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ABSTRACT 

In the recent years the topic of customer churn gains an increasing importance, which is the 

phenomena of the customers abandoning the company to another in the future. Customer churn plays 

an important role especially in the more saturated industries like telecommunication industry. Since 

the existing customers are very valuable and the acquisition cost of new customers is very high 

nowadays. The companies want to know which of their customers and when are they going to churn 

to another provider, so that measures can be taken to retain the customers who are at risk of churning. 

Such measures could be in the form of incentives to the churners, but the downside is the wrong 

classification of a churners will cost the company a lot, especially when incentives are given to some 

non-churner customers. The common challenge to predict customer churn will be how to pre-process 

the data and which algorithm to choose, especially when the dataset is heterogeneous which is very 

common for telecommunication companies’ datasets. The presented thesis aims at predicting 

customer churn for telecommunication sector using different decision tree algorithms and its 

ensemble models. 
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1. INTRODUCTION 

 In today’s business, a lot of advertising and offers appears everywhere in television, internet and billboards 

which puts the customer in a lot of offers like free subscription or discounts, so many customers change their 

service providers to get the benefit of these offers. The term churn is now well known in today’s businesses, 

customer churn is the scenario where the customer loses interest in continuing his business in the company 

and seeks another company to fulfill his needs, this can have a huge impact on the profits of the company 

(Buckinx & Van Den Poel, 2005). Right now, it’s one of the most important topics in saturated business, 

especially in the rapidly growing telecommunication sector, knowing that the cost of acquiring new customers 

is as high as ten times to retain the existing customers (Lu & Ph, 2002), mainly due to fierce competition 

between telecommunication companies. It's very important to the companies to reduce the revenue loss due 

to the leaving customers, the reasons for churn differs from company to another and from customer to 

another. Mainly there are two types of churners: the involuntary churners “forced to leave” and the voluntary 

churners, the involuntary churners happens when the company decide to end the contract due to many 

reasons like the case when they don’t satisfy their part of agreement between them and the company, while 

the voluntary churners is the type that most of the researches are done on, because these customers are 

mainly the most profitable customers and the company wants to retain them as their customers. The reasons 

for voluntary churns differs a lot from one customer to another, mainly in telecommunication it’s due to higher 

cost, quality, lack of features, privacy issues and others (Sharma & Sachdeva, 2017). 

The Customer churn prediction can be defined as assigning a probability to leave the company next to each 

customer in the company dataset, to make it viable to the firm to indicate which customer has the highest 

propensity to churn, then for the company to set a threshold to indicate which probability to churn they want 

to tackle, then the customers clusters whom crossed this threshold will be targeted by a specially designed 

marketing plan to increase their retention. Different approaches was introduced to increase customer 

retention (Fig.1), while targeting all of the churners clusters will be Monterey exhausting, that’s why the 

companies must select wisely which of these customers to target, instead of targeting every one also known 

as uplift modeling (Coussement, Lessmann, & Verstraeten, 2017). 

 

Fig.1.1 Customer Churn Model 

The steps of the process will be: using predictive modeling to detect which customer has the highest 

probability to churn, then by using uplifting modeling to detect which customers can be targeted with the 

retention plan. The customer churn topic is discussed many times in telecommunication sector (Mahajan, 

Misra, & Mahajan, 2015), many kinds of research were done to know what are the optimization algorithms to 

use to expect when the customers are going to churn before they do, knowing that about 30 percent of the 

customers are going to churn per year (Lu & Ph, 2002). To acquire a new customer, the company is going to 
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spend ten times more than to retain the already existing customers, so by now to retain the existing customers 

is more profitable than acquiring new customers (Lu & Ph, 2002). By the help of the recent techniques in data 

mining, companies succeed in having insights about their customer behavior either by using the usual 

Sociodemographic variables or by using more advanced variables like their customer call center data (Hadden, 

Tiwari, Roy, & Ruta, 2006). 

There are many machine learning techniques being adopted in Customer churn like Logistic regression, 

Decision trees, Artificial neural networks and Support vector machines (Hadden, Tiwari, Roy, & Ruta, 2007; 

Mahajan, Misra, & Mahajan, 2015). Now in the era of big data a lot of researchers try to draw the light on the 

importance of inclusion of the customer data from the social platforms to be included in the customer 

behavior analysis (Bi, Cai, Liu, & Li, 2016; Liu & Zhuang, 2015; Singh & Singh, 2017). Because datasets of the 

companies are usually containing redundant values, missing values among others which decreases any model 

predictive power, that's where the data preprocess is vital in the process of building any model. The challenges 

that must be treated before implementing the model is imbalance problem, missing values, curse of 

dimensionality and others The imbalance problem can be defined as having one class outnumbered the other 

class, in the case of customer churn its usually that the non-churner customers’ numbers are much higher than 

the churner customer (Burez & Van den Poel, 2009), which will have a huge influence on most of machine 

learning algorithms.  The challenge of having degenerative features which are features with zero variance, 

meaning that there is no change in the values of that features, which makes it useless in the prediction model 

also it will create a numerical difficulty. 

The occurrences of missing data in any dataset brings a huge impact on the performance of any machine 

learning algorithm, many algorithms had been used to tackle the challenge of missing values (Noh, Kwak, & 

Han, 2004), but still the uncertainty of these values will result in low predictive power of the model because 

of the bias created by the new values. The curse of dimensionality can be treated by using a proper feature 

reduction techniques, which mainly falls into three categories: filter methods, wrapper methods and 

embedded methods (Raza & Qamar, 2017). Identify the true churner from the retained customer is crucial, 

because of the high cost of retaining a non-churner customer, which consider resource wasting so the issue 

of the model accuracy is very important (Khan, Jamwal, & Sepehri, 2010), to assess the quality of the model 

can be detected by using the AUC of the ROC curve (Vuk, 2006), which is commonly used in the classification 

problems. 

The model proposed in this thesis is decision tree-based models, the importance of using decision tree models 

is that they are fast to compute and highly interpretable. Which have a great advantage for companies to not 

only estimate the propensity of each customer to churn, but also to understand which features are important 

to retain the customers in the future, also it has a great advantage over many machine learning algorithms, 

which the decision trees can deal with heterogeneous data, defined as data that contain numerical and 

categorical features. In this paper, the used dataset is the KDD Cup 2009 small dataset (Guyon, Lemaire, Vogel, 

et al., 2009), which was provided by the French telecommunication company Orange for predicting three 

binary classifications: churn, upselling and cross-selling. The main objective of this thesis is to evaluate and 

analyze of performance of tree-based models to predict the churn probability of customers for 

telecommunication sector, the proposed machine learning models are decision trees, Random forest and 

Gradient Boost Machine. The results will be assessed by using AUC of the ROC curve as proposed by the 

evaluating committee of the challenge. 

The remainder of the paper is organized as follows: in section 2 discussion about the literature review made 

on papers presented using the KDD 2009 dataset. In section 3 the data pre-process step. In section 4 the 

models proposed in the study. In section 5 the results of each model. In section 6 Conclusions. In section 7 

future studies. 
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2. LITERATURE REVIEW 

The classification task of customer churn has been studied in different sectors where its applicable like: 

banking sector (Ali & Arıtürk, 2014; Mohanty & Naga Ratna Sree, 2018; Şen & Bayazıt, 2015), insurance 

companies (Morik & Köpcke, 2004; R. Zhang, Li, Tan, & Mo, 2017; W. Zhang, Mo, Li, Huang, & Tian, 2016) 

online social networks (Ngonmang, Viennet, & Tchuente, 2012; Oentaryo, Lim, Lo, Zhu, & Prasetyo, 2012; 

Óskarsdóttir et al., 2016), Churn in online gaming (Borbora & Srivastava, 2012; Castro & Tsuzuki, 2015; Liao, 

Chen, Liu, & Chiu, 2015)  and telecommunication sector which is the task of this paper. The literature review 

section will be divided into two parts: The first part is a brief overview of previous studies about customer 

churn in telecommunication sector and the second part is a brief overview of previous studies done on KDD 

2009 dataset. 

2.1.  CHURN PREDICTION  

In the study done by Pendharkar (2009) the author proposed two genetic-algorithm based on neural network 
to predict customer churn for telecommunication sector, to their knowledge that was the first paper to 
implement genetic algorithm to predict churn for telecommunication sector. They used a real-world dataset 
with 195,956 customers and four variables then They split the dataset into 70% for training and 30% for 
testing. The first genetic algorithm was used for prediction and the second was used to increase the 
performance of the first one. They compared the performance of their algorithm to a statistical z-score model 
using many evaluating criterions including ROC curve. Their findings were that the medium sized neural 
networks with number of hidden layers equal to twice the number of variables performed better than the 
statistical z-score model, but it was more computationally expensive than the statistical model.   
 
In the study done by Owczarczuk (2010) the author tested some supervised machine learning algorithm to 
predict churn for prepaid clients of a Polish telecommunication company. The real-world dataset they used 
had 1381 variables and 85,274 customers. The author compared interpretable models like logistic regression, 
Fisher linear discriminant analysis and decision Trees. The author selected 50 variables based on Student’s t-
test. The author main findings were that logistic regression outperformed other algorithms that the author 
used, and he stated that decision trees were very unstable for the dataset he used. Also, the author argues 
that the usage of ensemble models is improper to predict customer churn for telecommunication sector.  
 
In the study done by Azeem, Usman, & Fong (2017) the authors used fuzzy classifiers algorithm to predict 
customer churn for telecommunication sector. They used a real-world dataset from South Asian 
telecommunication company that had 722 variables and 600,000 customers. To their knowledge that was the 
first paper to implement fuzzy classification algorithm to predict churn for telecommunication sector. Feature 
selection was based on domain knowledge, and the authors chose the most important 84 variables. they used 
80% of the dataset for training and the reminder 20% to test the model. The dataset contained only numeric 
features, they used min-max algorithm to normalize all the dataset to be in the range of 0-1. The authors Used 
oversampling technique to balance the dataset since, it had only 9% churners and the percentage after the 
balancing was 60% non-churners and 40% churners. They used AUC of the ROC curved to evaluate the model. 
They compared the performance of some fuzzy classifier namely, FuzzyNN, VQNN, OWANN and 
FuzzyRoughNN with other non-fuzzy algorithms: neural network, logistic regression, decision tree C4.5, 
Support vector machine, Adaboost, Gradient boost machine and Random Forests. Their main findings were: 
that fuzzy classifiers are more accurate than other classifiers to predict customer churn. The worst performing 
classifier was the C4.5 decision tree, then the ensemble algorithms achieved an average AUC 0f 0.5725, the 
best classifier was OWANN (Fuzzy-rough ownership) with AUC of 0.68.  
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Fig.2.1. Results of paper (Azeem et al., 2017) 
 
In paper by authors Effendy, Adiwijaya, & Baizal (2014), the authors worked on an Indonesian 
telecommunication dataset which has only 0.7% churners, their objective was to tackle the problem of 
imbalance in their dataset by combining both SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) to the 
minority class and undersampling algorithm to majority class. By using only the weighted random forest it 
didn’t improve the accuracy of the model so they included the SMOTE algorithm for the minority class and 
simple under sampling for the majority class to balance the dataset. They removed any feature with more 
than 80% of missing value, also redundant features were remove as well. Also, they converted all the 
categorical features into numeric. To validate the model, they used K-Fold validation with 10 folds. They 
compared the performance of the model without treating the imbalance to the models with under sampling 
and over sampling. By combining over sampling with under sampling it increased the model performance 
significantly rather than using the weighted random forest without balancing the dataset. Weighted Random 
Forest was introduced because the random forest algorithm is biased towards the majority class (Chen, Liaw, 
& Breiman, 2004), a penalty can be added on misclassifying the minority class. By adding weights to each class, 
the majority class has less misclassification cost than the minority class. The weights adjustment is done in 
two phases: the induction phase and the terminal phase. Weighted majority vote is used to determine the 
predicted class of each data point. By aggregating the weighted vote of each tree to get the final predicted 
class. Out-of-bag can be used to tune the weights used.  
 
In the study done by Hassouna, Tarhini, Elyas, & Abou Trab (2015) the authors made a comparison between 
logistic regression and decision trees using a real-world dataset provided by an English mobile operator. They 
used two balanced datasets (50% Churners): one for training the algorithm with 17 variables and 19,919 
customers and another dataset for testing with 17 variables and 15,519 customers. CART, C5.0 and CHAID 
decision trees were used to be compared to logistic regression. They used AUC of the ROC curve, top-decile 
and overall accuracy to evaluate and compare between different models. Their main findings were that the 
C5.0 decision tree outperformed other algorithms including Logistic regression with AUC of 0.763. Their 
findings contradicted with the findings of the author (Owczarczuk, 2010) where he stated that logistic 
regression is more accurate to predict customer churn for telecommunication sector.  
 
In the study done by Jayaswal, Prasad, & Agarwal (2016) the authors compared between C5.0 decision tree 
and two main decision trees ensembles: Random Forests and Gradient Boosting Machine to predict customer 
churn for telecommunication sector using a publicly available dataset. The dataset had 21 variables and 3333 
customers with 15% churners, the authors followed the findings of (Burez & Van den Poel, 2009) which stated 
that sampling techniques will not affect the performance of the models used and so they didn’t treated the 
imbalance in the dataset. They used 75% of the dataset for training and 25% for testing. Their main findings 
were that: The GBM outperformed the Random Forest and C5.0 for this dataset.  
 
In paper by authors Amin et al. (2017) the authors explored rough set approach (Pawlak, 1982) to the churn 
problem, which outperformed other machine learning algorithms for their used dataset. They split the dataset 
into 70% for training and 30% for validation. They compared the rough set approach to the state of the art 
algorithms used in churn prediction like ANN, DT and SVM. They noted that for this dataset the rough set 
approach achieved better accuracy than all other compared algorithms.  
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In paper by authors Kamalraj & Malathi (2013), the authors studied the performance and accuracy of C4.5 (J 
Ross Quinlan, 1993) and C5.0 decision trees. The study was done on a public dataset with 3333 customer. C5.0 
decision tree achieved higher accuracy with better performance in regards to computational power.  

2.2. KDD CUP 2009  

In paper by authors Lo et al. (2009), the authors combined the three classification task (churn, appetency and 

up sell) into one joint Multi-class classification task. Three ensemble techniques were used to classify this 

multi-class classification task: The first technique the authors used was L1-regularized maximum entropy 

because of its robustness against outliers but its main drawback is that it cannot deal with missing values 

because this model will assume no missing data, so the authors added a binary feature next to each feature 

with missing value to indicate that this feature had missing value, then all the categorical features were hot-

encoded which resulted in 111,670 additional features to the dataset, and to scale the dataset the authors 

used Log and linear scaling. The second technique: a heterogeneous base learner was introduced to handle 

the numeric and categorical features which was a tree classifier “decision stump” then coupling the base 

learner with Adaboost algorithm to increase the predictive performance of the base learner. Finally, the third 

ensemble was a selective Naive Bayes classifier that automatically treat the categorical features with high 

cardinality by grouping them also, the NB classifier will discretize the numerical features. Then the authors 

applied a post processing algorithm “SVM” to adjust the predictive power across the three classification tasks, 

because for some data points the classifier will assign higher probabilities to more than one label. Overfitting 

was avoided using K-fold cross validation to better train the classifiers. The authors ranked the third place with 

AUC of 0.8461 for the slow track competition (15,000 features and 50,000 instances). 

In paper by authors Xie & Coggeshall (2009), the authors used Stochastic gradient boosting tree as a classifier 

to predict the three class labels for the large and small datasets. The authors bagged 5 gradient boosted 

decision trees using different seeds and then took the average votes of these trees models to increase the 

model performance. The authors chosen the log-likelihood as a loss function for the stochastic gradient 

boosting tree. To preprocess the dataset, the authors binned high cardinality categorical features “greater 

than 1000 unique levels” into 100 new levels. Also, the authors discretized 10 numerical features that had 

small unique values. For imputing missing values, the authors imputed the categorical features with a risk 

factor and imputed numerical features with adding another feature that contain an identification to identify 

these features as having missing values. The authors removed redundant features with very low variance also 

removed quasi-constant features. Also, SGBT algorithm was used for feature selection as a wrapper method. 

To treat the imbalance in the dataset down sampling was used to down sampled the majority class label. The 

authors split the dataset into 75% for training and 25% for testing the algorithm. Then the authors used 5-fold 

validation for the training dataset. The authors tried logistic regression algorithm, but it scored lower than the 

SGBT. Also, SVM was tried that had an approximate score as SGBT but with more computational time. The 

authors ranked the second in the fast track with large dataset (AUC = 0.8448) and third place in the slow track 

for the large dataset (AUC = 0.8478) and scored an AUC of 0.8478 for the small dataset. 

In paper by authors Kurucz et al. (2009), the authors worked on the large dataset which contain 15,000 

features and 50,000 instances. The authors tried different feature reduction algorithms including: distance, 

information and dependence measures but these algorithms didn’t perform well as they tended to over fit the 

data by selecting non-predictive features or selecting highly correlated features and so these measures can 

decrease the generalizability of the model. The feature selection algorithm the authors opted for was the 

LogitBoost due to its robustness against outliers. The final classifier the authors opted was LogitBoost 

combined with ADTrees by taking their average classification. The algorithms the authors opted scored AUC 

of 0.8457. 
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In paper by authors Niculescu-Mizil et al. (2009), the authors worked on the large dataset considered 

categorical missing values as a separate value, and imputed the numeric features using the mean of the 

feature. Also, an additional indicator feature was added to indicate that this feature had a missing value. The 

authors hot-encoded the top 10 common values of each categorical feature to make all the dataset to be 

numeric, afterwards the authors standardize the dataset, then all the redundant features were removed from 

the dataset. The authors used 10-fold validation technique to validate their results on the training dataset. 

The authors built a library of base classifiers: RF, Boosted trees, LR, SVM, DT, NB, KNN and Regularized Least 

Squares Regression. Some classifiers were trained on reduced datasets using PCA, Pearson correlation and MI. 

The authors noted that the best individual classifier on Churn label was Boosted trees followed by LR then RF. 

The highest AUC obtained by using only the base classifiers was 0.7354 for churn label. The authors used an 

ensemble selection algorithm with greedy forward stepwise selection to select an ensemble from the library 

of base classifiers which yielded an AUC of 0.7563 for churn label. The AUC of churn increased to 0.7629 after 

adding new features generated from tree induction and co-clustering. The final AUC of Churn was 0.7651 and 

the average AUC overall labels was 0.8519. 

In paper by author Yabas (2013), the author used the small dataset which contains 230 features and 50,000 

instances. For the preprocess step the authors removed all the redundant features and any feature with more 

than 99% missing values. The authors imputed the numerical missing values with the mean of the features 

and imputed the categorical features with by placing a value “Missing”. The authors normalized the numerical 

features to be in the range 0 and 1. To handle the high cardinality of the categorical features the authors kept 

only the top 10 most frequent levels and grouped the rest of levels into a level called “others”. The authors 

trained 250 models with 20 algorithms. The authors tried NN, AdaBoost and SVM but pointed out these 

models are very computationally expensive and reported that their results are very poor compared to other 

algorithms they used and so the authors eliminated these models from there analysis. The base model 

algorithms proposed by the authors included an ensemble of C4.5 decision trees, logistic regression, bagging 

and random forests. The authors pointed out that the RF was the best performing base classifier. The authors 

argued that each classifier they used needs a specific preprocessing step and so the authors built a specific 

preprocessing step for each classifier which will construct a meta-classifier and then all the meta-classifiers 

with AUC greater than or equal 0.69 will vote for every instance and the majority of these votes will predict 

the label of each test instance. The meta-classifiers that exceeded the threshold AUC were LR, DT with Bagging, 

RF. The final AUC achieved was 0.7230 across all the three labels (churn, appetency and up-selling). 

 

 

 

 

 

     Fig.2.2. Voting classifier (Yabas, 2013) 

In paper by authors Doetsch et al. (2009), the authors used small dataset, they reformulated the task as having 

multi-task approach where they trained a single classifier with three binary outputs instead of single 

classification task, which yielded an increase of 0.015 to the AUC. They used Information Gain ratio as a feature 

selection algorithm and likelihood-ratio test as a ranking algorithm, then they tried MLP, SVM, LMT and 

boosted decision stumps. The best-performing technique was by stacking the output of boosted decision 

stumps algorithm as a level 0 algorithm then using logistic model tree with AUC splitting criteria as level 1. The 
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algorithm used to implement the boosted decision stumps is the AdaBoost.MH algorithm and for LMT they 

implemented their own modification which was a C4.5 tree where each node estimates a LogitBoost model.  

In paper by authors Miller et al. (2009), the authors used large dataset, the missing values for the numerical 

and categorical features were treated as a separate level, used decision trees and boosting, in their attempt 

to treat the high cardinality categorical features, they tried to aggregate levels with less than 1,000 

observations into 20 levels based on their response, but that created the problem of overfitting, so to prevent 

this problem they tried to aggregate the features independent of their responses instead they aggregated 

based on their observations, by creating four groups being the first group includes the features that had 1000 

observations, and the second group is the levels that has 500 to 999 observations, and the third group are 

levels with 250-499 observations, and the forth are levels that had 1-250 levels, which prevented the 

overfitting problem and increased the AUC by 0.0015 compared to the single-level aggregation.  

2.3. MISSING VALUES LITERATURE REVIEW 

One of the most challenging obstacles in machine learning is imputing missing values, where Imputation of 

missing values is the treatment to the problem of missing data by replacing it with values (Batista & Monard, 

2003), to obtain a complete data set with no missing values. Firstly, the missing data mechanism should be 

known cause depending on the mechanism a proper method should be implied, where missing data 

mechanism describes the process that determines each data points likelihood of being missing, there are three 

main categories (Enders, 2010):  

1- MCAR: Missing completely at random, can be thought like random missing values where the missing 
values is unrelated to the dataset, the probability of having missing values in any feature doesn’t 
depend either on it or other variables in the dataset. Can be verified by using a complete feature in 
the dataset by comparing the mean of the observed data points by the mean of the missing data points 
and the two means shouldn’t be different. 

2- MAR: Missing at random, the probability of having missing values in any feature in the dataset doesn't 
depend on its value, but instead it depends on other features in the dataset. Cannot be verified unless 
the values of missing features are known. 

3- MNAR: Missing not at random, the probability of having missing values in any feature in the data set 
depends on the values of the feature itself, cannot be verified unless the values of missing features 
are known. 

Deletion methods: 

- Listwise deletion: only the observed values are retained and the rest is removed from the 
analysis(Schafer, 1999), but its main disadvantage that it can result in biased results (Graham, 2009) 
also it will remove a lot of useful information from the dataset, only accepted for 5% missing values. 

- Pairwise deletion: used when estimating covariance or correlation matrices, for each pair it will use 
the complete cases for both. 

Single imputation methods: single value of each missing data point, its main disadvantage is that one single 
value cannot rightly predict the missing value and if there’s not only one value is enough for this missing value 
(Rubin, 1988) 

- Mean imputation: Impute the missing values with the mean of the available data points of the same 
feature, produces unbiased estimates of the variance. 

- Regression imputation: Impute the missing values using regression to predict the missing values using 
other features as predictors. 

- Stochastic regression imputation: Impute the missing values using regression but it will add a 
stochastic value to the predictions of the regression imputations, produces an unbiased estimate with 
MAR datasets. 
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- Hot deck imputation: the data are clustered into several cluster then the missing value will be imputed 
with the mean or the mode of the cluster it falls in, prediction models where the creation of a machine 
learning model to estimate the missing value using other features in the dataset. 

- Baseline observation carried forward BOCF: Impute the missing values by taking the baseline 
observation as a replacement for the missing data. 

- Last observation carried forward LOCF: Impute the missing values by taking the last observed value as 
a replacement for the missing data. 

- Strawman imputation: The numerical missing values will be substituted by the median, while the 
categorical missing values will be substituted by the most frequent level, has a great advantage of 
being rapid, for NMAR missing values the strawman imputation technique can have higher accuracy 
for highly missing values more than 75% (Shah, Bartlett, Carpenter, Nicholas, & Hemingway, 2014). 

Multiple imputation methods: By having multivariate complex dataset an adequate missing data method is 
needed, multiple imputation (Rubin, 1987, 1996) is commonly used to predict missing values in complex 
datasets where many features has missing values. Where it Creates several data sets with different values of 
each missing data point, it will take into account the uncertainty of each missing value meaning that not only 
one value can rightly predict the missing value (Azur, Stuart, Frangakis, & Leaf, 2011). Two major methods to 
impute missing values using multiple imputation are: joint modeling (JM) and the fully conditional specification 
(FCS) method, where the joint modeling method is based on normality and linearity of all features and the 
imputations will be generated by linear regression, and so the JM is only suited for continuous features. While 
Fully conditional specification does not assume normality or linearity of the features of the study and so it can 
be used either for continuous or categorical features. 

Under assumption that the missing values in this dataset is MAR, multiple imputation technique can be used 
like: MICE which is a multiple imputation technique (van Buuren & Oudshoorn, 2011) based on the method of 
fully conditional specifications which has the basic assumption that the missing values are missing at random, 
meaning that their probability of being missing depends only on the observed data (Azur et al., 2011). The 
imputation method depends on the nature of variable distribution, whether its continuous or binary the used 
algorithm will be linear regression or logistic regression respectively (Azur et al., 2011).  Fig.3.4. summarize 
different techniques to impute missing values.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig.2.3. Missing Values Imputation Methods 
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2.4. DECISION TREE LITERATURE REVIEW 

By looking at the next figure by the authors García, Nebot, & Vellido (2017) which states that DT is the most 

used model in the recent Churn prediction literature, due to its interpretability and ease of deployment, also 

because of its hierarchical shape which can present to decision makers as a set of rules. Decision trees 

recursively partition the data space and fit a simple prediction rule within each partition, starting at the root 

of the tree to classify a new data point then follows the branch indicated by the result of the decision rule, 

until a leaf node is reached, the class of the leaf node is the class of the new data point. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.4. Models used in Churn Prediction (García et al., 2017) 

Two main categories of decision trees can be found in literature: classification trees and regression trees 

(Rokach & Maimom, 2014), where the classification trees are the designed for categorical target feature and 

its prediction power can be measured using misclassification cost, the regression trees are designed for 

continuous target feature and its prediction power can be measured using square difference between the 

observed and predicted values. The used dataset has a binary output, so the used algorithm will be 

classification decision tree. 

Classification decision trees produces rectangular disjoints sets of the dataset, by recursively partitioning the 

dataset one feature each time (Loh, 2011). A decision tree structure consists of either a leaf node or a decision 

node, where the leaf node contains the predicted class and the decision node contain a decision rule to further 

split the data (Miroslav Kubat, 2015). To split the data a splitting criterion is used, where a single or multiple 

feature can be used, the single splitting criterion named univariate split and the multiple features named 

multivariate split (C. E. Brodley & Utgoff, 1995), univariate decision trees are more common because of its 

simplicity and comprehensibility (Murthy, 1996) but its main drawback that it will only divide the space with 

a boundary that is orthogonal to the feature being used (C. Brodley & Utgoff, 1992). 

There are many types of decision trees proposed in literature named THAID (Messenger & Mandell, 1972), 

ID3 (J R Quinlan, 1986), C4.5 (J Ross Quinlan, 1993), CART (Breiman, Friedman, Stone, & Olshen, 1984), CHAID 

(Kass, 1980), FACT (Loh & Vanichsetakul, 1988), CRUISE (H. Kim & Loh, 2001), QUEST (Loh & Shih, 1997) and 

CTREE (Hothorn, Hornik, & Zeileis, 2006). To better understand their use, commonly used decision tree 

algorithm will be explained in this section. 

- If 𝑃1, … , 𝑃𝐾is a fraction of record belonging to the 𝐾different classes in a node 𝑁:  

1-Then the Gini-index 𝐺(𝑁) of the node 𝑁 is defined as: 𝐺(𝑁) = 1 − ∑ 𝑃𝑖
2

 
𝐾
𝑖=1 ,where the value of 𝐺(𝑁) lies 

between 0 and (1 −
1

𝐾
), the smaller the value of 𝐺(𝑁) the greater the skew, If the classes are evenly balanced 

the value is (1 −
1

𝐾
). 
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2- The entropy 𝐸(𝑁) of the node 𝑁 is defined as: 𝐸(𝑁) = − ∑ 𝑃𝑖. log 𝑃𝑖
𝐾
𝑖=1 , where the value of the entropy 

lies between 0 and log 𝐾, when the records are perfectly balanced among different classes the value of entropy 

is log 𝐾 which is the maximum entropy while the smaller the entropy the greater the skew in the data. 

The Gini-index and entropy provide an effective way to evaluate the quality of a node in terms of its level of 

discrimination between the different classes. 

Given a N labeled training set {(xi, yi)} for ,  and the target variable “Churn or Not”  

Entropy and Information gain  

Entropy for two classes classification: by having S set of examples and is the proportion in the class , and  

 is the proportion in the class , knowing that  

 

 

The generalization of Entropy for i target classes, so by having S set of instances and Pi is the fraction of S set 

that has output value of i 

 

 

the change in the Entropy can be measured by Information Gain (Hssina, Merbouha, Ezzikouri, & Erritali, 2014) 

 

 

 

2.4.1. THAID (Messenger & Mandell, 1972) 

 The first published classification tree algorithm was Theta Automatic Interaction Detection THAID which splits 

a node by exhaustively searching overall 𝑋 and 𝑆 for the split that minimizes the total impurity of its two child 

nodes. 

2.4.2. ID3 (J R Quinlan, 1986): 

ID3 decision tree was designed for nominal features only, continuous data have to be converted into nominal 

features using binning or other embedding methods before it can be used. Uses information gain as splitting 

criterion, Usually doesn’t guarantee an optimal solution, cause it will got stuck in local minima due to its greedy 

partition strategy. Doesn’t apply any pruning strategy so it has high risk of overfitting the data.  

2.4.3. C4.5 (J Ross Quinlan, 1993):  

C4.5 decision tree was an evolution of ID3 (J R Quinlan, 1986) uses entropy for its impurity function called gain 

ratio, multiway split yields a binary split if the selected variable is numerical; if it is categorical, the node is split 

into 𝐶 subnodes, where 𝐶 is the number of categorical values. Can handle numeric attributes by splitting the 

attribute’s value range into two subsets. Specifically, it searches for the best threshold that maximize the gain 

ratio criterion. All values above the threshold constitute the first subset and all other values constitute the 

second subset. Uses a pruning procedure which removes branches that do not contribute to the accuracy and 

replace them with leaf nodes. Can split a node into more than two children nodes, their number depending 

on the characteristics of the X variable. Uses Pessimistic Error Pruning. Require that the target attribute will 

have only discrete values 
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   Algo.1. C4.5 Decision Tree Algorithm 

 

 
Algo.2. C4.5 Root Choice for Discrete Features  

 

 
Algo.3. C4.5 Root Choice for Numeric Features 

2.4.4. CART (Breiman et al., 1984): 

CART decision tree algorithm uses Gini-index (Light & Margolin, 1971) as a splitting criterion. It first grows an 

overly large tree and then prune it to a smaller size using 10-fold cross-validation Cost Complexity Pruning to 

minimize an estimate of the misclassification error. Minimal Cost-complexity pruning: The basic idea of cost-

complexity pruning is to calculate a cost function for each internal node meaning that all nodes that are neither 

leaves nor roots in the decision tree. 

The cost function is given by: 

   𝑅𝛼(𝑇) = 𝑅(𝑇) +  𝛼 . |𝐿𝑒𝑎𝑣𝑒𝑠(𝑇)| 

Where 

   𝑅(𝑇) =  ∑ 𝑟(𝑡) .  𝑝(𝑡) = ∑ 𝑅(𝑇)𝑡∈𝐿𝑒𝑎𝑣𝑒𝑠(𝑇)𝑡∈𝐿𝑒𝑎𝑣𝑒𝑠(𝑇)  

𝑅(𝑇) the misclassification cost of the sub-tree obtained after pruning of a certain branch. 

C4.5 Decision Tree Algorithm: 

Let X be the training set: grow (𝑇 ) 

1. Find the feature 𝑥 that contribute the most information about the class 
labels. 

2. Divide 𝑇 into subsets of 𝑇𝑖, each must have different values at 𝑥 
3. For each 𝑇𝑖:  

If all examples in 𝑇𝑖 belongs to the same class, then create a leaf labeled 

with this class, otherwise, apply the same process recursively to each 

training subset: Grow (𝑇𝑖) 

 

 
Decision Tree root choice from discrete features C4.5 Algorithm: 

1. Calculate the entropy of training set T using the probabilities 𝑃𝑝𝑜𝑠 of the 

positive labeled class and 𝑃𝑛𝑒𝑔 of the negatively labeled class 

𝐻(𝑇) = −𝑃𝑝𝑜𝑠 log2 𝑃𝑝𝑜𝑠 − 𝑃𝑛𝑒𝑔 log2 𝑃𝑛𝑒𝑔 

2. For each attribute 𝑥 that divides 𝑇 into subsets 𝑇𝑖 with related sizes 𝑃𝑖: 
3. Calculate the entropy of each subset 𝑇𝑖 
4. Calculate the average entropy: 𝐻(𝑇, 𝑥) = ∑ 𝑃𝑖. 𝐻(𝑇𝑖) 

𝑖  
5. Calculate the information gain: 𝐼(𝑇, 𝑥) = 𝐻(𝑇) − 𝐻(𝑇, 𝑥) 
6. Choose the feature with the highest value of information gain. 

Decision Tree root choice from numeric features C4.5 Algorithm: 

7. For each numeric feature 𝑥𝑖: 
8. Sort the training example by values of  𝑥𝑖 
9. Find the candidate threshold 𝜃𝑖𝑗 as those lying between data points of 

different labels 
10. For each 𝜃𝑖𝑗 determine the amount of information contributed by the 

Boolean feature thus created 

11. Choose the pair [𝑥𝑖 , 𝜃𝑖𝑗 ] that has the highest information gain. 
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 𝛼 the cost complexity parameter for that branch, for each value of 𝛼 there is a unique smallest tree that 

minimizes the cost complexity measure 𝑅𝛼(𝑇). 

Gradually increasing the complexity parameter 𝛼 starting from 0, will lead to a nested sequence of trees 

decreasing in size. The optimal tree size is determined by 10-fold cross validation, the data set is divided into 

𝑁 = 10 subsets, one of the subsets is used as independent test set while the other 𝑁 − 1 subsets are used as 

training test, the tree growing and pruning procedure is repeated N times, each time with a different subset 

as test set. For each tree the misclassification error is calculated, the tree with the lowest misclassification 

error is the optimal tree. Breiman proposed the 1 𝑆. 𝐸. rule which will select the smallest tree whose cost 

complexity measure is within 1 standard error of the cost complexity for the tree with the minimum 

misclassification error. CART is implemented in the R system(Team, 2009) as RPART (Therneau & Atkinson, 

1997). 

2.4.5. CHAID  (Kass, 1980):  

CHAID decision tree uses P-value with a Bonferroni correction as a splitting criterion. Has an advantage of 

splitting the node into more than two children nodes. Usually doesn't prune the result tree.  According to Wei-

Yin (2014) the major drawback of using the greedy search approach in CART and C4.5 decision trees is its 

selection bias. Selection bias usually happens when the variables with high cardinality will have a high chance 

to be selected to split nodes more than the low cardinality variables. For the decision tree to be unbiased all 

the variables must have the same chance to be selected given that all the features are independent of the 

target feature. 

Unbiased variable selection Decision Trees: As being proposed by FACT decision tree (Loh & Vanichsetakul, 

1988) CRUISE, GUIDE and QUEST decision trees use splitting criteria based on two-steps. The first step, each 

feature is tested for association with the target feature and then the most significant feature is selected to 

split based on it. The second step, an exhaustive search over all the dataset is performed, and because every 

feature has an equal chance to be selected if and only if each feature is independent of the target feature. So 

that approach is unbiased. 

2.4.6. FACT (Loh & Vanichsetakul, 1988): 

In FACT decision tree the splits at each node will depend on the number of the classes in each variable. If any 

categorical features appeared in the dataset it will be transformed into dummy variables (H. Kim & Loh, 2001). 

For FACT to have univariate splits, the features will be ranked using F-test of ANOVA then linear discriminant 

analysis will be applied to the top features to split the nodes based on it. The tree size will be determined by 

ANOVA test (H. Kim & Loh, 2001). 

2.4.7. QUEST (Loh & Shih, 1997): 

In QUEST decision tree it will split the features into two categories: Ordered and Unordered features, then it 

will run ANOVA test on the ordered features and Chi-Square test on the unordered features and so the 

selection bias will be eliminated. QUEST Supports univariate and linear combination splits. As in CART 

(Breiman et al., 1984) it uses ten-fold cross-validation to prune the trees.  

2.4.8. CRUISE (H. Kim & Loh, 2001): 

CRUISE decision tree was an improvement of QUEST (Loh & Shih, 1997). Splits each node of the tree into 

multiple children nodes depending on the number of classes of the target variable. It avoids the selection bias 

by using two statistical tests: Chi-Square test and F-Test at each node to select which feature to split based 

on. Uses the same pruning method as CART (Breiman et al., 1984). 
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2.4.9. CTREE (Hothorn, Hornik, & Zeileis, 2006): 

CTREE decision tree was introduced to avoid selection bias CTREE uses permutation tests where it uses p-

values from permutation distributions of influence function-based statistics to select split variables. Does not 

use pruning; it uses stopping rules based on multiplicity adjusted p-values to determine tree size. The 

algorithm is implemented in the R package PARTY. 

In the following table, different DT are summarized based on their target function, splitting criterion, pruning 

and splits techniques.  

 

Algorithm 

 

Target feature 

 

Splitting Criterion 

 

Pruning 

 

 

Splits 

ID3 Discrete information gain No Multiway splits 

C4.5 Discrete gain ratio Pre-pruning  

Pessimistic Error Pruning 

 

Multiway splits 

CART Mixed Twoing Criteria Pre-pruning  

Cost Complexity Pruning 

 

Binary splits 

CHAID Mixed chi-square NO Multiway splits 

FACT Mixed ANOVA ANOVA Multiway splits 

CRUISE Mixed contingency table chi-

square tests 

Pre-pruning  

Cost Complexity Pruning 

Multiway splits 

QUEST Mixed chi-square 

ANOVA 

Post-pruning 

Cost Complexity Pruning 

Binary splits 

CTREE Mixed p-values Bonferroni-adjusted p-

values 

Multiway splits 

Table 1 Summary of Decision trees algorithms 
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3. METHODOLOGY 

To conduct a data mining project a systematic process should be followed. Mainly two process had introduced 

(Olson & Delen, 2008): The CRISP-DM (Wirth & Hipp, 2000) Cross Industry Standard Process for Data Mining 

process which is widely used by a lot of data mining practitioners (Olson & Delen, 2008) and the SEMMA 

process Sample, Explore, Modify, Model, Asses. As being pointed out by the authors of Azevedo & Filipe Santos 

(2008) CRISP-DM can be more comprehensive than the SEMMA model, and so it will be followed in this 

research.  

The CRISP model consists of six stages Fig.3.1., the first step is the business understanding: which is about 

understanding the business objectives and needs, and to develop a project plan with time frame of when the 

whole data mining project will take, and a time frame for each stage. The Second stage is the data preparation 

step: Start with data collection, data visualization, data summary and to discover insights from the data, then 

to check the data quality. The third step is the Data preparation: Also known as data preprocessing phase, 

where the final dataset will be constructed from the initial dataset. The forth step is the modelling stage: 

various machine learning algorithms are applied, and their parameters are tuned to suit the dataset 

understudy. The fifth step is the Evaluation stage: the models obtained from the previous step are evaluated 

and their accuracy and performance are assessed, frequently will be reverted to previous step for better 

choosing different model. The sixth step is the deployment stage: the final stage where the model built will be 

deployed to be used by the user, usually in a form of an API.  

 

 

 

 

 

 

 

 

 

              Fig.3.1. (Wirth & Hipp, 2000) CRISP-DM model 

3.1. DATASET 

The dataset being used in this paper is a real-world dataset provided by the French telecommunication 

company Orange to develop three Customer Relationship Management algorithms to improve the company 

marketing strategies (Guyon, Lemaire, Vogel, et al., 2009):  

1- Customer Churn: A binary feature which can be defined as probability that the customers will leave 

the company voluntary to another for better offer or other reasons as stated in the introduction. 

2- Customer appetency: A binary feature which can be defined as Probability that the customer will buy 

a new product from the company 

3- Customer up-sell: A binary feature which can be defined as Probability that the customer will upgrade 

his original plan to another one. 
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The dataset was released as a part of the 15th edition of Knowledge Discovery and Data Mining (KDD) annual 
competition, which is hold annually to explore new algorithms and to enrich the scientific community. In 2009 
the French telecommunication company Orange released a challenge to detect these labels. The challenge 
had two paths: The fast path and a slower one, for the fast path the contestants had to submit their result in 
five days and for the slow path the contestants had one month to submit their results. Two datasets were 
released: large dataset which contains 15,000 features (14,770 numerical features and 260 Categorical 
features) and 100,000 instances, 50,000 to train the dataset and 50,000 to test the algorithms and a small 
dataset which contains 230 features (190 numerical features and 40 Categorical features) and 50,000 
instances to train the dataset and another 50,000 to test the algorithms. Submissions were evaluated using 
AUC of the ROC curve, with the average AUC of the three class labels were used to rank the contestants. All 
the features presented in the large and in the small datasets were anonymized for the customer privacy and 
no meta-information was provided to explain any of the features. Table 1 shows the winners of this 
competition for the large and the small datasets.  
 
KDD 2009 dataset was chosen because of its availability and its suitability for data mining techniques because 
the dataset had many challenging tasks from being multi-class classification task also, the dataset contains 
missing values that needed to be imputed and so many imputation algorithms can be experimented using this 
dataset, the dataset is high dimensional and so many feature selection techniques can be studied and 
examined on this dataset. The dataset used in this paper is the small dataset for the sake of computational 
resources available. The dataset is heterogeneous meaning that it contains numerical and categorical features. 
Also, the dataset is high imbalanced meaning that the number of positive instances is much lesser than the 
negative instances, for churn the number of positive instances is only 3764 out of 50,000 and for appetency 
only 764 out of 50,000 and for up-sell only 1400 out of 50,000. All the results reported here are the AUC of 
the ROC curve of the small dataset of the KDD 2009 challenge. 

3.2. DATA PRE-PROCESS 

Dealing with high dimensionality dataset is very challenging for machine learning algorithms and before 

applying any algorithm a proper preprocess is required (Kumar & Sonajharia, 2014). According to the authors 

Han & Kamber (2000) The preprocessing step is vital for building the model, which can be used to remove 

noisy and redundant data to improve the model performance and accuracy.  

 

 
 
 
 
 
 Fig.3.2. The Flowchart of the Preprocess Step 

Prior to using the dataset in data mining models high cardinality categorical features should be handled, treat 
incomplete data, treat imbalance in the data if found and to remove empty features and impute missing values 
if found. Especially for classification tasks the number of features used must be minimum, if the dimensionality 
is large this will increase the computation cost also it will produce error and decrease the performance of the 
used algorithms (Ertel, Black, & Mast, 2017). By having one feature with above average values compared to 
the other features, it will overpower the rest of the features by doing any analysis, to overcome this issue the 
usage of normalization is preferable to maintain the balance in the data, even many software packages will do 
it by default, to treat this a linear scaling will be used meaning to scale the numerical features to range of 
[0,1]. Models that are built on smooth functions such as regression models, are affected greatly by different 
scales in that dataset (Casari & Zheng, 2018). While, tree-based models that are based on splitting technique 
are robust against different scales in that dataset (Casari & Zheng, 2018). The used models in this research are 
tree-based models, so no scaling will be performed. 
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3.2.1. Categorical features handling 

By having a high cardinality categorical feature in the data set will not only decrease the accuracy of the model, 

it will also increase the computational time needed. High cardinality can be defined as non-ordered fields 

having large number of unique values can reach up to thousands or even millions (Micci-Barreca, 2001). Under 

the assumption that any feature with more than 500 unique level is only text with no predictive power, these 

features will be removed from the modeling process. Any levels with less than 5% prevalence will be combined 

into a new group called “Others”. Var217 has 13990 levels, means that each level has less than 1% prevalence 

in the dataset, also Var214 which has 15415 levels and the highest level appeared 74 times in the dataset with 

prevalence of 1.5%. Also, Var192 and Var204 has many levels with less than 1% of each level so both will be 

removed from the analysis. As being proposed by (Miller et al., 2009) the attempt to resolve this issue will be 

by creating four groups of levels based on the number of observations, where levels with more than 1000 

observations will be grouped together, levels with exposure between 500-999 will be grouped together, levels 

with exposure between 250-499 levels will be grouped together, levels with exposure between 1-250 will be 

grouped together. 

3.2.2. Imputing Missing Values 

By using R Library(healthcareai) we can see the count of missing values in each variable, the following table 
have the percentage of missing values with respect to each variable. 

 

Fig.3.3. Missing values distribution 

In practice one important parameter for MICE imputation method is the number of datasets to create to 
impute the missing value, the factors affecting this decision are: The size of the dataset, the amount of missing 
values and computational resources available, for the dataset in hand imputing 10 datasets with 5 imputations 
seemed feasible. Before running the MICE algorithm, all the empty and variables with more than 50% missing 
value were removed from the analysis under the assumption that these variables cannot be used. By removing 
all the totally empty features, then to remove any variable with more than 50% missing value, 77 variables will 
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be retained for building the model. For MICE the features with the least amount of missing values will be 
imputed first, then used in subsequent imputations, then the next feature with the second least amount of 
missing values will be imputed then used with the first in subsequent imputations. Missing values will be 
imputed using mice, hot-deck and mean then their accuracy will be assessed using AUC of the ROC to choose 
the best method to impute the missing values. 

3.2.3. Feature Selection 

As being introduced in Bellman (1961) the curse of dimensionality can be defined as having too many 
dimension in the dataset that will make the classifier takes a lot of time also it will decrease its 
predictive power. The cornerstone of data preparation for any type of algorithm is choosing which 
feature to use and to exclude any redundant features that could increase computational power and 
reduce the prediction power (Kalousis, Prados, & Hilario, 2007). Also, using feature selection reduce 
the overfitting of the model, and thus increasing the stability of the model (Kumar & Sonajharia, 
2014). According to the authors Wu, Qi, & Wang (2009) feature selection has two main approaches 
which are filter methods and wrapper methods based on the relationship between the features and 
the algorithm in use. 
Filter methods: no feedback from the used algorithm, evaluation is being done by using feature 
selection criterion like information gain, distance measure, dependency or consistency, but its main 
drawback that it requires an exhaustive search over all the dataset which in case of 
telecommunication can contains hundreds of features. While, wrapper methods use feedback from 
the used algorithm where the prediction power of the model is used as the main criteria of selecting 
which feature to be used. In this thesis the wrapper method using Random Forests (Breiman, 2001) 
will be chosen because the variable selection and supervised machine learning will be optimized 
together as a complete learning system (Svetnik, Liaw, & Tong, 2004). The main idea of the algorithm 
is that it is based on iteratively removing the lowest ranking features, then to assess the model AUC 
using K-Fold Cross Validation. As being suggested by Determan (2015) the same algorithm can be 
repeated using Gradient boosting machine (Friedman, 2001). The AUC result of the random forest 
algorithm and the Gradient Boosting machine are reported in the results section and the best 
performing algorithm will be used to select the most important features.  
 

 
   Algo.4. Feature Selection using Random Forest Algorithm 

3.2.4. Treating imbalance 

The Imbalance problem is very common in the field of machine learning (YANG & WU, 2006), because usually 

the desired label is not well represented in the dataset. The imbalance in the dataset in some cases can be 

very high which can reach up to 10,000,000 times i.e. the majority class is higher than the minority class by 

10,000,000 times (J. Wu, Brubaker, Mullin, & Rehg, 2008). The case in telecommunication sector is the churners 

Feature Selection using Random Forest Algorithm (Svetnik, Liaw, & Tong, 2004): 
1- Using K-Fold validation to split the dataset into training and validation 

sets. 
2- Using all the features of the training dataset to train the random forest 

algorithm. 
3- Record the rank of every feature according to their importance. 
4- Half of the least important features will be removed. 
5- Train another random forest on the rest of the features.  
6- Record the rank of the rest of features according to their importance.  
7- Half of the least important features will be removed.  
8- Steps 2-7 will be repeated from 10 to 50 times. 
9- Select the top ranked features. 
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percentage is most likely to be the minority class. There are a lot of studies on methods and algorithms on how 

to treat dataset unbalance mainly the algorithms presented in the paper from Batista, Prati, & Monard (2004), 

the authors presented a comparative study of ten popular imbalance handling techniques which can be 

summarized into two main groups: random and non-random techniques, random techniques are non-heuristic 

techniques which include under-sampling and over-sampling techniques, where random under-sampling is to 

remove data points randomly from the majority class to balance the dataset. Random over-sampling is to 

replicate the minority data points randomly to balance the dataset but empirical studies showed that over-

sampling tends to overfit the data (Prati, Batista, & Monard, 2008).  

A lot of Non-random techniques was introduced mainly to put some heuristics in selecting which data point to 

remove instead of doing it randomly. A few examples of undersampling non-random techniques includes 

Tomek links (Tomek, 1976) which is an undersampling technique where data points belonging to the majority 

class are the data points to be removed from the model. Formally Tomek Link can be defined as: by having two 

classes in the dataset ‘+’ and ‘-’, assume two data points each belongs to different class: 𝑥𝑖 , 𝑥𝑗 and the distance 

between them is 𝑑(𝑥𝑖 , 𝑥𝑗) then 𝑥𝑖 and 𝑥𝑗 are Tomek link if for any data point  𝑥𝑙, 𝑑( 𝑥𝑖 , 𝑥𝑗) < 𝑑( 𝑥𝑖 , 𝑥𝑙) 𝑜𝑟 𝑑( 𝑥𝑖 , 𝑥𝑗) <

𝑑( 𝑥𝑗 , 𝑥𝑙), in a summary for any two data points if they are Tomek Link then either one of them are noise or both 

of the data points located on the boundary between ‘+’ and ‘-’. 

 Another non-random undersampling algorithm is One-sided selection (M Kubat & Matwin, 2000) which can 

be defined as: by having a subset 𝑆 which is selected randomly from population 𝑇 where each data point in 𝑇 

has an equal probability to be chosen. The OSS algorithm reduces the population space 𝑇 by removing the 

majority class examples and so it will create a new population 𝑂 = 𝑇 − 𝐶 where 𝐶 is the minority class data 

points. Then a subset 𝐴 is selected from 𝑇 where 𝐴 will correctly classify 𝑇 by using 𝐾𝑁𝑁 =  1. Then noisy 

and border line data points will be removed from 𝑂. The OSS algorithm is showed in Algo.2. 

One of the most widespread non-random oversampling technique was introduced by Chawla, Bowyer, Hall, & 

Kegelmeyer (2002) called SMOTE , which stands for Synthetic Minority Oversampling Technique. Instead of 

replicating the minority data points SMOTE produces new synthetic minority data points using the feature 

space, based on weighted average of the K-NN. SMOTE has three hyper parameters that need to be tuned in 

first: 1- The over sampling percentage needed to create new data points for the minority class. These new data 

points won't be replicate of the already exist data points but instead, it will be generated using KNN to reduce 

overfitting (Up & In, 2017). 2- The under-sampling percentage needed to delete some majority data points. 3- 

KNN used to impute the synthetic data points. (Chawla et al., 2002) used KNN=5 in their analysis. The AUC 

result of the OSS, Tomek Links and SMOTE are reported in the results section. Different approaches to treat 

Imbalance can be found in Fig.3.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig.3.4. Different Approaches to treat Imbalance   
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3.3. DECISION TREE ENSEMBLES  

Because the DT usually suffers from the Bias-Variance error which will reduce the model ability to predict an 

unseen data (Dietterich & Bae, 1995), the term Bias (Mitchell, 1980) means that how on average are the 

predicted values differ from the actual values, bias is mainly made from the assumptions made during training 

the model which will prevent the model from learning an important relationships between the variables and 

the labels, bias also known as underfitting. Variance means how different will the predictions of the model be 

at the same point if different samples are taken from the same population which originate from the small 

specific changes in the training set, where the model will learn the noise in the training dataset, instead of 

learning the correct pattern which can also be known as overfitting. The classification error can be decomposed 

to three non-negative values variance, bias and noise  (Kohavi & Wolpert, 1996). According to Domingos (2000) 

who developed a unified theory for bias-variance decomposition to include both classification and regression: 

Given 𝑦𝑖 = 𝑛(𝑓(𝑥𝑖)) where 𝑓(𝑥𝑖) is the true label of 𝑥𝑖 and 𝑛(. ) is a noise that changed the true label of 𝑓(𝑥𝑖), 

by having a training set of {(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)} the learning algorithm will produce a classifier 𝑐, giving that 

𝑦∗ = 𝑛(𝑓(𝑥∗)) be the resulting label of an unseen instance 𝑥∗, and 𝑐(𝑥∗) is the resulting label, the error is 

defined as 𝐿(𝑐(𝑥∗), 𝑦∗). The difference between the predicted and the true label of a data instance is known 

as loss function. In the classification context the loss function is 0 or 1, where 𝐿(𝑦 ,, 𝑦) is 0 if 𝑦 , = 𝑦 and 1 

otherwise, Given that the training set 𝑆 was taken from population 𝑃(𝑆) so the main prediction is          

𝑦𝑚(𝑥∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦,𝐸𝑃[𝐿(𝑦 ,, 𝑐(𝑥∗))], the main prediction is the most common vote of 𝑐(𝑥∗), where the bias 

is 𝐵(𝑥∗) = 𝐿(𝑦𝑚, 𝑓(𝑥∗)), and Variance will be 𝑉(𝑥∗) = 𝐸[𝐿(𝑐(𝑥∗), 𝑦𝑚)] lastly the noise is                             

𝑁(𝑥∗) = 𝐸[𝐿(𝑦∗, 𝑓(𝑥∗))]. Bauer & Kohavi (1999) showed that for Naïve Bayes classifiers, simpler models will 

tend to have small variance error in the cost of higher bias error. Fig.10 shows the relationship between model 

complexity and bias-variance errors as presented in (Hansen, 2000). 

 

 
   Fig.3.5. Bias-Variance VS. Model complexity (Hansen, 2000) 

 

The bias-variance trade-off error applies to all forms of supervised machine learning so basically, what is 

needed is a trade-off between bias and variance errors, and that's where Ensemble models come to play. 

Many algorithms introduced to minimize the effect of bias-variance errors, another challenge is the noise 

which is a kind of error that caused by observed values variance, like changes that are unpredictable, this type 

of error is irreducible. Instead of using one classifier to predict an instance many algorithms can be used, that's 

where ensemble learners come in hand, where an ensemble is a group of weak classifiers combined to create 

a stronger classifier, which will help in reducing bias and or variance of data in hand. A classifier ℎ is a function 

that tries to match a variables vector 𝑥 to classes in 𝐶 =  {𝐶1, 𝐶2, … , 𝐶𝑛}. While an ensemble classifier will 
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consist of a set of classifiers 𝐻 =  {ℎ1, ℎ, … , ℎ𝑘}, where the output of the ensemble 𝐻 depends on the output 

of each classifier.  

3.3.1. Bootstrap aggregation (Bagging) & Random Forests 

Because decision trees usually suffer from high variance (Breiman, 1996), bagging was introduced to reduce 

the high variance created by decision trees, cause by averaging set of observations it will reduces the variance. 

Bootstrap aggregation means: taking repeated samples with replacement from the dataset and averaging 

their predictions and that will decrease the variance caused by the decision trees (James, Witten, Hastie, & 

Tibshirani, 2014). It was first introduced by Breiman (1996), the main idea is to reduce the variance of the data 

in hand so helping reducing overfitting (Bauer & Kohavi, 1999), by creating subsamples of the training instances 

then to use these subsamples to train the model. Bagging Algorithm Flowchart is presented in Fig. 4.4. 

 

 

 
 

Fig.3.6. Bagging Algorithm Flowchart 

One of the main disadvantages of bagging method is that it will produce a correlated bootstrap trees (James, 

Witten, Hastie, & Tibshirani, 2014). In bagging the bootstrap process is done only on the data points and not 

the features and so, this will lead to decreasing the variance of the decision trees but the bias term will not 

The Bagging Algorithm (Breiman, 1996): 

1- Generates 𝑁 training datasets by random sampling with replacement 

2- Setting 𝑁 estimators: one of each training set, knowing that these estimators are fitted independently 

from each other, so the model sets in parallel 

3- The Ensemble predictions is the average of the individual predictions made from N models created 

Bagging is more likely in reducing variance than in reducing bias. 

*For error estimates while training the model:  

*Out-of-bag is the data points that are not selected by bootstrap at each iteration ‘On average each 

data point will be out-of-bag 36% of times’ 

4- In each iteration predict the out-of-bag data points using the model grown with the subsamples 

5- Calculating OOB error by averaging the out-of-bag predictions 
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decrease. Breiman (2001) introduced the random forests where the features will be randomly sampled with 

the data points and this will help in decorrelating the trees and so it will decrease the bias as well (Liaw & 

Wiener, 2002). Breiman (2001) stated that by having a large number of trees, the Random Forest won’t overfit 

the training data. In summary the main difference between bagging and random forest is that RF has the 

second level of randomness which is when optimizing each node split, only a random subsample without 

replacement of the attributes will be evaluated with the purpose of further decorrelation the estimators. Also, 

because random forests will use bagging for the data points this will produce OOB, cause if 𝑛 observations will 

be drawn randomly with replacement from the dataset, then 37% of the 𝑛 observations will be left out and 

those observations can be used as a validation sample to test the random forest predictability. RF requires two 

hyperparameters adjustments: number of trees used and the max depth of each tree in the model. 

Hyperparameter optimization for the RF will be performed using H2O random search function.  

 
 Algo.5. Random Forest Algorithm 

3.3.2. Boosting 

First introduced by Freund & Schapire (1997). In boosting which means converts weak learners ‘base learners’ 

to strong learners, weak means that its slights better than random guess, strong means that it has a more 

generalizability, which’s can be applied to new dataset and predict well, the trees are grown sequentially, 

means that each tree is grown using the information from previously grown trees, each tree is fit on a modified 

version of the original dataset, the tree is fit using the current residuals. Suppose that the training instances in 

space x are drawn i. i. d. from distribution D and the true function is f, suppose the space x is composed of three 

parts x1, x2, x3 and each takes 1/3 amount of the distribution and a weak learner has 50% classification error 

on this problem, the first weak learner is h1which correctly classify x1, x2but has a wrong classification on x3, 

the idea of boosting is to correct the mistakes done by h1so by deriving a new distribution D1from D which 

makes the mistakes of h1more clear meaning that it will concentrate more on x3, then a classifier h2will be 

trained on D1but the classifier h2 correctly classify x1, x3but has a wrong classification on x2, so by combining 

h1 and h2 will have x1 classified right and some errors on x2and x3, then will derive a new distribution D2to make 

the mistakes of the combined classifiers more clear and train a new classifier h3from the distribution D2so h3 

has a correct classification on x2and x3 then by combining h1, h2and h3we will have a perfect classifier. 

3.3.2.1. AdaBoost 

Introduced by Freund & Schapire (1997) The residual learning is implemented through the concept of sample 

weights. At the iteration b the training samples have the weight wi
b for  which is equal to the current 

error of E (f̂(xi)) then the decision tree f̂ b(x) is fit to minimize the error , the 

The Random Forest Algorithm (Liaw & Wiener, 2002): 

1- Selecting 𝑛𝑡𝑟𝑒𝑒 bootstrapped subsamples from the training dataset 

*Given 𝑚𝑡𝑟𝑦 = 𝑃;where 𝑃 is the number of features of the dataset, 𝑚𝑡𝑟𝑦 is the randomly sample 

from the features of the training dataset 

2- Developing an unpruned classification tree for each of these subsamples, Choose the best split from 

𝑚𝑡𝑟𝑦 

3- Predict the unseen data by aggregation of the 𝑛𝑡𝑟𝑒𝑒 using majority vote 

*For error estimates while training the model:  

*Out-of-bag is the data points that are not selected by bootstrap at each iteration ‘On average each 

data point will be out-of-bag 36% of times’ 

4- In each iteration predict the out-of-bag data points using the model grown with the subsamples 

5- Calculating OOB error by averaging the out-of-bag predictions 
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AdaBoost algorithm uses an exponential error/loss function  E (F̂(xi)) = e−yiF̂(xi) , the choice of the error 

function E( ) also determines the way weights wi
band the weighting parameter  is updated at different steps. 

The misclassified samples get a higher weight than the correctly classified samples, the weights attached to 

samples are used to inform the training of the weak learner in this case the DT to be grown in a way that favor 

splitting the sets of samples with high weights. Then the model is modified to include a learning rate  as a 

regularization term that shrinks the contribution of all the models. 

The model is updated as . The main tuning parameters of AdaBoost are the learning 

rate , the number of estimators used B and the decision tree related parameters like depth of the tree d and 

the number of samples per split. In summary by having a classifier h1(x) trained from the training dataset, then 

after weighing the misclassified samples we will have h2(x), then h3(x) until hM(x) then the final classifier will 

be combined majority weighted vote to produce the final classifier 

 . 

 

 
 

Fig.3.7. AdaBoost (Schapire, R. E. and Freund, 2012) 

 

AdaBoost Algorithms has many extensions one of them is Adaboost.M1 (Alfaro, Gamez, & García, 2013). 

Adaboost.M1 can be defined as: by having a training set , where yi is the label 

which takes values of 1,2,…, k then the weight wb(i) is assigned to each observation xi and is initially set to 1/n 

and the weight value will be updated after each iteration. A basic classifier Cb(xi) is built on the new training 

set Tband is applied to every training step the classifier error is , is the indicator 

function which outputs 1 if the inner argument is true and 0 otherwise. From the error in the b-the iteration 

the constant is calculated and used for weight updating, according to Freund and Schapire 

, then the new weight for the (b + 1)-th iteration will be wb+1(i) = wb(i)exp

, this process is repeated every step for . Finally, the ensemble classifier 

calculates for each class the weighted sum of its votes, then the class with the majority votes is assigned 

Cf(xi) =arg  
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  Algo.6. AdaBoost.M1 Algorithm 

3.3.2.2. Gradient Boosting Machine 

First introduced by Friedman (2001) which is an ensemble technique that improves the predictive power of 

the classifier by reducing the model bias through iteratively minimizing the error. It combines gradient-based 

optimization and boosting, where gradient-based optimization uses gradient computations to minimize a 

model’s loss function with respect to the training dataset. Gradient boosting is a gradient descent technique, 

where the general idea of gradient descent is to tune the parameters in a sequential way either to maximize 

or minimize a loss function. Gradient descent can be applied to any differentiable function. By using the 

stochastic gradient descent one can overcome the problem of having many plateaus and off the local minima 

of the loss function (Mandt, D. Hoffman, & M. Blei, 2017). The initial model should be weak like a decision 

stump. Friedman (2001) recommends using  6-9 nodes trees as a base classifier. Stochastic gradient boosting 

was also introduced by Friedman (2002) to reduce the variance results from gradient boosting by adding 

randomness in the used algorithm. Meaning that to take subsamples of the training dataset for each iteration. 

It has many benefits: It will reduce the computational power needed, also it will reduce over-fitting and so it 

will help in identifying the number of trees needed (De’ath, 2007). As being pointed out by Lemmens & Croux 

(2006), GBM achieved better results in predicting churn, and so it will be used in our model. GBM requires 

three hyperparameters adjustments: number of trees used, max depth of each tree in the model and the 

learning rate. Hyperparameter optimization for the GBM will be performed using H2O random search 

function.  

3.3.3. Stacked Ensembles 

As mentioned above ensemble learning uses multiple models to improve the prediction power of the model, 

instead of using a single classifier or even ensemble to predict, we can combine multiple ensembles in one 

model by using Stacking method, which is a supervised method that finds the optimal combination of different 

classifiers. Stacking was first introduced by Wolpert (1992), then its theoretical guarantees were proved by (J, 

C, & E, 2007), its main idea is to use the classification of different classifiers instead of the original features, 

while the original target label remains the same. Fig 4.6 presents the stacking ensemble workflow. 

AdaBoost.M1 Algorithm: 

1- Start with 𝑤𝑏(𝑖) = 1/𝑛 ,  

2- Repeat for  

a) Fit the classifier  using weights 𝑤𝑏(𝑖) on 𝑇𝑏 

b) Compute  and  

c) Update the weights 𝑤𝑏+1(𝑖) = 𝑤𝑏(𝑖)exp  and normalize them 

3- Output the final classifier 𝐶𝑓(𝑥𝑖) =arg  
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Fig.3.8. Stacking Ensemble (Sikora & Al-Laymoun, 2014) 

Stacking mainly consists of two levels: The first level which is known as base learner (level-0), usually different 

classifiers are learned from the original features of the dataset, then the predictions of each of the classifiers 

are grouped to create a new dataset. In the new dataset, each data point is associated with the real label and 

the classifications from the previous step. The second level (level-1) is where a learning algorithm called meta-

learner is used to predict the final output (Graczyk, Lasota, Trawiński, & Trawiński, 2010). To increase the 

performance of the stacking ensemble, class probabilities can be used instead of the predicted class from 

level-0  to create the new, to take into account the confidences of each of (level-0) classifiers (Menahem, 

Shabtai, Rokach, & Elovici, 2009; Ming Ting & Witten, 2002). After the hyperparameter optimization of RF and 

GBM using random search, they will be used to construct the stacking ensemble. The results of the stacking 

ensemble and its contribution to the model is presented in the result section.  

3.4. RESAMPLING TECHNIQUES 

The most common challenge in predictive modelling is that the model will learn the train set but will perform 

badly on the test set that’s why the test set error and train set error is very crucial for the generalizability of 

the model, the common method in validation of the model is by using either bootstrap or using K-fold 

validation to validate the model (Steyerberg et al., 2001). 

3.4.1. Leave-One-Out- Cross-Validation 

Instead of creating two separated subsets for training and testing, a single data point is selected (𝑥1, 𝑦1) for 

the validation of the algorithm, and the remaining data points {(𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} are used to train the 

model. Meaning that the model will be trained on the 𝑛 − 1 data points, and the prediction �̂�1 is made to 

estimate the leave out data point. Because the test data point (𝑥1, 𝑦1) was not used in training the model, the 

estimate error of that data point will be unbiased for the test error, however it will be a poor estimate of the 

error because it only depends on one data point (𝑥1, 𝑦1). To overcome this issue, another data point will be 

selected (𝑥2, 𝑦2) for the validation of the algorithm, and the model will be trained on the remaining 𝑛 − 1 data 

points then to compute the error based on that data point. This approach will be repeated 𝑛 times and in each 

time a different data point will be used to validate the model, then all these errors will be averaged to compute 

the cross validation. The main drawback of this method that it is very time consuming especially with large 

number of observations this method can take hours. The next equation is the Error cross validation. 

𝐶𝑉(𝑛) =
1

𝑛
∑ 𝐼(𝑦𝑖 ≠ 𝑦�̂�

(−𝑖)

𝑛

𝑖=1

) 
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3.4.2. K-Fold Cross-Validation 

Another resampling technique being used to assess the quality of the model, which involves splitting the 

dataset into 𝐾 equal folds of equal sizes, where the first fold “also known as held out set” will be treated as 

validation set and the remaining 𝐾 − 1 folds will be the training set. This approach will be repeated 𝐾 times, 

where in every time a different fold will be assigned. Usually the used K is 10 folds (Reitermanov, 2010). In this 

thesis 10-fold validation will be used to cross validate the training set performance.  

 
Algo.7. K-Fold Algorithm 

3.5. EVALUATION AND HYPERPARAMETER OPTIMIZATION 

3.5.1. Model Evaluation using AUC of the ROC curve 

To assess the quality and accuracy of the trained classifier, many measures has developed to test the model 

performance to predict its performance on an unseen data. 

For classification machine learning tasks, a confusion matrix is constructed to assess the model quality, it 

categorizes the model predictions according to whether they match the correct label or not. It has mainly four 

values: 

𝑇𝑃: True positive (A positive example, classified as positive example) 

𝑇𝑁: True negative (A negative example, classified as negative example) 

𝐹𝑃: False positive (A negative example, but classified as positive example) 

𝐹𝑁: False negative (A positive example, but classified as negative example) 

 

  
Predicted Class 

Positive 

 
Predicted Class 

Negative 

 
Actual Class Positive 

 
True Positive 

TP 
 

 
False Negative 

FN 

   
Actual Class Negative 

 
False Positive 

FP 

 
True Negative 

TN 
 

Table 2 Confusion matrix 

The K-Fold Algorithm: 

 Input of the dataset 𝑇  and number of folds 𝑘 and performance function 𝑒𝑟𝑟𝑜𝑟 and for the 

computational models . 

Divide the dataset 𝑇  into 𝑘 equal subsets: . 

 

  , For  Train model 𝐿𝑗 on 𝑇𝑡𝑟 and use 𝑇𝑣 for assessing the 

performance where 𝐸𝑣
𝑗(𝑖) = 𝑒𝑟𝑟𝑜𝑟 (𝐿𝑗(𝑇𝑣)) when the 𝐸𝑣

𝑗(𝑖) is satisfied then the stop-criterion 

is achieved and the training will stop. 

For   the model performance will be evaluated by . 
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Success rate was introduced to assess the model ability to predict true positives and true negatives “also 

known as accuracy”  

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The error rate measure was introduced to assess the proportion of false positives and false negatives: 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity “also known as true positive rate” was introduced to assess the model ability to correctly classify 

the positive examples as positive:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

While Specificity “also known as true negative rate” measures the model ability to correctly classify the 

negative examples as negative: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

To visualize the model performance, ROC curve was introduced to visually examine the trade-off between 

sensitivity and specificity. Which become one of the most powerful used algorithms to measure the model 

quality  (Fawcett, 2006). The main idea of the ROC curve is the plot of the specificity of the algorithms which 

is the percentage of the correctly classified negatives against the sensitivity which is the percentage of the 

correctly classified positives of the algorithm (Fawcett, 2003). The Roc curve has a diagonal line which 

represents a random guess model meaning that the model cannot differentiate between true positives and 

false positives, this diagonal line can be considered as the baseline where models can be judged. The best 

model has a curve that passes through the top left corner “100% Sensitivity” and has 0% false positive rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.9. ROC curve (Hassouna et al., 2015) 

 

To measure the quality of the model using ROC curve a statistic known as AUC “Area under the ROC curve” is 

used, which treats the ROC diagram as a two-dimension square and measures the area under the curve. AUC 

has a minimum value of 0.5 and the maximum value of 1, where 0.5 represent a model with no predictive 

power and 1 represents a model with 100% predictive power. The AUC is calculated by the following formula 

(Vuk, 2006) 

AUC = ∫
TP

P
 d

FP

N

1

0

=
1

PN
 ∫ TP

N

0

 dFP                         

 

Where 𝑇𝑃 + 𝐹𝑁 = 𝑃 and 𝑇𝑁 + 𝐹𝑃 = 𝑁 
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3.5.2. Hyperparameter Optimization  

Hyperparameter Optimization is used to adjust the model parameters but not its internal model parameters, 

which is what the model will learn from the dataset itself. Hyperparameter space is a set of all values of the 

model external parameters. The process of tuning the model parameters to give the best accuracy in the 

shortest time is called Hyperparameter Optimization. Two main hyperparameter optimization algorithms have 

been introduced by authors Bergstra, Bardenet, Bengio, & Kégl (2011): traditional grid search and random grid 

search. The traditional grid search searches all the possible grid for the algorithm, but its main drawback is 

that it will take a lot of time and computational resources especially for deep datasets. While the random grid 

search will take less time and so less computational power. As being noted by authors Bergstra & Bengio (2012) 

in their empirical study that random search performs better results than grid search for the same time frame. 

In this thesis random search will be applied to the RF and GBM using H2O random search function, where it 

will search for the number of trees and max depth needed for the RF to achieve better performance. In addition 

to the number of trees and max depth, this function will search for the best learning rate for the GBM to 

achieve the best results.  

3.6. THE PROPOSED ENSEMBLE SYSTEM 

Fig.6.3. presents the proposed workflow that will be followed. The initial step is data-preprocessing (Fig.3.2.) 

which will remove noise data points and redundant features from the dataset. Data pre-processing stage 

consists of removing completely empty features under assumption that these features cannot be imputed, 

then high cardinality categorical features will be treated either by removing the features with more than 500 

unique level or by combine levels with less than 5% appearance in the dataset, then missing values will be 

imputed, then the most important features will be selected based on feature importance matrix of RF and 

GBM. The final step of the pre-processing stage is treating the imbalance in the dataset. The output of data 

pre-processing stage will be noise free data which will be used for further modelling stages. The next stage is 

sampling the dataset, the sampling is done to split the dataset into two disjoint subsets, one subset will be 

used to train the model and using K-fold validation to validate the result of the training set. The second subset 

will be used to test the model and predict its generalizability. Mainly the sampling stage is done to prevent 

the over fitting of the model and to increase its generalizability. The last stage will be training the dataset using 

Stacking over the algorithms using H2O platform (H2O.ai, 2014).  
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Fig.3.10. The Flowchart of the proposed model. 

3.7. H2O PLATFORM 

H2O (H2O.ai, 2014) is a machine learning platform implemented in R and Python, this platform uses pure Java 

language as its backend. H2O base algorithms are distributed across all the cores in a multi-node cluster 

(LeDell, 2015) which facilitate the large computational power needed for ensemble techniques like gradient 

boost machine and Random Forests. Due to its easily and rapid implementation, H2O platform is used as a 

main R Library to model this large and heterogeneous dataset. 

 

 

 

 

 

 

Fig.3.11. H2O Platform architecture  (Ha, Nguyen Ha, & Nguyen Thi Bao, 2017) 
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4. RESULTS 

This section discusses the results obtained from the presented methodology. (Section 7.1) Represents the 
results obtained from the preprocess step, (Section 7.2) Represents the final results obtained. All the results 
are assessed by AUC of the ROC curve as proposed by the challenge committee 

4.1. PREPROCESS RESULTS 

The results of the preprocess step are presented in this section. The dataset contains three different labels: 

Churn, Appetency and Up-selling. Each of these labels will be used to construct a separate dataset and every 

dataset will be preprocessed in different manner. For every step a 10-fold validation was used and 80% of the 

dataset was used to train the model and the rest 20% was used as a test set to assess the performance 

4.1.1. Imputing Missing Values for the three datasets 

We start preprocessing this dataset by comparing different techniques to impute missing values. Table 7.1 

shows the performance of different missing values imputation techniques in combination with three base 

classifiers and their results were assessed by using AUC of the ROC curve after the imputation. The best 

performance in each column is in bold. The results show that different techniques yielded different results 

with different classifiers.  

4.1.1.1. Imputing missing values for Churn dataset 

Different imputing methods was performed on the churn dataset to impute the missing values, to assess the 

performance of each imputation technique the AUC of the ROC curve of each technique is measures against 

C4.5 DT, RF and GBM as shown in Table 3. The highest AUC was achieved by Hot-Deck imputation technique 

and so this technique will be used to impute the missing value in the churn dataset. 

 Mean Hot-Deck Hot-Deck with Indicators Mice 

C4.5 0.5061 0.5116 0.5231 0.5169 

RF 0.6407 0.6531 0.6888 0.6398 

GBM 0.6683 0.6794 0.7162 0.6641 

        Table 3 The AUC results for Churn Dataset Missing Value Imputation 

4.1.1.2. Imputing missing values for Appetency dataset 

The same technique is used for Appetency dataset; the best performing technique was Hot-Deck imputation. 

So, this technique will be used to impute the missing value in the Appetency dataset. The results are shown in 

Table 4. 

a.  Mean Hot-Deck Hot-Deck with Indicators Mice 

C4.5 0.5 0.5 0.5 0.5 

RF 0.7464 0.7686 0.7445 0.7407 

GBM 0.8027 0.8107 0.7975 0.8067 

  Table 4 The AUC results for Appetency Missing Value Imputation 
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4.1.1.3. Imputing missing values for Up-Selling dataset 

The same technique is used for Up-Selling dataset, the best performing technique was MICE imputation. So, 

this technique will be used to impute the missing value in the Appetency dataset. The results are shown in 

Table 5. 

a.  Mean Hot-Deck Hot-Deck with Indicators Mice 

C4.5 0. 6969 0. 6465 0. 6934 0. 6262 

RF 0. 8115 0. 8334 0. 8229 0. 8380 

GBM 0. 8394 0. 8544 0. 8445 0. 8579 

               Table 5 The AUC results for Up-Selling Missing Value Imputation 

4.1.2. Balancing the datasets 

This subsection discusses different algorithms to balance the datasets, three algorithms were used and their 

results were assessed by using AUC after the balancing. The algorithm with the highest AUC will be used to 

balance the dataset.  

4.1.2.1. Balancing the Churn Dataset  

Different balancing algorithms were used to balance the dataset. To assess the performance of each algorithm 

two classifiers (RF and GBM) were used and their AUC were measured before and after applying each 

algorithm. The initial AUC of the RF was 0.6796 and for GBM was 0.7032306. After applying SMOTE the AUC 

results increased by more than 10% which can indicate that SMOTE algorithm overfitted the dataset which is 

common for SMOTE algorithm and so the OSS was used instead for balancing the dataset. The results are 

shown in Table 6. 

a.  SMOTE TOMEK OSS 

RF 0.8565 0.6533 0.6592 

GBM 0.8414 0.6865 0.6818 

               Table 6 The AUC results for Churn Dataset Balancing  

4.1.2.2. Balancing the Appetency Dataset 

The same technique is used for Appetency dataset. The initial AUC of the RF was 0.7760 and for GBM was 

0.7814. SMOTE algorithm behaved the same as Churn Dataset and so the OSS was used to balance the 

Appetency dataset. Results are shown in Table 7. 

a.  SMOTE TOMEK OSS 

RF 0.8830 0.7522 0.7608 

GBM 0.8774 0.7744 0.7834 

               Table 7 The AUC results for Appetency Dataset Balancing  
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4.1.2.3. Balancing the Up-Selling dataset 

The same technique is used for Up-Selling dataset. The initial AUC of the RF was 0.8172 and for GBM was 

0.8427. SMOTE algorithm behaved the same as Churn Dataset and so the OSS was used to balance the 

Appetency dataset. Results are shown in Table 8. 

a.  SMOTE TOMEK OSS 

RF 0. 8754 0. 8358 0. 8345 

GBM 0. 8692 0. 8513 0. 8583 

               Table 8 The AUC results for Up-Selling Dataset Balancing  

4.1.3. Feature Selection 

This subsection discusses different algorithms to select the most important features in the dataset, the feature 

importance matrix of RF and GBM was used to decide which features are more important for the model to be 

selected. The features that will score the highest AUC will be used.  

4.1.3.1. Feature Selection of the Churn Dataset 

The initial AUC for RF was 0.6796 and for GBM was 0.7032. Using Random Forests to select the most important 

25 features in the dataset, then to run RF on these important features and to assess the AUC. Also, the GBM 

is used to assess the predictive power of these features by running the algorithm on the original dataset and 

the reduced dataset. Feature selected using GBM achieved higher AUC than RF and so it will be selected for 

feature Selection. Results are shown in Table 9. 

a.  Feature Selection using 

Random Forests 

Feature Selection using 

Gradient Boosting Machine 

RF 0. 6153 0. 6635 

GBM 0. 6482 0. 6935 

               Table 9 The AUC results for Churn Dataset after Feature Selection  

4.1.3.2. Feature Selection of the Appetency Dataset 

The initial AUC for RF was 0.7760 and for GBM was 0.7814. Using Random Forests to select the most important 

25 features in the dataset, then to run RF on these important features and to see the AUC. Also, the GBM is 

used to assess the predictive power of these features by running the algorithm on the original dataset and the 

reduced dataset. Feature selected using GBM achieved higher AUC than RF and so it will be selected for feature 

Selection. Results are shown in Table 10. 

a.  Feature Selection using 

Random Forests 

Feature Selection using 

Gradient Boosting Machine 

RF 0. 6953 0. 7579 

GBM 0. 7158 0. 7712  

               Table 10 The AUC results for Appetency Dataset after Feature Selection  
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4.1.3.3. Feature Selection of the Up-Selling Dataset  

The initial AUC for RF was 0. 8172661 and for GBM was 0. 8427427. Using Random Forests to select the most 

important 25 features in the dataset, then to run RF on these important features and to see the AUC. Also, 

the GBM is used to assess the predictive power of these features by running the algorithm on the original 

dataset and the reduced dataset. Feature selected using Random Forests achieved higher AUC than GBM and 

so it will be selected for feature Selection. Results are shown in Table 11. 

b.  Feature Selection using 

Random Forests 

Feature Selection using 

Gradient Boosting Machine 

RF 0. 8251 0. 8256 

GBM 0. 8423 0. 8380 

 

  Table 11 The AUC results for Up-Selling Dataset after Feature Selection  

4.2. FINAL MODEL AUC RESULTS 

This section discusses the results obtained after applying Random Forests, GBM and Stacking them to the 

cleaned dataset obtained from the preprocess step. Every classifier is applied to the three datasets and the 

AUC of the ROC curve was measured. From Table 12 we can see that Stacking did increase the performance 

of the classifiers by an average of 2%. 

 Churn Appetency Up-Selling Average 

Random Forest 0.6635 0.7579 0.8251 0.7488 

GBM 0.6935 0.7712   0.8423 0.769 

Stacking 0.7111 0.78 0.845 0.7787 

 Table 12 The AUC results of the Final model 

4.3. ANALYSIS OF THE RESULTS 

The machine used was Core i5 with 8GB RAM and all the experiments have been conducted using R statistical 

software. Training and testing ratio for each dataset was fixed at 80:20 ratios. Class imbalance was handled 

only for the training datasets. Testing datasets were kept separated all over the experiment and were used 

only in the end to assess the performance of the final classifiers. The present research work aims at identifying 

an appropriate workflow to deal with a challenging dataset that contains missing values, imbalance, high 

cardinality and of mixed nature. Also, this work aims at comparing the performance of different decision trees-

based ensemble techniques to detect churn. After analyzing the results, it has shown that ensemble 

techniques improve the performance of the classifiers and the stacking of these ensembles further improved 

the results. Churn dataset was the hardest dataset whose AUC was the lowest compared to the other two 

datasets. Imputation techniques used increased the performance of the classifiers with different measures, 

the best performing technique was the hot-deck imputation technique which yielded good results for Churn 

and appetency datasets, while MICE gave the best performance for the Up-Sell dataset. The best performing 

balancing technique was the OSS which gave a descent increase in the AUC without overfitting the datasets. 

The feature importance of GBM yielded an outstanding result compared to the Random Forests for churn and 

appetency datasets while Random Forests was the same as GBM for the up-sell dataset. The Stacking the 

ensembles increased a lot the classifiers performance. The final average AUC result was 0.7787 which will 
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place us in the top 10% of this competition. The following table presents the top winner using the same 

dataset.  

 

 

 

 

 

Table 13 The KDD 2009 winners (Guyon, Lemaire, Boullé, Dror, & Vogel, 2009) 

 

4.4. KEY FINDINGS  

 Multiple methods for imputation produces better results than single imputation methods. 

 SMOTE should be treated with careful cause in some cases it can cause overfitting. 

 Wrapper methods for feature selection can take less computational effort and produce better results 

than filter methods. 

 Tree-based ensembles produced better results than single trees through decreasing the variance in 

the dataset. 

 Churn can be predicted by using tree-based ensembles with high accuracy. 

 H2O R package is a powerful tool that’s more than capable of handling large, deep and heterogeneous 

datasets. 
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5. CONCLUSION AND FUTURE WORK 

For future work, it would be useful to explore the deep learning methods using neural networks as it also been 
reported to be effective in dealing with big data. The challenges of predicting customer churn in 
telecommunication sector are mainly the high imbalance in the dataset between the churners and the loyal 
customers, also the presence of high cardinality categorical features and the fact that the dataset will be deep 
and large to be tackled by the normal machine learning algorithms. 
The possibility of customers to churn from the telecommunication companies has emerged as to be a real 
threat for telecommunication companies because of the lost revenue and the high cost of acquisitions of new 
customers. And so, the churn prediction right now is vital for telecommunication companies, even thought 
that churn is inevitable, it can be managed and predicted so a corrective measure can be taken to keep it at a 
safe level.  
 
In this paper a comparison was made between different supervised machine learning algorithms to detect 
customer churn for telecommunication sector using the KDD 2009 Orange dataset. Gradient boosted trees 
significantly outperformed other decision trees ensembles like random forest and AdaBoost. Moreover, a 
preprocess technique was proposed to better deal with large dataset with a lot of missing values, high 
cardinality categorical features and high dimensionality. It was shown that using the proposed methodology 
the telecommunication companies can gain a higher accuracy for detecting the churners and so to be able to 
strengthen the ability of the company for customer retention. Additionally, a better dimensionality reduction 
technique was introduced to select the most important features from the dataset.  
 
This paper has shown the performance of decision tree machine learning algorithms and the advantage of 
ensemble decision trees as well. Not only the methodology proposed in this paper can be used by 
telecommunication companies but also can be tested on any classification machine learning problems, like 
loan default or fraud detection. In future work beside exploring the deep learning methods, we plan to 
investigate additional preprocess steps to better improve the accuracy of the algorithms and to decrease the 
computational power needed and to explore the performance of other boosting algorithms beyond Gradient 
Boosting machines. Also, to use a larger dataset with meta information from the telecommunication industry 
to maximize the predictive power of our results.  
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7. APPENDIX 

 

One-Sided Algorithm 

 

KNN Algorithm 

One-Sided Selection Algorithm: 

1- Let 𝑆 be the dataset, Assign all minority class to cluster 𝐶, and one randomly majority 

class data point. 

2- Using 𝐾 − 𝑁𝑁 with 𝐾 = 1 to classify 𝑆 using examples from cluster 𝐶, then evaluate the 

performance of 𝐾 − 𝑁𝑁 and move the misclassified data points to 𝐶. 

3- Remove all Tomek Links majority data points from 𝐶, Then assign the rest data points to 

cluster 𝑇. 

 

 

 

 

 

 

K Nearest Neighbor Algorithm: 
Let X the new data point to be classified: 

1- From the training dataset identify the KNN of X 
2- The Class that most frequently associated with X is denoted 𝑐𝑖 
3- For two class domains, an odd K should be selected to prevent ties 
4- Give label of X like 𝑐𝑖 

Euclidean distance similarity measure: 

𝑑(𝑥, 𝑦) = √(𝑥𝑖 − 𝑦𝑖) 

With n continuous features: 
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛),𝑦 = (𝑦1, 𝑦2, … . , 𝑦𝑛) 

𝑑𝐸(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

For mixed features: 

𝑑𝑀(𝑥, 𝑦) = √∑ 𝑑(

𝑛

𝑖=1

𝑥𝑖 − 𝑦𝑖) 

For discrete: 
𝑑(𝑥𝑖, 𝑦𝑖) = 0 , 𝑥𝑖 ≠ 𝑦𝑖  
𝑑(𝑥𝑖, 𝑦𝑖) = 1 , 𝑥𝑖 = 𝑦𝑖  
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SMOTE Algorithm (J. Kim, Han, & Lee, 2016) 

 


