential wells are considered in
section 3.2. One of the result of this work is the finding, for these two mod-
els, of superpositions of quantum states that give a vanishing imaginary part
of the DCF, i.e. a hermitian ISF.
In [54] an interpretation of the imaginary part of the DCF was proposed:
this quantity was intepreted as the local variation in the density of particles
consequent to a weak external stimulus of the system. This would mean that
the density of a system would not respond to small external perturbations,
if its quantum state is such to make the imaginary part of the DCF vanish.
From the theoretical side it would be then interesting to characterize these
special states, to understand if and how they can be prepared in laboratories
to investigate the interpretation above. Such theoretical studies could be
supported experimentally, as nowadays it is possible to actually implement
model hamiltonians – like the ones analysed in this work – which can simu-
late the behaviour of natural systems [55, 44].

Chapter 4 contains the second, major result of this work, that is the
quantum theoretical analysis of TDI. In this chapter the general working
principles of this experimental technique have been summarized, on the ba-
sis of which the quantum analysis has been built.
The main result of the analysis is that if TDI is applied to a quantum target,
the whole quantum ISF of the target placed between the foils is accessed,
and not just some parts of it.
This has been shown by calculating the probability in the unit time that a
photon is absorbed by the detector – to which the recorded signal is propor-
tional – after it is scattered by the target.
A photon going through the apparatus, can get to the detector by being
scattered off of the target at two different times, and a quantum probabil-
ity amplitude is associated to each of these scattering channels. Therefore
the two amplitudes have been calculated explictly showing that they depend
on the electrons density operator in the target at different times. However
the two scattering channels can be distinguished in principle by the different
times of arrival of the photon at the detector, and the final detection proba-
bility for the photon would then be the sum of the squares of the probability
amplitudes, and would not depend on the ISF.
In this respect, we concluded that the second foil is necessary to erase the
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information about the times of arrival, and make the two scattering channels
indistinguishable. As a consequence, the detection probability is given by the
modulus squared of the sum of the probability amplitudes, so that the signal
at the detector contains an interference term which is given by a combination
of both the real and the imaginary part of the quantum ISF of the target.
The possibility of of controlling the phase of one of the two scattering chan-
nels, demonstrated in [53], paves the way to new applications of TDI in
condensed matter studies. In section 4.2.4 it has been proposed to use the
phase control to verify the hermiticity of the ISF of a system (see chapter 2),
and therefore to exclude classical models for it, and also to reconstruct the
ISF from the experimental data.
These two proposals are different with respect to the applications of TDI
realized so far, in which a model ISF is presumed for the target and the
experimental data are used to extract the values of the carachteristic param-
eters of the model. On the contrary, the two proposed applications do not
require any previous knowledge about the behaviour of the target, and in
this respect they can help to explore correlations in systems whose modeling
is difficult or at the moment non existent.
Few comments are in order about the model scheme used in section 4.2.2 to
introduce our method for the analysis of TDI. In this scheme the two foils are
replaced by two split and delay lines (SDL). In view of the development of
SDLs in the hard-x part of the electromagnetic spectrum [45], a realization of
this model scheme using hard-x radiation represents a real prospect to access
correlations in condensed matter systems on shorter timescales, going from
∼ ps to ∼ ns, than the one available with TDI that range from ∼ 10ns to
∼ 100ns
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Appendix A

Time-dependent perturbation
theory

Let us assume that the hamiltonian of a quantum system can be given as a
sum

Ĥ = Ĥ0 + ĤI (A.1)

where Ĥ0 is hereafter called the free hamiltonian and ĤI is called the inter-
action.
We assume that the evolution operator associated with the free hamiltonian
is known, that is that we know the solution Û0(t) to the following initial value
problem 

i~ d
dt
Û0(t, t0) = Ĥ0Û0(t, t0)

Û0(t0, t0) = 1

(A.2)

We then search the evolution operator corresponding to the full hamiltonian
Ĥ as a product of the known Û0 and a second unknown unitary operator ÛI .
This product must therefore satisfy the following initial value problem

i~ d
dt

(
Û0(t, t0)ÛI(t, t0)

)
=

(
Ĥ0 + ĤI

)
Û0(t, t0)ÛI(t, t0)

ÛI(t0, t0) = 1

(A.3)
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Substituting (A.2) into (A.3), and exploiting the unitarity of Û0, we find an
equation for ÛI

i~
d

dt
ÛI(t, t0) = Û0(t, t0)†ĤIÛ0(t, t0)ÛI(t, t0) (A.4)

The formal solution of this equation, satisfying the initial condition in
(A.3), is

ÛI(t, t0) = 1− i

~

∫ t

t0

dt′Û0(t′, t0)†ĤIÛ0(t′, t0)ÛI(t
′, t0) (A.5)

which can be iterated to obtain ÛI as a formal infinite series of terms at
increasing order in the interaction hamiltonian

ÛI(t, t0) = 1 +
∞∑
n=1

(
1

i~

)n ∫ t

t0

dt′
∫ t′

t0

dt′′ · · ·
∫ t(n−1)

t0

dt(n)Û0(t′, t0)†ĤIÛ0(t′, t0)

Û0(t′′, t0)†ĤIÛ0(t′′, t0) · · · Û0(t(n), t0)†ĤIÛ0(t(n), t0)

(A.6)

Therefore the time evolution operator is

Û(t, t0) = Û0(t, t0) + Û0(t, t0)
∞∑
n=1

(
1

i~

)n ∫ t

t0

dt′
∫ t′

t0

dt′′ · · ·
∫ t(n−1)

t0

dt(n)

Û0(t′, t0)†ĤIÛ0(t′, t0)Û0(t′′, t0)†ĤIÛ0(t′′, t0) · · · Û0(t(n), t0)†ĤIÛ0(t(n), t0)

(A.7)
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Appendix B

The quantized electromagnetic
field

The set of Maxwell equations describing the dynamics of electromagnetic
fields given a distribution of charges ρch and currents j is

∇ · E(r, t) = ρch(r,t)
ε0

∇ ·B(r, t) = 0

∇× E(r, t) = −∂B
∂t

(r, t)

∇×B(r, t) = µ0j(r, t) + 1
c2
∂E
∂t

(r, t)

(B.1)

The second and third equations allow to define the vector and scalar poten-
tials of the fields, respectively A and Φ, as these equations are automatically
satisfied if one makes the substitution

B(r, t) = ∇×A(r, t)

E(r, t) = −∇Φ(r, t)− ∂A
∂t

(r, t)

(B.2)

For ease of notation we will omit from now on the space-time dependecy of
the fields and the potentials. With the introduction of the potentials the first
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and fourth maxwell equations become
∇2Φ + ∂

∂t
∇ ·A = −ρch

ε0

∇2A− 1
c2
∂2A
∂t2
−∇

[
∇ ·A + 1

c2
∂Φ
∂t

]
= µ0j

(B.3)

The equations (B.9) and (B.6) are invariant by the gauge transformation of
potentials 

A′ = A +∇Λ

Φ′ = Φ− ∂Λ
∂t

(B.4)

this meaning that we can choose the gauge function Λ in such a way to
simplify the equations (B.6). Many different choices of Λ are valid and often
used in physics. The one used in this thesis is the Coulomb gauge, that is
the gauge function is such that the vector potential is divergenceless

∇ ·A′ = 0 (B.5)

Omitting the apex, the dynamical equations in such a gauge are
∇2Φ = −ρch

ε0

∇2A− 1
c2
∂2A
∂t2
−∇ 1

c2
∂Φ
∂t

= µ0j

(B.6)

As we are interested to the quantization of the free fields, we put ρch = 0, j =
0. This gives a constant scalar potential being

Φ =
1

4πε0

∫
d3r′

ρch
|r− r′|

+ const (B.7)

and the only left equation is a wave equation for the vector potential

∇2A− 1

c2

∂2A

∂t2
= 0 (B.8)

with the electric and magnetic fields depending now only on A
B = ∇×A

E = −∂A
∂t

(B.9)
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The solution of equation (B.8) is easily obtained expressing A in terms of its
Fourier transform

A =

∫
d3k Ãke

i(k·r−ωkt) (B.10)

with ω2
k = c2|k|2 Imposing that A must be a real vector and that it must

satisfy the Coulomb gauge, one obtains that its Fourier transform satisfies
the two conditions

Ãk = Ã∗−k

k · Ãk = 0
(B.11)

in particular the second condition tells us that the vector Ã can be belongs
to the plane perpendicular to k. Choosing in this plane the basis of circular
polarization {ek,σ}σ=1,2 such that

ek,σ · e∗k,σ′ = δσ,σ′ , ek,σ = e∗−k,σ (B.12)

we can re-express the Fourier transform Ãk

Ãk =
∑
σ

αk,σek,σ (B.13)

with αk,σ = α∗−k,σ, in order to satisfy the reality condition for A

The quantization procedure for is based on the similarity of the hamil-
toniana for the free electromagnetic field with the hamiltonian of a sum of
independent harmonic oscillators. In order to make this similarity evident,
we need to express the hamiltonian in terms of the amplitudes αk,σ. The
hamiltonian for the free field is

Hem =
1

2

∫
d3r ε0|E|2 +

|B|2

µ0

(B.14)

On the other hand the electric and magnetic field are expressed in terms of
the Ãk as

E = −i
∑
σ

∫
d3k ωk

[
αk,σek,σe

i(k·r−ωkt) − α∗k,σe∗k,σe−i(k·r−ωkt)
]

B = i
∑
σ

∫
d3k k×

[
αk,σek,σe

i(k·r−ωkt) − α∗k,σe∗k,σe−i(k·r−ωkt)
] (B.15)
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Substituting these forms for the fields into (B.14) and using the properties
of the polarization vectors (B.12) and the identities |k|2/µ0 = ε0ωk, after the
integration over the positions and one of the momenta we end up with the
desired form for the hamiltonian

Hem = (2π)3ε0
∑
σ

∫
d3k ω2

k

(
αk,σα

∗
k,σ + α∗k,σαk,σ) (B.16)

the (2π)3 coming from the integration over r of the exponentials, which gives
delta functions that are subsequently integrated, and the order of multi-
plication of the amplitudes is kept in view of their substitution with non-
commuting operators.
Evidently (B.16) is the hamiltonian of a continuum of harmonic oscillators as-
sociated with a given wavevector and polarization oscillating with frequency
ωk. The quantization is thus accomplished substituting the amplitudes and
their complex conjugates of such oscillators with pairs of operators

αk,σ −→

√
~

2(2π)3ε0ωk
âk,σ

α∗k,σ −→

√
~

2(2π)3ε0ωk
â†k,σ

(B.17)

whose commutators are assigned in analogy with the ones for the destruction
and creation operators of independent quantum harmonic oscillators

[âk,σ, â
†
k′,σ′ ] = δ(k− k′)δσ,σ′ (B.18)

With the introduction of these operators we also need to introduce a space
of quantum states for the free electromagnetic field. This can be done by
constructing a suitable basis for such a space. From the theory of quantum
harmonic oscillators, we know that the number operator n̂k,σ ≡ â†k,σâk,σ has
a discrete spectrum corresponding to the set of natural numbers. The eigen-
vector corresponding to the null eigenvalue is called vacuum and is defined
by the condition

âk,σ|0〉 = 0 ∀ k, σ (B.19)
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and the eigenvector of n̂k,σ with eigenvalue m is obtained through the action
of the creation operator on the vacuum

|mk,σ〉 =

(
â†k,σ

)m
√
m!
|0〉 (B.20)

Varying m in the whole set of natural numbers one obtains the basis for the
space of quantum states Hk,σ of the k, σ-th oscillator. The whole state space
is then given by the union

Hem =
⋃
k,σ

Hk,σ (B.21)

which is referred to as the Fock space.

The hamiltonian and linear momentum of the field in terms of the creation
and destruction operators are

Ĥem =
∑
σ

∫
d3k ~ωk

(
n̂k,σ +

1

2

)
(B.22)

P̂em =
∑
σ

∫
d3k ~k n̂k,σ (B.23)

Evidently the eigenstates of both these operators are the number eigenstates:
|mk,σ〉 is then to be interpreted as a configuration of the free electromagnetic
field made up of m excitations of its (k, σ) normal mode each carrying an
energy ~ωk and a momentum ~k, that is of m photons.

The quantized vector potential reads

Â =

√
~

2(2π)3ε0

∑
σ

∫
d3k

1
√
ωk

[
âk,σek,σe

i(k·r−ωkt) + â†k,σek,σe
i(k·r−ωkt)

]
(B.24)

The electric field operator in terms of the creation and destruction oper-
ator is

Ê = Ê(+) + Ê(−) (B.25)
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where

Ê(+) = −i

√
~

2(2π)3ε0

∑
σ

∫
d3k
√
ωk âk,σek,σe

i(k·r−ωkt)

Ê(−) = i

√
~

2(2π)3ε0

∑
σ

∫
d3k
√
ωk â

†
k,σek,σe

i(k·r−ωkt)

(B.26)

74



Appendix C

Integration of geometric factors

In chapter 3 we had to calculate the following integral∑
σ

∫
V

d3rρ̂(r, tl)|ψ〉
∫
d3q (eq,σ · eσ0)eq,σ ei[q·(R−r)−ωqt]

∫ t

t0

dt′f

(
t′ − tl −

z

c

)
eiωqt

′
e−iω0

(
t′−tl− zc

) (C.1)

and we started with the integration over the different directions of the q
wavevector. There only the final result was shown with the understanding
that only radiative terms are kept, that is terms whose square is proportional
to the inverse square of the distance between the source (in our case the
target) and the detection point.
Here we show that indeed the integration over q’s direction produces non-
radiative terms. The integral of our interest is∫

d3q
∑
σ

(eq,σ · eσ0)eq,σeiq·(R−r) (C.2)

The polarization terms in the integral (C.2) can be rewritten expliting
the fact that the vectors eq,σ and the direction of momentum q̃ form a basis
of the ordinary space, and thus

∑
σ(eq,σ · eσ0)eq,σ) = eσ0 − q̃(q̃ · eσ0).

For the calculation we introduce an auxiliary reference frame X, Y, Z, whose
Z axis is parallel to the |R− r| = Z vector and adopt spherical coordinates
in this frame.
The expression of polarization and of the versor q̃ in these new reference
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frame (see figure C.1) is then

eσ0 = sin θ0 cosφ0X̂ + sin θ0 sinφ0Ŷ + cos θ0Ẑ

q̃ = sin θq cosφqX̂ + sin θq sinφqŶ + cos θqẐ
(C.3)

Figure C.1: Auxiliary reference frame used in the calculation of angular integral.
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The angular part of the integral (C.2) is then

2πeσ0

∫ π

0

dθq sin θqe
iqZ cos θq+

− X̂

(
sin θ0

∫ π

0

dθqe
iqZ cos θq sin3 θq

∫ 2π

0

dφq cosφq cos(φq − φ0)+

+ cos θ0

∫ π

0

dθqe
iqZ cos θq sin2 θq cos θq

∫ 2π

0

dφq cosφq

)
+

− Ŷ

(
sin θ0

∫ π

0

dθqe
iqZ cos θq sin3 θq

∫ 2π

0

dφq sinφq cos(φq − φ0)+

+ cos θ0

∫ π

0

dθqe
iqZ cos θq sin2 θq cos θq

∫ 2π

0

dφq sinφq

)
+

− Ẑ

(
sin θ0

∫ π

0

dθqe
iqZ cos θq sin2 θq cos θq

∫ 2π

0

dφq cos(φq − φ0)+

+ 2π cos θ0

∫ π

0

dθqe
iqZ cos θq cos2 θq sin θq

)

(C.4)

all the terms containing an integral of a single sine or cosine function of φq
vanish, whereas the only non-vanishing integrals in the last expressions are∫ π

0

dθqe
iqZ cos θq sin θq = 2

sin(qZ)

qZ
(C.5)

∫ π

0

dθqe
iqZ cos θq sin3 θq = 4

[
sin(qZ)

(qZ)3
− cos(qZ)

(qZ)2

]
(C.6)

∫ π

0

dθqe
iqZ cos θq cos2 θq sin θq = 2

sin(qZ)

qZ
− 4

[
sin(qZ)

(qZ)3
− cos(qZ)

(qZ)2

]
(C.7)

∫ 2π

0

dφq cosφq cos(φq − φ0) = π cosφ0 (C.8)

∫ 2π

0

dφq sinφq cos(φq − φ0) = π sinφ0 (C.9)
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Grouping the terms in the angular integral by descending power of Z, we
obtain that (C.4) is

4π(eσ0 − cos θ0Ẑ)
sin(qZ)

qZ
+

+ 4π
[

sin θ0(cosφ0X̂ + sinφ0Ŷ)− 2 cos θ0Ẑ
][cos(qZ)

(qZ)2
− sin(qZ)

(qZ)3

] (C.10)

of which only the radiative term of order Z−1 is kept in the results of chapter
4.

C.1 The polarization factor

It is useful checking to what amounts to the vector factor eσ0−cos θ0Ẑ of the
radiative contribution to the angular integral. In order to do this we analyze
two cases for the incoming polarization.
In the first case the polarization, see figure C.2a, eσ0 is orthogonal to the
plane containing the axes z and Z. This means that θ0 = π/2, that the
vector factor reduces to eσ0 .
The second case, see figure C.2b, is the one of eσ0 contained in the z, Z plane.
If we call the observation angle α, that is the angle between z and Z, in this
special case it holds that θ0 = π/2− α and the vector factor reduces to

cosα(cosφX̂ + sinφŶ) (C.11)

whose modulus square is cos2 α
The case of generic incoming polarization will be a sum of these two possi-
bilities, that is if s and 1−s are the perecentages of polarization respectively
orthogonal and parallel to the z, Z plane, the polarization factor appearing
in the detection rate is

s sin2 α + cos2 α (C.12)
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(a) (b)

Figure C.2: The two possible incoming polarization cases: (a) polarization orthogonal to the z, Z plane
(in green), (b) polarization parallel to the z, Z plane. The red plane represents the polarization plane
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