
Guilherme Rosas Borges

Bachelor of Science

Practical Isolated Searchable Encryption in a
Trusted Computing Environment

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Bernardo Luís da Silva Ferreira, Researcher,
Faculdade de Ciências e Tecnologia
da Universidade NOVA de Lisboa

Co-adviser: Henrique João Lopes Domingos, Assistant Professor,
Faculdade de Ciências e Tecnologia
da Universidade NOVA de Lisboa

Examination Committee

Chairperson: Pedro Abílio Duarte de Medeiros
Raporteur: Miguel Nuno Dias Alves Pupo Correia

December, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/187234632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Practical Isolated Searchable Encryption in a Trusted Computing Environment

Copyright © Guilherme Rosas Borges, Faculty of Sciences and Technology, NOVA Univer-

sity of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this disserta-

tion through printed copies reproduced on paper or on digital form, or by any other

means known or that may be invented, and to disseminate through scientific reposito-

ries and admit its copying and distribution for non-commercial, educational or research

purposes, as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To Sirius and Ivan.

Acknowledgements

First and foremost, I would like to sincerely thank my advisers, Bernardo and Henrique,

without whom this thesis would not be possible. Their experience, availability, and

knowledge, for which I am very much grateful, were fundamental in the production of

this work, and I hope to make good use of their advice in my future.

I am also deeply grateful to João Leitão, whose advice and friendship were also essen-

tial to me, both as a person and as a researcher. I am indebted to all my colleagues and

friends at the NOVA LINCS Computer Systems group, which provided not only helpful

advice and lots of patience while reviewing my work, but also countless moments of

fun. They include, but are not limited to, Gonçalo Tomás, Pedro Ákos Costa, and Pedro

Fouto, with whom I hope to continue this adventure. I would also like to acknowledge

my colleagues and co-authors from HASLab, Bernardo Portela and Tiago Oliveira, whose

advice and tips while collaborating in our papers and projects proved insightful and

useful. Moreover, I leave a note of acknowledgement to all professors and researchers

I work with within NOVA LINCS, and with whom I hope to continue having positive

interactions: Albert van der Linde, Carla Ferreira, Carmen Morgado, Hervé Paulino, João

Costa Seco, João Lourenço, João Silva, José Legatheaux Martins, Ludwig Krippahl, Luís

Caires, Cecília Gomes, Nuno Preguiça, Paulo Lopes, Pedro Medeiros and Vítor Duarte.

Finally, I sincerely thank everything that my parents Helena and Joaquim, my grand-

parents Abel, Adelaide, Joaquim, and Rosa, and Sirius and Ivan have done for me; for

they were the ones who really made this work possible.

To conclude, I am also thankful for the financial support of the LightKone project

(H2020 grant agreement ID 732505), and from FCT/MCTES, through the strategic project

NOVA LINCS (UID/CEC/04516/2013) and project HADES (PTDC/CCI-INF/31698/2017).

vii

Imagination will often carry us to worlds that never were. But
without it we go nowhere.

Carl Sagan

Abstract

Cloud computing has become a standard computational paradigm due its numerous

advantages, including high availability, elasticity, and ubiquity. Both individual users and

companies are adopting more of its services, but not without loss of privacy and control.

Outsourcing data and computations to a remote server implies trusting its owners, a

problem many end-users are aware. Recent news have proven data stored on Cloud

servers is susceptible to leaks from the provider, third-party attackers, or even from

government surveillance programs, exposing users’ private data.

Different approaches to tackle these problems have surfaced throughout the years.

Naïve solutions involve storing data encrypted on the server, decrypting it only on the

client-side. Yet, this imposes a high overhead on the client, rendering such schemes

impractical. Searchable Symmetric Encryption (SSE) has emerged as a novel research

topic in recent years, allowing efficient querying and updating over encrypted datastores

in Cloud servers, while retaining privacy guarantees. Still, despite relevant recent ad-

vances, existing SSE schemes still make a critical trade-off between efficiency, security,

and query expressiveness, thus limiting their adoption as a viable technology, particularly

in large-scale scenarios.

New technologies providing Isolated Execution Environments (IEEs) may help im-

prove SSE literature. These technologies allow applications to be run remotely with

privacy guarantees, in isolation from other, possibly privileged, processes inside the CPU,

such as the operating system kernel. Prominent example technologies are Intel SGX and

ARM TrustZone, which are being made available in today’s commodity CPUs.

In this thesis we study these new trusted hardware technologies in depth, while explor-

ing their application to the problem of searching over encrypted data, primarily focusing

in SGX. In more detail, we study the application of IEEs in SSE schemes, improving their

efficiency, security, and query expressiveness.

We design, implement, and evaluate three new SSE schemes for different query types,

namely Boolean queries over text, similarity queries over image datastores, and multi-

modal queries over text and images. These schemes can support queries combining dif-

ferent media formats simultaneously, envisaging applications such as privacy-enhanced

xi

medical diagnosis and management of electronic-healthcare records, or confidential pho-

tograph catalogues, running without the danger of privacy breaks in Cloud-based provi-

sioned services.

Keywords: Searchable Symmetric Encryption; Trusted Hardware; Cloud Computing;

Privacy; Secure Boolean Querying; Secure Content-Based Image Retrieval

xii

Resumo

O conceito de Computação na Nuvem tornou-se num paradigma de computação

padrão, dadas as suas numerosas vantagens, tais como alta disponibilidade, elasticidade

e ubiquidade. Tanto utilizadores individuais como empresas têm vindo a escolher cada

vez mais estes serviços, apesar de tal implicar uma perda de privacidade e de controlo.

Terceirizar dados e computações para servidores remotos implica a confiança nos seus

provedores, um problema conhecido pelos utilizadores finais. Notícias recentes provam

que dados guardados na Nuvem são vulneráveis a fugas de dados, tanto por parte do

provedor, de atacantes, ou mesmo de programas de vigilância governamentais, expondo

dados privados dos utilizadores.

Ao longo dos anos, diferentes vias têm sido seguidas na tentativa de solucionar estes

problemas. Abordagens mais ingénuas envolvem guardar os dados sempre cifrados no

servidor, decifrando-os apenas do lado do cliente. No entanto, tal implica uma grande

sobrecarga do lado deste, tornando tais aborgadens impraticáveis. Nos últimos anos, as

Cifras Simétricas Pesquisáveis (CSP) surgiram como uma nova linha de investigação,

permitindo pesquisas e actualizações eficientes sobre bases de dados cifradas em servido-

res na Nuvem, mantendo ao mesmo tempo garantias de privacidade. Ainda assim, não

obstante alguns progressos recentes, esquemas recentes ainda balanceiam eficiência, se-

gurança e expressividade das pesquisas, limitando a sua adopção como tecnologia viável,

particularmente em cenários de larga escala.

Novas tecnologias fornecendo Ambientes de Execução Isolados (AEI) podem intro-

duzir melhorias na literatura de CSP. Estas tecnologias permitem que aplicações sejam

corridas remotamente com garantias de privacidade no processador, em isolamento de

outros processos potencialmente privilegiados, tais como o núcleo do sistema operativo.

Exemplos proeminentes destas tecnologias são o Intel SGX e o ARM TrustZone, que têm

vindo a ser disponibilizados no mercado em processadores comuns.

Nesta tese estudamos tecnologias de hardware confiável em detalhe, explorando a

sua aplicação sobre o problema da computação sobre dados cifrados, focando-nos no

Software Guard Extensions (SGX). Mais especificamente, estudamos a aplicação de AEIs

em esquemas de CSP, melhorando as vertentes de eficiência, segurança e expressividade

das pesquisas.

xiii

Desenhamos, implementamos e avaliamos três novos esquemas de CSP para dife-

rentes tipos de pesquisas, particularmente pesquisas Booleanas sobre texto, pesquisas de

imagens por conteúdo sobre repositórios das mesmas e pesquisas multimodais sobre texto

e imagem. Estes esquemas permitem suportar pesquisas combinando diferentes formatos

de media em simultâneo, tendo em vista casos de uso tais como diagnósticos médicos

com suporte a privacidade e gestão de registos médicos electrónicos, ou repositórios de

imagens confidenciais, que podem estar alojados em serviços provisionados pela Nuvem

sem perigo de quebras de privacidade.

Palavras-chave: Cifras Simétricas Pesquisáveis; Computação na Nuvem; Privacidade;

Hardware Confiável; Pesquisas Booleanas Seguras; Consulta Segura de Imagens Por Con-

teúdo

xiv

Contents

List of Figures xix

List of Tables xxi

Listings xxiii

List of Algorithms xxv

Glossary xxvii

Acronyms xxix

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem . 2

1.3 Objectives . 3

1.4 Main Contributions . 4

1.5 Publications . 4

1.6 Thesis Organisation . 5

2 Related Work 7

2.1 Computing over Encrypted Data . 7

2.1.1 Property-Preserving Encryption . 8

2.1.2 Homomorphic Encryption . 9

2.1.3 Oblivious RAM . 10

2.1.4 Discussion . 11

2.2 Information Retrieval Techniques . 11

2.2.1 Text Retrieval . 11

2.2.2 Image Retrieval and Feature Clustering 12

2.2.3 Result Scoring and Evaluation . 13

2.2.4 Discussion . 14

2.3 Searchable Symmetric Encryption . 14

2.3.1 Boolean Queries . 17

2.3.2 Ranked Searching . 18

xv

CONTENTS

2.3.3 Images . 18

2.3.4 Discussion . 19

2.4 Trusted Hardware . 20

2.4.1 Secure Coprocessor . 20

2.4.2 Trusted Platform Module . 21

2.4.3 Isolated Execution Environment 22

2.5 Data Repositories and Frameworks for Secure Computation 29

2.5.1 Secure Data Repositories . 29

2.5.2 Frameworks for Trustworthy Computation 31

2.5.3 Discussion . 32

2.6 Summary and Discussion . 32

3 Protocols for Isolated Searchable Encryption 35

3.1 Architecture and System Model . 36

3.2 Use Cases . 38

3.3 Definitions and Tools . 39

3.4 BISEN: Boolean Isolated Searchable Encryption 40

3.4.1 Protocols for Text Search . 41

3.4.2 Security Analysis . 45

3.4.3 Extending BISEN for Ranked Retrieval 47

3.4.4 Discussion . 49

3.5 VISEN: Visual Isolated Searchable Encryption 50

3.5.1 Protocol for Content-Based Image Retrieval 51

3.5.2 Security Analysis . 59

3.5.3 Discussion . 60

3.6 MISEN: Multimodal Isolated Searchable Encryption 61

4 Protocol Implementation 63

4.1 Framework for Intel SGX . 63

4.1.1 Framework Initialisation . 65

4.1.2 Framework API . 65

4.1.3 Utility Libraries . 66

4.2 Implementing the Client and Storage Service 68

4.3 Common Implementation Details . 69

4.4 Implementation of BISEN . 69

4.5 Implementation of VISEN . 70

4.6 Implementation of MISEN . 70

5 Experimental Evaluation 73

5.1 Experimental Test Bench . 73

5.2 BISEN Evaluation . 74

5.2.1 Performance of Individual Participants 74

xvi

CONTENTS

5.2.2 Performance Regarding Type of Query 75

5.2.3 Impact of IEE-specific Operations during Search 76

5.2.4 Performance of Negation Queries 77

5.2.5 Performance Regarding Selectivity 77

5.2.6 Evaluating Different Storage Solutions 78

5.2.7 Impact of Scoring Algorithms during Search 79

5.2.8 Comparison with the State-of-the-Art 81

5.2.9 Discussion . 81

5.3 VISEN Evaluation . 82

5.3.1 Evaluating the Codebook Generation Phase 82

5.3.2 Evaluating the Operating Phase . 85

5.3.3 Comparison with the State-of-the-Art 89

5.3.4 Discussion . 89

5.4 MISEN Evaluation . 90

6 Conclusion 93

6.1 Conclusion . 93

6.2 Future Work . 94

Bibliography 97

A Appendix: Framework Libraries API 111

B Appendix: BISEN Evaluation Queries 113

xvii

List of Figures

2.1 Encryption algorithm of Song et al. (2000) . 15

2.2 Search algorithm of Song et al. (2000) . 16

2.3 Intel SGX attestation mechanism . 26

2.4 ARM TrustZone architecture . 27

2.5 CryptDB architecture . 29

3.1 System architecture . 37

3.2 Simplified architecture of MISEN . 62

4.1 Framework architecture . 64

5.1 Performance comparison of each participant in BISEN protocols 75

5.2 Impact of the Boolean formula and query size on the BISEN Search protocol . 76

5.3 Impact of query selectivity on performance of the BISEN Search protocol . . 78

5.4 Comparison of BISEN performance with different Storage Service solutions . 78

5.5 Impact of accessed entries in the scalability of BISEN Storage solutions 79

5.6 Latency of IEE Search processing in exact-match and ranked versions of BISEN 80

5.7 Precision of VISEN under different codebook generation approaches 83

5.8 Precision of VISEN under varying number of feature vectors per image . . . 84

5.9 Performance comparison of each participant in VISEN protocols 86

5.10 Performance of VISEN under varying number of clusters 87

5.11 Performance of VISEN under varying number of feature vectors per image . 87

5.12 Effect of varying the number of feature vectors per image on VISEN Search
performance and Storage . 88

5.13 Performance comparison of each participant in MISEN protocols 90

xix

List of Tables

2.1 Leakage comparison of the Searchable Symmetric Encryption (SSE) state of

the art. 19

2.2 Subset of the instruction set from Intel SGX 25

5.1 Performance of negations in the BISEN Search protocol 77

5.2 Performance comparison between BISEN and IEX-2LEV 81

5.3 Performance of VISEN training with varying number of clusters 84

5.4 Performance of VISEN training with varying number of feature vectors per

image . 85

5.5 Performance comparison between VISEN and MuSE 89

xxi

Listings

2.1 Sample of an Enclave Definition Language (EDL) file 23

4.1 Framework API for application-specific code 66

4.2 IEE library os_util . 67

A.1 IEE library iee_util . 111

A.2 IEE library iee_crypto . 112

A.3 Outside library outside_util . 112

A.4 Secure channel primitives library . 112

xxiii

List of Algorithms

3.1 BISEN Setup protocol . 41

3.2 BISEN Update protocol . 42

3.3 BISEN Search protocol . 44

3.4 BISEN Search document scoring . 48

3.5 VISEN Setup protocol . 52

3.6 VISEN codebook generation k-means protocol 54

3.7 VISEN codebook generation online k-means protocol 54

3.8 VISEN codebook generation LSH protocol 55

3.9 VISEN Add protocol . 56

3.10 VISEN Remove protocol . 57

3.11 VISEN Search protocol . 58

xxv

Glossary

ECALL Enclave Call. A call from an untrusted application into an eclave in the

Intel Software Guard Extensions (SGX) architecture.

EPID Enhanced Privacy ID. A group signature scheme used to remotely attest

enclaves from the Intel Software Guard Extensions (SGX) architecture.

HMAC Keyed-Hash Message Authenticated Code. Similarly to a MAC, an

HMAC allows for integrity and authenticity verification of a message.

It can also be used as a pseudo-random function.

MAC Message Authenticated Code. A piece of information used to attest the

integrity and authenticity of a message, guaranteeing it has not been

tampered.

OCALL Outside Call. A call from inside an eclave to an untrusted function in

the Intel Software Guard Extensions (SGX) architecture.

xxvii

Acronyms

BoVW Bag of Visual Words.

CBIR Content-Based Image Retrieval.

CNF Conjunctive Normal Form.

DBMS Database Management System.

DNF Disjunctive Normal Form.

DPE Distance Preserving Encodings.

EDL Enclave Definition Language.

EPC Enclave Protected Cache.

FHE Fully-Homomorphic Encryption.

IaaS Infrastructure as a Service.

IEE Isolated Execution Environment.

IND-CKA2 Indistinguishability under Adaptive Chosen Keyword Attacks.

IND-CKA1 Indistinguishability under Non-Adaptive Chosen Keyword Attacks.

IND-OCPA Indistinguishability under Ordered Chosen Plaintext Attacks.

IND-CPA Indistinguishability under Chosen Plaintext Attacks.

ISR Inverse Square Rank.

LSH Locality-Sensitive Hashing.

mAP Mean Average Precision.

MIE Multimodal Indexable Encryption.

MMU Memory Management Unit.

mOPE Mutable Order-Preserving Encoding.

xxix

ACRONYMS

OPE Order-Preserving Encryption.

ORAM Oblivious RAM.

ORE Order-Revealing Encryption.

PCR Platform Configuration Register.

PHE Partially-Homomorphic Encryption.

PRF Pseudo-Random Function.

PRM Processor Reserved Memory.

SGX Software Guard Extensions.

SMC Secure Monitor Call.

SSE Searchable Symmetric Encryption.

SWHE Somewhat-Homomorphic Encryption.

TCB Trusted Computing Base.

TOCTOU Time Of Check to Time Of Use.

TPM Trusted Platform Module.

UDF User-Defined Function.

xxx

C
h
a
p
t
e
r

1
Introduction

Cloud computing has become a computing standard in recent years, and the trend to

outsource data and its processing to third-party servers is expected to keep growing

(Columbus, 2017b). However, by transferring sensitive and private data to the Cloud,

users and organisations effectively transfer the ownership of their data to the provider

(Chow et al., 2009), all assumptions about their data’s security and privacy now being

given solely by that provider.

1.1 Context and Motivation

In 2018 more than 96% of IT professionals reported using Cloud services (RightScale,

2018). In fact, Cloud computing presents itself with several advantages against the con-

ventional data centre model: elasticity (the capacity to scale resources according to de-

mand), the pay-as-you-go model, the elimination of concerns relative to maintenance,

high availability, and cheap geo-replication (Armbrust et al., 2010). The growth and pop-

ularity of Cloud-based services is also evident when considering individual users; Gmail

alone reported more than a billion users in 2016 (Lardinois, 2016). Consumer Cloud

storage services, like iCloud or Dropbox, have also surpassed the half a billion users mark

(Apple Insider, 2016; Darrow, 2016).

The growth of media sharing over the internet (Fung, 2015) has been one of the key

factors for the success of Cloud computing. With mobile devices dominating Internet traf-

fic (Titcomb, 2016), the advantages of Cloud are more evident, as it bridges the resource

constraints of such devices, and allows for efficient and cheap storage and processing of

data. In the future, end users will increasingly produce more data: in 2025, the world

will have produced 163 zettabytes of data, a third of which will be image and video data

(Reinsel et al., 2017). Moreover, the amount of sensitive data (e.g., medical records and

1

CHAPTER 1. INTRODUCTION

applications) is expected to reach 15% of all data. Having large volumes of outsourced

data also brings the need for supporting efficient searches, allowing users to retrieve

relevant information while keeping it remotely on the Cloud.

1.2 Problem

Although Cloud computing keeps growing, its users are aware and cite security guaran-

tees as their main concern when adopting such services (Columbus, 2017a; Meeker, 2017).

These concerns are not without a cause; in recent years, several cases of privacy breaches

have surfaced. Some of these are intended company policies, such as using data assumed

private for advertising purposes (Rushe, 2013); other breaches may also be the result

of government-ordered surveillance programs (Cook, 2016; Greenwald and MacAskill,

2013). These kind of leaks affect not only companies, but also individual users (Hough,

2010; Lewis, 2014; Turner, 2016). Particularly sensitive information, like health records,

have also been the subject of several attacks (HCA News, 2018; O’Hara, 2017; Roston,

2017); with the recent growth in personal health apps usage (Khalaf, 2014; Meeker, 2017),

the need for data security increases. In light of these concerns and news, Cloud services

present themselves as a double-edged sword for its users: how to leverage the advantages
of the Cloud without compromising privacy and security?

Classical approaches for securing data on untrusted servers usually relied on an En-
cryption at Rest strategy (MongoDB, 2018; MySQL, 2018). Data was stored encrypted

on the server, and all update and search operations required data to be downloaded, de-

crypted, and computed at the client. Such strategies, however, are not only inefficient,

but also require high network and client-side computational overheads.

Throughout the years, techniques such as cryptographic file systems tried to allow

some computations to be made over (possibly remote) encrypted data (Goh et al., 2003;

Wright et al., 2003). Yet, these approaches are limited to traditional file I/O, and, there-

fore, do not allow operations such as searches over that data.

The issue can be described as that of computing over encrypted data. If data stored

remotely can remain encrypted and queried without performance penalties, then Cloud

services can be used without loss of privacy. Homomorphic encryption (Gentry, 2009;

Rivest et al., 1978b), for example, allows for arbitrary computations over encrypted data

– it supports searching with high query expressiveness; moreover, it also provides strong

security guarantees. However, current solutions still have low performance and are, there-

fore, far from practical. Other proposals, like property-preserving encryption (Pandey

and Rouselakis, 2012), provide different sets of operations over encrypted data, but usu-

ally leak more information to the Cloud provider than desirable.

The field of Searchable Symmetric Encryption (SSE) (Curtmola et al., 2006; Song

et al., 2000) appears as a novel and more interesting approach, as it allows for some

computations over encrypted data, while being practical and providing better security

guarantees than property-preserving approaches. The field has been a hot research topic

2

1.3. OBJECTIVES

in the last years, with proposals trying to address security issues (Stefanov et al., 2014)

and improving performance (Cash et al., 2014; Ferreira et al., 2017). Query expressiveness

has also been an issue of note, as newer solutions address not only queries over text

data, but also over images and multimodal data (i.e. data with multiple media formats

simultaneously) (Ferreira et al., 2015; Ferreira et al., 2017).

All the aforementioned solutions are software-based. They usually consider a honest-

but-curious adversary, which observes all data and computations on the Cloud server

without interfering; such model implies that sensitive data can never be decrypted on

the server. In property-preserving and SSE schemes, this can imply several rounds of

communication between clients and servers, incurring in network and computational

overheads. However, novel trusted hardware solutions based on remote attestation, such

as Intel SGX (Hoekstra et al., 2013; McKeen et al., 2013) and ARM TrustZone (ARM,

2009), appear as way to execute programs in untrusted environments, while keeping full

confidentiality and integrity guarantees. The formal definition of an IEE (Barbosa et al.,

2016), whereby programs can be executed on remote servers with security guarantees,

facilitates a more comprehensive security analysis of systems comprising hardware-based

solutions. Approaches where SSE schemes include trusted hardware are still few (Fuhry

et al., 2017), and by leveraging a trusted environment in a Cloud setting, one can reduce

the overhead of network communications, as computations formerly done by the client

can now be executed remotely.

1.3 Objectives

Current SSE schemes are still a trade-off between three dimensions: security, query ex-

pressiveness, and performance. While some provide better security guarantees, they

usually relax performance guarantees (Bost et al., 2017); some schemes provide better

usability and query expressiveness, but may compromise security (Kamara et al., 2012).

In this thesis we design, implement and evaluate novel SSE schemes using trusted

hardware solutions. We tackle current SSE limitations with this new approach, namely

by providing better security guarantees (through the use of secure hardware), improving

query expressiveness (by supporting Boolean queries over text data, similarity queries

over images, and queries over multimodal data), which allows us to provide richer types

of operations, and offering an efficient and practical solution (by securely leveraging

Cloud resources). More broadly, we aim at answering the following question:

How can we improve SSE solutions to provide better security guarantees, while also being
practical and efficient?

Our objective is to design SSE schemes that are practical and can be validated ex-

perimentally. For this purpose, we implemented all contributions, assessing their perfor-

mance and security. Our final objective is to provide a multimodal framework for efficient

and secure simultaneous text and image querying.

3

CHAPTER 1. INTRODUCTION

1.4 Main Contributions

We can summarise the contributions of this thesis as follows:

• I – BISEN A SSE scheme for Boolean ranked querying, supporting queries with an

arbitrary number of conjunctions, disjunctions and negations, over a database of

text documents.

• II – VISEN A SSE scheme for Content-Based Image Retrieval (CBIR) over image

databases.

• III – MISEN A SSE scheme gathering the previous solutions in a multimodal frame-

work, supporting privacy-enhanced queries over different types of data.

All three contributions are based on a common Cloud architecture for secure execu-

tion of our SSE protocols. We also developed a practical Framework to help abstract Intel

SGX and provide an IEE-like interface, which we used to implement our schemes. All of

our prototypes are made available as open-source software.

1.5 Publications

Two publications have been made in the context of this thesis:

• BISEN: Efficient Boolean Searchable Symmetric Encryption with Verifiability and Mini-
mal Leakage. Technical Report.

Bernardo Ferreira, Bernardo Portela, Tiago Oliveira, Guilherme Borges, Henrique

Domingos, and João Leitão.

Cryptology ePrint Archive, Report 2018/588. 2018.

Available on https://eprint.iacr.org/2018/588.

• Pesquisa Booleana Cifrada usando Hardware Confiável.
Guilherme Borges, João Leitão, Henrique Domingos, and Bernardo Ferreira.

Proceedings of the 10th Simpósio de Informática (INForum’18). Coimbra, Portugal.

2018.

Available on https://novasys.di.fct.unl.pt/~gb/papers/inforum18.pdf.

4

https://eprint.iacr.org/2018/588
https://novasys.di.fct.unl.pt/~gb/papers/inforum18.pdf

1.6. THESIS ORGANISATION

1.6 Thesis Organisation

This thesis is organised as follows:

Chapter 2 analyses the state-of-the-art and the related work relevant for our contribu-

tions, mainly in the areas of Searchable Symmetric Encryption (SSE) and trusted

hardware.

Chapter 3 presents and analyses our three schemes and their protocols, providing their

security analysis and discussing possible improvements.

Chapter 4 describes our approach for the implementation of our schemes, together with

a Framework developed for generic Isolated Execution Environment (IEE) compu-

tation.

Chapter 5 presents the experimental evaluation for our schemes.

Chapter 6 concludes the thesis and presents future work directions.

5

C
h
a
p
t
e
r

2
Related Work

To provide context for this thesis we intend to analyse and discuss current SSE schemes,

together with novel trusted hardware approaches to allow computation outsourcing to

remote providers. Our analysis of the state-of-the-art will be divided between four main

areas: computations over encrypted data, with an emphasis on Searchable Symmetric En-

cryption (SSE), existing trusted hardware solutions, techniques for information retrieval,

and an overview of existing solutions which apply principles of the previous areas.

This chapter is organised as follows: Section 2.1 presents different cryptographic

mechanisms and approaches to perform computations over encrypted data; on Section 2.2

we present some information retrieval techniques and concepts relevant for this thesis;

Section 2.3 analyses and discusses the state-of-the-art on searchable encryption; in Sec-

tion 2.4 we discuss different approaches on trusted hardware; Section 2.5 presents ex-

isting prototypes and frameworks that use principles and techniques referred to in the

previous sections; finally, in Section 2.6 we discuss and summarise the state-of-the-art

presented during the chapter.

2.1 Computing over Encrypted Data

Computing over encrypted data has been a topic of research since 1978 (Rivest et al.,

1978b). With the recent advent of Cloud-based technologies, it has become an intense

field of research, due to the security concerns raised by outsourcing sensitive data to

third-party servers. In this section we present two different categories of encryption

schemes particularly useful in the context of untrusted servers: property-preserving and

homomorphic encryption.

7

CHAPTER 2. RELATED WORK

2.1.1 Property-Preserving Encryption

Property-preserving encryption schemes are encryption schemes whose ciphertext retains

a given property or set of properties of their plaintext, and thus such properties can be

publicly inferred (Pandey and Rouselakis, 2012). The two most usual relations those

schemes preserve are either determinism or order; allowing arbitrary computations can

be achieved by composing different schemes or through more expensive primitives like

Fully-Homomorphic Encryption (FHE) (see Section 2.1.2).

Deterministic Encryption Deterministic properties are shown by any deterministic

encryption scheme (Bellare et al., 2008), e.g. AES in ECB mode – with the same plaintext

and key, the same ciphertext is generated. This allows equality queries over encrypted

data, which can be particularly useful in encrypted databases (Popa et al., 2011). First

definitions on deterministic encryption were introduced by Bellare et al. (2007), who

proposed asymmetric encryption-based schemes, and noted that, by having the same

plaintext words generating the same ciphertexts, word frequency would be leaked to the

adversary. Nevertheless, if word entropy is high, i.e. no words are repeated throughout

the datastore, deterministic encryption does not leak such information.

Bellare et al. (2007) also proposed an application of their schemes in untrusted storage

(Efficient Searchable Encryption – ESE), allowing for efficient (sub-linear) performance

by using auxiliary tree-based data structures.

Order-Preserving Encryption Order-Preserving Encryption (OPE) was first proposed

by Agrawal et al. (2004) and retains the numeric ordering of plaintexts when encrypted1,

i.e. a function f is order-preserving if, for any two numeric inputs a,b,

a < b ⇐⇒ f (a) < f (b)

and an encryption scheme is order-preserving if its encryption algorithm is an order-

preserving function (Boldyreva et al., 2009).

Boldyreva et al. (2009) were the first to define and formally analyse OPE schemes,

proving that they did not provide Indistinguishability under Chosen Plaintext Attacks

(IND-CPA), as an adversary can establish order between two generated ciphertexts. The

same work also proposed the notion of Indistinguishability under Ordered Chosen Plain-

text Attacks (IND-OCPA), defining that minimal leakage was the ordering of ciphertexts.

Later, Boldyreva and Chenette (2011) improved upon the previous definition, as it also

leaked the distance between plaintexts and their high-order bits. Popa et al. (2013)

achieved ideal security (IND-OCPA) with Mutable Order-Preserving Encoding (mOPE),

a scheme requiring existing ciphertexts to be mutated upon new inserts on a datastore;

the main insight of mOPE is that practical OPE needs both statefulness and mutability

of ciphertexts.
1In fact, OPE is also inherently deterministic, but in this section we will refer to it as a special case of

determinism.

8

2.1. COMPUTING OVER ENCRYPTED DATA

Florian Kerschbaum (2015) proposed an OPE scheme that preserved order but hided

equality, thus hiding keyword frequency and increasing security. The scheme, however,

introduced a margin of error in some queries, apart from requiring client storage.

A related approach is that of Order-Revealing Encryption (ORE), proposed by Boneh

et al. (2015). Conversely to OPE, where ciphertext values are numeric, and thus compa-

rable directly, in ORE the values are comparable through a known function which takes

two ciphertexts as input, outputting its plaintext ordering, also achieving IND-OCPA.

ORE is at least as secure as OPE (Chenette et al., 2016); the fact that order is only revealed

when the function is passed to the server further increases such guarantees.

2.1.2 Homomorphic Encryption

Encryption schemes are homomorphic if they preserve additive or multiplicative prop-

erties of the plaintext while performing such operations over encrypted data. The first

homomorphic encryption schemes were proposed by Rivest et al. (1978b), and are based

on the multiplicative property of the RSA algorithm (Rivest et al., 1978a).

Homomorphic encryption schemes can be divided into Fully-Homomorphic Encryp-

tion (FHE) schemes, which preserve both additive and multiplicative properties of the

plaintext in its ciphertext (thus allowing for any arbitrary computation over encrypted

data), and Partially-Homomorphic Encryption (PHE) schemes, which only preserve a

given property of the original plaintext.

Partially-Homomorphic Encryption Some encryption schemes can be considered partially-

homomorphic, as their ciphertext preserves either additive or multiplicative properties of

the plaintext. Unpadded RSA (Rivest et al., 1978a) and ElGamal (ElGamal, 1985) preserve

multiplicative properties, while Paillier (Paillier, 1999) is additively homomorphic.

The Paillier algorithm is a public-key scheme that shows homomorphic additive prop-

erties. To perform encryption over a value v, a public key (n,g) and a random number

r are generated, such that 0 ≤ v < n and 0 ≤ r < n; the ciphertext is generated from the

plaintext2 (considering a public key pk = (n,g) and a private key sk3) by

Enc(v,pk) = gv · rn mod n2

The addition property is shown by

Dec(Enc(v1,pk) ·Enc(v2,pk) mod n2) = v1 + v2 mod n

Since a multiplication operation can be performed as a set of additions, the algorithm

also shows the multiplicative property with

Dec(Enc(v1,pk)v2 mod n2, sk) = v1 · v2 mod n

2The previous restrictions limit Paillier-encrypted messages to a message space of a maximum of n.
3The private key is generated together with the public key, whose parameters and generation algorithm

we omit for brevity.

9

CHAPTER 2. RELATED WORK

On the other hand, the ElGamal (ElGamal, 1985) cryptosystem, for example, preserves

multiplicative properties, and is based on the Diffie-Hellman key exchange algorithm.

Like RSA, ElGamal shows the property

Dec(Enc(v1,pk) ·Enc(v2,pk), sk) = v1 · v2

Somewhat-Homomorphic Encryption Somewhat-Homomorphic Encryption (SWHE)

schemes allow for arbitrary computations up to a certain depth, e.g. by allowing arbitrary

additions and one multiplication, of which the construction proposed by Boneh et al.

(2005), based on bilinear maps, is an example.

Fully-Homomorphic Encryption The first practical FHE scheme was proposed in 2009

by Craig Gentry (2009) and, by supporting both additive and multiplicative properties,

it allows for any arbitrary computation over encrypted data, as all computations can be

reduced to Boolean and arithmetic operations. By leveraging SWHE schemes (Boneh

et al., 2005), Craig Gentry proposed a scheme capable of evaluating its own decryption

function, which allows for recursive embedding of ciphertexts, each corresponding to

an operation over encrypted data. Implementations still proved unpractical (Gentry and

Halevi, 2011); more recently, schemes for AES encryption using FHE have been proposed

(Gentry and Halevi, 2011) and, although being more practical, are still much slower than

their unencrypted counterparts.

2.1.3 Oblivious RAM

Oblivious RAM (ORAM), introduced by Goldreich (1987) and Goldreich and Ostrovsky

(1996), is based on the concept of oblivious Turing machines – a Turing machine is oblivi-

ous if, for two different inputs of the same length, its tape movements are indistinguish-

able from each other. As such, ORAM conceals memory access patterns by shuffling and

continuously re-encrypting data on memory, fitting the untrusted server model, where

the server provider can probe data buses on their machines to perform statistical and

inference attacks.

Recent approaches to ORAM design have been motivated by the emergence of Cloud

computing, and either try to improve ORAM’s performance (Stefanov et al., 2012; Ste-

fanov et al., 2013), or consider subsets of memory – data structures – aiming at providing

full security only for such structures (Wang et al., 2014). Stefanov et al. (2013) proposed

Path ORAM, which sees memory as data blocks, organised in a binary tree; when a block

is accessed, its position in memory is changed, and thus an attacker can only infer how

many accesses to memory are made, but not which parts are more accessed. However,

to this date, all proposed ORAM schemes are still far from being practical in real-world

usage.

10

2.2. INFORMATION RETRIEVAL TECHNIQUES

2.1.4 Discussion

On the one hand, property-preserving encryption is usually practical and relies on widely-

known algorithms, allowing for some computations over encrypted data, like equality

(deterministic schemes) or aggregation operations (OPE schemes), which are particularly

useful in database systems (Popa et al., 2011). Yet, by their own design, they inherently

leak information about their data. When used on a datastore, these schemes are also

susceptible to inference attacks over time – by performing operations and adding records,

they allow an adversary to progressively learn information about the respective plaintext

data. On the other hand, homomorphic encryption schemes, while providing probabilis-

tic (or IND-CPA) security4, are still far from practical (FHE) or provide little usability

(PHE), preserving only a single arithmetic property. Work on ORAM is still mainly the-

oretical and, although a promising path for full security in Cloud applications, it still

incurs in performance penalties of several orders of magnitude (Wang et al., 2014). There-

fore, the mentioned schemes are usually a trade-off between performance, security, and

query expressiveness.

2.2 Information Retrieval Techniques

Information retrieval techniques prove useful when searching over large quantities of

data, particularly on remote datastores, where the cost of data transferral is high, e.g. due

to latency. The most basic technique is exact-match searching, and can be applied to

several media types, in particular text. Even so, more advanced techniques might prove

more useful: in very large datasets, exact-match queries can return a large subset of doc-

uments; metrics like term frequency (number of occurrences of a given keyword in a

document) prove useful to attribute scores to query results, and can be applied through

ranking functions, like TF–IDF (Jones, 1972), BM25 (Manning et al., 2008, Section 11.4.3),

and the Vector Space Model (Salton et al., 1975). These techniques allow results to be

ordered by ranking, returning only the most relevant ones. In this section we will discuss

text retrieval schemes (Section 2.2.1), image retrieval schemes and complementing clus-

tering techniques (Section 2.2.2), and different metrics for information retrieval schemes

(Section 2.2.3), finalising with a discussion of these different techniques (Section 2.2.4).

2.2.1 Text Retrieval

Text data is a prime example for information retrieval schemes (Manning et al., 2008,

Section 1). As such, to improve query performance over large text datastores, different

indexing and querying techniques have been proposed. A particular structure is the in-

verted index, which consists of a dictionary mapping keywords to documents identifiers

4Homomorphic encryption schemes are malleable and, therefore, do not provide security against chosen
ciphertext attacks (Katz and Lindell, 2007, p. 104).

11

CHAPTER 2. RELATED WORK

containing them (Zobel and Moffat, 2006). With this index, metrics like document fre-

quency can be easily inferred by counting the document ids of a keyword, while metrics

like term frequency might need auxiliary data structures. More advanced improvements

on index efficiency and query result relevancy can be achieved by preprocessing docu-

ments, which include the removal of stop words (common but irrelevant words like and
or the), text stemming (storing only the root of the word in the index) (Bassil, 2012), and

others.

2.2.2 Image Retrieval and Feature Clustering

Different approaches for image retrieval have been proposed. One of the most interesting

ones is Content-Based Image Retrieval (CBIR) (Kato, 1992), as it allows querying by

example (similarity), a technique close to those used by many search engines nowadays

(Jing et al., 2015; Thomas, 2017, pp. 36–37). However, other such methods exist, like

searching by text annotations, added either manually or automatically (Jeon et al., 2003).

To index and store images on a datastore, one can consider either global or local

features (Mikolajczyk and Tuytelaars, 2009, pp. 939–943), which are stored in data

structures known as feature vectors. Global features produce a single vector for image

characterisation, an example of which are colour histograms (Swain and Ballard, 1991).

Local features apply for a specific part of the image, and are usually defined by measuring

changes in colour, intensity, or texture of an image.

Feature vector extraction from an image usually yields a large quantity of highly di-

mensional data (algorithms such as SURF (Bay et al., 2008) or SIFT (Lowe, 2004) produce

vectors with 64 and 128 dimensions, respectively); searching over such data becomes im-

practical. One of the first approaches to allow for efficient image data searching was the

Bag of Visual Words (BoVW) (Nistér and Stewénius, 2006), which constructed a tree of

feature vectors based on a given image training dataset. Similar feature vectors extracted

from the training dataset would be grouped into the same tree nodes, forming groups

of similar feature vectors. Image vectors would be added to the most similar node in

the tree, and searches would be done similarly by comparison with existing groups. By

classifying feature vectors into groups, or bags, image data can then be treated similarly

to text data, where each bag is akin to a keyword, enabling images to be stored by using

indexes. This technique can then be combined with approaches like the inverted index

(Zobel and Moffat, 2006) to associate features to image documents.

Construction of the feature vector tree can more broadly be described as a clustering

technique. Several image retrieval schemes which use such techniques have been pro-

posed (Ferreira et al., 2015; Jegou et al., 2008; Liu et al., 2014b), usually resorting to

unsupervised machine learning algorithms, such as k-means (Lloyd, 1982; MacQueen,

1967). In the remainder of the section we discuss two approaches for the k-means algo-

rithm, and alternative clustering techniques, such as Locality-Sensitive Hashing (LSH) or

binarisation.

12

2.2. INFORMATION RETRIEVAL TECHNIQUES

Traditional K-means The traditional k-means algorithm (Lloyd, 1982) takes a training

dataset as input, and outputs a codebook of k centroids, i.e. a set of clustered feature

vectors. When feature vectors are added to the datastore they are compared to the code-

book centroids, and are clustered into the closest one; thus, each vector can be seen as a

keyword from a small group of k keywords.

K-means is composed of two phases: seeding and updating (Manning et al., 2008,

Section 16.4). In the seeding phase, cluster centroids are chosen randomly from the

dataset; during the update phase, clusters are adjusted to better fit the training dataset

vectors, and the latter are adjusted into new clusters if needed. At the end of the algorithm,

distances between each vector and their cluster centre should be as minimal as possible.

Online K-means The online version of the k-means algorithm (MacQueen, 1967) works

similarly to the traditional one, but only visiting each training vector once. This approach

is interesting for resource-constrained settings, or Big Data applications and scenarios,

as vectors do not need to be stored in memory or disc. However, this method is more

sensitive to the order the vectors are presented in, and thus can be less precise. Some

improvements to this approach have been proposed recently, and apply techniques such

as block processing – perform traditional k-means of smaller blocks, and online k-means

of the resulting centroids (Aaron et al., 2014), adding clusters as needed during each

iteration (Bagirov et al., 2011), varying k dynamically to improve precision (Aaron et al.,

2014), or weighting clusters according to their relevance in each iteration (Bagirov et al.,

2011).

Locality-Sensitive Hashing Locality-Sensitive Hashing (LSH) is a family of hash func-

tions used to convert multi-dimensional data into a scalar value. Contrarily to cryp-

tographic hash functions, LSH’s objective is to produce the same hash value for similar

vectors; collisions of similar values are therefore desirable. Given its property of grouping

similar vectors together, LSH can be used as a clustering algorithm.

Voronoi-based LSH (Loi et al., 2013), for example, works by generating k random

feature vectors following a normal distribution; these vectors are then used as cluster

centroids. This technique has the main advantage of not requiring a training step, which

can be computationally expensive.

2.2.3 Result Scoring and Evaluation

Improving search results usually involves document ranking functions, such as TF–IDF
(Jones, 1972). This function combines Term Frequency with Inverse Document Frequency,

taking into account the frequency of a keyword not only on the document, but on the

whole datastore. Thus, it privileges occurrences of rare keywords and relegates more pop-

ular ones. Term Frequency is usually the frequency of a searched keyword in a document,

13

CHAPTER 2. RELATED WORK

while Inverse Document Frequency for a keyword w is obtained by calculating

IDF(w) = log
N
f

where N is the total number of documents in the datastore, and f the number of docu-

ments containing w (i.e., its datastore document frequency).

To assess and evaluate information retrieval systems some measures have been pro-

posed, of which we highlight precision and recall (Teufel, 2007, Chapter 3). Precision

refers to the fraction of documents, retrieved by a query, that are relevant to that search.

Recall, on the other hand, is the fraction of relevant documents for a given query that are

effectively retrieved from the complete datastore. A single metric can be obtained with

Mean Average Precision (mAP) (Manning et al., 2008, p. 147), which averages precision

over a set of queries. While these metrics are not relevant for exact-match searches, they

can prove a valuable tool for the assessment of systems when performing ranked and

similarity queries.

To account for multimodal systems, and combine different types of ranking functions,

rank fusion metrics have been proposed. These apply after each ranking engine is exe-

cuted, and combines their scores to produce a unified one. One of these metric is Inverse

Square Rank (ISR) (Mourão et al., 2013), which is defined as

ISR(d) = f ∗
f∑
e=1

1
s(e,d)2

where f is the document frequency of d across all engine results and s(e,d) is the score of

document d on an engine e.

2.2.4 Discussion

Nowadays, the field of information retrieval developed many different techniques and

schemes for efficient querying over large datastores, with an emphasis on the relevancy

of responses, and support for different media types. Many of these techniques do not

take security concerns into account, which may curb its adoption in real-world scenarios.

Some SSE schemes have already adopted information retrieval techniques, albeit not

always together with performance concerns. By merging techniques from both areas,

better, more practical and secure schemes, can be developed.

2.3 Searchable Symmetric Encryption

Searchable Symmetric Encryption (SSE) aims to provide efficient searches on untrusted

servers, while preserving security guarantees and having significant query expressiveness.

It was first proposed by Song et al. (2000), and considered the untrusted server model.

This server was a text document storage (each document seen as a set of keywords), and

14

2.3. SEARCHABLE SYMMETRIC ENCRYPTION

WiWi-1 Wi+1… …

Li Ri

Ek(Wi)

DET
Encryption

Si
PRFKi

(Si)PRFk’’(i)

PRFk’(Li) = Ki

⊕ Ciphertext

Figure 2.1: SSE encryption algorithm of Song et al. (2000).

the scheme achieved linear performance in regards to storage size5. Significant improve-

ments over SSE constructions were proposed by Curtmola et al. (2006), while in recent

years dynamic SSE was proposed (Kamara et al., 2012). In this section we will analyse

the main contributions to this field of research, while detailing practical applications of

SSE for Boolean text queries in Section 2.3.1, for ranked retrieval in Section 2.3.2, and for

image data in Section 2.3.3, discussing the state-of-the-art in Section 2.3.4.

Origins The original scheme for SSE by Song et al. (2000) provided algorithms for

encryption and search over text data. In Figure 2.1 we present the complete version of

the encryption algorithm: each word Wi (at position i) of the document is encrypted

separately with a deterministic scheme and key k; then, the resulting ciphertext Ek(Wi) is

split in two parts, Li and Ri . At the same time, a Pseudo-Random Function (PRF) acting

as a stream cipher generates a random string of bytes Si with key k′′, dependant on the

position of the keyword. Li from the ciphertext is used to generate a key Ki , used in a

PRF that takes Si as input, and whose output is appended to it. Then, the ciphertext Li |Ri
is XORed with Si |P RFKi (Si).

To perform a search, as shown in Figure 2.2, the client starts by encrypting the desired

keyword in a manner similar to the encryption algorithm, obtaining both Ek(K) and Kk ,

which are then sent to the server6. The server then iterates over all encrypted keywords,

performing a XOR with the received Ek(K); this recovers the intermediate step of the

encryption phase. Then, the right side of the XORed ciphertext is compared with Kk sent

from the client; if it is equal, then the searched keyword was found.

5In the remainder of this section, we will refer to performance as the relation between search latency
and storage size, except where otherwise noted.

6These client tokens were later designated as trapdoors in the literature.

15

CHAPTER 2. RELATED WORK

K

Lk Rk

Ek(K)

DET
Encryption

PRFk’(Lk) = Kk

a Client side.

CiCi-1 Ci+1… …

Ek(K)

⊕ Si PRFKi(Si)

Kk

=?

b Server side. Dashed boxes represent information
sent from the client.

Figure 2.2: SSE search algorithm of Song et al. (2000).

This scheme guarantees IND-CPA, which means that an adversary cannot distinguish

two entries in the storage, even by generating new entries and comparing them to pre-

existing ones (Bösch et al., 2014) – encrypted entries do not appear deterministic, as

they contain a source of randomness. The scheme leaks the position of keywords in the

document, thus being susceptible to statistical attacks, especially as more searches are

performed, which reveals keyword popularity.

Indexing and Security Guarantees Additional improvements and security guarantees

in SSE were introduced by Curtmola et al. (2006), who proposed the use of indexes to

achieve better performance (sub-linear searches) in SSE schemes. Furthermore, Curt-

mola et al. also provided the notion of Indistinguishability under Non-Adaptive and

Adaptive Chosen Keyword Attacks (IND-CKA1 and IND-CKA2, respectively). Both guar-

antee that only search patterns and its results are leaked, which is considered a strong

security definition (Bösch et al., 2014); non-adaptive adversaries have no knowledge of

previous searches, while adaptive ones do, the latter model corresponding to real-world

applications of SSE (Curtmola et al., 2006).

Albeit preserving the privacy of stored documents, SSE schemes can still leak search
and access patterns (Liu et al., 2014a). The former identifies whether a query was per-

formed before, while the latter which document identifiers are returned by a given query.

As time progresses, this leakage will accumulate, progressively revealing more about the

datastore’s content.

Dynamic SSE and State-of-the-Art Up to 2012, all proposed schemes with IND-CKA2

guarantees only supported static document storages; therefore no documents could be

added, updated or removed without rebuilding the whole storage. Kamara et al. (2012)

proposed a dynamic SSE scheme that allows these operations by adding new data struc-

tures that track such operations efficiently, while still keeping the same strong security

guarantees from Curtmola et al. (2006). However, it also introduced the notion of update

16

2.3. SEARCHABLE SYMMETRIC ENCRYPTION

leakage, by which an adversary can infer which inserted keywords already existed in the

datastore, and their respective document ids.

Cash et al. (2014) proposed a new scheme, based on an encrypted dictionary of pairs

(label,documentID), which is similar to the concept of an inverted index from the infor-

mation retrieval field (see Section 2.2.1). Labels are generated by combining a keyword

and a counter, stored by the client, indicating the number of documents containing that

keyword. This scheme was the first to have no update leakage and also presented sub-linear

performance.

Most of these schemes are designed for a single user scenario. Although some schemes

allow for a multi-user setting (Cao et al., 2014), these usually require a single user to gen-

erate trapdoors. Popa et al. (2014) proposed a scheme for multiple-keyword searches for

multiple users, yet, it was based on elliptic curve cryptography, which carries significant

performance penalties.

The notion of forward and backward privacy in SSE schemes is also important and was

introduced by Stefanov et al. (2014), who also proposed a scheme were the former was

addressed. Backward privacy requires searches to leak no information about previously

deleted keywords, while forward privacy entails that adding a document does not reveal

whether any of its keywords have been searched before. Forward privacy was formally de-

fined by Raphael Bost (2016) and further improved with definitions for backward privacy
in Bost et al. (2017) (where the authors proposed different schemes achieving both types

of privacy), as previous SSE literature only tackled the issue informally.

2.3.1 Boolean Queries

Most SSE schemes are designed for single-keyword searches over text data (Cash et al.,

2014; Curtmola et al., 2006; Song et al., 2000). The first scheme considering multiple-

keyword queries was proposed by Golle et al. (2004), and supported Boolean conjunctive

queries with linear performance. Cash et al. (2013) proposed a scheme supporting both

conjunctive and disjunctive queries, with sub-linear and linear performances, respec-

tively.

More recently, Kamara and Moataz (2017) proposed a solution supporting Conjunc-

tive Normal Form (CNF) queries with sub-linear performance regarding database size.

Their main construction, IEX-2LEV, is composed of encrypted dictionaries and multi-

maps. The scheme contains a global multi-map, mapping every existing keyword w to

its document identifiers, and local multi-maps for each of these keywords – an auxiliary

dictionary is used to map each of those keywords to their local multi-map. The local

multi-map for w then maps all keywords v that co-occur with w to the respective docu-

ment identifiers. Therefore, query performance becomes quadratic regarding its own size

(number of keywords per query), while it also requires quadratic storage in regards to

unique keywords. The current scheme trivially supports disjunctive queries; to perform

conjunctions, thus enabling CNF queries, several composite searches are performed, and

17

CHAPTER 2. RELATED WORK

the resulting sets of documents are intersected as needed.

2.3.2 Ranked Searching

Most SSE schemes are still focused on exact matches; on very-large datasets, however,

ranked searches provide a tool for obtaining only the top-ranking (and, therefore, more

meaningful) documents (Swaminathan et al., 2007). Wang et al. (2012) proposed the

first SSE scheme to allow ranked searches on single keywords; their scheme leveraged

OPE to order documents based on the frequency of searched keywords per document.

Ferreira and Domingos (2013) proposed a dynamic scheme to index text data using in-

verted indexes; the scheme used homomorphic encryption to store scoring data with each

keyword occurrence; searches would send encrypted ranking results to the client, which

then decrypted and sorted documents. Cao et al. (2014) proposed the first multi-keyword

ranked scheme, however, it carried large performance penalties for the client and leaked

search and frequency patterns. This scheme also required an essentially static datastore,

being unable to support dynamic updates, deletes and inserts.

2.3.3 Images

Privacy-preservation on image datastores has been considered in recent literature. Lu et

al. (2009) were the first to propose a privacy-preserving CBIR scheme; it used the Bag of

Visual Words (BoVW) method with an index for features that had to be generated and en-

crypted client-side (with schemes such as OPE), while searches would leverage properties

preserved by such schemes. While other initial proposals focused on privacy-preservation

for feature extraction algorithms, via techniques such as homomorphic encryption (Hsu

et al., 2012), the first practical solution for a privacy-preserving CBIR scheme on un-

trusted servers (IES–CBIR) was proposed by Ferreira et al. (2015). The scheme works by

separating images into different components; in IES–CBIR colour and texture informa-

tion. As texture is more relevant than colour in image recognition (Wang et al., 2001),

texture data is encrypted with a probabilistic scheme, which has stronger security guar-

antees than the deterministic encryption used for colour. In the server, data is indexed

according to colour information. To perform searches, users generate trapdoors based on

a querying image; the server extracts its colour information, performing a comparison

against the existing datastore.

Xia et al. (2016) proposed a scheme using feature vector extraction and LSH to cluster

image features; for searches it considered an index of feature vectors for linear comparison,

plus an extra LSH-based index for faster lookup.

More recently, Distance Preserving Encodings (DPE) have been proposed (Ferreira

et al., 2017) to allow data encoding with privacy guarantees for both sparse (text) and

dense (image, video, and sound) media types. DPE for dense media types is based on the

extraction of feature vectors from the plaintext object, and encoding them in a privacy-

preserving way; the resulting encodings preserve Hamming distance up to a threshold

18

2.3. SEARCHABLE SYMMETRIC ENCRYPTION

Schemes Access Search Update Frequency

Curtmola et al. (2006) x x n/a n/a
Cao et al. (2014) x x n/a x

Cash et al. (2014) x x – n/a
Ferreira et al. (2017) x x x x

(Homomorphic) Ferreira et al. (2018) x x – –

Table 2.1: Leakage comparison of the SSE state-of-the-art. ’x’ indicates patterns leaked
by a scheme, whereas ’n/a’ indicates that such leakage does not apply to the scheme. ’–’
indicates patterns not leaked.

given as parameter, i.e. distances bigger than such threshold are not preserved and, in

essence, information leakage can be controlled by the user when encrypting.

For sparse media types DPE is optimised – text is limited to a given subset of words

and, as such, searches can be limited to equality comparisons, for which a threshold of 0

is used. Achieving proximity searches for text can be obtained through techniques like

stemming, thus obtaining results not only for exact-matches, but also for words with the

same root.

As DPEs allow for privacy-preserving encodings, heavier operations, like dataset

training, can be outsourced to an untrusted server, through a Multimodal Indexable

Encryption (MIE) framework. MIE performs feature vector extraction and encoding on

the client-side, then training and indexing data on the server-side.

MuSE (Ferreira et al., 2018) uses SSE techniques to reduce leakage in multimodal

schemes, hiding document update patterns revealed in MIE; the authors further propose

using homomorphic encryption to hide document and keyword frequency.

2.3.4 Discussion

Current SSE schemes already provide some security guarantees; yet, many do not contem-

plate high query expressiveness, or have a high client-side overhead. The topic of security

has been approached with definitions such as backward and forward privacy. Nonetheless,

efficiently providing both backward and forward privacy without weakening one in detri-

ment of the other is still an open research field, which no solution fully addresses yet

(Bost et al., 2017). Moreover, the issue of leakage – minimising the amount of information

exposed to an untrusted server – is still being improved, as guaranteeing minimal leakage

in SSE implies no leakage apart from access leakage. The issue of verifiability – addressing

active adversaries – also remains largely unaddressed, as Cloud providers are assumed

honest-but-curious, i.e. do not tamper with data or computations. Table 2.1 presents a

comparison of leakage from schemes discussed in this section. While update leakage is

not present in more recent schemes, search patterns are still leaked by all current schemes.

Furthermore, hiding access patterns to memory is an issue that cannot be solved solely by

SSE techniques, requiring other methods such as ORAM.

19

CHAPTER 2. RELATED WORK

Some attacks on SSE have been proposed recently by exploring the inherent leakage

many schemes have. Cash et al. (2015) analysed the problem by performing statistical

attacks where the document set was varyingly known to the attacker; knowing the full

document set allowed to recover more than 80% of queries, whereas knowing only 70%

of the document set lowered the recovery rate to almost 0%.

To solve some of these problems, many SSE schemes imply client-side computations,

which can also increase communication overheads, restricting their practical applications,

and largely limiting the computational power of Cloud servers. Ideally, SSE schemes

should be balanced between query expressiveness, performance, and security. With this in

mind, one may leverage newer approaches, like trusted hardware, to achieve both better

performance and stronger security guarantees than those given by traditional approaches.

2.4 Trusted Hardware

According to Radu Sion (2009), trusted hardware denotes hardware that is certified to

meet a given set of security requirements, usually defined as counter-point from an adver-

sarial model. Trusted hardware can provide privacy, integrity or attestation guarantees

over the instructions it executes, even on a remote machine, e.g. a Cloud server. More

broadly, the recent notion of trusted computing was proposed by Santos et al. (2009),

directed at providing a platform to outsource computations to Cloud servers with confi-

dential guarantees.

Nonetheless, using hardware to provide isolation and improve security guarantees is

an idea proposed since, at least, 1978 (Rivest et al., 1978b). Robert Best (1981) submit-

ted a patent for a microprocessor to execute encrypted programs. This microprocessor

decrypted a program as it was executed, allowing for its source and data to be always en-

crypted outside of it. In the following years, others works were proposed in the same field;

ABYSS (White, 1987) was the first solution providing an architecture whereby an appli-

cation is divided into unprotected and protected parts, thus resembling the architecture

of Intel SGX (Section 2.4.3.1).

More recently, different approaches to trusted hardware have been presented, each

with different target guarantees. In this section we present some of these different ap-

proaches, such as the secure coprocessor (Section 2.4.1), the Trusted Platform Module

(TPM) (Section 2.4.2), and then focus on the recent notion of an Isolated Execution En-

vironment (IEE) (Section 2.4.3), and existing implementations fitting its model, namely

Intel SGX (Section 2.4.3.1) and Arm TrustZone (Section 2.4.3.2).

2.4.1 Secure Coprocessor

A secure coprocessor is a hardware module responsible for cryptographic and sensitive

computations, being designed to be added onto standard computers. Bennet Yee (1994)

20

2.4. TRUSTED HARDWARE

defines a secure coprocessor as a hardware module requiring internal processing, a ded-

icated ROM, and secure storage. Secure coprocessors must also be physically secure,

i.e. they must be tamper-proof, eliminating all sensitive data when a physical intrusion is

detected.

One of the most popular implementations of a secure coprocessor was the IBM 4758

(Dyer et al., 2001). The 4758 design lays on the following principles: tamper resistance,

the existence of a source of randomness, a layered architecture to isolate different applica-

tions with different privileges, authentication capabilities, and persistent storage. In fact,

many of these design principles are present in more modern hardware solutions, like the

TPM.

2.4.2 Trusted Platform Module

A Trusted Platform Module (TPM) (Trusted Computing Group, 2009; Trusted Comput-

ing Group, 2015) is a specification for a hardware module aimed at providing a Trusted

Computing Base (TCB) easily applicable on commodity hardware. TPM chips provide

three main different kinds of service: software attestation, boot authentication, and en-

cryption (Stallings and Brown, 2014, pp. 485–489), the latter essentially provided by an

internal secure coprocessor. A TPM is considered to be trustworthy and tamper-proof;

by attesting software running on a machine, it further extends the trust base onto such

software. Apart from the mentioned services, a TPM also contains internal volatile and

non-volatile memory, the latter used to store encryption keys and records used for boot

authentication. In the remainder of this section we present and discuss the three main

aspects of the TPM.

Boot Authentication The TPM chip provides an authenticated boot, which verifies that

a machine’s operating system has not been tampered with. When booting, the OS code is

loaded from the disc onto volatile memory; the TPM produces hashes of software modules

being loaded (including BIOS firmware and the bootloader), storing those hashes in

internal registers – Platform Configuration Registers (PCRs) – and comparing them with

predetermined ones stored in its non-volatile memory. If a hash of the code being loaded

does not match the expected one, the boot process is aborted and the user is notified.

Software Attestation Similarly to boot attestation, a TPM can verify the loading se-

quence of a program into memory. Before loading it, the TPM produces a hash of the

program’s code, storing it in a PCR. The user, which can be local or remote, possesses the

expected PCR values. When needed, they can request a Quote from the TPM by sending a

nonce and required PCR values to the TPM. The TPM produces a signed proof, the Quote,

consisting of the requested PCR values combined with the nonce and signed with the

TPM’s private key; the user can then verify that Quote, inferring whether the program’s

PCR values correspond to the expected ones.

21

CHAPTER 2. RELATED WORK

Secure Coprocessor A TPM chip also includes a minimal secure coprocessor, which

is able to perform cryptographic operations, like random (or pseudo-random) number

generation, encryption, and hashing. This can be used to seal data stored in normal

unprotected storage; the keys are stored inside the TPM, which guarantees that data can

only be decrypted on that machine, and the keys cannot be stolen.

Discussion TPM devices provide attestation guarantees on commodity hardware, al-

lowing to certify that software running on a computer can be trusted, without the need

to modify such software. These guarantees, albeit strong, only refer to the loading phase

of the program: they do not detect code injection at run time. To prevent such attacks, a

user might have to restart the program at a given interval, so the loading and attestation

process can be performed again. Therefore, an adversary can still exploit kernel faults

and inject code with an attack known as Time Of Check to Time Of Use (TOCTOU). This

particular problem was addressed by Bratus et al. (2008), which proposed dynamically

updating PCR values when the memory it measures is changed.

Although the authenticated boot mechanism can attest the integrity of an operating

system, it also follows that no update to the OS can be done without implying resetting

all boot attestation records.

By storing keys internally, the TPM does not offer a solution to recover sealed docu-

ments in case of permanent damage; data either is lost or would have to be backed up in

another machine unencrypted.

Some attacks to the TPM have also surfaced in the literature. Kursawe et al. (2005)

proposed a passive attack by analysing the unencrypted data bus between the TPM and

the CPU. Kauer (2007) and Sparks (2007) analyse an active attack, called the TPM Reset
Attack, which forces a reset of the module, possibly causing erroneous PCR readings.

2.4.3 Isolated Execution Environment

An Isolated Execution Environment (IEE), as defined by Barbosa et al. (2016), is an

abstraction that describes a machine capable of executing a given program P in an isolated

environment, i.e. whose output is determined by the initial state of P and a set of defined

inputs given into that environment. The IEE offers full isolation from other programs

running on the same machine – both on data and computations, consequently providing

privacy against untrusted programs on that machine.

To allow outsourcing of programs running on IEEs, the notion of attested computing is

introduced to assure a user that P is running untampered on a remote IEE. Attestation is

defined as a set of three algorithms: Compile, Attest and Verify. Compile corresponds to the

initial bootstrap and attestation of P; Attest is ran on the remote machine and interacts

with the program running on the IEE to produce an attestation proof; Verify is ran by the

user and checks the validity of the output from Attest.

22

2.4. TRUSTED HARDWARE

1 enclave {

2 include "secure_stdio.h"

3

4 trusted {

5 public void ecall_malloc_free(void);

6 public void ecall_sgx_cpuid([out] int cpuinfo[4], int leaf);

7 };

8 untrusted {

9 void ocall_print_string([in, string] const char* str);

10 int ocall_read(int fd, [out, size=size] void* buf, unsigned int size);

11 };

12 };

Listing 2.1: Sample of an EDL file, based on the Intel SGX SDK code samples (Intel,
2018a).

Finally, to create a secure communication channel between a user and their remote

program running on the IEE, a key exchange algorithm is performed, which ensures that

all subsequent communications preserve integrity, confidentiality, and authentication

guarantees.

In practice, Intel SGX and ARM TrustZone can be adapted to fit the notion of IEEs;

we analyse both technologies in the remainder of the section.

2.4.3.1 Intel Software Guard Extensions (SGX)

Intel Software Guard Extensions (SGX) (Anati et al., 2013; Hoekstra et al., 2013; McKeen

et al., 2013) consist of a set of instructions available on most currently available Intel

CPUs. These instructions allow the programmer to define IEEs, known as enclaves. En-

claves can be seen as containers where protected code can be run with confidentiality and

integrity guarantees (McKeen et al., 2013) provided by hardware.

An application designed under the SGX software model is divided into an untrusted

and a trusted component – the latter being the enclave (Hoekstra et al., 2013). When

the untrusted component of the application requests the creation of an enclave, the CPU

allocates a region of the memory – up to a practical limit of 128 MB (Intel, 2018b) – avail-

able only to that specific enclave, and therefore inaccessible from any other application

running in the same machine, even from the untrusted component requesting the enclave

and the system kernel. This memory is kept encrypted in the RAM, being only decrypted

by the CPU when requested by the enclave.

Enclave code can be called upon by the untrusted code via special instructions (ECALLs).

While on an enclave, no access to common system libraries, like stdio.h and stdlib.h,

is provided7, as the SGX trust base excludes operating systems (McKeen et al., 2013).

Therefore, access to networking or disc I/O is made possible through the use of OCALLs,

which allow calling functions in the untrusted component from inside the enclave. When

7Some popular libraries are now provided as OCALL abstractions by the SGX SDK (Intel, 2017, pp. 39
– 40). However, these are special implementations made by Intel for the SDK, which implies most libraries
are still unavailable directly on the enclave.

23

CHAPTER 2. RELATED WORK

an OCALL is performed, the enclave is temporarily exited, the untrusted function is

executed, and the enclave is re-entered.

The definition of ECALLs and OCALLs in an application is done through a specifi-

cation file, known as the Enclave Definition Language (EDL) file. An example of such

file can be found in Listing 2.1. The file contains a header and two blocks, trusted and

untrusted, corresponding, respectively, to ECALLs and OCALLs. The header can define

C-style inclusions to trusted libraries (as the ones provided by the SGX SDK). Function

definitions in the trusted and untrusted blocks also mimic C-style function headers,

with the addition of special attributes on pointer parameters. These attributes, defined in

square brackets, describe which security checks have to be made in order to pass pointers

to and from the enclave.

Apart from the confidentiality and integrity guarantees provided by the enclave

model, SGX also provides tools for remote attestation, which, similarly to the corre-

sponding TPM feature, allow a user to certify that a remote enclave is running correctly

and untampered.

Programming Model The CPU manages a region of memory called Processor Reserved

Memory (PRM), isolated from every component of the system (including the OS and the

hypervisor) apart from the CPU itself; the PRM holds all enclaves’ data structures, along

with their code and data (McKeen et al., 2013). The PRM also contains the Enclave Pro-

tected Cache (EPC), a set of protected memory pages that can be assigned to enclaves. To

perform enclave operations, SGX’s instruction set provides eighteen different instructions,

of which we present and summarise the most relevant in Table 2.2.

These instructions exist to perform different enclave operations, data integrity checks,

attestation, sealing, and also debugging. An enclave is created by calling the EECREATE in-

struction, which allocates the needed Enclave Protected Cache (EPC) pages and initialises

SGX’s enclave data structures. Further pages can be added to the enclave via the EADD

instruction. To end the initialisation process, EINIT is called, and the enclave can then be

run.

Calls into an enclave function (ECALLs) are performed by the EENTER instruction,

enabling the CPU’s enclave mode; to return, EEXIT is called. When an exception occurs,

AEX is called, returning from the enclave into the untrusted program. All enclave data,

including the CPU registers, is stored securely in the PRM; returning to the enclave is

then made possible by the ERESUME instruction. SGX’s instruction set also contains debug

instructions to allow reading and writing into an enclave during development, being

unavailable on a production enclave.

Page Eviction Memory inside the PRM is limited. In spite of that, to allow multiple

applications concurrently, the instruction set supports swapping (evicting) pages between

the PRM and untrusted memory (McKeen et al., 2013). When a page is to be evicted, the

instructions EBLOCK and EWB are called, respectively blocking writes and encrypting the

24

2.4. TRUSTED HARDWARE

Category Instruction Description

Initialisation

EECREATE Declare an enclave, its size, and initialise data structures.

EADD
Add a 4KB Enclave Protected Cache (EPC) page to the
enclave.

EREMOVE Remove an EPC page from the enclave.

EINIT Finalise the enclave initialisation, enabling its execution.

Entering
and

Exiting

EENTER Enter an enclave via an ECALL.

EEXIT Exit the enclave.

AEX
Asynchronous exit from the enclave, saving the CPU
state internally.

ERESUME
Resume the execution of the enclave, restoring previ-
ously stored state.

Paging
Management

EBLOCK
Block an enclave page, preparing it for eviction from
protected memory.

EWB Evict a page from protected memory.

ELDB/U Reload an evicted page into protected memory.

Enclave
Security

EREPORT
Produce a Report structure, which contains information
about an enclave and the hardware it is running on.

EGETKEY
Provide an enclave with different keys used internally,
like Report or Sealing keys.

Table 2.2: Subset of the instruction set from Intel SGX. From Anati et al. (2013) and
McKeen et al. (2013).

page, so that it can be stored in untrusted memory. The evicted page contains integrity

proofs (a MAC of the contents and a version number) to guarantee it was not tampered

with after reloading. To reload a page, via ELDB/U, its contents are copied into the PRM

again, the page decrypted, and security checks performed, ensuring its contents have

not been tampered and the page’s version is the last one, thus preventing replaying-like

attacks.

Attestation SGX also provides ways to attest a running enclave, guaranteeing to the

user that it has not been tampered with. When an enclave is initialised, a digest of its code

and data is produced and stored internally in a special register (MRENCLAVE), a process

known as measurement (Anati et al., 2013). Attestation can then be performed, both

between local enclaves and between an enclave and a remote user (Figure 2.3); the latter

being the case of an enclave running on the Cloud.

To perform local attestation (see Figure 2.3a), an enclave A performs an attestation

request to enclave B (step 1), B then calls the EREPORT instruction, producing a Report
Structure containing B’s identity, its attributes, and information about the hardware it

25

CHAPTER 2. RELATED WORK

Enclave
A

Enclave
B

Application
A

Application
B

PRM Untrusted Memory

1)
 R

eq
ue

st
 B

2)
 R

ep
or

t B

3)
 R

ep
or

t A

a Local attestation.

1) Request

Quoting
Enclave

PRM Untrusted Memory

4)
 R

eq
. Q

uo
te

 A

5)
 Q

uo
te

 A

2) Request A

3) Report A
ChallengerEnclave

A
Application

A 6) Quote A

b Remote attestation.

Figure 2.3: Intel SGX attestation mechanism for local and remote settings. Based on Anati
et al. (2013).

is running on, further producing a MAC of that structure via a symmetric Report Key

(owned by the CPU, and given to the enclave by the EGETKEY instruction). This structure

is sent to enclave A (step 2); A can then use the same Report Key from the CPU to produce

their Report Structure of itself, comparing the received MAC from B with the one generated

in A; if they are running on the same platform, it follows that the MACs should be equal.

Finally, A reciprocates the attestation process and produces its own Report Structure to

send to B (step 3).

To perform remote attestation (see Figure 2.3b), a challenger starts by issuing a re-

quest to the untrusted application A (step 1), which acts as an intermediary for commu-

nication. The application A requests a Report Structure from its enclave, which creates it

as in the local attestation process (steps 2 and 3). Finally, the application sends the Report
Structure to a special enclave (Quoting Enclave) (step 4). This enclave signs the structure

with an EPID key, producing a Quote and returning it to the challenger (steps 5 and 6).

The EPID key is an asymmetric key owned by the CPU; the remote user performing the

attestation must have a public key certificate of that EPID, which they use to verify the

Quote from SGX.

Sealing Another of the features of SGX is data sealing, which can be seen as a form

of encryption. As the enclave size is limited, this feature allows for data to be stored

encrypted outside the enclave boundaries, while preserving the same security guarantees

given by it. A Sealing Key can be requested via the EGETKEY instruction, and is unique

to that enclave. Further iterations of the same enclave will get the same Sealing Key, for

the enclaves will have the same identity, i.e. its attributes, thus allowing for long-term

storage of data.

2.4.3.2 ARM TrustZone

ARM TrustZone considers a similar architecture to that of Intel SGX by providing the

notions of Normal and Secure Worlds. Conversely with SGX, where enclaves are seen as

26

2.4. TRUSTED HARDWARE

Normal
User Mode

Normal
Privileged

Modes

Secure
User Mode

Secure
Privileged

Modes

Normal World Secure World

Monitor
Mode

Figure 2.4: ARM TrustZone architecture. Each world is effectively seen as its own virtual
core, although both exist in the same physical core. Based on ARM (2009).

regions of memory, in TrustZone the Secure World corresponds to a virtual CPU core; a

physical core is seen as two virtual cores, an untrusted and a trusted one (ARM, 2009).

Transitions between Normal and Secure Worlds are assured by a monitor component (Fig-

ure 2.4), which saves all registers and protects sensitive memory when switching from

one World into another.

The Secure World gives the guarantees of an IEE by provisioning an execution environ-

ment fully isolated from other, untrusted, applications.

Programming model Switching between worlds implies a new instruction, Secure Mon-

itor Call (SMC), which is supported by the existence of a new CPU privileged mode, the

monitor mode. When transitioning between modes, the CPU assures all sensitive data

is flushed from shared registers (both Worlds share the same physical core), in a similar

fashion to that of SGX’s instructions EEXIT and AEX.

Designing applications for TrustZone is a fundamentally different task from that of

SGX, as no fixed programming model is imposed by ARM, such as the enclave model of

SGX. The simplest one can be regarded as similar to enclaves, and consists of synchronous

calls into a library inside the Secure World; as such, Secure World calls become slaves from

Normal World applications. As ARM states (ARM, 2009), this model is often enough for

most applications. On the other end of the spectrum, TrustZone allows for the use of

a secure OS kernel running entirely inside the Secure World; this approach allows for

multiple applications running in parallel inside it, but implies the design of such solution

by the programmer. The level of complexity needed and the way to handle the Secure
World software stack is, therefore, a task of the programmer.

Hardware Architecture TrustZone’s architecture, of which a high-level overview is pre-

sented in Figure 2.4, consists of two virtual cores, one for each World, and several du-

plicated hardware modules, which provide efficient physical isolation. Memory man-

agement, for example, is assured by the existence of two physical Memory Management

27

CHAPTER 2. RELATED WORK

Units (MMUs), one for each virtual core, allowing for totally independent memory map-

pings. One of the advantages of this strategy is removing the need for MMU flushes when

switching Worlds.

Caches for each World are also handled differently, although sharing the same physical

housing. Cache lines of TrustZone CPUs are marked with an additional bit indicating the

security state of that line, thus enabling the CPU to segregate accesses from both Worlds,
removing the need for cache flushes when switching Worlds; moreover, cache lines from

one World can be evicted by the other without prejudice of security.

Finally, TrustZone also provides a segregated bus (AMBA3 APB) to secure peripheral

access, namely to I/O devices, guaranteeing that a secure peripheral can not be accessed

from the Normal World. TrustZone also provides a mechanism for interrupt handling in

the Secure World – exceptions are treated inside it, which is not the case of Intel SGX.

2.4.3.3 Discussion

By considering both software and hardware to be untrusted (apart from the CPU), SGX

eliminates many kinds of attackers from the literature (Costan and Devadas, 2016, Sec-

tions 3 and 6.6). However, it provides no protection against side-channel attacks, which

recent literature has been exploring (Seo et al., 2017; Shih et al., 2017; Xu et al., 2015).

These kind of attacks usually explore page faults and SGX’s handling mechanism, which

relies on transferring control to the operating system. More recently, the Spectre attack

(Kocher et al., 2018) has been found to also affect SGX (O’Keeffe et al., 2018), by exploit-

ing conditional branch speculative execution. These kind of attacks, however, rely on

bugs found over optimisations offered by Intel CPUs – they are not based on flaws of the

system model and architecture. Therefore, and as they can be patched either via software

or hardware replacements, they do not challenge SGX’s security guarantees.

TrustZone’s notion of IEE, materialised as the Secure World, provides a more general-

purpose notion to the programmer in comparison to SGX’s enclaves, which only allow

a synchronous function calling model. The inclusion of peripheral bus communication

into TrustZone’s trust base offers further tools for the programmer, albeit at the cost of

programming complexity and availability of trusted firmware. By including devices from

outside the CPU into TrustZone’s trust base, however, applications that depend on third-

party firmware become endangered if vulnerabilities are found in that firmware. Intel

SGX’s policy on the inclusion of external library applications, although restrictive, offers

a smaller, more secure, trust base.

Although not a recent concept, leveraging hardware to provide security guarantees

has become more accessible to users as such resources become integrated with commodity

hardware, more specifically CPUs. Hence, these solutions will prove more practical to

Cloud providers than previous ones, as they require no direct handling of hardware to

be available; servers can be supplied as-is by the provider, the setup and use of the IEE

becoming a responsibility of the user.

28

2.5. DATA REPOSITORIES AND FRAMEWORKS FOR SECURE COMPUTATION

2.5 Data Repositories and Frameworks for Secure Computation

The concepts presented in the previous sections, particularly Sections 2.1 and 2.4, have

been applied in different research prototypes and software. In Section 2.5.1 we present

some research prototypes designed to enhance pre-existing database solutions by provide

privacy guarantees, leveraging on property-preserving or homomorphic schemes in a

transparent way to its users. In Section 2.5.2 we present frameworks for trustworthy com-

putations based on trusted hardware, and that either try to integrate existing solutions

into the trusted setting (Haven or VC3), or provide novel SSE schemes based on hardware

(HardIDX).

2.5.1 Secure Data Repositories

User A

User B

Application

Proxy

Active Keys:
§ User A

DB Schema

DBMS

Encrypted
Data

UDFs

Cloud ServerTrusted User ComponentsUser Machines

Figure 2.5: Simplified view of CryptDB’s architecture. The proxy and application are
assumed to be trustworthy at most times. CryptDB’s components are shown shaded. User
A is logged in, while User B is not. Based on Popa et al. (2011).

CryptDB Popa et al. (2011) were the first to approach privacy-preserving data repos-

itories that leveraged on schemes like OPE or homomorphic encryption, basing their

CryptDB solution over MySQL databases. Using different property-preserving schemes,

it guarantees total privacy of data stored on a remote server, while also providing effi-

cient searches on data. To support join operations, CryptDB also introduced two novel

schemes, allowing for equality and order based-joins.

CryptDB aims to provide a transparent SQL interface to the user by using a trusted

middleware (proxy), while keeping all data in the untrusted server always encrypted. As

shown by Figure 2.5, CryptDB only adds a proxy and User-Defined Functions (UDFs)

to an already-existing application setup. The proxy is responsible for all encryption

and decryption operations and handles communication between the Database Manage-

ment System (DBMS) and the application. CryptDB uses PHE and property-preserving

schemes to encrypt the fields of an SQL database; a given plaintext field is converted

into several encrypted fields on the remote database, each with a different scheme, thus

incurring in storage overheads. The mapping from plaintext into encrypted columns is

stored in the proxy (as the DB schema), and is handled dynamically as tables are created

or updated. To support schemes like Paillier (Paillier, 1999), which involve performing

multiplications to achieve additions over ciphertext data, UDFs are used by the DBMS.

29

CHAPTER 2. RELATED WORK

Supported operations depend on the encryption schemes used; complex mathematical

operations (like sine), for example, are not supported by any existing property-preserving

encryption scheme; as such, not all SQL queries are supported. CryptDB’s adversary

model is based on an untrusted Cloud provider – an adversary can snoop on all the user’s

data, albeit not tampering with it. This attacker acts on the Cloud Server of Figure 2.5,

and is known as honest-but-curious. The system also provides partial protection against

active attacks on both the Trusted User Components or the Cloud Server: by having each

user encrypt their data with their own key, an attacker can only gain access to secrets

from logged-in users, while others have their data safe, as decryption keys are only stored

in the proxy for active users.

TrustedDB Bajaj and Sion (2011) proposed TrustedDB, which relies on trusted hard-

ware (a secure coprocessor) on an untrusted server. TrustedDB provides a fully-fledged

SQL interface, which allows client-side components to remain unchanged, conversely to

CryptDB’s approach of adding a new component on the client-side. Security guarantees

of TrustedDB are based on that of its secure coprocessor, as data is never shown to the

untrusted server, and handled entirely in that coprocessor.

Cipherbase Arasu et al. (2013) employed the same principles from CryptDB and

TrustedDB in Cipherbase – transparency to users issuing queries and total privacy of

remotely-stored data. Cipherbase leverages on trusted hardware (FPGAs) to achieve

a fully-fledged database system. Queries that cannot be resolved by using PHE and

property-preserving schemes are resolved in the trusted hardware module, maintain-

ing data confidentiality from a Cloud provider. Instead of adding a middleware between

client and server, Cipherbase requires a trusted machine located near the untrusted server,

similarly to TrustedDB; in this machine, all data encryption and decryption operations

are performed, using the untrusted server to perform queries over encrypted data.

Google Encrypted BigQuery Encrypted BigQuery (Google, 2016) is a modification of

the client for Google’s BigQuery (Google, 2010) Infrastructure as a Service (IaaS) solution.

This solution provides the same guarantees of CryptDB, while being adapted for larger

dataset processing. Yet, by being based on the same kind of schemes from CryptDB, it

also suffers from the same drawbacks: only some operations are supported, and they may

carry additional performance and storage overheads.

Arx More recently, Arx (Poddar et al., 2016) improved upon previous solutions by

providing stronger encryption schemes. Proposing an architecture similar to that of

CryptDB, Arx uses two proxies, a trusted one on the client-side, and an untrusted one

on the server-side. Built upon MongoDB, Arx uses secure indices to provide the same

properties as property-preserving schemes, though with IND-CPA guarantees, leaking

only the number of elements in the database, but not information like order.

30

2.5. DATA REPOSITORIES AND FRAMEWORKS FOR SECURE COMPUTATION

2.5.2 Frameworks for Trustworthy Computation

Haven The Haven framework (Baumann et al., 2014) aims to provide shielded execution
guarantees for applications running on untrusted Cloud providers; such guarantees are

similar to that of IEEs in regards to process isolation and confidentiality. Based on Intel

SGX (Hoekstra et al., 2013; McKeen et al., 2013), Haven aims to supply a trusted platform

for full, unmodified applications to run on, unlike typical SGX applications, whose design

needs to consider which parts need to be executed trustworthily. By executing unmodified

applications in the enclave, Haven needs to support OS calls, for which a library with

an OS API is provided (LibOS). LibOS, in turn, is supported by a shield module, which

provides kernel functionalities inside the enclave. With this architecture, Haven does not

reduce the trust base, but tackles the problem of Iago attacks (Checkoway and Shacham,

2013), which are directed at system calls. Nonetheless, the overhead of the Haven stack

implies a loss of performance up to 50% in the emulated SGX used; and no hardware

implementation was tested.

VC3 VC3 (Schuster et al., 2015) is a framework for Intel SGX whose goal is to execute

trustworthy Hadoop MapReduce jobs on untrusted Cloud providers. Therefore, VC3

defines a protocol for distributed MapReduce jobs with attestation, key exchange and

verification steps, as all data that is passed between enclaves needs to be secured. VC3,

conversely to Haven, reduces the trust base to the traditional SGX model, where only the

CPU is trusted, and adds the libraries needed for MapReduce to the enclave.

Ohrimenko et al. (2016) Ohrimenko et al. (2016) proposed a framework to perform

several different machine-learning algorithms with SGX, in a privacy-preserving multi-

party computation setting. The authors propose several data-oblivious primitives, which

include assignment and array access operations. These primitives are then used to guar-

antee protection against side-channel attacks on memory, which have been found to affect

SGX. The machine-learning algorithms analysed are also adapted to be used in the trusted

multi-party setting, and experimental results on hardware show that SGX data-oblivious

primitives do not impact computations significantly on most cases.

EnclaveDB EnclaveDB (Priebe et al., 2018) is a database management system leveraging

an Intel SGX enclave for sensitive data storage. The system considers a client–enclave

secure channel, with query decryption and processing totally done in the enclave, thus

ensuring data confidentiality and integrity. However, to fully support a DBMS inside

the enclave, the model relies a theoretical version of Intel SGX with virtually unlimited

memory.

HardIDX HardIDX (Fuhry et al., 2017) is a SSE scheme leveraging on trusted hardware

(Intel SGX) to efficiently and securely perform range queries. The scheme encodes order

31

CHAPTER 2. RELATED WORK

information in a B+ tree, which is stored inside the trusted enclave (alternatively, the

tree can be stored in the untrusted memory if it grows to surpass the enclave’s memory).

To the best of our knowledge, HardIDX is the first SSE scheme to depend on trusted

hardware for its design.

2.5.3 Discussion

Solutions like CryptDB and Arx are convenient to users and existing applications, as they

support unmodified database management systems, respectively MySQL and MongoDB.

Current and popular applications are supported with little to no changes, as common

queries are simple and can be resolved by simple encryption schemes (Popa et al., 2011).

Solutions like Cipherbase and TrustedDB, on the other hand, provide full fledgeness, but

require specialised trusted hardware that Cloud providers rarely supply.

With the advent of IEEs in commodity CPUs (Section 2.4.3), new approaches on these

systems can be taken – secure coprocessors and FPGAs required specialised programming

interfaces (Bajaj and Sion, 2011), becoming unpractical and costly to develop, while newer

approaches, like SGX, have similar programming interfaces to that of current commodity

systems. The current trend is to adapt previous solutions to the trusted hardware on

the Cloud setting, yet, existing proposals are either too broad (Baumann et al., 2014) and

carry performance penalties, or are designed with a specific application in mind (Schuster

et al., 2015); they provide, however, a useful insight into the adoption of newer IEE-based

technologies.

2.6 Summary and Discussion

In recent years, especially with the rise of Cloud computing, the notion of computing
over encrypted data has become an intense field of research. Although the concept was

first proposed in 1978, only the last decade has seen most of its advancements. On the

one hand, the advent of property-preserving encryption allowed for an early insight into

the topic, specifically concerns over its query expressiveness, performance, and security.

On the other hand, homomorphic encryption schemes, although based on a different

approach, also provide malleable ciphertext. Yet, currently both approaches mainly lack

practicality; property-preserving encryption is usually a trade-off between security and

performance; fully homomorphic encryption is secure and has high query expressiveness,

but is still far from practical.

The field of information retrieval is rich in techniques and methods for searches over

large datastores, although without security guarantees. The field of Searchable Symmetric

Encryption (SSE) can provide useful techniques and insights that can be complemented

with information retrieval solutions. Various SSE schemes have been proposed recently;

these achieve a trade-off between the three metrics (security, performance, and query ex-

pressiveness) we have been referring to. Initially, concerns over performance dominated

32

2.6. SUMMARY AND DISCUSSION

such schemes (Song et al., 2000); security guarantees are also increasingly taken into

account, with the first formal definitions of Indistinguishability under Adaptive Chosen

Keyword Attacks in 2006 (Curtmola et al., 2006), and new definitions of forward and

backward privacy in 2014 (Stefanov et al., 2014) and 2017 (Bost et al., 2017), respectively.

Interest over query expressiveness is also growing, as recent schemes proposed richer

queries, including Boolean text (Kamara and Moataz, 2017) or image similarity data (Fer-

reira et al., 2015; Ferreira et al., 2017), by leveraging concepts from information retrieval

schemes. While a hot topic of research, many proposed SSE schemes still lack full security

guarantees, and simultaneously tackling different privacy concerns has been proven a

difficult goal in the current literature.

Still, many of these schemes do not consider the full possibilities of the Cloud’s com-

putational power and data capabilities. With the concept of trusted hardware, new pos-

sibilities can be explored by outsourcing some client computations, which need to be

private, onto Cloud servers. Trusted hardware has also been a field of research for many

years (since 1978). However, and even though many different approaches have been made

in the field, both academic and industrial, wide-adoption was never achieved. More re-

cently, with the formal definition of an Isolated Execution Environment (IEE) (Barbosa

et al., 2016), and the inclusion of such hardware in commodity CPUs (like Intel SGX), the

field has gained more traction, with prototypes like Haven (Baumann et al., 2014) or VC3

(Schuster et al., 2015) exploring its potential.

So far, solutions that combine concepts from these areas are still close-to-none (Fuhry

et al., 2017). As the Cloud provides more and more services, the opportunity to lever-

age them with privacy guarantees and more trustability assumptions (with the required

minimisation of dependable TCBs), is now bigger than ever and, therefore, exploring the

field presents itself as a new and interesting path.

33

C
h
a
p
t
e
r

3
Protocols for Isolated Searchable

Encryption

In this chapter we introduce three schemes and their respective protocols for isolated

searchable encryption: one for text data, one for image data, and one for multimodal data.

Our schemes combine traditional SSE techniques with trusted hardware, particularly an

Isolated Execution Environment (IEE) component. This component allows us to securely

execute computations on untrusted machines, like a Cloud environment, thus leveraging

its advantages, such as high computational power and large persistent storage.

State-of-the-art SSE usually finds a trade-off between compromising some security

guarantees (to enable more efficient server-side execution), allowing for the leakage of

some operation patterns, or choosing to execute computations client-side (preserving

security but incurring in high network and computational overhead). Using an IEE allows

us to efficiently outsource computations to otherwise untrusted Cloud servers, while still

preserving strong security guarantees. Furthermore, by outsourcing computations to the

Cloud, we can consider thin client devices, such as mobile devices.

Our two first schemes, BISEN and VISEN, allow for search over encrypted text and

image data, respectively. Our third scheme, MISEN, combines text and image data into

multimodal queries. We start this chapter by introducing the common system model and

architecture for our schemes (Section 3.1), present two relevant use cases for our solution

(Section 3.2), provide the necessary definitions and tools used to define our solutions

(Section 3.3). We conclude the chapter by presenting and analysing our schemes, and

their respective protocols, for Boolean querying over text data (Section 3.4), Content-

Based Image Retrieval (CBIR) (Section 3.5), and multimodal data (Section 3.6).

35

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

3.1 Architecture and System Model

The architecture for our solution is presented in Figure 3.1. Our protocols consider

a single-client model interacting with an IEE-enabled Cloud server1. The Cloud server

resources are divided into trusted and untrusted; the former being an IEE, the latter being

composed of a regular Cloud server (a Hypervisor or Operating System) and a data storage

service with large volatile and persistent storage capacity. The main functionalities of the

components are as follows.

• Client: creates request messages for the IEE, pre-processing data as needed.

• IEE: executes computations with confidentiality, authentication, and integrity guar-

antees on a remote environment.

• Storage Service: stores large amounts of encrypted data, as an index, to be used by

the IEE with a key-value store-like interface, i.e. a database index.

• Server: initialises the IEE and acts as a network proxy, mediating Client-IEE com-

munications, as well as between the latter and the Storage Service.

We consider the Client to be any kind of device, from low-end mobile ones to normal

desktop computers. In the Cloud server we consider the IEE to be resource-constrained,

and thus we make no assumptions regarding its memory and storage capabilities, as some

implementations offer less resources than others. Our untrusted components (Server
and Storage Service) are considered fully-fledged, with no specific limitations on their

resources. In particular, the Storage Service has access to large memory (RAM) and storage

(disc) resources, while the Server has no limitations on its processing power2, considera-

tions which allow us to leverage the full power of the Cloud.

Our schemes are based on indexes for efficient search over large document datastores.

Therefore, and similarly to state-of-the-art SSE, our schemes only store indexes which

allow users to efficiently obtain document identifiers relevant to their queries; original

documents can be stored in traditional datastores, encrypted with standard symmetric

encryption algorithms, which users can then retrieve based on the identifiers returned by

our schemes.

The Cloud components in Figure 3.1 can be deployed in a single machine – with

enough resources to support all components; they can also be separated into two different

machines running on the same data centre (i.e., Server and IEE running in one, and

the Storage Service in another), with our only requirement being that they have network

communication. Moreover, each of the three components can be deployed in a different

1This model can be extended for multi-client support through the addition, for example, of a key man-
agement service. However, we find this extension to be orthogonal to the focus of this thesis and leave it for
future work.

2While our schemes only require the Server to be a proxy, our model would allow it to execute computa-
tions if needed.

36

3.1. ARCHITECTURE AND SYSTEM MODEL

Untrusted Resources Trusted Resources

Isolated
Execution

Environment
Server

Storage
Service

Secure Channel
(Client – IEE)

Client

SSE Channel
(IEE – Storage)

Figure 3.1: System architecture. The Cloud server is composed of trusted and untrusted
resources. Through the untrusted resources, the Client establishes a secure channel to the
IEE, represented by the solid line. The IEE interacts with the Storage Service through a
SSE channel (a TCP unsecured channel where messages use SSE techniques to preserve
security guarantees), represented by the dotted line.

machine3. Finally, the IEE can brought to the client-side – an option that ultimately

achieves the conventional approach of SSE.

Communication between client devices and the IEE is performed through a secure

channel abstraction with privacy, integrity, and authentication guarantees, instantiated

through an attestation-based key exchange step described in Section 3.3. As an IEE has

no direct communication to the outside world, its communication is mediated by the

untrusted Server, a fact that does not imply loss of security guarantees – the underlying

secure channel provides attestation and authentication for the Client and IEE. Moreover,

as our IEE assumes very little from a memory perspective, we expand its resources with

cryptographically-secured accesses to untrusted resources to store data (Storage Service),

which can be verified when the IEE requests it through SSE techniques.

Adversary Model Regarding the adversary model, in our solution we will address a

fully-malicious adversary, which is capable of performing incorrect operations or mali-

cious actions, including both passive and active attacks. Passive attacks involve snooping

on data, either in transit, when processed at the Server and Storage Service, or at rest; ac-

tive attacks involve tampering with such data and computations. The considered threats

are particularly focused on breaking confidentiality and integrity assumptions of users

running critical computations involving searching, processing, and data access. By pre-

venting against both passive and active attacks, our solution preserves full privacy and

integrity guarantees, including the topology of threats usually related to the honest-but-

curious model, further extended by countermeasures avoiding the injection of malicious

3Some IEE implementations may require an additional request forwarder to be in the same machine as
the IEE. In such models, the Server component would be an entry-point for the data centre, while the IEE
would also have a request forwarder associated.

37

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

behaviour in the Cloud’s untrusted components, an enhancement that is not provided by

the previous related work approaches. For clarification, we are not focused on attacks

against the availability of computing and storage services, or any related Denial-of-Service

attacks. Such attacks are very hard to counter, since the Cloud server and its provider

control the whole infrastructure; these attacks could potentially be thwarted by increas-

ing redundancy and replicating data through multiple servers to achieve fault-tolerance

(Bessani et al., 2013), a research vector we leave as future work.

Considering our system model and architectural assumptions, our trust base includes

the Client machine and the Cloud server’s IEE, namely the specific processing involved in

dispatching operations behind the API provided in the security surface of available IEE

services, excluding all the other internal server processing resources (such as the Storage
Service), as well as all network communications.

3.2 Use Cases

In this section we look at two possible use cases where our contributions can be of interest:

personal health records and email databases, as both imply manipulation of sensitive data,

while also being popular (Khalaf, 2014) and the target of recent attacks (O’Hara, 2017;

Roston, 2017).

Personal Health Records Personal Health Records consist of services, like HealthVault

(Microsoft, 2018), offered by Cloud providers, where users can store multiple informa-

tions about their health – these typically include medical records combining both text and

image data. Users may also connect to mobile phones and wearable devices that continu-

ously produce and upload data about them to the Cloud. These services can also be used

by medical doctors, facilitating the access to patients data. Diagnosis can be improved

by searching for symptom keywords and similar images on a datastore. SSE schemes

can be leveraged to provide efficient searches and preserve patient confidentiality. Due

to different kinds of data used, SSE schemes that provide high usability are particularly

interesting.

Email Databases In this use case, users or companies outsource their email datastores

to a Cloud-based storage. To retain privacy while also being able to perform searches over

email data, SSE schemes with rich querying options are useful. However, Cloud email

storage can be easily targeted by file-injection attacks (Zhang et al., 2016), a significant

problem if the datastore is continuously updated. Therefore, to fully secure confidential

email data, it is crucial to improve the security guarantees offered by SSE schemes used

in this scenario, as we propose with this work.

38

3.3. DEFINITIONS AND TOOLS

3.3 Definitions and Tools

We now present the needed definitions and tools used to better describe our protocols.

These can be grouped into cryptographic primitives, which provide the necessary tools to

maintain our secure guarantees, communication primitives, which allow for inter-process

and network communication, and component primitives, which dictate how components

can interact with each other. Finally, we describe the common initialisation procedure
of the IEE, needed to establish a secure channel and authenticate the IEE in our three

protocols. In the pseudo-code, we consider the existence of data structures such as lists,

tuples, dictionaries, and sets; we assume the elements in these structures are ordered by

insertion unless otherwise noted.

Cryptographic Primitives As cryptographic primitives we use a Pseudo-Random Func-

tion (PRF) F and an authenticated symmetric cipher Θ. Both contain a key generation

procedure gen(); F generates a pseudo-random transformation with run(key, message),

and Θ encrypts and decrypts inputs with enc(key, message) and dec(key, message), respec-

tively. We define a security parameter λ of a fixed-size in bits to reason about the security

of these primitives.

Communication Primitives Our communication primitives define how Client-IEE com-

munication is performed. To preserve confidentiality, integrity, and authentication guar-

antees of data in transit between Client and IEE, these components communicate via a

secure channel. This channel lays on a standard transport layer protocol (e.g., TCP),

represented by Transport – with calls send(destination, message) and recv(message).

Furthermore, to ensure message security, we use the SecureMsg primitives – with calls

enc(message) and dec(message); these primitives encrypt and decrypt messages with an

authenticated symmetric cipher, giving integrity, confidentiality, and authentication guar-

antees, by including a MAC with the respective ciphertext.

By combining Transport and SecureMsg primitives, we are able to establish the se-

cure channel described in Section 3.1. Calling these primitives, therefore, ensures not

only the transport of messages through the network, but also their respective encryption

and decryption with full security guarantees.

Component Primitives The IEE component can only be interacted with through the

Server (a restriction found in practice), which uses IEE primitives init() and process(message),

respectively, to initialise and deliver messages to it. The IEE communicates with the Stor-
age Service through the Storage group of calls, namely init(), put(key, value), and get(key).

These calls abstract the need, while describing our protocols, for the IEE to send a mes-

sage to the Server, which in turn contacts the Storage Service, returning its output to the

IEE at the end; and provide a clean key-value store-like interface.

39

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

IEE and Client-IEE Channel Initialisation Procedure In the initialisation procedure,

the structures needed for the protocols’ operation are initialised. These structures include

any steps required to initialise the IEE – IEE.init(), which is implementation dependent

– and the Client-IEE channel. Both the Server and the Storage Service are assumed to be

running and waiting for requests in this procedure, as their own initialisation is trivial.

The Client starts by generating a public-key encryption key pair (pkc, skc), of which pkc
is hard-coded into the IEE program code, and will be used to bind the IEE with its Client.
The program code is sent to the Server, which then runs the IEE.init() procedure with the

received code; after that, the Server will only act as a proxy for all Client-IEE communica-

tions. The Client then starts the authentication procedure with the IEE, following the IEE

algorithm of Barbosa et al. (2016), which provides the following properties: that an IEE is

bound to a specific client, and can not answer to illegitimate clients; that a client must be

able to attest it is communicating with a legitimate IEE, and the code being run in it is the

one the client expects. To ensure these properties an authenticated key-exchange scheme

is executed; at the end of which an authenticated symmetric key is shared between Client
and IEE. The algorithm works as follows.

1. The IEE generates a public-key encryption key pair (pki , ski), sending pki to the

Client, signed with an IEE-specific proof of attestation (also known as quote). This

proof is implementation-dependent, and ensures the Client it was generated in a

trusted IEE running the expected code.

2. The Client attests the received proof and generates a symmetric key k, encrypts it

with pki and signs it with skc, sending it to the IEE.

3. The IEE decrypts and verifies the received key k, producing a confirmation message

to the Client.

4. The Client receives and attests the confirmation message.

From here onwards, the Client-IEE channel is ready for secure point-to-point commu-

nications. The key-exchange algorithm provides two-way authentication and confiden-

tiality guarantees. The use of an authenticated cipher in further communication can be

used to provide integrity guarantees, and techniques like the use of nonces hinder attacks

such as replaying.

3.4 BISEN: Boolean Isolated Searchable Encryption

In this section we describe BISEN (Boolean Isolated Searchable ENcryption), our scheme

for secure Boolean querying over text data – e.g., queries of the form A∧ (B∨¬C). BISEN

consists of an index for retrieval of text documents, which can be queried by keywords,

negations of keywords, or groups thereof, joined by conjunctions, disjunctions, and paren-

theses. Users can add, update, or remove words from text documents, as well as issue

40

3.4. BISEN: BOOLEAN ISOLATED SEARCHABLE ENCRYPTION

queries to the system, receiving a set of matching document identifiers as response. This

is known as the Boolean retrieval model (Manning et al., 2008, p. 4), which is a standard

information retrieval model for large text databases search.

BISEN can support both exact-match and ranked responses. The latter has two main

advantages: first, it allows for more relevant documents to be returned (i.e., by rank-

ing documents with more instances of the queried keyword higher); secondly, response

length can be fixed, which hides the real response size (a common and severe leakage

in SSE schemes (Bost and Fouque, 2017) leading to inference attacks), and improves

communication latency for large databases.

In this section we will describe BISEN’s protocols, first as an exact-match secure

Boolean retrieval system (Section 3.4.1), provide their security analysis (Section 3.4.2),

detail how the scheme can be extended for ranked responses (Section 3.4.3), and discuss

design decisions and possible improvements (Section 3.4.4).

3.4.1 Protocols for Text Search

We will now describe the BISEN scheme, which consists of three protocols: Setup (which

initialises data structures and communication), Update (which adds or deletes keywords

in a given document4), and Search (which performs a Boolean query, resulting in a list of

matching documents).

Algorithm 3.1 BISEN Setup protocol: Setup(λ)

Client:
1: kF ← F.gen(λ)
2: W ← []
3: msg← BISEN.setup(λ)
4: encMsg← SecureMsg.enc(msg)
5: Transport.send(Server, encMsg)

Server:
6: Transport.recv(encMsg)
7: IEE.process(encMsg)

IEE:
8: msg← SecureMsg.dec(encMsg)
9: λ←msg

10: nrDocs← 0
11: kE ← Θ.gen(λ)
12: Storage.init()

Setup BISEN’s Setup protocol is described in Algorithm 3.1, taking the security param-

eter λ as input. The Client starts by initialising a PRF key kF , which will be used for

4Adding and deleting keywords is seen as an update, the operation carrying an op code specifying the
case.

41

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

keyword encryption, and a dictionary of counters W. These counters track the number of

operations done over each keyword of the database, i.e. the number of times the word was

added or deleted over all documents. A keyword’s counter is used to generate all entries

that need to be retrieved from the Storage when performing a search over that keyword5.

The Client then generates the setup message for the IEE (line 3), sending it to the

Server through the secure Client-IEE channel. The Server redirects the message to the

IEE, which initialises a key kE for authenticated symmetric encryption and nrDocs, the

number of existing documents on the system – which is used to help resolve negation

queries6. Finally, the IEE initialises the Storage Service, calling its respective initialisation

procedure.

Algorithm 3.2 BISEN Update protocol: Update(op, w, id)

Client:
1: kw ← F.run(kF , w)
2: c←W[w]
3: if c =⊥ then
4: c← 0
5: else
6: c← c + 1
7: end if
8: W[w]← c
9: msg← BISEN.update({op, id, c,kw})

10: encMsg← SecureMsg.enc(msg)
11: Transport.send(Server, encMsg)

Server:
12: Transport.recv(encMsg)
13: IEE.process(encMsg)

IEE:
14: msg← SecureMsg.dec(encMsg)
15: {op, id, c,kw} ←msg
16: l ← F.run(kw, c)
17: id∗← Θ.enc(kE , (l,op, id))
18: Storage.put(l, id∗)
19: if id > nrDocs then
20: nrDocs← nrDocs + 1
21: end if

Update The Update protocol for BISEN is described in Algorithm 3.2. An update takes

as input the operation op, either ADD or DEL, the keyword W and document identifier

5For persistence, the Client may store W in disc storage.
6Negation resolution also requires that document identifiers have to be sequential. If a document is

removed, it is still seen by the system as an empty document. This implies that if, during operation, all docu-
ment’s keywords were removed, it would still be returned in negated queries – which would be semantically
correct.

42

3.4. BISEN: BOOLEAN ISOLATED SEARCHABLE ENCRYPTION

id. We describe the protocol for a single keyword, extending it for multiple keywords is

achieved by repeating the protocol for each keyword in batch, both at the Client (lines 1

to 8) and at the IEE (lines 15 to 21). Our delete operations are differentiated only by

the operation code, and its effects are reflected only in the Search protocol, during IEE
processing.

The Client starts by generating kw, a pseudo-random transformation over the input

keyword, which hides its size when sending it over the network. Then, the local counter

value for the keyword is checked (line 2). If the keyword did not exist in the database

before, the counter is initialised to zero, else it is incremented by one (line 6); the new

value is then stored on the counter map W (line 8).

The Client sends a message containing the operation op, the document identifier

id, the keyword transformation kw and its counter c to the IEE through the Client-IEE
channel. The IEE generates a label l over kw and c with the PRF (line 16); by pairing the

keyword transformation with its counter, the label is unique across the database, while

also not revealing any information about its content to the untrusted components, and

can be deterministically generated again when searching. A tuple id∗ containing the label

l, the operation op, and the document identifier id is encrypted with the authenticated

symmetric cipher Θ (line 17); the label l is included for verification purposes when

searching the database. These values are then inserted into the Storage Service, with l

acting as key and id∗ as value. Then, if the document identifier corresponded to a new

document, the variable nrDocs is incremented.

Search The Search protocol for BISEN is described in Algorithm 3.3. The protocol re-

ceives a query q as input, which corresponds to an arbitrary group of keywords, separated

by conjunctions (AND operations) and disjunctions (OR operations); additionally, key-

words can be negated (NOT operations) and be grouped by parentheses.

The Client starts by preprocessing q into a set of keywords w̄ and the group of Boolean

operators φ. Then, a dictionary of query counters C is initialised to hold the database

counters for each keyword of the query; such counters are retrieved from W as in the

Update protocol – by generating a kw from the original word, and retrieving its counter

from W. The dictionary C (of keywords and their frequency) and φ are then sent to the

IEE via the secure channel.

The IEE starts by initialising Q, an auxiliary dictionary to help resolve the query,

which will associate query keywords with their respective set of labels in the database.

Resolving the query involves retrieving all database entries that refer to its keywords. The

labels are generated in lines 16 to 23; for each keyword and respective counter a label is

generated, similarly to the Update protocol, and the set of each keyword’s labels is stored

inQ (line 22). To request the labels to the Storage Service, a set L′ is generated by grouping

all labels inQ (line 24). Before performing the request, L′ is randomly permuted (line 26),

so that requests are not sequential, thus hindering correlations between Storage accesses.

43

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

Algorithm 3.3 BISEN Search protocol: Search(q)

Client:
1: {w̄,φ} ← ProcessBooleanQuery(q)
2: C ← []
3: for all w ∈ w̄ do
4: kw ← F.run(kF , w)
5: c←W [w]
6: C[kw]← c
7: end for
8: msg← BISEN.search({C,φ})
9: encMsg← SecureMsg.enc(msg)

10: Transport.send(Server, encMsg)

Server:
11: Transport.recv(encMsg)
12: IEE.process(encMsg)

IEE:
13: msg← SecureMsg.dec(encMsg)
14: {C,φ} ←msg
15: Q← []
16: for all {kw, c} ∈ C do
17: L← { }
18: for all ci ← 0 . . . c do
19: l ← F.run(kw, ci)
20: L← L ∪ {l}
21: end for
22: Q[kw]← L
23: end for

24: L′ ← Flatten(Q)
25: Π←$ RandomPermutation(λ)
26: L′ ←Π(L′)
27: D ′ ← { }
28: for all l ∈ L′ do
29: id∗ ← Storage.get(l)
30: D ′ ← D ′ ∪ {id∗}
31: end for
32: D ← { }
33: for all l′ ∈ L′; id∗ ∈D ′ do
34: (l,op, id)← Θ.dec(kE , id∗)
35: Verify(l,l’)
36: D ← D ∪ {(op, id)}
37: end for
38: D←Π−1(D)
39: Q′ ← Join(Q, D)
40: Q′ ← Filter(Q′)
41: R← Resolve(φ, Q′, nrDocs)
42: encAnswer← SecureMsg.enc(R)
43: Return encAnswer to Server.

Server:
44: Transport.send(Client, encAnswer)

Client:
45: Transport.recv(encAns)
46: R← SecureMsg.dec(encAns)

Labels in L′ are requested to the Storage Service, and obtained values (set of all id∗) are

stored in D ′.

All values in D ′ are iterated in lines 33 to 37. A set D will hold pairs (operation,

documentid) after decryption. In this iteration, obtained values are first decrypted to ob-

tain the tuple containing the label verification l, the operation code op, and the document

identifier id. Verification of the obtained value is performed by comparing the requested

label l′ to the label in the tuple l (line 35); if the labels do not match, the IEE can repudiate

the answer and terminate, as the Storage provided a tampered result. Otherwise, op and

id are stored as a pair in D. D is then permuted to the original request order, so that its

contents can be joined with Q, to form a dictionary Q′ (lines 38 and 39), which associates

query keywords to the set of pairs (operation,documentid) where such keyword occurs.

The Filter algorithm (line 40) takes into account the op code and the order of counters to

decide whether a keyword exists in a document or not: for a given document, the key-

word’s state – existing or deleted – is determined by the highest, i.e. last, counter value

44

3.4. BISEN: BOOLEAN ISOLATED SEARCHABLE ENCRYPTION

referring to that document; Filter deletes outdated pairs from Q′.

Query resolution can then be performed simply as a group of set operations (line 41),

since each keyword is associated with the set of documents where it occurs. Boolean

processing is performed by first translating the query to Reverse Polish Notation and

applying the Shunting Yard algorithm (Dijkstra, 1961). Negation is performed by search-

ing for the non-negated version of the keyword and then inverting the resulting set (we

achieve this by generating an auxiliary set representing all documents from 0 to nrDocs).

Finally, the resulting set of documents, R, is returned to the Client via the secure

channel (lines 42 to 46).

3.4.2 Security Analysis

In this section we will informally analyse the security of the BISEN scheme. We consider

both the Client and IEE to be secure by definition, and as such providing full confiden-

tiality, integrity and authentication guarantees. We will start by analysing each untrusted

component and the data it has access to, then both Client-IEE and IEE-Storage channels,

and finally analyse leakage and privacy guarantees given by the scheme.

Server The Server is responsible for acting as proxy for the Client-IEE and IEE-Storage
channels. Since data travelling through such channels is secured, the only possible attack

is that of a denial-of-service. The Server only has access to encrypted data, and cannot

perform tampering, as all data is authenticated and verified both at the IEE and Client.

Storage Service The Storage Service consists of a key-value store with regular put and

get operations. The IEE inserts encrypted (label, value) pairs into the Storage; the attacker

can choose to not insert such pair, to insert a label with a non-matching value, to tamper

either the label or the value, or to insert additional pairs. When retrieving data (Search
operation), the IEE will generate labels based on the counter value for each searched

keyword. In the case a pair is missing, the IEE detects one of the requested labels was not

retrieved and halts operation; when decrypting retrieved pairs, an authenticated cipher

is used, so that the value can be checked for tampering; if the value is untampered, the

copy of the label in it is checked and, if it does not match the requested label, such label

is associated with an erroneous value and operation is also halted. Finally, extra pairs do

not affect the system, as they would never be requested by the IEE. Different pairs on the

Storage can not be related with each other, since labels are composed of a unique (word, id)

pair encrypted with a PRF, thus making any two entries noncorrelatable; the respective

document identifier in the value is unique and encrypted with a symmetric cipher, thus

also being completely independent of other values mentioning the same document.

Client-IEE Channel The channel is established with the Server acting as a proxy for

data communication. The IEE is hard-coded with the Client’s public key, ensuring that

45

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

the IEE will always communicate with the same Client, and thus the attacker cannot

suddenly interact with the IEE, forcing it to answer malicious operations. To leverage IEE

guarantees, the Client must be sure that it is communicating with a legitimate IEE, and

that the IEE is running the expected program, of which the Client has a digest. The Client
does so by verifying that the attestation proof (quote) received during the initialisation

procedure is signed with an IEE-specific key (in practice provided by its vendor), and

that it also contains the correct digest of the program expected to be running. These

verifications are performed during the key-exchange algorithm (Section 3.3), and thus

the Client can be sure of confidentiality, integrity and authentication guarantees at the

start of communications. Given that both endpoints of the channel are considered secure,

it follows that the channel remains secure throughout system operation.

Leakage of Protocols We define our leakage in function of data sent through and to

untrusted components. The protocol being executed is always leaked, as the type of

access to the Storage Service reveals it.

In the Update protocol the Client sends a fixed-width message to the IEE, as the only

variable-length component – the word – is encrypted with a PRF before leaving the Client.
Therefore, a single Update operation also only produces an entry in the Storage Service;

while a batch of Update operations reveals the number of updated keywords, but not

their individual lengths. Moreover, additions and deletes are indistinguishable, as they

are only defined by a single operation code, which is sent encrypted with the rest of the

message; processing of operations is only done IEE-side when performing a Search.

When performing a Search operation, the Client sends an encrypted set of keywords

and respective counters, together with the Boolean form of the query. As with the Update
protocol, we leak the number of keywords in the input of such operation. Most of the

query processing is done inside the IEE; the IEE requests the needed pairs from the

Storage Service in a random order, so as to hide correlations between same instances of the

keyword in different documents, for example. Storage Service operations produce access
leakage, as the memory positions accessed are revealed; avoiding such leakage would

involve ORAM techniques. When answering to the Client, the IEE reveals the size of the

answer, i.e. the number of documents included in the response.

In comparison with the state-of-the-art (Table 2.1 from Section 2.3.4), BISEN only

produces access leakage, as an adversary cannot distinguish whether two searches that

produced the same access pattern are a repetition of the same search, or two different

searches that referred to the same keywords (e.g., a conjunctive and a disjunctive query

with the same operands).

Backward and Forward Privacy BISEN preserves both backward and forward privacy.

Backward privacy is based on the definition of Bost et al. (2017), and ensures that adding

46

3.4. BISEN: BOOLEAN ISOLATED SEARCHABLE ENCRYPTION

a keyword w, and subsequently deleting it, is indistinguishable when performing suc-

cessive searches over w. BISEN’s Storage is monotonically crescent, with deletions corre-

sponding to a new entry in the Storage; therefore, when searching for w, the number of

retrieved pairs will never be smaller than with the previous search, thus hiding whether

the keyword was added to new documents or deleted from previous ones.

To preserve forward privacy, BISEN must ensure that previous searches can not be

related with new updates (Bost, 2016), i.e., that an attacker can not know whether a newly

updated keyword was in a previous search. Since all entries of the Storage are independent

from one-another (are encrypted with a PRF), and all cryptographic computations are

done either in the Client or the IEE, an attacker does not learn if a new pair would be

retrieved by repeating an old query, and has no access to tokens or cryptographic keys

capable of doing so. The Storage Service only observes accesses to the index.

3.4.3 Extending BISEN for Ranked Retrieval

In this section we describe how to extend the presented scheme (Section 3.4.1) to allow

for ranked retrieval. The exact-match version’s Search protocol returns a set of documents

matching the given query; if it is too broad and the database is large, the resulting set is

substantial, possibly incurring in high network overhead. Moreover, exact-match retrieval

can also leak the type of operation for two queries with the same keywords: e.g., with

queries A∧B versus A∨B, the first query will probably result in a smaller document set

than the second one. By fixing a response size, the IEE can pad or truncate the result set,

always returning messages of equal size to the Client7. Moreover, by introducing ranks

search results become more relevant to the user.

To allow for document ranking, metrics like TF–IDF can be employed. This scoring

function requires keyword frequency to be known for TF; the total number of documents

and the counter of each query keyword for IDF. Of these, the only information not

available in the exact-match version is keyword frequency, the addition of which we

detail now.

Changes to theUpdateProtocol In the Update protocol (first described in Algorithm 3.2),

we change the input op, a value indicating whether the keyword was added or deleted,

to a frequency value f , indicating the frequency of the keyword in the document id. An

op of type ADD becomes an f of a given positive frequency, while a DEL is equivalent to

f = 0. As with the exact-match version, when referring to a keyword w in document id,

the prevailing frequency will be that of the highest counter referring to the document.

Changes to the Search Protocol The Search protocol takes a new argument ρ (a thresh-

old to normalise the response size), remaining otherwise similar to the original version

7Accesses to the Storage Service are already indistinguishable for both queries, in either exact-match or
ranked version.

47

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

Algorithm 3.4 BISEN Search document scoring.

1: IDF ← CalcIDF(C, nrDocs, Q′)
2: S ← []
3: for all kw ∈Q′ do
4: kwidf ← IDF[kw]
5: for all (f , id) ∈Q′[kw] do
6: if id ∈ R then
7: s← S[id]
8: if s =⊥ then
9: s← 0

10: else
11: s← s + f ∗ kwidf
12: end if
13: S[id]← s
14: end if
15: end for
16: end for
17: S ′ ← SortByValueDesc(S)
18: S ′ ← PadOrTruncate(S ′, ρ)

(first described in Algorithm 3.3) up to line 41. All occurrences of op are also changed to

f .

The scoring procedure in the IEE is inlined between lines 41 and 42 of Algorithm 3.3,

when R contains the response documents and before the response is sent to the Client.

The procedure is presented in Algorithm 3.4. It starts by calculating the Inverse
Document Frequency of each keyword in the query, using C (to list such query keywords),

the total number of documents in the database (nrDocs), and the global frequency of each

keyword – deduced from Q′, since, after Filter, a keyword kw will have global frequency

equal to the cardinality of the set in Q′[w]. IDF is calculated via IDF(kw) = log nrDocs
|Q′[w]| , as

described in Section 2.2.3.

Then, all keywords of the query are iterated (line 3) and, for each occurrence (f , id) of

the keyword (line 5), the score of document id is updated with TF–IDF (line 11), provided

id belongs to the response set R (line 6).

A dictionary S ′, associating documents to their scores, is generated by ordering S in

descending order of score and padding or truncating results to ρ (line 18), hiding the real

response size. The resulting S ′ is then returned to the Client instead of R.

A Caveat with nrDocs and Rank Scoring Designing negation queries requires the

knowledge of the full document set, a purpose nrDocs serves. Our protocol interface

does not allows us to know when a document was fully deleted, as only individual key-

words can be deleted, and full knowledge of every document’s keywords is not a Client or

48

3.4. BISEN: BOOLEAN ISOLATED SEARCHABLE ENCRYPTION

IEE requirement8. However, by using nrDocs for Inverse Document Frequency, we cannot

be sure whether its value is stale or not, as all keywords in one or several documents

might have been deleted. This implies a possible deviation of the true score of a docu-

ment; however, since all scoring will be done using the same nrDocs value, relative rank

values will still be correct in regard to their relations between each other.

Security Analysis Extending BISEN for ranked search only implies data structures

changes at the Client and the IEE; therefore, security guarantees given previously (Sec-

tion 3.4.2) hold equally. Replacing operation codes for keyword frequency in data stored

at the Storage Service might imply changing the length in bits of id∗; however, the value

is encrypted, and the add/update/remove behaviour remains the same as previously;

as such holding the same security guarantees as the exact-match version. Furthermore,

while in exact-match BISEN the response length to the Client could help an attacker infer

the operator types, with the fixed-width responses of the ranked version such information

can not be inferred anymore.

When performing searches the type of Boolean operator is no longer leaked, as re-

sponses become fixed-width.

3.4.4 Discussion

One of the main design principles in BISEN is to reduce storage needs in the IEE module,

since some implementations limit its memory and disc capabilities; usage of the Storage
Service allows us to delegate such task to an insecure module keeping strong security guar-

antees and minimal leakage. Notwithstanding, during a query’s processing the IEE still

requests and temporarily stores all relevant pairs for that query; in very large databases,

the IEE might not be able to contain the full data structures in it. Queries would benefit

from incremental processing, where the IEE would retrieve part of the relevant data each

iteration and resolve part of the query immediately, discarding used entries meanwhile;

and merging results with the previous iterations’ work.

Since no true deletions occur in BISEN, its Storage Service data is always increasing,

which can be a hindrance on update-intensive systems, as the IEE would be forced to

retrieve, and temporarily store, all previous updates up to the point of querying. While

deleting pairs from the Storage would break privacy assumptions, by re-indexing the

database all outdated entries could be removed, and the use of fresh keys would make

correlations with the old index impossible. This operation, however, would be computa-

tionally expensive, and involve both the Client and IEE’s processing.

The dictionary of counters W in the Client could be migrated to the IEE in the scheme,

as all operations done with counters are IEE-side. Being stored in the Client is a more

scalable approach if the database contains a large variety of words, and memory space for

8Unless the Client knows the full document and is sure every of its keywords was deleted – if so, it can
inform the IEE and the caveat is non-existent.

49

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

query resolution is a concern; for medium and small databases such concern might not

be significant. Having W on the IEE can also facilitate a multi-user solution, as counters

would need to be synchronised across clients in the current version. Conversely, having

W on the Storage Service would not retain the same security guarantees as the previous

options. Even if encrypted (with schemes such as homomorphic encryption), W only has

two operations, increment by one and get; therefore, updates over the same keyword

would be revealed while updating the counter, and relations between inserted pairs into

the Storage could be inferred by increments to the same position of W.

For persistence purposes, the key kE , generated and only known to the IEE, could be

shared with the Client. In case of a denial-of-service attack over the IEE, and assuming

the Storage is kept intact and still available, the Client could instantiate a new IEE and

transmit its kE , enabling the use of the same Storage Service and its entries.

Regarding BISEN’s ranked version: we consider an absolute frequency f to be stored

within a keyword’s entry in the Storage. This approach requires the Client to know the

frequency of a keyword for an update operation. Having incremental frequency values

on Storage would rid the Client of this requirement; updates would contain the change

in frequency rather than its current value9. The Filter operation would keep track of the

current frequency until the last keyword’s counter is reached.

Other metrics could be used to score documents in the ranked version, such as BM25
(Manning et al., 2008, Section 11.4.3) or the Vector Space Model (Salton et al., 1975).

Some metrics depend on the typology of documents in the database and, as such, the

protocols may be changed to support a different scoring function – if no further infor-

mation is needed from the database, scoring functions can be used interchangeably and

independently of the rest of the scheme.

3.5 VISEN: Visual Isolated Searchable Encryption

We will now describe VISEN (Visual Isolated Searchable ENcryption), our scheme for

secure Content-Based Image Retrieval (CBIR). VISEN consists of an index for image

documents: users can add or remove images to the database, and query by using example

images, with the response being the most similar images to that query. We consider

image files to be immutable (only additions and deletions are supported) throughout the

system’s operation, but in end of the section (Section 3.5.3) we discuss an extension to a

scheme supporting updates.

VISEN works by adopting a Bag of Visual Words (BoVW) method (Nistér and Stewénius,

2006). Images are described by sets of feature vectors, which are extracted via an appro-

priate algorithm – like SURF (Bay et al., 2008) or SIFT (Lowe, 2004). These feature vectors

represent interest points in the image, defined by sudden changes in colour, intensity,

or texture. Since each image amounts to large sets of feature vectors, and each vector

9Performing a delete would not be an update of f = 0, but could be done by inserting a special value,
such as −∞. A further positive update over that keyword would signify its restoration to the document

50

3.5. VISEN: VISUAL ISOLATED SEARCHABLE ENCRYPTION

is highly-dimensional (usually between 64 and 128 dimensions), linear searching over a

database of such vectors becomes impractical. Therefore, to make CBIR schemes practi-

cal, clustering algorithms can be used to group a large vector space into small sets, known

as Bags of Visual Words, grouping similar vectors together. Clustering can be achieved

through different techniques, such as machine learning training algorithms, like k-means

(MacQueen, 1967), binarisation algorithms (Liu et al., 2014b), or Locality-Sensitive Hash-

ing (LSH) (Loi et al., 2013); these algorithms output a codebook of clusters (each cluster

being a vector of the same form of feature vectors); inserted vectors are then fitted to the

most similar cluster of that codebook.

Some of the codebook generation techniques, like k-means, may require a training

phase, where example vectors are used to generate clusters; other techniques, such as LSH,

do not need such phase. In our experimental evaluation (Section 5.3.1), we discuss the

precision of different techniques (two variants of k-means and LSH), and their respective

performance. Regardless of the used technique, adding images to VISEN implies the

feature vector extraction step, followed by the clustering of those vectors. A frequency

histogram of the image’s clusters is produced; for each entry, the frequency will indicate

the number of original image vectors that were put into that cluster. Searching for images

implies generating a similar histogram, comparing it with the existing database, and

returning the most similar images ranked by metrics like TF–IDF.

If the codebook generation technique requires training, such step is done before the

system’s normal operation. This step may be computationally expensive, but it is exe-

cuted only once, or if the dataset changes significantly. In our scheme, we consider three

different codebook generation approaches: Traditional K-means, where all vectors can be

iterated several times over, Online K-means, where each vector is only iterated once, and

LSH, where vectors are hashed into a cluster without previous training.

Bags to which features are clustered into are akin to keywords in BISEN, i.e. each

feature is a keyword, and images are a set of keywords with varying frequencies, similarly

to ranked BISEN. VISEN adapts BISEN’s techniques, making some specific design choices

to adapt to the image domain (e.g., the keyword space of VISEN is bound by the chosen

number of clusters during the scheme’s initialisation).

In the remainder of the section we will present the secure CBIR scheme (Section 3.5.1),

provide its security analysis (Section 3.5.2), and discuss possible improvements and fu-

ture work (Section 3.5.3).

3.5.1 Protocol for Content-Based Image Retrieval

The VISEN scheme consists of a Setup protocol (which initialises the needed data struc-

tures and communication), followed by a codebook generation phase (to create a codebook

for feature clustering) and an operating phase (where images can be added, removed, and

queries performed). In the codebook generation phase the used protocols depend on the

chosen algorithm, while in the operating phase the protocols (Add, Remove, and Search) are

51

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

equal regardless of the employed codebook generation algorithm.

Before describing such protocols, we present the three different versions for the code-
book generation phase:

• Traditional K-means This version of k-means (Lloyd, 1982) requires a global vision

of the training dataset, and thus low-latency large memory storage. Therefore, we

execute the algorithm at the Client, sending the resulting codebook to the IEE. We

denote this protocol as TrainKmeans.

• Online K-means Proposed by MacQueen (1967); training data is sent to the IEE as it

is incrementally extracted from the training dataset, and the codebook is updated at

the IEE immediately. This algorithm does not require a global vision of the dataset,

and can therefore be executed in our resource constrained IEE. We denote this

protocol as TrainOnlineKmeans.

• Locality-Sensitive Hashing Based on Loi et al. (2013); clusters are generated semi-

randomly in the IEE; no training dataset is needed. This protocol is denoted Gener-
ateClustersLSH.

After executing either version, cluster centroids are stored in the IEE, and are used

for the operating phase algorithms.

Algorithm 3.5 VISEN Setup protocol: Setup(λ, k, threshold)

Client:
1: nrClusters← k
2: ω← threshold
3: msg← VISEN.setup(λ, k)
4: encMsg← SecureMsg.enc(msg)
5: Transport.send(Server, encMsg)

Server:
6: Transport.recv(encMsg)
7: IEE.process(encMsg)

IEE:
8: msg← SecureMsg.dec(encMsg)
9: {λ, k} ←msg

10: nrClusters← k
11: kF ← F.gen(λ)
12: kE ← Θ.gen(λ)
13: C ← []
14: W← []
15: nrImgs← 0
16: Storage.init()

52

3.5. VISEN: VISUAL ISOLATED SEARCHABLE ENCRYPTION

Setup The Setup protocol for VISEN is described in Algorithm 3.5. The protocol re-

ceives the security parameter λ, the number of clusters k, and an image descriptor thresh-

old threshold as input, of which the latter two are stored by the Client, respectively, as

nrClusters and ω; the number of clusters is used for Client-side training algorithms; the

descriptor threshold is used by the Client to control the number of feature vectors an im-

age generates, or the sensitivity of the descriptor algorithm, and its value depends on the

implementation used. The Client then generates a setup message containing the number

of clusters for the IEE (line 3), sending it to the Server, and from there onwards to the IEE,

through the secure Client-IEE channel.

As with BISEN, the Server redirects the message to the IEE for processing (line 7). The

IEE stores the number of clusters and generates a PRF key kF (line 11), which will be

used to generate keywords based on each cluster identifier, and a key kE for authenticated

symmetric encryption (line 12). The IEE also initialises a codebook C and a dictionary of

counters W10.

Counters from W are used to generate all entries that need to be retrieved from the

Storage when performing a search that includes such cluster. Conversely to BISEN, coun-

ters are stored in the IEE, as clusters, i.e. keywords, are not known by the Client, since

the approximation procedure is done IEE-side, following our principle of executing heav-

ier computations on Cloud resources. Finally, the IEE initialises nrImgs, which counts

the number of images in the database11, and the Storage Service, calling its respective

initialisation procedure.

3.5.1.1 Codebook Generation Phase Procedures

TrainKmeans Codebook generation for the Traditional K-means approach is presented

in Algorithm 3.6. It receives a set of training images imgs as input; for each image, the

Client extracts its feature vectors (line 3) into a set D. These images can come from a

separate training dataset or from a subset of the images to be added to the database in

the operating phase. Training is performed via the standard k-means algorithm (line 6)

over the feature vector dataset, resulting in a codebook clusters. These are sent to the IEE,

which stores them in C (line 14).

TrainOnlineKmeans The Online K-means approach is described in Algorithm 3.7. This

protocol takes a single image img as input, whose feature vectors are extracted by the

Client and sent to the IEE. The IEE receives the set of feature vectors and performs the

Online K-means operation (line 9): if the codebook is empty, it is initialised to the received

vectors; else, already-existing centroids are adjusted with the newly-received vectors.

After visiting each feature vector once, the IEE can discard it. This protocol is executed

several times, once for each image in the training dataset.

10Clusters are identified numerically, from 0 to k. C associates a cluster to its feature vector, i.e. centroid,
and W tracks the overall frequency of each cluster in the database.

11This variable is used for the scoring function of the Search protocol.

53

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

Algorithm 3.6 VISEN codebook generation protocol for k-means: TrainKmeans(imgs)

Client:
1: D ← { }
2: for all i ∈ imgs do
3: F ← ExtractFeatures(i, ω)
4: D ← D ∪ F
5: end for
6: clusters← Kmeans(nrClusters, D)
7: msg← VISEN.train_kmeans(clusters)
8: encMsg← SecureMsg.enc(msg)
9: Transport.send(Server, encMsg)

Server:
10: Transport.recv(encMsg)
11: IEE.process(encMsg)

IEE:
12: msg← SecureMsg.dec(encMsg)
13: clusters←msg
14: C ← clusters

Algorithm 3.7 VISEN codebook generation protocol for online k-means:
TrainOnlineKmeans(img)

Client:
1: F ← ExtractFeatures(img, ω)
2: msg← VISEN.train_onlinekmeans(F)
3: encMsg← SecureMsg.enc(msg)
4: Transport.send(Server, encMsg)

Server:
5: Transport.recv(encMsg)
6: IEE.process(encMsg)

IEE:
7: msg← SecureMsg.dec(encMsg)
8: F ←msg
9: C ← OnlineKmeans(nrClusters, C, F)

54

3.5. VISEN: VISUAL ISOLATED SEARCHABLE ENCRYPTION

Algorithm 3.8 VISEN codebook generation protocol for LSH: GenerateClustersLSH()

Client:
1: msg← VISEN.train_lsh()
2: encMsg← SecureMsg.enc(msg)
3: Transport.send(Server, encMsg)

Server:
4: Transport.recv(encMsg)
5: IEE.process(encMsg)

IEE:
6: msg← SecureMsg.dec(encMsg)
7: C ← GenerateStdVectors(nrClusters)

GenerateClustersLSH The LSH approach for the codebook generation phase is presented

in Algorithm 3.8. The protocol takes no input parameters, and consists of randomly

generating cluster centroids on the IEE (line 7); the values for these centroids following a

standard distribution.

3.5.1.2 Operating Phase Procedures

In this section we will describe the three operating phase protocols: Add, Remove, and

Search. Beforehand, we will describe an alteration to our Storage primitive, needed to

ensure backward privacy in the setting of VISEN.

VISEN considers images as indivisible elements, with each image addition or removal

producing a varying number of entries (i.e., keywords) in the Storage Service, while BISEN

considered single-keyword operations. Add operations produce a number of entries de-

pendant on the number of different clusters the image’s features produces; Remove opera-

tions consist of resetting all clusters to zero (thus inserting a fixed number of entries in

Storage), as a removal does not take the original image as input.

Preserving backward privacy implies making additions and removals indistinguish-

able; as such, we consider an entry buffer in the IEE: entries that are to be written to the

Storage Service are held in this buffer, up to a given limit based on available memory;

entries are then written in batch to the Storage Service when the limit is reached. This

forces Storage writes to always be of a fixed length. Read operations (when searching) are

made by first consulting the entry buffer, the Storage Service being contacted only if the

requested entry is not present in the IEE entry buffer.

In the description of our protocols, our entry buffer is abstracted by the Storage primi-

tives, which contact the buffer before the Storage Service.

Add The Add protocol for VISEN is presented in Algorithm 3.9, and takes an image img

and its identifier id as input. The Client performs a feature extraction step (line 1) and

sends the resulting set of vectors F and the image identifier to the IEE. The cardinality of

55

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

Algorithm 3.9 VISEN Add protocol: Add(img, id)

Client:
1: F ← ExtractFeatures(img, ω)
2: msg← VISEN.add({id,F})
3: encMsg← SecureMsg.enc(msg)
4: Transport.send(Server, encMsg)

Server:
5: Transport.recv(encMsg)
6: IEE.process(encMsg)

IEE:
7: msg← SecureMsg.dec(encMsg)
8: {id,F} ←msg
9: H ← ApproxDescriptors(F)

10: P ← { }

11: for all i← 0 . . .nrClusters do
12: f ← H[i]
13: if f > 0 then
14: c←W[i]
15: if c =⊥ then
16: c← 0
17: else
18: c← c + 1
19: end if
20: W[i]← c
21: kc ← F.run(kF , i)
22: l ← F.run(kc, c)
23: id∗← Θ.enc(kE , (l, f , id)))
24: P ← P ∪ {(l, id∗)}
25: end if
26: end for
27: Π←$ RandomPermutation(λ)
28: P ′ ←Π(P)
29: for all (l, id∗) ∈ P ′ do
30: Storage.put(l, id∗)
31: end for
32: nrImgs← nrImgs + 1

F depends on ω, which represents an upper bound for the number of features produced;

to reduce leakage, F is padded to its upper bound to produce fixed-width adds. The

IEE approximates each vector from F to its closest cluster (line 9), using a metric like

Euclidean distance; this operation yields a histogram H that associates each cluster with

its frequency in the image img. All data that is to be sent to the Storage will be stored

in a set P (line 10). The IEE then iterates over all clusters whose frequency is non-null

(line 13); for each one the IEE retrieves its counter value, initialising or incrementing it

as needed (lines 14 to 20). Similarly to BISEN, we create a unique (across the database)

label l as a pseudo-random transformation over the cluster identifier and the current

counter value (lines 21 and 22); the label is designed so as to be easily re-generated by the

IEE when searching. A tuple containing l (for verification purposes), the image’s cluster

frequency and its document identifier is encrypted with the authenticated symmetric

cipher Θ, yielding id∗ (line 23); the pair (l, id∗) is then stored in P .

To avoid inference over the entries’ ordering, a random permutation is performed

over P (line 28) yielding P ′. All pairs (l, id∗) in P ′ are iterated and added to the entry
buffer, and eventually to the Storage Service. The image counter global variable nrImgs,

used for scoring, is then incremented (line 32).

56

3.5. VISEN: VISUAL ISOLATED SEARCHABLE ENCRYPTION

Algorithm 3.10 VISEN Remove protocol: Remove(id)

Client:
1: msg← VISEN.remove(id)
2: encMsg← SecureMsg.enc(msg)
3: Transport.send(Server, encMsg)

Server:
4: Transport.recv(encMsg)
5: IEE.process(encMsg)

IEE:
6: msg← SecureMsg.dec(encMsg)
7: {id,F} ←msg
8: P ← { }

9: for all i← 0 . . .nrClusters do
10: c←W[i]
11: if c =⊥ then
12: c← 0
13: else
14: c← c + 1
15: end if
16: W[i]← c
17: kc ← F.run(kF , i)
18: l ← F.run(kc, c)
19: id∗← Θ.enc(kE , (l,0, id)))
20: P ← P ∪ {(l, id∗)}
21: end for
22: Π←$ RandomPermutation(λ)
23: P ′ ←Π(P)
24: for all (l, id∗) ∈ P ′ do
25: Storage.put(l, id∗)
26: end for
27: nrImgs← nrImgs − 1

Remove The Remove protocol for VISEN is presented in Algorithm 3.10, and takes an

image identifier id as input. Our intuition for the protocol is as follows: the Client is

not required to keep an image stored locally12; the Client also does not know an image’s

clusters, since these are calculated at the IEE – hence, deleting can not be done by sending

all of that image’s clusters to the IEE, so that their frequency can be set as null for that

image; an approach similar to BISEN is also not feasible in the image domain, as users

are not expected to delete individual features directly.

Nevertheless, taking into account that the number of clusters, i.e. keywords, is fixed

and small (compared, for example, with the number of possible words in BISEN), remov-

ing an image can be done by instead resetting all clusters to a null frequency – even if

they were not in the image to start with.

As such, the Client starts by sending to the IEE the id of the image to be deleted. In

the IEE, tuples (l, id∗) with f = 0 (line 19) are generated for each possible cluster (and

each cluster’s counter incremented), and added to the entry buffer, and eventually to the

Storage Service. The most recent frequency value for each cluster of that image will be 0,

and thus the image is effectively deleted, as searches will ignore null frequencies.

Search The Search protocol for VISEN is presented in Algorithm 3.11, taking an image

img and a response size threshold ρ as input. The Client starts by extracting the image’s

12In an alternative approach, the Client could retrieve the image from an external storage (where it would
be encrypted with standard algorithms) and send it to the IEE, where the approximation step would be
performed to infer which clusters would need to be removed.

57

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

Algorithm 3.11 VISEN Search protocol: Search(img, ρ)

Client:
1: F ← ExtractFeatures(img, ω)
2: msg← VISEN.search({F,ρ})
3: encMsg← SecureMsg.enc(msg)
4: Transport.send(Server, encMsg)

Server:
5: Transport.recv(encMsg)
6: IEE.process(encMsg)

IEE:
7: msg← SecureMsg.dec(encMsg)
8: {F,ρ} ←msg
9: H ← ApproxDescriptors(F)

10: Q← []
11: I ← { }
12: for all i← 0 . . .nrClusters do
13: if H[i] > 0 then
14: L← { }
15: kc ← F.run(kF , i)
16: c←W[i]
17: for all ci ← 0 . . . c do
18: l ← F.run(kc, ci)
19: L← L ∪ {l}
20: end for
21: Q[kc]← L
22: I ← I ∪ {i}
23: end if
24: end for
25: L′ ← Flatten(Q)
26: Π←$ RandomPermutation(λ)
27: L′ ←Π(L′)
28: D ′ ← { }
29: for all l ∈ L′ do
30: id∗ ← Storage.get(l)
31: D ′ ← D ′ ∪ {id∗}
32: end for
33: D ← { }

34: for all l′ ∈ L′; id∗ ∈D ′ do
35: (l, f , id)← Θ.dec(kE , id∗)
36: Verify(l,l’)
37: D ← D ∪ {(f , id)}
38: end for
39: D←Π−1(D)
40: Q′ ← Join(Q, D)
41: Q′ ← Filter(Q′)
42: IDF ← CalcIDF(nrClusters, nrImgs,

Q′)
43: S ← []
44: for all k ∈Q′; i ∈ I do
45: cidf ← IDF[i]
46: cqf ← H[i]
47: for all (f , id) ∈ k do
48: s← S[id]
49: if s =⊥ then
50: s← 0
51: else
52: s← s + cqf ∗ f ∗ cidf
53: end if
54: S[id]← s
55: end for
56: end for
57: S ′ ← SortByValueDesc(S)
58: S ′ ← PadOrTruncate(S ′, ρ)
59: encAnswer← SecureMsg.enc(S ′)
60: Return encAnswer to Server.

Server:
61: Transport.send(Client, encAnswer)

Client:
62: Transport.recv(encAns)
63: S ′ ← SecureMsg.dec(encAns)

58

3.5. VISEN: VISUAL ISOLATED SEARCHABLE ENCRYPTION

feature vectors into F and sending the latter to the IEE, together with threshold ρ. The

IEE performs the same cluster approximation step as in the Add protocol, and initialises

two auxiliary data structures, Q and I . Q is a dictionary associating clusters with their

respective set of labels; I is a set holding all cluster identifiers whose frequency in the

image is non-null – used when scoring results.

On line 12, the IEE starts by iterating over all non-null clusters, to generate all labels

to be requested from the Storage Service. As with the Add protocol, each is a pseudo-

random transformation over the cluster identifier and its current counter value. Labels

are then grouped as a set L′ (line 25), and are randomly permuted (line 27), so that

possible correlations between labels of the same cluster are hidden. The request to the

Storage Service is performed (lines 29 to 32), with the values corresponding to each label

being stored in setD ′. These values are decrypted in lines 34–38; each value is checked for

integrity and authenticity by the authenticated cipher (line 35), and the Verify algorithm

(line 36) ensures the retrieved value belongs to the requested label; the IEE can terminate

processing due to tampering otherwise.

The obtained values are sorted to the original order in L′ (line 39), and then joined

to Q (line 40), yielding a dictionary Q′ associating clusters to their set of pairs (f , id),

i.e. images containing such cluster. The Filter operation (line 41) works as with BISEN –

it removes values from Q′ that have been superseded by more recent updates.

Having the query results, the protocol then performs their scoring. To use the TF–
IDF metric, the IEE first calculates the Inverse Document Frequency, based on the global

frequency of each cluster (line 42); this frequency is inferred from Q′ – global frequency

of a cluster i is the cardinality of the set Q′[i] after Filter. The IEE iterates over the query

image’s clusters, present in Q′ (line 44); for each of these clusters, scoring will require

the cluster’s idf (cidf) and its frequency in the query image (cqf). All pairs belonging to

the cluster are iterated (lines 47 to 55); each iteration pertaining to an occurrence of the

cluster within image id, with frequency f . Scoring for the occurrence is calculated by

taking the query image’s own frequency (cqf) as weight for the TF–IDF of clusters within

image id (line 52).

After S contains scores for all relevant documents, a dictionary S ′ is generated by

ordering scores in descending order and padding or truncating results to ρ (line 58),

hiding the real response size. The resulting S ′ is then returned to the Client through the

secure channel (lines 59 to 63).

3.5.2 Security Analysis

In this section we will informally analyse the security of the VISEN scheme. As this

scheme shares similarities with BISEN, we summarise some topics of the analysis, and

refer to Section 3.4.2 when needed. Such is the case with the Server, the Storage Service,

and the Client-IEE Channel analysis: their operation remains the same in BISEN and

VISEN, and the security guarantees given in BISEN hold equally in VISEN. In the Storage

59

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

Service the same integrity guarantees remain through the use of authenticated encryption

and by storing a label in its corresponding value. In this section we will focus on VISEN’s

operation leakage, as other BISEN guarantees are retained.

Leakage of Procedures We base our leakage in function of data sent through and to

untrusted components of our system. The protocol being executed is always leaked13, as

accesses to the Storage Service reveal it.

In the codebook generation phase VISEN leaks the kind of codebook generation per-

formed. Additionally, TrainKmeans leaks the number of clusters, since the codebook

is sent via network; TrainOnlineKmeans leaks the number of images used for training;

GenerateClustersLSH produces no additional leakage.

In the Add protocol the Client sends a fixed-width message – as feature extraction is

done locally, thus hiding the size of the image in bits; the cardinality of the feature vector

set F being padded to an upper bound, controllable by ω. In the IEE, we leak whenever

the entry buffer is full, and the number of entries it holds.

Without padding, the Remove protocol would leak the operation between Client and

IEE – since it only sends an identifier through the network; nonetheless, making it indis-

tinguishable from additions in this step is trivial: the Client would send a dummy feature

vector set F, padded to the same fixed-width message from Add. Given the existence of

the entry buffer, entries regarding removals are held in the buffer as with the Add protocol;

consequently, the protocol also leaks whenever the buffer is full. Nonetheless, Add and

Remove protocols are indistinguishable.

In the Search protocol the Client sends the feature vector set of the query image to the

IEE – consequently also a fixed-width message. The IEE only requests the relevant clusters

to the Storage Service, producing access leakage; as with the Add protocol, all clusters could

be retrieved, and the irrelevant ones discarded, however to great performance penalty, as

it would imply retrieving the full database, even if for immediately discarding most of it

in the IEE. Additional leakage due to scoring is not produced, and fixed-width responses

give the same leakage as that of ranked BISEN (Section 3.4.3).

In comparison with the state-of-the-art (Table 2.1 from Section 2.3.4), VISEN only

produces access leakage, as an adversary cannot distinguish whether two queries that

produced the same access pattern are a repetition of the same query, or two different query

images whose features were clustered to the same centroids.

3.5.3 Discussion

While designing VISEN we considered whether to execute all processing at the IEE or per-

form some at the Client. We decided to execute feature extraction at the Client, since this

step produces a fixed number of feature vectors for each image, hence hiding the image’s

13With Add and Remove protocols being indistinguishable with the padding we will describe below.

60

3.6. MISEN: MULTIMODAL ISOLATED SEARCHABLE ENCRYPTION

true size and resolution, i.e. its detail. This process is akin to the kw step performed in

BISEN (Algorithm 3.2, line 1) to hide keyword length.

The scheme we presented does not consider mutable files, e.g. a user cropping or other-

wise changing an image. An approach similar to BISEN would incur in the following flaw:

since the clusters / keywords of the previous image would not be known (finding them

would be computationally expensive for the IEE), adding a new image would possibly

leave some of the previous version’s clusters unchanged. A possible solution would be to

delete the image to be changed before re-uploading its new version. Other solution is as

follows: a user would upload a new version of the image with the same identifier it had

previously, together with a version identifier. This identifier would be stored together

with the frequency value in the Storage; processing a search would consider the last seen

version through a Filter operation similar to that of BISEN. Security guarantees of this ver-

sion of the scheme would be the same of BISEN, as operations remain indistinguishable

outside of the IEE and Client.

One possible improvement when searching, to avoid requesting all clusters present

in the query image, would be to ignore lower frequency clusters. Since the IEE knows the

frequency of each cluster in the query image (via the image’s histogram), it can retrieve

only the most frequent, i.e. those that will affect the TF–IDF metric more significantly.

This approach could be based in concepts such as champion lists (Manning et al., 2008,

Section 7.1.3).

3.6 MISEN: Multimodal Isolated Searchable Encryption

In this section we present our last scheme, MISEN (Multimodal Isolated Searchable EN-

cryption), a protocol for simultaneous querying of both sparse (e.g. text) and dense (e.g. im-

ages, video or audio) data. MISEN relies on both protocols described earlier, BISEN and

VISEN, to perform searches over each data type. MISEN considers the ranked version of

BISEN and VISEN, both providing ranked results.

We present a simplified architecture of MISEN in Figure 3.2. Since BISEN and VISEN

searches expose the same interface – a query as input, and a list of documents ordered by

ranking as output, MISEN’s first approach is to treat both schemes as black boxes. Docu-

ments of text and image data are sent by the Client and added to both schemes separately

in the IEE (having the same identifier in either scheme). Searches are issued by the Client,
and may contain both Boolean text queries and query images; the IEE processes these

queries using a Request Processor, which redirects data to BISEN or VISEN as necessary.

Both schemes execute their unchanged Search procedure, and return the result to a Rank-
ing Function module. This module aggregates and ranks the results through a similarity

function for multimodal data, such as ISR (Mourão et al., 2013); this function combines

scores from both schemes (BISEN and VISEN), attributing a weight to each, and returns

the combined result to the Client.

61

CHAPTER 3. PROTOCOLS FOR ISOLATED SEARCHABLE ENCRYPTION

Isolated Execution Environment

BISEN

Request Processor

Client-IEE
Secure Channel

Ranking Function

VISEN

Client

IEE-Storage
Channel

Storage
Service

Figure 3.2: Simplified architecture of MISEN, showing internal IEE modules and integra-
tion with BISEN and VISEN.

By considering some improvements, however, we can provide an enhanced, albeit less

modular, version of MISEN. Firstly, the Storage Service module could be shared by both

schemes. To this effect, data stored on it would need to be annotated to segregate text and

image data – which could be done by concatenating an identifier to the counter in the IEE
label generation steps of BISEN and VISEN.

In the IEE we would consider a Storage Handler module, responsible for executing

Storage Service interaction – namely grouping label requests from both parts and ran-

domly permuting them. After requesting the labels and receiving their respective values,

the module would decrypt and verify them, delivering an authenticated set of values

to each scheme, and thus abstracting the common Storage Service interaction they both

share.

With these changes, we could parallelise the Update/Add and Search protocols. Pro-

cessing up to the part of Storage requests would be done individually, and values needed

from Storage would be served from the Storage Handler, with further processing again

redirected for each scheme, up until results are sent to the Ranking Function module.

62

C
h
a
p
t
e
r

4
Protocol Implementation

In this chapter we will describe the implementation of our searchable encryption schemes,

BISEN, VISEN, and MISEN. The Isolated Execution Environment (IEE) described in the

protocols is instantiated through Intel SGX (Anati et al., 2013; Hoekstra et al., 2013;

McKeen et al., 2013). This instruction set allows us to have a trusted hardware module

with confidentiality and integrity guarantees, together with an authentication protocol

that enables the IEE requirements from Barbosa et al. (2016).

Our prototype and protocols were implemented in C/C++, using Intel SGX SDK

version 2.21. The final prototype amounts to nearly 22 000 lines of code, including

the three main prototypes and auxiliary tools for its benchmarking, and is available on

https://github.com/sgtpepperpt/MISEN as open-source. Our Server and IEE modules

were implemented as part of a Framework to abstract Intel SGX and its API, while the

Client and Storage Service modules were implemented as separate executables. We imple-

mented versions with Add operations (with no update or delete operations) of our three

schemes, BISEN (both ranked and exact-match versions), VISEN, and MISEN.

In the remainder of the chapter we will present our Framework for Intel SGX-based

IEE abstraction (Section 4.1); detail the implementation of the remaining components,

namely Client and Storage Service (Section 4.2); we then focus on common scheme imple-

mentation details (Section 4.3); the chapter concludes with particular details for BISEN

(Section 4.4), VISEN (Section 4.5), and MISEN (Section 4.6).

4.1 Framework for Intel SGX

To ease interchangeability and create a common programming interface for our three

schemes, we implemented a Framework designed to abstract Intel SGX enclaves as an IEE,

1https://software.intel.com/en-us/sgx-sdk

63

https://github.com/sgtpepperpt/MISEN
https://software.intel.com/en-us/sgx-sdk

CHAPTER 4. PROTOCOL IMPLEMENTATION

provide common libraries for utilities (such as interaction with the Operating System) and

cryptographic functions, and act as a runtime for Intel SGX in the Cloud server. Although

in this thesis the Framework is directed at serving our schemes interchangeably, our

objective as future work is to develop a Framework to enable a seamless IEE programming

environment for generic secure Cloud-based applications.

IEE

TCP Channel

os_util

iee_util

iee_crypto

outside_util

outside_crypto

sec_channel_client

sec_channel_iee

IEE Libs

Secure Channel
Libs

Outside Libs

User Libs

Uses

Server

TC
P

Se
rv

erClient

TC
P

Cl
ien

t

Internal Channel

user_outside_lib

Framework
Boundary

user_iee_lib

Figure 4.1: Framework architecture. The Framework (right of the boundary) provides
a runtime for the Server and IEE, and a group of libraries as API. User code for the IEE
and Server modules leverages Framework libraries; the Client, although outside of the
Framework, may also leverage its code.

We present our Framework architecture in Figure 4.1. The Framework’s main contri-

bution is to provide a runtime for the Server and IEE modules in the Cloud server, which

are pluggable with user’s IEE code (and accompanying untrusted code for OS interaction,

if needed) via user-programmed static libraries (User Libs). To ease IEE programming,

a group of utility libraries (IEE Libs, Outside Libs, and Secure Channel Libs) is pro-

vided as a set of APIs for User Lib code.

The runtime for the Server acts as host to the IEE, and as proxy between Client and

IEE2, exposing a TCP server and forwarding encrypted messages from the Client-IEE se-

cure channel to the IEE’s sec_channel_iee library, which decrypts and delivers messages

to the user library (user_iee_lib) for application-specific processing.

Application code for user_iee_lib may leverage functions from utility IEE Libs,

which, apart from fully trusted code (iee_util and iee_crypto), also provide common

OS interaction primitives via os_util; if needed, further interaction can be user-defined

in user_outside_lib.

Some of the Framework’s utility libraries are also leveraged by the Client module

2We omit the Storage Service for simplicity, as it does not leverage Framework utilities.

64

4.1. FRAMEWORK FOR INTEL SGX

(e.g., for the client-side part of the secure channel establishment). Yet, since our Frame-

work’s main purpose is to abstract IEE implementation details, we consider such uses to

be orthogonal to this section, and only discuss them where relevant.

Although our Framework was designed so as to provide a generic IEE abstraction for

programers, our current implementation only supports Intel SGX, and we leave support

for ARM TrustZone as future work. As such, we will use the terms IEE and enclave

interchangeably in this section.

In the remainder of the section we describe the initialisation of the Framework (Sec-

tion 4.1.1), define its API for IEE and outside user code (Section 4.1.2), and present a

summary of existing utility libraries (Section 4.1.3).

4.1.1 Framework Initialisation

After the user programs their code as a static library – in our case, the IEE part of our

isolated SSE protocols – and links it to the Framework, the Framework is executed via the

following steps:

1. Initialise and start running the Intel SGX enclave, loading the user-provided static

library.

2. Wait for a Client connection.

3. After a Client connects, start redirecting traffic to the IEE.

4. The Client and IEE establish their secure channel (IEE and Client-IEE Channel Ini-

tialisation Procedure, described in Section 3.3).

5. Messages received by the Server module are redirected to the IEE and processed by

the IEE library.

During operation, the Client sends encrypted messages to the Cloud server using

SecureMsg primitives (which we describe later in Section 4.1.3); the outside part of the

Framework delivers them to IEE; the IEE part of the Framework, being an endpoint of the

secure channel, decrypts, authenticates, and validates such messages, finally delivering

them to the user application library, which processes them as needed; the IEE’s response

being returned back through the secure channel to the Client.

4.1.2 Framework API

Programming the user code involves creating static libraries of both IEE and Outside

request processors (User Libs), which must implement the functions from Listing 4.1.

The IEE part is implemented with the user_iee_lib::process_message function, which

processes arbitrary messages (via the in argument) received through the secure channel,

and returns the respective response via the out argument. The sec_channel_iee then

65

CHAPTER 4. PROTOCOL IMPLEMENTATION

1 namespace user_iee_lib {

2 void process_message(void** out, size_t* out_len, const void* in, const

size_t in_len);

3 }

4

5 namespace user_outside_lib {

6 void process_message(void** out, size_t* out_len, const void* in, const

size_t in_len);

7 }

Listing 4.1: Framework API for application-specific code.

channels that response back through the Server, and then onwards to the Client. While in-

side the user_iee_lib::process_message function, the programer’s code is guaranteed

to be executed inside the IEE, except for os_util calls.

Since the user code might need to access additional external resources – as is the

case with our protocols – we provide an outside processing function user_outside_lib

::process_message, similar to the previous one, but for execution outside the IEE, in

the Server module. This function allows the programmer to also execute arbitrary code

outside of the IEE, and can be called from inside the IEE via os_util::process_outside;

such call temporarily exits the enclave via an Intel SGX OCALL. While outside, the mes-

sage sent from the enclave is processed by the user_outside_lib::process_message

function as defined by the user, and an answer is returned to the enclave via the out

argument.

4.1.3 Utility Libraries

The Intel SGX SDK API does not include Operating System calls, since the OS falls out

of the trust base, both in our IEE model and Intel SGX’s one. However, to implement our

protocols, we require, for example, access to the Storage Service (via the Storage group

of calls of our protocols), which has to be mediated by the OS, as the Storage Service is

outside the IEE. To this effect, and to provide useful debugging and benchmarking tools,

we implemented a group of libraries – which are to be made available mainly for user

code running inside the functions of Listing 4.1 – for both IEE internal code, and normal,
possibly untrusted, outside of IEE code3.

Libraries for IEE Code Libraries to be used in the IEE are divided into os_util, which

provides the IEE with functions that require OS intervention4, iee_util, with generic IEE

3In fact, the code implemented by these libraries could be user-implemented via the primitives from
Listing 4.1; we provide it to further ease the programming interface of the library.

4os_util library functions are not completely trusted, as data from its arguments is both passed to and
originated from outside the trust base. Since the library is to be used from inside the IEE, we choose to
include it alongside other such libraries. Security of data manipulated or obtained via such functions has to
be ensured by the programmer.

66

4.1. FRAMEWORK FOR INTEL SGX

1 namespace os_util {

2 // file i/o

3 int open(const char* filename, int mode);

4 ssize_t read(int file, void* buf, size_t len);

5 ssize_t write(const int file, const void* buf, const size_t len);

6 void close(int file);

7

8 // tcp communication

9 int open_socket(const char* addr, int port);

10 void socket_send(int socket, const void* buff, size_t len);

11 void socket_receive(int socket, void* buff, size_t len);

12 void close_socket(const int socket);

13

14 // interaction with storage service

15 void storage_message(const int socket, void** out, size_t* out_len, const

void* in, const size_t in_len);

16

17 // outside allocation

18 void* outside_malloc(size_t length);

19 void outside_free(void* pointer);

20

21 // generic calls

22 void printf(const char* fmt, ...);

23 void exit(int status);

24 time_t curr_time();

25

26 // implemented by user_untrusted_lib::process_message, generic untrusted

processing

27 int process_outside(void** out, size_t* out_len, const void* in, const

size_t in_len);

28 }

Listing 4.2: IEE library os_util.

trusted functions, and iee_crypto, with IEE cryptographic functions. We now describe

each library’s purpose, and guide the reader to Appendix A for complete library APIs:

• os_util (Listing 4.2): abstractions for OCALLs, such as insecure file I/O opera-

tions, TCP communication (to establish channels and communicate with generic

external modules), a Storage Service abstraction for message sending and receiv-

ing, abstractions for memory allocation outside the enclave (needed when passing

variable-length data to and from the outside code), generic functions for debugging

purposes, and a process_outside call to cover any other necessary functionality –

to be implemented by user_outside_lib ::process_message.

• iee_util (Listing A.1): implements a thread pool for parallelism within the en-

clave5, and provides secure file I/O operations using data sealing (see Section 2.4.3.1).

5Threads cannot be instantiated inside the enclave, but parallelism is possible via a thread pool. See
https://github.com/intel/linux-sgx/issues/106.

67

https://github.com/intel/linux-sgx/issues/106

CHAPTER 4. PROTOCOL IMPLEMENTATION

• iee_crypto (Listing A.2): contains necessary cryptographic functions. In our proto-

cols, we require two cryptographic functions, a PRF F and an authenticated symmet-

ric cipher Θ – these were instantiated as a SHA256-HMAC, and XSalsa20 stream

cipher with Poly1305 MAC, respectively. We leveraged the implementation of Lib-

Sodium6 for these functions, as it contains built-in authentication mechanisms7.

For the random functions we used the source of randomness provided by Intel SGX

SDK.

Libraries for Outside Code

• outside_util (Listing A.3): contains functions for debugging and TCP communica-

tion, which can be useful to establish communication with other system components

– and are also leveraged by functions such as os_util’s TCP functions.

• outside_crypto: mimics the same interface and behaviour of iee_crypto for un-

trusted parts of the code; we therefore omit it for brevity. Its main purpose is to

provide a cohesive cryptographic interface for outside of IEE operations, such as

those done by the Client.

Libraries for Secure Channel Communication

• sec_channel_client (Listing A.4): functions for the Client to respectively estab-

lish, use and terminate a secure channel connection to the IEE, abstracting TCP

communication with the Server.

• sec_channel_iee (Listing A.4): functions for the IEE to control secure channel

connections. The Framework initialises a secure channel server in the IEE; when a

Client connects the authentication protocol is performed, and further messages are

delivered from this internal server into the user application library.

4.2 Implementing the Client and Storage Service

The Storage Service only requires a key-value store interface, with put and get operations.

We used a memory-efficient hash map implementation – Sparsepp8 – with a similar

interface to that of map from the C++ standard library, with additional alternative imple-

mentations in Redis9 and Cassandra10. The Storage Service is exposed as a TCP server, and

receives messages from the IEE via its os_util::storage_message function, to which

the Storage interprets and replies as needed. For memory allocation, the Storage Service
has to be aware of the size of the (key,value) pairs it receives; in either protocol, key is

6https://libsodium.org/
7See https://download.libsodium.org/doc/secret-key_cryptography/authenticated_encryption.
8https://github.com/greg7mdp/sparsepp
9https://redis.io/

10https://cassandra.apache.org/

68

https://download.libsodium.org/doc/
https://download.libsodium.org/doc/secret-key_cryptography/authenticated_encryption
https://github.com/greg7mdp/sparsepp
https://redis.io/
https://cassandra.apache.org/

4.3. COMMON IMPLEMENTATION DETAILS

32 bytes long – a SHA256-HMAC, and value is 80 bytes long – 32 bytes from the key

validation, 4 bytes to represent the document / image identifier, 4 bytes for the frequency

value, and 40 bytes for LibSodium’s authenticated cipher data (a nonce and a MAC).

Our Client acts as a TCP client, which implements our schemes’ client-side logic, along

with the communication protocol needed for the encoding and decoding of IEE messages.

Moreover, it implements the secure channel logic needed to authenticate and communi-

cate with the IEE via sec_channel_client, and leverages cryptographic primitives from

our outside_crypto library.

4.3 Common Implementation Details

In this section we briefly describe some common implementation details of our protocols

not included with the Framework description, namely how common patterns found on

the schemes are translated into implementation.

Communication (namely BISEN and VISEN calls used in the Client part of our proto-

cols) is done by generating binary messages which contain the necessary data to be trans-

mitted to the IEE. These are sent abstracted through the sec_channel_client functions

from the Framework, while the Storage group of calls use the os_util::storage_message

function. While the protocols show primitives for single pair put/get operations, values

sent to and from the Storage Service are batched for communication efficiency.

Data structures, such as dictionaries and sets, used throughout our protocols were

implemented as C++ standard library maps or vectors. In particular cases, such as with

BISEN, we used custom vector data structures to help with set processing operations –

for example, having ordered document sets while resolving queries facilitates algorithm

optimisations, not only performance but also memory-wise.

4.4 Implementation of BISEN

In this section we detail implementation decisions taken for BISEN, in particular for the

Update and Search operations.

Update Operation Our implementation of the Update operation takes raw text docu-

ments as input. The Client executes a preprocessing step, with techniques from Manning

et al. (2008, Section 2.2), which are as follows: a word index (word associated to its

frequency) is initialised; for each word of the document, we check whether it is a stop

word (i.e., a common word with little semantic value, such as the or and), and ignore it –

if not, we add the morphological root of that word to the index (known as stemming), or

increment its frequency if already present. The set of all words of a document is sent in

batch to the IEE. While the current implementation approach leaks document size – as

each update is a document addition, the implementation could easily be changed to send

69

CHAPTER 4. PROTOCOL IMPLEMENTATION

fixed-width messages, holding parts of the document until an amount of updates is ready

to be sent in batch, or padding messages to a fixed size.

Search The Search operation takes an ASCII text query as input, and the Client executes

the same preprocessing of Update for each word. Document sorting, if scoring is enabled,

is done via the Quicksort implementation available in C.

4.5 Implementation of VISEN

VISEN’s image-related operations rely on version 3.4.1 of the OpenCV11 library. Particu-

larly, we used both its SURF and SIFT implementations for feature extraction12, and its

k-means implementation for the Traditional K-means approach.

Feature extraction of an image results in a set of float vectors, with 128 dimensions

each for SIFT, and 64 for SURF. Clustering data into a codebook of k clusters results in

a set of k vectors of float, which are ultimately stored in the IEE. Apart from this, the

initialisation and communication protocol of VISEN is similar to that of BISEN.

Codebook Generation Phase We implemented the three versions for codebook gener-

ation referred in Section 3.5.1. The Traditional K-means approach was implemented at

the Client-side via the OpenCV class BOWKMeansTrainer; the Online K-means was im-

plemented by us following a simple algorithm for online cluster updating13, with the

seeding phase corresponding to the first vectors sent to the IEE; finally, clusters for LSH
are generated using random float values following a normal distribution.

Use of Parallelism Some procedures of VISEN’s protocols are embarrassingly parallel.

That is the case of approximation procedures (when reducing feature vectors into clus-

ters), where each vector’s calculation is totally independent from others; and the case

of addition of data to the Storage Service, where putting and getting each label does not

require any type of ordering. We implemented both sequential and parallel versions of

these procedures.

4.6 Implementation of MISEN

MISEN was implemented by grouping BISEN and VISEN functions into the same static

library, creating an additional request processor in front of these schemes, to separate

queries for either one. Our implementation did not use the same Storage Service for both

schemes, instead relying on two instances of it. Both schemes operate sequentially, in

part since they share some Framework resources, and also due to Intel SGX limitations on

11https://opencv.org/
12Available as an extra module at https://github.com/opencv/opencv_contrib.
13https://www.cs.princeton.edu/courses/archive/fall08/cos436/Duda/C/sk_means.htm

70

https://opencv.org/
https://github.com/opencv/opencv_contrib
https://www.cs.princeton.edu/courses/archive/fall08/cos436/Duda/C/sk_means.htm

4.6. IMPLEMENTATION OF MISEN

parallel programming: since VISEN uses parallel functions, and SGX threads are limited

to physical cores, VISEN’s operation could not be trivially parallelised with BISEN’s own

operation, and, consequently, we leave such parallelism as future implementation work.

71

C
h
a
p
t
e
r

5
Experimental Evaluation

In this chapter we present the experimental evaluation performed over our schemes. Our

first objective was to assess the latency and scalability of each of their operations, and the

impact each of the system’s participants (Client, IEE and Storage Service) had on overall

latency. We also discuss the impact of some implementation decisions and alternative

approaches for parts of our schemes. Furthermore, we compare our schemes with the

state-of-the-art on text (Kamara and Moataz, 2017) and image (Ferreira et al., 2018) SSE

schemes.

In the remainder of the section we describe our experimental test bench (Section 5.1),

and the results obtained for BISEN (Section 5.2), VISEN (Section 5.3), and MISEN (Sec-

tion 5.4).

5.1 Experimental Test Bench

Our experimental test bench was composed of an SGX-enabled machine, and an exter-

nal server with large memory to act as Storage Service. Our Client, Server and IEE were

deployed on the same machine for practical reasons.

Our SGX-enabled machine was a 4-core Intel NUC i3-7100U, with 2.4GHz of CPU

frequency, 8GB of RAM and 256GB of SSD storage, running Ubuntu Server 18.04.1. Our

server for the Storage Service contained an AMD Opteron 6272 64-core CPU with 2.1GHz

of frequency, 64GB of RAM and 128GB of SSD storage, running Ubuntu Server 16.04.4.

Both machines were deployed in a local network – nevertheless, to avoid network noise,

we consider local latencies of the main participants individually (Client, IEE and Storage
Service), but not network latency (we still consider the time of buffer allocation for mes-

sages, and their respective writing and reading). We omit Server performance, as its work

consists solely of message forwarding, and so we considered it as network time.

73

CHAPTER 5. EXPERIMENTAL EVALUATION

5.2 BISEN Evaluation

BISEN’s evaluation is centred in its Update and Search protocols. We evaluated BISEN

using the English Wikipedia Dataset (Wikipedia, 2018) from August 2018, which contains

around 5.5 million articles (i.e. documents), and amounts to ≈ 60GB of raw data. To

cleanup metadata (such as Wikipedia templates, links, and tables) we used a parser tool,

WikiExtractor1, which yields pure text documents, amounting to ≈ 13GB of text data.

Due to memory constraints, our Storage Service was unable to support the full dataset

in-memory; as such, we use about 5 million articles of this dataset in our experimental

evaluation, amounting to about 464 million entries on the Storage Service index.

Our searches were performed by combining the twelve most popular words from the

English language, which are, from most to least popular: time, person, year, way, day,

thing, man, world, life, hand, part, and child. We joined these words in different types of

queries, as presented in Appendix B, using Boolean conjunctions (&&), disjunctions (||),

negations (!) and sets of parentheses. Due to the high impact of the scoring function, our

results present the unranked version of BISEN, except for Section 5.2.7, where scoring is

discussed.

Our tests start by presenting the latency of both Update and Search protocols, and

the impact of each protocol participant individually (Section 5.2.1). To evaluate the

Search protocol we analyse latency with different types of Boolean operators and operands

(Section 5.2.2), the impact of different operations in IEE processing (Section 5.2.3), the

impact of the number of negation operators in queries (Section 5.2.4), and conclude the

Search protocol analysis with an assessment of latency under varying keyword selectivity

(Section 5.2.5).

In the remain of the section we compare three different solutions for the Storage Service
(Section 5.2.6), and assess the overall performance impact of scoring in ranked BISEN

(Section 5.2.7). We conclude by comparing our scheme with the state-of-the-art from

Kamara and Moataz (2017) (Section 5.2.8) and discussing obtained results (Section 5.2.9).

Except if otherwise noted, our latency plots will show the database size (i.e., the num-

ber of word/document id pairs in the Storage) in the x-axis, and the latency of operations

in the y-axis. Latency of these operations was measured at increasingly larger database

sizes – from 500 thousand articles up to 5 million (90% of Wikipedia, the maximum value

whose index fitted the 64GB of RAM of our Storage Service machine).

5.2.1 Performance of Individual Participants

In this test (Figure 5.1) we assess the impact of each participant (Client, IEE and Storage
Service), and the total latency, in both Update and Search protocols. We observed updates

(Figure 5.1a), performed in batches of increasingly larger sizes, scale linearly to that size,

which implies single Update operations are constant. Time spent in the IEE and Storage is

1https://github.com/attardi/wikiextractor

74

https://github.com/attardi/wikiextractor

5.2. BISEN EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1x108 2x108 3x108 4x108 5x108

La
te
nc
y
(s
)

Batch Update Size (Nr. of Word/Doc ID Pairs)

Client
IEE

Storage
Total

a BISEN Update protocol.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1x108 2x108 3x108 4x108 5x108

La
te
nc
y
(s
)

Database Size (Nr. of Word/Doc ID Pairs)

Client
IEE

Storage
Total

b BISEN Search protocol, for an example conjunctive
query of five keywords.

Figure 5.1: Performance comparison of each participant for the Update and Search proto-
cols of BISEN.

roughly similar, with a tendency for the Storage Service to become a bottleneck for larger

operations. While we consider a single server, distributing the Storage Service across

multiple machines, and parallelising update batches – even if without replication and

availability guarantees – might mitigate its weight in the operation. In turn, the IEE is

responsible for simple cryptographic computations, which is reflected in the latency for

the maximum update (1300 seconds for 90% of Wikipedia). The largest slice of Update
processing is on the Client – as we account for pre-processing of documents (described

in Section 4.4), which take about 46% of the shown Client time. Reading files from disc

accounts for 2% of the time, while the rest is spent in counter operations and buffer

allocation and writing.

Regarding Search (Figure 5.1b), most of the processing is done in the IEE – this is due

mainly to buffer manipulation (producing the labels for Storage requests, and processing

and storing responses inside the IEE; we further discuss this result in Section 5.2.3).

Contrarily to the Update protocol, the Client has almost no processing latency, as it only

has to pre-process the query keywords, and not full documents. As expected, we observed

searches scale linearly to database size – with a larger database, a keyword is expected to

be present in more documents, all of which have to be retrieved into the IEE2.

5.2.2 Performance Regarding Type of Query

With this test (Figure 5.2) we wanted to assess the impact of both the type of operators and

the length of the query on overall latency. We used queries in both Conjunctive Normal

Form (CNF) and Disjunctive Normal Form (DNF), with one, three and five conjunctions

and disjunctions. These correspond, for example, to queries of the form (A∨B)∧ (C ∨D)

(one conjunction) or (A∨B)∧ (C∨D)∧ (E∨F)∧ (G∨H) (three conjunctions) for the CNF;

the same logic applies to the DNF. The queries executed are 24-29 from Appendix B.

2This is directly related with keyword selectivity, which we discuss in Section 5.2.5.

75

CHAPTER 5. EXPERIMENTAL EVALUATION

 20

 40

 60

 80

 100

 120

 0 1x108 2x108 3x108 4x108 5x108

La
te
nc
y
(s
)

Database Size (Nr. of Word/Doc ID Pairs)

1 Disj.
1 Conj.

3 Disj.
3 Conj.

5 Disj.
5 Conj.

Figure 5.2: Impact of the Boolean formula and query size on the performance of the
BISEN Search protocol. The plot key describes the number of the main operator of each
query (e.g., 1 Disj. represents a query in Disjunctive Normal Form (DNF) with a single
OR.)

Our main takeaway from this experiment is that the type of Boolean operator does

not significantly affect query performance (i.e., the impact of resolving AND and OR

operations is similar), while the number of operands does – retrieving 12 keywords (3
Disj. and 3 Conj. in the figure) incurs in a bigger latency than retrieving 8 or 4 keywords,

as the number of entries to be retrieved by the IEE increases accordingly.

5.2.3 Impact of IEE-specific Operations during Search

In this section we briefly discuss the impact of different operations in IEE processing for

the Search. In ranked BISEN, scoring takes the larger slice of processing, with an average

of 85% processing time dedicated to scoring (via TF–IDF) and sorting of the resulting

document list using Quicksort (which we further analyse in Section 5.2.7).

Excluding scoring, Boolean set processing takes a minimal amount of time (averaging

2% of the time, and peaking at 6% for more complex queries), while most of the time is

spent in buffer copying and allocation, such as message generation for the Storage Service
(≈76% of time), its respective decoding (≈20%), and preparation of data structures for

Boolean processing (≈2%). Therefore, we conclude the bottleneck in processing is due to

interaction with the Storage Service, which takes ≈96% of time, while Boolean processing

in itself is a light operation.

76

5.2. BISEN EVALUATION

DB Size
(Nr. of pairs

word / doc id)
1 Negation 5 Negations 10 Negations Fully Neg.

De Morgan of
Fully Neg.

35 996 207 4.286 4.498 3.052 4.319 3.565
76 672 004 9.335 9.241 9.610 7.185 9.041

156 143 147 18.653 18.092 21.095 16.589 18.379
288 706 216 55.823 55.461 52.758 56.768 54.946
333 784 724 52.265 58.227 50.850 51.996 57.290
368 651 490 66.277 67.845 66.048 64.580 65.956
464 054 543 86.057 82.289 85.041 86.938 88.563

Table 5.1: Performance of negations in the BISEN Search protocol, with time in seconds.
Queries shown are, respectively, 30-34 from Appendix B.

5.2.4 Performance of Negation Queries

In Table 5.1 we present the impact of negations for queries of fixed size (10 keywords),

varying the number of negated keywords – one, five and ten; then a fully negated query –

of the form ¬(A∧B), and finally the equivalent version of the latter using De Morgan’s

laws. Our objective was to assess the impact performance of the negation operation across

different types of queries and numbers of negations. Results show that the number of

negation operations performed has minimal impact, even for larger database sizes, which

can be explained by the low overhead of Boolean processing. Since all queries require the

same number of entries to be fetched from Storage, where the main bottleneck is, their

latency is, therefore, similar.

5.2.5 Performance Regarding Selectivity

In this experiment we analyse the impact of keyword selectivity in the Search protocol

– i.e., how many documents each keyword appears in; higher selectivity implies more

requests to the Storage Service, and larger responses to the Client in the unranked version.

We performed single-keyword queries returning from ≈0.2% of the database, up to ≈25%

of all documents.

Results show (Figure 5.3) that an increase in latency is linear with selectivity, with a

tendency to be amortised in larger databases. Taking into account the significant impact

of Storage Service interaction on overall latency (Section 5.2.3), and considering that in-

creasing selectivity implies more entries to be requested and processed by the IEE, the

linear increase in latency is expected.

In conclusion, selectivity of keywords is the factor which determines overall Search
latency on exact-match BISEN, as it determines the number of entries that have to be

requested by the IEE; with a single entry request incurring in constant time (processing

one entry on the IEE, and a single access in the Storage Service dictionary), a linear increase

in requests incurs in linear time.

77

CHAPTER 5. EXPERIMENTAL EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.05 0.1 0.15 0.2 0.25

La
te
nc
y
(s
)

Query Selectivity (% of Total Docs Returned)

80M
180M

290M
330M

370M
460M

Figure 5.3: Impact of query selectivity on the performance of the BISEN Search protocol.
The y-axis shows latency for increasing selectivity on the x-axis, with samples for different
database sizes.

5.2.6 Evaluating Different Storage Solutions

 0.1

 1

 10

 100

 1000

 10000

 100000

Sparsepp Redis Cassandra

La
te
nc
y
(s
)

Storage Alternatives

IEE
Storage

a BISEN Update protocol.

 0.1

 1

 10

 100

 1000

C++ Map Redis Cassandra

La
te
nc
y
(s
)

Storage Alternatives

IEE
Storage

b BISEN Search protocol, for a conjunctive query of
two keywords.

Figure 5.4: Comparison of BISEN performance with three different solutions for Storage:
Sparsepp, Redis and Cassandra. Logarithmic scale used due to the difference in orders of
magnitude between solutions.

Our main implementation for the Storage Service uses Sparsepp, an in-memory map

optimisation of the unordered_map from the C++ standard library. However, as it might

present itself as an ad-hoc solution with no support for persistency and fault tolerance, we

implemented drivers for two currently popular NoSQL databases – Redis and Cassandra.

We compare these two NoSQL solutions in single-node clusters with Sparsepp using a

fixed database size of ≈156M pairs (two million documents), and account for the latency

78

5.2. BISEN EVALUATION

of both IEE and Storage Service in the protocols.

In Figure 5.4 we compare the three solutions in the Update and Search protocols. While

time spent in the IEE is kept unchanged across solutions (as different Storage approaches

are transparent to it); performance in the Storage Service for the Redis approach incurs in

a performance penalty of an order of magnitude above Sparsepp, and Cassandra a further

order of magnitude above, in both protocols. While Cassandra uses disc storage, which

we expected to be a significative hindrance on performance, Redis is an in-memory store,

and thus we assumed its performance would be similar to that of Sparsepp.

 0.1

 1

 10

 100

 1000

 10000

 0 500000 1x106 1.5x106 2x106 2.5x106

La
te
nc
y
(s
)

Nr. of Accessed Labels in Storage

Sparsepp Redis Cassandra

Figure 5.5: Comparative impact of number of accessed entries in the scalability of BISEN
Storage Service solutions. Logarithmic scale used due to the difference in orders of magni-
tude between solutions.

Although Storage Service latency remains linear to the number of accessed labels (Fig-

ure 5.5) – thus presenting NoSQL approaches as viable, at least in a scalability perspective

– the overall impact is still larger than expected in our tests. We leave testing the NoSQL

databases with more than one node – thus parallelising costly accesses to disc across

different nodes – as future work. However, and given Intel CPUs with SGX are limited

to eight cores as of 20183, performance improvements might then be bottlenecked on the

IEE side.

5.2.7 Impact of Scoring Algorithms during Search

In this section we analyse the impact of scoring operations in IEE processing in BISEN.

Figure 5.6 shows latency of IEE processing in exact-match and ranked versions of BISEN,

in regards to the original document list retrieved from Storage, i.e. the length of the

document list before any scoring and sorting.

3As listed in https://tinyurl.com/sgxlist.

79

https://tinyurl.com/sgxlist

CHAPTER 5. EXPERIMENTAL EVALUATION

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1x106 1x107

La
te
nc
y
of

 IE
E

 P
ro
ce
ss
in
g
(s
)

Nr. of Original Docs to Score

Exact-Match Ranked

Figure 5.6: Comparison of IEE Search processing latency between exact-match and ranked
versions of BISEN, in regard to the number of documents retrieved from the Storage
Service, before scoring, sorting and trimming of that document list. We use logarithmic
scales due to the high variation in the orders of magnitude measured.

We fixed the database size at two million articles, and executed queries with different

selectivity. We found scoring time to be determined by the number of documents to score,

i.e. the documents originally retrieved by the query from Storage (selectivity). Hence,

we chose to plot latency in function of selectivity for better clarity, instead of varying

database size while executing the same query, as with former plots. Regardless, having

the plot in function of database size would produce the same typology of results, since a

given query’s selectivity is constant across database sizes (i.e., the same query will always

retrieve the same percentage of documents, regardless of database size, with a measured

standard deviation of 0.6% in our experiments).

Our results show that the exact-match version of BISEN IEE processing grows linearly,

and does not exceed 10 seconds for the processing of the two million documents. In the

ranked version, the impact of scoring is particularly evident for document sets with larger

cardinality, e.g. for two million documents processing time increases three orders of mag-

nitude in contrast to the unranked version. In fact, the sorting algorithm used, Quicksort,

has O(n logn) time complexity, which explains the approximately linear behaviour of our

results. However, it still prohibitively impacts Search performance, taking about 85%

of processing time, which indicates the need for further optimisation and research on

alternative, more efficient, approaches for the problem of scoring and sorting documents

in the IEE.

80

5.2. BISEN EVALUATION

Database Size Update Search CNF
(Nr. of pairs word / doc id) BISEN IEX-2LEV BISEN IEX-2LEV

9 793 0.151 5 143 0.004 12
27 446 0.423 15 568 0.021 173
56 238 0.862 29 274 0.061 216

Table 5.2: Latency comparison between BISEN and IEX-2LEV (Kamara and Moataz, 2017)
schemes. All times are in seconds, queries composed of eight keywords.

5.2.8 Comparison with the State-of-the-Art

To compare BISEN with the state-of-the-art (Table 5.2) we used the implementation of

IEX-2LEV from Kamara and Moataz (2017)4. Due to space requirements of the IEX-2LEV

scheme, we used our AMD Opteron server with 64GB of RAM for these tests. Yet, we

were unable to run the scheme with more than 56 238 index entries; for our scheme, we

used a software simulation of Intel SGX, so as to compare both solutions on the same

machine.

From these results, we conclude BISEN is much more efficient than IEX-2LEV: while

our scheme only takes 0.862 seconds to perform a full database update, IEX-2LEV takes

more than 8 hours. Our performance advantage is due to the use of trusted hardware –

its security guarantees allow us to use simpler and more efficient data structures without

compromising security, whereas IEX-2LEV requires quadratic storage, thus penalising

both storage and performance considerations.

5.2.9 Discussion

Our evaluation of BISEN allowed us to assess the scalability and performance limits of

the implemented solution. The problem of scalability, which the current state-of-the-art

leaves as open research, is improved by our solution, which is shown to scale linearly, in

both time and storage dimensions.

Such fact makes our scheme predictable in its scalability and performance. By using

complementary techniques, such as keeping caches of popular documents in the IEE,

and distributing load across multiple devices, we consider that our solution might easily

become more practical.

However, two features which improved our work’s security and dependability guar-

antees, ranking results and using persistent databases, respectively, still incur in high

performance costs. The limiting factor in scoring is the number of documents to be

scored and sorted; providing better alternatives that still leverage the advantages of scor-

ing (more significant results and better security) is an interesting line of future work.

A first approach could be based in champion lists (Manning et al., 2008, Section 7.1.3),

which could keep pre-computed scores of documents that contain popular keywords in

4Available on https://github.com/encryptedsystems/Clusion.

81

https://github.com/encryptedsystems/Clusion

CHAPTER 5. EXPERIMENTAL EVALUATION

memory (in our case, inside the IEE). When issuing a query containing such popular

keywords, the score of those documents would be, at least, partially calculated. Updates

to the database would need to be taken into account for the pre-computed scores, either

immediately, or periodically, to the cost of temporary loss of precision.

Finally, the results for different Storage solutions, and the high RAM requirements of

the in-memory Sparsepp solution, show us that an approach combining a fast in-memory

solution with the load distribution features of a solution like Redis or Cassandra can

achieve a better, more practical approach, which can be explored in future research work.

5.3 VISEN Evaluation

Our VISEN evaluation is focused on assessing not only the scheme’s performance and

scalability, as with BISEN, but also its precision, Mean Average Precision (mAP), in partic-

ular by comparing different training methods. We reinforce that, regardless of the chosen

training method, performance of the operating phase protocols of VISEN is independent

of training (but not of scheme parameterisation, and assuming each method produces

centroids following a similar distribution), as either approach outputs a codebook of the

same format and size.

To evaluate the codebook generation phase of our scheme we used the INRIA Holidays

dataset (Jegou et al., 2008), amounting to 1491 images, and which contains built-in pre-

cision evaluation tools. To perform scalability and latency tests over the operating phase
protocols we used the MIR Flickr dataset (Huiskes and Lew, 2008), which contains 25

000 images. We do not present tests particularly targeting the Storage Service, as BISEN

already covers the module, which is used unchanged for VISEN.

We divide this section in four: in Section 5.3.1 we evaluate VISEN’s precision and

training algorithms performance; in Section 5.3.2 we analyse the Add and Search proto-

cols regarding their performance and scalability, under different parameterisations. Both

sections compare the effect of the same parameters; however, the former is focused on per-

formance during the codebook generation phase, and resulting precision for the operating
phase, while the latter section focuses solely on the performance impact such parameteri-

sations have on the operating phase protocols. To conclude, in Section 5.3.3 we compare

VISEN with the state-of-the-art from Ferreira et al. (2018), and discuss our results in

Section 5.3.4.

5.3.1 Evaluating the Codebook Generation Phase

With these tests we assessed not only the performance of our three codebook generation

approaches (Traditional K-means, Online K-means, and Locality-Sensitive Hashing (LSH)),
but also their resulting precision, using the tools provided with the INRIA Holidays

dataset. We varied the four possible parameters for codebook generation: the algorithm,

82

5.3. VISEN EVALUATION

its parameter k (the number of clusters), the feature extraction algorithm, and its param-

eter ω (which controls the number of feature vectors an image produces).

Available feature extraction algorithms on our implementation were SIFT and SURF.

In our experiments we were unable to achieve a mAP larger than 1% for SURF – therefore,

our tests focus only on SIFT, which achieves a precision of 49% by combining different ω

and k values.

We will present our results by first varying the generation algorithm and its k for a

fixed feature extractor (Section 5.3.1.1); we then fix a value for k and vary feature extractor

parameters (Section 5.3.1.2). By varying these parameters, we are able to present the best

parameterisations possible for our scheme’s retrieval precision during normal usage in

the operating phase.

5.3.1.1 Varying the Number of Clusters

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2000 4000 6000 8000 10000 12000

m
A
P

Nr. of Clusters

Traditional K-means
Online K-means

LSH

Figure 5.7: Mean Average Precision (mAP) of VISEN under different codebook generation
approaches.

We started by varying the number of clusters for each of the three codebook generation

algorithms, using the SIFT feature extractor with ω = 500. Using the INRIA Holidays

dataset, the feature extractor produced 721 315 feature vectors for the total 1491 images,

which were then trained with k ∈ [500,1000,5000,10000]5.

Figure 5.7 shows our obtained values for mAP, and Table 5.3 presents the respective

latencies for this test. Traditional K-means exhibits the best precision throughout, with

a maximum of 41%. The result was expected, as this method is the only one to have a

5Such values were chosen based on prototypes from the literature (Ferreira et al., 2018); tests with higher
k values were not performed due to the high time cost of the training operation, and due to our conclusion
that varying ω was more influential on precision, which we discuss in Section 5.3.1.2.

83

CHAPTER 5. EXPERIMENTAL EVALUATION

Training Method k = 500 k = 1000 k = 5000 k = 10000

Traditional K-means
9 099

(≈ 2h 32m)
15 398

(≈ 4h 17m)
65 384

(≈ 18h 10m)
127 905

(≈ 1d 12h)

Online K-means
2 962

(≈ 49m)
3 121

(≈ 52m)
3 843

(≈ 1h 4m)
4 839

(≈ 1h 21m)

LSH 0.078 0.103 0.244 0.454

Table 5.3: Performance of VISEN training algorithms with varying number of clusters.
Main time in seconds, approximate time also shown.

full vision of the dataset, thus being able to better readjust cluster centroids with several

passes per vector; yet, it also grows to almost-prohibitive latency costs for higher number

of clusters. Online K-means achieved a 35% mAP, a lower value attributable to the algo-

rithm’s sensitivity to the order of vectors input, and its single pass over each datapoint –

albeit, given its much slower growth in latency compared to the traditional method, still

presents itself as a viable approach.

Finally, LSH only achieved a precision of 16%. Still, by consisting only of a vector-

generation procedure, and requiring no training per se, its latency is several orders of

magnitude below that of the other approaches (always under one second), and its latency

depends solely on k, further requiring no training dataset.

5.3.1.2 Varying Feature Extractor Parameters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500

m
A
P

Value of ω

Traditional K-means Online K-means

Figure 5.8: Mean Average Precision (mAP) of VISEN under different values for ω.

In this test we fixed k = 5000, and performed codebook generation forω ∈ [200,500,700,1200,1800,

84

5.3. VISEN EVALUATION

2100,2500]. As with the previous test, we used the INRIA Holidays dataset. The number

of vectors used for codebook generation varies with ω, which represents an upper bound

on the number of vectors each images produces; thus, each image produces, on average, a

lower number of vectors, e.g. with ω = 200 each image averages 197 feature vectors, and

with ω = 2500 averages 2271 vectors. Regardless, increasing ω represents a proportional

increase in the number of vectors used for training. Due to the low mAP attained with

LSH, we only use the two k-means methods in this test.

Training
Method ω = 200 ω = 500 ω = 700 ω = 1200 ω = 1800 ω = 2100 ω = 2500

Traditional
K-means

24 305
(≈ 6h 45m)

65 384
(≈ 18h 10m)

89 183
(≈ 1d 1h)

157 580
(≈ 1d 20h)

235 773
(≈ 2d 17h)

274 869
(≈ 3d 4h)

326 998
(≈ 3d 19h)

Online
K-means

3 233
(≈ 54m)

3 843
(≈ 1h 4m)

4 377
(≈ 1h 13m)

5 259
(≈ 1h 28m)

6 511
(≈ 1h 48m)

7 053
(≈ 1h 58m)

7 919
(≈ 2h 12m)

Table 5.4: Performance of VISEN training algorithms with varying number of feature
vectors per image (ω). Main time in seconds, approximate time also shown.

Figure 5.8 and Table 5.4 show, respectively, the mAP and codebook generation latency

for this test. Precision peaks at ω = 1800 for the Traditional K-means with 49%; the

Online method peaks at ω = 1200 with 43%. The difference in precision between both

approaches is slim, while codebook generation latency is much lower for Online K-means,
making it an attractive approach for the scheme’s operating phase. With larger values for

ω precision decreases – having too much chosen features per image eventually leads to

noise, affecting results precision. Therefore, the ideal value for ω lies between 1200 and

1800.

5.3.2 Evaluating the Operating Phase

In this batch of tests we evaluate the performance of the two main operating phase pro-

tocols: Add and Search. We performed these tests using a larger dataset than INRIA

Holidays: the MIR Flickr dataset, which contains a total of 25 000 images.

In Section 5.3.2.1 we analyse the latency of both Add and Search protocols, and the

impact of each protocol participant individually; in Sections 5.3.2.2 and 5.3.2.3 we mea-

sure the performance impact of varying the number of clusters and ω; to conclude, we

measure the impact of varying ω on the number of Storage entries in Section 5.3.2.4.

Conversely to BISEN, we will present our latency plots in function of the number

of images on the database, instead of the number of entries in the Storage Service; while

BISEN’s main data element was the keyword, we consider VISEN’s database to be com-

posed of atomic images (although images amount to keywords from the Storage Service
perspective, the scheme only contemplates insertion and removal of full images). For

reference, the full dataset of 25 000 created 4.6 million entries in Storage for ω = 1200.

85

CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.2.1 Performance of Individual Participants

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5000 10000 15000 20000 25000 30000

La
te
nc
y
(s
)

Batch Add Size (Nr. of Images)

Client
IEE

Storage
Total

a VISEN Add protocol.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000 30000

La
te
nc
y
(s
)

Database Size (Nr. of Images)

Client
IEE

Storage
Total

b VISEN Search protocol.

Figure 5.9: Performance comparison of each participant for the Add and Search protocols
of VISEN.

In this test we analyse the impact of each participant in our protocols, for a varying

database size (from 500 to 25 000 images) and fixed k = 5000 and ω = 500.

In Figure 5.9 we present the performance of each participant in the Add and Search
protocols. In the Add protocol (Figure 5.9a) we observed a linear growth in latency with

larger batches of images, a behaviour we expected (processing a single image is constant).

The largest slice of processing is in the IEE: it is responsible for approximating feature

vectors to clusters, and also to generate entries for the Storage Service, and respective

messages. Processing on the Client (feature extraction) is essentially constant for each

image – and thus, for increasingly more images it exhibits linear growth; Storage Service
processing is minimal. On average, a single image takes 0.7 seconds to be added on

current parameterisations.

In the Search protocol (Figure 5.9b), which takes a single image as input, the Client’s
feature extraction step is constant, as with Add. Since searches are done against increas-

ingly larger databases, a linear growth in latency in the IEE and Storage Service is expected.

In particular, the IEE spends 10% of its processing approximating vectors to clusters, 68%

of time generating labels and preparing requests to Storage, and 21% of time decoding

and processing the respective responses; the rest of the time being spent in result scoring

and generic processing. These results are similar to BISEN, since the IEE main bottleneck

is also Storage Service interaction; in VISEN, it amounts for 89% of IEE processing time,

while in BISEN it amounts to 96%.

5.3.2.2 Performance Impact of Varying the Number of Clusters

Figure 5.10 presents our test with fixed ω = 500 and varying k (between 500 and 10 000),

with two samples, for databases of 5 000 and 25 000 images. While Add shows a linear

behaviour, due to the increasing number of comparisons that have to be made for each

86

5.3. VISEN EVALUATION

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2000 4000 6000 8000 10000 12000

La
te
nc
y
(s
)

Value of k

Batch Size = 5000 Batch Size = 25000

a Add protocol.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000

La
te
nc
y
(s
)

Value of k

DB Size = 5000 DB Size = 25000

b Search protocol.

Figure 5.10: Performance of VISEN under different values for k in the Add and Search
protocols.

image, and increasing number of entries that have to be put in Storage, Search latency

actually decreases with higher values of k.

While the number of comparisons still grows linearly with k (taking about 10% of

IEE processing time), our intuition is as follows: a larger k implies feature vectors will

be more disperse across clusters, i.e. each cluster will have less vectors (and, as such, less

images) associated with it; therefore, and since the bottleneck in IEE processing is due to

Storage Service interaction, if less images are associated with a given needed cluster, then

less entries have to be retrieved from Storage. The advantage is twofold: results are more

meaningful, since features are more compartmentalised, and Search latency is improved.

5.3.2.3 Performance Impact of Varying ω

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500

La
te
nc
y
(s
)

Value of ω

a Add protocol.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000 2500

La
te
nc
y
(s
)

Value of ω

b Search protocol.

Figure 5.11: Performance of VISEN under different values for ω in the Add and Search
protocols.

Figure 5.11 presents the latency of VISEN’s Add and Search protocols under different

values of ω. We fixed k = 5000 and the database size at the maximum value (25 000

87

CHAPTER 5. EXPERIMENTAL EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

La
te
nc
y
(s
)

Database Size (Nr. of Images)

ω = 500 ω = 1200

a Search performance for ω ∈ [500,1200].

 0

 1x106
 2x106
 3x106
 4x106
 5x106
 6x106
 7x106
 8x106
 9x106

 0 5000 10000 15000 20000 25000

N
r.

 o
f E
nt
rie
s
in

 S
to
ra
ge

Database Size (Nr. of Images)

ω = 500 ω = 1200

b Number of entries in Storage for varying ω.

Figure 5.12: Effect of varying ω on VISEN Search performance and Storage.

images). We observed the cost of increasing the number of vectors is amortised for larger

values. Nonetheless, although using more feature vectors per image only impacts perfor-

mance sub-linearly, taking into account best precision is obtained with ω ≈ 1200, usage

of larger values for ω is not a particularly interesting approach.

5.3.2.4 Comparing the Number of Storage Entries for Different ω Values

Figure 5.12 presents a comparison of performance and Storage overhead while varying

ω ∈ [500,1200] (fixed k = 5000 and varying database size). Having a higher ω increases

Search latency (Figure 5.12a), while also producing less entries in the Storage Service
(Figure 5.12b).

Our first intuition was that, for larger ω, the number of entries would be larger, as

more feature vectors (and, therefore, visual words) would be produced – the number of

visual words per image being limited by min(k,ω).

Nevertheless, larger values of ω produce the opposite effect, resulting in a database

with less entries. Our first observation is that higher ω values produce images with

less clusters associated to it, leading to higher cluster frequencies (i.e., more vectors are

clustered to the same centroids), but less entries overall. Our conclusion is that increasing

ω results in the generation of similar feature vectors (i.e., feature vectors describing the

same image feature); hence, the insertion of less entries (with a higher average frequency

per cluster) in the Storage Service.

Albeit the database being smaller with larger ω values, performance of the Search
protocol still degrades. This result is correlated with the sparsity of feature vectors across

clusters and the results from Section 5.3.2.2: since a higher ω implies more vectors are

inserted into the same clusters, and that these clusters will tend to be more popular

overall, retrieval of a single popular cluster will imply the retrieval of more entries (all

the entries and respective images referring to that cluster).

88

5.3. VISEN EVALUATION

Database Size Add Search
(Nr. of images) VISEN MuSE VISEN MuSE

1 000 721 95 0.976 0.563
5 000 3 626 480 2.057 2.858

10 000 7 209 957 3.504 5.964
25 000 18 051 2405 8.099 14.942

Table 5.5: Latency comparison between VISEN and MuSE (Ferreira et al., 2018) schemes.
All times are in seconds. Fixed k = 5000 and ω = 1200.

5.3.3 Comparison with the State-of-the-Art

In this test we compare our solution to MuSE (Ferreira et al., 2018), a scheme for multi-

modal searchable encryption – albeit here used only with its image component. Table 5.5

shows the comparison in latency between our scheme and MuSE (Ferreira et al., 2018),

for the Add and Search protocols with fixed parameters k = 5000 and ω = 500. On the

one hand, MuSE performs better on its Add protocol, which can be explained by its sim-

pler system model, and its lack of need for external memory storage – a large portion of

VISEN processing is spent communicating between IEE and Storage Service. On the other

hand, VISEN performs and scales better on searches, in particular for larger database

sizes, which can be explained by the simpler, and fewer, indexing structures and lower

processing time associated with them.

5.3.4 Discussion

VISEN evaluation allowed us to assess not only the scheme’s performance, but also its

precision. We were able to obtain satisfactory results for both, by implementing a scheme

that scales linearly to its database size.

Our precision results, peaking at 49%, are similar to the ones found in the literature

for BoVW retrieval models (Ferreira et al., 2018; Xia et al., 2016) based solely on feature

clustering. Although orthogonal to the scope of this work, some techniques to improve

precision of clustering schemes have been proposed (Jegou et al., 2008; Liu et al., 2014b),

which include dimensionality-reduction procedures, such as Principal Component Analy-

sis (Alpaydın, 2010, Section 6.3) or Self-Organising Maps (Alpaydın, 2010, Section 12.2.3).

Low precision when training highly-dimensional data is a problem known in machine

learning as the curse of dimensionality (Alpaydın, 2010, Section 8.3). Such techniques for

dimensionality-reduction could be done by the Client together with the feature extraction

step.

Our results for the two different k-means techniques show that, when compared to

the traditional version, online k-means performs similarly precision-wise, while being

both faster and having low memory requirements, which makes it ideal for IEE usage,

and also for thin clients; in any case, CBIR systems usually consider training to happen

only once – during system bootstrapping – which amortises the impact of such operation.

89

CHAPTER 5. EXPERIMENTAL EVALUATION

The third technique for clustering, LSH, showed worst precision; yet, it may have its

advantages. Since it does not require any training, it might be interesting to use in shorter

lived systems, where fast bootstrapping may be needed. Furthermore, in additional tests

we performed, we obtained 20% precision for LSH with k = 10000 and ω = 2000, which

indicates further work might find the method to be usable.

Our results on the impact of varying the number of clusters, and the number of de-

scriptors per image, also originated interesting results, showing that precision and per-

formance have to be considered together when parameterising the scheme, resulting in a

practical trade-off that only presented itself during the evaluation phase.

As future work, we would like to analyse precision by dynamically changing k and

ω between training and operating phases. In current tests parameterisations are fixed

throughout; performing training with better parameters (such as an ideal ω), and then us-

ing lower, more efficient, values for the operating phase might be an interesting evaluation

direction to present a more practical scheme.

5.4 MISEN Evaluation

Since our implementation of MISEN does not consider any particular improvement, apart

from integrating both BISEN and VISEN together, we simply present the performance

of the Add and Search protocols in MISEN (Figure 5.13). For this evaluation we used the

MIR Flickr dataset (Huiskes and Lew, 2008) which, together with the 25 000 images we

used for VISEN evaluation, also contains textual data associated to each image. Queries

were generated by randomly selecting images from the dataset, and combining random

words from the respective text documents.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

La
te
nc
y
(s
)

Batch Add Size (Nr. of Documents)

Client
IEE

Storage
Total

a MISEN Add protocol.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5000 10000 15000 20000 25000 30000

La
te
nc
y
(s
)

Database Size (Nr. of Documents)

Client
IEE

Storage
Total

b MISEN Search protocol.

Figure 5.13: Performance comparison of each participant for the Add and Search protocols
of MISEN.

Due to the nature of the dataset – small text documents (averaging ten keywords per

document) – BISEN processing has low impact on the Add protocol, and therefore MISEN

exhibits a similar behaviour to that of VISEN. In Search both BISEN and VISEN present

90

5.4. MISEN EVALUATION

similar behaviour, with processing being spent mostly in the IEE – therefore, MISEN

reflects that same behaviour.

91

C
h
a
p
t
e
r

6
Conclusion

The problem of computing over encrypted data has become relevant in the context of Cloud

computing and the current trend to outsource data to third-party servers. Adoption of

these services by users, and the large amount of data produced nowadays, brings the need

for efficient solutions to query and use outsourced data without performance penalties,

while retaining strong security guarantees.

6.1 Conclusion

We have studied different approaches and the state-of-the-art on SSE, combined with an

analysis on recent trusted hardware solutions. Current solutions for secure retrieval have

made a trade-off between security, usability, and performance, usually sacrificing one of

these dimensions in favour of others. By designing and implementing novel schemes for

SSE we provide an answer to the question posed in this thesis: how can we improve SSE
solutions to provide better security guarantees, while also being practical and efficient?

Our schemes for isolated searchable encryption provide an efficient and usable ap-

proach to the problem of computing over encrypted data by building a hybrid between

classical SSE and modern trusted hardware, an approach still novel in the literature. We

have designed schemes for Boolean retrieval over text data, Content-Based Image Re-

trieval (CBIR) over image data, and for multimodal data. The analysis and evaluation of

these schemes shows them to improve security guarantees, while also providing better

usability and linear scalability, thus providing satisfactory performance.

Considering a trust anchor on the Cloud server allows us to execute heavy computa-

tions remotely, reducing client and network overhead, and thus operation latency. The

use of a single inverted index for data storage is central to our approach, as it provides

constant access times without the loss of security. Moreover, given the IEE security model,

93

CHAPTER 6. CONCLUSION

we can improve the state-of-the-art by providing better privacy and authentication guar-

antees, and reducing leakage. Our protocols achieve minimal leakage, in the sense that

only accessed patterns in untrusted storage are revealed – but no information about their

contents or relations; such leakage can only be improved through techniques such as

Oblivious RAM (ORAM). Without it, inference patterns may form over time, and attack-

ers can rely on external knowledge for help on discerning information about added and

accessed entries on Storage. Nonetheless, even ORAM-based solutions are sensitive to

inference attacks, due to differences in response length across messages (Bost and Fouque,

2017); by having fixed-width responses in the ranked versions of our schemes, we are

able to prevent such attacks.

Moreover, depending on trusted hardware manufacturers is still a requirement for

schemes based on it – which can be a deterrent in practice, as such hardware implementa-

tions are usually close-sourced. As such, they lack the crowd-auditing advantages of open-

source tools, and require trust in its vendor for the non-placement of backdoors. While

our approach purposefully relies on IEEs for its definitions, the eventual advent of open-

sourced trusted hardware would present itself as a preferable alternative implementation-

wise. To this effect, in this thesis we also designed a Framework API for the IEE model,

which abstracts implementation details and provides utilities for IEE programmers.

6.2 Future Work

As future work we intend to extend our schemes for multiple clients and servers, provid-

ing not only the same security guarantees, but also fault resilience and load distribution

capabilities.

Extending the schemes for multiple clients may rely on existing access control and

public key schemes for authentication; considering multiple servers might present itself

as a more interesting approach, as IEE resource limitations involve a more careful study

on load distribution across an IEE cluster. A model considering a cluster of IEE-enabled

devices opens the possibility to build general purpose distributed systems and applica-

tions with better security and performance guarantees, in an environment as transparent

as possible, both programming and deployment-wise. Furthermore, combining multiple

IEEs in a Cloud-of-Clouds environment is also a possible solution for thwarting denial-

of-service attacks, where IEE devices could automatically detect and recover from such

failures.

Furthermore, a distributed approach on both IEE and Storage components might also

be key to solve the current bottleneck in our implementation and evaluation, which is due

to the network interaction between these components. We expect to leverage a tree-like

structure for multiple IEE nodes, where a main IEE would instruct several IEE modules to

interact with Storage – with each IEE processing their results internally before contacting

the root IEE, which would be responsible for the processing of the final result.

94

6.2. FUTURE WORK

We also plan to extend our Framework implementation to allow for different IEE in-

stantiations, in particular ARM TrustZone, while retaining the same abstraction level of

an IEE to the programmer – thus providing a generic Framework for IEE-based program-

ming in heterogeneous Cloud environments.

95

Bibliography

Aaron, B, D. E. Tamir, N. D. Rishe and A Kandel (Mar. 2014). “Dynamic Incremental

K-means Clustering”. In: 2014 International Conference on Computational Science and
Computational Intelligence. Vol. 1, pp. 308–313. doi: 10.1109/CSCI.2014.60.

Agrawal, R., J. Kiernan, R. Srikant and Y. Xu (2004). “Order Preserving Encryption for

Numeric Data”. In: Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’04. New York, NY, USA: ACM, pp. 563–574. isbn:

1-58113-859-8. doi: 10.1145/1007568.1007632. url: http://doi.acm.org/10.

1145/1007568.1007632.

Alpaydın, E. (2010). Introduction to Machine Learning. Ed. by T. Dietterich. 2nd. London,

United Kingdom: The MIT Press. isbn: 978-0-262-01243-0.

Anati, I., S. Gueron, S. Johnson and V. Scarlata (2013). “Innovative Technology for CPU

Based Attestation and Sealing”. In: Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. New York, NY, USA: ACM,

pp. 1–7. isbn: 978-1-4503-2118-1. doi: 10.1.1.405.8266.

Apple Insider (Feb. 2016). Apple Music Passes 11M Subscribers as iCloud Hits 782M Users.
url: http://appleinsider.com/articles/16/02/12/apple-music-passes-11m-

subscribers-as-icloud-hits-782m-users.

Arasu, A., S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy and R. Venkate-

san (Jan. 2013). “Orthogonal Security With Cipherbase”. In: 6th Biennial Conference on
Innovative Data Systems Research (CIDR’13). url: https://www.microsoft.com/en-

us/research/publication/orthogonal-security-with-cipherbase/.

ARM (2009). “ARM Security Technology: Building a Secure System using TrustZone Tech-

nology ARM”. In: ARM White Paper. url: https://tinyurl.com/armtrustzonereport.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica and M. Zaharia (Apr. 2010). “A View of Cloud Computing”. In:

Communications of the ACM 53.4, pp. 50–58. issn: 0001-0782. doi: 10.1145/1721654.

1721672. url: http://doi.acm.org/10.1145/1721654.1721672.

Bagirov, A. M., J. Ugon and D. Webb (Apr. 2011). “Fast Modified Global K-means Algo-

rithm for Incremental Cluster Construction”. In: Pattern Recognition 44.4, pp. 866–

876. issn: 0031-3203. doi: 10.1016/j.patcog.2010.10.018. url: http://dx.doi.

org/10.1016/j.patcog.2010.10.018.

97

https://doi.org/10.1109/CSCI.2014.60
https://doi.org/10.1145/1007568.1007632
http://doi.acm.org/10.1145/1007568.1007632
http://doi.acm.org/10.1145/1007568.1007632
https://doi.org/10.1.1.405.8266
http://appleinsider.com/articles/16/02/12/apple-music-passes-11m-subscribers-as-icloud-hits-782m-users
http://appleinsider.com/articles/16/02/12/apple-music-passes-11m-subscribers-as-icloud-hits-782m-users
https://www.microsoft.com/en-us/research/publication/orthogonal-security-with-cipherbase/
https://www.microsoft.com/en-us/research/publication/orthogonal-security-with-cipherbase/
https://tinyurl.com/armtrustzonereport
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://doi.org/10.1016/j.patcog.2010.10.018
http://dx.doi.org/10.1016/j.patcog.2010.10.018
http://dx.doi.org/10.1016/j.patcog.2010.10.018

BIBLIOGRAPHY

Bajaj, S. and R. Sion (2011). “TrustedDB: A Trusted Hardware Based Database with

Privacy and Data Confidentiality”. In: Proceedings of the 2011 ACM SIGMOD In-
ternational Conference on Management of Data. SIGMOD ’11. New York, NY, USA:

ACM, pp. 205–216. isbn: 978-1-4503-0661-4. doi: 10.1145/1989323.1989346. url:

http://doi.acm.org/10.1145/1989323.1989346.

Barbosa, M., B. Portela, G. Scerri and B. Warinschi (Mar. 2016). “Foundations of Hardware-

Based Attested Computation and Application to SGX”. In: Proceedings of the 2016
IEEE European Symposium on Security and Privacy (Euro S&P), pp. 245–260. doi:

10.1109/EuroSP.2016.28.

Bassil, Y. (2012). “A Survey on Information Retrieval, Text Categorization, and Web

Crawling”. In: Journal of Computer Science and Research 1.6, pp. 1–11. arXiv: 1212.

2065. url: http://arxiv.org/abs/1212.2065.

Baumann, A., M. Peinado and G. Hunt (2014). “Shielding Applications from an Un-

trusted Cloud with Haven”. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). Broomfield, CO: USENIX Association, pp. 267–283.

isbn: 978-1-931971-16-4. url: https://www.usenix.org/conference/osdi14/

technical-sessions/presentation/baumann.

Bay, H., A. Ess, T. Tuytelaars and L. Van Gool (June 2008). “Speeded-Up Robust Features

(SURF)”. In: Computer Vision and Image Understanding 110.3, pp. 346–359. issn:

1077-3142. doi: 10.1016/j.cviu.2007.09.014. url: http://dx.doi.org/10.

1016/j.cviu.2007.09.014.

Bellare, M., A. Boldyreva and A. O’Neill (2007). “Deterministic and Efficiently Searchable

Encryption”. In: Proceedings of the 27th Annual International Cryptology Conference on
Advances in Cryptology. CRYPTO’07. Berlin, Heidelberg: Springer-Verlag, pp. 535–

552. isbn: 3-540-74142-9, 978-3-540-74142-8. url: http://dl.acm.org/citation.

cfm?id=1777777.1777820.

Bellare, M., M. Fischlin, A. O’Neill and T. Ristenpart (2008). “Deterministic Encryption:

Definitional Equivalences and Constructions Without Random Oracles”. In: Proceed-
ings of the 28th Annual Conference on Cryptology: Advances in Cryptology. CRYPTO

2008. Berlin, Heidelberg: Springer-Verlag, pp. 360–378. isbn: 978-3-540-85173-8.

doi: 10.1007/978-3-540-85174-5_20. url: http://dx.doi.org/10.1007/978-3-

540-85174-5_20.

Bessani, A., M. Correia, B. Quaresma, F. André and P. Sousa (Nov. 2013). “DepSky:

Dependable and Secure Storage in a Cloud-of-Clouds”. In: ACM Transactions on
Storage 9.4, 12:1–12:33. issn: 1553-3077. doi: 10.1145/2535929. url: http://doi.

acm.org/10.1145/2535929.

Best, R. M. (1981). Crypto Microprocessor for Executing Enciphered Programs. url: https:

//www.google.com/patents/US4278837.

Boldyreva, A. and N. Chenette (2011). “Order-Preserving Encryption Revisited: Im-

proved Security Analysis and Alternative Solutions”. In: Advances in Cryptology –
CRYPTO 2011 LNCS, Springer, pp. 578–595.

98

https://doi.org/10.1145/1989323.1989346
http://doi.acm.org/10.1145/1989323.1989346
https://doi.org/10.1109/EuroSP.2016.28
https://arxiv.org/abs/1212.2065
https://arxiv.org/abs/1212.2065
http://arxiv.org/abs/1212.2065
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dl.acm.org/citation.cfm?id=1777777.1777820
http://dl.acm.org/citation.cfm?id=1777777.1777820
https://doi.org/10.1007/978-3-540-85174-5_20
http://dx.doi.org/10.1007/978-3-540-85174-5_20
http://dx.doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1145/2535929
http://doi.acm.org/10.1145/2535929
http://doi.acm.org/10.1145/2535929
https://www.google.com/patents/US4278837
https://www.google.com/patents/US4278837

BIBLIOGRAPHY

Boldyreva, A., N. Chenette, Y. Lee and A. O’Neill (2009). “Order-Preserving Symmetric

Encryption”. In: Proceedings of the 28th Annual International Conference on Advances
in Cryptology: The Theory and Applications of Cryptographic Techniques. EUROCRYPT

’09. Berlin, Heidelberg: Springer-Verlag, pp. 224–241. isbn: 978-3-642-01000-2. doi:

10.1007/978-3-642-01001-9_13. url: http://dx.doi.org/10.1007/978-3-642-

01001-9_13.

Boneh, D., E.-J. Goh and K. Nissim (2005). “Evaluating 2-DNF Formulas on Ciphertexts”.

In: Proceedings of the 2nd International Conference on Theory of Cryptography. TCC’05.

Berlin, Heidelberg: Springer-Verlag, pp. 325–341. isbn: 3-540-24573-1, 978-3-540-

24573-5. doi: 10.1007/978-3-540-30576-7_18. url: http://dx.doi.org/10.

1007/978-3-540-30576-7_18.

Boneh, D., K. Lewi, M. Raykova, A. Sahai, M. Zhandry and J. Zimmerman (2015). “Se-

mantically Secure Order-Revealing Encryption: Multi-Input Functional Encryption

Without Obfuscation”. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9057, pp. 563–

594. issn: 16113349. doi: 10.1007/978-3-662-46803-6_19.

Bösch, C., P. Hartel, W. Jonker and A. Peter (Aug. 2014). “A Survey of Provably Secure

Searchable Encryption”. In: ACM Computing Surveys 47.2, 18:1–18:51. issn: 0360-

0300. doi: 10.1145/2636328. url: http://doi.acm.org/10.1145/2636328.

Bost, R. (2016). “Sophos: Forward Secure Searchable Encryption”. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS ’16.

New York, NY, USA: ACM, pp. 1143–1154. isbn: 978-1-4503-4139-4. doi: 10.1145/

2976749.2978303. url: http://doi.acm.org/10.1145/2976749.2978303.

Bost, R. and P.-A. Fouque (2017). Thwarting Leakage Abuse Attacks against Searchable
Encryption – A Formal Approach and Applications to Database Padding. Cryptology

ePrint Archive, Report 2017/1060.

Bost, R., B. Minaud and O. Ohrimenko (2017). “Forward and Backward Private Searchable

Encryption from Constrained Cryptographic Primitives”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. CCS ’17. New

York, NY, USA: ACM, pp. 1465–1482. isbn: 978-1-4503-4946-8. doi: 10.1145/

3133956.3133980. url: http://doi.acm.org/10.1145/3133956.3133980.

Bratus, S., N. D’Cunha, E. Sparks and S. W. Smith (2008). “TOCTOU, Traps, and Trusted

Computing”. In: Proceedings of the 1st International Conference on Trusted Computing
and Trust in Information Technologies: Trusted Computing - Challenges and Applications.
Trust ’08. Berlin, Heidelberg: Springer-Verlag, pp. 14–32. isbn: 978-3-540-68978-2.

doi: 10.1007/978-3-540-68979-9_2. url: http://dx.doi.org/10.1007/978-3-

540-68979-9_2.

Cao, N., C. Wang, M. Li, K. Ren and W. Lou (Jan. 2014). “Privacy-Preserving Multi-

Keyword Ranked Search over Encrypted Cloud Data”. In: IEEE Transanctions on
Parallel Distributed Systems 25.1, pp. 222–233. issn: 1045-9219. doi: 10.1109/TPDS.

2013.45. url: http://dx.doi.org/10.1109/TPDS.2013.45.

99

https://doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1145/2636328
http://doi.acm.org/10.1145/2636328
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
http://doi.acm.org/10.1145/2976749.2978303
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/3133956.3133980
http://doi.acm.org/10.1145/3133956.3133980
https://doi.org/10.1007/978-3-540-68979-9_2
http://dx.doi.org/10.1007/978-3-540-68979-9_2
http://dx.doi.org/10.1007/978-3-540-68979-9_2
https://doi.org/10.1109/TPDS.2013.45
https://doi.org/10.1109/TPDS.2013.45
http://dx.doi.org/10.1109/TPDS.2013.45

BIBLIOGRAPHY

Cash, D., S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu and M. Steiner (2013). “Highly-

Scalable Searchable Symmetric Encryption with Support for Boolean Queries”. In:

Advances in Cryptology – CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 353–373. isbn: 978-3-642-40041-4.

Cash, D., J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu and M. Steiner (2014).

“Dynamic Searchable Encryption in Very-Large Databases: Data Structures and Im-

plementation”. In: Proceedings of the 2014 Network and Distributed System Security
Symposium (NDSS ’14) February, pp. 1–32. doi: 10.14722/ndss.2014.23264. url:

http://www.internetsociety.org/doc/dynamic-searchable-encryption-very-

large-databases-data-structures-and-implementation.

Cash, D., P. Grubbs, J. Perry and T. Ristenpart (2015). “Leakage-Abuse Attacks Against

Searchable Encryption”. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’15. New York, NY, USA: ACM, pp. 668–679.

isbn: 978-1-4503-3832-5. doi: 10.1145/2810103.2813700. url: http://doi.acm.

org/10.1145/2810103.2813700.

Checkoway, S. and H. Shacham (2013). “Iago Attacks: Why the System Call API is a

Bad Untrusted RPC Interface”. In: Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS ’13.

New York, NY, USA: ACM, pp. 253–264. isbn: 978-1-4503-1870-9. doi: 10.1145/

2451116.2451145. url: http://doi.acm.org/10.1145/2451116.2451145.

Chenette, N., K. Lewi, S. A. Weis and D. J. Wu (2016). “Practical Order-Revealing Encryp-

tion with Limited Leakage”. In: Fast Software Encryption (FSE).
Chow, R., P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka and J. Molina (2009).

“Controlling Data in the Cloud: Outsourcing Computation Without Outsourcing

Control”. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security.

CCSW ’09. New York, NY, USA: ACM, pp. 85–90. isbn: 978-1-60558-784-4. doi: 10.

1145/1655008.1655020. url: http://doi.acm.org/10.1145/1655008.1655020.

Columbus, L. (Apr. 2017a). 2017 State Of Cloud Adoption And Security. url: https:

//tinyurl.com/cloudforbes.

— (Apr. 2017b). Roundup Of Cloud Computing Forecasts, 2017. url: https://tinyurl.

com/forbescolumbus.

Cook, T. (2016). A Message to Our Customers. url: https://www.apple.com/customer-

letter/.

Costan, V. and S. Devadas (2016). “Intel SGX Explained”. In: Cryptology ePrint Archive,
Report 2016/086, p. 108.

Curtmola, R., J. Garay, S. Kamara and R. Ostrovsky (2006). “Searchable Symmetric

Encryption: Improved Definitions and Efficient Constructions”. In: Proceedings of the
13th ACM Conference on Computer and Communications Security. CCS ’06. New York,

NY, USA: ACM, pp. 79–88. isbn: 1-59593-518-5. doi: 10.1145/1180405.1180417.

url: http://doi.acm.org/10.1145/1180405.1180417.

100

https://doi.org/10.14722/ndss.2014.23264
http://www.internetsociety.org/doc/dynamic-searchable-encryption-very-large-databases-data-structures-and-implementation
http://www.internetsociety.org/doc/dynamic-searchable-encryption-very-large-databases-data-structures-and-implementation
https://doi.org/10.1145/2810103.2813700
http://doi.acm.org/10.1145/2810103.2813700
http://doi.acm.org/10.1145/2810103.2813700
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/2451116.2451145
http://doi.acm.org/10.1145/2451116.2451145
https://doi.org/10.1145/1655008.1655020
https://doi.org/10.1145/1655008.1655020
http://doi.acm.org/10.1145/1655008.1655020
https://tinyurl.com/cloudforbes
https://tinyurl.com/cloudforbes
https://tinyurl.com/forbescolumbus
https://tinyurl.com/forbescolumbus
https://www.apple.com/customer-letter/
https://www.apple.com/customer-letter/
https://doi.org/10.1145/1180405.1180417
http://doi.acm.org/10.1145/1180405.1180417

BIBLIOGRAPHY

Darrow, B. (Mar. 2016). Dropbox Claims Half a Billion Users. url: http://fortune.com/

2016/03/07/dropbox-half-a-billion-users/.

Dijkstra, E. W. (1961). ALGOL 60 Translation: An ALGOL 60 Translator for the X1 and
Making a Translator for ALGOL 60. Tech. rep. Amsterdam, The Netherlands: Stichting

Mathematisch Centrum.

Dyer, J. G., M. Lindemann, R. Perez, R. Sailer, L. Van Doorn, S. W. Smith and S. Weingart

(2001). “Building the IBM 4758 Secure Coprocessor”. In: Computer 34.10, pp. 57–66.

issn: 00189162. doi: 10.1109/2.955100.

ElGamal, T. (July 1985). “A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms”. In: IEEE Transactions on Information Theory 31.4, pp. 469–472.

issn: 0018-9448. doi: 10.1109/TIT.1985.1057074.

Ferreira, B. and H. Domingos (2013). “Searching Private Data in a Cloud Encrypted

Domain”. In: Proceedings of the 10th Conference on Open Research Areas in Information
Retrieval. OAIR ’13. Paris, France, France: Le Centre de Hautes Études Internationales

d’Informatique Documentaire, pp. 165–172. isbn: 978-2-905450-09-8. url: http:

//dl.acm.org/citation.cfm?id=2491748.2491783.

Ferreira, B., J. Rodrigues, J. Leitão and H. Domingos (Sept. 2015). “Privacy-Preserving

Content-Based Image Retrieval in the Cloud”. In: Proceedings of the 34th IEEE In-
ternational Symposium on Reliable Distributed Systems (SRDS ’15). Washington, DC,

USA: IEEE, pp. 11–20. isbn: 978-1-4673-9302-7. doi: 10.1109/SRDS.2015.27. url:

http://dx.doi.org/10.1109/SRDS.2015.27.

Ferreira, B., J. Leitão and H. Domingos (June 2017). “Multimodal Indexable Encryption

for Mobile Cloud-Based Applications”. In: Proceedings of the 47th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN’17). IEEE,

pp. 213–224. isbn: 978-1-5386-0542-4. doi: 10.1109/DSN.2017.31. url: http:

//ieeexplore.ieee.org/document/8023124/.

— (2018). “MuSE: Multimodal Searchable Encryption for Cloud Applications”. In:

Proceedings of the 37th IEEE International Symposium on Reliable Distributed Systems
(SRDS’18). Washington, DC, USA: IEEE.

Fuhry, B., R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum and A.-R. Sadeghi (2017).

“HardIDX: Practical and Secure Index with SGX”. In: Data and Applications Security
and Privacy XXXI. DBSec 2017. Vol. 10359 LNCS, pp. 386–408. isbn: 9783319611754.

doi: 10.1007/978-3-319-61176-1_22. arXiv: 1703.04583. url: http://link.

springer.com/10.1007/978-3-319-61176-1_22.

Fung, B. (May 2015). In 5 Years, 80 Percent of the Whole Internet Will Be Online Video.

url: https://www.washingtonpost.com/news/the-switch/wp/2015/05/27/in-5-

years-80-percent-of-the-whole-internet-will-be-online-video/.

Gentry, C. (2009). “A Fully Homomorphic Encryption Scheme”. PhD Thesis. Stanford

University.

Gentry, C. and S. Halevi (2011). “Implementing Gentry’s Fully-Homomorphic Encryption

Scheme”. In: Proceedings of the 30th Annual International Conference on Theory and

101

http://fortune.com/2016/03/07/dropbox-half-a-billion-users/
http://fortune.com/2016/03/07/dropbox-half-a-billion-users/
https://doi.org/10.1109/2.955100
https://doi.org/10.1109/TIT.1985.1057074
http://dl.acm.org/citation.cfm?id=2491748.2491783
http://dl.acm.org/citation.cfm?id=2491748.2491783
https://doi.org/10.1109/SRDS.2015.27
http://dx.doi.org/10.1109/SRDS.2015.27
https://doi.org/10.1109/DSN.2017.31
http://ieeexplore.ieee.org/document/8023124/
http://ieeexplore.ieee.org/document/8023124/
https://doi.org/10.1007/978-3-319-61176-1_22
https://arxiv.org/abs/1703.04583
http://link.springer.com/10.1007/978-3-319-61176-1_22
http://link.springer.com/10.1007/978-3-319-61176-1_22
https://www.washingtonpost.com/news/the-switch/wp/2015/05/27/in-5-years-80-percent-of-the-whole-internet-will-be-online-video/
https://www.washingtonpost.com/news/the-switch/wp/2015/05/27/in-5-years-80-percent-of-the-whole-internet-will-be-online-video/

BIBLIOGRAPHY

Applications of Cryptographic Techniques: Advances in Cryptology. EUROCRYPT’11.

Berlin, Heidelberg: Springer-Verlag, pp. 129–148. isbn: 978-3-642-20464-7. url:

http://dl.acm.org/citation.cfm?id=2008684.2008697.

Goh, E.-J., H. Shacham, N. Modadugu and D. Boneh (2003). “SiRiUS: Securing Remote

Untrusted Storage”. In: Proceedings of the 10th Annual Network and Distributed System
Security Symposium - NDSS ’03 0121481, pp. 131–145.

Goldreich, O. (1987). “Towards a Theory of Software Protection and Simulation by

Oblivious RAMs”. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing. STOC ’87. New York, NY, USA: ACM, pp. 182–194. isbn: 0-89791-221-7.

doi: 10.1145/28395.28416. url: http://doi.acm.org/10.1145/28395.28416.

Goldreich, O. and R. Ostrovsky (May 1996). “Software Protection and Simulation on

Oblivious RAMs”. In: Journal of the ACM 43.3, pp. 431–473. issn: 0004-5411. doi:

10.1145/233551.233553. url: http://doi.acm.org/10.1145/233551.233553.

Golle, P., J. Staddon and B. R. Waters (2004). “Secure Conjunctive Keyword Search

over Encrypted Data”. In: Proceedings of the 2004 International Conference on Applied
Cryptography and Network Security (ACNS ’04). Yellow Mountains, China: Springer,

pp. 31–45.

Google (2010). BigQuery. url: https://cloud.google.com/bigquery/ (visited on

03/09/2018).

— (2016). Encrypted BigQuery. url: https : / / github . com / google / encrypted -

bigquery-client (visited on 03/08/2018).

Greenwald, G. and E. MacAskill (June 2013). NSA Prism Program Taps in to User Data of
Apple, Google and Others. url: https://www.theguardian.com/world/2013/jun/

06/us-tech-giants-nsa-data.

HCA News (Sept. 2018). Yes, Healthcare’s Data Breach Problem Really Is That Bad. url:

https://www.hcanews.com/news/yes- healthcares- data- breach- problem-

really-is-that-bad.

Hoekstra, M., R. Lal, P. Pappachan, V. Phegade and J. Del Cuvillo (2013). “Using Innova-

tive Instructions to Create Trustworthy Software Solutions”. In: Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and Privacy.

HASP ’13. New York, NY, USA: ACM, 11:1–11:1. isbn: 978-1-4503-2118-1. doi: 10.

1145/2487726.2488370. url: http://doi.acm.org/10.1145/2487726.2488370.

Hough, A. (2010). Google Engineer Fired for Privacy Breach after ’Stalking and Harrassing
Teenagers’. url: http://bit.ly/2o2VZh8.

Hsu, C, C Lu and S Pei (Nov. 2012). “Image Feature Extraction in Encrypted Domain With

Privacy-Preserving SIFT”. In: IEEE Transactions on Image Processing 21.11, pp. 4593–

4607. issn: 1057-7149. doi: 10.1109/TIP.2012.2204272.

Huiskes, M. J. and M. S. Lew (2008). “The MIR Flickr Retrieval Evaluation”. In: Proceed-
ings of the 1st ACM International Conference on Multimedia Information Retrieval. MIR

’08. New York, NY, USA: ACM, pp. 39–43. isbn: 978-1-60558-312-9. doi: 10.1145/

1460096.1460104. url: http://doi.acm.org/10.1145/1460096.1460104.

102

http://dl.acm.org/citation.cfm?id=2008684.2008697
https://doi.org/10.1145/28395.28416
http://doi.acm.org/10.1145/28395.28416
https://doi.org/10.1145/233551.233553
http://doi.acm.org/10.1145/233551.233553
https://cloud.google.com/bigquery/
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.hcanews.com/news/yes-healthcares-data-breach-problem-really-is-that-bad
https://www.hcanews.com/news/yes-healthcares-data-breach-problem-really-is-that-bad
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1145/2487726.2488370
http://doi.acm.org/10.1145/2487726.2488370
http://bit.ly/2o2VZh8
https://doi.org/10.1109/TIP.2012.2204272
https://doi.org/10.1145/1460096.1460104
https://doi.org/10.1145/1460096.1460104
http://doi.acm.org/10.1145/1460096.1460104

BIBLIOGRAPHY

Intel (2017). Intel Software Guard Extensions SDK for Linux Developer Reference.

— (2018a). Intel SGX SDK for Linux Repository. url: https://github.com/01org/

linux-sgx (visited on 14/06/2018).

— (2018b). Performance Considerations for Intel Software Guard Extensions (Intel SGX)
Applications. Tech. rep. Intel.

Jegou, H., M. Douze and C. Schmid (2008). “Hamming Embedding and Weak Geometry

Consistency for Large Scale Image Search”. In: Proceedings of the 10th European Con-
ference on Computer Vision October, pp. 304–317. issn: 03029743. doi: 10.1007/978-

3-540-88682-2_24.

Jeon, J., V. Lavrenko and R. Manmatha (2003). “Automatic Image Annotation and Re-

trieval Using Cross-Media Relevance Models”. In: Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’03. New York, NY, USA: ACM, pp. 119–126. isbn: 1-58113-646-3. doi:

10.1145/860435.860459. url: http://doi.acm.org/10.1145/860435.860459.

Jing, Y., D. Liu, D. Kislyuk, A. Zhai, J. Xu, J. Donahue and S. Tavel (2015). “Visual

Search at Pinterest”. In: Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’15. New York, NY, USA: ACM,

pp. 1889–1898. isbn: 978-1-4503-3664-2. doi: 10.1145/2783258.2788621. url:

http://doi.acm.org/10.1145/2783258.2788621.

Jones, K. S. (1972). “A Statistical Interpretation of Term Specificity and Its Application

in Retrieval”. In: Journal of Documentation 28, pp. 11–21.

Kamara, S. and T. Moataz (2017). Boolean Searchable Symmetric Encryption with Worst-Case
Sub-Linear Complexity. Cryptology ePrint Archive, Report 2017/126. url: https:

//eprint.iacr.org/2017/126.

Kamara, S., C. Papamanthou and T. Roeder (2012). “Dynamic Searchable Symmetric

Encryption”. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security. CCS ’12. New York, NY, USA: ACM, pp. 965–976. isbn: 978-1-4503-

1651-4. doi: 10.1145/2382196.2382298. url: http://doi.acm.org/10.1145/

2382196.2382298.

Kato, T. (Apr. 1992). Database Architecture for Content-Based Image Retrieval. Ed. by A. A.

Jamberdino and C. W. Niblack. doi: 10.1117/12.58497. url: http://dx.doi.org/

10.1117/12.58497.

Katz, J. and Y. Lindell (2007). Introduction to Modern Cryptography. Ed. by D. Stinson. 1st.

Boca Raton, Florida: Chapman & Hall/CRC. isbn: 1584885513.

Kauer, B. (2007). “OSLO: Improving the Security of Trusted Computing”. In: Proceedings
of 16th USENIX Security Symposium. SS’07. Berkeley, CA, USA: USENIX Association,

16:1–16:9. isbn: 111 333 5555 77 9. url: http://dl.acm.org/citation.cfm?id=

1362903.1362919.

Kerschbaum, F. (2015). “Frequency-Hiding Order-Preserving Encryption”. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.

103

https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://doi.org/10.1007/978-3-540-88682-2_24
https://doi.org/10.1007/978-3-540-88682-2_24
https://doi.org/10.1145/860435.860459
http://doi.acm.org/10.1145/860435.860459
https://doi.org/10.1145/2783258.2788621
http://doi.acm.org/10.1145/2783258.2788621
https://eprint.iacr.org/2017/126
https://eprint.iacr.org/2017/126
https://doi.org/10.1145/2382196.2382298
http://doi.acm.org/10.1145/2382196.2382298
http://doi.acm.org/10.1145/2382196.2382298
https://doi.org/10.1117/12.58497
http://dx.doi.org/10.1117/12.58497
http://dx.doi.org/10.1117/12.58497
http://dl.acm.org/citation.cfm?id=1362903.1362919
http://dl.acm.org/citation.cfm?id=1362903.1362919

BIBLIOGRAPHY

CCS ’15. New York, NY, USA: ACM, pp. 656–667. isbn: 978-1-4503-3832-5. doi: 10.

1145/2810103.2813629. url: http://doi.acm.org/10.1145/2810103.2813629.

Khalaf, S. (June 2014). Health and Fitness Apps Finally Take Off, Fueled by Fitness Fanat-
ics. url: http://flurrymobile.tumblr.com/post/115192181465/health-and-

fitness-apps-finally-take-off-fueled.

Kocher, P., D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,

M. Schwarz and Y. Yarom (Jan. 2018). “Spectre Attacks: Exploiting Speculative

Execution”. In: ArXiv e-prints. arXiv: 1801.01203.

Kursawe, K., D. Schellekens and B. Preneel (2005). “Analyzing Trusted Platform Commu-

nication”. In: ECRYPT Workshop, CRASH – CRyptographic Advances in Secure Hardware,

p. 8.

Lardinois, F. (Feb. 2016). Gmail Now Has More Than 1B Monthly Active Users. url:

https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-

active-users/.

Lewis, D. (Sept. 2014). iCloud Data Breach: Hacking And Celebrity Photos. url: https:

//tinyurl.com/forbesicloud.

Liu, C., L. Zhu, M. Wang and Y.-A. Tan (May 2014a). “Search Pattern Leakage in Search-

able Encryption: Attacks and New Construction”. In: Information Sciences - Informatics
and Computer Science, Intelligent Systems, Applications 265, pp. 176–188. issn: 0020-

0255. doi: 10.1016/j.ins.2013.11.021. url: https://doi.org/10.1016/j.ins.

2013.11.021.

Liu, Z, H Li, L Zhang, W Zhou and Q Tian (May 2014b). “Cross-Indexing of Binary SIFT

Codes for Large-Scale Image Search”. In: IEEE Transactions on Image Processing 23.5,

pp. 2047–2057. issn: 1057-7149. doi: 10.1109/TIP.2014.2312283.

Lloyd, S (Mar. 1982). “Least Squares Quantization in PCM”. In: IEEE Transactions on
Information Theory 28.2, pp. 129–137. issn: 0018-9448. doi: 10.1109/TIT.1982.

1056489.

Loi, T. L., J Heo, J Lee and S Yoon (Nov. 2013). “VLSH: Voronoi-based Locality Sensitive

Hashing”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5345–5352. doi: 10.1109/IROS.2013.6697130.

Lowe, D. G. (Nov. 2004). “Distinctive Image Features from Scale-Invariant Keypoints”.

In: International Journal of Computer Vision 60.2, pp. 91–110. issn: 0920-5691. doi:

10.1023/B:VISI.0000029664.99615.94. url: https://doi.org/10.1023/B:

VISI.0000029664.99615.94.

Lu, W., A. Swaminathan, A. L. Varna and M. Wu (2009). “Enabling Search over En-

crypted Multimedia Databases”. In: Information Technology Journal 13, pp. 824–

831. issn: 0277786X. doi: 10 . 1117 / 12 . 806980. url: http : / / proceedings .

spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.806980.

MacQueen, J. B. (1967). “Some Methods for Classification and Analysis of MultiVariate

Observations”. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics

104

https://doi.org/10.1145/2810103.2813629
https://doi.org/10.1145/2810103.2813629
http://doi.acm.org/10.1145/2810103.2813629
http://flurrymobile.tumblr.com/post/115192181465/health-and-fitness-apps-finally-take-off-fueled
http://flurrymobile.tumblr.com/post/115192181465/health-and-fitness-apps-finally-take-off-fueled
https://arxiv.org/abs/1801.01203
https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/
https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/
https://tinyurl.com/forbesicloud
https://tinyurl.com/forbesicloud
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1109/TIP.2014.2312283
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/IROS.2013.6697130
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1117/12.806980
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.806980
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.806980

BIBLIOGRAPHY

and Probability. Ed. by L. M. L. Cam and J Neyman. Vol. 1. University of California

Press, pp. 281–297.

Manning, C. D., P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval.
New York, NY, USA: Cambridge University Press. isbn: 0521865719, 9780521865715.

McKeen, F., I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue and

U. R. Savagaonkar (2013). “Innovative Instructions and Software Model for Isolated

Execution”. In: Proceedings of the 2nd International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy. HASP ’13. New York, NY, USA: ACM,

10:1–10:1. isbn: 978-1-4503-2118-1. doi: 10.1145/2487726.2488368. url: http:

//doi.acm.org/10.1145/2487726.2488368.

Meeker, M. (2017). Internet Trends 2017. Tech. rep.

Microsoft (2018). HealthVault. url: https : / / www . healthvault . com/ (visited on

08/05/2018).

Mikolajczyk, K. and T. Tuytelaars (2009). “Local Image Features”. In: Encyclopedia
of Biometrics. Ed. by S. Z. Li and A. Jain. Boston, MA: Springer US, pp. 939–943.

isbn: 978-0-387-73003-5. doi: 10.1007/978-0-387-73003-5_224. url: https:

//doi.org/10.1007/978-0-387-73003-5_224.

MongoDB (2018). Encryption at Rest. url: https://docs.mongodb.com/manual/core/

security-encryption-at-rest/ (visited on 28/08/2018).

Mourão, A., F. Martins and J. Magalhães (2013). “NovaSearch at TREC 2013 Federated

Web Search Track: Experiments with Rank Fusion”. In: Proceedings of the 22nd Text
REtrieval Conference (TREC 2013).

MySQL (2018). MySQL Enterprise Transparent Data Encryption. url: https://www.

mysql.com/products/enterprise/tde.html (visited on 29/08/2018).

Nistér, D. and H. Stewénius (2006). “Scalable Recognition with a Vocabulary Tree”.

In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition - Volume 2. CVPR ’06. Washington, DC, USA: IEEE Computer

Society, pp. 2161–2168. isbn: 0-7695-2597-0. doi: 10.1109/CVPR.2006.264. url:

http://dx.doi.org/10.1109/CVPR.2006.264.

O’Hara, M. E. (May 2017). Thousands of Patient Records Leaked in New York Hospital Data
Breach. url: https://www.nbcnews.com/news/us-news/thousands-patient-

records-leaked-hospital-data-breach-n756981.

Ohrimenko, O., F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani and M. Costa

(2016). “Oblivious Multi-Party Machine Learning on Trusted Processors”. In: 25th
USENIX Security Symposium (USENIX Security 16). Austin, TX: USENIX Associa-

tion, pp. 619–636. isbn: 978-1-931971-32-4. url: https://www.usenix.org/

conference/usenixsecurity16/technical-sessions/presentation/ohrimenko.

O’Keeffe, D., D. Muthukumaran, P.-L. Aublin, F. Kelbert, C. Priebe, J. Lind, H. Zhu and

P. Pietzuch (2018). SGXSpectre. url: https://github.com/lsds/spectre-attack-

sgx (visited on 23/03/2018).

105

https://doi.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2487726.2488368
https://www.healthvault.com/
https://doi.org/10.1007/978-0-387-73003-5_224
https://doi.org/10.1007/978-0-387-73003-5_224
https://doi.org/10.1007/978-0-387-73003-5_224
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://www.mysql.com/products/enterprise/tde.html
https://www.mysql.com/products/enterprise/tde.html
https://doi.org/10.1109/CVPR.2006.264
http://dx.doi.org/10.1109/CVPR.2006.264
https://www.nbcnews.com/news/us-news/thousands-patient-records-leaked-hospital-data-breach-n756981
https://www.nbcnews.com/news/us-news/thousands-patient-records-leaked-hospital-data-breach-n756981
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://github.com/lsds/spectre-attack-sgx
https://github.com/lsds/spectre-attack-sgx

BIBLIOGRAPHY

Paillier, P. (1999). “Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes”. In: Proceedings of the 17th International Conference on Theory and Application
of Cryptographic Techniques. EUROCRYPT’99. Berlin, Heidelberg: Springer-Verlag,

pp. 223–238. isbn: 3-540-65889-0. url: http://dl.acm.org/citation.cfm?id=

1756123.1756146.

Pandey, O. and Y. Rouselakis (2012). “Property Preserving Symmetric Encryption”. In:

Advances in Cryptology – EUROCRYPT 2012. Ed. by D. Pointcheval and T. Johansson.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 375–391. isbn: 978-3-642-29011-

4.

Poddar, R., T. Boelter and R. A. Popa (2016). Arx: A Strongly Encrypted Database System.

Tech. rep. url: https://eprint.iacr.org/2016/591.

Popa, R. A., C. M. S. Redfield, N. Zeldovich and H. Balakrishnan (2011). “CryptDB:

Protecting Confidentiality with Encrypted Query Processing”. In: Proceedings of the
23rd ACM Symposium on Operating Systems Principles. SOSP ’11. New York, NY, USA:

ACM, pp. 85–100. isbn: 978-1-4503-0977-6. doi: 10.1145/2043556.2043566. url:

http://doi.acm.org/10.1145/2043556.2043566.

Popa, R. A., F. H. Li and N. Zeldovich (2013). “An Ideal-Security Protocol for Order-

Preserving Encoding”. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy. SP ’13. Washington, DC, USA: IEEE Computer Society, pp. 463–477. isbn:

978-0-7695-4977-4. doi: 10.1109/SP.2013.38. url: http://dx.doi.org/10.

1109/SP.2013.38.

Popa, R. A., E. Stark, S. Valdez, J. Helfer, N. Zeldovich and H. Balakrishnan (2014). “Build-

ing Web Applications on Top of Encrypted Data Using Mylar”. In: 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14). Seattle, WA:

USENIX Association, pp. 157–172. isbn: 978-1-931971-09-6. url: https://www.

usenix.org/conference/nsdi14/technical-sessions/presentation/popa.

Priebe, C., K. Vaswani and M. Costa (May 2018). “EnclaveDB - A Secure Database us-

ing SGX”. In: Proceedings of the 39th IEEE Symposium on Security & Privacy (S&P
’18). IEEE. url: https://www.microsoft.com/en-us/research/publication/

enclavedb-a-secure-database-using-sgx/.

Reinsel, D., J. Gantz and J. Rydning (2017). “Data Age 2025: The Evolution of Data to

Life-Critical”. In: IDC White Paper April, pp. 1–25. url: https://www.seagate.

com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-

March-2017.pdf.

RightScale (2018). State of the Cloud Report. Tech. rep.

Rivest, R., A. Shamir and L. Adleman (Feb. 1978a). “A Method for Obtaining Digital

Signatures and Public-key Cryptosystems”. In: Communications of the ACM 21.2,

pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342. url: http://doi.

acm.org/10.1145/359340.359342.

Rivest, R. L., L. Adleman and M. L. Dertouzos (1978b). “On Data Banks and Privacy

Homomorphisms”. In: Foundations of Secure Computation, pp. 169–180. doi: 10.1.1.

106

http://dl.acm.org/citation.cfm?id=1756123.1756146
http://dl.acm.org/citation.cfm?id=1756123.1756146
https://eprint.iacr.org/2016/591
https://doi.org/10.1145/2043556.2043566
http://doi.acm.org/10.1145/2043556.2043566
https://doi.org/10.1109/SP.2013.38
http://dx.doi.org/10.1109/SP.2013.38
http://dx.doi.org/10.1109/SP.2013.38
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/popa
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/popa
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.1.1.480.3392
https://doi.org/10.1.1.480.3392
https://doi.org/10.1.1.480.3392

BIBLIOGRAPHY

480.3392. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

500.3989&rep=rep1&type=pdf.

Roston, B. A. (Oct. 2017). Database Leaks 47GB of Medical Records Including Names
and Test Results. url: https://www.slashgear.com/database-leaks-47gb-of-

medical-records-including-names-and-test-results-10503457/.

Rushe, D. (Aug. 2013). Google: Don’t Expect Privacy When Sending to Gmail. New York,

NY, USA. url: https://www.theguardian.com/technology/2013/aug/14/google-

gmail-users-privacy-email-lawsuit.

Salton, G, A Wong and C. S. Yang (Nov. 1975). “A Vector Space Model for Automatic

Indexing”. In: Communications of the ACM 18.11, pp. 613–620. issn: 0001-0782. doi:

10.1145/361219.361220. url: http://doi.acm.org/10.1145/361219.361220.

Santos, N., K. P. Gummadi and R. Rodrigues (2009). “Towards Trusted Cloud Computing”.

In: Proceedings of the 2009 Conference on Hot Topics in Cloud Computing. HotCloud’09.

Berkeley, CA, USA: USENIX Association. url: http://dl.acm.org/citation.cfm?

id=1855533.1855536.

Schuster, F., M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz and M.

Russinovich (2015). “VC3: Trustworthy Data Analytics in the Cloud Using SGX”. In:

Proceedings of the 2015 IEEE Symposium on Security and Privacy. SP ’15. Washington,

DC, USA: IEEE Computer Society, pp. 38–54. isbn: 978-1-4673-6949-7. doi: 10.

1109/SP.2015.10. url: http://dx.doi.org/10.1109/SP.2015.10.

Seo, J., B. Lee, S. Kim and M.-W. Shih (2017). “SGX-Shield: Enabling Address Space

Layout Randomization for SGX Programs”. In: Proceedings of the 24th Annual Network
and Distributed System Security Symposium (NDSS ’17). March.

Shih, M.-W., S. Lee, T. Kim and M. Peinado (2017). “T-SGX: Eradicating Controlled-

Channel Attacks Against Enclave Programs”. In: Proceedings of the 24th Annual Net-
work and Distributed System Security Symposium (NDSS ’17). March.

Sion, R. (2009). “Trusted Hardware”. In: Encyclopedia of Database Systems. Ed. by L. LIU

and M. T. ÖZSU. Boston, MA: Springer US, pp. 3191–3192. isbn: 978-0-387-39940-9.

doi: 10.1007/978-0-387-39940-9_1491. url: https://doi.org/10.1007/978-0-

387-39940-9_1491.

Song, D. X., D. Wagner and A. Perrig (2000). “Practical Techniques for Searches on

Encrypted Data”. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy.

SP ’00. Washington, DC, USA: IEEE Computer Society, pp. 44–55. isbn: 0-7695-

0665-8. doi: 10.1109/SECPRI.2000.848445. url: http://dl.acm.org/citation.

cfm?id=882494.884426.

Sparks, E. (2007). TPM Reset Attack. url: https://web.archive.org/web/20171224141030/

http://www.cs.dartmouth.edu/~pkilab/sparks/ (visited on 22/09/2018).

Stallings, W. and L. Brown (2014). Computer Security: Principles and Practice. 3rd. Upper

Saddle River, NJ, USA: Prentice Hall Press. isbn: 9781292066172.

107

https://doi.org/10.1.1.480.3392
https://doi.org/10.1.1.480.3392
https://doi.org/10.1.1.480.3392
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.500.3989&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.500.3989&rep=rep1&type=pdf
https://www.slashgear.com/database-leaks-47gb-of-medical-records-including-names-and-test-results-10503457/
https://www.slashgear.com/database-leaks-47gb-of-medical-records-including-names-and-test-results-10503457/
https://www.theguardian.com/technology/2013/aug/14/google-gmail-users-privacy-email-lawsuit
https://www.theguardian.com/technology/2013/aug/14/google-gmail-users-privacy-email-lawsuit
https://doi.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://dl.acm.org/citation.cfm?id=1855533.1855536
http://dl.acm.org/citation.cfm?id=1855533.1855536
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1109/SP.2015.10
http://dx.doi.org/10.1109/SP.2015.10
https://doi.org/10.1007/978-0-387-39940-9_1491
https://doi.org/10.1007/978-0-387-39940-9_1491
https://doi.org/10.1007/978-0-387-39940-9_1491
https://doi.org/10.1109/SECPRI.2000.848445
http://dl.acm.org/citation.cfm?id=882494.884426
http://dl.acm.org/citation.cfm?id=882494.884426
https://web.archive.org/web/20171224141030/http://www.cs.dartmouth.edu/~pkilab/sparks/
https://web.archive.org/web/20171224141030/http://www.cs.dartmouth.edu/~pkilab/sparks/

BIBLIOGRAPHY

Stefanov, E., E. Shi and D. Song (2012). “Towards Practical Oblivious RAM”. In: Proceed-
ings of the 19th Annual Network and Distributed System Security Symposium (NDSS ’12).
arXiv: 1106.3652. url: http://arxiv.org/abs/1106.3652.

Stefanov, E., M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu and S. Devadas (2013). “Path

ORAM: An Extremely Simple Oblivious RAM Protocol”. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security. CCS ’13. New York,

NY, USA: ACM, pp. 299–310. isbn: 978-1-4503-2477-9. doi: 10.1145/2508859.

2516660. url: http://doi.acm.org/10.1145/2508859.2516660.

Stefanov, E., C. Papamanthou and E. Shi (2014). “Practical Dynamic Searchable Encryp-

tion with Small Leakage”. In: Proceedings of the 21st Annual Network and Distributed
System Security Symposium (NDSS ’14). isbn: 1891562355. url: http://dl.acm.

org/citation.cfm?id=2636328.

Swain, M. J. and D. H. Ballard (Nov. 1991). “Color Indexing”. In: International Journal of
Computer Vision 7.1, pp. 11–32. issn: 0920-5691. doi: 10.1007/BF00130487. url:

http://dx.doi.org/10.1007/BF00130487.

Swaminathan, A., Y. Mao, G.-M. Su, H. Gou, A. L. Varna, S. He, M. Wu and D. W. Oard

(2007). “Confidentiality-Preserving Rank-Ordered Search”. In: Proceedings of the 2007
ACM Workshop on Storage Security and Survivability. StorageSS ’07. New York, NY, USA:

ACM, pp. 7–12. isbn: 978-1-59593-891-6. doi: 10.1145/1314313.1314316. url:

http://doi.acm.org/10.1145/1314313.1314316.

Teufel, S. (2007). “An Overview of Evaluation Methods in TREC Ad Hoc Information

Retrieval and TREC Question Answering”. In: Evaluation of Text and Speech Systems,
pp. 163–186.

Thomas, J. (2017). “Searchability”. In: Nineteenth-Century Illustration and the Digital.
Cham: Springer International Publishing, pp. 33–64. isbn: 978-3-319-58148-4. doi:

10.1007/978-3-319-58148-4_3. url: http://link.springer.com/10.1007/978-

3-319-58148-4_3.

Titcomb, J. (Nov. 2016). Mobile Web Usage Overtakes Desktop for First Time. url: http://

www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-

desktop-for-first-time/.

Trusted Computing Group (2009). ISO/IEC 11889-1:2009 — Trusted Platform Module.

Tech. rep. International Organisation for Standardisation.

— (2015). ISO/IEC 11889-1:2015(E) — Trusted Platform Module Library. Tech. rep. Inter-

national Organisation for Standardisation.

Turner, K. (Sept. 2016). Hacked Dropbox Login Data of 68 Million Users is Now for Sale on
the Dark Web. url: https://tinyurl.com/wpostdropbox.

Wang, C., N. Cao, K. Ren and W. Lou (Aug. 2012). “Enabling Secure and Efficient

Ranked Keyword Search over Outsourced Cloud Data”. In: IEEE Transactions on
Parallel Distributed Systems 23.8, pp. 1467–1479. issn: 1045-9219. doi: 10.1109/

TPDS.2011.282. url: http://dx.doi.org/10.1109/TPDS.2011.282.

108

https://arxiv.org/abs/1106.3652
http://arxiv.org/abs/1106.3652
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660
http://doi.acm.org/10.1145/2508859.2516660
http://dl.acm.org/citation.cfm?id=2636328
http://dl.acm.org/citation.cfm?id=2636328
https://doi.org/10.1007/BF00130487
http://dx.doi.org/10.1007/BF00130487
https://doi.org/10.1145/1314313.1314316
http://doi.acm.org/10.1145/1314313.1314316
https://doi.org/10.1007/978-3-319-58148-4_3
http://link.springer.com/10.1007/978-3-319-58148-4_3
http://link.springer.com/10.1007/978-3-319-58148-4_3
http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time/
http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time/
http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time/
https://tinyurl.com/wpostdropbox
https://doi.org/10.1109/TPDS.2011.282
https://doi.org/10.1109/TPDS.2011.282
http://dx.doi.org/10.1109/TPDS.2011.282

BIBLIOGRAPHY

Wang, J. Z., J. Li and G Wiederhold (Sept. 2001). “SIMPLIcity: Semantics-Sensitive

Integrated Matching for Picture Libraries”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 23.9, pp. 947–963. issn: 0162-8828. doi: 10.1109/34.

955109.

Wang, X. S., K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov and Y. Huang (2014).

“Oblivious Data Structures”. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’14. New York, NY, USA: ACM,

pp. 215–226. isbn: 978-1-4503-2957-6. doi: 10 . 1145 / 2660267 . 2660314. url:

http://doi.acm.org/10.1145/2660267.2660314.

White, S. R. (Apr. 1987). “ABYSS: A Trusted Architecture for Software Protection”.

In: Proceedings of the 1987 IEEE Symposium on Security and Privacy, pp. 38–51. doi:

10.1109/SP.1987.10021.

Wikipedia (2018). Wikipedia Database Download. url: https://en.wikipedia.org/

wiki/Wikipedia:Database_download (visited on 12/09/2018).

Wright, C. P., J. Dave and E. Zadok (2003). “Cryptographic File Systems Performance:

What You Don’t Know Can Hurt You”. In: Proceedings of the 2nd IEEE International
Security in Storage Workshop. SISW ’03. Washington, DC, USA: IEEE Computer

Society, pp. 47–54. isbn: 0-7695-2059-6. url: http://dl.acm.org/citation.cfm?

id=998686.1007018.

Xia, Z., X. Wang, L. Zhang, Z. Qin, X. Sun and K. Ren (Nov. 2016). “A Privacy-Preserving

and Copy-Deterrence Content-Based Image Retrieval Scheme in Cloud Computing”.

In: IEEE Transactions on Information Forensics and Security 11.11, pp. 2594–2608. issn:

1556-6013. doi: 10.1109/TIFS.2016.2590944. url: https://doi.org/10.1109/

TIFS.2016.2590944.

Xu, Y., W. Cui and M. Peinado (2015). “Controlled-Channel Attacks: Deterministic Side

Channels for Untrusted Operating Systems”. In: Proceedings of the 2015 IEEE Sympo-
sium on Security and Privacy. SP ’15. Washington, DC, USA: IEEE Computer Society,

pp. 640–656. isbn: 978-1-4673-6949-7. doi: 10.1109/SP.2015.45. url: http:

//dx.doi.org/10.1109/SP.2015.45.

Yee, B. (1994). “Using Secure Coprocessors”. PhD Thesis. Carnegie Mellon University.

Zhang, Y., J. Katz and C. Papamanthou (2016). “All Your Queries Are Belong to Us: The

Power of File-Injection Attacks on Searchable Encryption”. In: 25th USENIX Secu-
rity Symposium (USENIX Security 16). Austin, TX: USENIX Association, pp. 707–

720. isbn: 978-1-931971-32-4. url: https : / / www . usenix . org / conference /

usenixsecurity16/technical-sessions/presentation/zhang.

Zobel, J. and A. Moffat (July 2006). “Inverted Files for Text Search Engines”. In: ACM
Computing Surveys 38.2. issn: 0360-0300. doi: 10.1145/1132956.1132959. url:

http://doi.acm.org/10.1145/1132956.1132959.

109

https://doi.org/10.1109/34.955109
https://doi.org/10.1109/34.955109
https://doi.org/10.1145/2660267.2660314
http://doi.acm.org/10.1145/2660267.2660314
https://doi.org/10.1109/SP.1987.10021
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://dl.acm.org/citation.cfm?id=998686.1007018
http://dl.acm.org/citation.cfm?id=998686.1007018
https://doi.org/10.1109/TIFS.2016.2590944
https://doi.org/10.1109/TIFS.2016.2590944
https://doi.org/10.1109/TIFS.2016.2590944
https://doi.org/10.1109/SP.2015.45
http://dx.doi.org/10.1109/SP.2015.45
http://dx.doi.org/10.1109/SP.2015.45
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://doi.org/10.1145/1132956.1132959
http://doi.acm.org/10.1145/1132956.1132959

A
p
p
e
n
d
i
x

A
Appendix: Framework Libraries API

1 namespace iee_util {

2 // thread pool

3 const unsigned thread_get_count();

4 int thread_add_work(void* (*task)(void*), void* args);

5 void thread_do_work();

6

7 // secure file i/o

8 void* open_secure(const char* name, const char* mode);

9 size_t write_secure(const void* ptr, size_t size, size_t count, void*
stream);

10 size_t read_secure(void* ptr, size_t size, size_t count, void* stream);

11 void close_secure(void* stream);

12 }

Listing A.1: IEE library iee_util.

111

APPENDIX A. APPENDIX: FRAMEWORK LIBRARIES API

1 namespace iee_crypto {

2 void random(void* out, size_t len);

3 unsigned random_uint();

4 unsigned random_uint_range(unsigned min, unsigned max);

5

6 int sha256(void* out, const void* in, size_t len);

7 int hmac_sha256(void* out, const void* in, const size_t in_len, const void

* key, const size_t key_len);

8

9 // symmetric authenticated cipher

10 int encrypt_authenticated(void* out, const void* in, const size_t in_len,

const void* nonce, const void* key);

11 int decrypt_authenticated(void* out, const void* in, const size_t in_len,

const void* nonce, const void* key);

12 }

Listing A.2: IEE library iee_crypto.

1 namespace outside_util {

2 double time_elapsed_ms(struct timeval start, struct timeval end);

3

4 int init_server(const int server_port);

5

6 int socket_connect(const char* server_name, const int server_port);

7 void socket_send(int socket, const void* buff, size_t len);

8 void socket_receive(int socket, void* buff, size_t len);

9 }

Listing A.3: Outside library outside_util.

1 namespace sec_channel_client {

2 void init_secure_connection(void* conn, const char* server_name, const int

server_port);

3 void socket_secure_send(void* conn, const void* buff, size_t len);

4 void socket_secure_receive(void* conn, void* buff, size_t len);

5 void close_secure_connection(void* conn);

6 }

7

8 namespace sec_channel_iee {

9 void serve_secure_connection();

10 }

Listing A.4: Secure channel primitives sec_channel_client and sec_channel_iee.

112

A
p
p
e
n
d
i
x

B
Appendix: BISEN Evaluation Queries

0. time

1. person

2. year

3. way

4. day

5. thing

6. man

7. world

8. life

9. hand

10. part

11. child

12. history

13. country

14. born

15. lisbon

16. york

113

APPENDIX B. APPENDIX: BISEN EVALUATION QUERIES

17. paris

18. time && person

19. time && person && year && way && day

20. time && person && year && way && day && thing && man && world && life

&& hand

21. time || person

22. time || person || year || way || day

23. time || person || year || way || day || thing || man || world || life

|| hand

24. (time && person) || (year && way)

25. (time && person) || (year && way) || (day && thing) || (man && world)

26. (time && person) || (year && way) || (day && thing) || (man && world)

|| (life && hand) || (part && child)

27. (time || person) && (year || way)

28. (time || person) && (year || way) && (day || thing) && (man || world)

29. (time || person) && (year || way) && (day || thing) && (man || world)

&& (life || hand) && (part || child)

30. !time && person && year && way && day && thing && man && world && life

&& hand

31. !time && !person && !year && !way && !day && thing && man && world &&

life && hand

32. !time && !person && !year && !way && !day && !thing && !man && !world

&& !life && !hand

33. !(time && person && year && way && day && thing && man && world && life

&& hand)

34. !time || !person || !year || !way || !day || !thing || !man || !world

|| !life || !hand

114

	Contents
	List of Figures
	List of Tables
	Listings
	List of Algorithms
	Glossary
	Acronyms
	Introduction
	Context and Motivation
	Problem
	Objectives
	Main Contributions
	Publications
	Thesis Organisation

	Related Work
	Computing over Encrypted Data
	Property-Preserving Encryption
	Homomorphic Encryption
	Oblivious RAM
	Discussion

	Information Retrieval Techniques
	Text Retrieval
	Image Retrieval and Feature Clustering
	Result Scoring and Evaluation
	Discussion

	Searchable Symmetric Encryption
	Boolean Queries
	Ranked Searching
	Images
	Discussion

	Trusted Hardware
	Secure Coprocessor
	Trusted Platform Module
	Isolated Execution Environment

	Data Repositories and Frameworks for Secure Computation
	Secure Data Repositories
	Frameworks for Trustworthy Computation
	Discussion

	Summary and Discussion

	Protocols for Isolated Searchable Encryption
	Architecture and System Model
	Use Cases
	Definitions and Tools
	BISEN: Boolean Isolated Searchable Encryption
	Protocols for Text Search
	Security Analysis
	Extending BISEN for Ranked Retrieval
	Discussion

	VISEN: Visual Isolated Searchable Encryption
	Protocol for Content-Based Image Retrieval
	Security Analysis
	Discussion

	MISEN: Multimodal Isolated Searchable Encryption

	Protocol Implementation
	Framework for Intel SGX
	Framework Initialisation
	Framework API
	Utility Libraries

	Implementing the Client and Storage Service
	Common Implementation Details
	Implementation of BISEN
	Implementation of VISEN
	Implementation of MISEN

	Experimental Evaluation
	Experimental Test Bench
	BISEN Evaluation
	Performance of Individual Participants
	Performance Regarding Type of Query
	Impact of IEE-specific Operations during Search
	Performance of Negation Queries
	Performance Regarding Selectivity
	Evaluating Different Storage Solutions
	Impact of Scoring Algorithms during Search
	Comparison with the State-of-the-Art
	Discussion

	VISEN Evaluation
	Evaluating the Codebook Generation Phase
	Evaluating the Operating Phase
	Comparison with the State-of-the-Art
	Discussion

	MISEN Evaluation

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Appendix: Framework Libraries API
	Appendix: BISEN Evaluation Queries

