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Appendix 

Table 1: Summary of Selected Literature 

Research 

domain/topics 
Representative Literature 

Complex network 

science 

Refs. [2, 75] pioneered the complex network science with 

evidence and modeling of small-world and scale-free networks. Ref. 

[53] provides a detailed survey of this emerging research which has 

now been applied in many domains.  

Financial network 

analysis 

Financial markets are typical complexity systems. Recent 

years have seen a growing trend of applying complex network science 

to models and studying the topological structures of financial 

markets. This financial network analysis approach has been applied in 

financial practices like portfolio management, risk management, and 

trading strategies design, etc. Using the network analysis, the 

interbank market [10, 40], investor networks in market [58], global 

economies [45], money market [41], market stability [55] has been 

studied revealing stylized properties and models. 

Global stock 

market studies 

Refs. [1, 66] invested the global sentiment impacts on the 

performances of global markets. The applications of investor 

sentiment of global markets are also discussed. 

Granger, lead/lag, 

and PageRank 

centrality 

The Granger causality test indicates the existence of 

predictive information among variables [34]. Recently, this approach 

has been seen in modeling financial markets to study the 

interrelationships among assets [72]. The lead/lag effects in high 
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frequency data are investigated in [39, 44]. 

Refs. [12, 21] provide more evidence of lead/lag in global 

markets. These empirical findings reveal the stylized lead/lag effects 

exist in various markets and implicate possible applications in 

trading, for example, possible trading based on the lead/lag between 

index and derivatives like futures. PageRank algorithm is first 

proposed to quantitatively evaluate the importance of network 

vertices [59]. To compare with other metrics of centrality like degree, 

between-ness, etc., in the similar spirit, the alternative of eigenvector 

centrality, PageRank centrality is widely used to calculate the 

importance of vertices in [9, 53]. 
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 Granger Causality and Data 

Granger Causality 

The stocks in the market not only fluctuate correlatively but also influence 

with each other. This applies to the global financial market as well, where 

different stock markets have significant impacts with each other. Based on the 

correlation matrix generated from the price return series of a set of stocks, 

correlation of two stocks 𝑠𝑖 and 𝑠𝑗, can be defined as 

𝜌𝑖𝑗 =
〈𝑌𝑖𝑌𝑗〉−〈𝑌𝑖〉〈𝑌𝑗〉

√(〈𝑌𝑖
2〉−〈𝑌𝑖〉2)(〈𝑌𝑗

2〉−〈𝑌𝑗〉2)
 . (1) 

Eq. 1 shows how the two series 𝑌𝑖 and 𝑌𝑗  of stock 𝑆𝑖 and 𝑆𝑗  co-move with 

each other. Since −1 ≤ 𝜌𝑖𝑗 ≤ 1, the two series can move in the same direction or 

the opposite based on the sign of 𝜌𝑖𝑗. It is thus possible to evaluate the collective 

behaviors of a pair of stocks or a set of stocks in a given portfolio.  

However, the shortcomings of correlation-based approaches are apparent. 

The primary issue is that the correlations do not give statistical information of the 

causality between stock pairs. Due to this, the correlation approach lacks the 

ability in describing the lead/lag behaviors of stocks. Correlation information 

only reveals the pattern of movements of two series but fails to explain the causal 

relationships. In the real world, two phenomena, especially those happening 

along time, often have specific cause/effect relationship. For example, 𝐴 has an 

influence over 𝐵 or 𝐴 contributes certain causality to the happening or effects of 𝐵. 
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A set of stocks in a given portfolio are not only co-moving with each other, but 

also have mutual influence with each other. Some stocks can cause other stocks 

to change. Unfortunately, the correlation method fails to explain. Thus, new 

measurements beyond the correlations to provide causality information between 

pairs with statistical meanings are needed. 

To describe the aspect of causalities between events, the Granger 

causality test was introduced by Granger [34]. The hypothesis test is setup in 

evaluating the predictive ability between variables in a context of linear 

regressions.  There are two time series 𝑥𝑡, 𝑥𝑡−1, … , 𝑥0, and 𝑦𝑡, 𝑦𝑡−1, … , 𝑦0 over a 

time period of 𝑡 = 0, 1, … , 𝑇. A linear regression can be set up as: 

𝑦𝑡 = ∑ 𝛼𝑖
𝑞
𝑖=1 𝑥𝑡−𝑖 + ∑ 𝛽𝑗𝑦𝑡−𝑗

𝑞
𝑗=1 + 𝑢𝑡

1 , (2) 

and similarly,  

𝑥𝑡 = ∑ 𝛾𝑖
𝑠
𝑖=1 𝑥𝑡−𝑖 + ∑ 𝜆𝑗𝑦𝑡−𝑗

𝑠
𝑗=1 + 𝑢𝑡

2, (3) 

where 𝑢𝑡
1  and 𝑢𝑡

2  are independent white noises. These regressions take the 

previous behaviors of both 𝑥𝑡  and 𝑦𝑡  into consideration to predict the present 

values.  

The null hypothesis can be set up as: 

𝐻0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑞 = 0 for Eq. 2, and 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑠 = 0 for Eq. 3. 

The alternative hypothesis can be set up as: 

𝐻𝑎: 𝑁𝑜𝑡 𝑎𝑙𝑙 𝑜𝑓𝛼1 … . . 𝛼𝑞 = 0  for Eq. 2, and 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑜𝑓 𝜆1 … … 𝜆𝑠 = 0 for Eq. 3. 
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The statistical philosophy behind the Granger test is that if the lagged 

values of 𝑥 together with its values of 𝑦 is included, it enables us to get a better 

prediction of the future values of 𝑦 than without the help of lagged 𝑥 values, then 

𝑥 Granger-causes 𝑦. Otherwise, if the lagged values of 𝑥 fail to contribute in the 

prediction of future 𝑦, then x does not Granger-cause 𝑦. It is also the same if 𝑦 

Granger causes 𝑥. 

To conduct hypothesis testing, the F-test will be utilized. Taking the two 

𝐻0 for both Eq. 2 and Eq. 3 all together, there are four scenarios: 

1. 𝑥𝑡 unidirectional Granger causes 𝑦𝑡, i.e. 𝛼𝑖 ≠ 0 and  𝜆𝑗 = 0;    

2. 𝑦𝑡 unidirectional Granger causes 𝑥𝑡, i.e.  𝜆𝑗 ≠ 0 and 𝛼𝑗 = 0; 

3. 𝑥𝑡 and 𝑦𝑡 bidirectional cause each other, i.e.  𝛼𝑖 ≠ 0 and  𝜆𝑗 ≠ 0; 

4. 𝑥𝑡 and 𝑦𝑡 are independent, i.e. 𝛼𝑗 = 0  and  𝜆𝑗 = 0. 

ADF and Unit Root Test 

Before the Granger causality test is conducted, it is important to make 

sure the time series are stationary. This is done by conducting a unit root test. 

The Dickey-Fuller test [65] is usually applied to test the unit root; an extension is 

further developed as Augmented Dickey-Fuller (ADF) test. In ADF, a t-statistic 

can be compared with critical values on different levels of statistical significances. 

If the t-statistic is larger, then we do not reject the null hypothesis that a  unit 

root exists. In this case, the time series is not stationary. Otherwise, we reject the 
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null hypothesis and believe that the time series is stationary and fits to conduct 

ADF. For stock returns, an event can bring certain impact into the fluctuations 

to the series, but this impact will decay allowing the return back to its mean. 

Granger causality test has become a standard tool in the study of the 

causality relationships for pairs. With these pairs of causality information, a 

causality network for a set of variables can be constructed. Given the time lag 

nature of Granger test, it has become widely used in economics and finance 

studies  [24]. 

Data Setting Introduction 

The causalities among financial series is discussed in this section. Based 

on these tests, the Granger-causality networks are built, and the properties of 

these networks are investigated.  

The daily close data for 33 major stock market indices around the world 

in the period of 04/01/2007 to 06/11/2015 with 2307 total trading dates from 

Yahoo Finance was collected in this research. Since each stock market has its 

trading calendar with different holidays and closed dates, the missing dates were 

replaced with the next available data. There are discussions of the time-zone 

effect in study of global indices because of the different closing time for each 

market. However, we concern the closing prices in an extended period and treat 

all indices in the same way. This approach focuses on the closing prices without 

special procession of adjusting. For each index, the log return is applied as: 
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𝑌𝑖 = 𝑙𝑛 𝑃𝑖(𝑡) − 𝑙𝑛 𝑃𝑖(𝑡 − 1),           (4) 

where 𝑃𝑖(𝑡) is the closing price for index 𝑖 at time 𝑡. In Table 2, all 33 indices 

utilized in this study are listed. It represents major stock markets, including 4 

from the US, 12 from Europe countries, 11 from Asian countries, 5 American 

countries and one Middle Eastern country. In Fig. 1, log daily returns for all 

indices over the study period is plotted. The returns demonstrate fluctuation but 

the means are around zero. ADF tests over all return time series were conducted. 

The average t-statistic is larger than all 6 critical values (in absolute value terms) 

at significance levels of 1%, 5%, 10%, 90%, 95%, and 99%. In fact, t-statistic 

ranges from -20.4871 to -17.5458, suggesting all return series are stationary. This 

aligns with the visualizations, that all return series move around the mean of zero. 

With this stationary background, the Granger causality test can be carried out 

later. 

We first use all logged return data over the whole study period to construct 

the correlation matrix 𝐶𝑖𝑗. This approach is widely adopted in financial network 

analysis to convert price or return time series data into correlation matrices [13, 

53, 54]. We plot the probability density function (PDF) to show the distribution 

of 𝐶𝑖𝑗 of all indices calculated from the data over the whole study period in Fig. 2. 

The average correlation 𝜌𝑖𝑗 =  0.4269 with standard deviation 𝜎𝑖𝑗 = 0.1963. Since 

the average correlation is positive, all indices co-move together. We also observe 

that a maximum 𝑚𝑎𝑥(𝜌𝑖𝑗) = 0.9858 for S&P500 and NYSE, 𝑚𝑖𝑛(𝜌𝑖𝑗)  =  0.0337 
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for NASDAQ and NZ50 (New Zealand). Based on the correlation information, the 

complete graph of the indices network in Fig. 3 provides the backbone of the full 

network. Furthermore, the minimum spanning tree MST is provided in Fig. 4, 

where markets of the same regions are clearly identified. 
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Table 2: Tick names, markets, countries and regions of 33 major 

stock markets indices around the world. 

Tick Name Country Region 

GSPC S&P 500 US America 
DJI Dow Jones Industrial Average US America 
IXIC NASDAQ Composite US America 
NYA NYSE Composite US America 
FTSE FTSE 100 UK Europe 
GDAXI DAX Germany Europe 
FCHI CAC 40 France Europe 
ATX ATX Austria Europe 
GD.AT Athen Index Compos Greece Europe 
IBEX IBEX 35 Spain Europe 
FTSEMIB.MI FTSE MIB Italy Europe 
SMI Swiss Market Index Switzerland Europe 
OMXC20 OMX Copenhagen 20 Denmark Europe 
AEX Amsterdam Exchange index Netherlands Europe 
BEL-20 EURONEXT BEL-20 Belgium Europe 
BIST 100 XU100 Turkey Europe 
N225 Nikkei 225 Japan Asia 
HSI Hang Seng Index Hong Kong Asia 
SSE SSE Composite Index China Asia 
STI STI Index Singapore Asia 
AORD ALL ORDINARIES Australian Asia 
BSESN S&P BSE SENSEX India Asia 
JKSE Jakarta Composite Index Indonesia Asia 
KLSE FTSE Bursa Malaysia KLCI Malaysia Asia 
NZ50 S&P/NZX 50 Index Gross New Zealand Asia 
KS11 KOSPI Composite Index Korea Asia 
TWII TSEC weighted index Taiwan Asia 
GSPTSE S&P/TSX Composite index Canada Americas 
BVSP IBOVESPA Brazil Americas 
MXX IPC Mexico Americas 
IPSA IPSA Santiago de Chile Chile Americas 
MERV MerVal Buenos Aires Argentina Americas 
TA100 TEL Aviv TA-100 IND Israel Middle East 
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Figure 1: The daily log returns of 33 major market indices 

around the world. It shows the returns volatiles over our study period 

between 04/01/2007 and 06/11/2015 covering a total of 2307 trading 

dates. They are all stationary with means around zero. 
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Figure 2: The probability density function (PDF) of correlations 

of all indices over the whole study period. The distribution falls on the 

right side of zero indicating that the indices are positively correlated. 

In other words, they are influencing each other. 
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Figure 3: The correlation based network of 33 indices calculated 

from the daily return data over the whole study period.  
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Figure 4: The minimum spanning tree MST extracted from the 

full network of 33 indices calculated from the daily return data over 

the whole study period. We see the indices are clustered together 

according to the regions. 

 

 


