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The rising burden of intensive care unit (ICU)-acquired infections due to extended-spectrum beta-lactamase–producing 

Enterobacteriaceae (ESBL-E) strengthens the requirement for efficient prevention strategies. The detection of intestinal carriage of 

ESBL-E through active surveillance cultures (ASC) and the implementation of contact precautions (CP) in carriers are currently 

advocated in most high-income countries, to prevent cross-transmission and subsequent ESBL-E infections in critically-ill patients. 

Yet, recent studies have challenged the benefit of ASC and CP in controlling the spread of ESBL-E in ICUs with high compliance 

to standard hygiene precautions and no ongoing outbreak of ESBL-producing Klebsiella pneumoniae or Enterobacter spp. Besides, 

given their debated performance to positively predict which patients are at risk of ESBL-E infections, ASC results appear of limited 

value to rationalize the empirical use of carbapenems in the ICU, emphasizing the urgent need for novel anticipatory and diagnostic 

approaches. This Viewpoint article summarizes the available evidence on these issues.
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The rising prevalence of intensive care unit (ICU)-acquired 

infections due to extended-spectrum beta-lactamase–produc-

ing Enterobacteriaceae (ESBL-E) and the human and economic 

costs that they induce intensify the necessity for efficient pre-

vention strategies [1]. Since the gut microbiome stands as the 

main reservoir of invasive ESBL-E strains, a search-and-isolate 

strategy, based on screening for intestinal carriage through 

active surveillance cultures (ASC) and the implementation 

of contact precautions (CP) in identified carriers, is currently 

advocated by international guidelines for ICUs facing ESBL-E 

endemicity or ongoing outbreaks [2, 3]. This policy primar-

ily aims at preventing the cross-transmission of strains and/

or ESBL-encoding plasmids and, thereby, subsequent ESBL-E 

infections in patients not colonized at admission. In addi-

tion, since prior colonization acts as a strong risk factor for 

ESBL-E infection, ASC results could assist the fine-tuning of 

empirical antibiotic therapy in critically-ill patients with sepsis 

by inciting intensivists to opt for carbapenems rather than other 

broad-spectrum beta-lactams in documented ESBL-E carriers 

[1, 4]. However, the benefit of ASC for controlling the spread 

of ESBL-E and rationalizing the use of carbapenems in the ICU 

has been increasingly challenged by the recent literature. In this 

short narrative review, we sought to summarize the available 

evidence on these issues.

ACTIVE SURVEILLANCE CULTURES AND 
CONTACT PRECAUTIONS IN THE CRITICAL CARE 
ENVIRONMENT

ESBL-E—notably, CTX-M–producing Escherichia coli—have 

globally disseminated in the community, with estimated car-

riage prevalences ranging from 2 to 12% in Europe, 5 to 47% in 

Africa, 7 to 44% in Southeast Asia, and 29 to 63% in the West 

Pacific area [5]. This pandemic drives a continuous influx of 

ESBL-E into the hospital system that adds to the pool of inpa-

tients colonized with healthcare-associated lineages. Thus, car-

riage prevalence at ICU admission is rapidly increasing, and 

now commonly reaches 10–15% in Europe and up to 40% in 

certain Asian countries [6], although marked fluctuations are 

observed depending on the hospital location and case mix 

(Supplementary Table S1). Of note, the prevalence of imported 
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carriage in a given ICU has been linked to the likelihood of 

ESBL-E acquisition among patients not colonized at admission, 

a phenomenon referred as to colonization pressure [7, 8]. This, 

along with variations in infection control policies, may explain 

why the average in-ICU acquisition rates remain quite limited 

in Europe and the Americas (ie, 3–4%) while exceeding 20% in 

high-prevalence areas [9] (Supplementary Table S1).

In addition to hand hygiene (HH) and other standard pre-

cautions, the concept of CP implies the utilization of single-bed 

rooms; patient-dedicated equipment; single-use gloves and 

gowns for healthcare workers during contacts with carriers 

or contaminated environments; and the signalization of car-

riage to ensure compliance [3]. Historically, CP have proven 

efficiency to control ICU outbreaks of hospital-associated 

ESBL-E clones, especially ESBL-producing Klebsiella pneumo-
niae and Enterobacter spp, both being associated with a more 

pronounced ability for patient-to-patient spreading than ESBL-

producing E. coli [10, 11]. The determinants of this observation 

are manifold. One may suggest that patients colonized with 

ESBL-producing K.  pneumoniae or Enterobacter spp. differ 

from those carrying ESBL-producing E. coli in terms of comor-

bidities and prior contacts with the healthcare system [12, 13]. 

This could reflect more requirements for nursing care and inva-

sive procedures, as well as more frequent antimicrobial expo-

sure (that is, a more severe intestinal dysbiosis, with a higher 

faecal relative abundance of ESBL-E), resulting in an increase 

in the probability of cross-transmission events. Also, prolonged 

environmental contamination is probably less of an issue with 

ESBL-producing E. coli than with other ESBL-E.

Yet, apart from epidemic situations, controversies have 

emerged on whether a systematic ASC and CP policy may 

help in preventing ESBL-E cross-transmission in hospital units 

applying current hygiene standards. Studies conducted in 

wards notably failed to demonstrate a superiority of CP to con-

tain the spread of ESBL-producing E. coli, when compared to 

standard precautions [14]. It has also been shown that ESBL-E 

cross-transmission occurs rarely—even in double-bed rooms—

in wards with a high level of compliance to standard precau-

tions [10, 15]. Similar results have been increasingly reported 

in the critical care setting over the recent years. In the European 

multi-ICU MOSAR trial, universal screening for the carriage 

of multidrug-resistant (MDR) Enterobacteriaceae (mostly 

non–E.  coli ESBL-E) and the implementation of CP in carri-

ers had no measurable added value on acquisition rates after 

a first educational phase that increased HH compliance from 

52 to 77% and included daily chlorhexidine body-washing 

[16]. The MOSAR investigators confirmed afterwards that the 

transmissibility of ESBL-E between ICU patients was actually 

weak, and was even 3 times lower for ESBL-producing E. coli 
when compared to other ESBL-E (number of secondary cases 

per index carrier: 0.047 and 0.17, respectively) [17]. These find-

ings corroborate those of several single-center studies based on 

molecular methods (strain and/or ESBL typing) that reported 

very low rates of cross-transmission from documented ESBL-E 

carriers, including in units without single-bed rooms, suggest-

ing other potential sources of acquisition, such as healthcare 

workers, contaminated environmental reservoirs, or patient 

transports outside the ICU [18, 19].

Contact isolation measures have been associated with a 

variety of deleterious side-effects, including patients’ psy-

chological distress and an increased hazard of adverse events 

or medical errors [20, 21]. Another key issue is the relatively 

high frequency of false-negative ASC samples—up to 25%—

due to incorrect rectal swabbing procedures or colonization 

densities of ESBL-E below the detection thresholds [10]. 

Next, a policy of universal ASC generates both a massive 

workload for laboratory staffs and substantial expenditures 

for the hospital system, although its health-economic bene-

fit has not been re-appraised in the contemporary epidemi-

ological context. However, in a dynamic model of ESBL-E 

dissemination in a 10-bed ICU with an assumed baseline 

acquisition rate of 15%, improving HH compliance before 

and after each contact with patients from 60% to 80% was 

more effective and cost saving than routine carriage screen-

ing and CP isolation [22].

The targeted screening of patients with pre-specified risk 

factors for ESBL-E carriage (ie, recent antimicrobial exposure 

and/or transfer from long-term care facilities, wards, or other 

ICUs, especially if abroad) appears as a potentially cost-saving 

alternative to extended ASC [23]. In 2 before-and-after stud-

ies conducted in French ICUs with rates of imported ESBL-E 

carriage in the range of those usually reported in Northern 

European countries (that is, 6–7%), switching from universal to 

targeted ASC had no impact on the incidence of ICU-acquired 

ESBL-E infections [24, 25]. Of note, patients admitted directly 

from home through the emergency department and without 

known predisposing factors for ESBL-E carriage may be colo-

nized by community-acquired ESBL-producing E.  coli. These 

patients would be missed by a policy of targeted screening; 

nonetheless, and as discussed above, the hazard of cross-trans-

mission from such unidentified carriers of ESBL-producing 

E.  coli is probably negligible, provided that standard precau-

tions are strictly applied. More pragmatically, in 2 recent studies 

conducted in ICUs with a relatively low prevalence of ESBL-E, 

high compliance to standard precautions, and only single-bed 

rooms, no change was observed in the incidence densities of 

ICU-acquired ESBL-E colonization and infection following 

the complete discontinuation of ASC and CP [26, 27], further 

raising doubt regarding the relevance of these measures in the 

absence of an outbreak. Still, ASC may be warranted for trans-

ferred or repatriated patients at high risk of carriage of carbap-

enemase-producing Enterobacteriaceae or other extensively 

drug-resistant Gram-negative bacteria (GNB), such as pan-re-

sistant Acinetobacter spp.
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ACTIVE SURVEILLANCE CULTURES DATA AND 
EMPIRICAL ANTIMICROBIAL THERAPY

ASC may provide relevant ecological insights at both indi-

vidual and ICU levels for the steering of empirical therapy 

in critically-ill patients. Yet, the relative risk of ICU-acquired 

ESBL-E infection is up to 50-fold higher in patients with a pre-

viously-documented ESBL-E carriage than in those without 

[9]. Considering that the impaired outcome associated with 

ESBL-E infections mainly ensues from ineffective first-line cov-

erage [28], the colonization status is understandably seen as a 

decisional tool to optimize the likelihood of adequate empir-

ical therapy in patients with suspected nosocomial sepsis [1]. 

Nevertheless, this approach fosters a massive over-consumption 

of carbapenems in carriers not infected with ESBL-E [4], which 

may then enhance the spread of non-fermenting GNB exhib-

iting intrinsic (eg, Stenotrophomonas maltophilia) or acquired 

(eg, Pseudomonas aeruginosa mutants with modified OprD 

porin) resistance to this antimicrobial class [29]. This excess use 

of carbapenems could also contribute to the ongoing pandemic 

of carbapenemase-producing Enterobacteriaceae [30], although 

definite evidence is still lacking to confirm this hypothesis.

Overall, ESBL-E infections occur during ICU stays in only 

10 to 25% of critically-ill patients with intestinal colonization 

[4, 6, 26, 31]. In those receiving mechanical ventilation, ESBL-E 

are responsible for ~40% of ventilator-associated pneumonia 

(VAP) [6, 32], while accounting for merely 7% of infection-re-

lated ventilator-associated complications [33]. Therefore, in an 

era of growing prevalence of colonization, identifying those 

carriers at risk for infection constitutes a pivotal challenge for 

carbapenem sparing in the ICU. Studies that focused on this 

issue yielded conflicting results on the predictive role of clin-

ical parameters, such as prior length of the ICU stay, previ-

ous exposure to non-carbapenem antimicrobials (including 

beta-lactam/beta-lactamase inhibitor combinations, third-gen-

eration cephalosporins, or fluoroquinolones), or imported ver-

sus ICU-acquired carriage [6, 31, 33]. Patients colonized with 

ESBL-producing K. pneumoniae or Enterobacter spp. are seem-

ingly at higher risk of infection than those colonized with ESBL-

producing E. coli [6, 11], an association that might depend on 

clinical features of the carriers rather than on differences in 

invasiveness between species. To date, except for the protective 

effect of a recent exposure to carbapenems, no reliable predic-

tor of ESBL-E infection may help limiting their empirical use 

in documented carriers [33]. Moreover, if the absence of doc-

umented colonization has a >90% negative predictive value 

for ESBL-E infections [34], it does not definitively rule out the 

involvement of such pathogens, due to the aforementioned pos-

sibility of a false-negative ASC or, more anecdotally, an acqui-

sition of carriage between the last available ASC sample and 

the occurrence of infection. Also, a negative ASC sample for 

ESBL-E does not exclude an infection caused by other carbape-

nem-requiring GNB (eg, ceftazidime-resistant P. aeruginosa or 

MDR Acinetobacter baumannii). It is especially noteworthy that 

roughly half of culture-positive VAP episodes in ESBL-E carri-

ers implicate non-fermenting GNB (including carbapenem-re-

sistant isolates), alone or in combination with ESBL-E [6, 32, 

33]. Hence, a policy of routine screening for intestinal carriage 

of ESBL-E appears of limited value to rationalize the use of car-

bapenems in ICU patients.

DEALING WITH THE EXTENDED-SPECTRUM BETA-
LACTAMASE–PRODUCING ENTEROBACTERIACEAE 
PANDEMIC: PERSPECTIVES FOR INTENSIVISTS

The prevalence of ESBL-E carriage at ICU admission and the 

resulting colonization pressure are expected to increase steadily 

in the years to come, unless strong counter-measures are taken. 

In this global endemic situation, universal interventions could 

more effectively prevent cross-transmission than a carrier-cen-

tred approach. Sustained efforts to ensure a high level of com-

pliance to HH (that is, above 80%) and other standard measures 

(eg, environmental disinfection and handling of excreta) are 

of paramount importance [35]. Overall, routine ASC and the 

implementation of CP should now be focused on highly-resis-

tant pathogens, such as vancomycin-resistant enterococci or 

carbapenemase-producing GNB.

Antimicrobial stewardship initiatives are equally essential, since 

avoiding agents that degrade the normal gut microbiome and 

the colonization resistance that it confers might protect against 

ESBL-E acquisition [1, 35]. It has notably been reported that prior 

exposure to beta-lactam/beta-lactamase inhibitor combinations, 

third-generation cephalosporins (3GC), fluoroquinolones, and 

even carbapenems may predispose patients to in-ICU acquisition 

of ESBL-E carriage [8, 9]. Along this line, comparative metage-

nomic-based studies are warranted to better appraise the impact 

of antimicrobials on the gut ecosystem, including for agents with-

out activity against Enterobacteriaceae but with a potent anti-an-

aerobe effect (eg, metronidazole) [36]. Antimicrobial adsorption 

in the intestinal lumen represents another promising track to 

reduce their ecological side effects [37].

New algorithms to restrain the empirical use of carbapenems 

in patients at risk for ESBL-E infection should be considered, 

given the poor specificity of qualitative ASC. Features of ESBL-E 

strains (especially virulence determinants) and those of the 

carrier’s gut microbiome (namely, richness and diversity) could 

putatively impact the hazard of infection [36]. Next-generation 

sequencing technologies may yield new insights on the virulome 

and invasiveness of a given ESBL-E strain—as well as its potential 

for patient-to-patient dissemination—although such markers will 

not be shortly available at a bedside [38]. Also, the faecal relative 

abundance of MDR pathogens—including ESBL-E—correlates 

with the likelihood of infection in non-ICU patients [39–41], 

suggesting a potential role for quantitative ASC in critically-ill 

carriers. Then, in mechanically-ventilated patients, oropharyngeal 

and lower respiratory tract surveillance cultures have been shown 
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to usefully predict the pathogens responsible for subsequent VAP 

[42, 43]; however, this point remains to be specifically addressed 

for ESBL-E VAP. Next, recently-released beta-lactam/beta-

lactamase inhibitor combinations (ie, ceftolozane-tazobactam 

and ceftazidime-avibactam) exhibit activity against multidrug-

resistant P. aeruginosa (including carbapenem-resistant isolates), 

as well as certain ESBL-E strains (particularly ESBL-producing 

E. coli) [44], and could theoretically be considered as empirical 

regimen when both pathogens are suspected. However, clinical 

and ecological data remain somewhat scarce in critically-ill 

patients [45], leaving space for further studies to define their 

potential role as first-line drugs.

On a short-term basis, rapid diagnostic tools stand as the 

most pragmatic option to detect or exclude an ESBL-E in clinical 

samples and customize the empirical regimen of ICU patients 

when an infectious event arises, or to allow earlier de-escalation in 

those initially treated with a carbapenem. These tests may first be 

based on chromogenic assays that rapidly detect 3GC-hydrolyzing 

enzymes (including ESBL) on clinical specimens or early cultures. 

Direct antimicrobial susceptibility testing (AST) on clinical 

samples (eg, broncho-alveolar lavage fluid for patients with 

suspected VAP) is another relevant approach, as it provides 

susceptibility data from 24 to 48 hours earlier than conventional, 

subculture-based AST. Moreover, several molecular assays, 

allowing the detection of ESBL-encoding genes on clinical samples, 

have been recently released. Although their accuracy still requires 

in-depth and multi-center appraisal in ICU patients, these tools 

raise major hopes for the improvement of antibiotic stewardship 

practices in this specific population. Table  1 summarizes the 

available evidence on the diagnostic performances and potential 

applications for these tests.

CONCLUSIONS

In an era of global ESBL-E dissemination and a massive influx of 

colonized patients in the ICU setting, we believe that infection 

prevention strategies should focus on universal measures—with 

the aim of ensuring a high level of compliance to HH and other 

standard precautions—and not on a search-and-isolate policy 

based on the detection of all ESBL-E carriers through intestinal 

ASC (Table 2). Targeted screening and CP remain a conceivable 

Table 1. Selection of Commercially Available or Homemade Diagnostic Tests for Earlier Detection of Extended-spectrum Beta-lactamase–producing 
Enterobacteriaceae in Clinical Samples

Diagnostic Tests Clinical Samples
Performance for ESBL-E  

Detection (Available Published Data)
Time From  

Sampling to Results
Selected  

References

β-Lacta Testa

(Bio-Rad, France),
chromogenic tests for the 

detection of 3GC-hydrolyzing 
enzymes (including ESBL)

Urine with GNB on DE; 
tracheal aspirate (MV patients) 

with GNB on DE and/or 
culture ≥ 10.4 cfu/mL; 

blood culture positive for GNB

Se 87–100%, Sp 100%; Se 100%, Sp 
100%, PPV 100%, NPV 100%;

Se 100%, Sp 96%, PPV 90%, NPV 100%

60–120 min (test, 15 min);
60–120 min (test, 15 min);
variableb (culture + 3-hour 

subculture + 15-min test)

[46]
[47]
[48]

Rapid ESBL NP Testc

(homemade),
chromogenic tests for the 

detection of 3GC-hydrolyzing 
enzymes (including ESBL)

Urine with GNB on DE; 
blood culture positive for GNB

Se 100%, Sp 99%, PPV 98%, NPV 99%;
Se 100%, Sp 100%, PPV 100%, NPV 

100%

60–120 min (test, 15 min)
Variableb (test, 30–45 min)

[49]
[50, 51]

Direct AST on respiratory 
sample without sub-culture 
(homemade)

Broncho-alveolar lavage (MV 
patients) with GNB on DE

Se 100%, Sp 95%, PPV 94%, NPV 100%
(values are for 3GC resistance in 

Enterobacteriaceae: ESBL and other 
mechanisms)

18–24 hours [52]

Verigene BC-GN
(Luminex), automated 

multiplex PCR for pathogen 
identification and detection of 
bla

CTX-M
 genes

Blood culture positive for GNB Se 80–93%, Sp 99–100%, NPV 
93–99%, PPV 97–100% (values are 
for Escherichia coli and Klebsiella 
pneumonia only)

Variableb (test, 2.5 hours) [53, 54]

Unyvero
(Curetis, Germany)
Automated multiplex PCR for 

pathogen identification and 
detection of bla

CTX-M
 genes

Tacheal aspirate and broncho-
alveolar lavage (HPN 
cartridge); blood culture 
(BCU cartridge);

urine (UTI cartridge)

Se 100%, Sp 85–95%, NPV 100%, PPV 
20–40% (values are for E. coli and 
K. pneumonia only); 

not published; 
not published

4–5 hours;
4–5 hours;
4–5 hours

[55]
…
…

Accelerate pheno system 
(Accelerate Diagnostics)

Automated FISH (pathogen 
identification) and AST

Positive blood culture Agreement with culture-based 
AST for ceftriaxone resistance in 
Enterobacteriaceae, 95–97%

Variableb (test, 6–7 hours) [56, 57]

Abbreviations: 3GC, third-generation cephalosporins; AST, antimicrobial susceptibility testing; DE, direct examination; ESBL, extended-spectrum beta-lactamase; ESBL-E, ESBL-producing 
Enterobacteriaceae; FISH, fluorescence in situ hybridization; GNB, Gram-negative bacteria; MV, mechanical ventilation; NPV, negative predictive value; PCR, polymerase chain reaction; PPV, 
positive predictive value; Se, sensibility; Sp, specificity.
aThe β-Lacta Test detects all cephalosporin-hydrolyzing enzymes, including ESBL; chromosomal and plasmid-borne AmpC cephalosporinases; and carbapenemases, which may decrease 
the specificity of this test for the detection of ESBL in settings where other cephalosporine-hydrolyzing beta-lactamases are prevalent. 
bDepending on the time to positivity of blood cultures (usually 6 to 12 hours for bloodstream infections, due to Enterobacteriaceae).
cThe Rapid ESBL NP Test only detects ESBL.
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approach in critical-care environments with uncontrolled 

endemicity or outbreaks of ESBL-producing K. pneumoniae or 

Enterobacter spp., while the available evidence argues against 

the usefulness of such interventions in ICUs where ESBL-

producing E.  coli predominate. Given the rising incidence of 

healthcare-associated infections due to carbapenem-resistant 

GNB, a paradigm shift from ACS-based empirical regimen to 

new diagnostic approaches is urgently needed to restrain the 

overconsumption of carbapenems in patients at risk for ICU-

acquired ESBL-E infections. The use of clinical algorithms, 

including rapid diagnostic tests, which are able to rule out the 

involvement of ESBL-E based on high negative predictive val-

ues, will probably help ICU physicians to choose the best thera-

peutic options in patients with suspected healthcare-associated 

infections.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online. 

Consisting of data provided by the authors to benefit the reader, the posted 

materials are not copyedited and are the sole responsibility of the authors, 

so questions or comments should be addressed to the corresponding author.
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