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RESUMO 
 

A produção de compostos úteis através da fixação química de CO2 tem atraído imenso interesse 

por parte da comunidade científica, devido à sua abundância na natureza, não toxicidade e pelo 

facto de ser barato. Uma das aplicações mais promissoras é a reação de acoplamento CO2 com 

epóxidos na produção de carbonatos cíclicos, de elevada importância industrial e com uma ampla 

variedade de aplicações como solventes verdes, eletrólitos para baterias de lítio e monómeros 

na produção de polímeros.  

 

Um desafio emergente com a aplicação industrial na produção destes compostos, é a separação 

e reutilização de catalisadores, nomeadamente complexos acídicos de Lewis, metálicos, 

homogéneos combinados com um nucleófilo.  

 

O objetivo desta tese passa por investigar a utilização de diferentes líquidos iónicos e solventes 

eutécticos, capazes de funcionar como solventes e como co-catalisadores assim como 

possibilitar a separação por extração do produto obtido da mistura reacional. Neste contexto, as 

condições reacionais foram otimizadas tal como o comportamento de catalisadores e co-

catalisadores. Além de diferentes famílias de catiões e aniões, também os solventes eutécticos 

foram estudados. As reações foram realizadas a alta pressão com os produtos finais a serem 

analisados por espectroscopia 1HNMR. Um processo extrativo com CO2 supercrítico foi utilizado 

para separar os produtos obtidos da mistura reacional. O sistema catalítico foi reutilizado até 3 

vezes, sem que existisse perda de atividade. 

 

O ião brometo com a sua respetiva combinação com o catião tetrabutilamónio mostrou ter a 

melhor atividade catalítica. No entanto, o seu uso como solvente não é viável uma vez que o 

mesmo é sólido a temperatura ambiente. Como solvente, o cloreto de metiltrioctilamónio mostrou 

ser o solvente mais promissor provando assim ser uma boa alternativa na reação, pois favorece 

a cinética da reação e retém o catalisador aquando do processo extrativo com CO2 supercrítico. 

Por fim, um solvente eutéctico tendo como constituinte o TBABr, mostrou ser o melhor solvente 

eutéctico constituindo assim uma boa alternativa em estudos futuros.  
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ABSTRACT 
 

The production of useful compounds through the chemical fixation of CO2 has attracted increasing 

interest from the scientific community, due to its abundance in nature, non-toxicity and low-cost. 

One of the most promising applications is the direct coupling of CO2 to epoxides for the production 

of cyclic carbonates, which holds industrial interest, due to wide range of applications namely as 

green solvents, electrolytes for lithium batteries and monomers for polymers production. 

 

One technical barrier that needs to be addressed for wide industrial implementation, is the 

separation and reutilization of catalysts, usually homogeneous Lewis acidic metal-based 

complexes, combined with a nucleophile. 

 

The aim of this thesis was to investigate the utilization of different ionic liquids and deep eutectic 

solvents, potentially able to work both as reaction solvent and as co-catalyst, as well as to allow 

the product separation from the reaction mixture. In this context, reaction conditions were 

optimized, catalyst and several co-catalysts performances were studied. Different cation and 

anion families of ionic liquids were also investigated, as well as deep eutectic solvents. Reactions 

were performed in a high-pressure apparatus and final products analyzed by 1H-NMR 

spectroscopy. Supercritical CO2 extraction was applied to separate the product from the reaction 

mixture. The catalyst system was reused three times, without loss of activity. 

 

The bromide anion and its combination with the tetrabutylammonium cation has shown the best 

catalytic activity. However, its utilization as a solvent is not viable due to being solid at room 

temperature. As a solvent, methyltrioctylammonium chloride showed promising results and 

proved to be a good alternative to perform the reaction, since besides favouring the reaction 

kinetic, it retains the catalyst allowing the product to be extracted using supercritical CO2. 

Moreover, a tetrabutylammonium bromide (TBABr)-based deep eutectic solvent showed the best 

performance as solvent and co-catalyst and constitutes a good alternative for further studies. 
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1. INTRODUCTION 
 

1.1 Green Chemistry and the search for renewable feedstocks 
 
Green Chemistry is a new philosophy that rethinks some of our current chemical processes 

focusing on the environment as well as on the protection of human health. Their main objective 

is to eliminate and/or reduce the production and use of dangerous and toxic substances currently 

used in the industry. The possibility to transform our natural resources as well as create new 

matter, has been one of the greatest accomplishments in modern chemistry. Yet, it comes with a 

price. Nowadays, the cities have accumulated waste from chemical transformations as well as 

by-products dangerous to the environment and human health [1]. Therefore, it became necessary 

to rethink the use of chemicals and what to do with the possible unwanted products. The first 

steps towards this environmental change began in the 1970s with the publication of books by 

Rachel Carson and Barry Commoner in 1971, where they reported the harmful side-effects of 

some of the chemical products used back then [2]. Their interests were the devastating effects of 

pollution, as a result of the chemical manufacturing processes for environment, indicating that 

cleaner, safer, and environmentally friendly approaches are required. In order to reduce the higher 

levels of pollution, waste prevention instead of waste remediation was a necessary step towards 

a cleaner production of chemicals. So in 1991, Trost published a first paper about some green 

chemistry principles and atom economy [3]. The aim was that the materials used in chemical 

processes would get incorporated into the final product, minimising the formation of waste. Atom 

economy number became an extremely useful tool for simple evaluation, before any experiments 

are starts, about the generation of waste in chemical processes. 

In 1998, Anastas and Warner proposed a list of principles where the guiding element was “benign 

by design” [4]. Where the answer for a “greener future” is in changing industrial processes to 

safer, non-toxic and environmental-friendly methods, like reutilization of catalysts, instead of 

dealing with the waste produced. The idea is to change the premise and not the solution solely. 

This list of principles, is considered the steps needed for this change. Recently Sheldon, published 

a more updated list of the considered principles of Green Chemistry. The author discusses the 

importance of these principles, when applied to industrial processes, by avoiding waste formation 

and aiming for high atom economy reactions. An updated list of today’s Green chemistry 

principles is presented in Table 1.1. [5].  
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 Table 1.1 - List of Green Chemistry principles [5] 

1. It is better to prevent waste than to treat or clean up waste after it is formed. 

2. Synthetic methods should be designed to maximise the incorporation of all 
materials used in the process into final product. 

3. Synthetic methodologies should be designed to use and generate substances 
that possess little or no toxicity to human health and the environment. 

4. Chemical products should be designed to preserve efficacy of function while 
reducing toxicity. 

5. The use of auxiliary substances (e.g. solvents) should be made unnecessary 
wherever possible, and innocuous when used. 

6. Energy requirements should be recognised for their environmental and 
economic impacts and should be minimised. Synthetic methods should be 
conducted at ambient temperature and pressure. 

7. A raw material of feedstock should be renewable rather than depleting 
wherever technically and economically practicable. 

8. Unnecessary derivation (e.g. protecting/deprotecting groups) should be 
avoided whenever possible. 

9. Catalytic reagents (as selective as possible) are superior to stoichiometric 
reagents. 

10. Chemical products should be designed so that at the end of their function they 
do not persist in the environment and instead break down into innocuous 
degradation products. 

11. Analytical methodologies need to be further developed to allow for real-time, 
in-process monitoring and control prior to the formation of hazardous 
substances. 

12. Substances and the form of a substance used in a chemical process should be 
chosen so as to minimise the potential for chemical accidents. 

 

 

In 2008, Poliakoff et al. proposed an updated list of the green engineering principles in order to 

homogenize green principles debate and communications across chemistry and chemistry 

engineering lectures [6].  

One of the principles in Anastas’s list, is the need to replace toxic and volatile organic solvents to 

safer and greener alternatives such as water, polyethylene glycol based solvents, ionic liquids 

(IL) and deep eutectic solvents (DES), among others.   

Ionic liquids are organic salts possessing a melting point below 373 K and many of them are 

liquids at room temperature (Room Temperature Ionic Liquids, RTILs). Considered the solvents 

of the future, these ionic liquids are constituted by ion pairs, cations and anions, providing them 
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unique properties and different applications from the common organic solvents. The number of 

possible combinations of cations and anions is very large allowing to change their thermal, 

chemical and electrochemical stability, as well as their high ionic conductivity leading to tuneable 

physical chemical properties [7]. Figure 1.1 shows some of the cations and anions mostly used. 

 

 
Figure 1.1 - Cations and Anions most commonly used in ILs 

 

In the last decades, several applications of the ILs have been published, for instance, in the 

separation of azeotropic mixtures and copolymerization of epoxides and CO2 [8] [9]. 

Ionic liquids have also been reported for acting as good catalysts in several organic reactions, 

including Friedel Crafts reaction, Diels-Alder reactions, polymerization and other reactions [10]–

[12]. The fields of application of ILs includes organic chemistry and catalysis (as alternative 

solvents and chiral catalysis), analytical chemistry (for HPLC, GC-MS and NMR as additives), 

electrochemistry (as electrolytes), pharmaceutical chemistry (as solvent for synthesis of APIs and 

pharmaceutical drugs based ILs, API-ILs), chemical engineering (selective separations and 

extraction processes), biochemistry (dissolution and stabilization of proteins) and material science 

(task-specific ILs as functional materials incorporating luminescent, magnetic, chromogenic and 

other functionalities) and more recently energy applications (lubricants, fuel cells and batteries). 

But the top priority in Green Chemistry agenda, which is holding the attention of various sectors 

of the society is related with principle number 7. In fact, generalized concerns about the depletion 

of fossil fuel resources is driving a strong R&D effort on the search of alternative carbon 

feedstocks. Carbon dioxide (CO2) which is released in many combustion processes can be a 

possible source. 

Many methods have been developed over the last years for the utilization of CO2 as chemical 

feedstock, but only 1% of total CO2 on earth is actually being used. This is mainly due to its 

inherent chemical inertness, which has been preventing its widespread utilization as a chemical 

reactant.  
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1.2 Carbon dioxide utilization 
 

Carbon dioxide (CO2) is one of the earth’s primary greenhouse gases and it is also the most 

abundant waste produced by human activities. The greenhouse effects are known as the main 

cause for global heating which results in climate change and possibly harmful effects for earth’s 

ecosystems, biodiversity and humans worldwide. On the other hand, CO2 is also non-toxic, non-

flammable and generally regarded as safe by the FDA, it is widely used in the food industry, 

namely in the production of carbonated beverages, baking powder, coffee decaffeination and TCA 

extraction from cork stoppers. In this latter case, supercritical CO2 (scCO2) seems to be in fact 

the only solution to eliminate TCA from cork stoppers, while maintaining fundamental properties 

of this unique material. The application of CO2 as a green solvent makes it possible to use CO2 

with no environmental detriment, if it could be withdrawn from the environment, employed in a 

process and return to the environment clean.  

Another strategy is the utilization of CO2 as C1 feedstock to produce useful compounds, which 

has attracted increasing interest from the scientific community. Its non-toxicity, availability, low 

cost and abundance, make it ideal to produce chemicals with alternative and sustainable carbon 

resources. The possibility to replace toxic chemicals such as phosgene, isocyanates and carbon 

monoxide makes carbon dioxide really important from an economic and ecological point of view 

[13][14]. 

The use of CO2 as a carbon feedstock for the chemical industry is not expected to have impact 

on its mitigation due to the differences between worldwide production of chemicals and CO2 

emissions. 

Nevertheless, this strategy can provide access to valuable products from a low-cost and abundant 

carbon source. 

 

1.2.1 The	use	of	CO2	as	supercritical	solvent	

 

Back in the mid 80’s, supercritical technology was emerging. It was a technology that was proving 

to be useful in the industry sector. The first scCO2 applications were the extraction of caffeine 

from coffee beans, oils from natural products and many others [15]. 

Supercritical fluids (SCF), are not liquids, gas or solids, they rather stand between liquid and gas 

gaining different properties and behaviours from these two conventional phases of matter. 

Scientific community seems to show growing interest in this technology, as over the past decades 

a significant growth in publications about SCF have been reported [15][16]. When at a certain 

temperature and pressure, every stable compound can attain the so-called, critical point as 

illustrated in  Figure 1.2. 
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Figure 1.2 – CO2 phase diagram [17] 

 

Above this point, there is no distinction between liquid-gas phase of the substance. With minor 

changes on the pressure and temperature, different SCF densities can be obtained. CO2 has its 

critical point, temperature and pressure, easily attainable of 304 K and 7,38 MPa. Carbon dioxide 

behaves like a gas at room temperature but once its pressurized while being heated, it reaches 

its supercritical state, acquiring unusual proprieties such as high compressibility. In the presence 

of organic solvents scCO2 expands changing its viscosity, density, polarity and catalyst solubility 

[18]. Its low toxicity, low price, natural abundancy and being “Green Solvent” make it a useful and 

promising green solvent, especially as solvent in extraction processes. Currently used in catalysis 

and oxidation reactions as alternative solvent or efficient extraction methodology [19]. 

 

ScCO2 can also be combined with ILs in the implementation of process intensification strategies. 

One example was published in 2011 by Branco et al., using of chiral ionic liquids in asymmetric 

dihydroxylation of olefins with supercritical CO2, as an efficient extraction media [20]. With the 

combination of ionic liquids and supercritical CO2 there are numerous advantages since the ionic 

liquids show no solubility in scCO2 and at the same time scCO2 is soluble in most ILs making 

possible to extract numerous organic products [20]. Furthermore, the ionic liquid phase containing 

the catalyst can later be reused in subsequent reaction/extraction cycles, as presented in Figure 

1.3. When a mixture of catalysts dissolved in the IL together with products and reactants (P+R) 

is pressurized with scCO2 an atmosphere of scCO2 separating P+R from catalysts is formed. 

While the scCO2 is added, it creates an atmosphere in which the P+R are soluble but the mixture 

with IL and catalyst is immiscible. During decompression CO2 drags P+R to a trap covered in ice 
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in order to precipitate P+R. The IL, together with the catalysts, remains in the apparatus 

continuously activating the catalysts until another load of P+R.  

Extraction through scCO2 has been recently used in decaffeination, extraction of natural products 

and dry cleaning [21] [22]. 

 

 
Figure 1.3 -  Product recovery using scCO2-IL biphasic system with ionic liquid/phase catalyst 

recycle [20] 
 

1.3 CO2 as carbon feedstock 
 

Over the past decade, extensive studies for the development of methodologies to use CO2 as a 

chemical reactant have been made. The challenging task to overcome the thermodynamic 

stability of CO2 is finally presenting its results. Carbon dioxide is becoming a useful chemical 

feedstock with different applications [23]. In fact, CO2 valorisation may reduce world dependence 

on fossil fuels, providing a secure supply of carbon. With low free energy, carbon dioxide needs 

to react with high free energy substrates because its utilization and activation is still problematic 

[23]. 

Valorisation of CO2 is currently receiving growing interest from the scientific community, where 

the search for new applications and reactions continues. Some example reactions are the 

reduction of CO2 with H2 to yield methanol or formic acid and the formation of cyclic or polymeric 

carbonates, just to name a few [13]. The overall perspective of chemical fixation and utilization of 

CO2 can be seen in Figure 1.4 [24]. 
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Figure 1.4 - Examples of chemical fixations with CO2 [24] 

 

In1969, Inoue et al., firstly reported the reaction between CO2 and epoxides to produce high 

quality polymers [25]. Polycarbonates, a secondary product, can be derived from fossil fuels or 

produced via synthetic route. When derived from fossil fuels, it derives from bisphenol A and 

requires phosgene to react forming the polycarbonate. However, phosgene is toxic and bisphenol 

A is non-environmental friendly as it derives from fossil fuels and so carbon dioxide is the 

preferable alternative in these reactions.   

 

Another possible secondary product obtained with the coupling reaction of CO2 with epoxides are 

cyclic carbonates (CC), as presented in Figure 1.5. Cyclic carbonates have an important role 

nowadays in green chemistry as they can be used as green solvents with useful properties such 

as high boiling point, high polarity and low vapour pressure. They can also be used as electrolytes 

in Li-ion batteries, aprotic polar solvents  as well as intermediates in the synthesis of polymeric 

and fine chemicals [26]. 

 
Figure 1.5 - CO2 addition to propylene oxide 
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The “greenness” of these alternative reactions with CO2 fit in “Green Chemistry” philosophy since 

the use of common volatile organic solvents is avoided. Moreover, most of these reactions have 

no waste formation with the addition of being atom economically viable with 100% incorporation 

of CO2 in the final product.  

However, some of these reactions require catalysts and the further sections will closely describe 

its effect and contribution to the reaction process. 

 

1.4 Catalysis as key technology for CO2 conversion 
 

Today, the chemical industry production is using processes which are catalytic cycles. The 

objective is to recycle the catalysts as it bonds to the reactants, allowing these to react to a 

product, and recycle the catalyst once the reaction is complete. The catalyst is left unaltered and 

available for the next reaction/cycle [27].  

There are two types of catalysis, homogeneous and heterogeneous. The difference relies on 

whether the reactant and catalyst are in the same phase, liquid or gas, or not [27].  

As stated before, in homogeneous catalysis, both the reactant and catalyst are in the same phase, 

most commonly liquid. Although homogeneous catalysis has a better catalytic activity in terms of 

catalysts, heterogeneous catalysis allows the reutilization of the same catalysts without loss of 

activity, in a finite number of cycles. This approach can avoid the waste formation as usually once 

a catalyst is no longer active it goes to waste causing pollution. The choice of catalyst is very 

important in homogeneous catalysis, it is possible to choose a preferable product in a reaction by 

changing ligands around the centre metal, usually a metal ion. Besides metals, catalysts can be 

Lewis acids (Diels-Alder reaction), porphyrin complexes (epoxidations), enzymatic processes, the 

usual acid and base reactions and at last, coordination complexes (polyester condensations) [28]. 

In the case of heterogeneous catalysis, the great majority of catalysts are solid whereas the 

reactants are most commonly liquids. Two distinguish phases allow purification techniques such 

as extractions, filtration as well as applications in silica chromatographic columns. 

Nowadays, catalysis is considered indispensable in the industry. Fine chemical producers now 

invest in the use of catalytic conversions in their processes. Homogeneous and heterogeneous 

catalysts are being used for cycloaddition of CO2 to epoxides and conversion of petrochemicals 

[28]. Figure 1.6 shows how a catalyst lowers the substantial energy that molecules must overcome 

when bonding. In the presence of catalyst, there is a much more complex route, yet more 

energetically favourable [27]. 

 



 
 

9 
 

 
Figure 1.6 - Catalysts effect on reactions 

 

In Figure 1.6, a representation about the catalyst function and its influences in the reaction, by 

lowering the activation energy needed for A and B to react to produce P. The actual definition for 

catalyst is: “A catalyst is a substance which increases the rate at which a chemical reaction 

approaches equilibrium without becoming itself permanently involved.”. In order to not get 

involved, there must be a catalytic cycle which regenerates the catalyst as the reactions occur. 

The aim is to recycle the catalyst as many times as possible, with high yield catalytic conversions, 

while remaining active and without formation of by-products. The catalyst needs to be activated 

for the catalytic cycle to start and once activated it can be present in different intermediate forms. 

Considering the number of times, a catalyst can cycle through its intermediate phases, we can 

calculate its turnover number (TON). Turnover number (TON) is calculated using the total number 

of substrate molecules that a catalyst converts into product molecules. Whereas, turnover 

frequency (TOF) is calculated with TON but in a certain amount of time [28]. 

In catalytic systems using scCO2, the synthetic path depends on the catalyst but also on the 

substrate and reaction conditions [29]. 

The reaction of CO2 with epoxides is one of the examples of a possible catalytic system, in this 

reaction, there can be two products: cyclic carbonates and polycarbonates. Depending on the 

catalyst, products can choose a preferable synthetic route. Catalysts differ from homogeneous 

catalysts and heterogeneous catalysts. Homogeneous catalysts have being widely used in 

cycloaddition of CO2 to epoxides as they are the most active and selective for this reaction [30]. 

Pescarmona et al. [29] recently used a method to classify homogeneous catalysts, through their 

number of metal atoms involved in the catalytic cycle: Monometallic pathways, Bimetallic 

pathways and Non-metallic pathways. This method will be applied in the next chapter when 
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discussing catalysts more deeply. In case of cycloaddition of CO2 to epoxides, most proposed 

mechanisms are monometallic, as presented in Figure 1.5.  However, there are other applications 

for these catalysts and how can they relate in reaction.  Active homogeneous catalysts can be 

used with heterogeneous catalysts when coupling CO2 to epoxides, it requires immobilizing the 

active homogeneous catalyst on the surface of a support [29][31]. Some of the currently used 

supports are polymers or silica-based materials [32]. 

Heterogeneous catalysts have been studied less intensively than homogeneous catalysts as their 

design flexibility is not as wide as in homogeneous catalysts. Although selectivity and activity of 

both catalysts can compete, the restricted type of metal complexes used with heterogeneous 

catalysts cannot match its counterpart. The requirement of a material that is readily reused make 

its metal complexes limited in terms of design [29][30]. 

 

1.4.1 Homogeneous Catalysts 
 

1.4.1.1 Homogeneous Mono-Metallic Pathways 
 

As stated before, most mechanisms for the coupling reaction of epoxides and CO2 with 

homogeneous catalysts follow a mono-metallic pathway. Studies have been made to confirm the 

exact mechanism in these reactions and it came to light that it depends on the substrate and 

reaction conditions. Another important aspect, is the presence or not of a co-catalyst, acting as a 

nucleophile to help activating the epoxide or ending chain polymer reactions. These activation 

step relies on the metal complex as it can activate the CO2 molecule, the epoxide or both 

molecules at the same time. This activation of the epoxide is only possible when one of the 

epoxide’s oxygen atoms interacts with the Lewis acid centre of the metal complex. Then, the 

presence of the nucleophile ligand, or nucleophile co-catalyst, induces the ring opening from the 

epoxide by nucleophilic attack. Some metal complexes, also referred as catalysts, can include a 

ligand that works as a nucleophile [29]. The most assumed mechanism for this reaction is shown 

in Figure 1.7, where the metal complex is used in a combination with a nucleophile, also referred 

as co-catalyst.  
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Figure 1.7 - Mono-metallic pathway of CO2 addition to epoxides [30] 

 
As described before, the first step consists on activating the epoxide by coordination to the Lewis 

acid metal centre, followed by the nucleophile attack in order to open the epoxide ring and 

formation of the metal-bound alkoxide (structures 1 and 2). Then, carbon dioxide molecule gets 

inserted into the metal alkoxide bond resulting in a metal carbonate intermediate (structure 3) 

which can either evolve towards a cyclic carbonate or propagate by continuous addition of 

epoxide and CO2 resulting in polycarbonate. 

Another possible mechanism has been proposed for metal salen complexes involving two 

nucleophiles. Salen complexes are characterised by a planar configuration with a tetradentate 

coordination of the salen ligand [29]. 

 

1.4.1.2 Homogeneous Bi-Metallic Pathways 
 

The most assumed and common mechanism for the addition of CO2 to epoxides is the mono-

metallic mechanism with one metal centre being involved in the reaction. However, Pescarmona 

describes other metallic mechanisms depending on the number of metal centres involved. In bi-

metallic mechanisms two active metallic centres are required, where both metallic centres can be 

part of the same single complex or the reaction can involve two distinguish mono-metallic 

complexes.  

When considering two separate metal complexes in a bimetallic pathway, the mechanism is 

inspired in the asymmetric ring opening of epoxides [33]. This intermolecular reaction mechanism 

is very similar with the mono-metallic, differing on the fact that the ring opening of the epoxide 

involves the activation of the epoxide, by coordination on the metal of the first complex at the 

same time as the attack of the nucleophile coordinated to a second metal centre. This bi-metallic 
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initiation is followed by a mono-metallic pathway as described before. For a better understanding, 

Figure 1.8 shows a plausible mechanism when considering two different metal complexes in 

addition of CO2 to epoxides. 

 

 
Figure 1.8 - Bi-metallic mechanism for the coupling reaction of CO2 and epoxide [30] 

 

In contrast with the previous mono-metallic mechanism, some metal complexes can contain two 

neighbouring metal centres allowing the activation of both CO2 and epoxide simultaneously. 

Activating both species promotes the intramolecular nucleophilic attack of the alkoxide to the 

carbon atom of the activated carbon dioxide molecule. As shown in Figure 1.8, the key steps in 

this mechanism are the formation of an alkoxide intermediate bonded to one of the metal centres, 

after the ring opening of the epoxide, and the coordination of carbon dioxide to the second metal 

centre followed by an intramolecular nucleophilic attack of the alkoxide to the coordinated carbon 

atom in carbon dioxide.  

Accordingly to North et al., this mechanism was proposed to explain the improved catalytic activity 

of bi-metallic [Al(salen)]2O complexes compared to monometallic salen complexes [9]. Bi-metallic 

aluminium (salen) complexes display high catalytic activity for the conversion of terminal epoxides 

into cyclic carbonates at room temperature.  

In 2010, published works were extensively revised by North et al. as well as in 2015 by Martin et 

al [9] [34]. Salen and salphen metal complexes were studied among the different homogeneous 

catalytic systems active for cyclic carbonate formation as active catalysts for direct CO2  coupling  

with epoxides [34]. These catalysts are characterized by their easy preparation and versatility. 

The variation in the type of active metal centre and possibility of direct inclusion of a nucleophilic 

co-catalyst are some of the tuneable features of these catalysts, allowing for large-scale synthesis 

and potential commercial applications. Kleij’s group, in 2012, reported an active mononuclear 
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Zn(salphen) complex towards CO2 coupling with terminal epoxides. The metal complex showed 

high activity due to the constrained geometry imposed by the ligand scaffold which grants 

increased Lewis acid character to the catalytically active Zn ion [35]. 

The ideal catalytic system allows the reutilization of catalysts with high yields, conversions 

together with an extraction method that allows the extraction of products. 

 

1.5 Room Temperature Ionic Liquids as catalysts in the 
coupling reaction between CO2 and epoxides 
 

The introduction of ionic liquids (ILs) in catalysis, allows the continuous activation and reutilization 

of catalysts.  

In 2001, Peng and Deng, published the first successful synthesis of cyclic carbonate using RTILs 

of imidazolium and pyridinium salts [36]. The use of traditional solvents does not always benefit 

the reaction of CO2 and epoxides due to the lower solubility of the CO2 in common solvents. The 

combination of scCO2 and ILs has already been studied in many phase equilibria systems and it 

concluded that CO2 possess high solubility in RTILs however RTILs are not soluble in scCO2. This 

observation allows the extraction of reaction products without contamination from the IL and a 

possible reutilization of the catalysts. The advantages of using scCO2 together with the ILs are 

several. For instance, it can combine homogeneous and heterogeneous catalysis maintaining 

both its intrinsic characteristics. A selected IL might be immiscible with reactants and products 

however, it can solubilize the catalyst and make it more active during the reaction [37]. 

Considering the applications of RTILs to the copolymerization of epoxides and CO2, Figure 1.9 

illustrates a plausible mechanism for the reaction with ILs, where X- is a common anion and [cat+] 

a common cation. 

 
Figure 1.9 - Plausible mechanism for the CO2 cycloaddition to epoxide catalyzed by IL [38] 
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In this mechanism, the reaction is initiated with the nucleophilic attack from the anion of the IL to 

the less hindered carbon atom of the epoxide ring. The attack causes the opening of the epoxide 

ring and leads to the formation of the oxy-anion between oxygen and [cat+]. The added CO2 will 

interact with the oxy-anion producing an alkylcarbonate anion. The last step is the cyclic 

carbonate formation with an intermolecular cyclic elimination of X- [38]. 

 

1.5.1 DES	–	Deep	Eutectic	Solvents	

 

Recently, deep eutectic solvents (DESs) have been described as subclass of ionic liquids sharing 

many characteristics and properties with ILs. Yet, it is necessary to point out that these are two 

different types of solvents with different kinds of applications. DES are systems formed from a 

eutectic mixture of Lewis or Brønsted acids/bases which can contain anionic and/or cationic 

species; in case of IL, they are formed from systems composed primarily of one type of discrete 

anion and cation [39]. Although their physical characteristics are similar, the same cannot be said 

from their chemical properties, resulting in different applications.  

The production of DESs involves the simple mixing of the two components, usually with moderate 

heating. In 2004, Abbott et al., firstly reported the formation of deep eutectic solvents based on 

mixture between choline chloride and urea (1:2) as an alternative to ionic liquids [40]. They are 

usually obtained by the complexation of a quaternary ammonium salt with a metal salt or hydrogen 

bond donor (HBD). The charge delocalization occurring through hydrogen bonding between for 

example a halide ion and the hydrogen-donor moiety is responsible for the decrease in the melting 

point of the mixture relative to the melting points of the individual components [41]. 

Abbott & Smith et al. recently published their studies on some DESs and their applications, they 

came up with a general formula that describes DESs [39]: 

!"#$%&'	)	 
Equation 1.1 - DESs general formula 

 

Considering CAT+ is any ammonium, phosphonium or sulfonium cation, and X being a Lewis 

base, most commonly an halide anion, the complex anionic specie is formed by the X- and either 

a Lewis or Brønsted acid Y. Where z is the number of molecules of Y that interact with the anion. 

Depending on the nature of the complexing agent used, DES can be classified differently. 
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Figure 1.10 – Different types of DES [39]  

 

 Depending on the formation of DES, its applications vary, due to different physicochemical 

properties. Figure 1.10 shows the how DES were grouped accordingly with their nature of 

complexing agent [39]. When DES are formed from MClx and quaternary ammonium salts, we 

consider them type I, as they are analogous to the metal halide/imidazolium salt well known 

systems. Type II DESs, hydrated metal halides and choline chloride, wide the scope of DES as 

the range of non-hydrated metal halides with low melting point is limited (type I). Type III eutectics 

are formed between choline chloride and hydrogen bond donors (HBD) [39]. Some of the 

quaternary ammonium salts and hydrogen bond donors typically used in nowadays research are 

represented in Figure 1.11.  
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Figure 1.11 - Typical halide salts and HBD structures [41]. 

 
Tetrabutylammonium bromide (TBABr) is currently emerging as one of the most promising 

ammonium salts and it is a valuable source of bromide and can be used as an IL. It is cheap, 

environmentally friendly and possess great selectivity [42].  
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2. MATERIALS AND METHODS  
 

2.1 Materials 
 

All reagents, solvents and chemicals were used as received after being bought or kept in storage 

without further purification. Carbon dioxide (99,998 mol% purity) was supplied by Air Liquid. 

Propylene oxide (90% purity) was purchased from Sigma-Aldrich as well as ethyl lactate, methyl-

ethyl-ketone. All metal complexes were synthesized by the Coordination Chemistry and Catalysis 

Research Group from IST-UL. All ionic liquids and DESs were synthesized by Solchemar Lda. 

Compounds ([N1,1,2,2OH]Br) and ([N1,6,2,2OH]Br) were synthesized in FCT-UNL lab 4.10 by 

Andreia Forte[43]. The of list of reagents is presented on Table 2.1. 

 
Table 2.1 - List of Ionic liquids and DES used 

 

Name Structure 

Tetrabutylammonium Chloride 

[TBA]Cl 

 

Tetrabutylammonium 

Bromide 

[TBA]Br 
 

[EthylMethylimidazolium] 

[EMim+] 
 

Trifluoromethanesulfonate  

 (Otf) 
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Tetracyanoborate (B(CN)4) 

 

Bis(trifluoromethylsulfonyl)amide  

(NTf2) 
 

Bis(triphenylphosphine)iminium 

chloride (PPNCl) 

 

EthylSulfate 

(EtSO4) 

 

 

 

[N1,1,2,2OH]Br  

 

 

[N1,6,2,2OH]Br 
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Methyltrioctylammonium Chloride 

(ALIQUAT 336 – [N1,8,8,8]Cl) 

 

Eutectic mixture 

Choline: Urea (1:2) 

 

DES 

ZnCl2:EG 

1:4 
ZnCl2 +  

DES  

[TBA]Br:EG 

1:6 + 

 
 

In Figure 2.1, Figure 2.2 and Figure 2.3 are represented the catalysts used during the thesis work. 

Hence the difference between structures and the number of metal centres in each catalyst. 

 
Figure 2.1 - Catalyst ZnR11 MW=631g/mol [44] 
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Figure 2.2 - Catalyst ZnR29 MW=683g/mol [44] 

 

 
Figure 2.3 - Catalyst ZnR236 MW=1851g/mol [44] 

 

2.2 Experimental Apparatus 
 

All reactions were performed in a high pressure apparatus available at the host laboratory. The 

experimental apparatus consisted in a stainless steel cylindrical cell with two sapphire windows 

and an internal volume of approximately 5 cm3. The sapphire windows allow the visualization of 

the phases in equilibrium during the reaction. A magnetic bar was used to stir the reaction mixture 

inside the cell. A thermostated water bath, previously heated, maintained the temperature within 

±0,1ºC. The pressure in the cell was measured with a pressure transducer 204 Setra calibrated 

between 0 MPa and 34.3 MPa (precision: 0,1 %; accuracy: 0.15 % at the lowest pressure). Figure 

2.4 shows a representation of the experimental apparatus with the cell underwater.  
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Figure 2.4 - Experimental apparatus with a reaction mixture load 

 

 

2.3 Methods 
 

2.3.1 General	Procedure	

 

The catalyst and co-catalyst were first dissolved in the substrate (14.3 mmol of propylene oxide). 

The amount of co-catalyst varied between 0.1% to 1% (molar) relatively to the oxide. Whenever 

used, the volume of solvent added (ionic liquid or PEG), was 1 mL. All mixtures were prepared 

gravimetrically using analytical balance (Sartorius model R180D) with the precision of ±0.0001 g.  

The stainless steel cylindrical cell was closed with 2 inner O-rings, 2 sapphire windows, 2 outer 

O-rings and 2 rings of stainless steel to assure no leaks. The cell was then immersed in the 

thermostated water bath. Operating a CO2-compressor, the desired pressure was brought into 

the cell, as described in detail elsewhere [45]. 

Temperature and pressure were controlled and a magnetic stirring plate was kept sure to remain 

active during the reactions. In the end of the reaction, the cell was slowly cooled outside to reduce 

the pressure inside. Upon reaching around 2 MPa (20 bar), the cell was depressurized to 

atmospheric pressure. During depressurization, the tube exit was introduced in a glass trap, under 

a bath of ice in order to collect possible material dragged along with CO2.  

Part of the reaction mixture was collected in the glass trap and the cell opened to collect the 

remaining. Both contents of the cell and glass trap were mixed and prepared for further analysis 

as follows. 1H-NMR and 13C-NMR were analysed from the reaction mixture transferred into an 

NMR tube, to which 0.4 mL of mixture obtained and 0.1 mL of chloroform-d1 were used. 1H-NMR 

were recorded on Bruker 500 MHz type (400 MHz). Chloroform-d1 has a known peak frequency 

of 7.26 ppm and so other peaks frequencies were compared to it. Integration of the relevant peaks 
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from 1H-NMR for the epoxide propylene oxide and respective carbonate were calculated for 

formation determination. 

 

2.3.2 ScCO2	extraction	of	reaction	products	

 

Extraction experiments were performed using the same apparatus with some modifications. Two 

high-pressure valves were connected directly to the sealing system at the top of the reactor, and 

further connected to a trap immersed in an ice bath. The two high pressure valves were slowly 

released and manipulated to control the CO2 flow and maintain constant the pressure inside the 

system. Extraction experiments were carried out at 313,2 K and 11,5 MPa during approximately 

3 h. The obtained product is pure without contamination from the catalysts. 

 

2.3.3 Synthesis	of	DES	

 

The original method for preparing DES mixtures, was reported by Abbot et al.[40]. For the 

preparation of DES, two components must be mixed under mild heating and stirring. The salt and 

hydrogen-bond donor (HBD) were mixed in a round flask with a mechanical stirrer. The mixture 

was then heated to 343 K for 3 hours, while observing the formation of a colourless liquid 

representative of DES. Different molar ratio DES based on ZnCl2:EG (1:4), [TBA]Br:EG (1:6) and 

[TBA]Br:Gly (1:9) were prepared and used.  

 

2.3.3.1 Preparation	of	ZnCl2:EthyleneGlycol	(1:4)[39]	
For preparation of DES, were mixed 0.818 mL(14.7 mmol) of ethylene glycol and 0.5g(3.7 mmol) 

of ZnCl2 by heating at 343 K for 3 hours. 
 

2.3.3.2 Preparation	of	[Tetrabutylammonium]Bromide:EthyleneGlycol	(1:6)[39]		

For the preparation of DES, were mixed 0.518 mL(9.3 mmol) of ethylene glycol and 0.5 g (1.55 

mmol) of [TBA]Br in a vial with mixing and heating at 343 K for 3 hours.  

 

2.3.3.3 Preparation	of	[Tetrabutylammonium]Bromide:Glycerol	(1:9)[39]	

In order to prepare the DES, 1.154 mL(13.9 mmol) of glycerol were added to 0.5 g (1.55 mmol) 

of [TBA]Br in a vial with mixing and heating at 343 K for 3 hours. 

 

No purification step was needed in the preparation of the Deep Eutectic Solvents. 
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3. RESULTS AND DISCUSSION 
 

The work presented in this chapter was performed in collaboration with PhD student Ana Inês 

Paninho and part of it was submitted to the Journal of Supercritical Fluids. The reaction between 

CO2 and propylene oxide was selected as a model reaction due to simplicity of analysis and 

propylene oxide high reactivity. The further section will closely describe how the optimized 

conditions were determined, the effect of catalysts and co-catalysts and finally the use of ionic 

liquids and DES. 

 

3.1 Reaction conditions  
 

All product formations were determined by analysis of the reaction solution through 1H-NMR 

spectroscopy. A 1H-NMR model spectra including the characteristic peaks of the protons from the 

propylene epoxide and propylene carbonate is presented in Figure 3.1. Propylene oxide and 

cyclic carbonate both possess six protons (H), considering the following chemical shifts:  

Propylene oxide (a) 1.01 (d, 3 h) in the case of methyl group, (b) 2.11 (m,1H) as a single proton 

from CH; (c) and (d) 2.42 (m,1H) and 2.67 (m, 1H) as two protons from CH2 of the compound;  

Cyclic carbonate (a´) 1.28 (d, 3 h) related to methyl group, (b´) 3,84 (m, 1H) for CH of the cyclic 

structure and the (c´) and (d´) corresponding to 4.36 (m, 1H) and 4.70 ppm (m,1H) respectively 

for CH2 of the compound.  

It is clear a significant difference of chemical shifts in the case of CH and CH2 of both structures 

allowing to determine the final product conversion of each reaction by NMR. 

 

a´ 

a´ 
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Figure 3.1- 1H-NMR of propylene oxide and cyclic carbonate overlapped 
 

Depending on the selected reaction operatory conditions and type of catalyst employed, the 

reaction can also produce some quantity of polycarbonates. In the case of carbonates derived 

from propylene oxide, selectivity towards cyclic or polymeric product can also be determined by 
1H-NMR spectroscopy, because chemical shifts do not overlap, as already indicated for the 

cyclohexene oxide. Another possible product from the coupling reaction of epoxides is the 

polymer poly(propylene carbonate) with chemical shifts also different from the reagent but difficult 

to analyse, as presented in Figure 3.2. 

 
Figure 3.2 - Polymer poly(propylene carbonate) 1H-NMR spectra 

 

3.1.1 Pressure	Influence		

 

Following previous studies performed in the host laboratory, a Zn(II) complex of arylhydrazones 

of ß-diketone was used as catalyst in combination with tetrabutylammonium bromide [TBA]Br. An 

important feature of this type of metal complexes is based on easily preparation and handling. In 

the present work, propylene oxide was studied and results obtained compared with those 

previously reported for styrene oxide [44]. 

For selected model reaction, the temperature was kept stable (333 K or 353 K) and 0.25 mol% of 

the catalyst ZnR236 was added in all reactions. Table 3.1 and Table 3.2 showed the influence of 

different pressures. The pressure influence at 333 K was more significant comparing to 353 K as 

indicated in both tables. 
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Table 3.1 - Pressure influence at 333 K during 3 h with 0.25 mol% catalyst and 1 mol% [TBA]Br 

Pressure  
(MPa) 

Cyclic carbonate 
formation  

(%) 

0.5 52 

4 68 

8 38 

18 31 

 

 
Table 3.2 - Pressure influence at 353 K during 3 h with 0.25 mol% catalyst and 1 mol% [TBA]Br 

Pressure  
(MPa) 

Cyclic carbonate 
formation  

(%) 

0.5 97 

4 98 

8 97 

18 94 

 

 

Figure 3.3 illustrates the comparable influence of pressure at two different temperatures (333 and 

353 K). High formation percentage of cyclic carbonate was obtained in the case of reactions 

performed at 353 K. Due to higher temperatures, we could not precise the pressure influence (94 

to 98% of conversion). However, at 333 K, the results indicated us a strong pressure influences 

where the highest formation of cyclic carbonates was obtained using 4 MPa (68% of conversion). 

In order to determine the best reaction conditions, the effect of CO2 pressure for two different 

temperatures have been studied.   
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Figure 3.3 - Pressure influence comparison at 333 K and 353 K during 3 h with 0.25 mol% catalyst 
and 1 mol% [TBA]Br 

 

At 353 K, the cyclic carbonate formation was high. A plausible explanation for the result at 18MPa 

and 333 K is that using this pressure a fluid expansion can be expected, resulting in lower 

conversions of cyclic carbonate formation. This drastic volume expansion of the epoxide, is 

responsible for the precipitation of the catalyst [44]. This change in the catalyst phase can be 

observed through the reactor sapphire window as seen in Figure 3.4. 

 
Figure 3.4 - Precipitation of the catalyst phase during CO2 pressurization 

 

With the expansion of the liquid epoxide due to CO2 pressurization, a melted [TBA]Br phase in 

which the metal complex is apparently dissolved is formed. The catalyst is not so active in this 

melted phase resulting in lower formation of cyclic carbonate.  

 

3.1.2 Temperature	Influence	

 

As stated before, along with pressure, temperature is one of the most relevant parameters to 

achieve high conversions in these reactions. The pressure (4 MPa) was kept stable during the 

reaction, as well as reaction time (3 h of reaction). For the studies about temperature influence, 

the catalyst tested was ZnR236 (0.25 mol%) plus [TBA]Br (1 mol%) in all reactions. Different 

temperatures were studied and it was possible to conclude that, higher the temperature, higher 

the % of cyclic carbonate formation. Results are presented in Figure 3.5. The apparatus was 

limited to 353 K as the maximum temperature operable.  
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Figure 3.5 - Cyclic carbonate formation relatively to temperature with 0.25 mol% catalyst and 1 

mol% of [TBA]Br, 4 MPa, 3 h.  
 

In Figure 3.5, as the temperature rises, the plot shows that the cyclic carbonate formation 

increases attaining high % of cyclic carbonate formation (98% at 353 K). Furthermore, the activity 

of the combination of catalyst used was investigated at very mild operatory conditions. Results 

are presented in Table 3.3. Reactions at 293K showed lower conversion percentages compared 

to reactions at 323K. Ii seems that higher pressure values allow to achieve higher conversion of 

desired product (as illustrated in Table 3.3 and Figure 3.6). 

 
Table 3.3 Cyclic carbonate formation comparative study with 0,5 MPa and 4 MPa at 293.2K and 

323.2K with 0.25 mol% catalyst and 1 mol% [TBA]Br during 24h   

Temperature  
(K) 

Pressure 
 (MPa) 

Cyclic carbonate 
formation  

(%) 

293.2 0,5 24 

323.2 0,5 86 

293.2 4 72 

323.2 4 89 
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Figure 3.6 - Comparison on the cyclic carbonate formation with 0.05 MPa and 4 MPa at 293K and 

323K with 0.25 mol% catalyst and 1 mol% [TBA]Br during 24h 
 

As it can be observed, even at room temperature and very low pressures, the catalyst system is 

still active with a conversion percentage of 24%. However, by increasing pressure, the conversion 

percentage increases until 72% at room temperature and 4 MPa as ideal value of the optimized 

pressure. When temperature is increased to 323K, the conversion yield increases to 86%. 

Another approach was to study the reaction conversion with 4 MPa at 323K in order to find the 

optimized conditions. Results showed an increase of 3% from 86% to 89% cyclic carbonate 

formation at 323K.  With all the data collected presented in Table 3.3, we concluded that the 

catalytic system is active at mild conditions. In order to achieve high % of cyclic carbonate 

formation, longer reactions times (24 hours) were needed. Since the reaction is sensitive to 

pressure at lower temperatures, the standard temperature was set to 353.2K in order to avoid 

longer reaction times. 

 

 

 

3.1.3 Effect	of	the	catalyst	ZnR236	

 

The amount of catalyst ZnR236 necessary for the reaction was studied. In order to find the 

optimized amount of catalyst, different molar ratios were studied. The reactions were performed 

with 1 mol% of [TBA]Br at 353 K with 4 MPa during 3 hours. The results are presented in Table 

3.4 and Figure 3.7. 
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Table 3.4 ZnR236 catalyst mol% study with 1 mol% [TBA]Br at 353 K, 4 MPa during 3 h 
 

ZnR236 (mol%) 
[TBA]Br 
(mol%) 

Cyclic carbonate 
formation 

 (%) 

0 1 24 

0.05 1 95 

0.1 1 99 

0.25 1 92 

 

 
Figure 3.7 - Cyclic carbonate formation relatively to ZnR236 presence with 1 mol% of [TBA]Br at 

353 K with 4 MPa during 3 h 
 

Results showed that with 0 mol% of catalyst, there is 24% of cyclic carbonate formation due to 

the presence of [TBA]Br in the reaction mixture. As described in chapter 1.5, ionic liquids can 

catalyse the reaction following the mechanism presented in Figure 1.9. The introduction of 

ZnR236 in the reaction mixture lowers the activation energy barrier necessary for the reaction to 

occur, as it coordinates with the epoxide. Catalyst molar ratio showed great importance in the 

coupling reaction, as Table 3.4 shows, where from 0% to 0.05% the cyclic carbonate formation 

increased from 24% to 95%, indicating that with higher molar ratio of catalyst in the reaction 

mixture, higher the formation of cyclic carbonate formation. With the increasing molar ratio from 

the catalyst, the amount of active sites in metal complexes increase. Therefore, there are more 

active sites to complex with the epoxide which results in a lower activation barrier, resulting in 

higher percentages of cyclic carbonate formation.  
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3.1.4 Effect	of	the	co-catalyst	Tetrabutylammonium	bromide,	[TBA]Br	

 

The effect of the co-catalysts was also studied. In order to find the optimum molar ratio between 

catalyst and co-catalyst, different mol% of co-catalyst were used. The data collected is presented 

in Table 3.5, where the variance of the molar ratio of the co-catalyst is showed, in Figure 3.8, a 

plot to a better understanding of the data.  

 

 

 
Table 3.5 - TBABr influence at 353 K, 4 MPa during 3 h with 0.05mol% of ZnR236 catalyst 

ZnR236 
(mol%) 

[TBA]Br (mol%) Cyclic carbonate 
formation 

(%) 

0.05 0 0 

0.05 0.2 73 

0.05 0.3 79 

0.05 0.4 92 

0.05 1 93 

 

 
Figure 3.8 – [TBA]Br influence at 353 K, 4 MPa during 3 h with 0.05 mol% of ZnR236 catalyst 

 

 

The plot shows how tetrabutylammonium bromide, [TBA]Br, affects the carbonate conversion, 

with higher molar ratio of [TBA]Br in the reaction, a higher cyclic carbonate formation percentage 

is obtained. With 0.4% of [TBA]Br the reaction reached 92% cyclic carbonate formation and so 

with 1% we were sure [TBA]Br percentage was optimized. No coupling reaction was observed in 
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the absence of [TBA]Br, making inevitable how important the presence of [TBA]Br is in the 

reaction. 

 

 
Figure 3.9 - Effect of the nucleophile 

 

Bromide is a good nucleophile and a good leaving group favouring the cyclic carbonate formation. 

Figure 3.9 shows the mechanism for the coupling reaction and the importance of the nucleophile 

in the reaction, in this case, bromide. The coordinated complex formed between epoxide and 

metal complex facilitates the nucleophilic attack of bromide to the tense and rigid 3-member 

epoxide ring. Tetrabutylammonium presence during the ring closing step promotes bromide as 

leaving group therefore enhancing the formation of organic cyclic carbonates. 

 

3.2 Catalysts 
 

After finding the optimized reaction conditions, the catalyst performance and effect was studied. 

In the present work, the type of catalysts are mainly arylhydrazones of ß-diketones (AHBDs) 

which are versatile compounds, easily modified. AHBDs can be easily prepared [41] [42]. As 

discussed before, metal centres, ligands, homo, hetero catalysts/catalysis have all a significant 

importance in the reaction yield and conversion. 

 

3.2.1 Different	metal	complexes	

 

The first condition studied was the use of different catalyst with different metal ions and metal 

centres. One important factor studied in these reactions was the steric hindrance of the catalyst 

when coordinating with the epoxide. The complex formed between the epoxide and the Lewis 

acid highly facilitates the nucleophilic ring opening of the epoxide [48]. Different metal ions will 

have different behaviours when coordinating with the epoxide. 
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Table 3.6 - Comparison between different metal ions at 333 K, 4 MPa during 3 h with 0.4 mol% 
[TBA]Br 

Catalyst Catalyst (mol%) Co-Catalyst (mol%) 
Cyclic carbonate 

formation  
(mol%) 

Only [TBA]Br 0 0.4 2 

CuR11 0.1 0.4 20 

ZnR29 0.1 0.4 27 

ZnR236 0.05 0.4 48 

ZnR11 0.1 0.4 41 

 

 
Figure 3.10 - Catalysts comparative study, all reactions were performed at 333 K and 4 MPa during 

3 h with 0.4 mol% of co-catalyst (TBABr) 

 
Figure 3.11 - Different catalysts studied ZnR11,29 and 236 and CuR11 [44] 

 

0
5

10
15
20
25
30
35
40
45
50

C
yc

lic
 c

ar
bo

na
te

 fo
rm

at
io

n 
%

Catalysts



 
 

33 
 

The main difference between ZincR11, R29 and R236 are the number of metal centres available 

in the complex, as presented in Figure 3.11, both ZnR11 and ZnR29 have two metal centres 

whereas ZnR236 has four metal centres. This was taken into consideration when calculating each 

catalysts mol% on the reaction since the reaction is very sensitive to proportion between 

components of the catalytic mixture. The proportion between co-catalyst and metal complexes 

highly affects the reaction yield and conversion and so it was kept the same ratio between all 

metal complexes and [TBA]Br. Results are shown in Figure 3.10. ZnR236 doubles the number of 

active metal centres when comparing with ZnR11 and ZnR29 metal complexes, enhancing the 

activity towards the formation of cyclic carbonate. The existence of four different active sites in 

the metal complex ZnR236, greatly enhances the results like Figure 3.10 shows. When comparing 

ZnR11 and ZnR29, which have 2 active sites in metal complex, their structures are very similar 

differing only in the groups complexed with Zn. A less steric hindrance complex enhances the 

results as well as groups that active the epoxide facilitating the attack from the nucleophile.  

  

 

3.3 Ionic liquids as solvents and co-Catalysts 
 

3.3.1 Effect	of	ILs	as	co-catalyst	and	solvents	in	the	reaction	

 

The effect of different co-catalysts was studied using 0.05 mol% of ZNR236 and 0.4 mol% of co-

catalyst, as presented in Table 3.6. All reactions were performed at 333 K and 3 h. 333 K was 

selected as the temperature at which 68% of carbonate formation was attained using [TBA]Br as 

co-catalyst (see Table 3.1). The choice of these conditions allows to observe both positive and 

negative effects of changing the co-catalyst. The presence of the co-catalyst is very important for 

the opening of the epoxide ring step since the co-catalyst will act as a nucleophile and will affect 

the formation of cyclic carbonate versus poly(propylene carbonate). 

  

Ionic liquids were firstly introduced in the reaction as co-catalysts. They were investigated in order 

to study their activity in comparison with [TBA]Br.  
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3.3.1.1 Comparing	different	anions:	Chloride	versus	Bromide	

 
Figure 3.12 - Study on the effect of the anion in the coupling reaction between propylene oxide and 

CO2 using 0.05% ZnR236 and 0.4% of co-catalyst at 333 K, 4 MPa and 3 h 
 

 

The effect of the anion bromide and chloride was compared as shown in Figure 3.12. 

Tetrabutylammonium bromide showed superior results, with 48% of cyclic carbonate formation 

whereas, tetrabutylammonium chloride showed results of 4%. The main difference in these two 

species is mainly the nucleophilicity of the anions and the leaving group capability of both species, 

bromide and chloride. Literature reports that the bulkiness of the tetrahedral ammonium ion forces 

the halide ion away from the cation, resulting in less electrostatic interaction between anion and 

cation which increases the nucleophilicity of the anion [38]. This explains the results obtained in 

the reaction, with [TBA]Br showing enhanced results when compared with [TBA]Cl. Being bulkier 

than chloride, when pushed away from the cation, bromide quickly reacts as a nucleophile by 

attacking the epoxide ring. Besides being a better attack nucleophile, bromide is also a better 

leaving group than chloride, leading to the formation of cyclic carbonate. 
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3.3.1.2 Comparing	 different	 cations:	 Tetrabutylammonium	 versus	 Ethyl-Methyl-

imidazolium	

Table 3.7 – Cation interference as co-catalyst in the coupling reaction with 0.05% of ZnR236 and 
0.4% of co-catalyst, at 333 K, 4 MPa, 3 h 

[TBA]Br 
(mol%) 

[EMIm]Br 
(mol%) 

Cyclic carbonate 
formation  

(%) 

0.4 - 48 

- 0.4 4 

 

 
Figure 3.13 – [TBA]Br and [EMIm]Br structures 

 

When studying the cation behaviour between [TBA] and [EMIm], the main difference is the 

stabilization of charge. When analysing [TBA] cation, it is bulky and so, as stated before, bromide 

is pushed away from the centre being more available for a possible attack on the epoxide. On the 

other hand, [EMIm] allows the stabilization of charge due to the ionic bonding between species. 

The strength of ionic bond between the planar five-member ring imidazolium and bromide is 

stronger than the interaction between [TBA] and bromide, so the halide ion is not as available as 

it is in [TBA], leading to a worse nucleophilic attack to the epoxide. In Table 3.7, [TBA] showed 

48% of cyclic carbonate formation, confirming the hypothesises that the bulkiness and charge 

stabilization do influence the cyclic carbonate formation percentage.  

 

3.3.1.3 Effect	of	non-halogenated	anions	

 
Table 3.8 – Anion interference as co-catalyst in the coupling reaction with 0.05 mol% of ZnR236 at 

333 K with 4 MPa during 3 h 
[EMIm]Br 

(mol%) 
[EMIm]Ntf2 

(mol%) 
[EMIm]B(CN)4 

(mol%) 
[EMIm]EtSO4 

(mol%) 
Cyclic 

Carbonate 
Formation  

(%) 

0.4 - - - 4 

- 0.4 - - 0 

- - 0.4 - 0 

- - - 0.4 0 
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Figure 3.14 – [EMIm] structure and its correspondent anions Ntf2, B(CN)4 and EtSO4 structures 

 

The ion bromide showed its importance again when studying the anion interference in the cyclic 

carbonate formation. Table 3.8 shows that [EMim]Br had with the highest percentage inside the 

[EMim] group, with 4% cyclic carbonate formation. Bromide’s bulkiness and nucleophilicity are 

two factor to take in consideration when analysing the other anion species. In some cases, groups 

are very large making it hard for the negative charge to be available, in order to attack the epoxide 

ring. Other possible explanation is the electronegativity of the anion studied, some groups are not 

as electronegative as bromide and so the negative charge is not strong enough to open the 

epoxide ring. Besides, the existence of ionic bonds in most species is not favourable in the 

epoxide ring opening as the negative charge is not as available, resulting in lower conversions.  

 

3.3.1.4 Effect	of	different	ammonium-based	cations	

 
Table 3.9 – Anion chloride interference as co-catalyst in the coupling reaction with 0.05mol% of 

ZnR236 at 333 K with 4 MPa during 3 h 
Choline Cl 

(mol%) 
ALIQUAT Cl 

(mol%) 
PPNCl 
(mol%) 

[TBA]Cl 
(mol%) 

Cyclic 
carbonate 
formation  

(%) 

0.4 - - - 0 

- 0.4 - - 0 

- - 0.4 - 6 

- - - 0.4 5 
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Figure 3.15 – Choline Cl, ALIQUAT Cl and PPNCl structures 

 
Another approach was to use different cations while using chloride as the anion in the species 

used. Chloride is one chemical element very similar to bromide, both being used as nucleophiles 

in many reactions. However, as seen in Table 3.9 the chloride species used showed lower % of 

cyclic carbonate formation. The availability of the anion chloride is different in each structure. 

When considering bis(triphenyphosphine)iminium chloride (PPNCl), the bulkiness of the structure 

keeps the chloride away from the centre of the structure which makes chloride more available in 

this structure when compared with methytrioctylammonium chloride (ALIQUAT Cl). However 

when comparing [TBA] and [PPN] effect on the coupling reaction, both have ~5% of cyclic 

carbonate formation, indicating that [TBA] also pushed chloride away from the centre of the 

structure.   

 

3.3.1.5 Effect	of	hydroxyl-functionalized	ammonium	salts	

 

 
Figure 3.16 - Bromide species influence on cyclic carbonate formation with 0.05mol% of ZnR236 

and 0.4mol% of co-catalyst at 333 K with 4 MPa during 3 h 
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Figure 3.17 – [TBA]Br, [N1,1,2,2OH]Br and [N1,1,6,2OH]Br structures 

 

Accordingly to Figure 3.16, both bromide containing species when compared to [TBA]Br showed 

lower conversions, 24% and 13% for [N1,1,2,2OH]Br and [N1,1,6,2OH]Br, respectively. Bromide 

effect is clearly evident when comparing with the groups studied before, sustaining the hypothesis 

that it is in fact the best nucleophile between chloride and bromide. The difference between both 

bromide species is the existence of a six carbon chain in [N1,1,6,2OH]Br where [N1,1,2,2OH]Br 

only has a chain with two carbons. [N1,1,2,2OH]Br better results can be explained by the steric 

hindrance that exists in the [N1,1,6,2OH]Br structure, making it hard to move around and making 

the nucleophile bromide not as available as it is in the [N1,1,2,2OH]Br structure. According to the 

literature, longer alkyl chains showed enhanced results when compared to short alkyl chains, 

however, in this case, due to propylene oxide simplicity over the studied epoxide in the literature 

(cyclohexene oxide), the same conclusion cannot be applied as the epoxide ring studied is far 

more complex than propylene oxide [49]. The introduction of hydroxyl groups, OH in both species, 

as described in literature, enhances the catalytic activity [50]. The presence of hydroxyl groups in 

catalysts or reaction media behaves like the Lewis acid catalyst, by having a cooperation function 

in the ring opening step of the epoxide. However, in this case, it did not enhance the results when 

compared with [TBA]Br, due to the ammonium being substituted with less bulky chains. The 

negative charge is not as available as it is in [TBA]Br structure, in [N1,1,2,2OH]Br and 

[N1,1,6,2OH]Br structures the bromide anion is closer to the cation due to the non-existence of 

the butyl alkyl chains showing lower results.  

 

 

3.3.1.6 Utilization	of	ILs	as	reaction	solvents	
 

Another approach was to use ionic liquids as solvents. Ionic liquids as alternative green solvents, 

allow a better dissolution of the catalyst and co-catalyst. Besides dissolution, some ionic liquids 

also allow the extraction of the product obtained through scCO2, keeping the remaining catalyst 

active through its ionic stabilization.  
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Table 3.10 - Effect of ILs as solvents in the cyclic carbonate formation with 0.25 mol% ZnR236 and 
1 mol% [TBA]Br at 333 K with 4 MPa during 3 h 

Ionic Liquid 
(1 mL) 

Cyclic carbonate 
formation  

(%) 

[EMIm] B(CN)4 11 

[EMIm] EtSO4 17 

[EMIm] Otf 9 

[BMIm] Otf 13 

[BMIm] Ntf2 7 

 

Some ILs previously used as co-catalysts were re-tested as alternative solvents in the coupling 

reaction of epoxides with CO2. The possibility to better dissolve catalysts and co-catalyst together 

with the use of a IL as solvents greatly enhances the results as presented in Table 3.10 when 

compared with ILs used in Table 3.8 as co-catalysts. The delocalization of the negative charge 

through the anion and cation species affects the percentage of cyclic carbonate formed as it 

conditioners the availability of the charge during the ring-opening step. [BMIm] Ntf2 was used 

instead of [EMIm] Ntf2 in order to understand how the alkyl chain would affect the cyclic carbonate 

formation. With a bulkier group in the imidazolium group, the Ntf2 negative charge is pushed away 

from the cation facilitating the attack on the epoxide ring. The same thing was also observed when 

[EMIm] Otf and [BMIm] Otf were studied. With 13% cyclic carbonate formation, the bulkier 

substituted imidazolium showed enhanced results when compared with a shorter alkyl chain 

substituted imidazolium, with 9% confirming the hypothesis that a bulkier group pushes away the 

negative charge. Due to showing the most promising results, [EMIm] EtSO4 was picked for 

comparison with some commercially available green solvents in order to understand its 

behaviour. Results are presented in Figure 3.18.  

 
Figure 3.18 - Ionic liquids as solvents with 0.25 mol% of ZnR236 and 1 mol% [TBA]Br were used at 

333 K with 4 MPa during 3 h  
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Results showed that MEK (methyl-ethyl-ketone), was the most successful alternative solvent in 

the coupling reaction with CO2. Accordingly to the literature, MEK is mostly used as solvent for  

CO2 dissolution method of solid substrates [51]. Some literature also reports MEK as a carbonyl 

solvent with high conversions in this epoxide substrate [52]. Although it showed good results and 

it is considered green, it is also very volatile and unable to hold the catalyst making it impossible 

to extract the product without catalyst contamination. Considered an organic solvent, MEK was 

used only for comparison since it presents good comparison results and it is soluble in CO2. The 

two solvents that showed the most promising results were Polyethylene Glycol (PEG) and 

methyltrioctylammonium chloride (ALIQUAT Cl) with 28% and 27%, respectively. Literature 

reports PEG as a competitor to ILs when used as a benign alternative for the catalyst-bearing 

phase in biphasic catalysis with scCO2 [53]. The eutectic mixture used, choline: urea (1:2), 

showed promising results, 11% cyclic carbonate formation. However due to the presence of 

bromide when used as co-catalyst ([TBA]Br), chloride competes with bromide when attacking the 

epoxide as a nucleophile, resulting in lower conversion. In the case of [EMIm] EtSO4, that had 

been previously used as a co-catalyst, it showed much better results when used as solvent, with 

17%. The electronic stabilization from the [EMIm] group when used as a solvent, greatly enhances 

the results when compared to the same stabilization as a co-catalyst. Ethyl lactate, considered a 

green solvent, was also considered promising with 22% cyclic carbonate formation. Most of the 

solvents used were not considered green enough when compared with ALIQUAT Cl and so, it 

was used in the reactions that followed. 

 

 

 
Figure 3.19 - ALIQUAT Cl pressure influence on cyclic carbonate formation with 0.25 mol% of 

ZnR236 and 1 mol% of [TBA]Br at 333 K during 3 h 
 

Considered greener, ALIQUAT Cl was picked for a pressure influence study in order to 

understand its full potential, results are presented in Figure 3.19. The plot shows that from 1MPa 

to 8MPa ALIQUAT Cl has an average of 50% cyclic carbonate formation. However, at 18MPa, 

due to its expansion it drops to 4%. This can be explained by the expansion in the reaction 

mixture, that is 1:1. With the volume expansion molecules are not as available as before and so 
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the yield drops. Other plausible explanation is the competition between bromide and chloride as 

nucleophiles. The presence of both nucleophiles in the reaction mixture makes both ions compete 

as nucleophiles and as leaving groups, where bromide clearly enhances results whereas chloride 

is not so reactive. 

 

3.3.2 Extraction	

 

The use of solvents in the coupling reaction of epoxides allows the extraction of product without 

catalyst contamination. Besides that, the use of an ionic liquid or DES as a solvent keeps the 

catalyst active enhancing the number of cycles that a catalyst can work efficiently.  

 

 
Figure 3.20 - Product obtained with and without extraction with scCO2 

 

 

In Figure 3.20 we can clearly confirm that the extraction was successful just by looking at both 

liquid colours. The orange colour present on the left vial of Figure 3.20 indicates the presence of 

catalyst ZnR236 whereas in the middle picture, we can confirm that there is no contamination 

from the catalyst (no orange colour). Due to not being soluble in CO2, the catalyst remains in the 

cell while the obtained product is dragged into a trap covered in ice. The use of this solvents 

together with the use of supercritical carbon dioxide (scCO2) makes it possible to extract and 

reutilize catalysts in reactions. Through 1H-NMR analysis we can confirm the extraction of the 

product was successful, as presented in Figure 3.21. The spectra obtained after extraction is 

much cleaner, without peak signals from the presence of catalyst, and easier to integrate. The 

area marked by a red circle elucidates the main difference between spectra with and without 

catalyst. During the time that catalysts remain in the cell together with IL or DES, it remains active 

through ionic stabilization for a new catalytic cycle.  
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Figure 3.21 – 1H-NMR spectra without and with extraction respectively 

 

Due to their unique properties such as viscosity and density, ILs allow the combination between 

the advantages of both homogeneous and heterogeneous catalysts, one selected IL may dissolve 

the catalyst however it may also be immiscible with the reactants and products [54]. 

While aiming for the extraction opportunity, reutilization of the catalyst was studied. After 

performing the extraction, with the catalyst inside the cell, propylene oxide was added. Results 

are presented in Figure 3.22. 

 
Figure 3.22 - Cyclic carbonate formation over the reutilization of the catalyst ZnR236 
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3.4 DES 
 

After finding that the presence of [TBA]Br is highly required in the reaction, a new approach was 

studied. The insertion of [TBA]Br in the solvent should increase the availability of the ion bromide 

in the reaction’s key step, epoxide opening. Results are presented in Figure 3.23. A final approach 

was to use ZnCl2 dissolved in ethylene glycol, creating an innovative catalytic system involving 

the catalyst. The catalyst is available as a solvent instead of being dissolved in the propylene 

oxide. Results are presented in Figure 3.24. 

 

 
Figure 3.23 - DES comparison study using 0.25 mol% of ZnR236 and 1 mL of DES at 333 K, 4 MPa,  

3 h. 
 

Results show that the insertion of [TBA]Br in DES in order to behave like a solvent, resulted in an 

enhanced result. Proving that bromide in [TBA]Br is more available when mixed as a solvent than 

when added as a co-catalyst. Both DES with [TBA]Br showed results of 78% cyclic carbonate 

formation. When comparing with the results of [TBA]Br solved in ALIQUAT, due to the expansion 

in ALIQUAT, [TBA]Br is not as available as it is in other DES and so the formation % of cyclic 

carbonate lowers considerably. Another plausible explanation is the competition between 

nucleophiles, bromide and chloride. The existence of chloride in ALIQUAT competes with bromide 

from [TBA]Br when it comes to the epoxide ring-opening step, where [TBA]Br is a more favourable 

nucleophile and leaving group, making the mixture ALIQUAT Cl + [TBA]Br not to work as expected 

with 27% of cyclic carbonate formation. Literature reports studies on the [TBA]Br-based DESs 

physical properties such as viscosity, ionic conductivity and density [42]. 
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3.5 DES utilization as a catalytic system 
 

A final approach was to use the metal complex as part of DES in the coupling reaction together 

with co-catalyst [TBA]Br. The metal catalyst chosen was ZnCl2 together with Ethylene glycol while 

having [TBA]Br as co-catalyst. Results are presented in Figure 3.24. 

 
Figure 3.24 – DES utilization as a catalytic system at 333 K, 4 MPa during 3 h with 0.05 mol% of 

catalyst and 0.4 mol% of [TBA]Br 
 

The use of ZnCl2 together with EG allows for the dissolution of ZnCl2 in ethylene glycol making 

the catalyst dissolved in EG. EG also allows for the dissolution of [TBA]Br in reactional mixture 

enhancing the results when compared with the use of ZnR236 and [TBA]Br. These enhanced 

results are explained with the availability of each species in the reaction, because catalyst and 

co-catalyst are dissolved in EG before being added with propylene oxide. The fact that chloride 

is complexed with zinc, acting as a catalyst, it is also available as a nucleophile although not as 

available as bromide in [TBA]Br, which facilitates the attack from the nucleophile bromide.   
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4. CONCLUSIONS 
 

 

In this work, different ionic and deep eutectic liquids, were tested as co-catalysts and solvents for 

the production of cyclic carbonates, via direct coupling of CO2 to epoxides. 

  

The reaction conditions were optimized and different anions and cations were explored. The 

bromide anion and its combination with the tetrabutylammonium cation presented the best 

catalytic activity. Its utilization as a solvent is however limited, by high melting temperature. 

 

 Alternatively, methyltrioctylammonium chloride showed good results, since besides favouring the 

reaction kinetic, it retained the catalyst inside the reactor, allowing the product to be extracted 

using supercritical CO2. The use of an ionic liquid as solvent in the reaction allowed to obtain a 

pure product (free of solvents) avoiding the need for complex separation steps.  

 

Propylene carbonate extraction was performed using supercritical CO2 extraction step at 313.2 K 

and 11.5 MPa. The catalyst system was reused three times, without loss of activity and with good 

reproducibility. 

  

Furthermore, in order to investigate a solvent bearing the bromide anion, a tetrabutylammonium 

bromide ([TBA]Br)-based deep eutectic solvent was explored for the first time. [TBA]Br:Glycerol 

presented superior results, which constitutes a good alternative for further studies. The insertion 

of a catalyst/co-catalyst in the IL/DES structure (solvent structure), clearly enhances carbonate 

formation and opens the possibility of developing a metal-free process. 

  

Considering the wide industrial implementation of the process, the results presented in this work 

allow for future utilization of complex substrates, namely with solubility limitations, such as 

naturally-derived limonene and pinene oxide. 
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6. APPENDIXES 
 

 
Table 6.1 - Reaction Index 

 
Date Epoxide 

(mL) 
Sample Catalyst Temperature 

(oC) 
Pressure 

(bar) 
Time 
 (h) 

Conversion 
% 

30/09/2015 O-prop 

(1) 

VE 1 1% TBABr 40 40 3 - 

12/10/2015 O-prop 

(1) 

VE 2 1% TBABr + 0,25% 

Zn236 

80 40 3 92 

13/10/2015 O-prop 

(1) 

VE 3 1% TBABr + 0,25% 

Zn236 

80 40 3 92 

14/10/2015 O-prop 

(1) 

VE 4 1% TBABr + 0,25% 

Zn236 

80 40 3 93 

26/10/2015 O-prop 

(1) 

VE 5 1% TBABr + 0,25% 

Zn236 

40 40 24 99 

27/10/2015 O-prop 

(5) 
VE 6 5% TBABr + 1,25% 

Zn236 

40 40 24 98 

11/11/2015 O-prop 

(1) 

VE 7 Reutilization 

(EX 3) 

40 40 24 99 

16/11/2015 O-prop 

(1) 

VE 8 Reutilization 

(EX 3) 

40 40 24 98 

24/11/2015 O-prop 

(1) 

VE 9 1% TBABr+ 0,05% 

Zn236 

80 40 3 93 

25/11/2015 O-prop 

(1) 

VE 10 0,2% TBABr+ 0,05% 

Zn236 

80 40 3 72 

26/11/2015 O-prop 

(1) 

VE 11 0,3% TBABr + 0,05% 

Zn236 

80 40 3 79 

30/11/2015 O-prop 

(1) 

VE 12 1% TBABr+ 0,1% 

Zn236 

80 40 3 99 

9/12/2015 O-prop 

(1) 

VE 13 0,4% TBABr+ 0,05% 

Zn236 

80 40 3 90 

 

18/12/2015 O-prop 

(1) 

VE 14 0,4% TBABr + 0,05% 

Zn236 

60 40 3 48 
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Date Epoxide 

(mL) 

Sample Catalyst Temperature 

(oC) 

Pressure 

(bar) 

Time 

 (h) 

Conversion 

% 

18/12/2015 O-prop 

(1) 

VE 15 0,4%TBABr + 0,05% 

Zn236 

80 40 3 72 

21/12/2015 O-prop 

(1) 

VE 16 0,1% TBABr + 0,1% 

Zn236 

80 40 24 Poli (0%) 

5/1/2016 O-prop 

(1) 

VE 17 0,1%Zn236+1% 

EMIMNtf2 
60 40 3 2 

6/1/2016 O-prop 

(1) 

VE 18 0,05%Zn236+0,4% 

EMIMNtf2 
60 40 3 0 

11/1/2016 O-prop 

(1) 

VE 19  0,05%Zn236+0,4% 

EMIMNtf2 
60 40 24 0 

14/1/2016 O-prop 

(1) 

VE 20 0,05%Zn236+0,4% 

EMIMBr 
60 40 3 4 

15/1/2016 O-prop 

(1) 

VE 21 0,05%Zn236+0,4% 

EMIMEtSO4 
60 40 3 0 

19/1/2016 O-prop 

(1) 

VE 22 0,05%Zn236+0,4% 

EMIMB(CN)4 
60 40 3 0 

1/2/2016 O-prop 

(1) 

VE 23 0,05%Zn236+0,4% 
TBABr + PPG (1) 

60 40 3 6 

2/2/2016 O-prop 

(1) 

VE 24 0,05%Zn236+0,4% 
TBABr + PEG (1) 

60 40 3 9 

4/2/2016 O-prop 

(1) 

VE 25 0,05%Zn236+0,4% 

PPNCl 
60 40 3 6 

10/2/2016 O-prop 

(1) 

VE 26 0,05%Zn236+ 0,4% 
TBABr+ EMIMEtSO4 

(1) 

60 40 3 1 

12/2/2016 O-prop 

(1) 

VE 27 0,25%Zn236+1% 

TBABr + PEG (1) 

60 40 3 27 

16/2/2016 O-prop 

(1) 

VE 28 0,25%Zn236+1% 

TBABr + ALIQUAT Cl 

(1) 

60 40 3 27 

18/2/2016 O-prop 

(1) 

VE 29 0,2%Li[FeCl2(TPMS)]+ 

0,4%TBABr 

60 40 3 8 

18/2/2016 O-prop 

(1) 

VE 30 0,2%FeCl2(TPM)+ 
0,4%TBABr 

60 40 3 18 

19/2/2016 O-prop 

(1) 

VE 31 0,25%Zn236+ 

1%TBABr 

+EMIMEtSO4(1) 

60 40 3 17 
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Date Epoxide 

(mL) 

Sample Catalyst Temperature 

(oC) 

Pressure 

(bar) 

Time 

 (h) 

Conversion 

% 

24/2/2016 O-prop 

(1) 

VE 32 0,25%Zn236+ 

1%TBABr 

60 40 3 68 

25/2/2016 O-prop 

(1) 

VE 33 0,05%Zn236+ 

0,4%TBACl 

60 40 3 5 

26/2/2016 O-prop 

(1) 

VE 34 0,05%Zn236+ 

0,4%TBABr 

60 40 3 44 

1/3/2016 O-prop 

(1) 

VE 36 0,05%Zn236+ 

0,4%CholineCl 

60 40 3 0 

(wrong) 

 

2/3/2016 O-prop 

(1) 

VE 37 0,2%FeCl2(TPM) 60 40 24 0 

4/3/2016 O-prop 

(1) 

VE 38 0,25%Zn236+ 

1%TBABr+MEK(1) 

60 40 3 42 

7/3/2016 O-prop 

(1) 

VE 39 0,25%Zn236+ 

1%TBABr 

Room T 5 24 24 

9/3/2016 O-prop 

(1) 

VE 40 0,05%Zn236 80 40 3 0 

16/3/2016 O-prop 

(1) 

VE 41 0,25%Zn236+ 

1%TBABr 

50 5 24 87 

18/3/2016 O-prop 

(1) 

VE 42 0,1%Zn11+ 

0,4%TBABr 

60 40 3 41 

18/3/2016 O-prop 

(1) 

VE 43 0,25%Zn236+ 

1%TBABr 

60 180 3 31 

 

22/3/2016 O-prop 

(1) 

VE 44 0,1%CuR11 + 

0,4%TBABr 

60 40 3 20 

29/3/2016 O-prop 

(1) 

VE 45 0,25%Zn236+ 

1%TBABr + H2O(1) 

60 40 3 3 

31/3/2016 O-prop 

(1) 

VE 46 0,25%Zn236+ 

1%TBABr 

60 5 3 69 

31/3/2016 O-prop 

(1) 

VE 47 0,25%Zn236+ 

1%TBABr+  

EthylLactate(1) 

60 40 3 22 

1/4/2016 O-prop 

(1) 

VE 48 0,25%Zn236+ 

1%TBABr+ 

Choline:Urea(1:2)(1) 

60 40 3 11 

4/4/2016 O-prop 

(1) 

VE 49 0,05%Zn236+ 

0,4%CholineCl 

60 40 3 0 
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Date Epoxide 

(mL) 

Sample Catalyst Temperature 

(oC) 

Pressure 

(bar) 

Time 

 (h) 

Conversion 

% 

13/4/2016 O-prop 

(1) 

VE 50 0,25%Zn236+ 

1%TBABr+ 

BMIMOTf(1) 

60 40 3 13 

21/4/2016 O-prop 

(1) 

VE 51 0,25%Zn236+ 

1%TBABr+ 

BMIMNTf2(1) 

60 40 3 7 

22/4/2016 O-prop 

(1) 

VE 52 0,25%Zn236+ 

1%TBABr+ 

EMIMOTf(1) 

60 40 3 9 

22/4/2016 O-prop 

(1) 

VE 53 0,25%Zn236+ 

1%TBABr 

60 88 3 38 

26/4/2016 O-prop 

(1) 

VE 54 0,25%Zn236+1% 

TBABr + ALIQUAT Cl 

(1) 

60 80 3 48 

27/4/2016 O-prop 

(1) 

VE 55 0,25%Zn236+1% 

TBABr + ALIQUAT Cl 

(1) 

80 40 3 50 

2/5/2016 O-prop 

(1) 

VE 56 0,25%Zn236+1% 

TBABr + ALIQUAT Cl 

(1) 

60 180 3 4 

28/4/2016 O-prop 

(1) 

VE 57 0,25%Zn236+1% 

TBABr + ALIQUAT Cl 

(1) 

60 5 3 50 

28/4/2016 O-prop 

(1) 

VE 58 0,25%Zn236+1% 

TBABr + ALIQUAT Cl 

(1) 

60 40 24 72 

30/5/2016 O-prop 

(1) 

VE 59 0,25%Zn236+1% 

TBABr + ALIQUAT Cl 

(1) 

40 40 3 14 

4/5/2016 O-prop 

(1) 

VE 60 0,25%Zn236+0,4% 

ALIQUAT Cl  

60 40 3 0 

18/5/2016 O-prop 

(1) 

VE 61 0,05%Zn236+0,4% 

ALIQUAT Cl  

60 40 3 0 

19/5/2016 O-prop 

(1) 

VE 62 0,25%Zn236+1% 

TBABr + EMIMB(CN)4 

(1) 

60 40 3 11 
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2/6/2016 O-prop 

(1) 

VE 63 0,25%Zn236+ 

1%TBABr+ ALIQUAT 

Cl (1) 

60 10 3 55 

30/6/2016 O-prop 

(1) 

VE 64 0,05%ZnTPyP+ 

0,4%TBABr 

60 40 3 25 

13/7/2016 O-prop 

(1) 

VE 65 0,05%ZnTDCPP+ 

0,4%TBABr 

60 40 3 14 

13/7/2016 O-prop 

(1) 

VE 66 0,05%Zn236+ 

0,4%Andreia37 

60 40 3 24 

18/7/2016 O-prop 

(1) 

VE 67 0,05%Zn236+ 

0,4%Andreia43 

60 40 3 13 

18/7/2016 O-prop 

(1) 

VE 68 0,05%Zn236+ 

0,4%DES2 

60 40 3 12 

19/7/2016 O-prop 

(1) 

VE 69 0,2%ZnCl2:EG+ 

0,4%TBABr 

60 40 3 62 

19/7/2016 O-prop 

(1) 

VE 70 0,25%Zn236+ 1mL 

DES2 

60 40 3 77 

21/7/2016 O-prop 

(1) 

VE 71 0,25%Zn236+ 1mL 

DES3 

60 40 3 79 

21/10/2016 O-prop 

(1) 

VE 72 0,2% ZnCl2:EG(1:4) 60 40 3 0 

24/11/2016 O-prop 

(1) 

VE 73 ALIQUAT (1mL) 60 40 3 13 

24/11/2016 CHO 

(1) 

VE 74 ALIQUAT (1mL) 80 40 3 Inês 

 

*Compressor problems. 

 

Below are the 1H-NMR spectra of the reactions presented in Table 6.1. 
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Figure 6.1 - Propylene oxide HNMR spectra 

 
Figure 6.2 - Cyclic carbonate HNMR spectra 



 
 

57 
 

 
Figure 6.3 - Poly(propylene carbonate) HNMR spectra 

 
Figure 6.4 - VE 1 HNMR spectra 
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Figure 6.5 - VE 2 HNMR spectra 

 
Figure 6.6 - VE 3 HNMR spectra 
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Figure 6.7 - VE 4 HNMR spectra 

 
Figure 6.8 - VE 5 HNMR spectra 
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Figure 6.9 - VE 6 HNMR spectra 

 
Figure 6.10 - VE 9 HNMR spectra 
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Figure 6.11 - VE 10 HNMR spectra 

 
Figure 6.12 - VE 11 HNMR spectra 
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Figure 6.13 - VE 12 HNMR spectra 

 
Figure 6.14 - VE 13 HNMR spectra 
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Figure 6.15 - VE 14 HNMR spectra 

 
Figure 6.16 - VE 15 HNMR spectra 
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Figure 6.17 - VE 16 HNMR spectra 

 
Figure 6.18 - VE 17 HNMR spectra 
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Figure 6.19 - VE 18 HNMR spectra 

 
Figure 6.20 - VE 19 HNMR spectra 
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Figure 6.21 - VE 20 HNMR spectra 

 
Figure 6.22 - VE 21 HNMR spectra 
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Figure 6.23 - VE 22 HNMR spectra 

 
Figure 6.24 - VE 23 HNMR spectra 
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Figure 6.25 - VE 24 HNMR spectra 

 
Figure 6.26 - VE 25 HNMR spectra 
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Figure 6.27 - VE 26 HNMR spectra 

 
Figure 6.28 - VE 27 HNMR spectra 
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Figure 6.29 - VE 28 HNMR spectra 

 
Figure 6.30 - VE 29 HNMR spectra 



 
 

71 
 

 
Figure 6.31 - VE 30 HNMR spectra 

 
Figure 6.32 - VE 31 HNMR spectra 
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Figure 6.33 - VE 32 HNMR spectra 

 
Figure 6.34 - VE 33 HNMR spectra 
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Figure 6.35 - VE 34 HNMR spectra 

 
Figure 6.36 - VE 36 HNMR spectra 
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Figure 6.37 - VE 37 HNMR spectra 

 
Figure 6.38 - VE 38 HNMR spectra 



 
 

75 
 

 
Figure 6.39 - VE 39 HNMR spectra 

 
Figure 6.40 - VE 40 HNMR spectra 
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Figure 6.41 - VE 41 HNMR spectra 

 
Figure 6.42 - VE 42 HNMR spectra 
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Figure 6.43 - VE 43 HNMR spectra 

 
Figure 6.44 - VE 44 HNMR spectra 
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Figure 6.45 - VE 45 HNMR spectra 

 
Figure 6.46 - VE 46 HNMR spectra 
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Figure 6.47 - VE 47 HNMR spectra 

 
Figure 6.48 - VE 48 HNMR spectra 
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Figure 6.49 - VE 49 HNMR spectra 

 
Figure 6.50 - VE 50 HNMR spectra 
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Figure 6.51 - VE 51 HNMR spectra 

 
Figure 6.52 - VE 52 HNMR spectra 
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Figure 6.53 - VE 53 HNMR spectra 

 
Figure 6.54 - VE 54 HNMR spectra 
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Figure 6.55 - VE 55 HNMR spectra 

 
Figure 6.56 - VE 56 HNMR spectra 
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Figure 6.57 - VE 57 HNMR spectra 

 
Figure 6.58 - VE 58 HNMR spectra 
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Figure 6.59 - VE 59 HNMR spectra 

 
Figure 6.60 - VE 60 HNMR spectra 



 
 

86 
 

 
Figure 6.61 - VE 61 HNMR spectra 

 
Figure 6.62 - VE 62 HNMR spectra 
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Figure 6.63 - VE 63 HNMR spectra 

 
Figure 6.64 - VE 64 HNMR spectra 
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Figure 6.65 - VE 65 HNMR spectra 

 
Figure 6.66 - VE 66 HNMR spectra 
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Figure 6.67 - VE 67 HNMR spectra 

 
Figure 6.68 - VE 68 HNMR spectra 
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Figure 6.69 - VE 69 HNMR spectra 

 
Figure 6.70 - VE 70 HNMR spectra 
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Figure 6.71 - VE 71 HNMR spectra 

 
Figure 6.72 - VE 72 HNMR spectra 
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Figure 6.73 - VE 73 HNMR spectra 

 
Figure 6.74 - VE 75 HNMR spectra 
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Figure 6.75 - VE 76 HNMR spectra 

 
Figure 6.76 - VE 77 HNMR spectra 

 


