

Landing on the right job: a Machine Learning

approach to match candidates with jobs

applying semantic embeddings

Luís Matos Pombo

2

Luís Matos Pombo

Work project presented as partial requirement for obtaining
the Master’s degree in Advanced Analytics

Landing on the right job: a Machine Learning
approach to match candidates with jobs applying
semantic embeddings

3

Title: Landing on the right job

Title: Landing on the right job

Luís Matos Pombo

Luís Matos Pombo

MAA

MAA

4

5

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

TITLE: LANDING ON THE RIGHT JOB: A MACHINE LEARNING APPROACH

TO MATCH CANDIDATES WITH JOBS APPLYING SEMANTIC EMBEDDINGS

by

Luís Matos Pombo

Work project presented as partial requirement for obtaining the Master’s degree in Information
Management, with a specialization in Advanced Analytics

Advisor: Leonardo Vanneschi

6

ABSTRACT

Job application’ screening is a challenging and time-consuming task to execute manually. For

recruiting companies such as Landing.Jobs it poses constraints on the ability to scale the

business. Some systems have been built for assisting recruiters screening applications but they

tend to overlook the challenges related with natural language. On the other side, most people

nowadays specially in the IT-sector use the Internet to look for jobs, however, given the huge

amount of job postings online, it can be complicated for a candidate to short-list the right ones

for applying to. In this work we test a collection of Machine Learning algorithms and through the

usage of cross-validation we calibrate the most important hyper-parameters of each algorithm.

The learning algorithms attempt to learn what makes a successful match between candidate

profile and job requirements using for training historical data of selected/reject applications in

the screening phase. The features we use for building our models include the similarities

between the job requirements and the candidate profile in dimensions such as skills, profession,

location and a set of job features which intend to capture the experience level, salary

expectations, among others. In a first set of experiments, our best results emerge from the

application of the Multilayer Perceptron algorithm (also known as Feed-Forward Neural

Networks). After this, we improve the skills-matching feature by applying techniques for

semantically embedding required/offered skills in order to tackle problems such as synonyms

and typos which artificially degrade the similarity between job profile and candidate profile and

degrade the overall quality of the results. Through the usage of word2vec algorithm for

embedding skills and Multilayer Perceptron to learn the overall matching we obtain our best

results. We believe our results could be even further improved by extending the idea of semantic

embedding to other features and by finding candidates with similar job preferences with the

target candidate and building upon that a richer presentation of the candidate profile. We

consider that the final model we present in this work can be deployed in production as a first-

level tool for doing the heavy-lifting of screening all applications, then passing the top N matches

for manual inspection. Also, the results of our model can be used to complement any

recommendation system in place by simply running the model encoding the profile of all

candidates in the database upon any new job opening and recommend the jobs to the

candidates which yield higher matching probability.

Keywords: job matching; recommendation systems; semantics; machine learning, word2vec

7

ACKNOWLEDGEMENTS

To my parents and brother, for their unconditional love.

A special thank you to Kira for her invaluable support, in so many ways.

To my dog Pierre, for being my company in the lonely days.

To Prof. Vanneschi for his inspirational classes.

To Kristen and Asimina, for their friendship and companionship through this master program
and beyond.

To Illya for his Computation I classes, a huge asset which has opened my opportunities.

To my fellow colleagues Ariana, Esdras, Bernardo, Maria and Nicolas for the great experience of
working with such smart and kind people.

To Landing.job for being open to the challenge and for facilitating the data for our work.

8

Index

A. Introduction .. 11

B. Literature review ... 12

C. Technical background ... 16

1. Statistics .. 16

1.1. Latent Semantic Analysis (LSA)... 16

1.2 Variance Inflation Factor (VIF) ... 17

2. Machine Learning .. 18

2.1 Supervised Learning .. 18

2.1.1 Logistic Regression(LR) / Single Layer Perceptron (SLP) .. 18

2.1.2 Multilayer perceptron (MLP) / Artificial Neural Networks (NN) 19

2.1.3 Decision trees ... 20

2.1.4 Random Forests (RF) .. 21

3 Variable Selection ... 21

3.1 Recursive Feature Elimination (RFE) ... 21

4. Filtering .. 21

5. Cross-validation (CV) ... 22

6 Natural Language Processing (NLP) .. 22

6.1 Word embeddings - Word2vec ... 22

D. Data ... 23

E. Methodology ... 24

No Free Lunch Theorem .. 24

Data modelling in practice .. 24

Software .. 25

F. Data transformation .. 25

1. Building the target variable ... 25

2.People features - create people dataset .. 26

2.1. Extracting people skills and tags .. 27

3. Job ad features – create job ads dataset .. 29

3.1. Extracting required skills and nice-to-have skills ... 30

G. Experiments .. 30

Experiment-set A ... 31

Feature engineering .. 31

9

1. Skills-matching ... 31

2. Profession-matching.. 32

The final match value is computed by dividing the distance 𝑆𝑛 by the length of the longest
of the two strings. ... 32

3. Location-matching ... 32

4. Additional features .. 34

Data preprocessing and feature selection .. 35

Feature selection ... 37

Modelling .. 38

Logistic Regression .. 38

Multilayer Perceptron ... 39

Random Forests... 39

Results: experiment-set A ... 40

Experiment-set B ... 41

Feature engineering – semantic embedding .. 41

Latent Semantic Analysis (LSA) ... 41

Word2vec .. 42

Results – Experiment-set B.. 42

Discussion of results .. 43

H - Future work ... 44

I – Conclusion .. 46

J - Bibliography .. 48

Appendix ... 52

Table of figures
TABLE 1 - SKILLS TABLE ... 27
TABLE 2 - CANONICALIZED TAGS IDS TRANSFORMED.. 27
TABLE 3 - SKILLS TABLE AFTER TRANSFORMATION ON TAG IDS FIELD ... 28
TABLE 4 - TAGS TABLE .. 28
TABLE 5 - SKILL TAGS PER PERSON ... 29
TABLE 6 - JOB AD SKILLS .. 30
TABLE 7 - TRANSFORMED JOB AD SKILLS ... 30
TABLE 8 - VIF SCORES PER FEATURE BEFORE REMOVING BASELINE CLASSES IN CATEGORICAL VARIABLES 36
TABLE 9 - VIF SCORES PER FEATURE AFTER REMOVING BASELINE CLASSES IN CATEGORICAL VARIABLES 36
TABLE 10 - FINAL SET OF FEATURES ... 38

file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531004035
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531004037
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531004039
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531004040
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531004041

10

TABLE 11 - BEST RESULTS PER MACHINE LEARNING ALGORITHM USING THE TF-IDF ENCODING OF SKILLS 41
TABLE 12 - RESULTS IN TERMS OF ROC-AUC AFTER APPLYING THE MLP FINE-TUNED WHERE SKILLS ARE REPRESENTED AS

SEMANTIC VECTORS ... 43
TABLE 13 - DATA SUMMARIZATION - PART I ... 52
TABLE 14 - DATA SUMMARIZATION - PART II .. 52
TABLE 15 - APPLICATION STATES .. 53
TABLE 16 - FIELDS OF TABLE PEOPLE ... 54
TABLE 17-FIELDS OF TABLE APPLICATIONS .. 55
TABLE 18 - FIELDS OF TABLE APPLICATION AUDIT .. 55
TABLE 19 - FIELDS OF TABLE JOB ADS .. 57
TABLE 20 - FIELDS OF TABLE COMPANIES ... 59
TABLE 21 - FIELDS OF TABLE TAGS .. 59
TABLE 22 - FIELDS OF TABLE SKILLS ... 59

FIGURE 1: RECRUITMENT PROCESS ADAPTED FROM PROSPECT AND JRS SURVEY ... 15
FIGURE 2 - CURATOR-DEFINED TARGET. ON AXIS 0 WE HAVE THE CLASS AND ON AXIS 1 WE HAVE THE NUMBER OF

OBSERVATIONS ... 26
FIGURE 3- GROUPING JOB ADS FIELDS ... 29
FIGURE 4- BOXPLOT CHART REPRESENTING VARIABLES PRIOR APPLYING SAVITZKY–GOLAY FILTER 37
FIGURE 5 - BOXPLOT CHART REPRESENTING VARIABLES AFTER APPLYING SAVITZKY–GOLAY FILTER 37

file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531003493
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531003494
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531003494
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531003495
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531003496
file:///C:/Users/0101295/Documents/tese/landingmodel/report/work_project_report_v2.docx%23_Toc531003497

11

A. Introduction

In the field of job recruitment, Internet has become a major channel for recruiters to publish job

postings and attract candidates, whereas looking and applying for jobs have become mostly

tasks that candidates perform online(Malinowski, Keim, Wendt, & Weitzel, 2006). While

Internet certainly allows reaching a wider audience on the recruiters’ standpoint and makes job

applications more convenient on the candidates’ standpoint, two problems arise: on one side,

there is a tremendous amount of job postings online in different job portals and company’s

career sections. This situation makes the candidate’s task of short-listing jobs a tedious and time-

consuming one, often deriving in sub-optimal short-listing. On the other side, certain job

postings can attract hundreds or thousands of applications, making the recruiter’s task of

screening all applications very challenging under businesses deadlines. To tackle the problem of

job of application screening, numerous systems have been built which relied on Boolean search

to filter out applications based on the inexistence of certain keywords. This technique presents

several shortcomings such as ignoring the problems related with natural language including

semantics and synonyms (Singh , Rose, Visweswariah , Vijil , & Kambhatla , 2010). Some more

recent approaches to the problem relied on finding similarities between the applicant profile

and the job profile across a multitude of dimensions such as skills, education or experience and

ranking applications according to the overall similarity degree (Fazel-Zarandi & Fox, 2009), (Singh

, Rose, Visweswariah , Vijil , & Kambhatla , 2010). Another approach, which uses Machine

Learning was presented in (Faliagka, Ramantas, Tsakalidis, & Tzimas , 2012). However, we

consider that considerable improvements to the proposed models could be reached by using

start-of-the-art techniques to obtain a better representation of the jobs and the candidates’

profiles.

With regard to candidate attraction, different job recommendation systems were developed.

For instance, (Paparrizos, Cambazoglu, & Gionis, 2011) built a Content-Based Recommendation

System to predict the next job for a candidate. In (Yuan, et al., 2016) the authors use a

Collaborative Filtering approach while performing a semantic embedding of job profiles. Yet

another example which uses a Hybrid Recommendation approach can be found in (Hong, Zheng,

& Wang, 2013) where the authors utilize clustering technique for clustering users and build

specific recommendation systems for each cluster of users.

In this work we present a Machine Learning approach for building a model to automatically

screen job application but that can also be used to complement job recommendation system.

Our approach can be regarded as a hybrid one. On one side, it incorporates aspects of content-

based systems because we use attributes of jobs positions and candidates for building features.

On the other side, it could also be seen as an Ontology-based system as we define a set of

matchings between jobs and candidates’ profiles based on the relationship that we manually

draw between the attributes of these entities.

Our Machine Learning model learns what makes a successful application to a job. We achieve

that by setting the target of our model as Boolean value encoding whether a certain application

was pre-selected in the screening phase or not.

12

One of the major challenges is the proper encoding of jobs’ and candidates’ profiles given that

many attributes are presented in natural language. To tackle this challenge, we apply tentatively

a different set of strategies: TF-IDF, Latent Semantic Analysis and the start-of-the-art Word2Vec

algorithm. The usage of Latent Semantic Analysis and Word2Vec has improved the overall

results of our model because contrary to lexical features as in TF-IDF, these techniques explore

the context of word, therefore being more resilient to problem such as synonyms which

artificially degrade the similarity between the required profile for the job and the profile of the

applicant.

Our model could also be deployed for purposes of job recommendation as well. In practice the

difference between using the model for screening or for job recommendation is that in the

former case there is an actual job application while in the latter case there is not an actual

application but the potential candidate is already sitting in the database. Thus, one could ask

the following question: what is the probability of person A to be a good match for job X, were

person A willing to apply to it? By generalizing this question to every potential candidate in the

database and every new job position, we end up with a list of top matches for each job position,

therefore recommending the jobs of highest matching probability to the corresponding people.

Finally, we would like to mention that this work was based on the anonymous data provided by

Landing.Jobs, an IT-specialized job portal. By using the model that we have developed, the

company turn application screening both cheaper and more scalable while being able to

integrate their current recommendation system with our model’s output to further refine

recommendations.

B. Literature review
The evolution of technology has changed that way people find and apply for jobs and the way

organizations attract and receive applications. The recruitment process nowadays relies heavily

on the internet as a means of communication to publish job openings, to attract applicants and

to receive applications, be it through job portals or organizations’ own websites career section

(Malinowski , Wendt , Keim , & Weitzel, 2006), (Desai, Bahl, Vibhandik, & Fatma, 2017). At the

same time, looking for jobs online became a natural approach for most people. In job portals

such as LinkedIn or Landing.jobs people create their profiles and apply for jobs using their

standard profile, sometimes adding motivation letter or their custom résumé/ CV (curriculum

vitae). Often, organizations’ own websites career section also allows people to create their

profile to apply for multiple jobs within the organization using it. In both job portal or

organizations’ own websites career section it is common to be able to activate and receive alerts

of jobs matching people’s preferences and profile.

While the internet has made the application for jobs more convenient and candidates often

regard the greater number of applications for jobs they make, the greater the chance of being

selected for any, it sometimes leads to a huge amount of applications per job that the recruiter

will have to shortlist from (Singh , Rose, Visweswariah , Vijil , & Kambhatla , 2010).

13

From another perspective, as the Internet has become a great channel for reaching and

attracting a large audience, most jobs are nowadays published online, which leads to an

amalgam of job postings through which the applicant has to browse through until he/she finds

the ones that match his/her preferences and he/she sees has potential for success. This scenario

often leads to applications for jobs that do not match so well applicant’s profile (Alotaibi, 2012).

In the recruitment process context, some authors (Färber, Weitzel, & Keim, 2003) divide the

recruitment process in two main phases: attraction and selection. Attraction is concerned with

what happens before an application, including employer branding, job publishing and

approaching potential candidates. Selection, on the other side, concern the steps after a

candidate has applied. Upon the receival of applications what follows typically is a screening

process intended to shortlist applications to pass to later stages where usually one or multiple

rounds of interviews are conducted, tests are sometimes required and hiring decisions are made

(Alotaibi, 2012). Figure X provides a generic example of a recruitment process.

In regard to the illustrated scenario, two problems arise: 1) how to efficiently screen a massive

amount of applications and 2) how organizations can automatically recommend the right jobs

openings to the right people. We call the former the screening problem and the later the

recommendation problem.

The screening problem

To address the screening problem, organizations apply different strategies. Some opt for a

purely manual approach where each application is reviewed by a human, sometimes

outsourcing hiring firms to screen and shortlist candidates. To illustrate the challenge of

screening applications, take the following example. Say candidate A possesses most skills

required for a job but misses some critical ones, while candidate β has poorer skill set but is

highly expert in some of the critical ones and yet candidate C is highly versatile, including critical

skills but has only few years of experience in each. The decision to shortlist any of these

candidates is not obvious and ideally should be only taken after reviewing all applications or

otherwise the best application might not be found at all in the pile of all applications (Singh ,

Rose, Visweswariah , Vijil , & Kambhatla , 2010). Moreover, these decisions are taken under the

pressure of business deadlines. This illustration presents three candidates but in practice it is

hundreds or thousands of applications to be dealt by a human. That is why some organization

introduce some form of Information Systems (IS) to assist on the task of screening applications.

Numerous implementations relied on Boolean search, using keywords to search and filter out

applications in the database which did not match those keywords (Alotaibi, 2012). However, this

technique falls short on the task because it lacks the capabilities to deal with problems related

with natural language such as synonyms or to capture underlying attributes such as personality

trait, which according to (Singh , Rose, Visweswariah , Vijil , & Kambhatla , 2010) is the hidden

reason why a large number of applications present such low compatibility with job search.

More recently, new systems have been developed. For instance, in (Singh , Rose, Visweswariah

, Vijil , & Kambhatla , 2010) the authors present a system which uses Information Extraction

techniques to automatically mine résumés and job profiles to later rank candidates. The ranking

of candidates is based on the similarity between the job requirements and the applicant profile

14

on different dimensions such as skills, education and experience. The recruiter can further refine

the ranking by filtering per level of education or skills. While this system performs quite

favorably in terms of feature extraction, it does not solve the problem of natural language.

Another example of a screening system is the one introduced in (Faliagka, Ramantas, Tsakalidis,

& Tzimas , 2012). The proposed model is built by means of Machine Learning, applying Support

Vector Regression (SVR) algorithm to learn to rank candidates. For training the model, the

authors used a set of features extracted from the candidate’s LinkedIn profile, such as years of

education, work experience, average number of years per job as well as extraversion which is a

derived feature from mining applicant’s blog posts. The model as a whole learns how to rank

candidates using previous screening decisions, however given recent developments in the field

of Natural Language Processing we consider that the usage of advanced techniques such as

word2vec could improve results by dealing with problems such as synonyms and polysemy

which are latent problems when it comes to use natural language in Machine Learning contexts.

The job recommendation problem

When a potential candidate is looking for a job, searching online has become for most people a

natural way. However, searching through hundreds or thousands of jobs’ postings, a situation

designated as information overload, can be overwhelming. The potential candidate finds a huge

collection of jobs in different career portals and recruiter’s websites which makes the selections

of positions to apply to a complex and time-consuming task. Job recommendation systems are

meant to tackle that problem by providing a list of job positions to a candidate which best

reflects his/her preferences and profile. Recommendation systems are widely employed for

many applications, such as recommending books or movies –generally called ‘items’ – and they

have been applied in the job market for more than a decade (Bobadilla, Ortega, Hernando, &

Gutiérrez, 2013). Technically, recommendation systems have been split in many categories but

the following three categories have been the most common:

a) Content-based Recommendation (CBR) – the idea of CBR is to suggest items to users

based on similarity between the user profile and the item information. (Paparrizos,

Cambazoglu, & Gionis, 2011) used this approach to build a Machine Learning model to

predict the next job of a candidate using both the candidate’s profile information as well

the information of the companies where the candidate had work previously. One of the

challenges of CBR is the so-called overspecialization, the phenomenon in which

candidatesl receive recommendations of jobs whose profiles contain multiple attributes

similar to the candidates own profiles. profile while not receiving recommendation of

other type of jobs which they may like more (Bobadilla, Ortega, Hernando, & Gutiérrez,

2013).

b) Collaborative Filtering Recommendation (CFR) – this technique relies on finding people

similar to the target person and recommending items which similar people have liked.

The similarities in Collaborative Filtering technique are concerned with people’s tastes,

preferences and activities, contrary to CBR where similarity is built on top of the content

of the person and the job profile. In the context of job recommendations, CFR usually

relies on data about the person’s activities such as job applications, job posting clicks

15

and ratings. It is rare to find a recommendation system which relies solely on

Collaborative Filtering. Among its challenges are the cold-start problems for new users

and items. When a new person registers in a job portal she has never applied for a job

there, therefore it is not possible to recommend her a job that someone as with the

same preferences has applied to before. At the same time, when there is a new job

opening, by definition no one has applied yet, so it is not possible to recommend that

job to person A because no other person applied to it yet. A body of literature has

attempted to solve the problem in different ways, one of which through deep learning

as proposed in (Yuan, et al., 2016), where the authors build a model which learns the

similarity between a new job profile and an existing one with prior applications utilizing

doc2vec which is considered the current state-of-the-art deep learning algorithm for

document embedding and matching. Therefore, the system can recommend the new

job based on prior applications to similar jobs content-wise.

c) Hybrid Recommendation (HyR) – as seen already, all recommendation techniques have

some shortcomings, therefore it is rare to find a recommendation system that uses only

one technique. The hybrid approach combines different techniques to overcome the

specific problems of each. In the work of (Hong, Zheng, & Wang, 2013), the authors

propose clustering users into three groups based on their activity (pro-actives, passives

and in-between) and apply a different recommendation technique on each group. In

another work (Shalaby, et al., 2018), the authors attempt to address the challenge of

cold-start in Collaborative Filtering and the rigidity of Content-based techniques. To

achieve this, on one side, content-similarity between jobs is learnt by means of Machine

Learning. On the other side, the authors use a statistical approach to estimate the

likelihood of candidate applying for a job given their prior interactions. These

intermediary results are then combined and correlated with the candidate profile and

activity to provide the specific recommendations.

Figure 1: Recruitment process adapted from PROSPECT and JRS Survey

16

Regardless of the conceptual division between screening and recommendation, in a broader

picture, the recruitment goal is to bring valuable people for the organization to fulfill its needs.

Clearly a good match between people and jobs needs to consider both the preferences of the

recruiter and the preferences of the candidate. It is the perspective of this work that the

screening problem and the recommendation problem should be tackled as a whole. In the work

of (Malinowski , Wendt , Keim , & Weitzel, 2006) the authors followed a similar idea by

developing two complementary models. The first one aims to recommend people profiles (CV-

recommender) that are similar to other people’s profiles previously selected by the recruiter

and the second one (Job-recommender) aims to recommend jobs to people who have expressed

their preference for similar jobs in the past. In the end, the authors acknowledge the need to

aggregate the recommendations generated independently and propose an approach where one

the first step the top candidates in terms of bilateral matching are chosen and on the second

step these candidates are ranked based on their job preferences. Another work which relates to

our approach is the one in (Fazel-Zarandi & Fox, 2009) who identified a set of features such as

must-have skills, secondary skills, education and job experience and found the similarity degree

between the job profile and applicant profile on each of these features. The work concludes by

ranking the candidates based on an aggregation of the similarities through the different

dimensions, whereas in our work we use machine learning to learn the parameters of a function

to match the job profile and the candidate profile with a multi-dimensional input.

Lastly, in the work of (Yuan, et al., 2016), the authors find the similarities between job profiles

based on the semantic representation of job profiles through means of the novel application of

the doc2vec algorithm. This relates to our work in the sense that we also apply a variant of

doc2vec, the word2vec algorithm to learn the semantic representation of skills and we use that

representation to find the degree of similarity between applicant profile and job profile in terms

of required/offered skills. Moreover, the similarity extracted from skills embedding among with

a collection of other features are treated as input data for our Machine Learning application

which learns what is a successful application from historical job applications.

C. Technical background

In this section we provide the technical background required in the context of this project. We

describe in a high-level the variety of methods explored, the respective science fields and how

these methods relate to each other. The topic-subtopic scheme that we lay here is one of many

others schemes that could be drawn, as the respective science fields overlap in many domains.

The details and the proper tuning of the hyper-parameter of each method in the context of our

problem and data, are further explored in the experimental section.

1. Statistics

1.1. Latent Semantic Analysis (LSA)

LSA is a procedure which belongs to the Statistical subfield of Distributional Semantics. The goal

of LSA is to extract the underlying concepts in a collection of documents and its respective

17

words. LSA assumes that words that are close in meaning will occur in similar pieces of text. The

word frequency (sometimes multiplied by the inverse of the number of documents where the

words appear) is drawn from each document and built into a matrix A. This matrix is then

decomposed through Single Vector Decomposition (SVD). The resulting matrix M is a new

representation of the word/document matrix. Formally:

𝑀 = 𝑈𝛴𝑉𝑇 ,

where U is the unitary matrix of A (eigenvectors), 𝑉𝑇 is the conjugate transpose of the unitary

matrix of A and Σ is the diagonal matrix composed with the eigenvalues of the unitary matrix of

A.

To complete the LSA procedure, one applies a low-rank approximation of M. This is done by

selecting the k highest eigenvalues in matrix Σ, and subject to a minimization procedure to

recreate M with a k rank.

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑣𝑒𝑟 �̂� ⃦ M − �̂� |⃦⃦ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑎𝑛𝑘(�̂�) ≤ 𝑘

The process of low-rank approximation of M (LSA) mitigates the problem of identifying

synonymy, as the rank lowering is expected to merge the dimensions associated with terms that

have similar meanings, and with limited results, to mitigate polysemy problems (Pottengerb &

Kontostathis, 2006).

In this project we use LSA to tackle the problem of synonymies when matching the required skills

by the job offer with the offered skills of the applicant.

1.2 Variance Inflation Factor (VIF)
VIF is used as a measure the severity of multicollinearity among variables. Multicollinearity

causes biased estimation, coefficient estimation instability and is a considerable obstacle to

most machine-learning techniques (Dumancas & Ghalib, 2015). Collinearity is most commonly

intrinsic, meaning that collinear variables are different manifestations of the same underlying

construct or latent variable (Dormann, 2013).

Formally,

𝑉𝐼𝐹𝑚 =
1

1 − 𝑅2
,

where 𝑉𝐼𝐹𝑚 is the VIF of the 𝑚𝑡ℎ variable, and 𝑅2 is the coefficient of determination computed

from regressing variable m against the remaining ones.

The square root of VIF indicates how much larger the standard error of the variable coefficient

estimation is in comparison to what it would be, were the variable uncorrelated with the other

explanatory variables (Allison, 1999).

In this project, we use Variance Inflation Factor to assess the multicollinearity of our variables

for the purpose of model stability.

18

2. Machine Learning
Machine learning is a field of statistics and computer science that gives computer systems the

ability to progressively improve performance on a specific task with data, without being

explicitly programmed. It explores the study and construction of algorithms that can learn from

and make predictions on data. Such algorithms overcome following strictly static program

instructions by making data-driven predictions or decisions through building a model from

sample inputs (Samuel, 1959).

2.1 Supervised Learning
Supervised learning is a subfield of Machine Learning which focus on the search of algorithms

that learn from labeled data to produce general hypotheses, which then make predictions about

future instances. Specifically, the goal of supervised learning is to model the distribution of the

class labels given the input features. The resulting model is used to predict the class label (labels

in multilabel classification) of unseen instances made of the same features (Kotsiantis, 2007).

2.1.1 Logistic Regression(LR) / Single Layer Perceptron (SLP)
Logistic Regression derive both from the field of Statistics and Machine Learning. In this work,

we use LR and SLP terms interchangeably. Under the Machine Learning perspective, a Logistic

Regression is a special case of the Perceptron where in Statistics it is considered a special case

of the Generalized Linear Regression.

Logistic regression model computes the class membership probability for one of the two

categories in input vector. In matrix notation:

𝑝(𝑌 = 1|𝑋) =
1

1 + 𝑒−𝜃𝑋
,

where p(𝑌 = 1|𝑋) represents the probability 1 given the input matrix 𝑋 and θ is the matrix of

estimation coefficients.

The problem can be represented as a minimization problem of distance/error between the logit

and the true label. A common error function (also called cost function or fitness function) is the

Cross-Entropy. Formally:

𝐸 = 𝑌 log(�̂�) + (1 − 𝑌) log(1 − �̂�),

where E is the entropy, 𝑌 is the true label and �̂� is the class estimation. The function can be

minimized by multiple mean, a common one being the gradient descent (Dreiseitl & Ohno-

Machado, 2002).

The advantages of LR include its weighs interpretations and model readability. They can be

considered a decent first-try when we don’t know whether the classes are linearly separable or

not in terms of the explanatory variables. However, for the cases where it is not possible to come

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Mathematical_model

19

up with a straight line or plane to separate the classes, the Perceptron falls short, as the model

will never be able to classify all instances properly (Kotsiantis, 2007).

In this project we use LR as our first approach to create a job matching model.

2.1.2 Multilayer perceptron (MLP) / Artificial Neural Networks (NN)
Multilayered Perceptron have been created to try to solve the problem of non-linearity of class

separation. (Rumelhart, Hinton, & Williams, 1986). MLP can be considered a generic case of LR

where between the input data and the logistic function we have intermediary/nested functions.

In other words, a MLP consists of a set of functions joined together in a pattern of connections.

To each function under the MLP context, the term neuron is frequently employed as the visual

representation and inspiration is loosely associated with the brain. Input data is commonly

called input layer, the model prediction called output layer and the intermediary layers called

hidden layers. The term MLP derived afterwards in (Artificial) Neural Networks. There is a

plentitude of Neural Networks topologies, but in the specific case of Feed Forward Neural

Networks, where the output of each neuron travels only forward.

Learning with MLP was made possible, because of the Backpropagation algorithm (Rumelhart,

Hinton, & Williams, 1986). It works by retro-propagating the error 𝐸 between the model

estimation �̂� and the true value 𝑦, through the whole network.

In the output layer we differentiate the error function in order of 𝑥𝑗 to obtain the gradient to

update the respective parameter:

𝑑𝐸

𝑑𝑥𝑗
=

𝑑𝐸

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑗

For the hidden units, we don’t know the value of 𝑥 but we know the outputs of the previous

layer neurons so we can compute how 𝐸 is affected by the output of the previous layer and their

parameters. Generically:

∆𝑤 = 𝛼
𝑑𝐸

𝑑𝑤
,

where ∆𝑤 is the change in the model parameters,
𝑑𝐸

𝑑𝑤
 is the derivative of the error in order of 𝑤

and 𝛼 is a parameter controlling the update speed, so-called, learning-rate.

One way to see backpropagation is as a generalization of the delta rule, by means of the chain

rule to iteratively compute gradients for each layer so as to adjust the model parameters.

MLP are a universal approximator. This means that they are capable of approximating virtually

any function, with just a single hidden layer, provided that the function has a limited number of

discontinuities and the number of neurons employed large enough, but not infinite (Hornik,

1989).

https://en.wikipedia.org/wiki/Delta_rule
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Chain_rule

20

There is a plentitude of Neural Networks topologies. In this project we focus on the Feed

Forward Neural Networks with a single hidden layer.

2.1.3 Decision trees
Decision trees is a learning algorithm which represents the mapping between inputs and outputs

in a tree-like structure. This algorithm repeatedly splits the inputs using the feature that

maximizes the separation of the data. Each node in a decision tree represents a feature and each

branch represents a value that the node can assume. The feature that best divides the training

data is the root node of the tree (Kotsiantis, 2007).

There are several methods to find the features that best splits the training data, such as

Information Gain (Hunt, Martin, & Stone, 1966) and Gini Index (Breiman, Friedman, Stone, &

Olshen, 1984).

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛: 𝐺(𝑇 | 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎),

where 𝐻(𝑇) is the model entropy and 𝐻(𝑇|𝑎) is the model entropy when further splitting based

on the weighted entropy of the values of feature 𝑎.

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥: 𝐼𝐺(𝑝) = 1 − ∑ 𝑝𝑖
2

𝐽

𝑖=1

,

where 𝑝 is the fraction of items labeled with class {\displaystyle i}𝑖𝑖 in the set and 𝐽 is the

number of classes.

ReliefF algorithm is a splitting method which works a little different than the former two. ReliefF

selects a feature not on the feature alone but in the context of other features. However, a

majority of studies have concluded that there is no single best method (Murthy, 1998).

Decision Trees can be used both for classification and regression problems. Also, features can

be either categorical or continuous. If a feature is continuous, it is implicitly discretized in the

splitting process (Dreiseitl & Ohno-Machado, 2002).

By the nature of the algorithm, Decision Trees will keep on splitting the training data until all

instances are correctly predicted which can create a very big model, with plenty of nodes and

each node gradually with less and less instances. Such behavior can lead to overfitting so it is

important to establish an adequate stop criterion. Common criteria include stopping when each

child would contain less than five data points, or when splitting increases the information by less

than some threshold (Shalizi, 2009).

On the other size, Decision Trees are robust to outliers, to monotonic transformations of input

features, can deal with missing values an interpretable model, which is a considerable advantage

in many domains.

There are multiples algorithms implementing decision trees, such as ID3, C4.5, C5.0 which use

Information Gain as splitting criterion and CART which uses Gini Index.

21

In this project we use Decision Trees as the estimator for Recursive Feature Elimination. The

Decision Trees algorithm we use is CART as it is the implementation on Scikit-learn.

2.1.4 Random Forests (RF)
Random forests originated from an ensemble approaches to improve the generalization ability

of Decision Trees. RF are a collection of Decision Trees, each one growing fully independent of

the others. Concretely, RF randomly select a random subset of features (Ho, 1995) and a subset

of instances (as inspired by Bagging (Breiman, Bagging predictors, 1996)) and train as many

Decision Trees as user-specified. Each Decision Tree learns a model and outputs a value which

works as a vote. Several techniques exist to convert the several votes into a final decision, such

as the mode or the average.

Although the generalization ability of Random Forests depends on the generalization ability of

its trees, as more trees are added to it, the generalization error is limited to an upper bound as

shown by the Theorem 1.2 in (Breiman, Random Forests, 2001).

In this project we use Random Forests to model job matching.

3 Variable Selection
Variable selection enables one to identify the input variables which separate the groups well

and the corresponding model frequently has a lower error rate than the model based on all the

input variables (Louw & Steel, 2006).

3.1 Recursive Feature Elimination (RFE)
Recursive feature elimination is to select features by recursively considering smaller and smaller

sets of features. (Guyon, Weston, Barnhill, & Vapnik, 2002). First, the estimator is trained on the

initial set of features and the importance of each feature is obtained. Then, the least important

features are pruned from current set of features. That procedure is recursively repeated on the

pruned set until the desired number of features to select is eventually reached. The ideal

number of features is then defined when adding a new feature, the score of the model

deteriorates (Milborrow, 2017).

In this project we use RFE with cross-validation to automatically select the ideal number of

features based on Decision Trees for the estimation of feature importance.

4. Filtering
Filtering is a set of techniques applied to smoothing the data while without greatly distorting the

underlying distribution of the data. The goal with smoothing is to remove noise and better

expose the signal of the underlying causal processes. Smoothing is applied to avoid overfitting,

while it may also happen that while classifying documents a word is encountered but has not

been in the training set.

In this project we apply the Savitzky–Golay filter. This filter work by as a convolution on the data.

Specifically, each data point is regressed against its n adjacent points with a linear least squares

regression of polynomial low-degree (Schafer, 2011).

22

Savitzky–Golay filter has been successfully applied on data which was then modeled by means

of Neural Networks (Oliveira, Araujo, Silva, Silva, & Epaarachchi, 2018), (Wettayaprasit, Laosen,

& Chevakidagarn, 2007).

In this project, we experiment the Savitzky–Golay filter to control the domain of values of the

features in order to help the learning algorithm to better generalize.

5. Cross-validation (CV)
Cross-validation is a statistical method used to evaluate and compare models and to estimate

the generalization ability of a model. Given a set of observations, one would pick a considerable

portion to train the model with, while the remaining part to assess the model. However, there

is no reason to believe the train data is a good representative of the test data and vice-versa. If

we consider for a moment that they don’t, and we make a model design decision based one

evaluation set alone, the utility of the model is very much questionable. Therefore, multiple

subsets of data can be chosen to train and evaluate a central moment of the distribution of the

evaluation score. The method works by splitting the training set into k folds. An iterative process

is followed where k-1 folds of the data are used to train a model which is then evaluated against

the left-out fold. The number of repetitions is equal to k. When the process terminates, central

moments of the evaluation results are computed, commonly mean and standard deviation

(Refaeilzadeh, Tang, & Liu, 2008).

6 Natural Language Processing (NLP)
NLP is a field of application of Artificial Intelligence concerning the interactions between

computers and humans via natural languages. It includes challenges such as parsing

(grammatical analysis) natural-language understanding or natural-language generation.

Classical approaches commonly represented natural language as a unique dimension in a sparse

vector of inputs (one-hot encoding) and applied linear learning algorithms on top of it (Goldberg,

A Primer on Neural Network Models for Natural Language Processing, 2016).

6.1 Word embeddings - Word2vec
Concerning to the natural language representation, more recent approaches create the so-

called word embeddings, where each feature is embedded into d dimensional space and

represented as a dense vector.

The principal benefit of embedding is representing words as not features per se but as contexts,

which should entail a higher level of information not only about the word, the how and where

the word was employed.

A common approach for word embedding is referred as sliding window of 2k + 1 size, where k is

user defined (in some techniques the actual k per iteration is randomly selected between 1 and

k). The sliding window iterates through the words, where the middle word in the window is

called the focus and the neighbors words called the context (Goldberg, A Primer on Neural

Network Models for Natural Language Processing, 2016).

23

The information extracted from each word is distributed all along a word window in distributed

representations (word2vec representation). For a word vector learning, given a sequence of T

words {𝑤1, 𝑤2, … 𝑤𝑇} and a window size 𝑐, the objective function is as follows:

In order to maximize the objective function, the probability of 𝑤𝑖 is calculated based on the

softmax function as follows:

where the word vectors are concatenated or averaged for predicting the next word in the

content.

One of the advantages of using word2vec for building word embedding is that, while it is a

Machine Learning approach, it does not require annotations. One of the approaches is to predict

the focus word based on the context word, the so-called Continuous Bag of Words. Another way

is predicting the context words, given for a given focus word, named as Skip-gram model Words.

Embeddings are then training by means of Neural Networks (Mikolov, Chen, Corrado, & Dean,

2013).

In this project, we apply Skip-gram flavor of word2vec, to create a semantic vector to represent

the job skills required and the applicant skills.

D. Data

We have approached an international IT-specialized online job marketplace, presented our
research idea and were given a sample of their data, anonymized, so as to not include any fields
which could be used to identify either the applicants and the recruiting companies. The job
marketplace works as a middle man, posting job ads in the platform and finding the best set of
applicants. The job marketplace professionals, are in charge of pre-screening job applicants to
find the best set to progress in the recruitment process.

The data we were given includes 7 tables, specifically:

o People: candidates database, with and without applications;

o Applications: application from someone applying for a Job Offer. Applications

have a strong relation with people and job ads;

o Application Audit: Processual information from the application. Revision dates,

rejection dates, etc.

24

o Job Ads: job offers since on the platform;

o Companies: pretty obvious, they're related with Job Ads;

o Tags: generic tags imported from LinkedIn and user defined;

o Skills: the relation between Tags and People.

Relations:

• An application has an Application Audit, a Person and a Job Ad;
• A Job Ad has a Company;
• A person has many skills which may have many tags;

Another set of data consists of the Master Data Management. In this file we find the business
mapping with the state field of various tables including, job offers states (eg. Published, not
published, closed) or application states (eg. Unreviewed, reviewed, engaged, pre-offer, rejected,
hired).

In this section we’ll go through the baseline transformations applied to the tables to create
features describing people, job ads and output.

The data in csv is ingested in Python with the library Pandas which has a central object called
dataframe which resembles a SQL table and a large variety of methods for manipulating the data
in the dataframe, e.g. casting, aggregations and merge.

The complete list of fields per table can be found in the appendix.

E. Methodology
No Free Lunch Theorem
The reasoning behind the application of several learning methods and the calibration of the

corresponding parameters lays on the No Free Lunch Theorem For Optimization, which states

that given a finite set 𝑉 and a finite set 𝑆 of real numbers, assuming that 𝑓: 𝑉 → 𝑆 is chosen at

random according to uniform distribution on the set 𝑆𝑉 of all possible functions from 𝑉and to 𝑆,

then for the problem of optimizing 𝑓 over the set 𝑉, there no algorithm performs better than

blind search (Wolpert & Macready, 1997). In other words, if one algorithm outperforms another

for certain kinds of cost function, then the contrary must be observed for all other cost function

dynamics.

Therefore, one must try multiple learning algorithms and parameters to find one that works best

for a particular problem. It has been established a few approaches to standardize the process of

finding the best combination of algorithms and parameters.

Data modelling in practice
The two most popular approaches for data modellings are SEMMA (Sample, Explore, Modify,

Model, Assess), introduced by SAS Institute and CRISP-DM (Cross-Industry Standard Process for

Data Mining), introduced by SPSS and NCR (Azevedo & Santos, 2008). In the project, follow

loosely the latter because of its flexibility and easy customization. CRISP-DM follows six stages:

1. Business Understanding: understanding the business goals and converting it into a Data

Mining problem;

25

2. Data Understanding: explore the data, understand quality issues, get the initial insights

and draw an initial set of hypotheses;

3. Data Preparation: transformations required to build the dataset for training, including

but not limited to outliers’ inspection, data normalization, data filtering and smoothing,

data impute, dimensionality reduction and feature selection.

4. Modelling: Applying a set of learning methods and the calibration of the corresponding

parameters;

5. Evaluation: Assessing the results against the hypotheses drawn and business goals;

6. Deployment: Integration of the final model into the organization systems, in a way that

the final user can take advantage of it.

This process can be sequential but also iteratively repeated in any of the stages (IBM, 2011).

Software
This project was fully implemented in Python language under the Jupyter Notebook framework.

Data transformations are carried out using Pandas library (McKinney, 2010)whereas Machine

Learning algorithms and Statistics methods applied come from Scikit-learn (Pedregosa,

Varoquaux, & Gramfort, 2011), Scipy and Numpy libraries (Oliphant, 2007). Word2vec is applied

following the implementation on Gensim library (Rehurek & Sojka, 2010).

F. Data transformation
1. Building the target variable
The target we will be building concerns to the binary outcome of an application screening:

selected or rejected.

By selected we mean the application was reviewed by the HR team and considered a match, so

the application moves to a next stage, which typically is a technical problem, an interview with

the HR team or an interview with the employer, each depending on the prior stage results.

On the other side, a rejected application is one that was reviewed by the HR team but considered

not a match, so the process is interrupted.

The total raw number of applications as denoted by the number of rows in table ‘Applications’

is 52.548.

Looking at table ‘Applications’ we find a field named ‘state’ which represents numerically the

stage at which the application is currently at. The business mapping can be found in the Master

Data Management file as we show in figure 8 in Annex.

We define our target in the following way: the applications that were reviewed and passed to

the client are positive cases and are identified in Table 8 by id’s 25, 27, 28, 29, 30 and 97. On the

other hand, the negatives cases are identified with state id 99.

26

Id’s 60 and 95 concern to applications that were reviewed by cancelled. Looking at state alone

we can’t conclude whether this are positives, negatives or not able to label. Therefore, after

merging ‘Applications’ table with ‘Application Audit’ table, we use the field ‘reviewed_at’ based

on which we define the following: applications in stage 60 or 95 which have a date on the field

‘reviewed_at’ are considered positive cases. We can’t conclude whether the nulls are a rejection

by the HR-team or simply the applicant has cancelled her application before the process moved

to the recruiter.

In the aftermath we get 72% negatives and 28% positives out of 37.900 useful applications.

2.People features - create people dataset
People table is in large amount self-explanatory: each row represents a person in the database,

and the various fields, such as ‘birth_year’, ‘relocation_countries’, or ‘salary_expectation’,

represents the different dimensions of a person captured. Education and prior jobs are not asked

when the person is building his profile in the Marketplace so these variables are not available in

the database.

The person can attach the link to her Linkedin profile though, where she might or might not have

declared prior job experience and education. For a matter of data privacy tough, the link to the

Linkedin profile of the applicant was not provided in the data that we were given.

However, when the person builds her profile, she is asked to declare her skills in text boxes and

the respective years of experience.

On the other side, job ads are built with the following sections: name of the position, description

of the job, the city of the job or if it is a remote job, years of experience or level of seniority,

required skills, nice-to-have skills (in some cases specifying the required experience per skill) and

salary and perks of the job.

Figure 2 - Curator-defined target. On axis 0 we have the class and
on axis 1 we have the number of observations

27

2.1. Extracting people skills and tags
Table ‘Skills’ holds the mapping between people and tags. A person has many skills and a skill

can have many tags. Tags are text (skills name) and each one is unique in the database. However,

the application has an engine which determines that when different tags possibly represent the

same skill, then the skill points to a list of ‘tag_ids’ instead of a single ‘tag_id’. To the output of

this engine is called ‘canonicalized skills’.

For each applicant, we are interested in joining in the same table, skill-ids, skills-name(tags) and
experience per skills.

Brief summary of the transformations applied:

1) We are only interested in skills of people whose applications are part of out target

dataset, so we start by filtering the ‘Skills’ table retaining only those of people in our

target table.

2) Now we will work on the ‘canonicalized_tag_ids’ column. First we remove ‘{ }’ from all

the rows. Then, we convert the string of tag ids into a list. String with multiple tag ids

will return a list with multiple indices. Finally, we convert column data to integers.

Table 2 - canonicalized tags ids transformed

Table 1 - Skills table

28

3) Now we breakdown the rows where skills have multiple tags into new rows and use a

second level index to keep track of those rows whose skill ids are now duplicated. We

have our skills dataframe ready.

4) Import ‘Tags’ table.

Table 4 - Tags table

5) We execute a left join between skills and tags dataframe, using ‘tag_id’ as key, resulting

a new dataframe called ‘skillTags’.

6) For last, we group ‘skillTags dataframe by person_id concatenating in a single list all the

values of a certain field related with the same person. The fields we are interested are

‘tag_ids’, ‘label’ and ‘experience’.

Table 3 - Skills table after transformation on tag ids field

29

3. Job ad features – create job ads dataset
To build a dataset representing the attribute of a job ad, we need to pick attributes from tables

‘JobAds’, ‘Companies’ and ‘Tags’. A job ad has a company while a company can have multiple

job ads. A job ad requires multiple skills and each skill has a label.

Table “JobAds” has considerable number of fields. We get rid of all system columns as well as

fields related with bureaucracy associated with the job ad.

From the remaining fields, we break them down into 7 groups, each one corresponding to a

different perspective on the job ad based on our judgement. In any case, the purpose was merely

to start having some hints on which feature could be used or built for the Machine Learning

models that we will be later and to make the code more readable. Then, we merge jobAds table

with Companies table.

Table 5 - Skill tags per person

Figure 3- Grouping job ads fields

30

3.1. Extracting required skills and nice-to-have skills
Job ads specify the required skills for the job and the additional or nice-to-have skills. These

information is presented in the table ‘job ads’ in the fields ‘extracted_main_skill_ids’ and

‘extracted_additiona_skill_ids’. These fields come in the form showing in table 15. Please note

that the ids of both of these fields point to Tag ids and not to Skills ids, contrary to what the

name suggests.

Our goal is to obtain the list of required and nice-to-have skills per job ad and the corresponding
labels. To do so, for both fields, we apply most of the same transformation that we briefed in
section 2.1, which include:

1) Converting string of ids to list of integers;

2) Break down each list into the corresponding number of rows;

3) Merge with table Tags to get the labels.

G. Experiments
We divide logically the experiments conducted into two groups. The techniques applied in both

are highly intersected, however in experiment set A, we use a simple TF-IDF (Term Frequency-

Inverse of Document Frequency)1 approach to convert job and applicants’ skills into a term-

1 Term-frequency matrix is a tabular representation of data where documents are usually assigned to the
rows and the collection of terms through all documents are represented as columns. The values of the

Table 6 - Job ad skills

Table 7 - Transformed job ad skills

31

document matrix and apply the cosine similarity on the applicant skills vector and job skills

vector. In experiment set B, we test a set of different NLP techniques to further improve the

ability to match the skills of the applicant with those required in the job ad. In experiment B,

apart from the Skills-matching re-estimation, we rely on the same data-preprocessing

techniques and features (except skills-matching) applied in experiment set A to generate the

final dataset for training.

Experiment-set A
Feature engineering
In this section we introduce the features we generate to serve as input for the Machine Learning

algorithms we apply later. The set of features we generate can be split into two groups: the

matching group and the descriptive group. The matching group refers to the set of features

generated in order to allow a comparison of similar dimensions between the job requirements

and the candidate profile, for instance the matching between the skills required and the skills

presented in the candidate’s profile. The descriptive group are features for which either was not

possible to draw a match or are purely one-sided features. One example of the former is where

candidates present their experience years as a continuous variable, while the job postings state

the required experience level as a category representing ranges of years of experience. For the

latter case an example is whether Landing.Jobs considered the company offering the job

position as strategic or not strategic.

1. Skills-matching
Let 𝐴 be the set of all applications in our data 𝐷 and 𝐴𝑛 be the 𝑛𝑡ℎ application.

Let R be the set of all skills required in the job ad and O be the set of all skills offered by the

applicants.

Skills are represented as a vector of strings encoded as a TF-IDF matrix.

Each application 𝐴𝑛 contains a job ad 𝑗 and a person/applicant 𝑝.

The skills-matching coefficient is the similarity between the vector of skills required 𝑅𝑗 in the

job ad 𝑗 and the vector of skills offered 𝑂𝑝 by the applicant 𝑝.

Let:

𝐾 = 𝑅 ∪ 𝑂

representing the union of all skills vector into a single set.

To encode the vectors of skills, we transform 𝐾 into a TF-IDF sparse matrix 𝐾. In text-mining

terms, we implicitly consider each vector of skills a document and each skill a term.

The similarity measure used is the commonly applied cosine-similarity.

matrix represent the frequency each term appears per document. Usually it is multiplied by the inverse
of the frequency of the term in the documents so as to give less important to terms which are very
common and appear in most documents while stressing the importance of less common terms. In this
case, the matrix is called Term-Frequency Inverse of Document Frequency (TF-IDF) matrix.

32

Therefore, the similarity 𝑆𝑛 computed for each pair (𝑅𝑗 , 𝑂𝑝) comes as:

𝑆𝑛 = cosine (𝑅𝑗 , 𝑂𝑝) ∈ 𝐴𝑛, ∀ 𝑛 = 1, 2 … 𝑁,

where 𝑁 is the total number of applications in the data.

2. Profession-matching
Professional-matching represents how well the person’s professional title, denoted in our data

as the headline, matches with the name of the job role. The first impression a person conveys

in her headline when compared with the name of the job role, might provide some insights on

the degree of matching between a candidate and a job position.

We start by considering candidate’s professional title and name of job role as strings and the

first metric we extract is the distance between those string. For that we use Levenshtein distance

metric which counts the number of character edits needed in one strings for it to become like

the other one (Navarro, 2001). While Levenshtein distance metric is intuitive and easy to

understand, we acknowledge some shortcomings such as ignoring the semantics of words. For

instance, headline ‘Experienced Software Developer’ would match highly with job role ‘Software

Developer’, however ‘Front-end Developer’ matches very poorly with ‘UI Engineer, even though

one can consider that the two strings are semantically connected.

Let’s use the same notation as in the skills-matching, where, in this profession-matching context,

𝑅𝑗 is name of job role presented on job ad 𝑗 and 𝑂𝑝 is the applicant 𝑝 headline.

Therefore, the distance 𝑆𝑛 computed for each pair (𝑅𝑗, 𝑂𝑝) comes as:

𝑆𝑛 = levenshtein (𝑅𝑗, 𝑂𝑝) ∈ 𝐴𝑛, ∀ 𝑛 = 1, 2 … 𝑁

The final match value is computed by dividing the distance 𝑆𝑛 by the length of the longest of the

two strings.

3. Location-matching
Location-matching intends to find the degree of matching between the applicant location or a

location the applicant considers moving to and the job location. As an illustration for the

pertinence of this feature consider that a candidate from a certain country applies for a job in

another country for which a visa is required but the recruiter company is not sponsoring the visa

application. As briefed by a Landing.Job official and through our domain knowledge, we suspect

that these applicants would be in a less favorable situation and that this may be embedded in

the selection criteria.

33

The following variables were defined before estimating the location-matching coefficient.

Let 𝐶 represent the country-matching, then:

𝐶 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑎𝑠 𝑡ℎ𝑒 𝑗𝑜𝑏
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Let 𝐿 represent the relocation-matching, then:

𝐿 = {
1 𝑖𝑓 𝑗𝑜𝑏 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Let 𝑉 represent the visa-matching, then:

𝑉 = {

1 𝑖𝑓 𝑣𝑖𝑠𝑎 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑎𝑛𝑑 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑑,
0.5 𝑖𝑓 𝑣𝑖𝑠𝑎 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑟 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑑,
0 𝑖𝑓 𝑛𝑜𝑡 𝑣𝑖𝑠𝑎 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑛𝑜𝑟 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑑

Let 𝑅 represent the remote-matching, then:

𝑅 = {

1 𝑖𝑓 𝑓𝑢𝑙𝑙 𝑟𝑒𝑚𝑜𝑡𝑒 𝑗𝑜𝑏,

0.5 𝑖𝑓 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑟𝑒𝑚𝑜𝑡𝑒 𝑜𝑟 𝑊𝐹𝐻2 𝑜𝑟 𝑓𝑢𝑙𝑙 𝑟𝑒𝑚𝑜𝑡𝑒 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑏𝑙𝑒,
0 𝑖𝑓 𝑛𝑜𝑡 𝑟𝑒𝑚𝑜𝑡𝑒

We then compute the location-match coefficient by applying a weight vector to C, L, V and R

Let’s represent 𝐶, 𝐿, 𝑉 and 𝑅 as a vector 𝑙. We use our domain knowledge to create a vector of
weights as

�⃗⃗⃗� = (0.3, 0.3, 0.25, 0.15)

Recall from the previous notation that 𝑝 be the applicant, 𝑗 the job ad and (𝑝, 𝑗) ∈ 𝐴𝑛, where
𝐴𝑛 is the 𝑛𝑡ℎ application.

Hence, the location-match coefficient comes as:

𝐿𝑜𝑐𝑀𝑎𝑡𝑐ℎ𝑛 = 𝑙𝑛
⃗⃗⃗⃗ · 𝑤𝑛⃗⃗⃗⃗⃗⃗

Other feature-matchings were considered, for instance, Salary-matching and Experience-

matching. However, in the former case, most of the people don’t specify their salary expectation

2 Work-from-home job modality abbreviated to WFH.

34

nor is used a consistent scale used (e.g. units or thousands) and in the latter case, the experience

required in the job ad is presented as classes with a non-homogenous scale (eg. Class 3

corresponds to 5 years of experience and class 4 corresponds to 7+ years of experience including

leading).For the presented reasons, we decide to introduce salary and experience features in

our feature set but we do not create a matching feature ourselves.

In the following, we present a set of descriptive features we generate to complement the

aforementioned ones.

4. Additional features
Job experience level - Categorical

Job experience required in the job ad, converted to four dummy variables.

Applicant experience - Continuous

Years of experience of the applicant.

Strategic – Categorical / Boolean

Is a flag which encodes whether the company recruiting is strategic.

Premium – Categorical / Boolean

Is a flag which encodes whether the job ad is premium.

Perceived Commitment - Categorical

Represents the commitment of the recruiting company as perceived by the account manager.
Three categories, converted to dummy variables.

Availability – Categorical

Encodes whether the applicant availability to start on the job, were she selected.

Offered salary – Continuous

Salary offered for the job. Is truncated with a lower bound of 10.000 and a higher bound of
150.000. Null values are imputed using the intra-class mean salary for classes country, role and
experience.

Expected salary – Continuous

Salary expected by the applicant. Is truncated with a lower bound of 10.000 and a higher bound
of 150.000. Null values are imputed using the intra-class mean salary for classes country and
experience.

Number of applications per job – Continuous

Self-explanatory.

Number of expected hiring – Continuous

Number of people the company is recruiting for that job.

Total visits – Continuous

Number of times a job ad has been viewed.

35

Fee percentage – Continuous

Represents the price the recruiting company is paying to the Marketplace for their work.

Data preprocessing and feature selection
We begin our preprocessing phase by testing multicollinearity. Then we scale continuous

features and applied a filtering algorithm.

For multicollinearity testing we used the VIF (variance inflation filter) algorithm as explained in

Technical Background section. We suspected that our data could contain a high level of

multicollinearity because whenever we transformed a categorical variable into dummy

variables, we did not remove one of the dummies which should be considered the baseline

dummy variable. In table 8 we can find the multicollinearity measurement scores where all

features were considered and in table 9 we made available the multicollinearity measurement

scores where we have removed a baseline class per categorical feature. The results are

significantly different, with the latter set of features resulting in much lower scores. Though in

the latter case some features show a VIF score over 20, we have considered the results

acceptable, as there is not a consensus in the literature in regards to the acceptable values for

the higher bound VIF score but these scores could be considered within an acceptable range

(Dumancas & Ghalib, 2015).

Variable VIF type

jobExperLvl_1 5.035 categorical

jobExperLvl_2 605 categorical

jobExperLvl_3 25.146.274 categorical

jobExperLvl_4 1.925.703.577 categorical

is_strategic_job_0 34 categorical

is_strategic_job_1 21.609 categorical

premium_job_0 5.080 categorical

premium_job_1 346 categorical

perceived_commitment_jobAds_0 184.941.364.079 categorical

perceived_commitment_jobAds_1 32 categorical

perceived_commitment_jobAds_2 5.058.016.391 categorical

availability_ppl_0 13.350.010 categorical

availability_ppl_1 2.519.106 categorical

availability_ppl_2 379 categorical

availability_ppl_3 7.758 categorical

skillsMatch 2 interval

pplExperience 6 interval

professionMatch 7 interval

offeredSalary 7 interval

expectedSalary 7 interval

36

locationMatch 4 interval

nAppsPerJob 4 interval

expectedNumberOfHires 2 interval

totalVisits 5 interval

feePercentage 9 interval
Table 8 - VIF scores per feature before removing baseline classes in categorical variables

Variables VIF Type

'jobExperLvl_2 2 categorical

jobExperLvl_3 7 categorical

jobExperLvl_4 8 categorical

is_strategic_job_1 10 categorical

premium_job_1 8 categorical

perceived_commitment_jobAds_1 4 categorical

perceived_commitment_jobAds_2 4 categorical

availability_ppl_1 2 categorical

availability_ppl_2 6 categorical

availability_ppl_3 24 categorical

skillsMatch 9 interval

pplExperience 3 interval

professionMatch 2 interval

offeredSalary 2 interval

expectedSalary 5 interval

locationMatch 54 interval

nAppsPerJob 3 interval

expectedNumberOfHires 8 interval

totalVisits 10 interval

feePercentage 3 interval
Table 9 - VIF scores per feature after removing baseline classes in categorical variables

Moving on to feature scaling, it is particularly beneficial when the domain range among variables

differ substantially, as is the case here since we have features such as skills-matching which take

values between zero and one and other feature such as number of job posting views which can

take virtually any positive natural number. Feature scaling results in faster convergence during

training and there are some algorithms which give substantially better results with scaling (Hall,

1999). Continuous features are scaled by means of z-score3.

Regarding data filtering we have applied Savitzky–Golay filter to smooth the continuous

variables in our feature-set. As indicated in the Technical Background section, Savitzky–Golay

filter has been successfully applied in Machine Learning problem to reduce that noise in the

data. Through visual inspection using a boxplot chart (Figure 4) we noticed that the distribution

3 Z-score is computed by subtracting for each variable observation the sample mean and divided
by the standard deviation of the sample (Kreyszig , 1979).

37

of our features presented notable differences. Savitzky–Golay filter has two main parameters

a) window size W and b) polynomial degree D. Usually, the D is much smaller than W, so as to

obtain a reasonable smoothing. Conversely, the larger the W, the smoother the data. The

estimation of parameters W and D was made by visual inspection, comparing the box-plot of

each feature prior to and after smoothing for each combination of parameters. We have chosen

a window size of 11 and a polynomial degree of 2 as it provided an acceptable balance across all

continuous features. Boxplot after applying filter can be found in Figure 5.

Feature selection
For feature selection we have applied Recursive Feature Eliminative algorithm in conjunction

with Cross Validation with 30 folds (RFE-CV). This algorithm intends to find the optimal number

Figure 4- Boxplot chart representing variables prior applying Savitzky–Golay filter

Figure 5 - Boxplot chart representing variables after applying Savitzky–Golay filter

38

of features in regard to an evaluation metric. Please consider the Technical Background section

for details about the algorithm. The evaluation metric we use is the Receiver operating

characteristic – Area Under the Curve (ROC-AUC). In the Results Discussion section the reader

can find a discussion for the usage of this metric. To understand the impact of data filtering we

have applied RFE-CV in the data both prior applying Savitzky–Golay filter and after applying it.

In both cases, the ideal number of features was twelve, however when applied to the data

without the filtering algorithm the result was 0.60 while when applied to the data with the

filtering algorithm the result was 0.62. Based on these results, we decided to maintain the

filtering algorithm.

In Table 10 the reader can find the set of features selected by the RFE-CV algorithm.

Feature names

Skills-matching

Professional-matching

Location-matching

Job experience level_2

Job experience level_3

Job experience level_4

Applicant experience

Offered salary

Expected salary

Number of expected hiring

Total visits

Number of applications per job

Strategic
Table 10 - Final set of features

Modelling
We have modelled the preprocessed data with three learning algorithms: Logistic Regression,

Multilayer Perceptron and Random Forests.

Each learning algorithm has its own set of parameters that we need to tune. We have specified

a grid of possibilities for each parameter and each algorithm.

The model is learnt with cross-validation with 30 folds.

Logistic Regression
Regarding Logistic Regression we tune the regularization parameter C. Lower values of C

represent a stronger regularization. Regularization is a technique in which the prediction error

of a Machine Learning model is artificially inflated to help the algorithm to learn the right set of

39

parameters that not only fit the training data but most importantly that better generalizes for

unseen data.

Regularization parameter testing values are: 0.003, 0.01, 0.03, 0.1, 0.3 and 1.

The most performant parameter value for each measure is provided in the results section.

Multilayer Perceptron
The parameters we tune are:

• Neurons per layer: 3 and 5

• Initial learning rate: 0.01, 0.05, 0.1

• Learning rate strategy: “constant” and “invscaling”

• Momentum: 0.01, 0.02 and 0.03

• Optimizer: ‘SGD’ , ‘Adam’ and ‘LBFGS’

• Epochs: 50, 100, 200 and 400

When choosing the learning rate strategy “constant”, the initial learning rate is used during the

whole training. Then set to “invscaling”, the learning rate is update at each epoch. The effective

learning rate is then:

𝐿𝑅𝑒 = 1
√𝑡

⁄ , where t the training epoch.

‘SGD’ stands for ‘Stochastic Gradient Descent’, a popular optimization algorithm. ‘Adam’ a is

relatively new algorithm. It is an optimizer of first-order gradient based on adaptive estimates

of lower-order moments, which is computational and memory-efficient, making then fast and

well-suited for problems with large amounts of data (Kingma & Ba, 2015).

Momentum is used to avoid the algorithm getting stuck in a local minimum. Momentum is a

term which is multiplied by the delta of the previous epoch and is summed to the current delta,

providing an extra push to leave a potential local minimum.

The number of hidden layers is 1 (Hornik, 1989) and the activation function we use is the Logistic.

The training has another parameter controlling the interruption of the training called ‘early

stopping’, which is set to stop training when the model evaluated on the validation test worsens

score to avoid overfitting. Also, the parameter controlling the regularization (L2) is set to 0.001.

Apart from momentum and ‘invscaling’ which are only combined with ‘SGD’, the remaining

parameters are combined as a cartesian product.

Random Forests

The parameters we tune are:

• Number of estimators: 10, 30 and 100

• Minimum samples on the trees leaves: 1, 20 and 50

• Maximum number of features: All and the square root of the number of features

• Maximum tree depth: No limit and 5

40

Defining a minimum number of leaves in each tree and/or controlling the depth of the trees are

ways to control overfitting, avoiding the model to retain all the small details of the training data,

which may not be representative of true feature distribution. Splitting criterion is set to the

default Gini Index.

The top results for each metric is presented in results section and the remaining in the appendix.

Results: experiment-set A
Results are provided in terms of learning algorithm with a specific set of parameters. The metric

we use for assessing the quality of our models is the AUROC curve (Area Under the Receiver

Operating Characteristic curve) (Cortes & Mohri, 2003).

The best results were found with the following parameters:

Logistic Regression

• Regularization parameter: 0.01

Multilayer Perceptron

• Neurons per layer: 3

• Initial learning rate: 0.01

• Learning rate strategy: constant

• Momentum: 0.03

• Optimizer: LBFGS

• Epochs: 200

Random Forests

• Number of estimators: 100

• Minimum samples on the trees leaves: 50

• Maximum number of features: Square root of the number of features

• Maximum tree depth: 5

41

Model Algorithm ROC-AUC
Sample Mean

ROC-AUC Sample
Std. Dev.

95% CI

𝐿𝑅𝑇𝐹−𝐼𝐷𝐹 LR 0,797 0,048 [0,780 – 0,814]

𝑅𝐹𝑇𝐹−𝐼𝐷𝐹 RF 0,805 0,051 [0,787 – 0,823]

𝑀𝐿𝑃𝑇𝐹−𝐼𝐷𝐹 MLP 0,814 0,031 [0,803 – 0,825]
Table 11 - Best results per Machine Learning algorithm using the TF-IDF encoding of skills

In terms of sample mean, the best performing algorithm is the Multi-layer Perceptron (MLP)

which reaches 0,814 in terms of ROC-AUC. However, for the three algorithms explored, the 95%

confidence interval reveals an overlap in the results, which means that no algorithm performs

statistically better than the others. Even after considering that, we decide to accept the MLP as

the baseline model to compare with the next set of experiments. The result of the Logistic

Regression are the poorer ones, for reasons we suspect are related with the problem we are

solving not being linear. However, it is often a good idea in practice to start with a simple model

such as Logistic Regression and use it as baseline for further refinements. With regard to

Random Forests, the algorithm performed better than the Logistic Regression and worse than

the Multi-layer Perceptron. Eventually, a better result could be found by increasing the number

of estimators or by increasing the tree depth, however this would impact training times which

should remain in a reasonable time frame, considering that when deployed to production, the

model is going to be updated often with new data.

Experiment-set B

Feature engineering – semantic embedding
In this section we present two approaches to improve the skills-matching feature: LSA and

Word2vec. The remaining variables are left untouched.

Latent Semantic Analysis (LSA)

Consider �̅� the union of 𝑅 (the vectors of required skills) and 𝑂 (the vectors of applicant skills)

encoded as term-frequency matrix. In some preliminary work we have found that applying LSA

to the TF matrix yielded better results than when we applied LSA to the TF-IDF matrix.

When applying LSA, we choose 300 latent variables as to include 80% of the explained variance

in the new set of features. We denote the resulting LSA matrix as 𝐿.

The new skills-matching coefficient is the similarity between the LSA-transformed vector of skills

required 𝐿(𝑅𝑗) in the job ad 𝑗 and the vector of skills offered 𝐿(𝑂𝑝) by the applicant 𝑝.

The similarity 𝑆𝑛
𝐿 computed for each pair L(𝑅𝑗) , L(𝑂𝑝) comes as:

𝑆𝑛
𝐿 = cosine (L(𝑅𝑗) , L(𝑂𝑝)) ∈ 𝐴𝑛, ∀ 𝑛 = 1, 2 … 𝑁

42

Word2vec

Concerning to word2vec skills embedding, we model 𝐾 with the Skip-gram flavor of word2vec,

denoted as 𝑊. Specifically:

𝑊𝑗𝑖 = 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐(𝑅𝑗𝑖),

Where 𝑊𝑗𝑖 is the semantic encoding of the skill 𝑖 of job 𝑗 and 𝑅𝑗𝑖 is the skill 𝑖 of job 𝑗, as a string.

Likewise,

𝑊𝑝𝑘 = 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐(𝑂𝑝𝑘),

Where 𝑊𝑝𝑘 is the semantic encoding of the skill 𝑘 of applicant 𝑝 and 𝑂𝑝𝑖 is the skill 𝑘 of applicant

𝑝.

The similarity 𝑆𝑛𝑖𝑘
𝑊 computed for each pair 𝑊𝑗𝑖 , 𝑊𝑝𝑘 is the cartesian product of the cosine

similarity among each pair 𝑊𝑗𝑖 and 𝑊𝑝𝑘 belonging to the same application 𝐴𝑛.

This results in a 𝑖 ∗ 𝑘 vector of similarities per 𝐴𝑛.

To aggregate these similarities into a single coefficient, we compute the mean of 𝑆𝑛
𝑊 , denoting

it as 𝑆�̅�
𝑊.

Two important parameters of Word2vec are the minimum count of word frequency and the

window size. We set the minimum count as 5 and use experimentally a window size of 2 and 3,

where we denote the similarity with a window size of 2 as 𝑆�̅�
𝑊2 and the similarity with a window

size of 3 as 𝑆�̅�
𝑊3.

Results – Experiment-set B

Following the semantic embedding as outlined above, we build three new input datasets, similar

to the one we used in experiment-set A, except that we change the original skills-matching

feature. In the first e of the new input datasets, the skills-matching feature we use is the one

following the application of LSA. In the second one, the skills-matching feature is the result of

the application of word2vec algorithm with the window size of two and in the third one we test

setting the window size to three.

We finally apply the best performing algorithm found in experiment-set A in each of the new

datasets.

The results are displayed in Table 12.

43

Model Skills semantics
ROC-AUC

Sample Mean
ROC-AUC Sample

Std. Dev. 95% CI

𝑀𝐿𝑃𝐿𝑆𝐴−𝑇𝐹 𝑆𝑛
𝐿 0.807 0.032 [0.796 – 0.818]

𝑀𝐿𝑃𝑤2𝑣2 𝑆�̅�
𝑊2 0.822 0.049 [0.804 – 0.840]

𝑀𝐿𝑃𝑤2𝑣3 𝑆�̅�
𝑊3 0.838 0.048 [0.821 – 0.855]

Table 12 - Results in terms of ROC-AUC after applying the MLP fine-tuned where skills are represented as semantic
vectors

Discussion of results
Comparing the results of models prior and after semantic embedding we notice a considerable

improvement with respect with the target metric, the ROC-AUC. Even though we can observe

an overlap to some extent of the confidence intervals between the first set of experiments and

the second one where skills where semantically embedded, the sample mean score yields a

consistently better score after embedding.

With regard to the semantic embedding techniques, the word2vec algorithm provided better

results than the LSA technique. Actually, when setting the window parameter of word2vec to

three, the difference in the results is statistically significant considering an alpha of 5%. Perhaps

the result of the experiment using LSA could be optimized by increasing the percentage of

explained variance, which would affect the length of the skills vector, however, the same type

of argument could be applied to the word2vec where we did not fine tune neither the number

of iterations of the algorithm nor the minimum frequency of words which are both hyper-

parameters of the algorithm. Therefore, our final model is the one where we applied the Multi-

layer Perceptron with 3 neurons in a single hidden layer, a constant learning rate of 0.01, a

momentum of 0.03, optimizer LBFGS and 200 epochs of training and where we used the

word2vec algorithm for skills embedding with minimum word frequency of 5 and a window size

of 3.

All of the results are presented in terms ROC-AUC. ROC curves come from the field of signal

processing and are used, for instance, in medicine to evaluate the validity of the diagnostic tests

(Ferri, Flach, & Hernández-Orallo, 2002). The ROC curves show the rate of true-positives in the

y-axis against the false-positives rate in the x-axis (Fawcett, 2005). The AUC represents the area

that is below the ROC curve and can be interpreted as the effectiveness of a measurement of

interest. The results of our final model are given in probability terms, i.e., for each application,

the model returns the probability of the application being successful. The case of a perfect ROC

curve corresponds to obtaining all successful applications at the beginning of the list of results

and all unsuccessful applications at the end. This situation corresponds to an AUC equal to one.

The contrary situation corresponds to a random system where the progress in the rate of

successful applications is accompanied by an equivalent degradation in the rate of unsuccessful

application and corresponds to an AUC equal to 0.5 (Fawcett, 2005).

Therefore, given our results, in light of the ROC-AUC metric we can read our best results (0.838)

as the average successful application has approximately 16% probability of having an

unsuccessful application scoring higher than it.

44

When setting ROC-AUC as our evaluation metric we achieve two goals: 1) maximizing the

number of job applications correctly selected and 2) minimizing the number of incorrectly

selected ones, which happens to be just as important as 1). Also ROC curves are resistant to

imbalance (Fluss , Reiser, Faraggi, & Rotnitzky, 2009) which is relevant for our case since we have

roughly three times more negative examples than positive ones.

The models we have built in our experiments correspond to the mapping between the input

data (skills-matching, profession-matching, etc.) and the output data which encodes whether an

application was selected in the screening phase of a recruitment process. However, we claim

that our models could be deployed for purposes of job recommendation as well. In practice the

difference between using the model for screening or for job recommendation is that in the

former case there is an actual job application while in the latter case there is not an actual

application but the potential candidate is already sitting in the database. Thus, one could ask

the following question: what is the probability of person A to be a good match for job X, were

person A willing to apply to it? By generalizing this question to every potential candidate in the

database and every new job position, we end up with a list of top matches for each job position,

therefore recommending the jobs of highest matching probability to the corresponding people.

Some advantages of this approach are that instead of multiple models to maintain in production,

the recruiter would only need to maintain ones which decrease maintenance effort while any

improvements in the current model would benefit both the recommendation and the screening

processes. Another advantage of using a single model is that the jobs that the recruiter

recommends to a person are likely to be a good match with her. Ideally a recruiter should

recommend a job to a person that is likely to be interested in it and also has a profile that gives

a good level of confidence that if the person were actually to apply, there would be a good fit.

By using features such as skills matching, location matching or salary offered and demanded as

we do in our model, it gives us a fair expectation that a job recommendation to a person which

yields a high probability level in the screening it would peak the attention of the

recommendation recipient. On the disadvantages side, since our approach can be considered

to some extent a content-based approach, people with uncomplete profiles in the job portal,

possibly applying to jobs using their own CV, are likely to not be recommended to many jobs. To

tackle this disadvantage the recruiter could set the matching probability to a lower threshold

when recommending jobs while setting it to a higher threshold when screening applications.

H - Future work

Preliminary work

Our research proposal for future work is based on the premise that people who apply for the

same kind of jobs share some attributes. In the data we use in this work we find peoples’ profiles,

including their skill set which is presented in natural language. For instance, we have applicant

A who writes that she knows about HTML, CSS and Javascript and applicant B writes he knows

about front-end development. From what we know about the world, these two people are likely

to have many similarities in their technical abilities but if we were to represent their skill-set

with algorithms such as TF-IDF and compute their similarity they are likely to be quite distant.

45

Also, if we try to match the skill set of each candidate against a job posting which requires

knowledge of HTML and CSS, candidate A would come up with much higher similarity than

candidate B, even though they might be both as good. Therefore, our research idea is to virtually

extend peoples’ skill-set by adding the top n mentioned skills that the k most similar people

have.

In our preliminary work, which has been conducted in order to guide this discussion of future

work, we start by identifying the top five most similar people with the target person in terms of

the co-occurrence of applications for the same jobs. After that, we find the top three skills most

frequent in the skill-set of the most similar people. Finally, we increment the skill-set of the

target person by adding up any of these top three skills whenever they are not already presented

in her skill-set.

Likewise, if a pool of candidates applies for similar positions multiple times, the job positions

themselves are likely to share attributes amongst them. Extrapolating our first idea to the job

side, we intended to extend the required set of skills by adding up the top n required skills that

the k most similar jobs have. For that, we first found the top five most similar jobs with the target

job in terms of the co-occurrence of application and we increment the required skills-set for the

job position adding up the top three most frequent required skills whenever they are not already

requested in the job profile.

Upon the extension of applicants’ skill-set and job required skills, a new skill matching was

computed by applying cosine similarity measure on the vectors of the extended applicant skill-

set and job’s extended required skills and finally we trained a Neural Network with the best

performing set of parameters on the whole set of features, replacing the former skills-matching

by the new skill-matching extended.

Preliminary results show an improvement on the results. We suspect the gain comes from

tacking the sparsity in skills presented by applicant and required for the job position.

We consider that results could be improved by fine-tuning the parameters n and k, the number

of most similar people/jobs and the number of considered top skills, respectively. Moreover,

given the ability of the word2vec algorithm to predict a word in a context of a window of

surrounding words, we contemplate the possibility to train a Neural Network using the

word2vec algorithm using as input the skill-set of the most similar people and predict the next

k words/skills, which would apply for extending job’s required skills in the same fashion.

One critique of the aforementioned idea is that by extending people’s skill-set and job required

skills, the similarity degree skill-wise will grow more strongly for people with less declared skills

and that could reduce that discriminant ability of the skill-matching feature. While that is

potentially a problem not yet explored, we also consider that the set of skills which were

artificially incremented on people’s profile could be recommended to people when writing or

updating their profile or to serve as a recommendation for continued learning, as people

applying for the same jobs tend to have them.

46

Other future work

Moreover, we consider that our model could be improved by using semantic embedding not

only for skills but also for other aspects such candidate summary, job description, company

summary, etc. The semantic representation of these aspects could then be used as additional

features to improve the model.

Finally, the target variable we used in our model was derived from the pass or fail decision in

the screening process. Application screening by HR experts is conducted in a manner to optimize

the subset of applicants which offer the greatest probability of hiring. This selected group of

applicants then proceed to additional elimination phases such as written tests and interviews.

Another path for improving results could be training a model based on the outcome of the whole

recruitment process, i.e. hired or anything else, rather than the outcome of the screening phase,

as hiring is the true desired outcome.

I – Conclusion
A challenge faced in the era of Internet is the huge volume of information available. Job market

is no exception. On one side, there a tremendous number of job postings published online

everyday which makes the task of the candidate to short-listing jobs a time-consuming and

tedious one. On the other side, many job postings receive hundreds or thousands of applications

which make the recruiter task of screening application a very challenging one given the

businesses deadlines. In this work, we tried tackled these problems by means of Machine

Learning.

The raw data we use in this work is the transactional database data of the job portal

Landing.Jobs. It consists of multiple tables which store information such as people’s profiles

(skills, experience, location…) jobs’ profiles, applications and the result of applications.

Based on the raw data we build a set of features based on literature and domain knowledge and

we apply the Recursive Feature Elimination algorithm to arrive to the final set of features which

includes a) skills-matching (the cosine similarity between the vector of required skills for the job

and the vector of skills possessed by the applicant), b) professional-matching (similarity between

the job title and the professional title of the applicant), c) location-matching (measure of

geographic and bureaucratic matching in terms of the location of the applicant and the location

of the job position), d) required experience, e) applicant experience, f) the salary offered for the

job, g) the required salary by the applicant, h) the number of expected hiring for the job position,

i) the total number of times the job posting was viewed, j) the number of applicants for the job

and k) whether the respective company is seen as strategic or not for the job portal.

In our first set of experiments, we model the data using three algorithms – Logistic Regression,

Random Forests and Multilayer Perceptron and we calibrate the most important hyper-

parameters of each of the algorithms by iterating through a set of potential values (grid-search).

The model that provided the best results in the first set of experiments is the one where we

modelled the data using MLP with the following hyper-parameters: single hidden layer, 3

47

neurons, constant learning rate of 0.01, momentum of 0.03, LBFGS optimizer and 200 epochs of

training.

In the second set of experiments, we apply the MLP algorithm with the best hyper-parameter

values found in the first experiment and we use all features that we have used to model it,

except for skills-matching. Concerning skills-matching, we have adopted a semantic embedding

approach using two different techniques. One was Latent Semantic Analysis with 300 latent

features and the other was Word2Vec algorithm with window size of value 2 or 3 depending on

the experiment.

The best results were found with the application of the Word2Vec algorithm with window

parameter set to three. Our results are expressed in terms of ROC-AUC which yielded a value of

0.838 that can be read as the average successful application has around 16% probability of

having an unsuccessful application scoring higher than it. This metric is relevant in the context

of job recruitment where one wants to maximize the number of job applications correctly

selected and minimize the number of incorrectly selected ones, which is what ROC-AUC

optimizes for.

We further consider that our model can be deployed in production for purposes of automatically

screening applications and recommending jobs to candidates. While the former application of

our model is a natural fit because after all our Machine Learning model is learning what is a

successful application, for the latter application, i.e., recommending jobs to candidates, we

consider that there are points in its favor. For one, if we apply a screening model for

recommendation purposes, we are likely to be recommending jobs to people which have a good

probability of being selected in the screening phase, which can be positive for managing

candidates’ expectations and improving the overall recruitment process. Another reason is a

maintenance one, since maintaining a single model is easier and cheaper and any improvements

on the model would result in benefits for both recommendation and screening tasks.

The work we presented in the paper has the potential to give greater scalability power to the

business of Landing.Jobs by automatizing (at least partially) application screening while being an

additional option for building recommendation by complementing the current job

recommendation results with the ones which our model can provide.

48

J - Bibliography

Allison, P. (1999). What can be done about multicollinearity. In P. Allison, Multiple Regression: A
Primer. (pp. 137-150). Thousand Oaks: Pine Forge Press.

Alotaibi, S. (2012). A survey of job recommender systems. International journal of physical
sciences.

Azevedo, A., & Santos, M. (2008). KDD, semma and CRISP-DM: A parallel overview. IADIS
European Conference on Data Mining 2008 (pp. 182-185). Amsterdam: IADIS.

Berge, J. M., & Kiers, H. A. (1999). Retrieving the correlation matrix from a truncated PCA
solution: The inverse principal component problem. Psychometrika, 317–324.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey.
Knowledge-based systems, 109-132.

Breiman, L. (1996). Bagging predictors. Machine Learning, 123–140.

Breiman, L. (2001). Random Forests. Machine Learning, 5-32.

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and Regression Trees.
Taylor & Francis.

Cortes, C., & Mohri, M. (2003). AUC Optimization vs. Error Rate Minimization. Proceedings of the
16th International Conference on Neural Information Processing Systems (pp. 313-320).
Whistler: MIT Press Cambridge.

Desai, V., Bahl, D., Vibhandik, S., & Fatma, I. (2017). Implementation of an Automated Job
Recommendation System Based on Candidate Profiles. International Research Journal
of Engineering and Technology.

Diaby, M. (2015). Methods for Job Recommandation on Social Networks. Social and Information
Networks . Paris: Université Sorbonne Paris Cité.

Dormann, C. F. (2013). Collinearity: a review of methods to deal with it and a simulation study
evaluation their performance. Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl,
G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T.,
McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D. and
Lautenbach,, 27.46.

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network
classification. Journal of Biomedical Informatics, 352–359.

Dumancas, G., & Ghalib, B. (2015). Comparison of Machine-Learning Techniques for Handling
Multicollinearity in Big Data Analytics and High Performance Data Mining.
Supercomputing 2015: The International Conference for High Performance Computing,
Networking, Storage, and Analysis. Austin.

Faliagka, E., Ramantas, K., Tsakalidis, A., & Tzimas , G. (2012). Application of Machine Learning
Algorithms to an online Recruitment System. ICIW 2012 - The Seventh International
Conference on Internet and Web Applications and Services. Stuttgart.

Fang, M. (2015). Learning To Rank Candidates For Job Offers Using Field Relevance Models.

Färber, F., Weitzel, T., & Keim, T. (2003). An Automated Recommendation Approach to Selection
in Personnel Recruitment. 9th Americas Conference on Information Systems. Tampa,
Florida.

Fawcett, T. (2005). An introduction to ROC analysis. Elsevier, 861-874.

49

Fazel-Zarandi, M., & Fox, M. (2009). Semantic Matchmaking for Job Recruitment : An Ontology-
Based Hybrid Approach.

Ferri, C., Flach, P., & Hernández-Orallo, J. (2002). Learning Decision Trees Using the Area Under
the ROC Curve. The Nineteenth International Conference on Machine Learning. Sidney.

Fluss , R., Reiser, B., Faraggi, D., & Rotnitzky, A. (2009). Estimation of the ROC curve under
verification bias. Biometrical journal.

Goldberg, Y. (2016). A Primer on Neural Network Models for Natural Language Processing.
Journal of Artificial Intelligence Research, 345–354.

Guo, S. (2015). RésuMatcher: A Personalized Résumé-Job Matching System. Texas: Texas A&M
University.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer Classification
using Support Vector Machines. Machine Learning, 389–422.

Ho, T. (1995). Random decision forests. Proceedings of the Third International Conference on
Document Analysis and Recognition, (p. 278). Washington, DC.

Hong, W., Zheng, S., & Wang, H. (2013). A Job Recommender System Based on User Clustering.
JOURNAL OF COMPUTERS, 1960-1967.

Hornik, K. (1989). Multilayer Feedforward Networks are Universal Approximators. Neural
Networks, 359-366.

Hunt, E., Martin, J., & Stone, P. (1966). Experiments in Induction. New York, Academic Press.

IBM. (2011). IBM SPSS Modeler CRISP-DM Guide. IBM Corporation.

Johnson, R., & Wichern, D. (2007). Principal Components. In R. Johnson, & D. Wichern, Applied
Multivariate Statistical Analysis (pp. 430-465). New Jearsey: Pearson Education Inc.

Kingma, D., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. ICLR2015. San Diego.

Kotsiantis, S. (2007). Supervised Machine Learning: A Review of Classification. Informatica, 249-
268.

Lazarsfeld, P., & Henry, N. (1968). Latent structure analysis. Boston: Houghton Mifflin.

Louw, N., & Steel, S. (2006, December 1). Variable selection in kernel Fisher discriminant analysis
by means of recursive feature elimination. Computational Statistics & Data Analysis, pp.
2043-2055.

Lu, Y., El Helou, S., & Gillet, D. (2013). A recommender system for job seeking and recruiting
website. 22nd International Conference on World Wide Web (pp. 963-966). International
World Wide Web Conferences Steering Committee.

Malinowski, J., Keim, T., Wendt, O., & Weitzel, T. (2006). Matching People and Jobs: A Bilateral
Recommendation Approach. Proceedings of the 39th Annual Hawaii International
Conference on System Sciences . Kauia, HI, USA, USA: IEEE.

McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings of the
9th Python in Science Conference, (pp. 51 - 56).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space. Proceedings of Workshop at ICLR.

Milborrow, S. (2017, December 13). Notes on the earth package. Retrieved from milbo.org:
http://www.milbo.org/doc/earth-notes.pdf

50

Murthy, S. (1998, December 2). Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey. Data Mining and Knowledge Discovery, pp. 345–389.

Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing Surveys, 31-
88.

Oliphant, T. (2007). Python for Scientific Computing. Computing in Science & Engineering.

Oliveira, M., Araujo, N., Silva, R., Silva, T., & Epaarachchi, J. (2018). Use of Savitzky-Golay Filter
for Performances Improvement of SHM Systems Based on Neural Networks and
Distributed PZT Sensors. Sensors, 152-169.

Paparrizos, I. K., Cambazoglu, B. B., & Gionis, A. (2011). Machine learned job recommendation.
Proceedings of the 2011 ACM Conference on Recommender Systems. Chicago, USA:
RecSys.

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical
Magazine, 559–572.

Pedregosa, F., Varoquaux, G., & Gramfort, A. (2011). Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 2825--2830.

Pottengerb, W., & Kontostathis, A. (2006). A Framework for Understanding Latent Indexing (LSI)
Performance. Elsevier, 56-73.

Refaeilzadeh, P., Tang, L., & Liu, H. (2008). Cross-validation. Phoenix: Arizona State University.

Rehurek, R., & Sojka, P. (2010). Software Framework for Topic Modelling with Large Corpora.
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (pp.
45--50). Valletta: ELRA.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning Representations by Back-Propagating
the erros. Nature, 533-535.

Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal
of Research and Development, 335-365.

Schafer, R. (2011). What Is a Savitzky-Golay Filter? IEEE Signal Processing Magazine, 111-117.

Shalaby, W., AlAila, B., Korayem, M., Pournajaf, L., AlJadda, K., Quinn, S., & Zadrozny, W. (2018).
Help Me Find a Job: A Graph-based Approach for Job Recommendation at Scale. 2017
IEEE International Conference on Big Data. IEEE.

Shalizi, C. (2009, November 6). Classification and Regression Trees. Data Mining.

Singh , A., Rose, C., Visweswariah , K., Vijil , E., & Kambhatla , N. (2010). PROSPECT: A system for
screening candidates for recruitment. Proceedings of the 19th ACM Conference on
Information and Knowledge Management (pp. 659-668). Toronto: ACM.

Wettayaprasit, W., Laosen, N., & Chevakidagarn, S. (2007). Forecasting, Data Filtering Technique
for Neural Networks. 7th WSEAS International Conference on Simulation, Modelling and
Optimization, (pp. 225-230). Beijing.

Wolpert, D., & Macready, W. (1997). No Free Lunch Theorems for Optimization. IEEE
Transactions On Evolutionary Computation, 67.82.

Yuan, J., Shalaby, W., Korayem, M., Lin, D., AlJadda, K., & Luo, J. (2016). Solving Cold-Start
Problem in Large-scale Recommendation Engines: A Deep Learning Approach. 2016 IEEE
International Conference on Big Data. IEEE.

51

Zalta, E., Nodelman, U., Allen, C., & Anderson, L. (2014, 8 19). Philosophy of Statistics. Retrieved
from www.stanford.edu: https://plato.stanford.edu/entries/statistics/

52

Appendix

Metrics/
variables skillsMatch_tfidf pplExperience professionMatch offeredSalary expectedSalary

count 32634 32634 32634 32634 32634

mean 0,12 6,40 0,53 31554,45 41915,53

std. dev. 0,12 3,06 0,20 12666,42 18486,37

min 0,00 1,00 0,00 10000,00 10000,00

25% 0,03 4,00 0,37 23200,00 30000,00

50% 0,09 6,00 0,50 26420,53 40000,00

75% 0,18 10,00 0,67 40037,84 50000,00

max 1,00 10,00 1,00 92000,00 150000,00
Table 13 - Data summarization - part I

Metrics/
variables locationMatch nAppsPerJob expectedNumberOfHires totalVisits feePercentage

count 32634 32634 32634 32634 32634

mean 0,20 41,74 1,63 7327,50 0,09

std. dev. 0,12 47,05 2,01 6501,01 0,03

min 0,00 1,00 1,00 0,00 0,00

25% 0,13 14,00 1,00 3293,00 0,08

50% 0,25 28,00 1,00 5484,00 0,11

75% 0,30 51,00 2,00 8738,00 0,11

max 0,30 345,00 30,00 52927,00 0,12
Table 14 - Data summarization - part II

id macro_state state

-2 Internal Pre-draft (internal)

-1 Draft Draft

0 Unreviewed Unreviewed

10 Unreviewed Pending Information

11 Unreviewed Triaged

20 Reviewed Reviewed

22 Reviewed Seen by Employer

23 Reviewed Employer Reviewing

25 Engaged Engaged

27 Offer Pre Offer

28 Hired Pre Hire

29 Offer Offer Made

30 Hired Hired

50 Cancelled
Cancelled Before
Review

53

60 Cancelled Cancelled After Review

94 Cancelled
Cancelled Before
Review

95 Cancelled Cancelled After Review

96 Declined Closed Before Review

97 Declined Rejected by Client

98 Declined Closed After Review

99 Declined Rejected by HR team
Table 15 - Application states

People (n=53.073)

Attribute Example

id 6956

city Lisbon Area, Portugal

created_at 2015-04-09 09:42:25.1160450

updated_at 2016-03-18 13:46:08.0681510

user_id 7014

availability 2

country_code PT

birth_year 1979

headline Consultant at Audaxys

relocation_countries {}

rating 0

how_we_met 6

how_we_met_other

salary_expectation NULL

currency_code EUR

weekly_email 1

cv_content_type NULL

cv_file_size NULL

cv_updated_at NULL

experience_level 10

full_remote 0

full_remote_commute 0

partial_remote 0

freelance 0

recent_grad 0

match_key cfa0adc1debbba5951afd9edeeb3df47

talent_advocate_id NULL

google_place_id NULL

needs_refresh 0

companies_types {}

consulting NULL

staffing NULL

54

share_profile NULL

github_hireable NULL

relocation 0

citizenships {}
Table 16 - Fields of table People

Applications (n=52.531)

Attribute Example

id 10647

text Being enthusiastic to solve problems via Ruby, I ….

job_ad_id 443

person_id 20827

created_at 2015-12-01 13:03:39.0913700

updated_at 2016-03-18 13:56:33.5017440

state 99

starts_on NULL

skill_assessment_report_file_name NULL

skill_assessment_report_content_type NULL

skill_assessment_report_file_size NULL

skill_assessment_report_updated_at NULL

skill_assessment_notes NULL

uuid D3B8BD17-A116-4F72-943A-0E37FFC23CFF

application_owner_id 49

request_information NULL

left NULL

has_work_permit NULL

seen_by_employer_at NULL

application_curator_id 49

tracking_codes_raw

tracking_referrer NULL

tracking_referrer_domain NULL

tracking_utm_term NULL

tracking_utm_medium NULL

tracking_utm_source NULL

tracking_utm_content NULL

tracking_utm_campaign NULL

tracking_ldref NULL

tracking_date NULL

state_comments NULL

reconsider_message NULL

candidate_feedback NULL

is_shortlist 0

match_score 0.2210

submitted_at 2015-12-01 13:03:39.0913700

exclude_website_ids {}

55

cv_file_name NULL

cv_content_type NULL

cv_file_size NULL

cv_updated_at NULL

availability NULL

availability_detail NULL
Table 17-Fields of table Applications

Application Audit (n=52.548)

Attribute Example

id 15147

application_id 15194

pending_info_by_id 61

triaged_by_id NULL

reviewed_by_id NULL

rejected_by_id NULL

rejected_by_type AdminUser

engaged_by_id NULL

engaged_by_type AdminUser

employer_reviewing_by_id NULL

pre_offer_by_id NULL

pre_hire_by_id NULL

offer_by_id NULL

hired_by_id NULL

canceled_by_id NULL

closed_by_id NULL

pending_info_at 2016-03-22 01:17:39.7529890

triaged_at NULL

reviewed_at NULL

rejected_at NULL

pre_offer_at NULL

pre_hire_at NULL

employer_reviewing_at NULL

engaged_at NULL

offer_at NULL

hired_at NULL

canceled_at NULL

closed_at NULL

engaged_date NULL
Table 18 - Fields of table Application Audit

Job Ads (2.807)

Attribute Example

id 3266

title Java Developer

56

city Amsterdam

expires_at NULL

company_id 1677

created_at 2017-03-25 15:20:42.6600580

updated_at 2017-03-26 14:22:08.3325810

slug draft-3266

employer_fee 0

perks We have an awesome start-up culture …

job_type 1

country_code NL

state 0

poster_id 53289

show_salary 0

currency_code EUR

salary_low NULL

salary_high NULL

tag_ids {144,2880,2003,552,576}

first_published_at NULL

relocation_paid 1

work_from_home 0

featured 0

category_id 3

visa_support 1

video_marketing 0

gross_salary_low 30000

gross_salary_high 55000

type Offer::LandingApplications

voucher_id NULL

jobbox_value NULL

referral_value NULL

signing_bonus 0.00

premium 0

experience_level 2

full_remote 0

full_remote_commute 0

partial_remote 0

google_place_id NULL

closed_by_id NULL

closed_by_type NULL

closed_at NULL

closed_reason NULL

closed_reason_detail NULL

citizenship 0

expected_number_of_hires NULL

info_to_ask_the_candidate NULL

private_notes_for_landing NULL

57

canonicalized_tag_ids {144,552,576,2003,2880}

application_curator_id NULL

preferred_language en

social_title NULL

social_description NULL

social_image_file_name NULL

social_image_content_type NULL

social_image_file_size NULL

social_image_updated_at NULL

total_visits 0

discount_pp 0.0

sale_closed_by_id NULL

payment_option 1

fee_percentage 0.00

last_published_at NULL

close_feedback NULL

staffing 0

consultancy 0

exigency_level 1

perceived_commitment 1

post_wizard_step hiring_process

education Master's degree

hiring_process_steps NULL

extracted_main_skill_ids {}

extracted_additional_skill_ids {}

hidden 0

min_applications 5

max_applications 20

review_fee_cents 3000

retainer_fee_cents 0

post_fee_cents 15000

retainer 0

payment_method NULL

terms_id NULL

payment_card_id NULL

tracking_codes

lead_source NULL

lead_content NULL

sale_referral_name NULL

sale_referral_email NULL

sale_amount NULL

recurrent 0

offer_manager_id 88

staffing_partner 0

promo_code NULL
Table 19 - Fields of table Job ads

58

Companies (n=1.465)

Attribute Example

id 993

short_pitch It, programmer, recruitment IT

created_at 2016-06-03 09:16:51.7596650

updated_at 2016-07-20 14:31:01.4042440

website_url http://www.bebjobs.pl

notifications_email NULL

country_code PL

city Wroc┼éaw

address NULL

postcode NULL

company_category_id NULL

premium 0

industry_id 10

company_size_id 2

slug bebjobs-sp-z-o-o

is_strategic 0

how_we_met 9

how_we_met_other

ats_name NULL

ats_url NULL

ats_other NULL

next_report_delivery_on NULL

has_activity_for_report 0

staffing 0

consultancy 0

onboarded_at NULL

onboarded_by_id NULL

onboarding_comments NULL

onboarded 0

exigency_level 1

rating NULL

rating_metadata {}

perceived_commitment 1

email_deliveries post_offer_reminder=>"2016-07-20T14:31:01+00:00"

tracking_codes

lead_source NULL

lead_content NULL

segment 0

staffing_partner 0

seg_business_potential NULL

seg_engagement NULL

seg_brand_awareness NULL

seg_strategic_fit NULL

59

seg_score NULL

ats_reject_notify_candidate 1
Table 20 - Fields of table Companies

Tags (n=38.869)

Attribute Example

id 13

name AngularJS

created_at 2014-02-15 18:35:11.0815180

updated_at 2016-06-24 15:34:57.0416380

garbage 0

internal_representation angularjs
Table 21 - Fields of table Tags

Skills (n=683.340)

Attribute Example

id 169750

person_id 14431

tag_id 458

canonicalized_tag_ids {458}

experience_level 8

sort_order 4
Table 22 - Fields of table Skills

