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Abstract

We consider the problem of efficient randomized dimensionality
reduction with norm-preservation guarantees. Specifically we prove
data-dependent Johnson-Lindenstrauss-type geometry preservation guar-
antees for Ho’s random subspace method: When data satisfy a mild
regularity condition – the extent of which can be estimated by sam-
pling from the data – then random subspace approximately preserves
the Euclidean geometry of the data with high probability. Our guar-
antees are of the same order as those for random projection, namely
the required dimension for projection is logarithmic in the number
of data points, but have a larger constant term in the bound which
depends upon this regularity. A challenging situation is when the orig-
inal data have a sparse representation, since this implies a very large
projection dimension is required: We show how this situation can be
improved for sparse binary data by applying an efficient ‘densifying’
preprocessing, which neither changes the Euclidean geometry of the
data nor requires an explicit matrix-matrix multiplication. We cor-
roborate our theoretical findings with experiments on both dense and
sparse high-dimensional datasets from several application domains.
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1 Introduction

Randomized dimensionality reduction techniques, such as random projec-
tion (RP) [7, 15] and Ho’s random subspace method (RS) [12] are popu-
lar approaches for data compression, with many empirical studies showing
the utility of both for machine learning and data mining tasks in practice
[26, 11, 21, 19, 18, 27]. For RP a key theoretical motivation behind their
use is the Johnson-Lindenstrauss lemma (JLL), the usual constructive proof
of which also implies an algorithm with high-probability geometry preserva-
tion guarantees for projected data. However RP is costly to apply to large
or high-dimensional datasets since it requires a matrix-matrix multiplication
to implement the projection, and furthermore the projected features may be
hard to interpret. On the other hand RS is a particularly appealing approach
for dimensionality reduction because it involves simply selecting a subset of
data feature indices randomly without replacement, and so does not require
a matrix-matrix multiplication to implement the projection and it retains (a
subset of) the original features. RS is therefore computationally far more
efficient in practice, and more interpretable than RP, but there is little the-
ory to explain its effectiveness. Focusing on this latter problem, here we
prove data-dependent norm-preservation guarantees for data projected onto
a random subset of the data features. We show that provided data have a
suitably regular representation then RS approximately preserves their Eu-
clidean geometry with high probability. Our results put RS on the similar
firm theoretical foundations to RP, at least for regular data, but this still
leaves open the problem of non-trivial guarantees for geometry preservation
when RS, i.e. a small subset of features, from data with a sparse repre-
sentation is randomly selected: Indeed as we discuss later high-probability
geometry preservation guarantees for RS projection of sparse data are, in
general, impossible. However, by observing that it is the regularity of the
representation of the data that is crucial to our guarantees, we see that it
should be possible to obtain JLL-type guarantees by a careful preprocessing
of sparse data that makes them dense in the coordinate basis (‘densifying’).
Unfortunately typical densifying preprocessing schemes, such as ‘whitening’
(centering and normalizing) or Hadamard transformation[2], also require a
matrix-matrix multiplication – potentially removing the key computational
advantage of RS as a dimensionality reduction approach. We attempt to
address this latter problem, for the important case of sparse binary data, by
applying an efficient densifying preprocessing which avoids explicit matrix-
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matrix multiplication by using a Householder reflection that can be carried
out in linear time. Such a reflection does not alter the Euclidean geometry of
the original dataset, but it makes the representation more regular so that our
JLL-type guarantees can now hold non-trivially for (moderately) sparse data
preprocessed in this way. We discuss the theoretical time-complexity of our
approaches, and we corroborate our theoretical findings with experiments on
dense and sparse high-dimensional datasets from several application domains.

2 Background and Motivation

We begin by briefly reviewing the similarities and differences between Ran-
dom Subspace and Random Projection, and we also review some key theory
motivating the use of Random Projection (namely the JLL and the struc-
ture of its proof). These motivate the problem at hand and also suggest its
solution.
In all of the following we assume, without loss of generality, that we pos-
sess a (fixed) set of N , d-dimensional real-valued vector observations to
be projected, TN := {Xi ∈ R

d}Ni=1 and we choose an integer, k, where
k ∈ {1, 2, . . . , d} as the projection dimension.

2.1 Random Subspace Projection (RS)

Random subspace is a randomized dimensionality reduction method that
projects a data point x ∈ R

d onto the subspace spanned by k canonical basis
vectors ej = (ej1, ej2, . . . , ejd)

T where eji = 1 if i = j and zero otherwise. The
RS basis is chosen uniformly at random from all

(

d

k

)

possible such subspaces
of dimension k. In implementation for a single RS one simply selects a subset
of k feature indices without replacement, uniformly at random from all such
subsets of size k, and then discards the values of the remaining d−k features
with the same k feature indices being used for each data point in a set of
observations. Thus the selected indices comprise a simple random sample
without replacement of size k from a population of d features – a fact that
we will use later.
This method was first introduced by Ho [12], where an ensemble of decision
trees employing several sets of RS projected data was used for a classification
problem. While RS as an ensemble method has shown good results with many
learning algorithms such as support vector machines, [27], linear classifiers
[26], k-nearest neighbour [11] and also on a variety of data sets from different
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problem domains e.g. [18, 21, 19, 10] there is little explanatory theory for
the success of this approach – in particular there is no theory, to the best of
our knowledge, for a single RS.
On the other hand a key advantage for RS is its very low time complexity
compared to RP, namely O(d) or O(d log d) typically to generate a subset
of indices to be sampled, and O(N) to construct the projected dataset. We
note also that scalable parallel approaches for sampling from very large and
streaming datasets have recently been devised [24].

2.2 Random Projection (RP)

Random projection is also a randomized dimensionality reduction method
that projects a data point x ∈ R

d onto a k-dimensional subspace but this
time the subspace is typically either chosen uniformly at random from all
possible such subspaces of dimension k in R

d, or is the span of k vertices of
a centred hypercube chosen uniformly at random with replacement from all
2d such vertices. In implementation for a single RP one generates a k × d
matrix of values sampled from such a zero-mean symmetric sub-Gaussian
distribution, and then left multiplies the data point with this RP matrix,
the same RP matrix being used for each data point in a training set of
observations.
The RPmethod has its roots in geometric functional analysis, and entered the
Machine Learning and KDD communities via Theoretical Computer Science,
in particular seminal papers by Indyk and Motwani [15] and Arriaga and
Vempala [4]. Like RS, RP has found many successful applications [6, 28] but
unlike RS the theoretical foundations of RP are by now quite well understood
[7, 23, 14].
A key theoretical result regarding RP, widely-used in theoretical analyses
and also as heuristic justification for the application of RP, is the following
Johnson-Lindenstrauss Lemma (JLL):

Proposition 1 (Johnson and Lindenstrauss, 1984). Let ǫ ∈ (0, 1). Let
N, k ∈ N such that k ≥ Cǫ−2 logN , for a large enough absolute constant
C. Let V ⊆ R

d be a set of N points. Then there exists a linear mapping
R : Rd → R

k, such that for all u, v ∈ V :

(1− ǫ)‖u− v‖22 ≤ ‖Ru− Rv‖22 ≤ (1 + ǫ)‖u− v‖22
The proof is constructive, and shows that an RP matrix satisfies the pre-

scription for R in the above theorem with positive probability. The usual

4



approach for proving JLL is to show that, except with a small probability,
an arbitrary randomly-projected vector has squared norm close to its ex-
pected value (w.r.t the draws of RP matrices); one then has the following
‘distributional JLL’:

Proposition 2. Let ǫ ∈ (0, 1). Let k ∈ N such that k ≥ Cǫ−2 log δ−1, for a
large enough absolute constant C. Then there exists a random linear mapping
R : Rd → R

k, such that for any unit vector x ∈ R
d:

Pr
{

(1− ǫ) ≤ ‖Rx‖22 ≤ (1 + ǫ)
}

≥ 1− δ

Setting x = (u− v)/‖u− v‖ in the above and applying union bound over
all
(

N

2

)

pairwise distances in a set of N points obtains the original JLL. JLL
has been extensively studied and surveyed [23]. Unfortunately RP is in gen-
eral computationally much more expensive than RS. The time complexity to
generate the projection matrix is O(kd), and to extract the projected data
from the full data requires a matrix-matrix multiplication which is O(kdN)
in general and, although there are several approaches that consider increas-
ing the sparsity of the projection [1, 2, 17] to improve the hidden constants in
the matrix multiplication, in practice this is still costly for large or very high-
dimensional datasets. For RP matrices with ±1 entries Ailon and Liberty
give an O(Nd log k) algorithm provided k <

√
d [3]. For these and similar

matrices such as those in [1] one can also use Liberty and Zucker’s Mailman
Algorithm [22] which, for a one-off preprocessing cost of O(kd), speeds up the
matrix-matrix multiplication by a factor of O(log d), though our experience
is that this approach is not as fast in practice as RS and, in particular, it
is very memory hungry and the data projection is slower. Finally Ailon and
Chazelle [2] give an O(d log d+N(d log k+k2)) algorithm using a randomized
Hadamard transformation to precondition the data so that, with high prob-
ability, it is regular in a similar sense to the one we use later in our theorems
here: Indeed, we are not the first to observe that for geometry-preserving
sparse projection the representation of the data is important.

2.3 Motivation

We have seen that intuitively, because of the JLL, RP distorts the Euclidean
geometry of the original data somewhat, but with high probability (over
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draws of the random matrix R) not too much, while at the same time al-
lowing one to work with a much compressed representation of the original
data. Thus RP can yield, with the same probability, approximate solutions
with performance guarantees for any algorithm whose output depends only
on the Euclidean geometry of a set of observations. For example linear clas-
sification and regression algorithms, clustering algorithms such as k-means,
and even non-linear classifiers such as k-Nearest Neighbours all fit this bill.
However for large or very high-dimensional data the matrix-matrix multipli-
cation involved in the RP preprocessing is costly and may erode the benefits
of working with compressed data. Moreover, as far as we are aware, the
only known constructions for R satisfying the JLL comprise sampling the
entries from symmetric zero-mean sub-Gaussian distributions and, in par-
ticular, there is no known JLL guarantee for RS. Our aim here is to obtain
JLL-type guarantees for RS, thus improving our understanding of this ap-
proach and at the same time providing a further route to simple, efficient,
approximation algorithms with performance guarantees for a wider range of
applications.

3 Theory

Our main theoretical results are the following two theorems showing that an
RS projection implies a data-dependent JLL-type guarantee. The strength
of this guarantee depends on how regular the representation in which we are
working is, where regularity is measured by (an upper bound on) the squared
population coefficient of variation if we consider the elements of a vector as
a finite population of size d. Our first theorem – the ‘basic bound’ – is a
simple Chernoff-Hoeffding type bound, while our second theorem is a tighter
Serfling bound. Our second bound is much tighter than the basic bound
when k = O(d), but it gives a similar guarantee to the basic bound when
k ≪ d. The proofs are elementary and use standard tools – we defer them
to the Appendix. For notational and analytical convenience we will write
a particular RS projection in the form of a matrix P , where P is a d × d
diagonal matrix with all entries zero except for k diagonal entries set to 1
with their indices chosen by simple random sampling without replacement
from {1, 2, . . . , d}. Note that left multiplying a d × N data matrix with P
is mathematically equivalent to RS – viewed as a projection of the original
data to a subspace of dimension k embedded in R

d – although in practice
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it is not how RS is usually implemented. For convenience we also define
X2

i := (X2
i1, X

2
i2, . . . , X

2
id)

T the vector with its entries the squared components
of Xi.

Theorem 1 (Basic Bound). Let TN := {Xi ∈ R
d}Ni=1 be a set of N points

in R
d satisfying, ∀i ∈ {1, 2, . . . , N}, ‖X2

i ‖∞ ≤ c
d
‖Xi‖22 where c ∈ R+ is a

constant 1 ≤ c ≤ d. Let ǫ, δ ∈ (0, 1], and let k ≥ c2

2ǫ2
ln N2

δ
be an integer. Let

P be a random subspace projection from R
d 7→ R

k. Then with probability at
least 1−δ over the random draws of P we have, for every i, j ∈ {1, 2, . . . , N}:

(1− ǫ)‖Xi −Xj‖22 ≤
d

k
‖PXi − PXj‖22 ≤ (1 + ǫ)‖Xi −Xj‖22

Theorem 2 (Without Replacement Bound). Let TN := {Xi ∈ R
d}Ni=1 be a

set of N points in R
d satisfying, ∀i ∈ {1, 2, . . . , N}, ‖X2

i ‖∞ ≤ c
d
‖Xi‖22 where

c ∈ R+ is a constant 1 ≤ c ≤ d. Let ǫ, δ, fk ∈ (0, 1], where fk := (k − 1)/d
and let k such that k/(1 − fk) ≥ c2

2ǫ2
ln N2

δ
be an integer. Let P be a random

subspace projection from R
d 7→ R

k. Then with probability at least 1− δ over
the random draws of P we have, for every i, j ∈ {1, 2, . . . , N}:

(1− ǫ)‖Xi −Xj‖22 ≤
d

k
‖P (Xi −Xj)‖22 ≤ (1 + ǫ)‖Xi −Xj‖22

Furthermore we also have:

Corollary 1 (to either bound). Under the conditions of Theorem 1 or 2
respectively, for any ǫ, δ ∈ (0, 1], with probability at least 1 − 2δ over the
random draws of P we have:

(

X
T
i Xj − ǫ‖Xi‖‖Xj‖

)

≤ d

k
(PXi)

T (PXj) ≤
(

X
T
i Xj + ǫ‖Xi‖‖Xj‖

)

Comment on Corollary 1 For RP matrices with zero-mean sub-Gaussian
entries, a 1 − δ guarantee for projected dot products is proved in [16]. The
proof technique used there is not directly tranferrable to RS, although we
speculate that for small enough c it could be adapted to RS using some
results of Matousek in [23].

3.1 Discussion of Bounds

These theorems and their corollaries show that we have high probability guar-
antees on Euclidean geometry preservation for sufficiently regular datasets
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for RS and provided the dimension of the projected subspace, k, is chosen
large enough. We note that up to constant terms this is the same guaran-
tee as we have for the existing JLL for RP, therefore it is of optimal order
for any linear dimensionality reduction scheme[20], but for a fixed k the RS
projection is typically orders of magnitude faster than RP. However, there is
a trade-off involved since if c is large the projection dimension required will
generally be greater than for RP, indeed for RP our c2 can be replaced by
a single-digit constant (either 2 or 8) which only depends on the choice of a
Gaussian or sub-Gaussian RP matrix R and not on the data.
Our bounds hold for an RS projection of any set of data vectors meeting
the given conditions which may seem rather surprising: For example, if we
consider a binary vector X with only one non-zero component then it is
straightforward to check that under RS with probability 1 − (d − k)/d the
projected vector is the zero vector, otherwise it has norm 1, and in neither
case is the squared norm of PX close to its expected value k

d
‖X‖22 in general.

Furthermore it is easy to verify for any vector with s < d non-zeros that the
number of non-zero components sampled by RS has a Hypergeometric(s, d, k)
distribution and so if s ≪ d this problem remains and the norms of most
projections will be very far from their expected value. However, we note
that in such cases the regularity constant c ∈ [1, d] will also be close to d
and thus there will only be a non-zero probability guarantee of norm preser-
vation for k = d when, of course, the guarantee holds trivially. Thus for
RS it is not possible to avoid some regularity condition on the data and to
also have non-trivial JLL-type norm-preservation guarantees, and for fixed ǫ
the projection dimension k must generally be larger than it would be for RP
but this is the price to pay for using RS projection. On the other hand we
see from our theorem that it is not sparsity of the data per se that causes
a problem, rather it is sparsity in the data representation. We will leverage
this fact later in Section 4.3 when we present an efficient way to finesse this
problem for the special, but common, case of sparse binary data.

4 Empirical Corroboration of Theory

We now present empirical results which corroborate our theorems. We demon-
strate that we have norm preservation for Random Subspace projections (RS)
as proven by our theory, and we compare RS projection with two RP variants
as well as to principal components analysis (PCA) to see that in practice –
given a suitable choice of k – RS works as well as these alternative solutions.
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4.1 Datasets

We use two datasets, the first is a collection of natural images [29] similar to
those used by Bingham and Manila in [6]; and the second is the Dorothea
dataset from the 2003 NIPS feature selection challenge, which is a very sparse
and very high dimensional binary drug-discovery dataset split into three for
purposes of the NIPS competition. The characteristics of the datasets are
summarized in Tables 1 and 2.

4.2 Experimental Procedure

For the image data we used all twenty-three publicly available natural grayscale
images from the USC-SIPI natural image dataset and we omitted the syn-
thetic images; a short description and the sizes of the images is given in
Table 1. We follow the same protocol as Bingham and Manilla [6]; for each
of the images, we select the top-left corner of a 50x50 pixel window in each
image uniformly at random and reshape to a vector with 2500 dimensions,
repeating this one thousand times for each of the images. We then project
the vectors using RS, othornormalized Gaussian random projection (RP),
Achlioptas sparse random projections (SRP) (with Pi,j = ±1 with probabil-
ity 1

6
, 0 with probability 2

3
) and also the first k eigenvectors from applying

PCA to the full sample of the one thousand vectors. The projected vectors
were all scaled according to the values in Table 3. Note that a scaling correc-
tion for PCA was not employed in [6] where it was claimed a straightforward
rule is difficult to give. In fact one can verify the average scaling for PCA
projected vectors (over the dataset) in the squared Euclidean norm should

be Trace(Σ)
Trace(Σ(1:k))

and so we use the square root of this. We let the projection
dimension k range from 5 to 600 in increments of 5.
For the image data this procedure was repeated for all twenty three im-
age files for each projection approach. For Dorothea for each of the three
dataset splits, we first removed features with zero variance from the data
set (these were all zero-valued features) but to avoid possible confounds we
carried out no other filtering. We then projected the data using RP, SRP
and RS as before with the projection dimension k ∈ {5, . . . , 70, 000} for RS,
k ∈ {5, . . . , 2, 750} for RP and SRP. We also applied RS to the data trans-
formed by a fixed Householder reflection since this reduces the value of c in
an efficient manner for these data – details follow shortly. Since the runtime
and memory overhead is prohibitive, we did not run PCA on this dataset.

9



Name Description Image Size c
5.1.09 Moon Surface 256x256 3.50
5.1.10 Aerial 256x256 2.44
5.1.11 Airplane 256x256 7.92
5.1.12 Clock 256x256 5.03
5.1.14 Chemical plant 256x256 2.92
5.2.08 Couple 512x512 2.64
5.2.09 Aerial 512x512 4.10
5.2.10 Stream and bridge 512x512 2.34
5.3.01 Man 1024x1024 2.23
5.3.02 Airport 1024x1024 3.82
boat.512 Fishing Boat 512x512 2.89
7.1.01 Truck 512x512 3.02
7.1.02 Airplane 512x512 9.69
7.1.03 Tank 512x512 2.89
7.1.04 Car and APCs 512x512 2.72
7.1.05 Truck and APCs 512x512 2.37
7.1.06 Truck and APCs 512x512 2.37
7.1.07 Tank 512x512 2.89
7.1.08 APC 512x512 4.85
7.1.09 Tank 512x512 2.40
7.1.10 Car and APCs 512x512 2.73
7.2.01 Airplane (U-2) 1024x1024 4.12
elaine.512 Girl (Elaine) 512x512 2.25

Table 1: Natural Image Dataset: c is the regularity constant in the bounds
which here was calculated from each complete image.
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Name
Number
of
observations

Features
with non-
zero
variance(d)

c c′

.test 800 91362 71.21 67.27
.train 800 88119 68.63 64.69
.valid 350 72113 55.94 52.02

Table 2: Dorothea Dataset: c is the regularity constant in the bounds which
here was calculated from each dataset split. c′ is the corresponding constant
for the Householder-transformed data.

Method Norm Scaling Factor

Gaussian Random Projection
√

d
k

Sparse Random Projection
√

1
k

Random Subspace
√

d
k

Principal Component Analysis
√

Trace(Σ)
Trace(Σ(1:k))

Table 3: Theoretical norm-scaling quantities for the various projection
schemes.
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For both types of data we randomly selected one hundred observations
and for each possible pair of these we calculated the ℓ2 norm of the difference
between the (scaled) projected observations ‖P (u−v)‖ and the original points
‖u − v‖. We then calculated the ratio between the (scaled) projected norm

and the true norm ‖P (u−v)‖
‖u−v‖ for each observation where the scaling constants

used were those in Table 3.
For the image data we plot, for each choice of k, the average of this value over
all images as well as the 5-th and 95-th percentiles for the different ratios in
Figure 2. We also plot the runtime, for the image data, for each projection
method versus k in Figure 5.
For Dorothea we repeated our experiments five times on each dataset split,
to obtain an average over fifteen runs. We report the mean ratio of the norms
‖P (u−v)‖
‖u−v‖ as well as the 5-th and 95-th percentiles in Figure 4. The average

runtime for each different approach can be seen in Figure 6.

4.3 Smoothing binary data using a fixed Householder
transform

A Householder transform H is given by H := I−2vvT where I is the identity
matrix and ‖v‖2 = 1. One can easily check that v is an eigenvector of H
with eigenvalue −1, all other eigenvalues are 1, and that H = HT = H−1.
Geometrically, H is therefore a reflection about a hyperplane through the
origin with normal vector v and, in particular, ℓ2 norms are preserved by
H : ‖HX‖2 = ‖X‖2 for any X . Moreover HX = X − 2v(vTX) so one
need not evaluate the matrix multiplication explicitly. The benefit of H
to us in the setting of RS projection is that it provides an efficient way in
which to ‘densify’ sparse binary data. As already discussed, if X is a sparse
binary vector then c ≃ d and we have no non-trivial geometry-preservation
guarantees for a RS projection. Indeed if X is binary with s ≪ d non-zeros
entries then c = d

s
. However, we see from Theorem 3.1, that if we can reduce

c then a non-trivial guarantee is possible. Thus an efficient method to reduce
c would be useful for these data. We have the following theorem:

Theorem 3 (Densification). Let X ∈ {0, 1}d with s non-zeros. Let v ∈ R
d,

vj = 1√
d
, ∀j ∈ {1, 2 . . . d}, and let H := I − 2vvT where I is the identity

matrix. Denote by X2 and (HX)2, the vectors consisting of the squared
entries of X and HX respectively.
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Let c = d‖X2‖∞
‖X‖2

2

= d
s
and let c′ = d‖(HX)2‖∞

‖HX‖2
2

.

Then if s < d
2
, c′ < c,

if s = d
2
, c′ = c, and

if s > d
2
, c′ > c.

Proof. Since H is a reflection and X is binary with s non-zeros, we have
‖HX‖22 = ‖X‖22 = s and ‖X2‖∞ = 1. Thus to compare c and c′, we only
need to consider what values ‖(HX)2‖∞ can take.
Now, the j-th entry of HX is:

(HX)j = Xj − 2vjv
TX = Xj − 2vj

d
∑

i=1

Xi√
d

= Xj − 2
1√
d

d
∑

i=1

Xi√
d
= Xj − 2

s

d
(1)

So when Xj = 1, (HX)j =
d−2s
d

and when Xj = 0, (HX)j = −2s
d
.

Next ‖(HX)2‖∞ = maxj∈{1,2,...,d} |(HX)2j | so, checking cases:

For s < d
4
,
(

d−2s
d

)2
= d2−4sd+4s2

d2
> 4s2

d2
=
(−2s

d

)2
So, ‖(HX)2‖∞ =

(

d−2s
d

)2
and

c′ =
d
(

d2−2sd+4s2

d2

)

s
= d2−4sd+4s2

sd
= d

s
− 4 + 4s

d
< d

s
= c

For d
4
≤ s < d

2
, d2−4sd+4s2

d2
≤ 4s2

d2
. So,‖(HX)2‖∞ =

(−2s
d

)2
and c′ =

d
(

4s2

d2

)

s
=

4s
d
< d

s
= c

Finally, for d
2
≤ s ≤ d, d

2−4sd+4s2

d2
≤ 4s2

d2
and c′ = 4s

d
≥ d

s
= c.

This completes the proof.

Comments on Theorem 3 Picking the theorem apart we see that when
s < d

4
, our Householder transform ensures c− c′ ≥ 3 which translates to (at

least) a 9-fold reduction in k, however note that k will still typically remain
large compared to the corresponding quantity for RP since c = d/s will usu-
ally have been large in the first place, on the other hand when s = d

4
all

transformed entries have the same absolute value and c′ = 1 is minimal and
we have a stronger guarantee than for RP! When d

4
< s < d

2
our Householder

transform improves c′ by a factor of d2

4s2
, and when s is any greater than d/2

then applying this Householder transform instead makes the data less reg-
ular. For very sparse, very high-dimensional, binary data the improvement
from our approach is therefore moderate – we present experiments on such
data later – but for moderate values of d or of s, for example if d is just a
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few thousand or if s ≃ d/4, then the improvement from using RS with our
choice of H can be large.

Note that this Householder transform can be applied in linear (in d) time,
and we only need knowledge of the number of non-zero entries in the vector
to apply it. If we have stored the non-zero indices for each of the Xi then
the transform can be done in time linear in s. In any case, avoiding explicit
pre-multiplication of the data by H allows us to obtain smaller distortion
in norms for a fixed value of k, or the same error for a smaller value of k,
with no increase in the theoretical time complexity of RS and at very low
computational cost in practice – see Figure 6.
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Figure 1: Fixed k, small c: Histograms of
‖P (Xi−Xj)‖
‖Xi−Xj‖ for k = 50 dimensions

on three representative images with overlaid normal density plots, n = 4950.
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Figure 2: Mean and 5th and 95th percentiles of
‖P (Xi−Xj)‖
‖Xi−Xj‖ for image data

vs. k. We see that for k & 80 Gaussian RP and RS are indistinguishable on
these data. Note also the 5th percentile for SRP cf. Figure 1: Sparse RP
frequently seems to underestimate norms.
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Figure 3: Fixed ǫ, large c: Histograms of
‖P (Xi−Xj)‖
‖Xi−Xj‖ for Dorothea dataset

with krp = 50 (RP and SRP, top left and bottom right plots) and comparison
with RS and Householder + RS when krs = c2×krp dimensions with overlaid
normal density plots, n = 4, 950. We see that errors behave nearly identically
for RP and RS as predicted by theory.

4.4 Experimental Results and Discussion

4.4.1 Random Subspace on Image Data

Our experimental results corroborate our theory, and we observe for natu-
ral image data that RS indeed gives similar performance in terms of norm
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Figure 4: Mean and 5th and 95th percentiles of
‖P (Xi−Xj)‖
‖Xi−Xj‖ for Dorothea vs.

k. We see that for RS a much higher k is required than for RP, though
RS eventually catches up. The main improvement from using Householder
transform is found for lower values of k, but RP is still better on these data.

preservation to RP and, surprisingly, better performance than SRP on these
data (as does RP) – see Figures 1 and 2. Given the small values of c esti-
mated for these data (See Table 1) the similar performance to RP is broadly
in line with what we would predict from theory, indeed Figure 2 shows that
RS is nearly indistinguishable from the computationally more expensive RP
on these data. On the other hand one remarkable finding is that the distri-
bution of norms for SRP is left-skewed here, and there is ample evidence that
SRP consistently tends to underestimate distances between points when the
correct theoretical scaling is applied, at least on these data. In this respect
SRP does worst on images such as the high contrast one above the centre
column of Table 1, where we might instead reasonably expect RS to suffer
from such a problem: Indeed, the normal fit for RS applied to this image
does show heavier tails for RS than for RP, but unlike SRP the error distri-
bution is symmetric and the centre of mass is in the right place at 1. We
don’t have a reasonable explanation for why SRP should be worse than RS
on these images, but as we see clearly in Figure 2 this problem persists even
as k grows. A further interesting finding is that, unlike the results reported
in [6], the performance of PCA scaled according to the scheme outlined in
Table 3 is – for a large enough choice of k – superior to all three random
alternatives we considered. This is to be expected since PCA maximises the
retained within-feature variance on the projected sample and the scaling we
proposed is adaptive in a non-linear way to this quantity, unlike the other
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Figure 5: Comparison of the runtime on dense image datasets with dimen-
sionality d = 2500
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Figure 6: Comparison of the runtime on Dorothea with d ≃ 100, 000, s/d ≃
0.1. Note that due to memory limitations the runs for RP and SRP are from
k = 5 to 2750 and the Gaussian RP was not orthonormalized. We plot the
runtime for k = 2750 for values of k > 2750. Gaussian RP was faster than
SRP here because generating the SRP matrix was slow for such large values
of d.

alternatives which do not consider local properties of the data cloud and use
a scaling that is linear in k. How far similar outcomes would hold for other
types of data remains for future research, but we note that it must depend on
both the choice of k and also on the rate at which the spectrum of the sample
covariance matrix – the eigendecomposition of which gives the principal com-
ponents – decays, since the scaling correction we apply to PCA is piecewise
constant in k with a non-uniform step size. We also note that, unlike for
RP, SRP and RS, for PCA there is no theory to guide the user’s choice of k
a priori even if one has access to the constant c we require in our RS bounds.
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Finally we look at the computational cost of the different approaches
considered: These are compared in Figure 5. For a fixed k there is of course
a significant runtime improvement in using RS compared to RP and SRP.
On these data it seems that choosing k the same for RS, RP and SRP works
equally well and so, everything else being equal, one would likely prefer RS to
RP or SRP here. Note that in general however, for fixed error, the projection
dimension k for RS will be around c2 times greater than for RP or SRP so
there is a trade-off. Whether one would prefer to use RS with a larger k
than for RP (for the same high-probability error guarantee) will depend on
problem specifics such as the time complexity of the algorithm receiving the
projected data with respect to the dimension, or whether it is more important
to classify or to train quickly. Finally PCA is, of course, computationally
much more expensive when compared to the other three approaches, but we
see that with the proper scaling term on these data it outperforms them in
terms of geometry preservation. Thus for PCA there is essentially the same
accuracy-vs-complexity trade-off as for RS.

4.4.2 Random Subspace on Dorothea Dataset

The Dorothea data is very high-dimensional with only around 10% of entries
non-zero and for these data the theory predicts that we will have poor norm
preservation from RS compared to RP except when k is very large, but that
this situation will be improved by applying our Householder transformation.
Our experimental results – see Figures 4 and 3 – show that indeed is the
case. RS does catch up with RP and SRP in terms of error eventually,
but both RP and SRP attain smaller error much more quickly than RS.
When the Householder transform H is applied to the data first, then RS
catches up quicker, but still requires a higher k than RP or SRP – in this
case because the densifying regularization applied by H only gives a small
improvement in c and therefore, for such super-sparse high-dimensional data,
it does not bring great improvement. On the other hand we see in Figure
3 that after scaling the projected dimension required for RP by c2 that RS
indeed has comparable (and sometimes better) error performance than RP or
SRP, and that the Householder transform slightly reduces the error variance.
We also see in Figure 4 that interestingly unlike for the image data the scaled
SRP does not tend to consistently underestimate norms, and all approaches
(eventually) have their centre of mass at 1. Finally despite the increased
projection dimension, for a fixed error guarantee either variant of RS still
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gives us significantly improved runtime compared to RP and SRP (See Figure
6).

5 Conclusions and Future Work

We proved that random subspace can act as a norm preserving projection
and showed how this norm preservation property depends on the regularity
of the data features. We corroborated this theory empirically and saw that,
for regular data such as natural images, random subspace can achieve geom-
etry preservation performance comparable to random projection, but with a
significant runtime improvement.

We also provided an efficient technique for densifying sparse data to close
the performance gap between RP and RS on sparse data, though very sparse
data remains challenging for this approach.

We are currently working on improving on uniform sampling to construct
the RS projection, e.g. by taking account of stratification in the features, or
by constructing H with regard to the distribution of features.

Finally we note a connection with dropout regularization, which is essen-
tially a single RS projection applied to a layer of nodes (usually the last)in a
neural network. Based on earlier work [8, 9] we conjecture that the number
of retained nodes in a dropout scheme should be logarithmic in the number of
classes to guarantee good classification performance, and we plan to explore
this in future work.

A Proofs of Bounds

We will use the following two lemmas which are from [13, 25].

Lemma 1 (Hoeffding, 1963 [13] Theorem 2.). Let X1, X2, . . . , Xk be inde-
pendent random variables such that, ∀i ∈ 1, 2, . . . , k we have Xi ∈ [ai, bi] with
probability 1. Denote by Sk :=

∑k

i=1Xi and fix t > 0. Then:

Pr {|Sk − E[Sk]| ≥ t} ≤ 2 exp

(

− 2t2
∑k

i=1(bi − ai)2

)

Corollary 2 (to Lemma 1, [13] Section 6.). Let C := c1, c2, . . . , cd be a
finite population of d values where ∀j = 1, 2, . . . , d we have cj ∈ [aj , bj ]
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with probability 1. Let Xi and Yi, i = 1, 2, . . . , k be samples without and
with replacement from C respectively and define by Sk(X) and Sk(Y ) the
corresponding sample totals. Fix t > 0. Then it holds that:

Pr {|Sk(X)− E[Sk(X)]| ≥ t} ≤ Pr {|Sk(Y )− E[Sk(Y )]| ≥ t}

Note that E[Sk(X)] = E[Sk(Y )], thus we may bound the probability of a
large deviation in the sample total from its expectation in the case of a (non-
independent) sample without replacement by the corresponding probability
for an independent sample with replacement.

Lemma 2 (Serfling, 1974 [25] Corollary 1.1.). Let C := c1, c2, . . . , cd be a
finite population of d values where ∀j = 1, 2, . . . , d we have cj ∈ [aj , bj] with
probability 1. Let Xi, i = 1, 2, . . . , k be a simple random sample without
replacement from C. Denote by Sk :=

∑k

i=1Xi and define the sampling
fraction fk := (k − 1)/d. Fix t > 0. Then:

Pr {|Sk − E[Sk]| ≥ t} ≤ 2 exp

(

− 2t2

(1 − fk)
∑k

i=1(bi − ai)2

)

Comment: Since 1 − fk = (d − k + 1)/d < 1 Lemma 2 gives a strictly
tighter bound than Lemma 1 for sampling without replacement, but brings in
a dependence on d. We note that bounds for sampling without replacement
which are somewhat tighter than those in [25] when k ≃ d were recently
proved in [5], in particular an empirical variant for when the population
parameters are unknown. In our proof each population is a fixed vector of
known length where the data dimension d is the population size and the
projection dimension k is the sample size; thus in our setting we have access
to both the full population and its parameters.

A.1 Proof of Basic Bound

We prove the basic bound using Lemma 1 and Corollary 2 and our without
replacement bound then follows directly. The basic idea is to treat each
vector as a finite population of size d and RS as a simple random sample of
size k without replacement from it in the above lemmas, and then follow the
line of argument in the usual proof of the JLL.
Let X ∈ R

d be an arbitrary, but fixed, real-valued vector and without loss of
generality let ‖X‖22 = 1 (since otherwise we can take X = Z/‖Z‖2). Denote
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by X2 := (X2
1 , X

2
2 , . . . , X

2
d)

T the vector containing the squared components
of X . Assume that ‖X2‖∞ ≤ c

d
‖X‖22.

Now let P ∈ Md×d be a projection onto k standard coordinate vectors, where
the projection basis is chosen by sampling uniformly at random from all

(

d

k

)

possible such bases. As noted already in Subsection 2.1 this is mathematically
equivalent to an RS projection. Then in every random P it holds that k
of the Pii = 1 and every other entry of P is zero so Tr(P ) = k for any
random P , and therefore Tr(E[P ]) = E[Tr(P )] = k. Furthermore since
Pr{Pii = p} = Pr{Pjj = p} for all i, j ∈ {1, 2, . . . , d} and p ∈ {0, 1}, it
follows that E[Pii] = E[Pjj] = k/d, ∀i, j by symmetry. Thus E[P ] = k

d
I and

E[‖PX‖22] = k
d
‖X‖22, where both expectations are taken with respect to the

random draws of P and we used the fact that P TP = PP = P, ∀P .
We want to upper bound the following probability:

Pr

{

|d
k
‖PX‖22 − ‖X‖22| ≥ ǫ

}

= Pr

{

|d
k
‖PX‖22 −

d

k
E
[

‖PX‖22
]

| ≥ ǫ

}

We give details for one side of the inequality using the basic Hoeffding bound,
the other cases proceed along the same lines. Now, for any fixed instance of
P denote by I the index set such that i ∈ I ⇐⇒ Pii = 1. Then:

Pr

{

‖PX‖22 ≥ k

d
ǫ+ E

[

‖PX‖22
]

}

= Pr

{

∑

i∈I
X

2
i ≥ k

d

(

ǫ+

d
∑

i=1

X
2
i

)}

where the sample total
∑

i∈I X
2
i is estimated from a sample of size k without

replacement. Applying Lemma 1 and Corollary 2 we then have:

Pr
{

∑

i∈I X
2
i ≥ k

d

(

ǫ+
∑d

i=1 X
2
i

)}

= Pr
{

d
k
‖PX‖22 − ‖X‖22 ≥ ǫ

}

≤ exp

(

− 2k( ǫ
d)

2

‖X2‖2
∞

)

The lower bound proceeds similarly and yields the same probability guar-
antee for a single fixed vector:

Pr

{

‖X‖22 −
d

k
‖PX‖22 ≥ ǫ

}

≤ exp

(

−2k
(

ǫ
d

)2

‖X2‖2∞

)

Thus by union bound, and using the condition on the theorem ‖X2‖∞ ≤
c
d
‖X‖22 to kill the unwanted dependence on d, we obtain the following guar-

antee for an arbitrary unit-norm vector X :

Pr

{
∣

∣

∣

∣

‖X‖22 −
d

k
‖PX‖22

∣

∣

∣

∣

≥ ǫ

}

≤ 2 exp

(

− 2kǫ2

c2‖X‖42

)

(2)
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To complete the proof we consider a set, TN , of N vectors in R
d and let Xi

andXj be any two vectors in this set. Instantiating X in 2 as (Xi−Xj)/‖Xi−
Xj‖2 and then applying union bound again over all

(

N

2

)

< N2/2 inter-point
distances in TN we obtain, for all pairs Xi, Xj ∈ TN simultaneously, it holds
that:

Pr

{
∣

∣

∣

∣

‖Xi −Xj‖22 −
d

k
‖PXi − PXj‖22

∣

∣

∣

∣

≥ ǫ

}

≤ N2 exp

(

−2kǫ2

c2

)

Where we substituted ‖X‖42 = 1 in RHS. Finally, setting the probability
upper bound on the RHS to δ and solving for k gives the theorem.

For the without replacement bound, one simply follows the same steps
as above, but using the Serfling bound (Lemma 2) in place of the Hoeffding
bound (Lemma 1), finally setting the RHS to δ and solving for k/1 − fk to
complete the proof.
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