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Abstract

Nowadays constant technological evolution cover several necessities and daily tasks in our
society. In particular, drones usage, given its wide vision to capture the terrain surface
images, allows to collect large amounts of information with high efficiency, performance
and accuracy.

This master dissertation’s main purpose is the analysis, classification and respective
mapping of different terrain types and characteristics, using multispectral imagery.

Solar radiation flow reflected on the surface is captured by the used multispectral
camera’s different lenses (RedEdge-M, created by Micasense). Each one of these five
lenses is able to capture different colour spectrums (i.e. Blue, Green, Red, Near-Infrared
and RedEdge). It is possible to analyse the various spectrum indices from the collected
imagery, according to the fusion of different combinations between coloured bands (e.g.
NDVI, ENDVI, RDVI. . . ).

This project engages a ROS (Robot Operating System) framework development, ca-
pable of correcting different captured imagery and, hence, calculating the implemented
spectral indices. Several parametrizations of terrain analysis were carried throughout the
project, and this information was represented in semantic maps by layers (e.g. vegetation,
water, soil, rocks).

The obtained experimental results were validated in the scope of several projects
incorporated in PDR2020, with success rates between 70% and 90%.

This framework can have multiple technical applications, not only in Precision Agri-
culture, but also in vehicles autonomous navigation and multi-robot cooperation.

Keywords: Precision Agriculture, Layered Map, Semantic Map, Imagery Stitching, Un-
manned Aerial Vehicle (UAV), Multispectral Imagery, Rededge-M, Micasense, 2D Percep-
tion.
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Resumo

A constante evolução tecnológica cobre, hoje em dia, diversas necessidades e tarefas
diárias da nossa sociedade. Particularmente, a inserção de drones, dada a sua ampla visão
para captar imagens sobre a superfície do terreno, permite a recolha de grandes quantidades
de informação com grande eficiência, desempenho e precisão.

A presente dissertação de mestrado tem como principal objetivo a análise, classificação
e respetivo mapeamento de diferentes tipos e características de terrenos a partir de imagens
multiespectrais.

O fluxo de radiação solar refletida pela superfície é captado pelas diferentes lentes da
câmara multiespectral utilizada (RedEdge-M, produzida pela Micasense). Cada uma das
cinco lentes é capaz de captar diferentes espectros de cor (i.e. Blue, Green, Red, Near-
Infrared e RedEdge). A partir das imagens recolhidas é possível analisarem-se diversos
índices espectrais consoante a fusão de distintas combinações entre as bandas de cor (e.g.
NDVI, ENDVI, RDVI. . . ).

Este projeto passa pelo desenvolvimento de uma nova framework em ROS (Robot
Operating System) capaz de corrigir as diferentes imagens captadas e consequentemente
calcular os índices espectrais implementados. Foram realizadas diversas parametrizações
ao longo do projeto para a análise de terrenos, cuja informação é representada em mapas
semânticos por camadas (e.g. vegetação, água, solo, rochas).

Os resultados experimentais obtidos foram validados no âmbito de vários projetos
inseridos no PDR2020, com taxas de sucesso compreendidas entre 70% e 90%.

Esta framework poderá ter diversas aplicações técnicas não só na Agricultura de Pre-
cisão, como também para a navegação autónoma de veículos e ainda na cooperação multi-
robot.

Palavras-chave: Agricultura de Precisão, Mapa de Camadas, Mapa Semântico, Junção
Panorâmica de Imagens, Veículo Aéreo Não Tripulado, Imagens Multiespectrais, Rededge-
M, Micasense, Percepção 2D.
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Introduction

1.1 Context and Motivation

In today’s world, technology is increasingly becoming part of human life; in an environment
where data acquisition is an issue in our community since information is continually growing
and changing. People no longer need to learn how to adapt to innovation but instead
technology is responsible for modelling itself around society; by processing all the sensor’s
acquired information, getting results, conclusions and even learning how to behave even
when faced with unknown situations.

Technology enhancement is embracing society, not only by learning how to adjust itself
to each individual and their own personal devices, but also by reaching various industrial
sectors in great scale. Fields of operation where UAV can give a huge contribution,
achieving as much information as possible in the least possible time about any Big Data
systems, such as traffic surveillance, security and rescue operations, building inspections,
mapping or even agricultural monitoring.

Nowadays, one of the biggest concerns in our society is related to both food and water
security, as well as well-nourished population assurance, which involves selling food that
provides the major nutrients to preserve a healthy society.

This thesis’ concept urged from various projects related to fruit and cereal cropping
fields, technologically arising in partnership with Faculdade de Ciências e Tecnologias
(FCT-UNL), such as:

• MPBIO – GO Biofortificação de Tomate para Processamento Industrial e em Modo
de Produção Biológica (Biofortification of Tomato with Mg, Zn e Fe) – Project
Number PDR2020-101-030701, 01 Ação 1.1/2016, Initiative nº 6, Partnership nº 11;

• BATCAL – GO Biofortificação de Batata em Calcio (Biofortification of Potato with

1



CHAPTER 1. INTRODUCTION

Ca) – Project Number PDR2020-101-030719, 01 Ação 1.1/2016, Initiative nº 20,
Partnership nº 17.

• PERCAL – GO Biofortificação de Pera Rocha em Calcio (Biofortification of Pear
with Ca) – Project Number PDR2020-101-030734, 01 Ação 1.1/2016, Initiative nº
148, Partnership nº 76.

• UVAZN – GO Fortificação de uva em zinco para vinho branco e tinto (Biofortification
of Grapes with Zn) – Project Number PDR2020-101-030727, 01 Ação 1.1/2016,
Initiative nº 144, Partnership nº 74.

• INSTAGRI - Intelligent Cloud Based Environment for Precision Agriculture using
Remote Sensing Technology – Project Number CENTRO-01-0247-FEDER-023152.

The previously mentioned projects rely on new Portuguese motivational researches
of an agricultural change in the country. It has been gradually growing in Portugal for
several years, through national companies like Syngenta or Wisecrop, already with creative
and efficient developed solutions in the market. They use techniques based on aerial
multispectral captured images of the field area, capable to gather information invisible
to human eye, in order to advise farmers about their crops growth, indicating possible
plagues, diseases or even fields’ malnutrition.

1.2 Goal and Approach

Despite the distinct techniques taken by different entities on the agricultural business, this
thesis proposes an open-source framework development for precision agriculture that will
be fully integrated with an UAV, which is the main asset responsible for the agricultural
field autonomous scanning.

With the use of an incorporated multispectral RedEdge-M camera, developed by Mi-
casense, the UAV intends to collect a full real-time imagery dataset of the cultivation area,
which will provide five different colour spectrum bands for each taken frame: Red, Green,
Blue, Infrared and Red-Edge.

Furthermore, it should allow an index fusion between the bands and the information
collected by the camera using the Open Source Computer Vision Library (OpenCV), a ma-
jor tool for image and video analysis. The multispectral imagery effects over the overflown
area ground type will provide feasible information about possible terrain irregularities,
obstacles or target fertilization points, for instance. Thus, the imagery revealed features
will be compiled into a layered map with certain areas labelled according to the terrain
type detected. This will then be fused into an occupancy map, in order to support the UAV
autonomous navigation in constrained environments.

This thesis analysis and monitoring system goal is supported with the ability to interpret
the different effects caused on each captured field area’s colour band, due to the type of
terrain features.

2



1.3. DISSERTATION STRUCTURE

This approach intends to improve the acquired knowledge about Precision Agriculture,
as well as autonomous navigation and multi-robot cooperation. It is an opportunity to
share and enhance the Robotic & Industrial Complex Systems (RICS) research group with
the explored and developed material about the field. Therefore, this dissertation is focused
on analysing and enriching the usage of Multispectral cameras in this industry.

1.3 Dissertation Structure

This dissertation presents a fully integrated system for terrain classification and mapping.
It is organized into 6 chapters along with this section, starting from the state-of-the-art
review until the actual project implementation and it’s final statements and conclusions:

• Chapter 1: Introduction presents the project and main goals to achieve with terrain
classification and mapping, as well as multiple projects that motivated this thesis’
development;

• Chapter 2: State of the Art shows the UAV usage background around agricultural
sector and the multispectral imagery evolution throughout history, reaching nowadays
drones advantages in daily tasks;

• Chapter 3: Supporting Concepts enrols the reader with basic technology concepts
integrated in this project;

• Chapter 4: Proposed Framework describes the framework and introduces the infras-
tructures applied in the scope of this project;

• Chapter 5: Framework Implementation details the implementation steps;

• Chapter 6: Experimental Results includes the model parametrization and testing,
containing the output results, their validation and analysis;

• Chapter 7: Conclusions and Future Work sums up all the implemented strategy,
challenges, future developments and suggestions to improve the algorithms and
project ambitions;

• Appendix A: Rededge-M Imagery Sensor Sample of a YAML metadata file from
Rededge-M Imagery Sensor;

• Appendix B: Terrain Classification Results Tables including testing overall results.
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2.1 Challenges in Modern Agriculture

Nowadays, with environmental change, it becomes challenging for society to embrace
smarter ways for crop improvement or water and fertilizers control. Underdeveloped
countries are increasingly facing agricultural salinity and waterlogging problems due to
the lack of irrigation management. This same lack of water issues are starting to manifest
crop production limitations in developed countries [1].

According to David Tilman, it was studied that in approximately 30 years the popula-
tion will increase 35%, meaning that crops’ production should double [2]. Besides, growth
in demand for protein food is also a concern since the pace of production must overcome
the demographic growth (Figure 2.1).

Least developed
countries

Developing
countries

Developed
 countries

103,6%

15,3%

69,2%

35%

Population Growth

Crops Production

World Demand for Protein Food
100%

Figure 2.1: Agricultural needs due to population growth, in 2050. Adapted from [2].
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According to [2] agricultural nourishing issues can be mitigated or even eradicated by
taking the following 5 actions:

1. Stopping Agriculture’s climate footprint → Preventing deforestation when building
new farms;

2. Harvesting increase in the existing farmlands → Enhancing farms’ production by
adopting new technological systems capable to accurately adjust the use of fertilizers
and pesticides;

3. Ensure a greater efficiency of the resources → Agricultural practices using resources
capable to adjust according to the field characteristics and state of production;

4. Diet change → Since, only 55% of the crops’ calories are ingested by humans, whereas
the rest goes to cattle, biofuels and industrial products, it would be ideal to change
some population food habits. However, this is considered an almost impossible
measure to fulfill, which therefore leads to the adoption of nourishment crops for the
production of bio-fuels as a solution to enhance food availability;

5. Reducing the food waste → Minimizing the loss of food before consumption not
only in the developed countries where there is an avoidable excess of wasted food at
supermarkets, restaurants and residences, but also at the least developed countries
where the products loss due to transportation issues is still too high.

Regardless, food consumption still grows according to the associated population in-
crease, as well as urbanization considers people’s preference on moving from their rural
livelihoods to bigger urbanized cities. Both issues are correlated since urbanization limits
food production, which therefore leads to tropical forests’ destruction aiming to increase
the cultivable soil.

Agriculture is one of the main causes for global warming due to deforestation (which
secures biodiversity and natural carbon cycle) and greenhouse gas emission that represents
proportions even bigger than cars, trains or aircraft emissions [2]. It is critical to find a
solution for crops’ production increase within the limited land available and water usage
restrictions for environmental causes. Besides, reducing energy consumption is a necessity
as well, such as the continuous food production taking into account the inevitable climate
change impacts already caused [1].

On the other hand, along with the food production it is also very important to keep
the high nourishment levels; for instance, article [3] studies the nutritional deficiency at
China’s soil and population, derived from the lack of elements in food (Figure 2.2). As an
example, the eminent lack of iron (Fe) evidences itself in the anaemic population increase,
sub-clinical deficient levels of boron (B), copper (Cu), manganese (Mn), molybdenum
(Mo), zinc (Zn), selenium (Se) or even iodine (I) affects millions of people with goitre
disease.
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Figure 2.2: Proportions of micronutrient deficient soil in China. From [3].

2.1.1 Fruit’s Biofortification in Agriculture

In China, according to [3], 40% of the land is clearly deficient on Zn and Fe, therefore it
is critical to find plant nutritional strategies capable of solving these issues. In particular,
the biofortification approach is considered sustainable, low-cost and reveals to be efficient
increasing the breeding of crops’ micronutrients density and bioavailibility. Since China’s
nutritional regime mainly includes tube crops and vegetables, the enrichment of plants,
rice, wheat and maize is a priority.

Recently, there were also analysed the agricultural practices with micronutrients’ fertil-
izers. On the other hand, article [3] reviews two fertilizer types: soil and foliar application.
Despite the major nutritional effects in micronutrients’s density and plant’s bioavailability,
it also refers to the drawbacks around the large temporal and spatial recovery due to the
fixed plant-unavailable form issue behind soil application fertilizers, and to the inefficiency
of foliar-applied micronutrients since the plant roots are not usually reached.

Therefore, farming tends to improve with breeding programs’ implementation, field
drainage and a better fertilizer technological strategies usage. Indeed, it is critical to reduce
the over-fertilization and pesticides usage to lower the global greenhouse gas emission levels,
the degrading of water resources or even farmland and aquatic ecosystems impacts [1].

2.1.2 Alternative Application Systems to Prevent Over-Fertilization Issues in
Agriculture

Variable Rate Technology (VRT), Site-Specific Farming or Precision Agriculture are some
of the nomenclatures given to the optimal fertilization supplement that instead of being
a nutrients’ single rate based process (Constant Rate Technology), it will be able to
accordingly adjust itself to each location needs (Multiple Rate Technology) [4].

However, there are some apprehensions around the agricultural developed equipment,
currently capable to regulate the under/over-fertilization issue in the agricultural field.
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2.1.2.1 Implementation’s Economic Feasibility/Viability (Business Case)

The efficiency impacts of this nutrients non-waste process are remarkable, however the
article [4] reveals an interesting study of nitrogen fertilization on corn that answers to
the real question around VRT investment: the balanced trade-off between the revenues
and the costs of application involved. In order to proceed with this study, it also took
into account the Constant Rate Technology (CRT) and the Three Rate Technology (3RT)
study cases, which provided the ability to compare the net revenues between the three
technologies (VRT, CRT and 3RT).

Tests were also made in two distinct types of fields: one area with an average fertility
level homogeneous along the whole field, and another area less homogeneous. In other
words, whereas field A was spatially homogeneous, field B had a greater soil spatial
variability of fertility levels.

Simultaneously, it is a fact that the less fertilized is the field, the greater will be the
efficiency gain with the CRT method. However, VRT provides a proper nitrogen quantity
until a fertility Management Unit (MU) of 1.5m (minimum MU possible).

On the other hand, this area of production detailed analysis requires a certain invest-
ment in more complex equipment capable of handling smaller management unit area and
greater information volume to be analysed. In return, there is a cost decrease referred to
the less wasted fertilizer and yield increase.
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Figure 2.3: Efficiency gains (EG) and application costs (C). Graph adapted from [4].
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Although the positive results revealed in the article due to the studied methods’ effi-
ciency gains versus associated costs (Figure 2.3), the CRT method was more profitable
in small fields with an homogeneous fertility than VRT because when there is a field
with an average fertility high but with a low variability, it means that more areas require
the maximum possible rate of fertilizer which will therefore generate the best yield gain.
Furthermore, the revenues of implementing a VRT system under the previous conditions
wouldn’t be sufficient to cover the application costs.

Nevertheless, the multiple rate technology (VRT) was more profitable in most of the
scenarios in study, with larger net revenues than CRT or 3RT, and besides, environmental
benefits of VRT were notable as the variability of the studied area’s fertility increased
comparing to the CRT environmental impacts due to the excess of fertilizer in use.

2.2 Remote Sensing in Precision Agriculture

Precision Agriculture (PA) is a technology that has been gradually growing over the years,
beneficing farmers who need to regularly manage their agricultural fields. The application
of several sensors, strategically placed and distributed over the field was a step-forward into
the autonomous analysis of terrains, since it became possible to detect the field changes
and retrieve feasible information about its state of production nearly in real-time.

Correlation between multi-spectral imagery and geospatial information from a Global
Positioning System (GPS) or a Geographic Information System (GIS), was pivotal to
foster the evolution of this technology. It allowed mapping between the image data and
the geographical location of its acquisition (i.e. image georeferencing). However, only
with the appearance of remote sensors with enough quality and reasonable costs, arose the
opportunity to finally invest in the agricultural sector, since until then the only collected
imagery data used for this purpose mostly came from satellites, which had high-resolution,
but were an expensive approach, as well as limited accessibility.

Remote sensing applications in PA are also able to regularly provide farmers feasi-
ble information about their field, which can possibly reveal critical crop conditions still
non-detectable by human eye but technologically collected in advance through complex
equipment. The multispectral imagery output will indicate different index values at the
distinct bands, from which data analysis can reveal different meanings about the crops
growing state.

Therefore, remote sensing grant a better agricultural monitoring and the possibility to
take actions in a timely manner in order to accordingly adjust the undertaken procedures
and prevent associated losses [5].

The article [5] also refers the four different stages of PA process:

1. Data collection → sensing and monitoring information about Leaf Area Index (LAI),
surface soil properties, water stress, nitrogen content, crop height, ground biomass,
crop yield, weed extent, crop species, leaf chlorophyll content;
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2. Mapping → field variation, crop-type, tillage, crop residue and yield mapping;

3. Analysis and decision making → calculate the finest imagery acquisition frequency,
control the fertilizer quantities and other decision making procedures;

4. Performance management → intervention over the plans and established implemen-
tations to correct the farming methods under process [6].

According to [5], remote sensing could autonomously be responsible for the previously
mentioned first three PA steps, efficiently collecting large amounts of data from extent
agricultural fields within a short period of time.

Along with the expansion of multispectral technology and data fusion, there are various
monitoring applications arising that, not only take near real-time farm analysis as a priority,
but also motivate the environmental care within the agricultural sector.

2.2.1 The Application of Unmanned Aerial Systems in Precision Agriculture

At the moment, VRT combined with GPS is one of the most advanced technologies in
precision agriculture, but for its entirely success, as previously stated, complex equipment
and high quality sensors are required in order to capture detailed maps of the entire field
in study and capable to accurately detect possible plagues, diseases or malnutrition.

Unmanned aerial systems are the main competitors in the market against satellites’
imagery acquisition due to its accessibility efficiency (e.g. daily or even near real-time mon-
itoring), detailed resolution (e.g. centimetres) and reasonable costs involved. Unmanned
Aerial System(s) (UAS) empower privileged views over the crops and passiveness against
weather conditions (e.g. clouds or fog), unlike satellites or manned aircraft.

At the beginning, the exploring and investigation around UAV - vehicles without
on-board control - for photometric purposes, started by implementing kites, blimps and
balloons, but despite the lower costs involved, they were too big and therefore consid-
ered difficult platforms to maneuver. Accordingly, smaller vehicles became desirable, for
instance Remotely Piloted Vehicles (RPV) and Remotely Operated Aircraft (ROA).

a b

Figure 2.4: Radio-controlled UAV used in [7] to test the agility and flight constraints of
the vehicles in study: (a) L’Avion Jaune’s powered glider, (b) Pixie motorized parachute.
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In article [7], two different kinds of vehicles are mentioned for testing their manoeu-
vrability (figure 2.4), flight restrictions and abilities to accurately capture multispectral
imagery data from the crops. They were both incorporated with digital photographic
cameras capable to extract the visible and near-infrared bands from the spectral filters in
use.

Nevertheless, the previous study revealed that UAV require lower altitudes during flights
to achieve higher spatial resolutions, which means that there may be more instability and
vulnerability when acquiring different resolutions and distinct viewing angles between the
shooting images. This can possibly be corrected by warping the collected pictures based
on each georeferenced information.

In article [8] a ground classification of a certain field in Mexico was produced using a
fixed-wing aircraft to capture the imagery, using an incorporated frontal video camera at
the nose of the UAV and a digital camera at the aircraft’s left wing (Figure 2.5 (a)).

On the other hand, article [9] enhances this thesis with an historical research about
RC-Helicopters. [9] not only points to the photogrammetry problems due to the UAV
vibrations caused by the rotors, but also considers the GPS accuracy as a solution.

a b

Figure 2.5: (a) Fixed-wing aircraft (BAT 3 UAS), from [8]. (b) Remotely Controlled
Helicopters (RC-Helicopter) by Helicam and weControl, Switzerland, from [9].

Even so, unmanned helicopters are valuable covering small terrains and the costs
involved are even lower than aircraft investment.

Recently studies around UAV in PA were taken in the agronomic R&D plant of Syngenta
Crop Protection AG in Stein (Canton AG, Switzerland). The MultiSpectralMicroSensor
(MSMS) project was divided into two phases where the main goal was to research about
light-weight multispectral sensor’s prototype incorporated with two distinct UAV: firstly
with an autonomous mini-helicopter developed by weControl and then with a micro-UAV.

Both studies intended to capture the Red and Near-infrared (NIR) multispectral do-
mains of the grapevine in research and, after that, asses the field’s imagery processing,
from which was possible to match the Normalized Difference Vegetation Index (NDVI)
calculated values with the damaged leaves’ percentage.

11



CHAPTER 2. STATE OF THE ART

a b

Figure 2.6: (a) Helicopter based Mini-UAV by weControl (Zurich), from [10]. (b) Quad-
copter micro-UAV ’microdrones md4-200’, from [10].

The quadcopter in Figure 2.6 (b) was favoured in respect to the one represented in 2.6
(a), not only due to its lower weight and cost attributes, but also to its vertical take-off
and landing (VTOL) capability, giving a huge stability effect to the flight, which in turn
improves the quality of the captured images.

2.2.2 Multispectral Sensing

When it comes to multispectral sensing subject, it is important to be aware of the different
concepts around illumination in order to understand a few but very important details
about the terms in use, described in [11]:

• Irradiance → Refers to the light energy emitted into the surface area, per time unit.
Measured in watts per square meter (W/m2)

• Reflectance → It refers to values ranged between 0 and 1 to characterize the incident
light reflected by a surface. This fractionated value can be parametrized into distinct
variables such as the reflected light wavelength or even the incidence and reflection
angles.

• Radiance → It is a normalized value of the irradiance intensity according to a certain
solid angle, typically specified in steradians (sr) and accordingly variable with the
light’s propagating direction. Typically measured in W/m2/sr, but when related to
the spectral domain it may be measured in line with the wavelength W/m2/sr/μm.

According to [11], there are several ways to contactlessly acquire information about a cer-
tain object or scene, relying on the sunlit reflected light detected by electro-optical sensors
capable of measuring the different wavelengths within the visible spectrum: Panchromatic
band (i.e. grayscale) or colour imaging sensors (i.e. Red, Green and Blue (RGB)). Besides,
there are also thermal sensors, that instead of being light-based, they acquire information
relying on the body temperature emissions (i.e. Longwave Infrared (LWIR)).

Nevertheless, there has been an imaging evolution starting to spread its horizons into
new bands apart from the RGB and the grayscale domains, by adding for instance, NIR
and Short Wave Infrared (SWIR) bands which, when fully integrated and studied together
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may result in valuable information about characteristic object properties according to its
molecular composition, differently exposed through the electromagnetic spectrum.

Therefore, it is possible to achieve some conclusions from multispectral cameras’ ac-
quired images such as revealing the type of material from which it is composed or, at least,
distribute the objects in scene by groups, relying on their material classification properties.

However, in order to take full advantage of the available bands, multispectral imag-
ing gets through a spectral processing, also know as spectroscopy that encompasses the
measurement, analysis and finally the result’s interpretation, which can possibly reveal
valuable information about the scene in analysis, [11]. On the other hand, when it comes
to large scale areas, it is called imaging spectroscopy, as illustrated bellow in Figure 2.7.
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Figure 2.7: The concept of imaging spectroscopy. Illustration from [11].

Imaging spectroscopy retrieves some samples from the ground-based scene where each
pixel from the processed image corresponds to the reflectance measured value of the
exploited area. For example, in Figure 2.7 the graphs on the right represent different
spectral variances between the surfaces encountered in the scene, in this case: soil, water
and vegetation; from which it was possible to classify the type of terrain, [11].

Earlier, as illustrated in figure 2.7, multispectral imagery solely derived from satellites.
Article [12], for example, describes a study made in Mozambique from where the multispec-
tral imagery dataset in analysis was collected by two different satellites in order to evaluate
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the terrain conditions along the years. Figure 2.8 (a) represents Landsat 5 satellite from
which 1989 imagery was collected, and Figure 2.8 (b) shows Landsat 7 satellite that later
obtained the dataset from 2002 and 2005.

a b

Figure 2.8: Satellites used as multispectral imagery acquisition sensors in [12]. (a) Landsat
5, from [13] and (b) Landsat 7, from [14].

In this research example there were only used five of the seven available bands of the
spectral domain: Green-Band, Red-Band, Near-Infrared, Short Wave Infrared 1 (SWIR-1)
and Short Wave Infrared 2 (SWIR-2). However, although never used in [12], Landsat 7
could already provide information within the thermal band (band 6 � Spatial Resolution:
60 m/pixel), the panchromatic band of the electromagnetic spectrum (band 8 � Spatial
Resolution: 15 m/pixel) and the spectral Blue-Band (band 1), with a spatial resolution of
28.5 m/pixel, similarly to the ones in use.

Furthermore, article [15], also enhances the spaceborne sensor-based studies with new
spectral imagery researches about vegetation classification, which beyond the Landsat TM,
also studied other satellites’ datasets such as SPOT-XS, NOAA-AVHRR and IKONOS.
From this research there were obtained reasonable results about mapping vegetation species
based on the collected Vegetation Indices.

However, in [15], there were described certain sensors’ constraints requiring improve-
ments not only related to the limited spatial and spectral sensors’ resolution, but also to
the arising questions about the uniqueness of the reflectance spectral properties of a plant,
since apart from the specie, there are other variables due to their age, atmospheric and
soil growth conditions, topography or plant stresses, for instance.

On the other hand, in 1987, spectral imaging stepped into the hyperspectral domain
with the appearance of the first airborne imaging sensor released by NASA Jet Propulsion
Laboratory (JPL), the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). Whereas
the multispectral domain was limited between 3 to 10 wider bands, the expansion into the
hyperspectral domain, with hundreds of narrow available bands, significantly increased
the imagery sensors’ accuracy [16].
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The spectral complexity around the AVIRIS’s collected imagery opened up an opportu-
nity to distinguish different minerals solely based on the Reflectance Spectrum, since each
mineral has a different molecular constitution possible to detect by the distinct regions
where the mineral absorbs the energy, [17]. For instance, as described in article [15], it
was possible to distinguish some salt marsh species: Salicornia, Grindelia and Spartina.

Despite hyperspectral systems’ accuracy, they are still an expensive approach and
timely-consumer due to the high-resolution processing involved [11].

For that matter, according to [9], in 1980 the first helicopter for photogrammetric
purposes appeared, capable of reaching a maximum payload of 3 kg, which means that
by attaching cameras such as Rolleiflex SLX or Hasselblad MK 20 it became possible to
acquire some aerial imagery from the helicopter.

On the other hand, with the appearance of smaller aerial systems, such as the UAV, and
their continuous evolution into becoming increasingly lighter, it also brought the drawbacks
related to the vehicle’s possible payload, limited to approximately 20-30% of the system’s
total weight [10]. The physical attributes of the multispectral imagery sensors were also a
main factor to the continuous study around this science, which led to a natural adaptation
of these sensors and therefore cameras’ technological research led to their weight decrease.

The imagery sensors used in [8], a Canon EOS-350D and a Sony DSC-F828, were
coupled to the vehicles illustrated in figure 2.4 in order to be tested and compared with
some of the satellites previously mentioned within the multispectral domain. Despite being
simple digital cameras only collecting information from the visible spectrum, whereas
Canon camera’s CCD-matrix could split the light into three channels the RGB, Sony was
divided into four, adding the Cyan to the provided bands.

Even so, they had to be slightly modified by changing the band-pass filter in front of
the CCD-matrix, sensible to infrared radiation up to 900 nm, but changed by a high-pass
filter attached to the camera’s objective in order to narrow a new band between the 720
and 850 nm, which approximately represents the NIR band of the common satellite sensors,
only shifted by a mere 50 nm. This research improvement allowed to encompass the main
infrared bands reflected by vegetation and therefore proceed with studies around precision
agriculture [8].

In [10], lighter cameras were used, the mini-UAV helicopter was attached to a Sony
Smart Cam (NIR sensor) and a Canon EOS 20D (RGB sensor), but when testing the
micro-UAV, although limited to the Red a NIR bands, it was incorporated with the MSMS
sensor (total weight of 350 g).

Furthermore, both in [18] and [19] imagery data from a 6-band multispectral camera
(MCA-6, Tetracam, Inc., California, U.S.), with an image resolution of 1280 × 960 pixels, is
taken into consideration. Those sensors, with the band-set properly configured (according
to Table 2.1), are able to graphically illustrate vegetation indices.
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Filter Designation Band Name Filter Applications

490FS10-25 Blue

1. High penetration of water bodies - capable to distinguish soil and rock surfaces from vegetation. Useful to
detect cultural properties;
2. This band is sensitive to loss of chlorophyll, browning, ripening, senescing, and soil background effects;
3. Excellent predictor of grain yield.

550FS10-25 Green 1. This band is sensitive to water turbidity differences;
2. Useful at predicting chlorophyll content.

680FS10-25 Red 1. One of the main variables to calculate NDVI, from which is possible to detect changes in biomass, LAI soil
background, types of cultivation, canopy structure, nitrogen, moisture, and stress in plants.

720FS10-25 Red Edge

1. Describes the vegetation spectral reflectance curve between 690 nm and 740 nm - caused by the transition from
chlorophyll absorption of red wavelengths and near-infrared reflection due to the mesophyll cells in leaves which 
in healthy plants act like a mirror to NIR.
2. This band is sensitive to temporal variations in crop growth and vegetation stress.
3. Provides additional information about chlorophyll and nitrogen status of plants.

800FS20-25 NIR

1. One of the main variables to calculate NDVI, together with the Red band. It is also used for determining the
RDVI (related to the maximum absorption in the red caused by chlorophyll pigments and the maximum reflection 
in the infrared due to leaf cellular structure), MSAVI (developed to cancel soil reflectance), SARVI (minimizes 
both canopy background and atmospheric effects).
2. Variable to calculte various plant pigment ratios such as: Pigment Specific Simple ratio Chl (PSSR), Pigment
Specific Normalized Difference (PSND) and Structure-Insensitive Pigment Index (SIPI) - These ratios can be 
related to vegetation stress conditions.

900FS20-25 NIR
1. This is the maximum peak of the NIR spectrum. It can reveal critical information about the crop's type/growth
stage.
2. Useful for computing crop moisture sensitive index.

Table 2.1: MCA-6, Tetracam, Inc., California, USA multispectral sensor band-set applica-
tions. Adapted from [20].

Moreover, the canopy reflectance within each band, from both visible and infrared
region, are highly considered to describe the vitality of a plant, as illustrated in figure 2.9.

Figure 2.9: Reflectance spectrum of a typical green leaf. Illustration from [21].

In essence, as described in Table 2.1 and illustrated in Figure 2.9, there is much
information to be extracted from the multispectral range of available bands, at each
band’s individual level and, above all, the acquired data fusion and its further processing
can be highly profitable to the agricultural sector, by giving feasible updates about the
crops’ state of growth, plant stress or vegetation quality.

2.2.2.1 Index Fusion

Article [22] is an overview about a project centralized in different existing vegetation
indices studied, such as NDVI, RDVI, SAVI, MSR, MSAVI, TVI, MCARI; a diverse set
of reflectance graphical leaf area index (LAI) indicators.
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Green LAI is a very helpful variable for precision agriculture since it returns the green
leaf area according to the ground surface area. From this information it is possible to
make an evaluation about the foliage cover in a certain surface from which physiologists
are able to acquire some results and make a crop growth and yield prediction, providing a
considerable overview about the field’s productivity.

Furthermore, it is also interesting to understand the biophysical exchanges between the
vegetation and the atmosphere (CO2 exchange, plant transpiration), as well as the LAI
obtained only based on the plants’ pigment contents (e.g. chlorophyll).

This study encouraged many researchers into the discovery of new algorithms and
different techniques not only to return the canopy multispectral reflectance index from
large agriculture fields, but also to deepen the spectral fusion analysis. It led to a correlation
discovery between LAI and other atmospheric factors, such as the shadows or soil brightness
due to sunlit factors, as well as the spectral reflectance indices’ investigation to acquire a
lot of information from the fields productivity and crops’ health state. It is important to
consider that there is still no index capable of collecting only the information about one
specific variable of interest or filtering the others reflectance influence.

Rather than retrieving each variable information such as the vegetation pigment content,
getting the structural geometry of a plant, or canopy architecture; the indices were used to
capture some natural leaf process results and optimize them to assess a certain purpose.

However, beyond the fact that canopy reflectance manifests a clear influence related
to the structural (e.g. LAI), and biochemical properties such as chlorophyll, in the visible
and near-infrared (NIR → 800 nm) bands, it also presents similar effects on the green
and red reflectance spectral region (670 nm). These fusion effects given rise to techniques
capable of filtering the chlorophyll properties from the LAI content influence, on the other
hand, there were no studies referring to decoupling the LAI reflectance response from the
chlorophyll’s effect. The estimation of LAI without chlorophyll interference presents issues
not only due to the saturation level reached between 2 and 5 but also because there isn’t
a unique relationship found between LAI and vegetation index of choice. For this reason,
the various vegetation indices were analysed in order to detect which one provided the
best results accordingly to LAI and which ones were less affected by the external effects
such as atmospheric conditions, spectral reflectance of the canopy, illumination geometry
or namely soil optical properties.

The Normalized Difference Vegetation Index (NDVI), equation 2.1, is the most well-
known and used reflectance index: “It is based on the contrast between the maximum
absorption in the red due to chlorophyll pigments and the maximum reflection in the
infrared caused by leaf cellular structure.” [22].

NDV I =
NIR − RED

NIR + RED
(2.1)

Equation 2.1: NDVI equation.
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Although NDVI is one of the most used indices, it is mentioned that it saturates
in dense multilayered canopy and also that it presents non-linear shapes in relation to
biophysical parameters (eg.: green LAI). For that reason, there were improved new
algorithms such as the Renormalized Difference Vegetation Index (RDVI), the Enhanced
Normalized Difference Vegetation Index (ENDVI) and the Modified Simple Ratio (MSR)
in order to linearise it due to the vegetation biophysical variables.

ENDV I =
(NIR + GREEN) − 2 ∗ BLUE

(NIR + GREEN) + 2 ∗ BLUE
(2.2)

Equation 2.2: ENDVI is an improvement of NDVI where red and green are used as the
reflective channels and blue as the absorption channel.

RDV I =
NIR − RED√
NIR + RED

(2.3)

Equation 2.3: RDVI is the combination between DVI (NIR-RED) and NDVI, for high and
low LAI values [22].

MSR =
NIR
RED − 1√
NIR
RED + 1

(2.4)

Equation 2.4: Combination with Simple Ratio (SR): NIR/RED; Presents more Linear
effects due to Vegetation Parameters [22].

There were also Soil-Adjusted Vegetation Index (SAVI) and Modified Soil-Adjusted
Vegetation Index (MSAVI) algorithms created to determine soil optical properties with
the minimum background effects.

SAV I = (1 + L)
NIR − RED

NIR + RED + L
(2.5)

Equation 2.5: L: Vegetation density Factor; L=0.5 (Suggested by Huete) [22].

MSAVI algorithm returned an alternative to the L factor definition, by generating its
own adjustment to vegetation index; Besides that, MSAVI presented the best LAI results
since it was the less affected by the canopy parameters variation as well as the soil spectral
properties, even in dense canopies.

MSAV I =
1
2

[
2NIR + 1 −

√
(2NIR + 1)2 − 8(NIR − RED)

]
(2.6)

Furthermore, it was also obtained a red band correction (Rrb) effect by the blue channel
incorporation in order to minimize the atmospheric induced variation in NDVI, considering
γ = 1 [22]:
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Rrb = Rr − γ (Rb − Rr) (2.7)

The latter led into a SAVI variation, independent from the canopy background and
the atmospheric effects:

SARV I =
(1 + L)(NIR − Rrb)

NIR + Rrb + L
(2.8)

Equation 2.8: Soil and Atmospherically Resistant Vegetation Index [22].

Regardless the already existent LAI formulas, the research in [22] also led into new
vegetation indices, by joining the green (550 nm) and the red-edge (RE, the near-infrared
rising slope approximately between 700 and 750 nm) spectral regions. Beyond the dis-
covered Chlorophyll Absorption Ratio Index (CARI) function, developed to calculate the
absorption depth of chlorophyll in the soil, Modified Chlorophyll Absorption Ratio Index
(MCARI) variation was taken into account in order to simplify the calculus involved, by
setting the LAI, chlorophyll and chlorophyll–LAI into fixed values.

MCARI =
[
(RE − RED) − 0.2(RE − GREEN)

] RE

RED
(2.9)

Equation 2.9: Considering LAI(67%), chlorophyll(27%) and chlorophyll–LAI(13%)

Similarly, there is an equation to measure the leaf pigments’ absorbed energy based on
a band’s triangle between green, red and infrared regions:

TV I = 0.5
[
120(RE − GREEN) − 200(RED − GREEN)

]
(2.10)

Equation 2.10: Triangular Vegetation Index (TVI)

TVI not only increases according to the rise of chlorophyll absorption, detected by
the Red reflectance decrease, or even with high quantities of leaf tissue, represented by a
near-infrared reflectance decrease. Furthermore, it is important to notice that a loss of
reflectance within the green region may be caused by chlorophyll concentration increase.

Nevertheless, TVI and MCARI can be truly useful within vegetation analysis not only
for being less influenced according to chlorophyll but also for its sensitivity increase of
the reflectance within the green band. Besides, less influence from atmospheric or soil
conditions is still an asset.

Finally, article [22] also suggests two newer versions for MCARI and another two
for TVI. MCARI variations are new alternatives capable of reducing the effects caused by
chlorophyll and instead increase the sensitivity to LAI changes, such as:

MCARI1 = 1.2
[
2.5(NIR − RED) − 1.3(NIR − GREEN)

]
(2.11)
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On the other hand, TVI alternatives, in order to improve LAI influence while filtering
changes at a pigment level were slightly modified within the infrared variables of influence:

MTV I1 = 1.2
[
1.2(NIR − GREEN) − 2.5(RED − GREEN)

]
(2.12)

Moreover, there were also developed another two formulas’ variations from 2.11 and 2.12,
through a new factor capable of adjusting soil influencing effects:

MCARI2 =
1.5

[
2.5(NIR − RED) − 1.3(NIR − GREEN)

]
√

(2NIR + 1)2 − (6NIR − 5
√

RED) − 0.5
(2.13)

MTV I2 =
1.5

[
1.2(NIR − GREEN) − 2.5(RED − GREEN)

]
√

(2NIR + 1)2 − (6NIR − 5
√

RED) − 0.5
(2.14)

According to the results article [22], 2.13 and 2.14 led into an overestimation of LAI
due to this significant NIR reflectance influence.

In conclusion, studies along index fusion science remains in continuous improvement and
under development since multispectral domain is still a source of research for vegetation
analysis, bringing many benefits into precision agriculture. Nevertheless, it is highly
required a background within imaging processing for multispectral remote sensing, since
merging the information altogether from imagery sensors and making data fusion visually
presented is also a great need.

2.3 Image Processing and Aerial Mapping in PA

Along with the advancement of technology and, particularly, the insertion of UAS in order
to support the continuous growth of precision agriculture, it was crucial to gather a set of
procedures capable of processing and analysing all the collected information by imagery
remote sensing.

Therefore, it becomes necessary to acquire some practices to image processing, including
methods to calibrate all the systems in use, further line-shift and vignetting correction, the
assurance that all the collected bands meet the same geolocation among identical features
(band-to-band registration), atmospheric adjustments and frame mosaicking [5].

Despite the existing manual procedures, the development of a sufficiently robust and
autonomous system capable of managing and analysing all the information was highly
considered. Besides, efficiently sending the results to farm growers and field specialists
was also an improvement for possible lack of nutrients’ predictions, plagues and diseases
detection or crops’ state of production analysis, near in real-time.

For this purpose, after imagery correcting methods within the area covered by the UAV,
it is relevant to make a correlation between the multispectral frames taken, by joining
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them, using a software capable of merging the imagery collection into a wide plan of the
area in study, based on georeferenced positions.

Furthermore, along with the orthomosaics created for large sections of fields, it is
possible to produce layered maps, conducting farmers into a specified aerial view of their
crops’ production by tags and labels selected to cluster the data returned from the UAV’s
flight over the field.

In line with [6], UAV’ autonomous navigation could also be supported by enhancing
the georeferenced orthomosaic maps with labelled areas according to weather conditions,
soil irregularities and vegetation density, by fusing these probabilistic data into a semantic
cost map.

Accordingly, the following sections describe some of the existing imagery processing
techniques for aerial mapping.

2.3.1 Image Stitching and Mosaicking

The insertion of UAV in precision agriculture due to its economical feasibility, accuracy
and high resolution at imagery acquisition was certainly a step-forward within agriculture
development.

Despite small UAV’ low altitude flights, up to approximately 100 m, providing limited
fields of view, it is possible to acquire thousands of images from the over flown area and
therefore build a unified mosaic from the field, by stitching the similar features from each
frame, in order to make a wider view of the covered area [23].

For this purpose, Pix4Dmapper, Photoscan, Aerial Photo Survey (APS) are examples
of some of the most well-known software for imagery processing collected by UAV. In [24]
it is studied the mosaicking performance for each of these software.

Pix4Dmapper, developed by Pix4D, uses techniques based on aerial triangulation
and Block Bundle Adjustment (BBA) in order to autonomously calculate the positions
and orientation of each image. Then, accordingly to the obtained 3D point cloud, it is
possible to connect those points and build a Digital Surface Model (DSM) of the target.
The created mosaic is built by combining the imagery taken with DSM [24], (Recommends:
75% frontal and 60% side overlap [25]). Although Pix4D reference in [25] is applied to
version 2013a, currently, the last Pix4Dmapper version is enhanced with Digital Terrain
Model (DTM), volume calculation, topographic contour lines, thermography maps detailed
to each pixel’s temperature values and 3D texture model functionalities [26].

On the other hand, there is also APS, a software built by Menci Software, where
mosaicking is autonomously originated from DTM, DSM, point cloud, orthomosaics and
also topographic contour lines abilities. In addition, it is enhanced with a manual edition
panel for later required corrections (Recommends: 80% frontal and 70% side overlap [24]).

Last but not least, it was also studied Photoscan performance, which is a software,
developed by Agisoft, based on photo triangulation also capable of generating the covered
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area point cloud, DTM, DSM and orthomosaic from multispectral imagery processing
(Recommends: 80% frontal and 60% side overlap [24]).

a b

c

Figure 2.10: Software orthomosaicking results by: (a) Photoscan, (b) APS and (c)
Pix4Dmapper. Illustrations from [24].

Although the positive results from the three mosaicking software, Photoscan and
Pix4Dmapper presented good rectification of the borders into the correct positions with a
lower Mean Squared Error (MSE) than APS system. However, the APS tool providing a
later processing ability for imagery correction and border alignments is highly considered,
once the post-processing may present a final result visually better. Another conclusion is
that a minimum of four overlapped images are necessary to acquire an accurate orthomosaic
of the field, therefore, the overflown area should encompass an extra margin around the
perimeter in study.

In line with [23], block bundle adjustment (BBA) is the most conventional mosaicking
technique in the commercial software developed. It is also known as Structure From
Motion (SfM), a computer vision technique based on mathematical methods capable of
minimizing the misalignment errors regarding the analysed topography of the terrain.

BBA method is mainly composed by four steps:

1. Initial camera model based on GPS and Inertial Measurement Unit (IMU) → 3D scene
points’ transformation into the corresponding bidimensional image point, reasoned
by collinearity equations [23];
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2. Pairwise image registration → Correspondence between the similarity points of the
overlapped images (tie points) and followed by the point coordinates’ estimation (in
common) within the tridimensional scene (xi,yi,zi);

3. Scene Point Projection → Reprojection of the estimated scene point into the previ-
ously considered overlapped images. Determination of the uncertainty error due to
the misalignment between the previously calculated tie points and the new projected
coordinates;

4. Minimization of Linearised Projection Error → Mathematical algorithms to minimize
the non-linear and linear problems. LM algorithm is the most popular to minimize
the linear issues.

This process will be continuously iterated, by repeating the last two steps (3. and
4.), until the error (Ef,g,i) no longer decreases. However, accordingly to [23], although
the BBA mosaicking technique is the most commonly used, it is concluded that despite
being a process achievable for areas covered by few images, it is clearly not feasible for
wider fields, where thousands of images need to be processed. The latter could mean a
search space of N=21000 dimensions for 1000 images, equation 2.15.

N = 6p + 3q (2.15)

Equation 2.15: Number of search space dimensions, where p is the number of images and
q is the number of scene points (q=5000 is the minimum to obtain sufficiently accurate
results with 5 scene points in each image) [23].

Therefore, the processing memory used is still too high and computational time con-
sumed is not viable (varying according to O(n3), 2.11) [23].
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Figure 2.11: Big O notation. Adapted from [27].
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This is why a faster and robust system was developed in [23], a BBA based algorithm
improvement, where the first two steps of the new algorithm remain the same. On the
other hand, the last two diverge from the previously mentioned in BBA method. The
mosaicking process for “Quick Adjust” Algorithm consists in:

1. Initial camera model based on GPS and IMU;

2. Pairwise image registration;

3. Tie Point Back Projection (Intersection) → Triangulation method between the tie
points determined within the overlapped images (i.e. intersection) by making a
perpendicular back projection into the scene in study and estimating the coordinates
of the previously calculated scene point (in step 1). The mean point between the
determined coordinates represents the back projection estimate scene point (xi,yi,zi)).

4. Camera Model Estimation (Resection) → Algorithms to find the camera model that
minimizes the total back projection error through means of nonlinear least squares.

Similarly, this algorithm is also continuously iterated between the last two steps ac-
cording to the new determined camera models until the total back projection error stops
decreasing. It is then possible to create an accurate mosaic from surface model projected
from the calculated scene points and their correlation with camera models.

Even though the third step of the algorithm is a very optimistic description of reality,
since some of the tie points back projection may not converge in the nearby. In [27], this
problem is solved with an estimate for the terrain elevation based on the weighted average
between the z coordinate of the calculated back projection estimate and the scene point
estimated in the previous iteration. This surface elevation estimation will also lead into a
faster convergence of the algorithm.

In contrast to BBA algorithm, the "Quick Adjust" developed method is, not only
capable of processing more images for wider fields, but also providing much faster results
(varying according to O(n) time, 2.11).

N = 6p (2.16)

Equation 2.16: Number of search space dimensions, where p is the number of images [23].

Nevertheless, N, in equation 2.16, is a 6-dimensional space of p independent searches,
meaning that an 1000 imagery dataset in "Quick Adjust" algorithm is much faster than
in BBA, by reaching a time rate of 14 s per image [23].

In conclusion, imagery mosaicking enables building a field’s reconstructed view. Fur-
ther processing within the covered area mosaic, such as clustering the data into layered
maps, to visually present unified information about the forecast field growth state of pro-
duction is highly considered and a huge benefit for Precision Agriculture’s evolution and
an improvement within the management of wider cropping fields.
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Supporting Concepts

3.1 Frameworks and Computer Vision

For this purpose, it will be developed an open-source framework in Robot Operating
System (ROS), precisely created for robotics applications, where the main code will be
developed in C++, but also supported by some Python scripts as a bridge between the
Micasense sensor and the framework in development for the imagery acquisition, processing
and analysis.

The processing of the images in study will also be supported by OpenCV library which
stores a bunch of open-source methods already developed by the community.

3.1.1 ROS

ROS is an open-source robot operating system. It is a framework that raised from other
software prototypes created for particular robotic case studies or experiences with specific
design goals. Ideally it should be a peer-to-peer, tools-based, multi-lingual, thin and
free open-source framework. It was gradually built from all the challenges faced when
developing several different projects of service robots. This framework concept, is not
yet a reality, however it is important to be aware of its influence criteria through ROS’
implementation, [28].

A peer-to-peer topology is required specially on robots where many messages are routed
through a single wireless link which results in overflow requests colliding with each other.
This issue requires a synchronization mechanism known in ROS as the named services
or master module, responsible for the management of the bandwidth utilization, robots’
stability and system’s complexity.

Due to the whole existing robotics’ software projects it is reasonable the re-utilization
of drivers and shared algorithms. However, it is a fact that sometimes much of this code is
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so entangled with the middleware that even extracting a single function from it can become
a real “nightmare”, not mentioning that many programmers have a certain programming
language preference, which results in the great need to create a set of libraries capable
to support a cross-language development interface where inputs are serialized through
small executables and deserialized through those complex “black boxes” already prepared
to analyse and process this kind of data with a neutral language, holding the ability to
interpret mixed and matched languages like C++, Python, Octave and LISP.

ROS requires a certain knowledge of concepts based on communication nodes (software
modules). There are two well-known interaction mechanisms based on messages (Asyn-
chronous communication) or services (Synchronous communication). Regarding to the
first one, nodes are known as publishers when they advertise some structured message to
a certain topic (the link between two nodes communication). The node who listens to that
certain kind of data is known as the subscriber. However, if it is required a request/re-
sponse architecture, the service-based mechanism is the most desirable one because of its
synchronous response dependent actions.

Furthermore, ROS framework presents an efficient debugging method, a great exper-
imental procedure based on logged sensor data or played back launch processes through
different graphic structures that can be visualized and monitored with some specific ROS
tools. At last but not least, it is also important to be aware of the ROS package reposito-
ries available, providing cross-package libraries that empower a collaborative development
between researchers.

ROS is still not the perfect solution in robotics, this infrastructure presents many ad-
vantages compared to other well-known frameworks, providing all the tools to perform the
whole planning, reasoning, perception, or control structure required to build large robotic
systems. In particular, ROS presents accurate modules for this work implementation and,
in turn, will grant the empowering of all the research around the current study.

3.1.2 OpenCV Library

OpenCV is an Open Source Computer Vision Library, originally introduced by Intel for
image and video analysis. Its major change took place in 2009, 10 years later from its
original launch, with the transition to a C++ interface. It was a remarkable advancement
for vision research due to this vision knowledge dissemination, where many programmers
and researchers were encouraged to share their programming functions and optimized
code, [29].

Due to the OpenCV expansion, it was crucial to find a certain interoperable program-
ming structure, in common for all, starting with a proper namespace (i.e., cv::); It mainly
works with MAT objects and each image is created as a cv::MAT, a structure holding a
matrix of pixel values where each cell automatically points to an allocated memory block
containing all the image data.

Since there are several algorithms and image processing techniques available in OpenCV
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it is very useful to analyse the object in study through a histogram to visualize the whole
picture’s colors distribution through a simple graph. This image analysis provides good
information about its range of intensity levels, such as brightness (higher pixels’ intensity
in a certain range of values), contrast (with spread pixels’ intensity through the whole
range of values), or even to evaluate the picture’s quality with a histogram equalization
(a flat range of intensity levels).

Beyond this, in image processing, it is also possible to enhance some details of interest,
remove outlier noise, detect lines and corners, soften images; by combining several tech-
niques such as mean shift algorithm, erosion, dilation, blur and apply different filters like
the Laplacian, Gaussian and Sobel. However, it is important to notice that sometimes
that kind of operations can affect crucial details or even discard them from the pictures
like brain tumours, for instance, in medical issues.

Furthermore, the OpenCV affords a diverse set of solutions for image manipulation,
making use of image descriptive files holding its most significant features, allowing to
visually track some points of interest by analysing each frame of an images’ sequence
(video) or even make a foreground extraction by updating the picture’s background with
the pixels that, on average, match with the other frames. The library also enables a 3D
reconstruction with the use of, at least, two cameras by matching each 2D plane projections,
relating a certain image point of one camera with the corresponding line on the other’s
view.

In conclusion, OpenCV library affirms its position in computer vision research, not
only for being an open-source tool easily accessed by students, scholars and researchers
but also due to the numerous shared algorithms for image processing. Therefore, OpenCV
library will be an accurate/suitable solution for some of the imagery manipulation during
this implementation and an important tool to improve the knowledge growth around this
science.
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Proposed Framework

The integration of new technologies and autonomous systems for precision agriculture is one
of this proposed model’s main goals. Particularly, autonomous drones are meant to overfly
and analyse several properties and nourishment levels of the crops in order to maintain
the farmers aware of their farming state of production, close to real time. Accordingly,
this project is divided into three distinct parts: autonomous navigation, bi-dimensional
processing and 3D analysis.

4.1 Model Overview

The UAV starts the whole process with a zigzag scanning over the crops (Figure 4.1).
During this stage, a multispectral camera captures several images of the farm field that
will be the basis to compute spectral known indices important for the assertion of the
crops’ growth and health.

Figure 4.1: Aerial vehicle’s navigation plan.

The proposed framework will also engage the whole field mapping with a terrain
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classification, based on all the information acquired from the images captured by the multi-
spectral camera. This underlying feature will be a main key to enhance an autonomous
robots cooperation, regardless their type of terrain. For instance, giving aerial cooperating
vehicles the ability to plan paths avoiding possible treetops during a flight, or even to
enlarge the terrestrial robot’s limited vision to a privileged mapped Field of View (FOV)
of an aerial robot.

This particular document is focused on 2D imagery acquisition: the full required pre-
processing, such as the camera calibration, the datasets preparation and the software
analysis of the crops in study, as illustrated in figure 4.2.
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Figure 4.2: 2D Processing general work proposed structure.

After imagery calibration and alignment corrections, several scene image bands will be
fused and combined, resulting some spectral indices for precision agriculture, chapter 2.2.2.1.
Therefore, much information can be induced about the fields’ state of production or
nutritional levels.

It is also relevant to mention the ability to use spectral indices on multispectral devices
to capture specific ground properties. After that, it is possible to draw some conclusions
about terrain classification. This is extremely useful around the autonomous systems’ field
of study, where robots can cooperate with each other in several different ways.

In this case, mapping the agricultural field will, not only help the UAV self-driving
control, but also cooperate with other aerial vehicles, avoiding collisions with obstacles
like trees during a flight and enlarging a terrestrial robot’s limited vision.

Therefore, the aerial robot’s privileged field of view allows to capture an imagery
dataset and process information capable of distinguishing water from vegetation, rocky
terrains and sandy soils.

This terrain classification may become decisive for a robot to choose a certain route
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instead of another, avoiding the unmanned vehicle to spend resources exploring an area
not suitable to its characteristics and discard blocked routes in time.

Figure 4.3: Cooperation between autonomous systems; Terrestrial robot (green dot), goal
point location (red cross), blocked route (dashed line), the chosen route path (yellow line),
robots’ FOVs (blue areas).

Figure 4.3 presents an example of a cooperation between the UAV and a terrestrial
robot (marked with the green dot). The blue areas illustrate the respective vehicles’ fields
of view where the aerial sight is much wider than the terrestrial perspective.

The UAV will then be able to stitch all the captured images into a map and help the
terrestrial robot deciding the best possible route (yellow line) to its destination (marked
with the red cross). This cooperation would avoid blocked routes (e.g. red dashed line),
saving the terrestrial vehicle resources and making it faster.

In this framework, the resulting images’ spectral values need to be previously parametrized
and, then, mapped into several grid map’s occupancy layers, representing different types
of terrain, figure 4.4.
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Figure 4.4: Orthophoto georeferenced layers classifying the terrains.

4.2 Hardware Infrastructures

4.2.1 Unmanned Aerical Vehicle

The aerial vehicle in use (see figure 4.5) is a six-rotor UAV, capable of landing softly, even
in unexpected conditions such as a rotor failure during a flight. Under the mentioned
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circumstance, despite losing it’s orientation control (i.e. yaw), it is still able to auto-
stabilize and land safely.

Figure 4.5: Unmanned aerial vehicle infrastructure.

Some components were added to the UAV:

• Pixhawk 2: responsible for the low-level operation’s control. It is directly connected to
a GPS sensor (named here+) and an IMU for positioning and orientation information.
It is powered by a battery embedded with the infrastructure and communicates with
a computer via MAVlink protocol. It is also connected to an UHF receiver for motors
control;

• PC: a computer responsible for the software operations in computer vision and
communicates via Ethernet or Wi-fi;

• ARRIS ZHAOYUN Gimbal: It is mounted under the UAV and it is where the
RedEdge-M camera is placed in order to keep it stabilized and dampen flight vibra-
tions.

The diagram in figure 4.6 illustrates the hardware layers’ communication with the UAV:

Figure 4.6: UAV hardware layer’s communication’s achictecture.
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4.2.2 Micasense Multispectral Camera

The imagery dataset is captured by a Micasense’s Rededge-M camera. The multispectral
sensor has 5 different lenses, each one absorbs a distinct colour band.

This particular sensor captures the Blue (1), Green (2) and Red (3) bands from the
visible spectrum, as well as the NIR (4) and Red-Edge (RE) (5) spectral bands (Figure 4.7
and Table 4.1).

Figure 4.7: Micasense spectrum transitivity curves of the colour bands.

Band Name Band Number Center Wavelength (nm) Bandwidth FWHM (nm)

Blue 1 475 20

Green 2 560 20

Red 3 668 10

Red Edge 5 717 10

NIR 4 840 40

Table 4.1: Center wavelength and bandwidth of each Micasense colour band.

This camera kit also integrates a RedEdge Downwelling Light Sensor (DLS) and a
MicaSense’s Calibrated Reflectance Panel (CRP). They are meant to cooperate with each
other in order to make a post-processing reflectance calibration on the illumination changes
during the flight.

The DLS is a 5-band incident light sensor placed on top of the aircraft, pointing forward
to the flight’s direction. The vehicle must be as parallel as possible to the horizon (roll and
pitch angles approximately zero), maintaining a clear view of the sky during the mission.
It is responsible to capture and store the amount of light information embedded in each
TIFF image metadata.

Although the continuous improvements around the RedEdge DLS module, it is still
not a fully independent sensor and, for this reason it is recommended to co-work with a
calibration panel. Therefore, it is important to capture an image of the panel before and
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after each mission, to ensure the camera and the DLS precise calibrations for shadows,
reflection or light adjustments.

Micasense’s RedEdge-M comes with a full bunch of integration options such as Ethernet
and Wi-fi (HTTP API) or Serial (MAVLink Protocol) communication, Real Time Kine-
matic (RTK), and Pulse Width Modulation/General-Purpose Input/Output (PWM/G-
PIO) trigger, [30]. It should also be integrated with a GPS module in order to receive each
image location with the GPS data (latitude, longitude, altitude, date/time) and attitude
data (pitch, roll and yaw angles).

A here+ GPS Receiver is used, following the default camera integration proposed by
Micasense which includes both GPS and DLS sensors (Figure 4.8).

Figure 4.8: Micasense integration between Rededge-M, GPS module and DLS sensor.

The RedEdge-M sensor is ideal for the proposed project because of its lightness and
dimension. It only weights 150 g and its size (12.1 cm x 6.6 cm x 4.6 cm) is also accurate
for the mission, since the camera fits to the gimbal (Figure 4.9 (b)) incorporated under
the UAV. The gimbal will be very important not only for imagery stabilization, but also
to ensure a Nadir direction (camera directly pointing to the horizontal coordinates of the
ground surface, even over sloped terrains).

Every capture is automatically stored in an SD Card, and the Raw image format can be
specified along with several other specifications through the camera’s web page on Wi-Fi
or Ethernet mode. Each capture results in 5 different DNG (12-Bit) or TIFF (16-Bit) files
according to the setting option. A 12-bit file format only means 1.8 MB per image whereas
a 16-bit represents 2.5 MB for each of the 5 images, even though, the second format is still
more recommended due to its higher software compatibility.

Besides, all the information is stored along with each file’s metadata, which is possible
to approach with any Application Programming Interface (API) like exiftool, for example.
Micasense imagery has a 1280 × 960 px resolution, with an aspect ratio of 4:3. According
to the Rededge-M documentation [31], the sensor lens have an Horizontal Field of View
(HFOV) of 47.2o, with a focal length of 5.5 mm and it is registered that the sensor has a
Ground Sample Distance of 8.2 cm/px at a 120 m (400ft) altitude Above Ground Level
(AGL).
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a b

Figure 4.9: UAV infrastructure: (a) Model infrastructure of the Micasense camera integra-
tion with the UAV. (b) ARRIS ZHAOYUN pro 3-Axis Brushless Gimbal 32bit Version.

Illustration 4.9 refers to the UAV infrastructure integration between the modules
required to grant the mission performance. It is possible to observe the Rededge-M placed
at the gimbal: its base is horizontally integrated with the UAV, which parallelism is granted
by the yellow bubble level placed over the gimbal. On top of the aircraft, there is an opened
hole at the UAV protection helmet to allow the solar rays reception by the DLS sensor.
Therefore, it is also possible to observe that the integrated modules do not interfere with
the UAV ergonomics and well functioning.

The development of new solutions with cameras and image processing always involve
certain methodologies and imagery preparation. Before developing the framework, it was
critical to be aware of the required calibration procedures, output file types and metadata
formats presented by the images captured by the sensor involved (i.e., Rededge-M camera).

4.2.3 Imagery Type and Metadata

In computer vision, imagery types and formats are keypoints that need to be clearly
interconnected to ensure an accurate post-processing. In this case, the image formats from
the Micasense sensor are .TIFF files, which is an extension that uses a lossless compression.
Images can be edited and re-saved without losing any or almost any quality.

The Micasense images metadata follows a certain structure in common: physical
information about the file size, source, type, resolution, compression; and hardware speci-
fications about the actual sensor in use, such as the focal length size, hyperfocal distance,
the sensor’s model or field of view value A.1.

Furthermore, the GPS sensor provides the date/time, attitude, positioning and orienta-
tion data of the image capturing moment. It also brings DLS information, where shadows
or weather conditions influence specific Micasense sensor’s physics variables. The earth
surface information is obtained by the solar radiance reflected on the ground, without a
physical contact. This data is analysed according to the irradiance (E), radiance (L) and
reflectance (ρ), previously mentioned in 2.2.2.
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4.2.4 Calibration Procedure

Despite the RedEdge camera capturing raw images from the fields in study, it is important
to clarify that the raw pixel values from a picture do not entirely correspond to the absolute
spectral radiance or the reflectance. Those values need to be previously computed for the
procedures in precision agriculture, [33]. Therefore, it is required a pre-calibration of each
image before it’s usage.

4.2.4.1 Radiance Conversion

The Micasense radiometric calibration model is prepared to correct imagery according to
the sensor properties, such as RedEdge-M sensitivity, black-level and gain, as well as to
exposure settings and lens vignette effects.

Besides, calibration coefficients are scaled to only process input values of 1.0 max.
Then, both the pixel and black-level values must be previously normalized by the image
bit-depth (divided by 2N , for N-bit images), in order to fit into a [0..1] range, [34].

Table 4.2: Micasense radiometric calibration model.

As stated in table 4.2, some of the parameters are directly and indirectly related to
values from the metadata file. The indirectly related values, like the black-level (pBL),
gain (g) or correction factor (k), that result from variables defined at the file. However,
their not determined within the same file and, for that reason, must be computed:
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pBL =
BlackLevel

65536
(4.1)

Equation 4.1: Black-level pixel value normalized according to 16-bit images.

g =
ISOSpeed

100
(4.2)

Equation 4.2: Gain’s value between [0..1] from the ISOSpeed, with a base ISO of 100.0.

r =
√

(x − cx)2 + (y − cy)2 (4.3)

k = 1 + k0 × r + k1 × r2 + k2 × r3 + k3 × r4 + k4 × r5 + k5 × r6 (4.4)

.

Equation 4.4: Polynomial equation due to the computed distance from the image centre
(r), 4.3

The camera manufacturer’s workflow to convert a raw image values (i.e. pixels values)
into radiance is as follows, [34]:

1. Accounting the black-level corrections → compute the dark pixels offset originated
by a small amount of random charge generation in each pixel, a common factor for
semiconductor imaging devices;

2. Apply the imagery-level effects → image compensation according to the radiometric
calibration coefficients;

3. Compensate the lens vignette effect → an optical chain effect of darkening the corners
of an image compared to its centre, which is also known in photography by the "light
fall-off";

V (x,y) =
1
k

(4.5)

Equation 4.5: Vignette polynomial function for each (x, y) pixel location.

4. Corrections due to exposure and gain → correcting the image according to the
exposure time and gain settings;

5. Convert the imagery values according to the radiance system unit (W/m2/nm/sr)
→ in respect to the exposure time, gain and radiometric coefficients compensation.

After imagery compensation over the sensor characteristics, results an absolute radiance
image describing the light read by the sensor.
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4.2.4.2 Radiance to Reflectance Conversion

Even so, radiance still needs to be converted into reflectance considering that, for vegetation
indices or ground features’ mapping purposes, this is the most important characteristic,
since each material has its own reflectance spectral signature. For instance, vegetation
reflectance will mostly reverberate over the green band within the visible spectrum. If
it is healthy vegetation than the major reflectance will be in the NIR band. Snow, for
example, strongly reflects within the visible spectrum; beyond that, it will decrease on the
NIR band, until it nearly stops reflecting. See illustration 4.10.

Figure 4.10: Reflectance curves of snow, vegetation, water, and rock; adapted from [35].

Therefore, this reflected light percentage, due to the total emitted light, needs to be
computed. For that reason, the calibration panel will be a very useful tool.

The Micasense CRP has its own defined reflectance values for each of the 5 bands.
In this ROS proposed framework, those values will be saved into a YAML file with the
following structure, with the calibration panel values in use:

Blue: 0.54

Green: 0.54

Red: 0.53

Rededge: 0.52

NIR: 0.49

Accordingly, for each image calibration and conversion from radiance to reflectance,
it is used a radiance-to-reflectance factor (Fi) determined for each specific mission. A
calibration panel’s picture is required at the beginning and at the end of a flight making
sure there are no shadows covering the panel and the image is not saturated, as illustrated
in 4.11.
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Figure 4.11: Calibration panel captured by the RedEdge-M NIR sensor in use.

Since we have the real panel reflectance values, it is possible to calculate the mean
value of the square panel from the radiance images taken to the CRP (defined by the red
square in figure 4.11) and calculate the radiance-to-reflectance factor, as follows:

Fi =
ρi

avg(Li)
(4.6)

Equation 4.6: Radiance to reflectance factor for each ith band calibration.

Equation 4.6 is defined by:

• Fi → Radiance to reflectance factor for band i;

• ρi → Average reflectance value of the panel provided by MicaSense for band i (defined
in the YAML file);

• avg(Li) → Average of the pixels radiance intensity within the square panel computed
for each band i, from the radiance image (average within the red square contour in
figure 4.11)).

In essence, this radiance/reflectance factor is the key to convert every radiance image
pixel to the respective reflectance value during that mission, since they might be under
the same lightning conditions.

Ri(x,y) = Li(x,y) × Fi (4.7)

Equation 4.7: Reflectance pixel value at a (x,y) position according to the respective
radiance and the ith band radiance/reflectance factor.

Furthermore, if multiple panels are captured, a mission with k CRPs taken could be
described into a linear or even a quadratic interpolation of the captured panel factors
according to time.
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Figure 4.12: Radiometric calibration with multi-panels integration.

In illustration 4.12, the blue linear interpolation stands for an example of a mission
with only two captures of the calibration panel, where t0 is the beginning image date/time
and t1 is the ending image date/time. On the other hand, the red quadratic line represents
an example of a mission divided into two parts, in this case, with an intermediate stop
where t0 is the beginning date/time capture, t1 is the intermediate capture and t2 is the
final date/time capture.
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→ f i(t) = q0 + q1 · t + q2 · t2 + · · · + qk · tk (4.8)

Equation 4.8: Time-varying model f i(t) describing the reflectance factor interpolation
across time to each ith band.

From equation 4.8, with fixed values for the reflectance factor of the panel (Fik) and
the date/time stamp (tk) within the metadata file for each image, it is possible to calculate
the coefficients q0..k and therefore find the equation f i(t).

Since every image’s metadata stores the captured moment date/time stamp (t), the
resultant reflectance factor to be applied should be more accurate according to the deter-
mined time-varying model f i(t).

However, the current ROS framework does not use the multi-panel corrections despite
its precision, once it is an algorithm that implies post-processing methods, which means
that it is not a real-time system. For that reason, the current framework only applies to
imagery calibrations according to the initial CRP capture since, currently, this framework
is specifically developed for real-time missions.
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4.2.5 Lenses Alignments

Aside from imagery corrections, there is another important constraint about the Micasense
relative provision between the sensor lenses (as illustrated in 6.2, section 6.3). These
distances, among with the lenses, result in misalignments between the 5 band images
taken from the same capture.

Notwithstanding, spectral indices such as NDVI or RDVI must be calculated between
images that are as overlapped as possible, to assure that each object positions, within the
captures, are also correlated.

In order to do this, the first step goes through deciding the best band to make the
alignments with. According to the Micasense lenses arrangement, the RE lens central
position should make it a good candidate because of its small distances to the other lenses.

Nevertheless, performance is one of the main algorithm’s decision factors; it is important
to find a band that implies less alignment processing. Since RE is not that frequently used
to calculate agricultural spectral indices, which means that choosing this lens would imply
as much alignments as the number of required bands to calculate the index, per image.

Overall, in a mission, this would mean AN = BN × DN , where AN is the number of to
do alignments, BN is the number of required bands and DN is the dataset total images.
Then, calculating for instance NDVI (requiring the red and NIR bands), for a dataset of
100 images, would end in a total of 200 alignments during that mission.

Consequently, to avoid so much processing, it was required to choose an alignment band
more frequently used within the spectral indices, such as the Red band. If so, this would
imply one less alignment per image for indices where the chosen alignment band was also
in use, that is AN = (BN −1)×DN . For this reason, the Red band was the alignment band
chosen for the ROS framework in development. Besides, it was implemented a specific
aligning method capable of covering those misalignments, as detailed in section 5.5.

41





C
h

a
p

t
e

r 5
Framework Implementation

5.1 ROS-based Architecture

The developed ROS-based framework is essentially divided into two main ROS nodes:

• Alignment (calibration included);

• Index fusion.

The beginning of every RedEdge-M mission has to go through a pre-camera calibration
according to two distinct parameters: reflectance and lens’ distortion. The panel calibration
function of the alignment node implements an initial calibration for each of the five bands’
images.

Based on the official Micasense Python calibration’s script [33], the calibration meth-
ods were totally converted into a new C++ open-source library, used by the proposed
framework. This library intends to be available to any developer who needs the C++
Micasense correction methods, with the advantage of being available in ROS systems
(micasense_ROS.lib).

After the calibration procedure, the images are aligned and the index fusion computa-
tion can be performed. The final results from the index fusion node may then have several
purposes, in this case, the framework will be specifically used to support the autonomous
vehicle’s navigation or even to strengthen farmers with a detailed view over their crops
through a map.

Figure 5.1 represents and illustrates a general diagram of the implemented infrastruc-
ture:
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Figure 5.1: ROS implemented infrastructure’s diagram.

Although the implemented ROS-based framework was designed, knowing that the input
device would be a RedEdge-M camera, it can be fully integrated with any other imagery
input device, from the simplest RGB cameras to complex hardware systems like satellites.

The framework’s deploy is triggered by a service (/index_request) that enables/disables
an intended index computation by a string, indicating the requested index name and the
new activation state linked by an underscore (e.g. NDVI_on, NDVI_off, RDVI_on).
However, it could also be integrated with any Graphical User Interface (GUI), capable
of injecting any requests and even return useful data to the end-user through a more
appealing platform.

5.1.1 Service Triggering Operations

As previously stated, the trigger’s routine is implemented as a ROS service (Req_New_Index.srv)
and it is prompted as a /req_New_Index topic followed by a string such as: "(requested
index name)_(new state)".

The requested index name is ready to receive any of the following data:

• NDVI → Equation 2.1;

• RDVI → Equation 2.3;

• ENDVI → Equation 2.2;

• MSR → Simple ratio equation based on 2.4;

• MSAVI → Equation 2.6;

• ALL;

• PANEL.
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The former available index names trigger the respective requested index, where the
"ALL" instruction triggers all the available indices to on/off.

As the name itself suggests, the new state is ready to receive an "on" or "off" instruction
(in order to enable or disable an index respectively), as well as an "ALL" instruction that
includes the above mentioned options.

Moreover, the "PANEL" instruction is used during online missions to call method
responsible for setting the panel calibration values dependent variables (further detailed
in chapter 5.2).

When the Req_New_Index.srv service is triggered, it prompts the user_requested_index
method, which is responsible for managing user requests and keeping both Requested_Indexes[]
and Required_Bands[] arrays updated:

Requested_Indexes[] → [NDVI, ENDVI, ...]

Required_Bands[] → [ B | G | R | NIR | RE ]

Whereas the Requested_Indexes[] array adds the new index names, the Required_Band[]
is a band’s counter, incrementing the corresponding array index (required to calculate
the requested spectral index). For example, if only the NDVI (using the Red and NIR
bands) and the ENDVI (using the Blue, Green and NIR bands) are activated, then the
Required_Bands[] will be [ B: 1 | G: 1 | R: 1 | NIR: 2 | RE: 0 ].

5.1.2 ROS Messages

The framework infrastructure node’s communication is made by advertising or subscrib-
ing messages sent by/to the respective topics. The same ROS message type is sent to
communicate through the /img_band and /aligned_bands topics, which is defined in the
MS_images.msg file:

1 # Constant D e f i n i t i o n f o r a c t i v e opera t ing mode
2 s t r i n g [ ] Indice_Name
3 i n t8 Img_Index
4 sensor_msgs /Image [ ] Images
5 sensor_msgs /NavSatFix GPS
6 f l o a t 6 4 Panel_Alt

The /img_band topic makes use of the Img_Index variable, which is basically a cap-
turing counter and it is also composed by two of the ROS sensor message (sensor_msgs)
types: Image [41] and NavSatFix [42]. The former type is used as an array of images,
storing the five bands belonging to each capture; whereas the latter, NavSatFix message
type, is defined by GPS information, storing the vehicle’s location with the respective
coordinates (latitude, longitude and altitude), and the position_covariance[0] float value
that retrieves the UAV orientation (i.e. yaw).
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In contrast, the /aligned_bands topic fully uses the five message variables, including the
Indice_Name as the requested index fusion identifier and the Panel_Alt as the captured
panel’s altitude with a referenced positioning height according to the sea level.

Moreover, although the /img_band topic sends the five raw images through the Images
vector, the /aligned_bands only send the requested index fusion’s corrected images.

5.1.3 RedEdge-M Communication Node

RedEdge-M camera data can be retrieved by serial communication (based on the MAVLink
protocol) or HTTP requests. The proposed framework uses an HTTP communication, via
either Wi-fi (802.11) access point or Ethernet connector.

By default, the multispectral camera’s communication is performed via HTTP connec-
tion to port 80 at the IP, address according to the configured accessing method:

• Wi-Fi: 192.168.10.254

• Ethernet: 192.168.1.83

Each operation’s command can be triggered either by GET or POST requests, resulting
in a JSON object as response. For instance, the URL:/gps request could result in a JSON
message, such as:

{
" l a t i t u d e " : 0 . 1363053 ,
" l ong i tude " : −2 . 399923234 ,
" a l t i t u d e " : 332 . 503 ,
" vel_n " : 0 . 73 ,
" vel_e " : 1 . 2 ,
" vel_d " : 0 . 49 ,
" p_acc " : 2 . 456 ,
" v_acc " : 1 . 54 ,
" f i x 3d " : t rue ,
" utc_time " : " 2014−10−08T20 : 27 : 23 . 321Z"
}

Apart from collecting data, it is also possible to trigger a new capture from an HTTP
request or even attach a different GPS location instead of the one provided by the external
sensor. Even so, the waypoints to trigger are previously defined before each mission, and
this API is essentially used to read the sensor’s captured images during the flight.

Regarding the performance time, Wi-fi connection is extra hardware components’ free
(due to its wireless connection), however, it may result in slower communications and
signal losses. On the other hand, Ethernet wired connection is much faster but it requires
more hardware components mounted on the aircraft, decreasing the UAV flight-time.
Nevertheless, both HTTP connections will be tested for the developed framework.
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5.2 Online and Offline Missions - User Interface

Regardless the running mission type (online or offline) the user has always to choose the
panel calibration’s folder location. For offline missions, dataset directory is also needed.

However, if the algorithm is running online, the user only needs to make sure that
the panel’s capture, under the mission’s presented light conditions, is previously stored
in the computer (PC module, figure 4.6). Then, before starting the flight, by calling
the "PANEL_on" Req_New_Index service’s option, the user is able to choose the panel’s
directory folder to apply the proper correction’s parameters.

On the other hand, when running offline missions, the user is automatically prompted
with the mission’s dataset and the panel’s capture directory folders’ location.

5.3 Image Metadata Extractor

The RedEdge-M images bring several useful data for this framework’s implemented pro-
cedures. Hence, before saving an image file, it is important to verify if the corresponding
metadata is still needed. OpenCV image’s saving functions (imwrite()) do not attach the
referencing information, unless it is previously copied and written as new tag values into
the file to be created.

Exiftool, by Phil Harvey ([32]), is a C++ library interface used for this purpose. It
extracts the metadata from images, storing its information and capturing sensor data.
One of the first attempts to reach this data was taken from one of the collected datasets’
random image, in this case, a calibration panel’s NIR band picture (written in a YAML
sample file with image metadata).

Rededge-M metadata is structured in exiftool with values, separated by line breaks,
identified with the corresponding tag name, linked from its value through a colon, as
exemplified bellow:

PressureAlt: "57.867588043212891"

DarkRowValue: "5059, 5083, 5056, 5040"

BandName: NIR

CentralWavelength: "840"

VignettingCenter: "617.11652352677311, 474.27859714857334"

FOV: "48.8 deg"

GPSPosition: "38 deg 39’ 32.22" N, 9 deg 12’ 20.57" W"

FocalLength: "5.5 mm"
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However, since each information has its own structure, separated by different symbols
and incorporated with different system units, it also requires an individual processing to
withdraw the required information and, therefore, assign it to proper variables.

Moreover, before starting to extract the desired information, it is critical to verify if the
metadata file does not bring duplicated tag names (since Exiftool interface is only prepared
to return one value for each tag name), because this solution replaces the tagged variables
by the last read values with that referred tag name. For that reason, metadata has to
be previously written on, for example, a YAML file. This ensures detectable replicated
tag names: if the correct values are not defined at the last referenced tag name, external
processing methods are required to access the desired data.

This situation is detected twice in this work: the first one, is related to the GPS
information which, in this case, is not an issue because the values match; on the other
hand, the attitude information is also replicated (with the tag names: Yaw, Pitch and Roll).
The latter is important to notice since the last interpreted values can be misunderstanding
- they do not refer the actual UAV attitude (the desired information) but the DLS sensor’s
irradiance attitude. In future mapping procedures, this will be a critical spotlighted detail.

Nevertheless, during further processing, the Exiftool’s metadata extractor is a very
simple and efficient tool.

5.4 Reflectance Conversion

5.4.1 Converting Raw Images to Radiance

The multispectral camera images sent to the Alignment Node are composed by their initial
raw pixel values. However, the raw pixels need to be converted into radiance, according
to the micasense work-flow steps described in chapter 4.2.4.1 and supported by table 4.2.

1 /∗ ∗∗∗∗∗∗∗
2 METHOD: raw_image_to_radiance ( imageRaw ) ;
3 INPUTS:
4 imageRaw : Raw image
5 OUTPUTS:
6 radianceImage : Image with raw p i x e l va lue s converted in to Radiance va lue s .
7 VARIABLES:
8 E x f i t o o l Values ( Table 4 . 2 ) :
9 darkLevel :

10 b l a c k _ l e v e l s :
11 a1 , a2 , a3 :
12 exposureTime :
13 gain : equat ion 4 .2
14 bitDepthMax : 2^16 f o r 16− b i t images
15 Y: Coordinate g r id a c r o s s image rows −> Transposed
16 V: Vignette polynomial f unc t i on f o r each (x , y ) p i x e l l o ca t i on , ( k in

equat ion 4 . 4 ) .
17 R: Radiometric c a l i b r a t i o n ’ s compensated image
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18 L : " Light f a l l −o f " compensated image
19 ∗∗∗∗∗∗∗ ∗/

1. Accounting the black-level corrections - Black-levels average:

1 darkLevel = average ( b l a c k _ l e v e l s [ ] ) ;

2. Apply the imagery-level effects:

1 R = 1.0 / ( 1 . 0 + a2 ∗ Y / exposureTime − a3 ∗ Y)

3. Compensate the lens vignette effect:

1 L = V ∗ R ∗ ( imageRaw − darkLevel ) ;

4. Corrections due to exposure and gain:

1 // exposureTime −> e x i f t o o l va lue : ExposureTime ( te in Table 4 . 2 )
2 // gain −> equat ion 4 .2

5. Convert the imagery values according to the radiance system unit (W/m2/nm/sr):

1 radianceImage = L / ( gain ∗ exposureTime ) ∗ a1 / bitDepthMax ;

Subsequently, from the computed radiance pixels’ values it is possible to convert radi-
ance into reflectance, according to the radiance-to-reflectance factor (Fi). This implemen-
tation is discriminated in the following chapter 5.4.2.

5.4.2 Panel Detection and Calibration

After converting the raw panel image to radiance, the framework also automatically detects
the desired radiance square by making an homography-based cropping routine, to find the
QRcode embedded along with the micasense calibration panel and the accurate square’s
location. The homography is made accordingly to a previously stored panel base image
with both QRcode and radiance’s square, as illustrated in figure 5.2.

Figure 5.2: Calibration’s panel base image with the QRcode and radiance square to use
on automatic detection procedures.

The panelHomography method uses this image to find its pattern within the actual
mission’s calibration panel frame.
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Figure 5.3: Panel Detection: example of an homography good matches result.

Furthermore, the homography detection is implemented to find the desired pattern
even if compared with a rotated or inverted panel’s image, as illustrated in figure 5.3.

After finding the corresponding image 5.2 location within the new panel’s capture,
the latter is cropped. Afterwards, the radiance square location’s automatic detection is
performed according to the vertical and horizontal projections’ histograms, from the binary
detected image.

Y Projections X Projections

Figure 5.4: Radiance square detection diagram.
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Illustration 5.4 describes the panel detection routine. The binary image is white (255)
for imagery values greater than 80% of the average image intensity, and black (0) for values
bellow. Hence, the binary image’s horizontal and vertical projections’ histograms are used
to accurately segment the reflectance square.

From the resulting panel’s cropped square (defined as the panelRegion) the average
radiance’s intensity is measured by computing every radiance square panel’s pixels. Ac-
cordingly to the used panel’s specific reflectance values (saved in the panelCalibration.yml)
it is possible to compute the radianceToReflectance factor (as previously explained in
chapter 4.2.4.2).

1 /∗ ∗∗∗∗∗∗∗
2 METHOD: c a l i b _ i n i t ( Panel_rawImage ) −> I n i t i a l Panel C a l i b r a t i o n rou t ine
3 INPUTS:
4 Panel_rawImage : Panel ’ s raw image .
5

6 OUTPUTS:
7 r e f l e c t a n c e I m a g e : image converted in to r e f l e c t a n c e .
8

9 VARIABLES:
10 path : path to the " pane l C a l i b r a t i o n . yml " f i l e
11 pane lRe f l e c tance : Re f l e c tance value o f the " Panel_rawImage_band " parsed from

the YAML f i l e
12 rad ianceToRef l ec tance : rad ianceToRef l ec tance f a c t o r ( Fi in equat ion 4 . 6 )
13 ∗∗∗∗∗∗∗ ∗/
14 Panel_radianceImage = raw_image_to_radiance ( Panel_rawImage )
15

16 // Panel homography d e t e c t i o n r o u t i n e
17 panelRegion = panelHomography ( Panel_radianceImage )
18

19 meanRadiance = average ( panelRegion )
20

21 rad ianceToRef l ec tance = pane lRe f l e c tance / meanRadiance ;
22

23 r e f l e c t a n c e I m a g e = radianceImage ∗ rad ianceToRef l ec tance ;

The sensor’s received images are easily converted from radiance to reflectance, from
the product between every pixel’s radiance intensity and the radianceToReflectance factor:

1 f l i g h t R e f l e c t a n c e I m a g e = radianceImage ∗ radiance_To_Reflectance ;

5.4.3 RedEdge-M Lens Distortion Corrections

After the reflectance calibration, the lens distortion correction’s routine, based on camera
model’s calibration, is applied using the C++ micasense library (figure 5.5).
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Figure 5.5: Camera Model’s Calibration where: C - camera centre; PP - principal point;
Pc - Point on image; P - point Pc in world coordinates; f - focal length. Equation 5.1
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Equation 5.1: Camera Model’s Calibration

1 /∗ ∗∗∗∗∗∗∗
2 METHOD: c o r r e c t _ l e n s _ d i s t o r t i o n ( re f l_image )
3 INPUTS:
4 re f l_image : Re f l e c tance image .
5

6 OUTPUTS:
7 undistortedImage : Re f l e c tance image a f t e r l e n s ’ d i s t o r t i o n c o r r e c t i o n s .
8

9 VARIABLES:
10 xPP, yPP : P r i n c i p a l po int ( E x i f t o o l ex t rac t ed parameter )
11 cX , cY : Camera cent r e .
12 fx , fy , focal_length_mm : Per spec t i v e f o c a l l ength
13 d i s t _ c o e f f s : Pe r spec t i v e d i s t o r t i o n c o e f i c i e n t s . ( E x i f t o o l ex t rac t ed

parameter )
14 FocalPlaneXResolution , FocalPlaneYResolut ion : Focal lane r e s o l u t i o n (

E x i f t o o l ex t rac t ed parameter )
15 ∗∗∗∗∗∗∗ ∗/
16 cX = xPP ∗ FocalPlaneXResolut ion ;
17 cY = yPP ∗ FocalPlaneYResolut ion ;
18 fx = focal_length_mm ∗ FocalPlaneXResolut ion ;
19 fy = focal_length_mm ∗ FocalPlaneYResolut ion ;
20

21 Camera_Matrix (0 , 0) = fx ; Camera_Matrix (0 , 2) = cX ;
22 Camera_Matrix (1 , 1) = fy ; Camera_Matrix (1 , 2) = cY ;
23 Camera_Matrix (2 , 2) = 1 . 0 ;
24
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25 new_cam_mat = cv : : getOptimalNewCameraMatrix //Camera matrix based on the
d i s t o r t i o n c o e f f i c i e n t s .

26 map1 , map2 = cv : : in i tUndi s tor tRect i fyMap // Undi s to r t i on and r e c t i f i c a t i o n
t rans fo rmat ion maps .

27 undistortedImage = cv : : remap // Geometr ical maps ’ t rans fo rmat ion to the image

This method corrects the images provided by the camera to obtain accurate results.

5.5 Image Alignment

After the lenses distortion corrections, followed by the reflectance calibration, the RedEdge-
M pictures are corrected according to a misalignments’ rectification (i.e., image alignment).

5.5.1 Alignment Algorithm

Micasense documentation suggests an image alignment method based on an OpenCV
library example, which uses a motion model based algorithm named Enhanced Correlation
Coefficient (ECC), [36].

In brief, OpenCV has four distinct motion models, illustrated in figure 5.6:

• Translation → Two scene images shifted by (x,y), (2 parameters);

• Euclidean → Two scene images shifted by (x,y) and/or rotated by an angle, (3
parameters);

• Affine → Two scene images transformed by rotation, translation, scale, and shear,
(4 parameters);

• Homography → Two scene images transformed according not only to 2D effects (as
the previous ones) but also with some 3D transformations (8 parameters).

Translation Euclidean Affine HomographyOriginal

Figure 5.6: Radiometric calibration with multi-panels integration.
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Furthermore, for the proposed model use case, although the agricultural provisioned
datasets imply a certain altitude from the soil, and those lenses misalignments might be
even small (illustration 5.7), they still have to be corrected using similar motion model
transformations.

a b

c

Figure 5.7: Misalignments between scene images from different lenses. The blue square
is surrounding the blue band image (a), whereas the red square is the contour of the red
band image (b). The yellow square represents the cropped images after transformations
and illustrates the scene area in common (c).

Accordingly, the OpenCV code was tested in four distinct proposed models of the ECC
alignment, [36]. Regarding the accuracy, it wasn’t expected a successful alignment result
using the translation or the euclidean transformations, since neither of them have enough
parameters to correct lenses distortion effects.

On the other hand, both affine and homography models were good options to en-
sure alignments’ accuracy, due to their ability to solve focusing operations, by applying
adjustments not only to shift but also to slightly scale or even shear the images.

The OpenCV aligning models were then tested with two different strategical images
included in one of the use case datasets of a vineyard. Whereas the first image (Image 1,
figure 5.8) was expected to perform the adjustments easier (in terms of computer vision,
there are more visible outstanding features that could be easily identified), the second
image (Image 2, figure 5.8), was chosen to verify if the test would be able to identify the
correct similarities in images with not so many distinguishable features.
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a

b

Figure 5.8: Performance test of the ECC alignment algorithm with two distinct images:
(a) Image 1 - Scene image with several outstanding features. (b) Image 2 - Scene image
with constant similarities.

As illustrated in figure 5.8, each OpenCV model was tested by correcting each band
(blue, green, NIR and RE) according to the red band scene image. The results were not
exactly the expected ones since the four models failed in, at least, one of the two main
requirements: processing time and successful result.

Figure 5.8 represents the algorithm’s success concerning all the band filters, tested in
every OpenCV transformation model. The former image (5.8 (a)) illustrates a completely
successful result, whereas the latter (5.8 (b)) shows a good alignment for blue, green
and NIR spectral bands, except for the RE failed alignment.

As for processing time, despite the accuracy successful results, the translation method
would be the only acceptable one for the near real-time proposed model. In average, the
translation model spent 0.37s per image processing, whereas all the other methods took
more than one minute to process each image.

To sum up, all accuracy, processing time and success rate factors were determinant to
decide that the ECC algorithm was not suitable to the work in development.

Instead, the alignments’ approach will be based on another OpenCV library method [37]
developed to detect objects within an image (e.g., to find a book within a messy room,
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figure 5.9). It is a fusion between a bi-dimensional features detector and a method capable
of finding the homography matrix between two planes.

Figure 5.9: Example of the OpenCV library algorithm: Features2D + Homography, [37].

The OpenCV method uses SURF features detector and descriptor, which is one of
the most robust and fast algorithms, invariant to scale and rotation. It is based on the
Hessian matrix which considers the convolution of the Gaussian second order derivative of
an image. However, its computation speed is essentially due to its input of integral images
and Gaussian approximations using box filters, [38].

To apply to the agriculture case study, from the detected aligning images’ keypoints in
common (using Fast Library for Approximate Nearest Neighbors (FLANN) matcher [39]), a
perspective transformation matrix (homography) is computed between both scenes. Then,
the image to be aligned will be cropped from the overlapped detected corners and stretched
to the same size as the red filtered.

5.5.2 Image Alignment Node

The framework’s alignment node is the main responsible for converting and aligning
the captured images and, subsequently forward the results by publishing them to the
/aligned_bands ROS topic.

First, the alignment node’s subscriber listens to the /img_band topic and when it
receives a new raw captures’ data from the camera, structured as a ROS message on the
MS_images.msg file, the received_img() routine is prompted.

In particular, the received_img() method receives all the images from the camera
module, either from the RedEdge-M or any other multispectral device.

At this stage, each capture starts to be accurately corrected according to the methods
previously explained in chapter 5.4.

1 /∗ ∗∗∗∗∗∗∗
2 METHOD: micasense_Correct ions ( )
3 INPUTS:
4 img : Image to be c o r r e c t e d due to Re f l e c tance and Lens ’ D i s t o r t i o n .
5

6 OUTPUTS:
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7 f l i g h t U n d i s t o r t e d R e f l e c t a n c e : Re f l e c tance image a f t e r l e n s ’ d i s t o r t i o n
c o r r e c t i o n s .

8

9 VARIABLES:
10 rad ianceToRef l ec tance : rad ianceToRef l ec tance f a c t o r ( Fi in equat ion 4 . 6 )
11 ∗∗∗∗∗∗∗ ∗/
12 radianceImage = Micasense : : raw_image_to_radiance ( img ) ; // Method from the

new Micasense C++ l i b r a r y
13 f l i g h t R e f l e c t a n c e I m a g e = radianceImage ∗ rad ianceToRef l ec tance ;
14 f l i g h t U n d i s t o r t e d R e f l e c t a n c e = Micasense : : c o r r e c t _ l e n s _ d i s t o r t i o n (

f l i g h t R e f l e c t a n c e I m a g e ) ; // Method from the new Micasense C++ l i b r a r y
15

16 return f l i g h t U n d i s t o r t e d R e f l e c t a n c e ;

After the multispectral imagery correction, it is possible to proceed with the lenses’
alignment.

The image alignments are performed according to the previously mentioned homogra-
phy method. Even so, given the images’ homogeneity, the contours need to be highlighted
before running the homography routine to detect similar features between the captured
red band (R_band) and the aligning band (i.e. blue_band, green_band, RE_band or
NIR_band).

Therefore, it was applied an extra Laplacian filter on the images before the homography
method (imageHomographyAlignment()). Furthermore, in order to increase the accurate
matches between images, the algorithm also discards the points outside the possible range
location (i.e. distance greater than 2% of the image size). These methods significantly
increased the correct number of features detected between both images, which ensures a
better alignment at the end.

1 /∗ ∗∗∗∗∗∗∗
2 METHOD: imageHomographyAlignment ( aligning_band , red_band )
3 INPUTS:
4 al igning_band : Band to be c o r r e c t e d and a l i g n e d accord ing to the Reference

Band .
5 red_band : Reference band to a l i g n the other images with .
6

7 OUTPUTS:
8 aligned_band : al igned_blue , al igned_green , aligned_RE or aligned_NIR
9

10 VARIABLES:
11 frame1_Laplacian = Laplac ian app l i ed to al igning_band .
12 frame2_Laplacian = Laplac ian app l i ed to red_band .
13 min_dist = Minimum d i s t a n c e between keypo ints . D e t a i l s in [ 3 7 ] .
14 ∗∗∗∗∗∗∗ ∗/
15 cv : : Laplac ian ( aligning_band , frame1_Laplacian , thresh1 , thresh2 ) ;
16 cv : : Laplac ian ( red_band , frame2_Laplacian , thresh1 , thresh2 ) ;
17

18 Sur f_detector = cv : : x f ea tu re s2d : : SURF : : c r e a t e ( )
19 keypoints_1 = aligning_band f e a t u r e s accord ing to Sur f_detector
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20 keypoints_2 = red_band f e a t u r e s accord ing to Sur f_detector
21 SURF_extractor = cv : : x f ea t u r e s 2 d : : SURF : : c r e a t e ( )
22 matches = FlannBasedMatcher matches r e s u l t from the images d e s c r i p t o r s
23

24 f o r a l l i between 0 and desc r ip to r s_1 . rows do
25 i f matches [ i ] . d i s t a n c e l e s s than cv : : min_dist )
26 good_matches = matches
27 // Input only the po in t s i n s i d e the 2% range :
28 f o r a l l good_matches between 0 & keypoints_1 . s i z e do
29 d i f f = d i s tance_d i f f_percent ( between good_matches_keypoints_1 and

good_matches_keypoints_2 ) // d i s t a n c e d i f f e r e n c e percentage
30 i f d i f f l e s s than 2%
31 add keypoints_1 (x , y ) to frame_1_points
32 add keypoints_2 (x , y ) to frame_2_points
33 end f o r
34 end f o r
35

36 H = cv : : findHomography ( frame_1_points , frame_2_points ) //Homography Matrix
37 cv : : warpPerspect ive ( aligning_band , aligned_band , H) //Mode : BORDER_REFLECT
38

39 return aligned_band ;

After the image bands, required by the user’s requested indices, are aligned, a new ROS
message is filled (as the MS_images.msg, chapter 5.1.2). This message will be published
to the /aligned_bands topic which is listened by the framework’s next stage node: Index
Fusion Node; further explained in chapter 5.6.

5.6 Index Fusion

According to the index fusion node, the alignment node’s received message needs to
be decomposed to obtain the turned on indices, the images required to calculate those
requested indices and the respective GPS and IMU sensor’s information.

Hence, the index fusion node is essentially composed by the following three steps:

1. Spectral indices bands’ fusion;

2. Terrain classification;

3. Mapping.

Whereas the first step is directly calculated using methods developed for index fusion,
the last two steps belong to another fully implemented C++ ROS library, which methods
will be called and used by further index fusion node’s routines.

Similarly to the previously mentioned developed micasense.lib, this new Layer Mapping
library(layer_mapping.lib) will also be open-source, in order to help other developers
with methods specifically implemented for imagery classification and mapping, as further
explained in chapter 5.6.3.

58



5.6. INDEX FUSION

5.6.1 Spectral Indices Computation

According to the mentioned implemented indices, in chapter 5.1.1, these bands’ fusion are
the key for precision agriculture or, in this particular case, for the terrain classification
methods. After all, it is the spectral index fusion that brings the interesting features out
from the images’ reflectance values.

The index fusion node is composed by the five implemented indices’ calculation routines:
NDVI, ENDVI, RDVI, SR and MSAVI. These methods scan the image pixels and, for
each cell, computes the index value according to the formulas presented in chapter 2.2.2.1.

Despite the fact that only these five spectral indices were implemented, the Index Fusion
Node can be easily adapted to receive and calculate other new indices to the framework.

5.6.2 Terrain Classification

According to the requested indices’ resultant images, the spectral values were parametrized
to classify each terrain type (i.e., vegetation, water, soil and rocks).

Therefore, for each implemented index, the best possible values range was determined
to the respective terrain types:

Table 5.1: Terrain types parametrization according to each multispectral index.

Finally, after processing each image index result, the frames are analysed and each
pixel is classified and accurately mapped to the respective layer (GPS location), using the
Layered Mapping library procedures.
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5.6.3 Semantic Layer Mapping

Nowadays, grid maps are extremely used in mobile robotic mapping; there is a specific
C++ Grid Map library, as a ROS interface, capable of storing distinct types of terrain
features, like elevation, variance and colour ([40]). Grid maps can also have an unlimited
number of layers and it is possible to convert them into other ROS message types, such
as PointCloud2, OccupancyGrid and GridCells. For viewing purposes it is also fully
integrated with the ROS’ 3D visualization tool, known as RViz.

This framework’s pipeline final step is to classify terrain features from the received
frame’s spectral indices and map each cell classification into grid map layers, as mentioned
in chapter 4.1. Moreover, the terrain is classified according to specific parametrized values
and, therefore, the resultant pixels are computed into dynamic grid map layers.

Figure 5.10: Terrain Layers viewed from the Rviz tool

In essence, this imagery mapping forms a stitched image of the full area in study.
Besides, the framework, not only builds a layer generated with the respective index fusion
images, but also a layer for each terrain classification, from the respective calculated index.

In fact, for this case study, there will be 5 layers for each index fusion:

• 4 terrain classification layers (i.e. vegetation, water, soils and rocks);

• 1 spectral index fusion layer (e.g. NDVI images’ layer).

In other words, if only the NDVI is turned on, there will be four terrain layers:
NDVI_vegetation_map, NDVI_water_map, NDVI_soils_map and NDVI_rock_map
layers; with one more layer for mapping the stitched NDVI images.

Along the images classification, the grid map will be gradually filled and converted into
the standard ROS message in use (i.e. nav_msgs/OccupancyGrid) and then the several
layers are published to the corresponding ROS topic. Through the RViz tool it is possible
to visualize every layer map being published, near in real-time.
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This mapping procedures has many possible applications, such as in vehicle’s au-
tonomous navigation or robots cooperation tasks.

5.6.3.1 Imagery Altitude Considerations

Usually during an UAV flight, there are several variables that need to be considered. As for
mapping, fluctuating flight altitude variables have to be computed. Although the camera
images have a fixed sensor dimension, before mapping an image, knowing the real image’s
dimension is a requirement. Otherwise, the images would never be properly mapped.

The RedEdge-M datasets are composed by images with a 4 : 3 proportion sized by
1280 × 960 px, but for performance improvement, the images are resized to 640 × 480
px. Considering the sensor’s image size in pixel, it is possible to compute the real area
dimension from the camera’s field of view angle (FOV), figure 5.11.

Image Plane

Camera
Altitude

FOV

1/2 FOV

1/2 Image Wi d t h

Image Wi d t h

Im
age H

e i g
h t

Figure 5.11: UAV pipeline to determine the image plane’s real dimension.

The framework’s implemented procedure that computes the real size of the image to
be mapped, uses the arithmetic formulas from equation 5.2.

Imagewidth = 2 × tan(FOV/2) × Camera_Altitude

Imageheight = Imagewidth × Width2Height_Factor

(5.2)

Equation 5.2: These equations compute the images’ real dimensions according to the
sensor’s altitude. Where FOV is measured in degrees (o) and the Width2Height_Factor
is the sensor proportion factor to compute an image’s height from its width (particularly,
for a 4:3 image: Width2Height_Factor = 3

4).

For this purpose, the panel’s capture altitude is also considered to compensate the
distance between the above sea level reference and the ground. Since the GPS sensor
measures the altitudes from above sea level (UAV Flight_GPSAltitude) and the imagery
dimensions are correlated with the distance from the ground to the multispectral camera.
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Then, in mapping, the altitude from the initial panel’s frame should be close to 0, in spite
of the calibration panel’s distance to the above sea level reference (Panel_GPSAltitude).

The field frames’ altitude (Camera_Altitude) need to be compensated according to
the above sea level panel’s distance. Then, the Camera_Altitude in equation 5.2 is:

Camera_Altitude = UAV Flight_GPSAltitude − Panel_GPSAltitude (5.3)

Equation 5.3: Altitude sensor’s compensation to the above sea level reference.

5.6.3.2 Coordinate and Rotation Systems

This ROS framework uses the OccupancyGrid message type: occupancy grid maps are
meant to classify each georeferenced grid cell with an occupancy value of a certain type
of terrain. For the proposed case, the values are ranged between 0 and 1, and by default,
each layer is totally set to 0.5 at the beginning, representing the unknown terrain. As the
procedures take place, each cell is filled with a 0 (positive) or 1 (negative).

For instance, in a vegetation layer, each vineyard row is defined by 0’s, white cells that
represent an occupied status; whereas the rest of the area is registered with 1’s, black cells
as non-vegetation.

Nevertheless, before the mapping procedures, it is important to be aware of each
interface’s rotation systems:

y

x

World
(UTM system)

Map
(E_o ; N_o)

(0 ; 0)

x

y

(UTM_E ; UTM_N)

N_Transl

E_Transl
Base_link

y x

x (Easting)

y (Northing)

OpenCV

Ba
MM E

x (Northing)

y (Easting)

Clockwise system:

x (Easting)

y (Northing)

Counter-clockwise system:

Figure 5.12: Interfaces’ coordinate systems: world and map (black counter-clockwise coor-
dinate systems), base_link and OpenCV (blue clockwise coordinate systems).

As illustrated in figure 5.12, the ROS interface measures according to a counter-
clockwise system, with 0 facing forward along the frame’s x-axis (easting). On the other
hand, both OpenCV and the robot’s IMU used sensor, follow the clockwise rotation system,
with 0 facing forward along the frame’s x-axis (northing).
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The proposed model is composed by three coordinate frames: world, map and base_link;
and they are correlated by the appropriate transformation.

The grid map frame (map) is directly related to the world frame(world) by a transfor-
mation (with 90o counter-clockwise rotation and) translated to the UTM central position
of the first captured image (E_o, N_o). Beyond that, the robot frame (base_link) is
transformed according to the robot orientation (i.e. yaw) and translated in respect to
the distance between the current UAV position and the first image location, marked by
the Map origin. The implementation considered ROS counter-clockwise reference rotation
system.

According to the previous coordinate system diagram 5.12, the 90o axes rotation
between the world and the map needs to be computed, equation 5.4.

StandardRotation : M(θ) =
[

cos(θ) −sen(θ)
sen(θ) cos(θ)

]

90oRotated : M(θ) =
[

cos(θ) −sen(θ)
sen(θ) cos(θ)

]
·
[
0 −1
1 0

]
=

[
−sen(θ) −cos(θ)
cos(θ) −sen(θ)

] (5.4)

Equation 5.4: Rotation axes matrices: standard counter-clockwise and 90o (world → map).

A pixel rotation motion according to a rotation matrix M by θ is defined in equation 5.5.

[
px′
py′

]
= M(θ) ·

[
px
py

]
(5.5)

Equation 5.5: Point (px,py) after angle rotation(θ) to the new position (px’,py’)

Furthermore, as illustrated in the coordinate systems’ convention diagram, after con-
sidering the 90o clockwise rotation between the world and the map, it is assumed that the
θ angle (equation 5.6) only refers to the clockwise systems transformations:

• OpenCV 2D computation → πrotation(rad);

• UAV Sensor Orientation → Yaw angle rotation (rad).
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θ = −π − gps_coordinates (5.6)

Equation 5.6: Clockwise θ angle rotation, where gps_coordinates is the Base-link IMU
rotation.

Although the first captured image is centred at (Eo,No) position, it is required a pivot
rotation around the Base_link location to accurately map the subsequent images. Each
image pixel point (P(px,py)) needs to be computed according to the following steps:

1. P(px,py) point translation to map origin (Eo,No);

2. P(px,py) point rotation around the map origin (Eo,No);

3. P(px,py) point back translation to the Base_link origin (UTM_E,UTM_N);

Hence, being:

T (ET ;NT ) =

⎡
⎢⎣1 0 ET

0 1 NT

0 0 1

⎤
⎥⎦ M(θ) =

⎡
⎢⎣−sen(θ) −cos(θ) 0

cos(θ) −sen(θ) 0
0 0 1

⎤
⎥⎦ P (px;py) =

⎡
⎢⎣px

py
1

⎤
⎥⎦

P ′(px′;py′) = T (ET ;NT ) · M(θ) · T (−ET ;−NT ) · P (px;py)
(5.7)

Equation 5.7: P’(px’;py’) is the result of P(px;py) point pivot rotation where M is the
counter-clock system’s 90o rotated matrix (equation 5.4) and T is a translation matrix
between the map and the Base_link origins (ET and NT are respectively the E_Transl
and N_Transl from figure 5.12).

From the previous pivot rotation formula it is possible to find the main layer mapping
implemented algorithm to compute an accurate image position in the map:

[
px′
py′

]
=

[
−(px − ET ) · sen(θ) − (py − NT ) · cos(θ) + ET

(px − ET ) · cos(θ) − (py − NT ) · sen(θ) + NT

]
(5.8)

Equation 5.8: ROS layer mapping rotation algorithm. Accordingly, the θ angle is defined
due to the clockwise required transformations, equation 5.6.

In essence, this approach is very important, not only to accurately make a stitched
images map, but also to enhance the implemented dynamic map algorithm.
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Experimental Results

6.1 Experimental Setup

The Programa de Desenvolvimento Rural 2014-2020 (PDR2020) is a program co-financed by
the European Structural Funds (FEADER) and comprises initiatives for rural development,
pursuing the objective of promoting the competitiveness of the agro-forestry sector and
the rural territories in a sustainable way. In this program’s innovation and knowledge
areas, the NOVA university through multiple FCT departments and the RICS group from
the electrical and computer engineering department proposed several projects within the
agricultural field. This research insertion in the scientific community will be very important
to the following experimental results validation.

The proposed model was mainly implemented in the C++ programming language, but
also supported by some implemented Python scripts. It was made fully compliant with
the Robot Operating System (ROS). Tests were made with an HP EliteBook Folio 9470m
dual core with 4 logical processors Intel(R) Core(TM) i5-3427U CPU 1.80GHz with 8 Gb
of RAM. It is running a 64-bit Linux distribution Ubuntu 16.04.4 LTS (ROS version:
Lunar), and using OpenCV 3.2.0 for low-level computer vision routines.

In order to measure the proposed model’s performance, an extensive dataset of 8
missions, encompassing a total of 2475 analysed frames with a 1280 × 960 px resolution,
have been obtained with a RedEdge-M camera carried at an approximate height between
40 m to 100 m. The dataset includes distinct terrain types such as water, foliage, rocky
and sandy soils.

Although this ROS framework was developed to receive images for both offline and
online missions, the following obtained experimental results only come from offline acquired
datasets.
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6.2 Model Parametrization

For each of the spectral indices’ frames, it is necessary to parametrize each type of terrain
according to the index values in those areas.

Through the resulting images, it was possible to analyse and distinguish the different
field areas, allowing to parametrize the minimum and maximum values for each terrain
classification. The following 6.1 tables discriminate these parameters.

Table 6.1: Terrain classification parametrization.

6.3 Experimental Datasets

The infrastructure involved will be closely tested in the field (figure 6.1), in real-time, as a
central object of study responsible to acquire every kind of data involved with the mission
in progress.

Many agricultural producers and organizations involved with the current project sup-
ported this work with their own productions as samples for testing. For instance, there
were collected images from vineyards in Palmela, Roxo production, orchards, potatoes
and tomatoes productions and also from the FRUTALVOR central which is an enriched
organization with their own orchards and horticultural productions, nationally recognized
and distributed throughout the country.

As a result, the Rededge-M sensor attached to the UAV, will capture several datasets
from the crops in study. Furthermore, both for real-time and offline missions, the datasets
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a b c

Figure 6.1: Experimental testing in the field: (a) UAV infrastructure, (b)Vineyard in
Palmela and (c) Micasense calibration panel.

will be stored at the SD Card included in the camera kit. Every time the camera is
powered up, a new folder is created with another folder inside named "000", [31]. The
latter mentioned folder, supports until 999 files within, where each capture is composed
by 5 different image files, each one with a suffix from 1 to 5, corresponding to the Blue,
Green, Red, NIR and Rededge bands, following the respective order. See table 4.1 for
more details.

Accordingly, the illustrations below present the imagery nomenclature of the Micasense
sensor in use:

Figure 6.2: Imagery nomenclature of the Rededge-M sensor by Micasense

Furthermore, this imagery nomenclature is followed by an example of 5 files belonging
to a single capture from the same camera. Each image is in agreement with the corre-
sponding lenses’ letters (Figure 6.2). The respective band filters are specified as follows in
illustration 6.3.
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a b

c

d e

Figure 6.3: Relative provision between the band filters: (a) Blue, (b) Green, (c) RE, (d)
NIR and (e) Red.

The capture illustrated in 6.3 belongs to a dataset from one of the FRUTALVOR
vineyards. Although it was shot from a 82.2 m height above the sea level, it is still possible
to verify an apprehensible misalignment between the band filters due to an hardware
conception of the Micasense sensor, since the current lenses reserve a certain distance from
each other (as explained in 4.2.5).

6.4 Results Validation

6.4.1 Colour Band Alignments

Before any further terrain classification, as previously mentioned in this document, it is
necessary to align the images captured by the different lenses of the multispectral camera.

Figure 6.4 illustrates both best and worst case scenarios related to the alignments. The
former reflects an inaccurate alignment not allowing the image to be correctly understood
and later processed, whereas the latter represents a fully successful RGB channels alignment,
contributing to the next stages of this framework.
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a b

Figure 6.4: Alignments examples.

6.4.2 Terrain Classification Assessment

For the scope of this project, several datasets were studied. However, only eight of these
were indeed tested (annex B).

For each dataset, the five implemented spectral indices (NDVI, ENDVI, RDVI, MSAVI
and SR) were tested; each of these spectral indices spread into the four analysed terrains
(i.e. vegetation, water, rocks and soil). This processing allowed to calculate and obtain a
successful rate based on the following classified characteristics:

• True Positives (True POS): The algorithm classified the collected information as a
certain terrain → the observation of this terrain validated the result;

• True Negatives (True NEG): The algorithm classified the collected information as
not being a certain terrain → the observation of this terrain validated the result;

• False Positives (False POS): The algorithm classified the collected information as a
certain terrain → the observation of this terrain did not validate the result;

• False Negatives (False NEG): The algorithm classified the collected information as
not being a certain terrain → the observation of this terrain did not validate the
result.

All the mentioned characteristics were weighted according to the respective relevance
in each analysed dataset. The successful rate was calculated as follows:

Success = TruePOS × RedPixels

AllP ixels
+ TrueNEG × OtherP ixels

AllP ixels
(%) (6.1)

Equation 6.1: Successful rate formula taking into account the image’s presented terrain
weight.

As figure 6.5 shows, every terrain was identified and coloured in order to represent the
validation masks (Lourinhã potatoes crop presented as follows).
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a b

c d

Figure 6.5: Validation masks for the implemented ROS framework terrain classification
results.

NDVI MSAVI

(...)

Spectral Indices

Figure 6.6: Spectral Indices Results for vegetation.
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This field clearly distinguishes the different terrains into the four types described,
allowing the drone to observe and collect the information for users. In this image, rocks
weight much less than vegetation: the coloured representation of rocks versus vegetation
is, approximately, 2% and 90% respectively (figure 6.5).

In order to achieve the global success rate (based on annex B test detailed results), the
average of each terrain successful outcome was calculated according to each spectral index
result (figure 6.6):

a b

c d

Figure 6.7: Terrain classification success rate results: Vegetation (a), Water (b), Rocks (c)
and Soils (d).

In the end, the achieved results (figure 6.7) reflected a good margin to work on, since
the majority of the obtained percentages outgrew an average of 80% of success. Another
possible outcome from these graphs would be the best spectral index to apply to a particular
terrain, despite all spectral indices apply to each terrain. However, according to the results,
vegetation, water, rocks and soils would be best recognized, respectively, by SR, MSAVI,
MSAVI and NDVI indices.
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Conclusions and Future Work

7.1 Conclusions

According to the purpose of this project, analysing and getting the information from
agricultural fields provide the possibility to enhance farmers experience, as well autonomous
vehicle navigation and multi-robot cooperation, facing nowadays changing technological
world. The ability to recognize the terrains enables to take full advantage of technology,
introducing ancient topography techniques to new autonomous, fast, accurate, precise and
unmanned systems. It is crucial to keep up with autonomous robots, which are embracing
society, aiding obstacles’ detection, safe landing and terrain adaptation. Internet of Things
(IOT) allows robot’s networking and information sharing, enabling the cooperation between
several machines, for instance, to apply different drones’ altitudes and increase the observed
area range.

This project is focused on computer vision analysis that collects the most interesting
characteristics acquired from a multispectral camera and transforms this data into valuable
and readable information for users. The obtained images require full alignment, due to
the used lenses different positions. The RedEdge-M raw imagery goes through a certain
correction processing in order to interpret the reflected flux of solar radiation captured
by the camera. Afterwards, the analysed band frames are combined into several spectral
indices capable of identifying terrain singularities, such as vegetation, water, rocks and soil.
These parameters accuracy provide the correspondent results clarification and validation,
through training masks.

After the terrain classification, the information will be spread into semantic layered
maps. Each layer has a unique classification, applying to land features distinction or even
agriculture precision ends, with crops growing and health status.
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Although the global overview reflected a good performance and output, the multi-
ple used methods raised some challenges, such as reaching the perfect lenses’ alignment,
obtaining the real measurements to build dynamic semantic maps and sharing an interop-
erable system between different infrastructures and technologies that demanded complex
coordinates’ transformation algorithms.

The developed open-source ROS framework allowed to obtain results, validated to-
gether with PDR2020 projects, from which was possible to achieve successful output data
according to terrain types classification. The efficiency was tested for each implemented
spectral index: reaching an average of, approximately, 80% of successful rates.

7.2 Future Work

The purpose of this project covers a wide range of use cases, shaping the most diverse
application scenarios. Although this approach is meant for different terrains’ classification,
there is still plenty issues to be concerned with, processing improvements and future assets
to address in this research field. The following topics introduce some of these enhancements:

• Improve the library algorithms’ performance handled by Micasense lenses corrections
and distortions;

• Use the applied horizontal plane recognition, provided by yaw, as well as the vertical
plane recognition expansion, considering roll and pitch orientations, allowing a 3D
terrain modulation;

• Odroid integration in UAV infrastructure in order to provide faster processing results
mainly during online missions, since ethernet connection is made possible;

• Spectral indices deep study, focused on nutritional analysis, crops’ growth and de-
velopment status (e.g. estimating crops’ harvest periods) and plagues or diseases
detection (e.g. improve countermeasure proactivity);

• Spread multispectral analysis and classification to livestock activity usage.

Many other features can be improved and implemented, since this computer vision
processing and mapping field stands for an important attending issue in the future and
aspires to a growing impact in society, from health to agricultural production quality
and terrain nutrition, fertilization and management. The enhancement of different land
classification techniques, together with fast and accurate systems, intend to provide agile
and autonomous methods to implement and expand Precision Agriculture.
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Rededge-M Imagery Sensor

A.1 Sample of a YAML metadata file from Rededge-M Imagery
Sensor

ExifToolVersion: "10.10"

FileName: "IMG_0004_4.tif"

Directory: /home/beatrizsalvado/Desktop/Mission_1_DataSet/28_05_2018/0016SET/000

FileSize: "2.4 MB"

FilePermissions: rw-rw-r–

FileModifyDate: "2018:05:28 03:40:40+01:00"

FileAccessDate: "2018:07:03 11:13:11+01:00"

FileInodeChangeDate: "2018:05:28 11:49:50+01:00"

FileType: TIFF

FileTypeExtension: tif

MIMEType: image/tiff

ExifByteOrder: "Little-endian (Intel, II)"

SubfileType: Full-resolution Image

ImageWidth: "1280"

ImageHeight: "960"
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BitsPerSample: "16"

Compression: Uncompressed

PhotometricInterpretation: BlackIsZero

StripOffsets: "(Binary data 70 bytes, use -b option to extract)"

Orientation: Horizontal (normal)

SamplesPerPixel: "1"

RowsPerStrip: "100"

StripByteCounts: "(Binary data 69 bytes, use -b option to extract)"

PlanarConfiguration: Chunky

Software: "v3.3.0"

BlackLevelRepeatDim: "2 2"

BlackLevel: "4800 4800 4800 4800"

OpcodeList3: "(Binary data 184 bytes, use -b option to extract)"

Make: MicaSense

Model: RedEdge-M

ModifyDate: "2018:05:28 09:54:20"

XMPToolkit: "XMP Core 4.4.0"

About: Pix4D Camera Information

BootTimestamp: "1050"

RadiometricCalibration: "0.00018989564643105694, 8.4584105753599054e-08, 1.5627073908987655e-
05"

FlightId: yNRal1Q9wdZ52FgTCbA6

CaptureId: "474EcftDp49zLLSFcVvf"

TriggerMethod: "1"

PressureAlt: "57.867588043212891"

DarkRowValue: "5059, 5083, 5056, 5040"

BandName: NIR
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CentralWavelength: "840"

WavelengthFWHM: "40"

VignettingCenter: "617.11652352677311, 474.27859714857334"

VignettingPolynomial: "-0.00011825707746914148, 5.3870492875556434e-08, -1.2798756344064433e-
08, 4.5220705895394507e-11, -5.9411243402537197e-14, 2.7130384554409001e-17"

ModelType: perspective

PrincipalPoint: "2.37564,1.71116"

PerspectiveFocalLength: "5.4537928457993647"

PerspectiveFocalLengthUnits: mm

PerspectiveDistortion: "-0.10451232003408055, 0.14745719362277598, -0.0098209126277837705,
0.00021427853748014447, 0.00018911288706109603"

BandSensitivity: "0.20052625875524618"

RigCameraIndex: "3"

IrradianceExposureTime: "0.10100000351667404"

IrradianceGain: "16"

Irradiance: "0.57690227031707764"

IrradianceYaw: "159.65152843760467"

IrradiancePitch: "1.0929077884431513"

IrradianceRoll: "-0.94607740196678425"

-Yaw: "175.40192165970376"

-Pitch: "1.6082171320641621"

-Roll: "-0.86810295624345779"

Serial: DL05-1732217-SC

SwVersion: "v1.0.1"

SensorId: "3"

CenterWavelength: "840"

Bandwidth: "40"
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TimeStamp: "113289"

Exposure: "0.10100000351667404"

Gain: "16"

SpectralIrradiance: "0.57690227031707764"

RawMeasurement: "3079"

OffMeasurement: "4718"

Yaw: "2.7864448270775597"

Pitch: "0.019074839329022621"

Roll: "-0.016512165643034264"

ExposureTime: "1/1034"

FNumber: "2.8"

ISOSpeed: "100"

ExifVersion: "0230"

SerialNumber: RM01-1743095-SC

ExposureProgram: Program AE

MeteringMode: Multi-spot

FocalLength: "5.5 mm"

FocalPlaneXResolution: "266.666667"

FocalPlaneYResolution: "266.666667"

FocalPlaneResolutionUnit: mm

DateTimeOriginal: "2018:05:28 09:54:20"

CreateDate: "2018:05:28 09:54:20"

SubSecTime: "171000000"

GPSVersionID: "2.2.0.0"

GPSLatitudeRef: North

GPSLongitudeRef: West

GPSAltitudeRef: Above Sea Level
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GPSDOP: "0"

GPSLatitude: "38 deg 39’ 32.22""

GPSLongitude: "9 deg 12’ 20.57""

GPSAltitude: "93.91 m"

Aperture: "2.8"

ImageSize: "1280x960"

Megapixels: "1.2"

ShutterSpeed: "1/1034"

FOV: "48.8 deg"

-GPSAltitude: "93.9 m Above Sea Level"

-GPSLatitude: "38 deg 39’ 32.22" N"

-GPSLongitude: "9 deg 12’ 20.57" W"

GPSPosition: "38 deg 39’ 32.22" N, 9 deg 12’ 20.57" W"

ScaleFactor35efl: "7.2"

CircleOfConfusion: "0.004 mm"

FocalLength35efl: "5.5 mm (35 mm equivalent: 39.7 mm)"

HyperfocalDistance: "2.59 m"

SubSecModifyDate: "2018:05:28 09:54:20.171000000"
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Terrain Classi f ication Results

This section presents the overall results, discriminated in the following tables. The obtained
values describe the terrain classification output according to each type and spectral index.
The table below (table B.1) resumes all the average outcome resulting from its following
tables.

Table B.1: Overall average results
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