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Abstract

The optical fiber refractive index profile has a significant role in the optical
devices fabrication like fiber Bragg gratings (FBG) and acousto-optic de-
vices and the way guided light interacts in the presence of external factors
like strain, stress or even bends. The analysis of the fiber profile gets to
be feasible throughout understanding the properties of the optical guided
modes such as the effective index, group index, and the chromatic dispersion.
Taking a broader look at previous publications that use standard commer-
cial optical fibers, it becomes noticeable that the ideal core-cladding step
index profile gives incompatible results when it comes to the experimental
versus the simulated dispersion curves. This difference is usually caused by
various factors that changes the nominal geometrical and material param-
eters of the fiber. The stress resulted during the fabrication process, due
to thermal and drawing effects is an example of many effects that causes
the alteration of these parameters. In general, any irregularity in the fiber,
geometrically speaking or material-wise, will produce a coupling of the en-
ergy of one mode to the others. Hence, studying coupled modes, whether
they are induced by an inscribed FBG or an acousto-optic wave, provides
useful information to test the effective refractive index profile required for
an accurate theoretical simulation of fiber modes.

This research analyzes the characterization of the fibers refractive index
profile and the effect of scaling transformation on the dispersion curves.
A fiber scaling through two degrees of freedom, geometrical scaling and
refractive index difference scaling, gives a significant improvement on fit-
ting the simulated dispersion curves with the experimental ones. However,
in many cases, an additional cladding alteration is also needed and shows
effectiveness, especially when we analyze a wide wavelength range. Accord-
ing to our final results, a scaling in the geometrical properties of the core
and a perturbation of linearly decreasing refractive index in the cladding
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both describe the fiber profile correctly. As a consequence of our modified
step index model, a perfect matching between the experimental and the
theoretical dispersion curves is achieved. This process of fiber profile opti-
mization, through the fiber scaling and cladding alteration, have also proven
to be efficient, comprehensive and applicable for a wide range of commercial
standard fibers.

Keywords: Optical fiber, dispersion curves, refractive index profile, scaling
transformation, mode coupling, Bragg grating, acousto-optic interaction.
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Resumen en español

Las fibras ópticas han revolucionado exitosamente el campo de las telecomu-
nicaciones. Gran parte de ese éxito radica en las propiedades casi ideales que
presentan las fibras ópticas, como son las bajas pérdidas por transmisión, el
alto umbral de daño óptico y la baja no linealidad óptica (Agrawal, 2002;
Kashyap, 1999). Estas propiedades han hecho realidad las comunicaciones
rápidas a largas distancias.

La primera sección del Caṕıtulo 2 de la tesis comienza describiendo el
marco teórico en el que se va a trabajar: la ecuación de ondas, la teoŕıa
modal y la importancia de la descripción geométrica y la distribución del
material en las fibras ópticas. Estos dos últimos conceptos, la geometŕıa
y los materiales empleados, nos permiten calcular cómo se comportan e
interactúan los modos, ya estén guiados en el núcleo de la fibra o fuera de
él.

En la segunda sección del caṕıtulo, se resume el método iterativo de
Fourier. Este método, que ha sido propuesto por el grupo de fibras ópticas
de la Universidad de Valencia (LFO), es la base de nuestra herramienta de
simulación numérica, y permite tratar con sistemas guiadores que tienen
una distribución de material compleja. Encontrar una solución al problema
de guiado —un modo— en este método pasa por resolver las ecuaciones
de valores propios que determinan las componentes transversales del campo
eléctrico, et, o del campo magnético, ht. Para ello, se utiliza el método
de Arnoldi o el de Jacobi y Davidson, dado que ambos no requieren la
representación expĺıcita del operador asociado; es decir, es suficiente con
poder evaluar la acción del operador sobre un vector arbitrario. El uso de la
transformada rápida de Fourier (FFT) ayuda a pasar, de manera eficiente,
entre el espacio de posiciones y el de frecuencias espaciales (o vectores de
onda) en la evaluación de la acción del operador, espacios en los que las
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diferentes partes de los operadores son diagonales. El método iterativo de
Fourier es una opción perfecta cuando se trata de reducir la memoria y
el tiempo de cómputo requeridos, además de permitir usar una solución
anterior como semilla inicial para encontrar otras soluciones cercanas de
manera eficiente.

A continuación, en la Sección 2.3, presentamos un nuevo desarrollo incor-
porado a nuestra herramienta de simulación que está basado en la presencia
de simetŕıas especulares (con respecto a determinados planos) en la distribu-
ción material estudiada; asociada a esa simetŕıa, la distribución del campo
vectorial —p. ej., el campo eléctrico— puede mostrar un comportamiento
especular o antiespecular respecto al mismo plano. Este proceso ayuda a
reducir significativamente el tiempo de cálculo cuando se necesita una gran
cantidad de modos de un tipo espećıfico, como aśı fue en el trabajo recogido,
más adelante, en el Caṕıtulo 5. Teniendo en cuenta que los métodos de dia-
gonalización mencionados calculan todos los vectores propios en un cierto
rango de valores propios —lo que puede llevar mucho tiempo—, la conside-
ración de las simetŕıas especulares en la distribuciones de campo permite,
por un lado, reducir la dimensión de los vectores manejados entre un 50 %
y un 75 %, y, por otro, limitar desde el principio el espacio de búsqueda de
soluciones, reduciendo el número de modos que es necesario calcular en una
proporción similar, lo que conlleva una reducción significativa en el tiempo
de cálculo.

La última parte del caṕıtulo resume la teoŕıa de modos acoplados. Esta
teoŕıa intenta preservar el concepto de modo en situaciones en las que cual-
quier irregularidad en la fibra puede producir un acoplamiento de enerǵıa
entre diferentes modos, lo que hace que la identificación del modo en un
cierto ancho de banda sea un poco dif́ıcil. Cuando se satisface la condición
de ajuste de fases, el acoplamiento entre modos propagantes se convierte
en el concepto fundamental que usamos para describir las curvas de disper-
sión de los dos modos acoplados y de sus ı́ndices efectivos alrededor de las
longitudes de onda de resonancia. Más adelante, las curvas de dispersión
resultantes nos llevarán a una mejor comprensión de las propiedades de la
fibra óptica a través de su perfil de ı́ndice de refracción.

El estudio del efecto que tiene en las propiedades de las fibras ópticas
las modificaciones de sus distribuciones geométricas y materiales, permi-
te determinar las mejores formas de fabricar, y eventualmente diseñar, los
dispositivos ópticos y la manera en que la luz guiada interactúa con los dife-
rentes materiales. Un procedimiento bien conocido para actuar sobre la luz
en una fibra óptica consiste en inducir una perturbación periódica en el ı́ndi-



xiii

ce de refracción a lo largo de un tramo espećıfico de la fibra. En el caso de
las redes de Bragg de fibra (FBG), la modulación se logra mediante la irra-
diación con luz ultravioleta de fibras fotosensibilizadas (Vengsarkar et al.,
1996; Lee & Erdogan, 2000). Las caracteŕısticas de la modulación del ı́ndice
de refracción desempeñan un papel clave en las propiedades espectrales de
dicho dispositivo, principalmente la amplitud y el periodo de modulación;
estas caracteŕısticas y parámetros se han de fijar antes de iniciar el proceso
de fabricación.

Otra forma de producir una modulación periódica del ı́ndice de refrac-
ción es propagar una onda acústica o elástica a lo largo de la fibra, lo que
produce un cambio periódico del ı́ndice de refracción efectivo en ella ligado
al efecto acustoóptico (Chang, 1976). El trabajo experimental en el que se
basa el Caṕıtulo 4 utiliza el concepto de interacción acustoóptica. La venta-
ja de esta interacción es que los parámetros de la modulación, y por lo tanto
las caracteŕısticas espectrales del dispositivo, pueden modificarse dinámica-
mente cambiando las propiedades de la onda elástica, sin alterar el material
o la geometŕıa de la fibra de forma permanente. La forma más clásica de
generar una onda elástica a lo largo de una fibra óptica consiste en el uso
de transductores piezoeléctricos y bocinas metálicas, que se han utilizado
para este fin desde 1978 (Zemon & Dakks, 1978; Bates et al., 1985).

En la Sección 2.4, se revisa cómo las perturbaciones creadas en la fibra,
ya sea por la onda acustoóptica, las redes de Bragg inscritas, o por cual-
quier otra técnica, son capaces de producir acoplamiento entre los modos
ópticos guiados por la fibra. En las fibras monomodo, el acoplamiento se
produce básicamente entre el modo fundamental, guiado por el núcleo, y
un modo de la envoltura (Birks et al., 1996). En el caso de fibras de pocos
modos, el acoplamiento también puede producirse entre el modo fundamen-
tal y un modo de núcleo de orden superior (Blake et al., 1987; Östling &
Engan, 1995), mientras que en las fibras birrefringentes, el acoplamiento
puede aparecer entre modos con polarización diferente por medio de ondas
acústicas de torsión (Engan, 1996; Lee et al., 2007; Berwick et al., 1991).

En una red de Bragg de fibra, la modificación periódica del ı́ndice de
refracción del núcleo de la fibra permite acoplar los modos propagantes a
modos contrapropagantes. Los modos no tienen porqué ser idénticos, lo que
significa que la FBG también puede convertir el modo fundamental en un
modo de orden superior contrapropagante (Erdogan, 1997b; Lee & Erdogan,
2001). La FBG también puede convertir modos de orden superior en otros
diferentes (Sáez-Rodŕıguez et al., 2011).

En una fibra monomodo, solo el modo fundamental está guiado dentro
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del núcleo y todos los modos de orden superior están guiados por la envol-
tura. Una FBG inscrita en dicha fibra produce un acoplamiento multirre-
sonante del modo del núcleo con modos de la envoltura contrapropagantes
(Erdogan, 1997a), aśı como el acoplamiento intermodal de modos de la en-
voltura (Sáez-Rodŕıguez et al., 2011). Estos acoplamientos pueden ayudar
a identificar las posibles deformaciones o tensiones presentes en la fibra, lo
que permite una descripción más precisa del perfil de ı́ndice de refracción
de la fibra. Como resultado del acoplamiento entre modos, el espectro de
transmisión del modo del núcleo muestra una serie de picos de atenuación
más o menos abruptos, a modo de las púas de un peine, para longitudes de
onda más cortas que las de la resonancia de Bragg principal, entre el modo
fundamental y el mismo modo contrapropagante. Las FBG con resonancias
de los modos de la envoltura intensas han encontrado múltiples aplicaciones
en la detección de variadas magnitudes (Guo et al., 2008; Martinez et al.,
2005; Guo et al., 2009). Un ejemplo importante son los sensores de ı́ndice
de refracción, que aprovechan el hecho de que los modos de la envoltura
de alto orden radial son sensibles a las deformaciones y la curvatura de la
fibra, aśı como al ı́ndice del medio que la rodea (Zhang et al., 2015; Jing
et al., 2014). Por otro lado, se necesitan modos de la envoltura de orden
azimutal alto para la detección direccional de curvaturas y torsiones (Tho-
mas et al., 2012). Esto último solo se puede lograr con FBG que tengan una
sección transversal asimétrica, y generalmente se logra inclinando la FBG
en el núcleo respecto al eje de la fibra (Lee & Erdogan, 2001).

En cuanto a la interacción acustoóptica, también tiene aplicaciones en
sensores de fibra, ya que el acoplamiento depende de la diferencia entre los
ı́ndices efectivos de los modos ópticos acoplados y las caracteŕısticas de la
onda acústica; por lo tanto, es sensible a cualquier cambio de estos paráme-
tros. Debido a su efecto sobre las propiedades acústicas de las fibras ópticas,
la tensión es un parámetro para cuya medición es muy interesante usar es-
tos métodos. Los sensores de tensión basados en la interacción acustoóptica
funcionan de manera similar a los sensores de red de fibra de periodo lar-
go (LPFG) (Lin et al., 2001). Las LPFG acoplan modos copropagantes con
constantes de propagación próximas; por lo tanto, el periodo de dichas redes
puede exceder considerablemente la longitud de onda de la radiación que se
propaga en la fibra (Erdogan, 1997a).

El uso de la interacción acustoóptica permite estudiar fibras en su estado
original, elimina la necesidad de disponer de un montaje para la escritura de
las LPFG y agrega versatilidad gracias a su ajustabilidad (Lee et al., 2009;
Pei et al., 2014). Hay muchos otros tipos de sensores de fibra que no se basan
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en el acoplamiento de modos. Los sensores basados en interferometŕıa, que
son adecuados para la medida de temperatura o ı́ndice de refracción (Jung
et al., 2011; Zhao et al., 2016), son un ejemplo de estos tipos.

Para aplicaciones en áreas tales como sensores, láseres, filtros u otros
dispositivos utilizados en telecomunicaciones, la posibilidad de fabricarlos en
la propia fibra ofrece muchas ventajas interesantes con respecto a los basados
en elementos discretos insertados posteriormente en la fibra (Zou et al., 2013;
Davis, 1985). En los componentes de fibra del primer tipo —hechos solo de
fibra—, no es necesario extraer la luz guiada por la fibra óptica para, por
ejemplo, procesar la señal en el dominio eléctrico, lo que conlleva menores
pérdidas (Alcusa-Sáez, 2017). Los componentes ópticos tienen muchas otras
ventajas; p. ej., la capacidad de cambiar dinámicamente las propiedades
espectrales, como en el caso de la interacción acustoóptica, por ejemplo, nos
permite controlar externamente las especificaciones de dichos dispositivos
en tiempo real (Luo et al., 2007).

Las propiedades de los modos ópticos guiados por las fibras, como son el
ı́ndice efectivo, el ı́ndice de grupo o la dispersión de la velocidad de grupo,
son cŕıticas en muchas aplicaciones. En los sistemas de telecomunicaciones
ópticas, por ejemplo, la dispersión de la velocidad de grupo desempeña un
papel clave en la calidad de las comunicaciones a larga distancia, ya que
controla el ensanchamiento de los pulsos luminosos al viajar largas distan-
cias; por ello, tener un conocimiento preciso de la dispersión cromática nos
ayuda a abordar este problema adecuadamente.

Otro punto crucial en muchas aplicaciones es la caracterización de la
homogeneidad axial de la fibra, particularmente de aquellas en las que se
debe satisfacer una condición de ajuste de fase. Se han publicado varios
métodos para la caracterización axial de las fibras ópticas, como los basados
en la medida de luz retrodispersada utilizando refractómetros ópticos que
trabajan en el dominio temporal (Vita & Rossi, 1979; Nakajima et al., 1997),
o en el desajuste de fases en la mezcla de cuatro ondas (Mollenauer et al.,
1996).

Por otro lado, el diseño de componentes de fibra como las redes de Bragg
de periodo largo (Blake et al., 1986), los dispositivos acústicos ópticos en
fibra (Kim et al., 1997), o cualquier otro dispositivo de fibra que involu-
cre la interacción entre los modos del núcleo y de la envoltura requiere un
conocimiento preciso de sus perfiles de ı́ndice de refracción. Además, la op-
timización de la multiplexación por división del espacio (SDM) (Rahman
et al., 2018) basada en fibras ópticas de pocos modos requiere un modelado
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preciso del espaciado de los modos, las longitudes de onda de corte, la dis-
persión cromática y otros parámetros importantes, que también dependen
de los perfiles de ı́ndice de refracción.

Todo lo anterior justifica que las curvas de dispersión cromática tengan
una enorme importancia, pues pretender encontrar un mejor ajuste para
estas curvas a los datos experimentales en algún experimento, es compren-
der mejor las alteraciones en el perfil del ı́ndice de refracción de la fibra
y, consiguientemente, poder predecir con precisión su comportamiento en
otras situaciones. En nuestro caso, esto requiere que, partiendo de una cier-
ta configuración inicial, vayamos modificando iterativamente el perfil de
ı́ndice teórico hasta hacer cuadrar las predicciones con el experimento. En
esta ĺınea de trabajo, nuestro grupo obtuvo expresiones anaĺıticas aproxi-
madas para determinar el efecto del escalado geométrico de la fibra sobre
su comportamiento cromático (Pinheiro Ortega, 2008). En el Caṕıtulo 3 re-
visamos las aproximaciones necesarias que permiten obtener las ecuaciones
mencionadas relativas a las curvas de dispersión cromática y a las de sus
derivadas. Estas expresiones aproximadas se basan, en última instancia, en
las propiedades de simetŕıa de las ecuaciones de Maxwell cuando un sis-
tema solo involucra materiales no dispersivos (Joannopoulos et al., 2008).
Estas propiedades de simetŕıa se pueden extender hacia un marco de trabajo
menos restrictivo si, incluyendo materiales dispersivos, el comportamiento
dispersivo de todos los materiales involucrados es parecido (Pinheiro Orte-
ga, 2008). Como se muestra en los siguientes caṕıtulos, las aproximaciones
basadas en cambios de escala allanan el camino para que podamos contro-
lar de manera eficiente las curvas de dispersión y estimar los parámetros
estructurales adecuados para que la fibra óptica presente un cierto com-
portamiento a través de un par de factores de escala. En concreto, y en lo
que respecta al núcleo de la fibra, el que da cuenta de la escala del radio
del núcleo y el de la diferencia del ı́ndice de refracción entre el núcleo y su
envoltura.

La introducción del escalado de la diferencia del ı́ndice de refracción se
hizo, de hecho, en dos pasos. Por eso, en el Caṕıtulo 4 se presenta utilizando
un razonamiento heuŕıstico, mientras que, en el Caṕıtulo 5, la expresión
anaĺıtica aproximada anterior se ha ampliado para incluir el nuevo grado de
libertad, que, con la escala geométrica, forma una expresión completa que
incluye ambos factores de escala.

En esta tesis, investigamos los perfiles de ı́ndice de refracción del núcleo
y de la envoltura de las fibras para hacer coincidir las mediciones expe-
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rimentales con las simulaciones teóricas. Los datos experimentales, repre-
sentados por los ı́ndices efectivos y las resonancias de acoplamiento de los
modos, se han recopilado mediante dos técnicas: la primera se basó en los
acoplamientos acustoópticos analizados por Alcusa-Sáez et al. (2016), y la
segunda se basó en los acoplamientos producidos por una red de Bragg ins-
crita en el núcleo de la fibra mediante radiación ultravioleta y analizada
por Poveda-Wong et al. (2017). Para caracterizar adecuadamente las fibras
analizadas, en los últimos caṕıtulos de esta tesis, proponemos un perfil poco
convencional pero simple que proporciona una muy buena coincidencia en-
tre experimentos y simulaciones. La última parte de la tesis presenta varias
simulaciones de los posibles ajustes en el perfil de la fibra. Estos ajustes se
realizan primero a través de una transformación de escala en la geometŕıa
del núcleo de la fibra y del ı́ndice de refracción, y luego se completan intro-
duciendo una perturbación en el ı́ndice de refracción de la envoltura.

En el Caṕıtulo 4, tratamos los acoplamientos de modos linealmente pola-
rizados inducidos por una onda acústica en dos fibras comerciales, SMF-28e
y SM2000 (Alcusa-Sáez et al., 2016). Tras un análisis inicial del comporta-
miento de la curva de diferencias de ı́ndices efectivos del primer modo de
la envoltura y del modo fundamental, LP01–LP11, es fácil reparar en que
los resultados simulados empleando un modelo de salto de ı́ndice conven-
cional para la fibra no pueden coincidir con los experimentales, por lo que
nos propusimos, en un primer paso, hacer coincidir solamente el punto más
caracteŕıstico de las curvas experimentales y de las simuladas: su máximo
relativo, tanto la ordenada como la abscisa. Para ello, utilizamos una de las
fórmulas obtenidas por Pinheiro Ortega (2008) para el escalado de la geo-
metŕıa y planteamos una dependencia lineal entre la diferencia de ı́ndices
modales y la diferencia de ı́ndices en la distribución material para estimar el
factor de escala relativo a la diferencia de ı́ndices entre el núcleo y la envol-
tura. Asimismo, para dar cuenta de las mejoras que logramos en el proceso
de ajuste, definimos una función de mérito basada en el valor cuadrático
medio del desajuste de las diferencias de ı́ndice efectivo.

El mero ajuste de los máximos de las curvas conlleva, en los casos ana-
lizados, una coincidencia perfecta para las curvas de diferencias de ı́ndices
modales, pero solo en la región por debajo de la longitud de onda de corte
del segundo modo (λ < λc), lo que implica que se ha conseguido una bue-
na caracterización del núcleo de la fibra, pero no aśı de la envoltura. Para
resolver la discrepancia para longitudes de onda grandes, introdujimos una
perturbación en el ı́ndice de refracción de la envoltura, que, f́ısicamente,
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está originada por la tensión diferencial inducida durante la fabricación de
la fibra (Violakis et al., 2012) y que puede modelizarse por una disminución
lineal en el ı́ndice de refracción a lo largo del radio de la envoltura.

Después de unas pocas iteraciones, el nuevo modelo da lugar a una muy
buena adaptación entre las curvas experimental y simulada, mejorando en
un factor 10 el mejor ajuste obtenido considerando un modelo de salto de
ı́ndice estándar, y eso se observó, tanto para las curvas de diferencias de
ı́ndices efectivos, como para las de diferencias de dispersión de la velocidad
de grupo. Este perfil de ı́ndice de refracción de fibra no convencional también
ha demostrado que no solo ayuda a ajustar las curvas de dispersión para el
primer modo acoplado, sino también para los modos más altos de la misma
simetŕıa (LP1m).

Finalmente, en el último caṕıtulo tratamos los acoplamientos modales
activados por una red de Bragg inscrita en el núcleo de una fibra comer-
cial SM1500 mediante luz ultravioleta (Poveda-Wong et al., 2017). Estos
acoplamientos se presentan experimentalmente a través de un conjunto de
estrechas depresiones en el espectro de transmisión del modo fundamen-
tal de iluminación, cada una a su longitud de onda de resonancia. Estas
resonancias son fácilmente identificables en la región más alejada de la re-
sonancia del modo de iluminación, que es la más ńıtida, pero cuanto más
nos acercamos a ella, las resonancias aparecen más próximas entre śı y casi
indistinguibles. Por ello, mediante la reescritura de la condición de ajuste de
fases, desarrollamos una función de mérito que nos ha permitido identificar
los modos asociados a cada resonancia en concreto. Seguidamente incorpo-
ramos a esa función de mérito la fórmula de escalado para determinar qué
transformaciones de la estructura guiadora hacen que las curvas de ı́ndice
efectivo simuladas pasen por los puntos obtenidos a partir de las resonancias
experimentales. De esta forma, la función de mérito nos da una indicación
sobre cómo escalar correctamente los parámetros del núcleo de la fibra —el
radio del núcleo y la diferencia del ı́ndice de refracción—, para alcanzar el
ajuste adecuado. En este punto de la investigación, se necesitaba calcular
un gran número de modos guiados de una misma familia, por lo que fue ne-
cesario introducir en nuestra herramienta de simulación el filtrado basado
en la simetŕıa especular descrito en el Caṕıtulo 2.

Para estudiar el efecto que produce en el perfilado de la fibra la limita-
ción en el rango frecuencial muestreado por una red de Bragg, el proceso
se ha aplicado primero a una única red de Bragg y luego a dos redes de
Bragg de periodos diferentes grabadas en la misma fibra. Este proceso ha
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demostrado ser eficiente en ambos casos al disminuir de 20 a 60 veces el
desajuste promedio de las resonancias con las curvas simuladas. Finalmente
se introdujo el mismo tipo de perfil de ı́ndice para la envoltura propuesto
en el Caṕıtulo 4, mostrándose una mejora adicional del 8 % en el proceso
de fijación de puntos de ı́ndice efectivo.

En consecuencia, hemos podido comprobar que un perfil tradicional de
salto de ı́ndice, con distribuciones de ı́ndices de refracción constantes a tro-
zos, no puede describir las curvas de dispersión de las fibras comerciales en
banda ancha, y que es necesario introducir una perturbación en el ı́ndice de
la envoltura. El origen f́ısico de este desajuste es la tensión inducida durante
la fabricación debido a los diferentes coeficientes de expansión térmica del
núcleo y de la envoltura y la tensión inducida por el estirado de la fibra. El
objetivo de esta investigación ha sido optimizar el modelo de salto de ı́ndice
de la fibra óptica y presentar, utilizando simetŕıas de escalado y la altera-
ción del ı́ndice de refracción de la envoltura, una descripción más realista
del ı́ndice de refracción de la fibra, que proporciona una muy buena corres-
pondencia entre los resultados experimentales y los teóricos. Este modelo
permitirá diseños más precisos de redes de difracción de periodo largo, dis-
positivos acustoópticos y otros dispositivos que dependen de la participación
de los modos de la envoltura de las fibras.

Todo este proceso de modificación de la envoltura y de escalado del
núcleo de la fibra muestra la capacidad de ser coherente y aplicable para
una amplia gama de fibras estándar comerciales.
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Chapter 1

Introduction

Optical fibers have successfully revolutionized the field of telecommunica-
tions. Much of that success lies in the fibers near ideal properties like low
transmission loss, high optical damage threshold and low optical nonlin-
earity (Agrawal, 2002; Kashyap, 1999). These properties have made fast
long distance communications a reality. The first part of Chapter 2 of
the thesis starts by describing the theoretical framework of wave equation,
mode theory and the importance of the geometrical description and ma-
terial distribution in optical fibers. These last two properties, geometrical
and material distribution, allow us to calculate how the modes behave and
interact whether they are guided in the core of the fiber or in the cladding.

In the second part of the chapter, the Fourier iterative method is summed
up. This method, which has been proposed by the group of fiber optics in
the University of Valencia (LFO), is the base of our numerical simulation
tool, which allows dealing with optical systems that have complex material
structure. Finding a solution (mode) based on this method relies on solving
the eigenvalue equations that determine the transverse components of the
electric field, et, or the magnetic field, ht. Using Fast Fourier Transform
helps, in an efficient way, passing between momentum and position spaces
while solving the related eigenvalue equations. The Fourier iterative method
is a perfect choice when it comes to reducing the required memory as well
as the computing time, add to that the ability to use a previous solution as
an initial seed to efficiently find other neighboring solutions.

Later in Section 2.3, we also show a development on our simulation
tool by having a proper classification of the modes based on their vector
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field distribution symmetries. This classification is based on the mirror
symmetry with respect to a specific plane: a mirror -like symmetry or an
anti-mirror -like symmetry, all based on the vector — e.g., the electric field
— behavior over the plane of symmetry. This process helps reducing the
computational time significantly when calculating a very large number of a
specific type of guided modes.

The last part of the chapter addresses the coupled mode theory. This
theory attempts to preserve the mode concept where any irregularity in
the fiber can produce a coupling of energy of one mode to another, which
makes identifying the mode over a specific bandwidth somewhat challeng-
ing. When the phase matching condition is satisfied, coupling between
propagating modes becomes the fundamental concept we use to describe
the dispersion curves of the two coupled modes and their effective indices
around the wavelengths of resonance. Later, the resulted dispersion curves
will lead us to a better understanding of the optical fiber properties through
the refractive index profile.

Studying the properties of the optical fiber, geometrically and material-
wise, helps having a better understanding of the best ways of fabricating
the optical devices and the way guided light interacts. A well-known proce-
dure for light interacting in an optical fiber consists in producing a periodic
perturbation of the refractive index along a specific section of the fiber. In
the case of fiber Bragg gratings (FBG), it is achieved by means of the irra-
diation of photosensitive fibers with a UV light (Vengsarkar et al., 1996; Lee
& Erdogan, 2000). The characteristics of the refractive index modulation
plays a key role in the spectral properties of such device, mainly the modu-
lation amplitude and period. These characteristics and parameters are set
from the start ahead of fabrication.

Another way of producing a periodic modulation of the refractive index
is propagating an acoustic or elastic wave along the fiber, which produces
a periodic refractive index change along the fiber and an acousto-optic in-
teraction occurs (Chang, 1976). The experimental work on which Chapter
4 is based uses the concept of acousto-optic interaction. The advantage of
this concept is that the parameters of the modulation, and therefore the
spectral characteristics of the device, can be dynamically modified through
changing the elastic wave properties. The most classic way to generate an
elastic wave along an optical fiber involves the use of piezoelectric transduc-
ers and metallic horns, which have been used for this purpose since 1978
(Zemon & Dakks, 1978; Bates et al., 1985).

In Section 2.4, it will be shown that the created perturbations in the
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fiber, whether by the acousto-optic wave, the inscribed Bragg gratings, or
by any other technique, are capable of producing coupling between the
optical modes guided by the fiber. In single mode fibers, the coupling is
basically produced between the fundamental core mode and a cladding mode
(Birks et al., 1996). In the case of few-mode fibers, the coupling can also
be produced between the fundamental mode and a higher-order core mode
(Blake et al., 1987; Östling & Engan, 1995). While in birefringent fibers,
the coupling can occur between modes with different polarization, by means
of torsional acoustic waves (Engan, 1996; Lee et al., 2007; Berwick et al.,
1991).

In a fiber Bragg grating, the periodic modification of the refractive in-
dex of the fiber core converts propagating modes into counter-propagating
ones. The modes do not have to be identical, which means the FBG can
also convert the fundamental mode into a counter-propagating higher order
mode (Erdogan, 1997b; Lee & Erdogan, 2001). The FBG can also convert
different higher order modes (Sáez-Rodŕıguez et al., 2011).

In a single mode fiber, it is known that only the fundamental mode
is guided within the core and all higher order modes are guided by the
cladding. An FBG inscribed in such fiber causes multi-resonant coupling of
the core mode into counter-propagating cladding modes (Erdogan, 1997a)
as well as inter-modal coupling of cladding modes (Sáez-Rodŕıguez et al.,
2011). These couplings can help identifying the possible deformation, stress
or strain that occurs in the fiber, which leads to more accurate description
of the fiber refractive index profile. As a result of the mode coupling, the
transmission spectrum of the core mode exhibits a series of dips, comb like,
on the short wavelength side of the Bragg resonance. FBGs with strong
cladding mode resonances have found widespread applications in sensing
(Guo et al., 2008; Martinez et al., 2005; Guo et al., 2009). An important
example is refractive index sensors, which exploit the fact that cladding
modes of high radial order are sensitive to the deformations and bends of
the fiber as well as the surrounding environment of the fiber (Zhang et al.,
2015; Jing et al., 2014). On the other hand, cladding modes of higher
azimuthal order are needed for directional sensing of fiber bends and twists
(Thomas et al., 2012). The latter can only be achieved with FBGs that
have an asymmetric cross-section. This is usually achieved by tilting the
FBG in the fiber core (Lee & Erdogan, 2001).

As for the acousto-optic interaction, it also has applications in fiber
sensors, since the coupling depends on the difference between the effective
indices of the coupled optical modes and the characteristics of the acoustic
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wave; therefore, it is sensitive to any change of these parameters. Due to
its effect on the acoustic properties of optical fibers, strain is a parame-
ter whose measurement holds a case of interest using these methods. Strain
sensors based on acousto-optic interaction perform in a similar way to Long-
period fiber grating (LPFG) sensors (Lin et al., 2001). LPFGs couple co-
propagating modes with close propagation constants; therefore, the period
of such gratings can considerably exceed the wavelength of radiation prop-
agating in the fiber (Erdogan, 1997a).

Using the acousto-optic interaction eliminates the need of a LPFG writ-
ing setup and adding versatility thanks to their tunable features (Lee et al.,
2009; Pei et al., 2014). There are many other types of fiber sensors not
based on mode coupling. Sensors based on interferometry, which are suited
for the measure of temperature or refractive index (Jung et al., 2011; Zhao
et al., 2016), are an example of these types. As a characterization tech-
nique, acousto-optics does not introduce a material or geometrical change
and, therefore, enables the study of pristine fibers.

For applications in areas such as sensors, lasers, filters, or other telecom-
munication devices, the fabrication of all-fiber components offers many in-
teresting advantages with respect to those devices fabricated in bulk (Zou
et al., 2013; Davis, 1985). In all-fiber components, it is not necessary to
extract the light guided by an optical fiber to process the signal, therefore
lower losses are introduced (Alcusa-Sáez, 2017). Acousto-optic components
have many other advantages, the ability of dynamically change the spectral
properties, for instance, allows us to externally control the specifications of
such devices in real-time (Luo et al., 2007).

The properties of the optical modes guided by the fibers, such as the
effective index, the group index or the chromatic dispersion, are of special
interest since they are critical in many applications. In optical telecommu-
nications systems, for instance, the chromatic dispersion plays a key role in
the quality of long distances communications. Chromatic dispersion con-
trols the broadening of signal pulses after traveling long distances, which
indicates that having a near exact knowledge of the chromatic dispersion
helps us tackle this issue.

Other crucial point in many applications is the characterization of the
fiber axial homogeneity, particularly those in which a phase-matching con-
dition must be satisfied. Recently, several methods have been reported for
the axial characterization of optical fibers, such as the measure of backscat-
tered light through optical time domain reflectometry (Vita & Rossi, 1979;
Nakajima et al., 1997) or the mismatch of four-wave mixing (Mollenauer
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et al., 1996).

In Chapter 3 we review several approximations to describe how the geo-
metrical change of the fiber structure will affect the dispersion curves and its
derivatives. These approximated expressions are initially based on the sym-
metry properties of Maxwell’s equations when a system only involves non-
dispersive materials (Joannopoulos et al., 2008). Afterwards, these symme-
try properties progress into a less restrictive framework when it includes
dispersive materials if the dispersive behavior of these materials act in a
non-dispersive way with respect to a reference material (Pinheiro Ortega,
2008). The scaling approximations paves the way for us to efficiently con-
trol the dispersion curves and estimate the proper parameters for the optical
fiber through a pair of scale factors, which perform a scaling transformation
on the core radius and/or the refractive index difference.

Designing fibers components like LPFGs (Blake et al., 1986), in-fiber
acousto-optic devices (Kim et al., 1997), or any fiber devices involving the
interaction between core and cladding modes requires an accurate under-
standing of their refractive index profiles. Moreover, the optimization of
space division multiplexing (SDM) (Rahman et al., 2018) based on few-
mode optical fibers requires an accurate modeling of mode spacing, cutoff
wavelengths, chromatic dispersion, and other important parameters, which
also depend on the refractive index profiles.

In this thesis, we investigate the core and cladding refractive index pro-
files in order to match the experimental measurements with the theoretical
simulations. Therefore, we present an unconventional yet simple profile that
provides a very good match. The last part of the thesis presents various
simulations of the possible adjustments in the fiber profile. These adjust-
ments will be implemented through first a scaling transformation on the
fiber geometry and refractive index, then by a particular perturbation in
the cladding refractive index.

In Chapter 4, we deal with linearly polarized modes couplings induced
by an acousto-optic wave. By analyzing the behavior of the effective in-
dex difference curves between the fundamental mode and some higher order
modes, we manage to fit properly the experimentally determined dispersion
curves with the simulated ones. First we define a proportional formula to
help us find the scale factors for the fiber parameters, which in turn re-
sults a perfect match for the coupled modes index difference curve but only
in the region below cutoff (λ < λc). Consequently, we move into intro-
ducing perturbations in the cladding after noticing that the effective index
difference curve of the first cladding mode coupled with the fundamental
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one, LP01–LP11, shows noticeable mismatch on the region above the cutoff
wavelength.

To track the improvement we achieve in the fitting process, we define
a merit function based on the root mean square of the effective index mis-
match. Subsequently, we introduce a perturbation in the cladding, defined
as of a declining refractive index. Physically, this perturbation is originated
by the induced differential stress during the fiber fabrication (Violakis et al.,
2012). This perturbation description has shown a good fitting of the dis-
persion curves with the experimental ones by 10 times better compared to
the simulated fiber with an ideal step index model, and that was visually
presented by both the effective index difference curve and the dispersion
difference curve. Later on, we show that this perturbation not only helps
fitting the dispersion curves for the first coupled mode, but also for the
higher modes of the same symmetry (LP1m). This whole fiber scaling and
cladding modification process shows the ability to be comprehensive and
applicable for a wide range of commercial standard fibers.

Finally, on the last chapter we deal with the mode couplings triggered
by UV-photo inscribed Bragg gratings. These couplings are experimentally
presented through a set of notches each at its resonance wavelength. These
resonances are easily identifiable over the region furthest from the funda-
mental mode resonance but the closest we get to the fundamental mode, the
modes resonances become intensely packed and indistinguishable. There-
fore, using an extension of the phase matching condition, we develop a for-
mula that helps us identify these resonances and then modify the formula
to properly pin the estimated effective index points at these experimental
resonances on the simulated effective index curves. The formula is basically
a merit function that gives us an indication on how to properly scale the
fiber parameters, core radius and refractive index difference, to reach the
suitable fit. This process has been applied on a single Bragg grating and
then on two gratings each with different period, and it has proven to be
efficient on both cases. We finally went further into identifying the stress
effect in the cladding. Based on the same proposed cladding profile pre-
sented in Chapter 4, we have introduced a perturbation that, eventually,
have shown an additional 8% improvement in the estimated effective index
points pinning process.

Consequently, we realized that the traditional simple step index fiber
profile with constant refractive indices distribution would not be able to
model the dispersion curves of the core and cladding modes in commercial
fibers and in a broadband. The physical origin of this mismatch appears to
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be the stress induced during fabrication due to different core and cladding
thermal expansion coefficients and drawing induced stress (Violakis et al.,
2012). The purpose of this research is to optimize the step index model
of the optical fiber and present, using the scaling symmetries and cladding
refractive index alteration, a more realistic refractive index profile, which
provides a very good match between he experimental and theoretical results.





Chapter 2

Fundamentals of fiber
optics and mode coupling

This chapter consists of four sections. The main goal in the first section is
to present some of the fundamental concepts of optical fiber starting with
the basic laws that govern transmission and guidance of light in the fiber.
The second section is set out to explain the calculating method used in our
computational tool to solve the guided modes in some of the complex optical
structures. Later in the third section we present an improvement on that
computational tool using a proper modes classification based on their field
distribution. Finally, we introduce the coupled mode theory and the way it
affects the modes properties.

2.1 Mode theory and guided modes

The optical fiber is known to be a form of dielectric waveguide that operates
at optical frequencies. This fiber waveguide is normally cylindrical in form
and it has a central core, in which the light is guided, embedded in an outer
cladding of lower refractive index. Figure 2.1(a) shows a 3D scheme of the
optical fiber and a cross section of the structure.

The fiber confines electromagnetic energy in its core in form of light and
guides it parallel to its axis. The guidance properties of dielectric systems
are well discussed in the literature, and a complete analysis of them can be
found, in many references (see, e.g., Gowar, 1993; Keiser, 2000; Snyder &
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Figure 2.1: Figure (a) shows a 3D scheme of a step index optical fibers with
its cross-section (up), while in (b) is the step index refractive index profile.

Love, 1983).

The structural characteristics of the optical fiber are very important
and have a significant effect in knowing how the optical signal is affected
while propagating in the fiber. Later in the next chapter, more details on
the effect of the fiber structure on the behavior of guided modes will be
presented.

In the case where the fiber is cylindrical with a standard step index
profile, as shown in Figure 2.1(b), it has three different regions with constant
refractive index: the core of the fiber, when r < a, with refractive index n1;
the cladding, when a < r < b , with refractive index n2, immersed in an
external medium (usually air), when r > b, with refractive index n3, noting
that n1 > n2 > n3.

The optical mode is a particular pattern of electromagnetic field distri-
bution of radiation measured in a plane perpendicular (i.e., transverse) to
the propagation direction of the beam. Transverse modes occur because of
boundary conditions imposed on the wave by the waveguide. The mode
guided by the kind of fibers described previously can be calculated by solv-
ing the basic equations that governs the electromagnetic field dynamics in
the fiber, that is, Maxwell’s equations satisfying the corresponding bound-
ary conditions. Taking into account that the systems, we are going to deal
with, are in a medium without free charges or currents and no magnetic
properties, ρ = 0, J = 0 and µ = µ0, these equations can be written as

∇H = 0, (2.1)
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∇(εE) = 0, (2.2)

∇×E = −µ0
∂H

∂t
, (2.3)

∇×H = ε0
∂(εE)

∂t
, (2.4)

where E and H are, respectively, the electric and magnetic fields, ε rep-
resents the relative dielectric permittivity, ε0 and µ0 are respectively the
vacuum permittivity and permeability.

On the other hand, when the medium does not change on time, as it is
in our case, the fields E and H can be expressed as a linear superposition of
harmonic fields on time. For each monochromatic component of frequency
ω, Equations 2.3 and 2.4 become

∇×E = i

√
µ0

ε0
k0H, (2.5)

∇×H = −i
√
ε0

µ0
k0εE, (2.6)

where k0 = ω/c = 2π/λ is the wavenumber in vacuum and c is the speed of
light in vacuum.

Additionally, in the case of guiding systems, in which the material distri-
bution does not depend on, for instance, the z coordinate, fields can again
be expressed as a linear combination of harmonic fields, but now on z, being
the modes of the system those electromagnetic waves that propagate with
defined frequency, ω, and propagation constant, β:

E(x, t) = e(xt)e
i(βz−ωt), (2.7)

H(x, t) = h(xt)e
i(βz−ωt), (2.8)

being

e(xt) = et + ezûz, (2.9)

h(xt) = ht + hzûz, (2.10)

where ûz is the unit vector in the z-axis direction, et and ht are respectively
the electric and magnetic components in the transverse direction, ez and hz
are respectively the electric and magnetic components in the axial direction,
and xt = (x, y) are the transverse components of x.



12 Chapter 2. Fundamentals of fiber optics. . .

In general, depending on these previously mentioned components, the
electromagnetic modes can be classified into different types. The modes
where ez component is equal to zero are called transverse electric modes,
TE, and the modes where hz component is absent are called the transverse
magnetic modes, TM. Modes with zero ez and hz components are referred
to as the transverse electromagnetic modes, TEM, and the modes with both
ez and hz components different from zero are called hybrid modes, HE or
EH.

A mode remains guided as long as its propagation constant β satisfies
the condition

n2k0 < β < n1k0, (2.11)

where n1 and n2 are the refractive indices of the core and the cladding
respectively.

The light guidance through the optical fiber takes place due to the total
internal reflection phenomenon, which allows the optical meridional ray to
be transmitted in the core of the fiber through many reflections when it
enters within a specific angle called the critical angle; this angle mainly
depends on the material contrast between the core and the cladding:

sin(φc) =
n1

n2
. (2.12)

A mode is referred to as being cutoff when it is no longer bounded to the
core, so that its field no longer decays on the outside of the core. We can
determine the number of modes that a fiber can support using an important
parameter connected with the cutoff condition, the normalized frequency V ,
which is defined by

V =

(
2π

λ

)
a(NA), (2.13)

where NA is the numerical aperture (NA =
√
n2

1 − n2
2) and a is the core

radius.

Figure 2.2 shows a plot, from Gloge (1971), of the effective refractive
index, neff = β/k0 as a function of V for some of the low order modes.
The plot, assuming a non-dispersive material, shows that each mode can
exist only for values of V that exceed a certain limiting value. The modes
are cutoff when the value of β/k0 is equal to n2. The fundamental HE11

mode has no cutoff and ceases to exist only when V is zero (Keiser, 2000).
Thereby, for any value of a, n1, and n2, there exists a certain wavelength,
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Figure 2.2: Plots of the effective refractive index, neff = β/k0 as a function
of V (Gloge, 1971).

λc, corresponding to a V value of 2.405, in which the fiber is considered a
single mode fiber, i.e.,

V <

(
2π

λc

)
a(NA) = 2.405. (2.14)

The exact analysis of the fiber modes is mathematically complex. How-
ever, a simpler yet highly accurate approximation can be used, using the
fact that in a typical step index fiber the difference between the refractive
indices of the core and the cladding is very small, that is, n1 − n2 � 1.
This is the basis of the weakly guiding fiber approximation (Marcuse, 1991;
Gloge, 1971; Snyder, 1969).

In this approximation, the electromagnetic field patterns and the prop-
agation constants of the mode pair HEv+1,m and EHv−1,m are very simi-
lar (Keiser, 2000). This holds likewise for the three modes TE0m, TM0m,
and HE2m. This can be seen in Figure 2.2 as some modes are compacted
in groups with (v,m) = (0, 1) and (2, 1) for the mode groupings (HE11),
(TE01, TM01, HE21), (HE31,EH11), (HE12), (HE41, EH21), and (TE02,
TM02, HE22).

A specific combination between these modes in the above-mentioned
groupings would create a new type of modes. In Gloge (1971), it has been
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Figure 2.3: Plots of propagation constant β normalized as a function of V
for various LPnm modes (Gloge, 1971).

proposed that such degenerate modes be linearly combined to define quasi-
linearly polarized fields and called linearly polarized (LP) modes, and be
appointed LPnm modes regardless of their TM, TE, EH, or HE field config-
uration.

When we work with standard optical fibers, like the one in Chapter 4,
in which the mode degeneration is strong, it would be preferable to employ
the linearly polarized LP modes. In this way, in the LP approximation, LP
modes are linearly polarized modes, combination of quasi-degenerated TE,
TM, EH and HE modes. The combinations are as follows:

• HE1m ⇒ LP0m,

• (HE2m; TE0m; TM0m)⇒ LP1m,

• (HEn+1,m; EHn−1,m)⇒ LPnm (n ≥ 2),

taking into account that each HE and EH modes are actually two orthogo-
nally polarized degenerated modes. Similar to Figure 2.2, the propagation
constant β normalized as a function of V for various LPnm modes is shown
in Figure 2.3 (Gloge, 1971).
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Figure 2.4: The LP01 mode composition from its exact mode HE11 polarized
along x (a), and the two LP11 modes compositions from exact modes and
their transverse fields polarized along x (b and c).

A very useful feature of choosing the LP modes is the ability to easily
visualize the mode. In a complete set of modes only one electric and another
magnetic field component are significant. The electric field vector E can be
chosen to be along an arbitrary axis, with the magnetic field vector H being
perpendicular to it. In addition, when the field polarization is rotated it
gives an equivalent solution. Figure 2.4 shows how the LP11 modes are
formed from the combination of the exact HE21 and TE01 modes, and the
exact HE21 and TM01 modes, respectively, while the LP01 mode is formed
from the exact mode HE11, where all of these LP modes are polarized along
the x axis.

The Irradiance distribution of the first few LPnm modes is shown in
Table 2.1. As mentioned before, we should keep in mind that these modes
represent one of the two possible polarizations. For instance, LP1m modes,
each have a pair of modes polarized along the two coordinate axes perpen-
dicular to the direction of propagation. Hence, the modal distribution in
the figure are, as simulated, linearly polarized along the x axis, while the
other LP twin mode with rotated polarization would have the same modal
distribution rotated by 90◦ when polarized along the perpendicular y axis.

One of the most important properties the guided modes endure is dis-
persion. Even if non-dispersive materials are assumed, it is possible to make
the speed of light dependent on wavelength by making light pass through a
structure that has a non-constant refractive index profile, such as a waveg-
uide. In this case, the waveform will spread over time, such that a narrow
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Table 2.1: Irradiance distribution for various LPnm modes.
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pulse will become an extended pulse, i.e., be dispersed. This dispersion
is related to the first derivative of the group velocity (Jenkins & White,
1957), which corresponds to the speed where the peak of the pulse prop-
agates through space, which itself is related to a derivative of the phase
velocity (Serway et al., 1957).

Based on Equation 2.14, optical fibers are usually characterized exper-
imentally by two parameters: the numerical aperture, NA, and the cut-
off wavelength of the first higher-order mode, λc, while in our analysis we
use the core radius, a, and the difference of the squared refractive index,
∆n2. Knowing these parameters, it is possible to calculate the dispersion
relation of the different modes. In Figure 2.5, the dispersion relation has
been calculated for a standard telecommunications fiber, an SMF-28e, with
λc = 1.4µm, NA = 0.12, a cladding diameter of 125µm, and taking into
account the material dispersion (see end of Section 4.1) and assuming that
the fiber is immersed in air (n = 1).

It is noticeable how the effective index of the fundamental mode lies
between the effective refractive indices of the core and the cladding, n1 and
n2, while the other modes, the cladding modes, propagate with neff < n2.
The figure also shows the second mode when propagating with neff > n2

for wavelengths below λc (the cutoff wavelength), being a core mode, while



2.1. Mode theory and guided modes 17

E
ff

ec
tiv

e 
in

de
x 

1.44

1.45

1.0 1.2 1.4 1.6 1.8 2.0

Wavelength λ (μm)

Fundamental mode (HE11)
Higher order modes

n1
n2

Figure 2.5: Effective index as a function of wavelength for the first set of
modes in an optical fiber.

above λc it crosses the n2 curve to propagate with neff < n2, evolving to a
cladding mode.

In the region where the mutual effect of the core and the cladding is
strong, the modes trajectories can repel from one another. This means that
calculating the dispersion relation might become tricky when two modes
show similar effective indices at the same wavelength. These modes com-
bines properties of the HE and EH modes.

Figure 2.6, a simulated case of the same SMF-28e fiber dealt experi-
mentally by Alcusa-Sáez (2017), shows a close look on how the modes react
when an anti-crossing is present. The second mode behaves as the HE22 for
wavelengths below the anti-crossing wavelength, and as the EH21 above it,
while the third mode behaves the other way around. At the region of the
anti-crossing, the modes are no longer HE/EH but a mixed properties of
both (Light et al., 2008). Section 2.4 summarizes this behavior through the
mode coupling theory.

As shown previously through Figure 2.4, HE1m modes are quasi-linearly
polarized, from which the degenerate LP0m modes are derived, and carry
its intensity in the core. Increasing the radial order will decrease the modes
quasi-linearly polarized character, which means that the polarization near
the nodal rings becomes less linear. These LP0m modes are the only case
where the intensity is different from zero at the core center and its maximum
lies at r = 0. A specific case is the fundamental mode, LP01, always guided
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Figure 2.6: Effective index as a function of wavelength for the second and
third guided modes around the anti-crossing wavelength.

by the core, and the intensity decays exponentially beyond r = a. As
a result, we can represent this mode by a Gaussian-like intensity profile,
which makes it different from the other modes. The fields of HEnm modes
are radial for angles π/n and azimuthal for the angle bisectors [see Figure
2.4] (Alcusa-Sáez, 2017) .

The characteristics of the modes HE2m, TE0m and TM0m are similar,
and as previously explained, these three modes are part of the LP1m modes
formation. Similar to the TE and TM modes, HE2m modes carry intensity
in the fiber core, r < a. For both LP0m and LP1m modes, by going back
to Table 2.1, it is noticeable that the ratio of Poynting vector flux (i.e.,
power flux) in the core with respect to the total carried power increases
with the radial order of the mode (Paurisse et al., 2012). For all modes, it
is important to keep in mind that the ratio of power flux in the core with
respect to the cladding depends on the wavelength, especially around the
cutoff wavelength of the fiber.

2.2 Fourier iterative method

Recently there have been a broad theoretical and experimental develop-
ments on optical systems with complex material structure, like in the case
of photonic crystals or optical fibers with inhomogeneous refractive indices
distribution. These developments have required numerical simulation tools.
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These tools allow obtaining the electromagnetic fields and the key parame-
ters that provide a general description of the system, which ultimately, give
us the ability to design and optimize the structure.

If analytical solutions are available in sub-domains with compatible
boundary conditions, the mode propagation constant can be obtained thro-
ugh the zeros of a relatively simple characteristic function, as it is the case
of step index fiber (Snyder & Love, 1983). However, when the analytical
solutions are not available whether due to nontrivial boundary conditions
or due to inhomogeneous material distribution in the system, another type
of methods is needed. The research group of Fiber Optics in the University
of Valencia (LFO) has been working over the past years to develop a nu-
merical tool implementing a Fourier iterative method. This tool, which is
named itera, allows describing the propagation of the electromagnetic field
in systems with translational symmetry and an arbitrary refractive index
distribution in the transverse plane.

This section summarizes the theoretical foundations of the Fourier itera-
tive method, by which all the analysis and simulations of this thesis project
have been obtained.

2.2.1 Wave equation derivation

By going back to Equations 2.5 and 2.6 in the previous section, when we
apply the curl operator and substitute one with the other, we obtain the
wave equations for the electric and magnetic field, which are, respectively,

∇× (∇×E) = k2
0εE, (2.15)

∇× (ε−1∇×H) = k2
0H. (2.16)

Although E and H are tri-vectors, the fields governed by Equations 2.15
and 2.16 have only two degrees of freedom due to the constraints imposed
by the Equations 2.1 and 2.2. For systems with translational invariance, i.e.,
ε = ε(xt), it is simple to make this fact explicit, reducing the wave equations
to systems of differential equations that only involve two components of the
electromagnetic field (see Equations 2.7–2.10). The four remaining compo-
nents are obtained from the previous ones by means of the constrains that
establish the Maxwell equations between them, as it will be shown later in
this section.
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We are interested in the equations that satisfy the transverse compo-
nents, either of the electric field, et, or of the magnetic field, ht, since these
could have the form of an eigenvalue equation. Finally, we choose to oper-
ate with ht since its components are continuous on the separation surfaces
between dielectrics.

In the most common practical cases, the anisotropy of the materials that
constitute our system is a block diagonal matrix and can be written as

ε =

(
εtt 0
0 εzz

)
, (2.17)

where εtt is the 2×2 submatrix corresponding to the transverse components
of the dielectric tensor and εzz is a scalar associated to the longitudinal
component. The dielectric tensor also takes this aspect in cases where an
effective anisotropy is induced by the interfaces separating different isotropic
media (Aspnes, 1982).

Taking these previous considerations into account, and combining Equa-
tions 2.7 and 2.8 while keeping Equations 2.9 and 2.10 in mind, we get the
following expression for ht (Pinheiro Ortega, 2008),

∇t × [ε−1
zz (∇t × ht)]− ûz × [ε−1

tt (∇t × ûz(∇tht))]

−β2ûz × [ε−1
tt ûz × ht] =

ω2

c2
ht,

(2.18)

where ∇t represents the transverse components of the gradient operator.
The differential Equation 2.18 is an eigenvalue equation whose conventional
resolution in the context of a modal approach passes through the represen-
tation of the operator associated with it in a certain basis for its subsequent
diagonalization. However, this expression is not adequate to consider prac-
tical situations in which it is essential to take into account the material
dispersion and/or the absorption loss, since the frequency itself is part of
the eigenvalue to be determined. Therefore, after a series of mathematical
algebraic simplifications made by Pinheiro Ortega (2008), we can finally
reach the expression[

∇t∇Tt + ηεttη
T

(
ω2

c2
− η∇t(ε−1

zz ∇Tt η)

)]
ht = β2ht, (2.19)

where the superscript T denotes the transpose of a matrix or a vector,
depending on the element it accompanies, ε−1

zz represents the longitudinal
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component of the inverse of the dielectric tensor and η is the fully antisym-
metric tensor in two dimensions,

η =

(
0 1
−1 0

)
. (2.20)

In short, the Equation 2.19 is an eigenvalues equation so it can be rewritten
symbolically as

Lht = β2ht, (2.21)

with

L ≡
[
∇t∇Tt + ηεttη

T

(
ω2

c2
− η∇t(ε−1

zz ∇Tt η)

)]
. (2.22)

In a similar way, the transverse components of the electric field can also
be represented as[

∇t
1

εzz
∇Tt εtt +

(
ω2

c2
εtt − η∇t(∇Tt η)

)]
et = β2et. (2.23)

If the field et is rewritten in the form et = (e∗y,−e∗x), the previous equation
can be compacted as

L†et(i) = β2et(i), (2.24)

where L† is the adjoint operator of L (Silvestre et al., 1998). Although
the evolution operator L is not generally self-adjoint, L 6= L†, even for
non-absorbing media, this does not really represent a drawback for the
implementation of a modal method since the eigenvectors of the nonself-
adjoint operator, L, and the eigenvectors of its adjoint operator L†, fulfill
the relationship of bi-orthogonality with the eigenvectors corresponding to
the adjoint operator (Silvestre et al., 1998).

The property of bi-orthogonality allows performing a modal decomposi-
tion in waveguides whose refractive index profile is whether real or complex,
including the study of waveguides with losses, and enabling the application
to very different systems (Gantmacher, 1966; Morse & Feshbach, 1953).
This fact is the key to continue operating in a conventional manner with
projections and expected values. Bi-orthogonality have also been used suc-
cessfully in bi-isotropic planar waveguide (Paiva & Barbosa, 1992) and laser
resonators (Siegman, 1986). It is represented as

〈et(i),ht(j)〉 = δij , (2.25)
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where 〈◦, ◦〉 is the ordinary scalar product of complex vector functions in the
plane xy, the subscripts i and j correspond to two different, non-degenerate
modes. This property gives an understanding of the projections that the
modal methods require (Silvestre et al., 1998).

After solving Equation 2.19 and obtaining the eigenvalues of the sys-
tem, ht is known, the constrains that establish Maxwell’s equations allow
us to find, as previously pointed out, the rest of the components of the
electromagnetic field. Thereby,

et =

√
µ0

ε0
k−1

0 ε−1
tt uz ×

[
1

β
∇t(∇tht)− βht

]
, (2.26)

hz = −i
√
ε0

µ0
k−1

0 (∇t × et).uz, (2.27)

ez = i

√
µ0

ε0
k−1

0 ε−1
zz (∇t × ht).uz. (2.28)

With this set of equations, the necessary expressions are completed to obtain
all the vector components of the electromagnetic field. For this reason, the
modal representation method is completely vectorial, without approxima-
tions that could affect the precision of the calculations. The wave Equation
2.19 can also be extended to take into account the tensor nature of the
magnetic permeability (Beltrán-Mej́ıa, 2011). Introducing this property in
the calculation tool, makes itera open to new possibilities also to work with
materials and devices that contain anisotropic magnetic permeability like
magnetic materials.

2.2.2 Fourier iterative modal method

As pointed out by the eigenvalue equation 2.24, for determining the elec-
tromagnetic fields of a fiber with an arbitrary material distribution, the op-
erator L needs to be determined. For that purpose, and based on the work
of Johnson & Joannopoulos (2001), the Fourier iterative modal method,
developed by our group (LFO), takes advantage of different representation
spaces to express the differential equation in form of a system of algebraic
equations. More precisely, it uses the representation spaces where the dif-
ferent elements of the operator L are block diagonal matrices with 2×2
sub-matrices. Thus, the transverse gradient operator is block diagonal in
the momentum space, while in the position space it is represented by a
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dense matrix. On the contrary, the dielectric tensor, seen as an operator
acting on the functions — the vectors — to which it multiplies, is block
diagonal matrix with 2×2 sub-matrices in the position space and dense in
the momentum space.

It is easy to pass between those two spaces using Fourier Transforms
and the most efficient way to do it is through the so-called Fast Fourier
Transform (FFT). The following diagram illustrates the use of FFT applied
to the first term of the wave Equation 2.19,

ht
[FFT ]−−−−→ kt⊗kT

t−−−−→ [FFT−1]−−−−−−→ ∇t∇Tt ht

These changes of the representation space are a critical step of the
method due to the high number of occasions in which it has to be car-
ried out. Fortunately, the Fastest Fourier Transform in the West algorithm
(FFTW) (Frigo & Johnson, 1998) is not only very efficient, it also eliminates
the traditional limitation of using powers of 2 in the number of sampling
points. As a result of using Fast Fourier Transform, it is necessary to define
a finite computational area that contains the relevant part the material dis-
tribution of the system. This area is in our case a square with side D, when
replicated on the plane, creates a periodic and infinite transverse lattice.
At the same time, the infinite replica of the cell creates a fictitious periodic
medium in which the fields are described as Bloch waves (Joannopoulos
et al., 2008).

In summary, it is important to note that the form of the operator L
makes it possible to achieve that all its elements are diagonal in one or
another representation space easily connected. This finding is key to solving
the 2D wave equation without representing the operator explicitly, which
leads to a huge reduction in memory requirements as well as computing
time, allowing operation with fields sampled at hundreds of thousands of
points in the cell.

The Fourier iterative method, summarized here, is also designed to deal
with three-dimensional problems, although in our case the problem ad-
dressed is always two-dimensional, making it more efficient for the study
of guiding systems. Using FFTs repeatedly, we can apply the L operator on
the field without having to explicitly represent it as a matrix of dimensions
2N2 × 2N2. In this way, to carry out the calculation of the eigenvalue and
eigenvector of L, and to solve the wave equation, Equation 2.19, we select
an iterative numerical algorithm that requires only the vector resulting from
the application of the related operator on the field.
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This means, based on the method of Arnoldi and the construction of
Krylov subspaces (Saad, 1992), we can also start from an initial field — the
seed field —, which can give us after a series of iterations, a certain number
of eigenvalues and eigenvectors of a certain range of the spectrum of the
operator. We must re-emphasize that this type of algorithms are extremely
efficient in terms of computational time.

On the other hand, the choice of seed field can greatly reduce the number
of iterations and dramatically accelerate the convergence process. In many
cases, the solution field of the scalar problem turns out to be very convenient
as an initial field. That solution can be obtained by considering the weak
guidance approach, [

∇2
t +

(
ω

c

)2

n2

]
ht = β2ht, (2.29)

and forcing linear polarization parallel to one of the coordinate axes. All this
allows us to work with a large number of vectors of the base, and therefore,
obtain extremely good results.

2.3 Mode Symmetry

Using the previously explained computational tool, the Fourier iterative
method based, itera, is effective in finding almost all the possible guided
modes in the optical waveguide. However, when aiming to analyze a high
order of specific modes (like in our upcoming cases, LP1m or HE1m), the
needed number of total modes to be calculated increases drastically, which
consequently, means an increase in the computation time.

The other problem that rises is when we look for the higher order modes,
finding a solution even with low precision becomes an issue, because as
shown in Figure 2.5 the density of the modes increases as they become
intensely compacted and their effective indices start to be very close to
each other, and even after using the method explained at the end of the
previous section (using an initial seed), we still face some difficulties and
time consumption issues.

This calls for developing the computational tool in a way to reduce
the number of calculated modes by filtering out the modes that are not of
our interest. This change will make the density of the modes decrease and
making it much easier for the computational tool to distinguish the required
modes.
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Figure 2.7: Mirror symmetry on a scalar field (a), the mirror symmetry on
a vector v(x, y) (b), and the anti-mirror symmetry on a vector v(x, y) (c).

The way to do such thing is to introduce a filter of some sort where
we can select the modes based on their field distribution. Starting from
the characterization made by Schmidt & Petermann (2017:table II), which
describes the modes of the graded index multi-mode fiber, we were able
to reclassify a wide range of modes based on the symmetry properties of
their vector field distributions: If a material distribution presents a mir-
ror symmetry with respect to a given plane, the electric field distribution
can present a mirror -like symmetry or an anti-mirror -like symmetry with
respect to the same plane as it is illustrated in Figure 2.7.

When a mirror symmetry is satisfied by a scalar distribution, f , — as it
is the case of the refractive index —, and considering the x axis as the mirror
plane, then f(x, y) = f(x,−y) for any point (x, y) [see Figure 2.7(a)]. The
action of a mirror symmetry on a vector field, v, — e.g., the electric field —,
being again x the mirror plane, makes the field at (x, y) be related with the
field at the reflected point by v(x,−y) = Mv(x, y) = (vx(x, y),−vy(x, y))
[Figure 2.7(b)]. On the contrary, the effect of an anti-mirror symmetry
on a vector distribution [Figure 2.7(c)], forces the field at both sides of
the mirror plane be linked through the expression v(x,−y) = M̄v(x, y) =
(−vx(x, y), vy(x, y)).

Table 2.2 shows two columns, categorized as a group of vector modes
and LP modes that are derived of that group of vector modes. In the table,
the red dashed lines represent a mirror -like axis while the blue dashed lines
refers to the anti-mirror -like axis. As noticed, a mode might have multiple
symmetry axes. In the particular case of systems with continuous rotational
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symmetry, the increasing of the azimuthal order, l, is associated to the
appearance of more symmetry planes. The gray dashed lines are placed in
the zero field area that separates the modal intensity lobes, which gives a
clue of how the modal distribution of the mode would look like.

Table 2.2: Symmetries of the vector field distribution for the first few modes.
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Table 2.2 Continued
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This process of identifying and categorizing the modes is then pro-
grammed into our computational tool. For the sake of simplicity, we have
only considered mirror and anti-mirror reflections with respect to coordinate
axes. In such way that, where we can choose a set of modes sharing a certain
symmetry around one or two axes. As a result, this process helps us avoid
calculating around 50% to in some cases 75% of unwanted modes, which
will reduce the computational time significantly and helps easily reach large
number of the desirable high order modes.

2.4 Coupled mode theory

Optical fibers support a finite number of guided modes and an infinite num-
ber of radiation modes. Coupling among the guided modes of a multimode
optical waveguide (multimode waveguide refers to the guided modes) oc-
curs when a perturbation is introduced and a mode of certain configuration
changes the structure and converts into some other mode (Huang, 1994).
Due to the induced perturbation in optical properties or geometrical config-
uration of the structure, a gratings for instance, or due to the imperfection
of the materials used, we face the phenomena of mode coupling (Presby,
1977).

Coupling between guided modes and the continuum of radiation modes
is usually not desired unless the waveguide is intended to serve as an antenna
(Wang et al., 1995). However, a certain amount of coupling is unavoidable
and results in scattering losses (Jones, 1965).

The coupled mode theory was first developed by Pierce (1954) and Miller
(1954) in the early 1950’s. It was until the early 1970’s the coupled mode
theory was introduced to guided-wave optics by Snyder (1972), Marcuse
(1973), Yariv (1973), and Kogelnik (1975). The coupled mode theory has
been very useful in understanding the nonlinear optical wave propagation
and interaction, such as second harmonic generation, parametric amplifi-
cation, and modulation instability (Shen, 1984; Agrawal, 1989). There are
several reference textbooks available on the subject (see, e.g., Lee, 1986;
Haus, 1984; Tamir, 1988; Shen, 1984; Agrawal, 1989).

The theory attempts to preserve the mode concept in situations in which
the modes cannot be found (Snyder, 1972) due to the nonuniformity of
the material along the propagation direction. In general, any irregularity
in the fiber, such as, diameter variations, loss, and isolated particles, will
produce a coupling of the energy or power of one mode to the others. Mode



2.4. Coupled mode theory 29

coupling within an optical fiber causes signal contamination and is hence
undesirable for optical communication systems. However, coupling can also
occur between parallel fibers in fiber optics bundles (Kapany, 1967) and
even between neighboring photoreceptors of mammalian and certain insect
retinas (Lillywhite, 1978). Coupling can sometimes be used as an advantage
by constructing optical devices such as the directional coupler (Louisell,
1960).

In this research, we use two methods to induce mode coupling, which
help in studying the dispersion curves and eventually the fiber refractive
index profile. The next two subsections will show how the dispersion rela-
tion curve represented by the effective refractive index is affected when two
modes are coupled. In the first subsection we discuss the mode couplings
induced by an inscribed fiber Bragg gratings while in Subsection 2.4.2 we
review the mode couplings that are triggered by the acousto-optic interac-
tions.

2.4.1 Bragg Gratings

Bragg gratings (BGs) are periodic perturbations in the fiber structure that
couple energy between different modes. Figure 2.8 shows the change ap-
plied in the fiber which creates a perturbed core refractive index. They are
classified in two categories: fiber Bragg gratings (FBGs), which operates at
optical wavelengths at the material around twice the periodicity, Λ, (Hill
et al., 1978), and long period fiber gratings (LPFGs), which are designed to
work at wavelengths much shorter than the period (Blake et al., 1986).

The FBG couples energy at specific wavelengths between counter-prop-
agating modes (core-core, core-cladding, cladding-cladding) (Sáez-Rodŕıguez
et al., 2011; Erdogan & Sipe, 1996), while the LPFG couples energy be-
tween co-propagating modes (core–core, core–cladding) (Hill et al., 1990;
Vengsarkar et al., 1996).

Gratings within fibers offer the possibility of chromatic and environ-
mentally sensitive reflectivity which is of significance both to the sensor
and optical communications communities (McCall, 2000). Bragg grating
has become one of the most important fiber optic devices. Various applica-
tions that utilized Bragg gratings have been developed like mirrors, mode
converters, filters, etc. In long period gratings, for instance, coupling into
cladding modes has introduced additional degrees of freedom so that tem-
perature, stress and strain deformations can be identified (Pang et al., 2008;
Zangaro et al., 1995).
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Figure 2.8: Fiber Bragg gratings and the change occurred on the core re-
fractive index.

Fiber Bragg gratings have also been used for spectral filtering, wave-
length tuning, dispersion compensation, and sensing in optical communi-
cation and optoelectronics (Vegsarkar et al., 1996; Liu et al., 2000). Just
as gratings couple light from the guided fundamental mode to the counter-
propagating core and cladding modes, it causes a set of loss notches in the
transmission spectrum and, eventually, corresponding peaks in the reflection
spectrum (Erdogan, 1999). The intensities of these peaks are determined
by the UV induced index modulation of the core, the overlap between fun-
damental and cladding modes, and the length of FBGs.

The coupled mode theory is a widely used theoretical method to ana-
lyze fiber Bragg gratings (Erdogan, 1997b). By solving the coupled modes
equation, we can obtain the transmission and reflection properties of fiber
Bragg gratings with arbitrary grating structures. A simple model of a fiber
Bragg grating is the following: The grating reflects a narrow band of the
incident optical field by successive, coherent scattering from the index vari-
ations (Skaar & Waagaard, 2003). When the reflection from the crest in the
index modulation is in phase with the next one, we have maximum mode
coupling or reflection and the Bragg condition is fulfilled.

We can start with the equation of phase matching condition of two
coupled modes in a grating mentioned by Kashyap (1999), i.e.,

βµ(λR)± βν(λR) =
2πN

Λ
, (2.30)

where βµ(λR) and βν(λR) are the propagation constants of two coupled
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Figure 2.9: The coupling between mode ν and mode µ when (a) the modes
are co-propagating and (b) the modes are counter-propagating.

modes, µ and ν, at the resonant wavelength λR, Λ is the period of the
perturbation, and N is an integer (−∞ < N < +∞) that signifies its
harmonic order. Keeping in mind that β(λR) could be written in terms
of the effective index as 2πneff(λR)/λR, and by only considering the first
harmonic order, Equation 2.30 becomes

neff,µ(λR)± neff,ν(λR) =
λR
Λ
. (2.31)

Figures 2.9 (a) and (b) show how the sign works in order to make sure
that the phase matching condition is satisfied when two modes (‘µ’ and ‘ν’)
are coupled. If the sign is negative then the phase-matching condition is
satisfied for co-propagating modes, where Λ

[
neff,µ(λR)−neff,ν(λR)

]
= λR as

shown in Figure 2.9(a), meanwhile, as shown in Figure 2.9(b), if the sign is
positive then the interaction is between counter-propagating modes, where

Λ
[
neff,µ(λR) + neff,ν(λR)

]
= λR. (2.32)

This formula will be beneficial for us in Chapter 5 when we try to deter-
mine the real refractive index distribution of a given structure through its
dispersion relation curves. Thus, we can conclude that the effective index
of a mode µ when coupled with the illuminating mode at resonance wave-
length λR,µ can be calculated by, simply, knowing the effective index of that
illuminating mode at its resonance wavelength and the BG period.



32 Chapter 2. Fundamentals of fiber optics. . .

2.4.2 In-fiber acousto-optics

The idea of acousto-optic interaction in an optical fiber resides in the cou-
pling between fiber optical modes caused by an elastic wave when elastic
waves were generated by a piezoelectric transducer (Zemon & Dakks, 1978).
Experimentally, this piezoelectric transducer vibrates at the frequency of the
electric signal, in a direction perpendicular to the axis of the fiber, which
generates a flexural acoustic wave that propagates along the fiber with the
frequency of the electric signal.

The fundamental flexural mode propagation in an optical fiber induces
a periodic tension, whose periodicity corresponds to the spatial periodicity
of the acoustic wave, Λ. This tension causes a perturbation in the refractive
index through two contributions. First, there is a geometrical contribution,
the stretching and compression physically vary the length of the fiber, and
therefore the optical path of the guided light (Marcuse, 1982). On the
other hand, there is the material contribution, as the tension modifies the
refractive index of silica due to the elasto-optic effect (Smith, 1980). The
effect combined of both contributions on the modal phase can be described
considering that they create a change of an effective refractive index, neff

(Block et al., 2006; Alcusa-Sáez, 2017).

Starting by the geometrical contribution, having s = ∆L/L as the rela-
tive stretching of the fiber in the axial direction where L is the length of the
fiber, the effect of s in the effective index will be δneff = neffs. The change
of the refractive index of the material caused by the elasto-optic effect, n,
usually follows the form δn = −nsζ, where ζ the elasto-optic coefficient.
Consequently, the contribution to the effective index change is represented
as δneff = −neffsζ. By taking both contributions into account, the change
in the effective index can be represented as (Alcusa-Sáez, 2017)

δneff

neff
= (1− ζ)s. (2.33)

Similar to the way the inscribed Bragg gratings works, these dynamic
changes in the refractive index, when tuned properly, create coupling be-
tween the illuminating mode and the cladding ones resulting a notch for
each coupling in the transmission spectrum. The notch can be adjusted by
changing the wavelength of the acoustic wave, Λ, which can be done, exper-
imentally, by simply changing the frequency of the RF signal transducer.

Very related to the purpose of this thesis, acousto-optic interaction has
applications in the characterization of the properties of fibers themselves
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(Dı́ez et al., 2000; Haakestad & Engan, 2006). Ultimately, in Chapter 4
we use these mode couplings caused by the acousto-optic interactions to
analyze the cladding refractive index profile.





Chapter 3

Fiber profile scaling and
dispersion curves

Among the geometric transformation that can be applied to an electromag-
netic system, (uniform) scaling is of special relevance as it relates systems
that are similar (in the geometric sense), i.e., the distances between any pair
of points of the original system are proportional, by a constant number, s
— the scale factor —, to the corresponding distances of the transformed
system. When the scale factor is larger than 1, the transformation enlarges
the system; on the contrary, when s is a positive number smaller than 1, it
shrinks it.

It is well known in electromagnetic theory that, assuming non-dispersive
media, two systems related by a scaling transformation present solutions
that are also related by the same transformation (Joannopoulos et al., 2008).
The underlying scaling symmetry is broken when dispersive materials are
involved. However, the symmetry can be partially recovered in guiding
systems under certain conditions. This fact opens the possibility to adjust
the optical properties of the system (Pinheiro Ortega, 2008), and has been
essential in the design of systems as complex as photonic crystal fibers
(Silvestre et al., 2006; Ferrando et al., 2001).

In this chapter, we review a series of approximated analytical expressions
that describe the propagation constant and its derivatives with respect to
frequency in terms of the corresponding ones of the unscaled system and
the scale factor (Pinheiro Ortega, 2008). Some of these expressions will be
of special interest and a practical starting point for the analysis and design

35
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of the optical fiber and optical components, as it will be presented in the
following chapters.

In order to reproduce the above mentioned approximated expressions,
we can start with the 2D wave equation in the weak guidance approximation
(Equation 2.29), [

∇2
t +

(
ω

c

)2

n2(xt, ω)

]
ht = β2ht. (3.1)

For simplicity, it has been considered that the dielectric tensor can be rep-
resented by a scalar function, ε(xt, ω) = n2(xt, ω), where n(xt, ω) repre-
sents the transverse spatial distribution of the refractive index of the un-
scaled system. Additionally, let us assume that we know the field distri-
bution of a propagating mode and the corresponding propagation constant,
{β2(ω),ht(xt, ω)}. The modes corresponding to the scaled version of the
system will satisfy the wave equation for the refractive index distribution,

ns(xt, ω) = n(xt/s, ω), (3.2)

where the subscript s identifies magnitudes of the scaled system (Pinheiro Or-
tega, 2008).

Based on the symmetry properties of Maxwell’s equations, when the
system involves only non-dispersive media, it is possible to establish a direct
relationship between the modes corresponding to the original system and the
scaled one (Joannopoulos et al., 2008). In order to develop a less restrictive
framework, let us assume that the dispersive behavior of the refractive index
distribution in the system differs from that of a certain reference material,
nref(ω), by an amount that remains constant within the spectral bandwidth
of interest (Pinheiro Ortega, 2008), i.e.,

∂(n2(xt, ω)− n2
ref(ω))

∂ω
≈ 0. (3.3)

This hypothesis is valid for a large number of guiding systems, which
provides a great help in our analysis in Chapters 4 and 5. For a conventional
step index fiber, the silica cladding can be chosen as the reference, nref(ω).
For those systems with nontrivial claddings — e.g., photonic crystal fibers
— the refractive index of the solid core can be chosen as the reference. The
successful application of the previous hypothesis to the design of photonic
crystal fibers (Silvestre et al., 2006; Ferrando et al., 2001), reveals that the
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results of this section are quite insensitive to not so small relative dispersion
in the involved materials.

By subtracting the term (ω/c)2n2
ref(ω)ht from both sides of Equation

3.1 and taking into account the approximation in Equation 3.3, the wave
equation can be rewritten as[

∇2
t +

(
ω

c

)2

∆n2(xt)

]
ht = ∆β2ht, (3.4)

where ∆β2 = β2− (ω/c)2n2
ref(ω). In this way, the elimination of the disper-

sive character of the term ∆n2(xt) = n2(xt, ω)−n2
ref(ω) has been managed.

Next, by applying a scaling transformation on Equation 3.4, defined by the
change of variable xt 7→ xt/s, and correspondingly ∇t 7→ s∇t, it leads to[

∇2
t +

(
ω/s

c

)2

∆n2(xt/s)

]
h′t =

∆β2

s2
h′t, (3.5)

where h′t(xt, ω) = ht(xt/s, ω).
Considering Equation 3.2 and defining a new working frequency of the

scaling according to the transformation ω/s 7→ ω, we get an equation of
eigenvalues equivalent to Equation 3.4, but for a scaled system, given by[

∇2
t +

(
ω

c

)2

∆n2
s(xt)

]
hts = ∆β2

shts, (3.6)

in which a solution has been identified corresponding to this scaled system,
∆β2

s (ω) = ∆β2(sω)/s2 and hts(xt, ω) = ht(xt/s, sω).
The previous expression for the eigenvalue allows finding the relationship

between the propagation constants of the scaled system and the original one,
which can be simplified to

β2
s (ω)− β2

ref(ω) ≈ 1

s2

[
β2(sω)− β2

ref(sω)
]
, (3.7)

where βref = (ω/c)nref is the propagation constant associated to the refer-
ence material.

By making two additional approximations on this equation, it is pos-
sible to get an approximate, simpler relationship between the propagation
constants involved (Silvestre et al., 2006; Ferrando et al., 2001). According
to the weak guiding approximation, we can assume that β(ω) ≈ βref(ω),
and, in the same order of approximation, we can consider that the reference
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propagation constant is weakly dispersive (βref(sω) ≈ sβref(ω)), in such a
way that the following expression is reached (Pinheiro Ortega, 2008),

βs(ω)− βref(ω) ≈ 1

s

[
β(sω)− βref(sω)

]
. (3.8)

By deriving Equation 3.8 with respect to frequency once and twice, and car-
rying out the appropriate modifications, we obtain respectively the proper
approximations for β1 and β2,

β1s(ω) ≈ β1(sω)− β1ref(sω) + β1ref(ω), (3.9)

β2s(ω) ≈ s
[
β2(sω)− β2ref(sω)

]
+ β2ref(ω), (3.10)

in which they are referred to as the group index coefficient, β1, and the
dispersion coefficient, β2. Once the β(ω), β1(ω) and β2(ω) functions are
known for a specific guiding system within a given spectral range, Equations
3.8, 3.9 and 3.10 (or the more accurate Equation 3.7) will allow us to obtain a
very good estimation of the dispersive behavior corresponding to any scaled
version of that same system for the scaled spectral range, just recognizing
the dispersion of a specific reference material. Additionally, these equations
help us to find the appropriate value of the scale factor, s, that, when applied
to the system, approaches either β, or one of its derivatives β1 or β2, at a
specific interest value or behavior for a given frequency ranges.

Later in this thesis project, Equation 3.8 will be a key starting point for
us to derive formulas that help efficiently scale our guiding system using its
parameters like the core radius and/or the core refractive index.



Chapter 4

Optical fiber profiling
based on scaling
symmetries and
acousto-optic mode
coupling

The usual way of describing an optical fiber is by the distribution of the
refractive indices of its materials through the refractive index profile. The
standard commercial optical fibers, like the SMF-28e, are considered to
have a step index profile, in which the core and the cladding have piecewise
constant refractive indices. That previous description works ideally when
we solely consider the fundamental mode guided in the core. Nevertheless,
when we have a broader look at the higher modes spreading outside of the
core, it is significantly important to find an appropriate description and
more realistic for the optical fiber refractive index profile, which ultimately
helps having an accurate and proper fabrication process of the optical com-
ponents.

In this chapter we show the process that has been followed to prop-
erly describe the fibers refractive index profile. Taking advantage of the
experimental information provided by the mode couplings induced by the
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acousto-optic interactions, and throughout iterative trials of fiber profile
scaling and alteration, we will reach to more appropriate description of the
refractive index profile.

4.1 Dispersion curves analysis

Acousto-optic interaction in optical fibers has been exploited as a technique
to excite cladding modes which helps investigate the properties of optical
fibers (Dı́ez et al., 2000; Haakestad & Engan, 2006); it also controls the
transmitted light in a way that is focused on coupling between the guided
mode in the core and those modes guided by the cladding. This technique
has been studied by the group of Fiber Optics (LFO) of the University of
Valencia over the last decade (Cuadrado-Laborde et al., 2010; Alcusa-Sáez
et al., 2014; Ramı́rez-Meléndez et al., 2016) for the accurate and broadband
characterization of optical fibers and it has been exploited for developing
dynamic and reconfigurable all-fiber devices.

From an experimental point of view, a piezoelectric transducer applied
transversely to an optical fiber generates a flexural elastic waves on it. When
these type of waves propagate along the optical fiber they create a traveling
periodic refractive index perturbations which cause coupling between co-
propagating optical modes.

As shown in Equation 2.31, for co-propagating mode coupling, maximum
coupling between two modes is achieved at the optical wavelength at which
the phase matching conditions are satisfied, i.e., when the acoustic resonance
wavelength matches the beatlength between the two coupled optical modes
(Saleh & Teich, 2001). The resonance wavelength, λR, is given by

λR = Λ ∆neff . (4.1)

On the other side, when the fiber is illuminated with the linearly polar-

LP01 LP11 LP12 LP13 LP15LP14

{ {-

Figure 4.1: The modal distribution of the fundamental mode LP01 and the
first five modes of the type LP1m.
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Figure 4.2: Simulated effective index difference curves, ∆neff = neff(LP01)−
neff(LP11), for two set of step index fibers. (a) Fibers with NA = 0.120 and
different cutoff wavelengths, and (b) fibers with 1.28 µm cutoff wavelength
and varying NA (Alcusa-Sáez et al., 2016).

ized (symmetric) fundamental mode, LP01, the refractive index perturba-
tion induced by the flexural acoustic waves favors its coupling with the LP
modes that have an antisymmetric field distribution (LP1m, m = 1, 2, . . . ).
Figure 4.1 shows the typical modal field distribution for the first fives modes
of the LP1m type alongside the fundamental mode, LP01.

Recently, Alcusa-Sáez et al. (2016), with the aim of characterizing the
propagating modes in optical fibers, have analyzed the experimental acousto-
optic interactions and its related modal effective index difference and chro-
matic dispersion difference curves in SMF-28e and SM2000 fibers. Perform-
ing a series of numerical calculations they found that the effective index
difference curve tends to shift regularly up, down, left and right by changing
the core radius and the numerical aperture, i.e., the geometry and material
of the core, which relate to the cutoff wavelength.

As shown in Figure 4.2(a), when the core radius increases at constant
NA it means the cutoff wavelength will increase and the curve shifts to the
right, while in Figure 4.2(b), when the numerical aperture increases while
having a fixed cutoff wavelength the curve regularly shifts up (Alcusa-Sáez
et al., 2016).

After a number of trials, they obtained fiber configurations that globally
best describe their experimental results. For the SMF-28e fiber, the best
fit corresponds with a cutoff wavelength, λc, of 1.40µm, a core radius, a,
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Figure 4.3: The effective index difference curve, ∆neff = neff(LP01) −
neff(LP11), measured experimentally (solid blue curve) and the simulated
one (dashed red curve) from Alcusa-Sáez et al. (2016)

.

of 4.4287µm and a numerical aperture, NA, of 0.121. In Figure 4.3 we
can see that, even though the simulated curve and the experimental one
are structurally similar, some mismatch is evident. In the next sections we
analyze the cause of this mismatch and present an alternative model for the
refractive index profile.

The dispersion curves of the fiber modes in this research have been
computed using the Fourier based modal technique (Silvestre et al., 2005)
previously explained in Section 2.2. This technique can compute the modes
of optical fibers with arbitrary refractive index profile, which is the case of
the analysis in this chapter.

In addition, considering the importance of material dispersion when sim-
ulating the chromatic dispersion correctly, we take into account the disper-
sion of pure silica by using the Sellmeier coefficients reported by Fleming
(1984). Hence, the refractive index of the cladding material is accurately
included in the calculations. The core refractive index was assigned by in-
creasing the refractive index of the cladding by a constant value related to
the numerical aperture. Alternatively, we evaluate the Germanium (Ge)
concentration in the core with the numerical aperture value, using an in-
terpolation taking into account the Sellmeier coefficients for a specific Ge
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concentration, which ultimately gives the same results as before (Tashtush
et al., 2019).

4.2 Controlling the core refractive index pro-
file

Analyzing an optical fiber with a step index model requires two parame-
ters to define the refractive index profile: the refractive index difference,
∆n = ncore − ncladding, and the core radius, a. Nonetheless, experimentally
speaking, it is more common to have information on the numerical aperture
and the cutoff wavelength of the first higher order mode, LP11 (see Equation
2.14).

Taking into account the effect of the two parameters on dispersion curves
shown in Figure 4.2, a convenient manner for attempting to fit the experi-
mental dispersion curve and the simulated one is trying to match a common
characteristic feature as it is the local maximum appearing near the cutoff
wavelength, characterized by the maximum value of ∆neff , ∆neff,max, at the
corresponding wavelength, λmax.

The behavior shown in Figure 4.2(a) can be reviewed using the concept of
scaling, which was explained in the previous chapter. By using the relation
between the propagation constant and the effective index for a given mode,
where β(ω) = (ω/c)neff(ω), we can rewrite Equation 3.8, which describes
the approximation for the propagation constant for a scaled system as

neff,s(ω)− nref(ω) ≈ neff(sω)− nref(sω), (4.2)

where neff,s(ω) is the effective index of the mode at issue of the scaled
structure at frequency ω, and nref(ω) is the effective index of a reference
material at frequency ω. Next, subtracting Equation 4.2 for two different
modes, and expressing it in terms of wavelength, will lead to

∆neff,s(λ) ≈ ∆neff

(
λ

s

)
. (4.3)

This implies that the effective index difference of a scaled system at a specific
wavelength approximately equals the effective index difference of the initial
system at a wavelength of λ/s where s is the magnitude of the scale factor.

Using the same concept on Equations 3.9 and 3.10, which represent the
first and the second derivatives of β respectively, the group index difference
and dispersion difference can be expressed by
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∆ng,s(λ) ≈ ∆ng

(
λ

s

)
, (4.4)

and

∆Ds(λ) ≈ 1

s
∆D

(
λ

s

)
, (4.5)

where ∆ng,s(λ) and ∆Ds(λ) are, respectively, the group index difference
and the dispersion difference of the scaled system.

The effective index difference curves behavior shown in Figure 4.2(a) can
give us the opportunity to estimate the scale factor. This factor will play an
essential role in shifting the effective index curve as desired. Accordingly,
to match the simulated curves and the experimental ones, first, we must
determine the scaling transformation that shifts the maximum wavelengths
of the simulated curve to the maximum wavelength of the experimental
curve [labeled respectively as ‘(sim)’ and ‘(exp)’]. That scale factor, M , can

be estimated as the ratio between the wavelengths at which ∆n
(exp)
eff and

∆n
(sim)
eff (the previously simulated structure) are maximum,

M =
λ

(exp)
max

λ
(sim)
max

. (4.6)

M is referred to as the core radius scale factor.
Moreover, as it has been shown from the definition of the V parameter

(Equation 2.13), it is apparent that the relation between the numerical
aperture and the radius is linear if we kept in mind maintaining the V
value fixed, which approximately preserves the fiber propagation constants.
Looking back at Figure 4.2(b), the curves vertical shift will be helpful for
us to define another scale factor, which parametrize the scaling in refractive
index difference, ∆n2 = n2

core − n2
cladding. In the next equation it is shown

how the new scale factor is estimated through a proportionality relation,
which can be described as

N =
∆n

(exp)
eff,max

∆n
(sim)
eff,max

, (4.7)

where ∆n
(exp)
eff,max is the maximum value on the experimental effective index

difference curve, ∆n
(sim)
eff,max is the maximum value on the simulated effective

index difference curve, and N is to be called the refractive index scale factor.
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It is significant to realize that this process can be iterated and the preset

reference maximum point on the simulated curve, ∆n
(sim)
eff , changes with

each iteration, which in fact helps producing more accurate results.
After using Equations 4.6 and 4.7 to estimate the refractive index scale

factor, N , and the core radius scale factor, M , and bearing in mind the
cross effect of M and N in the optical volume of the core, we can calculate
the new scaled optical fiber refractive index profile as

a =
Ma0√
N
, (4.8)

∆n2 = N∆n2
0, (4.9)

where a and a0 are, respectively, the core radius after and before scaling,
and ∆n2 and ∆n2

0 are, respectively, the core refractive index difference after
and before scaling.

The new values of the core radius and the refractive index contrast
provided by the last two formulas define a new fiber configuration to be
simulated and its results can be taken as a new starting point at which
to apply Equations 4.6 to 4.9. After few iterations, this procedure adjusts
the effective index difference curve to the preset reference point on the
experimental curve, which in our case is the point where the index difference
curves are maximum.

In Figure 4.4 it is noticeable how the curve is adjusted to overlap the
experimental one showing what we consider the best fit to a step index
model. This fit was obtained after adjusting the fiber parameters in order to
match the maximum points on the dispersion difference curves. The figure
shows a perfect fit in the region below the cutoff wavelength, i.e., when both
LP01 and LP11 modes are guided in the core of the fiber (λ < λc ≈ 1.4µm),
but we still have a noticeable mismatch in the region where the second
guided mode is above cutoff. We found that the best fitting values for the
core radius, cutoff wavelength and numerical aperture were, respectively,
a = 4.415µm, λc = 1.385µm and NA = 0.1201. In this wavelength range,
we consider that the refractive index profile within the core should dominate
the dispersion difference between the two modes.

As it has been noticed from the last results, even after rescaling the core,
the simulated standard single mode fiber refractive index still does not have
the proper description when it is compared with the experimental results.
Therefore, a modification on the ideal model of the single mode fiber has to
be performed.
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Figure 4.4: The modal index difference ∆neff = neff(LP01)− neff(LP11) for
the experimental curve (solid blue curve) and the scaled simulated (dashed
red curve) optical fiber profile.

Many publications have profoundly described the real refractive index
profile of the fiber. One of these intensive more realistic profiles, like the
one described in Figure 4.5 (Abrishamian et al., 2012), follows many irreg-
ularities and perturbations in the cladding and a smooth stooping behavior
in the core with a small dip in the center. The figure shows the refractive
index profile of the fiber before and after being discharged with a specific
amount of electric current; this whole process is meant to show how the pro-
file changes due to the discharge, but for our research proposes we needed
to look at the curve of the original fiber (solid blue curve).

We realized that there are two possibilities to change the ideal refractive
index profile structure into more realistic one. On the one hand we can
modify the core material by creating an index change, whether on the sides
of the core, as described by Olshansky & Keck (1976), and/or by creating
a central dip and reduction on the refractive index material in the core
center, as described by Gambling et al. (1977). On the other hand, we can
go further and change the refractive index of the cladding. These steps are
possible using the concept of power law index.

The power law index is a function that defines the material distribution
of the fiber in an inhomogeneous way and depends mainly on two variables
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Figure 4.5: The original refractive index profile of a SMF-28e fiber (solid
blue curve), from Abrishamian et al. (2012).

characterizing the spatial dependence: α ≥ 0, which controls the central dip,
and β ≥ 1, which controls the profile around the core-cladding interface. In
summary, the next function has been used to model the core refractive index
profile,

n2(r)− n2
cladding ∝ (r/a)α[1− (r/a)β ], r ≤ a, (4.10)

where α and β are the power law index parameters, a is the core radius and
ncladding is the cladding refractive index.

Figure 4.6 shows how the fiber core refractive index profile changes when
the values of α [Figure 4.6(a)] and β [Figure 4.6(b)] are modified, keeping in
mind that the standard fiber with step index model has a power law index
parameters of α = 0 and β =∞ [see dashed black curves in Figures 4.6(a)
and (b)].

Performing the previous analysis on the core shows that no significant
improvement can be reached by adjusting the core profile. In fact, the
change creates an extra mismatch on the curve where λ < λc ≈ 1.4µm.
By going back to Figure 4.4, it is noticeable that the best fit we have got
aligns perfectly on the left side of the curve which describes the region below
cutoff (λ < λc ≈ 1.4µm) but it is not the case on the right side (above cutoff
wavelength).
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Figure 4.6: The fiber core profile changes when (a) the parameter α changes
adding a central dip (for β =∞ ), and (b) the parameter β change modifying
the outer structure (for α = 0).

After realizing that any refractive index variation following a realistic
profile in the core, as that described by Abrishamian et al. (2012), gave
no significant deviation with respect to the measured points, we had to
consider a refractive index perturbation that modifies the dispersion of the
cladding mode, but preserves the dispersion of the fundamental mode. In
fact, the experimental measurement of the cladding refractive index re-
ported by Abrishamian et al. (2012) and presented in Figure 4.5 shows that
type of fluctuations and irregularity in the refractive index profile of the
cladding.

4.3 Controlling the cladding refractive index
profile

The previous section shows that we could simulate a dispersion curve with
a very good fit with the experimental one only below the cutoff wavelength,
and we always found that the theoretical refractive index difference above
cutoff (λ > λc ≈ 1.4µm) was somewhat underestimated, which calls for
altering the ideal model of the cladding. As it was mentioned at the begin-
ning of this chapter, the optical fiber refractive index profile has a significant
importance in describing the fiber manufacturing material distribution and
the signs of any stress, strain or deformation that the fiber suffers.



4.3. Controlling the cladding refractive index profile 49

b

n2

NA2

a

𝛿n2 r

𝛿r

Figure 4.7: The new fiber refractive index profile after adding a perturbation
in the cladding.

For simplicity and to have an early understanding on the dispersion
curves behavior when a refractive index change happens in the cladding,
we considered a refractive index perturbation defined by a ring with inner
radius r, a width of δr, and a refractive index drop of δn, compatible with
the average cladding fluctuations described by Abrishamian et al. (2012).
Figure 4.7 shows the simulated fiber profile after introducing the ring in
the cladding refractive index. The best fitting values were r = 30µm,
δr = 10µm, and δn = 4.5×10−4 with respect to the cladding silica refractive
index at 1.55µm.

Figure 4.8 shows the change occurred on the effective index difference
curve before, see Figure 4.8(a), and after, see Figure 4.8(b), adding this
type of refractive index perturbation in the cladding. Figure 4.8(a) shows
how there was a mismatch between the experimental results (solid blue
curve) and the simulated ones (dashed red curve), while Figure 4.8(b) shows
a really good fit of the effective index difference [neff(LP01) − neff(LP11)]
curve between the experimental (solid blue curve) and simulation (dashed
red curve) after we add the described cladding perturbation. This new
atypical yet simple fiber profile has given us a closer look on the further
possible simulations and theoretical solutions for an unconventional model
of fiber profiles.

A merit function, χ, has been defined to measure the root mean square
value of the mismatch in the effective index difference and it can be described
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Figure 4.8: The simulated effective index difference curve of LP01–LP11

(dashed red curve) and the experimental one (solid blue curve) for (a) the
original fiber with no change on the refractive index profile, and (b) when
the ring perturbation is added in the cladding refractive index.

as

χ2 =
1

K

K∑
q=1

[
∆n

(sim)
eff (λq)−∆n

(exp)
eff (λq)

]2
, (4.11)

where K refers to the number of selected wavelengths, ∆n
(sim)
eff (λq) and

∆n
(exp)
eff (λq) are respectively, the simulated effective index difference at the

wavelength λq and the experimental effective index difference at the same
wavelength. The results show that, with the previous perturbation added in
the cladding, χ is around 1.4×10−3, which display an effective index differ-
ence mismatch improvement of three times better than what was presented
in Alcusa-Sáez et al. (2016) modeling.

As mentioned at the beginning of the chapter, beside the effective index
difference curve, the group index difference and the dispersion difference
curves are also used for characterizing few mode fibers. All three of these
curves are connected through derivations with respect to frequency, which
means to demand even more accurate fitting processes, and, correspond-
ingly, we ought to check the effect of the new refractive index profile on
these curves. For simplicity, we will check the second order derivative curve,
the dispersion difference.

Unfortunately, while a fiber with the previously described refractive in-
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Figure 4.9: The simulated dispersion difference curves (dashed red curve)
compared to the experimental (solid blue curve) for an optical fiber (a) with
an ideal refractive index profile, and (b) a fiber profile with a perturbation
ring in the cladding refractive index.

dex profile (with a ring in the cladding) fits the experimental effective index
difference curve, it still has a noticeable relative error when it comes to the
dispersion difference curve as shown in Figure 4.9(b). The figure shows how
the dispersion difference curve improved significantly from the case where
the ring is not present, Figure 4.9(a), to the case where it is, Figure 4.9(b),
although still not desirably fitted.

An alternative and possibly less trivial description had to be found.
As in our calculations the material chromatic dispersion has been included
(Fleming, 1984), we took into account the cladding perturbation reported
by Violakis et al. (2012). At this point, it is beneficial to use the concept
of power law index to describe that perturbation in the cladding. Instead
of a simple constant drop in the refractive index, we can describe these
perturbation as a steady linear decline in the refractive index, as shown in
Figure 4.10, knowing that this step is achievable by having a cladding with
α = 0 and β = 1 (see Equation 4.10). This approach would help spread the
perturbation effect along the cladding, which will presumably give a fiber
refractive index profile closer to the realistic one.

We assumed this physical perturbation of refractive index is originated,
according to Violakis et al. (2012), by the induced differential stress between
the core and the outer surface of the fiber during the drawing process.
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Figure 4.10: The refractive index profile introducing a linear decline in the
cladding refractive index.

(a)

2.0

E
ff

ec
tiv

e 
in

de
x 

di
ff

er
en

ce
 (

×
10

-3
)

2.5

3.0

1.5

1.0 1.2 1.4 1.6 1.8 2.0
Wavelength λ (μm)

(b)

1.0 1.2 1.4 1.6 1.8 2.0
Wavelength λ (μm)

D
is

pe
rs

io
n 

di
ff

er
en

ce
 (

ps
/(

nm
 k

m
))

-20

0

20

40

60

80

100

120

Figure 4.11: (a) The simulated effective index difference curve for the fiber
profile with perturbed cladding [see inset] (dashed red curve) fitting the
experimental one (solid blue curve). (b) The simulated dispersion differ-
ence curve for the same profile in the inset (dashed red curve) fitting the
experimental one (solid blue curve), both compared to the fiber where no
perturbation is added (dotted green curve).

Typically, the value for such stress difference is 20 MPa, and therefore the
expected refractive index difference, δn, would be around 1.3×10−4 [taking
the extraordinary and ordinary photoelastic constants of silica equals to
5.5×10−13 and 4.22×10−12 m2/N, respectively (Primak & Post, 1959)].

This perturbation, described as a decline in the cladding refractive index,
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Figure 4.12: The value of χ with respect to the refractive index perturbation
δn. The dashed blue line is an interpolation of the simulated values (black
dots).

can be modeled with a single parameter, δn, which in our analysis, and after
few trials, turned out to equal 2.3× 10−4 with respect to the cladding silica
refractive index at 1.55µm. By using this parameter in combination with a
step index profile for the fiber core, we obtain a very good match between
theory and experiment, as shown in Figure 4.11(a) and Figure 4.11(b), which
respectively, present the best fitted results for the effective index difference
and the dispersion difference for (LP01–LP11). Moreover, by going back
to the previously defined merit function, we found that χ value becomes
5.1 × 10−4, which means comparing to the previous cladding perturbation
design, the effective index difference mismatch of this new refractive index
profile design with the experimental one is almost three times lower.

The value of this linearly declining refractive index change in the cladding,
δn, has been manipulated and tested through the previously mentioned
merit function to retrieve the best value for the best fitting. Figure 4.12
shows the variant values of cladding perturbation we used versus their cor-
responding mismatch merit function value, χ.

As presented in our analysis, this whole fitting process is performed
first on an SMF-28e fiber. Therefore, to confirm the effectiveness of these
last results, we performed the same fitting process on the other commercial
fiber, SM2000, analyzed by Alcusa-Sáez et al. (2016), with best-fit values of
5.380µm core radius, a cutoff wavelength of 1.657µm, and 0.1180 numerical
aperture. Figures 4.13(a) and 4.13(b), respectively, show how the simulation
have a good fit with the experimental results for both effective index and
dispersion differences when a perturbation of δn = 3.8 × 10−4 (see Figure
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Figure 4.13: The SM-2000 fiber results. (a) The simulated effective index
difference curve for the new (inset) fiber profile (dashed red curve) fitting the
experimental one (solid blue curve). (b) The simulated dispersion difference
curve (dashed red curve) for the same profile fitting the experimental (solid
blue curve), both compared to the fiber where no perturbation is added
(dotted green curve).

4.10) is considered in the cladding. As for the mismatch, χ value, of the
effective index difference curve, calculated for this type of fiber, it shows an
improvement of almost 10 times in the effective index difference fit with a
χ value dropping from 1.6×10−3 to 1.7×10−4 when the last perturbation is
introduced.

4.4 Fitting high order dispersion curves

In the previous section, we presented two methods where a perturbation is
introduced in the cladding, which help describing a proper realistic optical
fiber refractive index profile. These methods have been expressed plainly
through the effective index difference curve between the fundamental mode
and the first higher mode, i.e, LP01–LP11. As the fundamental mode, LP01,
mostly passes through the core and that is the case for the first high order
mode, LP11, when below cutoff, the curves are somewhat meant to match.
However as the LP11 mode starts to pass through the cladding (λ > λc),
any type of perturbation will affect the effective index of the mode. Since
in both previous cases the modification in the fiber happens in the cladding
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Figure 4.14: The simulated effective index difference curves between the
LP01 and the LP11, LP12, LP13, LP14 and LP15 modes compared to the
experimental ones for the SMF28-e fiber before (a) and after (b) adding a
perturbation in the cladding.

so it is a necessity to check the compatibility of the other higher modes of
the order (1,m).

Figure 4.14(a) shows that when we have a standard optical fiber with
a step index refractive index profile, the experimental effective index dif-
ferences between the mode LP01 and the higher modes LP11 to LP15 do
not have a good fit with the simulated ones. On the other hand, Figure
4.14(b) shows the effect of introducing the recently defined perturbation in
the cladding (inset) on the index differences curves, which result a quite
good fit for all of these modes. Figure 4.14(b) also shows that this new
perturbation in the cladding affect significantly the higher order coupled
modes, LP12, LP13, LP14, and LP15, on a noticeable level over the whole
wavelength range, above and below cutoff.

This concludes that as the higher modes are considered over long wave-
length ranges they spread more and are affected not just of the structure and
material homogeneity of the core but also of what occurs in the cladding.

The focus on the cladding inhomogeneity, which helped reaching a fiber
profile effective index difference fits the experimental one for the index dif-
ference between modes LP01 and LP11, paved the way to study the curves
behavior of the other higher modes of the order LP1m. Revising the higher
order modes behavior gives a better and conclusive refractive index profile
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Figure 4.15: The simulated effective index difference curves between the
LP01 and the LP11, LP12, LP13 and LP14 modes compared to the experi-
mental ones for the SM-2000 fiber before (a) and after (b) adding a pertur-
bation in the cladding.

description of the optical fiber. Correspondingly, we have managed to reach
a fiber refractive index profile design, which is more realistic and coincides
with the experimentally measured mode couplings. Again, it is worth keep-
ing in mind, that the final attained parameters related to the optical fiber
are a result of few iterative simulations. Applying the same process on the
SM-2000 fiber we found that also the results for the higher coupled modes
got a better fit than when the cladding has no perturbation as it is shown
in Figure 4.15.

This once more proves that the final introduced approach, by presenting
improvement on the effective index curves, is in fact comprehensive and
could be applied for a wide range of commercial standard fibers, which
solidify the case on the previously introduced perturbation in the cladding
refractive index.



Chapter 5

Optical fiber profiling
based on scaling
symmetries and inscribed
Bragg gratings modes
coupling

In the previous chapter, we studied how the mode couplings caused by
acousto-optic perturbations can help us identify the stress effect on the
fiber refractive index profile, which leads us into a more realistic represen-
tation for the optical fiber. In this chapter, we continue with the analysis
of the fiber refractive index profile using the mode couplings triggered by
permanently inscribed Bragg gratings.

This approach is different than what was presented before as the per-
turbation in the refractive index caused by acoustic waves is usually small
(Snyder & Love, 1983; Alcusa-Sáez, 2017) and dynamically adjustable. In
fact, the analysis in this chapter will give us a solid confirmation on the
approach we presented previously to characterize the cladding refractive in-
dex in the presence of the stress effect. It is also noted that the wavelength
range will not be as wide as before (1µm) but over a few tens of nanometers
which will provide a closer intense look at the coupling resonances.

57
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5.1 Fiber profile scaling and dispersion curves

To deal with the fiber profiling in the case of UV-photo inscribed Bragg
gratings, we need to extend the scaling analysis depicted in Chapter 3 to
describe more accurately the core refractive index scaling together with the
geometry scaling (see Section 4.2).

We start with the approximate Equation 3.4,[
∇2
t +

ω2

c2
∆n2(xt)

]
ht(xt, ω) ≈ ∆β2(ω)ht(xt, ω), (5.1)

where ∆β2 = β2 − (ω/c)2n2
ref(ω) and nref(ω) is the refractive index of a

known reference under the assumption given by Equation 3.3 [the dispersive
behavior of the distribution of the refractive index of the system differs from
a certain reference material, nref(ω), in a nearly constant amount].

Next, by applying a scaling transformation to the refractive index dif-
ference, ∆n2(xt) 7→ ∆n2

[N ](xt) = N∆n2(xt) and an inverse scaling to the

angular frequency, ω2 7→ ω2
N = ω2/N , we obtain an equation structurally

equal to Equation 5.1 just identifying the eigenfunctions and eigenvalues
of both equations, ht,[N ](xt, ωN ) = ht(xt, ω) and ∆β2

[N ](ωN ) = ∆β2(ω).
From the last equation, we get the expression for the effective index differ-
ence when the fiber refractive index difference is scaled:

∆n2
eff,[N ](ω) ≈ N∆n2

eff(
√
Nω). (5.2)

Considering the cladding material as the reference material, nref(ω) =
nclad(ω), we can estimate the effective index in a fiber with scaled refractive
index difference as

n2
eff,[N ](ω) ≈ N

[
n2

eff(
√
Nω)− n2

clad(
√
Nω)

]
+ n2

clad(ω), (5.3)

where neff(ω) is the effective index of a guided mode in the unscaled refrac-
tive index difference distribution at the frequency ω and N is referred to as
the refractive index difference scale factor.

In Chapter 3 (and Section 4.2) we have obtained a similar relationship
when the geometry is scaled (see Equation 3.7 and 4.2); by taking in this
scaling the core index, ncore, as our reference, we can calculate the effective
index in a fiber with scaled geometry, neff,M (ω), at a frequency ω, as

n2
eff,M (ω) ≈ n2

eff(Mω)− n2
core(Mω) + n2

core(ω), (5.4)
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where again neff(ω) is the effective index of a guided mode in the geometri-
cally unscaled distribution at the frequency ω and M is the geometry scale
factor.

Applying successively both scaling Equations 5.3 and 5.4, we obtain
a comprehensive formula that estimate the effective index difference of a
guided mode in fiber with scaled geometry and refractive index difference
distribution, n2

eff,M [N ](λ), at any wavelength, i.e.,

n2
eff,M [N ](λ) = N

[
n2

eff

(
λ

M
√
N

)
− n2

clad

(
λ

M
√
N

)]
+ n2

clad(λ). (5.5)

5.2 Refractive index profile scaling for a BG

As explained in Section 2.4, periodic perturbations in fibers stimulate the
power transfer from the illumination mode to other modes, in such way that
notches appear in the transmission spectrum at the resonance wavelengths.
In the case of fiber Bragg gratings, the cylindrical symmetry of the pertur-
bation favors the coupling between modes with the same symmetries, and
therefore mode HE11 couples to modes HE1m. The resonance wavelengths
depend, as shown before, on the effective modal indices of the two coupled
modes, which depends on the properties of the fiber, and on the Bragg
grating period (see Equation 2.31).

Figure 5.1 shows the transmission spectrum for a Bragg grating with a
period, Λ, of 533.5 nm, written in a fiber used experimentally by Poveda-
Wong et al. (2017), where the fiber is of the type SM1500 with NA of 0.29,
a cutoff wavelength of 1.387µm and a modal field diameter of 4.2µm.

It is noticeable how the depth of these notches, which is referred to as the
coupling efficiency, is different for each mode coupling. This has its origin
in the coupling coefficient of each resonance [see Kitayama & Ikeda (1978);
Savovic & Djordjevich (2007) for more about the calculations of coupling
coefficient].

In the same figure, the core mode HE11 resonance wavelength is easily
detectable at 1556.9 nm, with a depth that exceeds −38 dB. The other res-
onances relate to the couplings with the cladding modes. The main set of
resonances have a depth of approximately −1.5 dB around 1540 nm, this set
refers to the cladding modes HE1m and EH1m (Yin et al., 2013). The second
set of resonances, which have notch depth around −0.1 dB, are associated
with the modes TE0m, TM0m and HE2m (Thomas et al., 2011, 2012).
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Figure 5.1: Transmission spectrum for a Bragg grating (Poveda-Wong et al.,
2017).

Identifying these HE1m modes through their modal field distribution is
reasonably easy even for high orders as m goes to few tens. Table 5.1 shows
the modal distribution for the first 16 modes of the type HE1m.

Regarding the main set of resonances, the coupling with the EH1m modes
around 1520 nm is stronger than it is with the HE1m, while the coupling
with HE1m modes become more recognizable around the 1540 nm and the
EH1m modes notches are almost zero. As for the mode couplings around
the high wavelength ranges (1545 nm – 1550 nm), they are not easily identi-
fiable. Additionally as we go further in our analysis, it is apparent that the
estimated effective index at the experimental resonance wavelengths would
not quite fit the simulated effective index curves on such a small wavelength
range. Hence, we had to find a proper way to identify these resonances and
then scale the fiber refractive index profile to have a better fitting results.

In order to develop a fiber profiling strategy, we can start particularizing
the Bragg conditions, expressed by Equation 2.32, for the case in which the
illumination mode (‘0’) couples with itself but propagating in the opposite
direction, and for the case of coupling to other counter-propagating modes
(‘µ’):

λR,0 = 2n0(λR,0)Λ,
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Table 5.1: The usual modal distribution for the modes of the type HE1m in
a step index fiber.

HE1,1 HE1,2 HE1,3 HE1,4

HE1,5 HE1,6 HE1,7 HE1,8

HE1,9 HE1,10 HE1,11 HE1,12

HE1,13 HE1,14 HE1,15 HE1,16

λR,µ = [n0(λR,µ) + nµ(λR,µ)]Λ,

where n0(λ) and nµ(λ) are the effective refractive indices of the consid-
ered modes and λR,0 and λR,µ are the corresponding resonance wavelengths
predicted by the Bragg condition. [For lightening notation hereinafter the
subscript ‘eff’ is being removed from the effective refractive index variables.]

Combining these two last equations we can obtain a new expression
bounding indices and resonance wavelengths,

nµ(λR,µ) = 2n0(λR,0)
λR,µ
λR,0

− n0(λR,µ). (5.6)

It is worth stressing that this equation will only be satisfied if n0(λ) and
nµ(λ) describe accurately the modes of the fiber exhibiting the resonances
λR,0 and λR,µ, i.e., it can be used as a test of the goodness of the fiber
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profile description. Specifically, we can define a merit function as a root
mean square of the mismatch given by Equation 5.6 for a series of modes
and resonances,

χ2 =
1

K

K∑
µ=1

[
2n0(λR,0)

λR,µ
λR,0

− n0(λR,µ)− nµ(λR,µ)

]2

, (5.7)

where K is the number of coupled modes considered. Now, to ease the
process of testing fiber configurations against the merit function χ, it is
convenient to use Equation 5.5 for estimating the dispersion relation of a
family of scaled fibers based on a given configuration. In addition, as the
illumination mode will be more sensitive to the scaling transformations it
is sufficient to apply the scaling to that mode:

χ2
M,[N ] =

1

K

K∑
µ=1

[
2n0,M [N ](λR,0)

λR,µ
λR,0

− n0,M [N ](λR,µ)− nµ(λR,µ)

]2

.

(5.8)
The values of M and N that minimizes the previous expression parametrize
an approximation to the scaling transformation that, in a neighborhood of
the initial configuration, will optimize the satisfaction of Equation 5.6 for
all the considered modes.

Determining the goodness of the previous approximation requires the
calculation of the associated dispersion relations and the evaluation of Equa-
tion 5.7. If χ is not small enough, the new effective refractive indices can be
taken, iteratively, as a new starting point around which to minimize again
Equation 5.8.

It is worth mentioning that in our simulations, the modal distribution of
the HE1m modes progresses in an identifiable uniform way until we reach the
HE1,18 mode where its linear polarization gradually breaks down when the
strength of the field increases at large refractive index step (Ramachandran
et al., 2015; Israelsen et al., 2014), as the radial and azimuthal components
of the electric field must satisfy different boundary conditions (Rishøj et al.,
2016).

Therefore, the electric field of the HE1m modes become quasi-radially po-
larized, while the EH1m modes become quasi-azimuthally polarized, which
means, for higher mode orders the intensity distribution becomes cylin-
drically non-uniform which are also called bow-tie modes (Thomas et al.,
2012). The three columns in Table 5.2 show the modal distribution of the
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Table 5.2: The modal distribution for the bow-tie modes for the HE1,18,
HE1,19 and HE1,20 modes.

EH1,19 - HE1,20 

EH1,19 + HE1,20 

EH1,18 - HE1,19 

EH1,18 + HE1,19 EH1,17 + HE1,18 

EH1,17 - HE1,18 

last three higher modes we have simulated of the type HE1m, which have
branched into two combinations of bow-tie modes. The merit function we
use (Equations 5.7 and 5.8) deals with these bow-tie modes efficiently, while
we would be able to have a very good approximation of the effective index
of the required HE1m mode.

However, a technical problem arises associating resonant peaks in the
spectrum (see Figure 5.1) to higher-order modes, specially for the lower ones
(1545 nm to 1550 nm). Figure 5.2 is an example of how the iterative process
progresses when we try to identify the proper resonances (notches). Each
one of the solid curves represents three iterations of the same assumption
in the assignment. For example, the purple curve represents assumption
number 1, in which we assume that one of the notches (like in Figure 5.1)
is a resonance assigned for a specific HE1m mode, which when simulated
gives a specific χ value. As for the second assumption we assign the notch
to another mode, for instance HE1,m+1, and calculate the mismatch again
through χ value, and so forth. The process shows an improvement in the
efforts to assign the modes with their proper notches.

The last assumption we appointed is number 4 (red solid curve) where
the resonances arrangement looked equitable while the χ value reached a sta-
ble low value of 3.4×10−3. Moreover, if we try to assign another assumption
for the resonance, we notice that χ value increases (see assumption number
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Figure 5.2: The error represented by the merit function (χ) in terms of
the assigned resonances assumption, each colored solid line represent three
simulation trials (black points) of the same assumption, while the dashed
blue line shows the evolution χ with each resonance assumption.

5 in Figure 5.2), which means our previous resonance assigning is correct.

5.3 Effective index fitting for a BG resonances

In this last section, we show simulations of how the fiber refractive index
profile changes while attempting to pin the estimated effective index points
at the experimental resonance wavelengths on their corresponding simu-
lated effective index curves. On the one hand, we will have a case of mode
couplings triggered by a fiber inscribed Bragg gratings similar to the one
mentioned before (Figure 5.1). On the other hand, we will show an analysis
where we deal with two Bragg gratings written in the same type of fiber
but with different periods.

The main goal is to proceed using the merit function defined earlier, χ,
(Equation 5.8) to help us pin the estimated effective index points at the
experimental resonance wavelengths on the simulated effective index curves
by finding a proper fiber profile scale factors.

After identifying the first 20 HE1m modes coupled in the Bragg grat-
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Figure 5.3: The effective index in terms of wavelength before scaling. The
red points represent the estimated effective index at the experimentally
calculated resonance wavelengths of the first 20 modes of the type HE1m

and the colored solid lines are the simulated effective index curves for the
first 20 modes of the type HE1m.

ing mentioned before (with Λ = 533.5 nm) and calculating the estimated
effective index at each resonance wavelength, as shown in Figure 5.3, it is
noticeable that, aside from the fundamental mode, the estimated effective
index points at the resonance wavelengths before scaling are still not pinned
properly on the simulated effective index curves.

Applying Equation 5.8, in the efforts of pinning the estimated points
properly on their assigned effective index curves, will result possible values
for both M and N , which means having a scaling in the geometry and
refractive index difference of the fiber. In our case, the change on the
core refractive index difference, ∆n, would increase from 0.02883 to 0.03128
(with respect to the cladding silica refractive index at 1.55µm) and the
radius is kept unscaled (M = 1). Therefore, an improvement in the fitting
is achieved as the mismatch, represented by χ decreases from 4.8× 10−4 to
2.5×10−5. Figure 5.4 shows, after the scaling, the estimated effective index
points at the experimental resonance wavelengths, which are now pinned on
their corresponding effective index simulated curves.

The next simulation, and in the efforts of having a better description of
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Figure 5.4: The effective index in terms of wavelength after scaling. The
red points represent the estimated effective index at the experimentally
calculated resonance wavelengths of the first 20 modes of the type HE1m

pinned on their related simulated effective index curves (colored solid lines)
for the first 20 modes of the type HE1m.

the fiber in a wider wavelength range, is performed on two Bragg gratings
both inscribed on the SM1500 fiber used previously but each having a differ-
ent grating period, which means a different working wavelength range. The
first grating has a period of 521.250 nm and 1 cm length while the other has
a period of 539.525 nm and 2.5 cm length. Figure 5.5 shows the transmission
spectrum of both Bragg gratings each on its specific wavelength range. After
the resonances have been measured experimentally by our group, we start
identifying the necessary modes through the process mentioned in end of
Section 5.2. Next, by initially dealing with these two gratings individually,
we use Equation 5.8 to find a proper core profile scaling.

Figures 5.6 and 5.7 show, for both Bragg gratings, the estimated effective
index points at the experimental resonances before (a) and after (b) being
pinned on the simulated effective index curves. This fitting, as mentioned
before, goes through an iterative process before reaching these results.

In Tables 5.3 and 5.4, the scaling occurred on the core radius and refrac-
tive index difference is presented, which leads to a noticeable improvement
in the fitting. This improvement is also apparent through the predefined
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merit function value, χ, as the mismatch between the estimated effective in-
dex points at the experimental resonances and the simulated effective index
curves decreases efficiently.
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Figure 5.5: Transmission spectrum for the first (a) and the second (b) Bragg
gratings.
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Figure 5.6: The effective index in terms of wavelength for the 1st BG. The
red points are the estimated effective index at the experimental resonance
wavelengths for the first 20 modes of the type HE1m and the colored solid
lines are the simulated effective index curves for the first 20 modes of the
type HE1m before scaling the core (a), and after the scaling (b) where it
shows these resonances pinned properly.
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Figure 5.7: The effective index in terms of wavelength for 2nd BG. The
red points are the estimated effective index at the experimental resonance
wavelengths for the first 20 modes of the type HE1m and the colored solid
lines are the simulated effective index curves for the first 20 modes of the
type HE1m before scaling the core (a), and after the scaling (b) where it
shows these resonances pinned properly.

As noted earlier, these two Bragg gratings are inscribed on the same
Fiber of the type SM1500 under very similar conditions, therefore, it would
make more sense if they have the exact same fiber core parameters, radius
and refractive index. For that purpose, we first assume that the new core
parameters are the average of the latterly calculated two Bragg gratings,
and then we iteratively apply Equation 5.8 on the new structure to improve
the fitting. Simultaneously, as the change of the pinned estimated points
at the resonances becomes small and sensitive, we can effectively observe
the value of χ, as it is essential to obtain lower values for χ to detect an
improvement in the fitting process.

Table 5.5 shows the changes occurred, through five iterations, on the
core radius and refractive index difference using the scale factors M and N ,
until a proper averaged χ value is obtained. An averaged χ value means that
with every simulated scaling we obtain a χ value for each Bragg grating,
and by averaging both, we get the value of χ presented in the table. The
table also shows how sensitive is the scaling effect on the system, presenting
an error as small as 0.1 nm on the core radius for instance.

Figure 5.8 shows the final averaged results, as it presents, for both BGs
working wavelength ranges, a very good fitting between the estimated ef-
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Table 5.3: Bragg grating #1 parameters before and after the pinning.

Before After

Radius 1.8310µm 1.7772µm
∆n 0.03128 0.03125
χ 3.5×10−3 5.5×10−5

Table 5.4: Bragg grating #2 parameters before and after the pinning.

Before After

Radius 1.8310µm 1.7589µm
∆n 0.03128 0.03138
χ 2.2×10−3 1.0×10−4

Table 5.5: The iterative process applied to rescale the averaged core param-
eters.

Iteration M N Radius (µm) ∆n χ

1 0.99794 0.99856 1.7644 0.03125 9.7×10−5

2 1.00063 1.00078 1.7657 0.03127 9.4×10−5

3 1.00087 1.00107 1.7673 0.03130 8.7×10−5

4 1.00042 1.00053 1.7680 0.03132 8.4×10−5

5 1.00033 1.00043 1.7686 0.03133 8.3×10−5

fective index points at the experimental resonances and their corresponding
simulated effective index curves for all the HE1m modes.

Going further in our analysis, and as it has been presented at the end
of Chapter 4, we can identify the stress effect in the cladding through these
mode couplings. It is expected that the stress effect would be much more
sensitive than what we have experienced in the last chapter, knowing that
the wavelength range we deal with in this grating analysis is smaller.

By introducing a linearly declining perturbation in the cladding refrac-
tive index similar to the one presented in Figure 4.10 with δn = 0.7× 10−4,
the resonances fitting showed an additional improvement by 8%. Figure
5.9 shows the merit function, χ, behavior when we simulated four similar
fibers, each with a different value of δn. It is apparent that the δn value we
assigned ranges in the lowest values of χ, which indicates a lower resonances
mismatch.
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Figure 5.8: The effective index in terms of wavelength for the first Bragg
gratings (a) and the second Bragg gratings (b), when Both BGs are scaled
to have the exact same fiber parameters. The estimated effective index
points at the experimental resonances (red points) are still properly pinned
on the simulated effective index curves for the first 20 modes of the type
HE1m (colored solid lines).
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Figure 5.9: The averaged resonances mismatch, χ, in terms of the introduced
perturbation value δn. The dashed blue line is an interpolation of the
simulated values (black dots).

Figure 5.10 presents our last results for both BGs working wavelength
ranges, where the estimated effective index points are properly pinned on
the simulated effective index curves. It all leads to the conclusion that, by
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using the mode couplings in these two written BGs, we were able to identify
properly the core-cladding refractive index profile for the used optical fiber,
and that is clearly present through a very good fitting between the estimated
effective index points at the experimental resonances and the simulated
effective index curves.
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Figure 5.10: The effective index in terms of wavelength after introducing a
perturbation in the cladding for the first Bragg grating (a) and the second
Bragg grating (b). The estimated effective index points at the experimental
resonance wavelengths (red points) are still properly pinned on the simu-
lated effective index curves for the first 20 modes of the type HE1m (colored
solid lines).





Chapter 6

Conclusions

We have analyzed the core and cladding refractive index profile in standard
optical fibers. The experimental data, represented by the dispersion curves
and coupling resonances of the modes, have been gathered through two
techniques: The first one was based on the acousto-optic interaction cou-
plings analyzed by Alcusa-Sáez et al. (2016), and the second one was based
on the couplings caused by an inscribed fiber Bragg gratings analyzed by
Poveda-Wong et al. (2017).

The dispersion curves in this research hold a significant importance.
Keeping in mind that, the propose of finding a better fitting for these curves
is to have a better understanding of the alterations in the fiber refractive
index profile. This has been addressed by investigating the scaling transfor-
mation of the optical fiber geometry and material distribution. Formerly,
our group has formulated approximated analytical expressions for control-
ling the geometrical scaling of the fiber structure (Pinheiro Ortega, 2008). In
Chapter 4 we have included the refractive index difference scaling by means
of heuristic reasoning. Next, in Chapter 5, the previous approximated ana-
lytical expression has been extended to include the new degree of freedom,
which, with the geometrical scaling, forms a comprehensive expression in-
cluding both scale factors. This scaling approximation have paved the way
for us to efficiently control the fitting of the dispersion curves and estimate
the proper parameters for the optical fiber through the scale factors.

In the first case analyzed, and after realizing that a simple step index
model cannot give a good match with the experiments, we took advantage
of the mode couplings and the scale symmetries to, eventually, have a better
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characterization for the fiber refractive index profile. The scaled fiber profile
has also allowed us to fit the simulated dispersion curves with the exper-
imental ones but only in the region below cutoff (λ < λc). Consequently,
we had to introduce a perturbation in the cladding represented by a linear
declining in the refractive index, which resulted after few iterations a very
good fitting between the simulated and experimental curves improving by
10 times better comparing to the fiber with standard step index model, and
that was analyzed in terms of both the effective index difference and the dis-
persion difference curves. This unconventional fiber refractive index profile
have also shown that it does not only help fitting the dispersion curves for
the first coupled mode but also for the higher modes of the same symmetry.

The analysis of the fibers’ refractive index profile proceeded in the second
part of this research work by applying our fitting approach when the mode
couplings are caused by an inscribed fiber Bragg gratings on a narrower
bandwidth. The Bragg grating phase matching condition has been extended
and utilized into a merit function to help us identify properly the coupled
modes. The same merit function would later include the scale factors so
we will be able to efficiently control and estimate the required fiber scaling
transformation, which ultimately pins the resonances of the coupled modes
on the simulated effective index curves.

At this point of the research we needed to describe a spectrum with very
large number of guided modes of a specific symmetry. Considering that our
computational tool calculates all the modes in the structure, which can
be in fact time consuming, we had to introduce an improvement on the
computational tool using the symmetries of the vector field distribution
of the modes. This improvement have helped us avoid calculating around
50% to 75% of unwanted modes, which means a significant reduction in the
computational time.

In order to reduce numerical error in the profiling, the process has been
applied on a single fiber Bragg grating and then on two individual Bragg
gratings each with different period recorded on the same fiber. This process
has proven to be efficient on both cases by decreasing the resonances average
mismatch with the simulated curves by 20 to 60 times. We finally went
further into identifying the stress effect in the cladding. Based on the same
proposed cladding profile presented in Chapter 4, we have introduced a
perturbation that, eventually, have shown an additional 8% improvement
in the estimated effective index points pinning process.

The simulations in this thesis give us a clear idea on how the dispersion
curves react by the change of the refractive index profile using the fiber scal-
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ing properties, which ultimately will lead us to a more practical description
of the fiber profile itself. The process of characterizing the fibers refrac-
tive index distribution, through the fiber scaling and cladding alteration,
have also proven to be comprehensive and applicable for a wide range of
commercial standard fibers.

In conclusion, we like to emphasize that due to the stress effect on the
fiber during the fabrication process, the simple ideal step index model can-
not describe accurately the dispersion of the fiber modes in standard fibers,
specifically, when large wavelength range has to be covered. Accordingly,
we have scaled the profile of the optical fiber and then investigated a mod-
ified version of the step index model, where the cladding refractive index
is linearly decreasing with the radius. As a result to that modified profile,
we have a perfect agreement between experimental data and theoretical
simulations. This model will enable more accurate designs of long period
fiber gratings, acousto-optic fiber devices, and other devices that involve
the cladding modes.
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