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Abstract  
 

CRISPR-Cas9 is a recent discovered genetic editing mechanism, that shows a lot of versatility. This 

allows scientists to do genetic manipulation with relative ease when compared with others current 

genetic tools available. One possible application of the CRISPR-Cas9 system is to mimic human disease 

mutations by targeting orthologous genes in animal models, which allows a better characterization of 

the mechanisms behind a particular disease.  

Cilia are hair-like structures that protrude from the cell surface in organisms and can be classified as 

motile or non-motile. They are responsible for several important functions throughout the human body. 

Such functions include, generating fluid flow and sensing mechanical or chemical cues from the 

surrounding environment. If these are compromised it can lead to ciliopathies. Ciliopathies are a group 

of diseases and syndromic diseases characterized by malfunctioning of cilia. Motile cilia can lead to a 

disease known as primary ciliary dyskinesia (PCD). More than 35 genes have been linked with cilia 

motility in PCD patients. Some of these genes are associated with the inner dynein arms present in the 

axoneme. A better understanding of mutations in these genes would help the characterization of PCD. 

Using CRISPR-Cas9 we tried to cause a mutation in dnah7, a gene that encodes a protein present in 

inner dynein arms. Two SgRNAs were selected to disrupt dnah7 and injected into zebrafish embryos. 

These F0 embryos were screened for mutations outcrossed and left to sexually mature. When matured, 

the progeny was screened again to find any heritable mutations. Meanwhile, analyses of cilia beat 

frequency and pattern, the readouts of cilia function, were made in a set of wild type and ccdc40 MO 

injected zebrafish. Additionally, two SgRNAs were designed for targeting another PCD commonly 

mutated gene named rsph4a, a gene coding for a protein present in the radial spokes of the axonemes. 

 

Key words: CRISPR-Cas9, Cilia, SgRNAs, Danio rerio (Zebrafish), Primary Ciliary Dyskinesia (PCD), 

Cilia Beat Frequency (CBF) 
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Resumo 
 

CRISPR-Cas9 foi recentemente descoberto como um mecanismo de edição genética que mostra 

bastante versatilidade. Isto permite aos cientistas fazerem manipulações genéticas com extrema 

facilidade quando comparado com outras ferramentas genéticas atualmente disponíveis. Uma 

aplicação possível com o sistema CRISPR-Cas9 é a criação de mutações que mimetizem doenças 

humanas em animais modelo o que permite uma melhor caracterização dos mecanismos subjacentes 

de uma determinada doença. 

Cílios são estruturas parecidas com pestanas, que saem da superfície da célula e que são classificados 

como móveis ou imóveis. Os cílios são responsáveis por realizar inúmeras funções no corpo, como a 

geração de fluidos e detecção de sinais mecânicos ou químicos no ambiente circundante. Se estas 

funções forem comprometidas podem originar ciliopatias. As ciliopatias são um grupo de doenças 

caracterizadas por defeitos ciliares. Os cílios moveis podem originar uma doença conhecida como 

discinesia ciliar primária (DCP). Mais de 35 genes foram relacionados a defeitos de mobilidade dos 

cílios de pacientes de DCP. Alguns destes genes estão associados aos braços de dineína internos do 

axonema. Uma melhor compreensão das mutações nesses genes ajudaria na caracterização da 

doença. 

Através do uso de CRISPR-Cas9 tentei criar uma mutação no gene dnah7, este gene codifica para 

uma proteína presente nos braços de dineína internos. Dois RNAs guias foram selecionados para 

danificar dnah7 e foram injetados em embriões de peixe-zebra. Uma triagem em embriões F0 foi feita 

para a detecção de mutações nos peixes que posteriormente foram deixados para maturarem 

sexualmente. Após esse período, foram feitas triagens para detetar mutações hereditárias. Entretanto 

foi conduzida uma análise ao batimento ciliar entre peixes selvagens e peixes injetados com ccdc40. 

Para além disso, dois novos RNAs guias foram selecionados para rsph4a. Este gene codifica para uma 

proteína presente no axonema e mutações neste gene já foram identificadas em vários doentes de 

DCP. 

 

Palavras-chave: CRISPR-Cas9, Cílios, SgRNAs, Danio rerio (Peixe zebra), Discinesia ciliar primária 

(DCP), Batimento ciliar 
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1.1 Origin of CRISPR 

 

The unveiling of the fundamental elements CRISPR started early as the 1980 with the discovery of DNA 

repeats with dyad symmetry by a Japanese research group (Mojica and Montoliu, 2016).These DNA 

repeats would later become known by, what today is named as, Clustered regularly interspaced short 

palindromic repeats or CRISPR for short, but at the time researchers could not see the relevance of 

these repeated clusters, due to lack of homology with other sequences (Marraffini, 2015). Since then, 

multiple DNA repeats were discovered in various organisms, some of them with close resemblance. 

This permitted a compressive understanding of the CRISPR loci in bacteria and in archaea (Mojica and 

Montoliu, 2016). Afterwards, the discovery of interspaced direct repeats (DR) in Mycobacterium 

tuberculosis complex (MTBC) allowed scientists to strain typing MTBC with ease. Since, DNA 

sequences between the direct repeats, classified as spacers, showed variability from strain to strain 

(Hermans et al., 1991). With the increase of the genome database, CRISPR was established as 

common loci in bacteria and in archaea (Mojica et al., 2000). This was followed by the discovery of small 

RNAs molecules that are directly transcribed from the CRISPR loci and by the discovery of the Cas 

proteins (Doudna and Charpentier, 2014). A family of genes linked with the CRISPR that are responsible 

for chemical reactions that involve nucleic acids. These finding, coupled with the discovery that some 

spacers contained sequences from phages and plasmids and that the higher the number of spares 

present in bacteria fewer were the phage that could infect them, suggested that CRISPR associated 

with Cas proteins were a protection mechanism against phages (Barrangou et al., 2007). This promptly 

started the pursuit to better understand this defense mechanism. 

 

1.1.1 CRISPR-Cas system involved in bacterial immunity 
 

With several key discoveries suggesting the role of CRISPR in bacterial immunity (Mojica and Montoliu, 

2016). The speculation was that CRISPR could work in a similar manner to eukaryotic interference DNA 

(Makarova et al., 2006). The current understanding is that CRISPR works as a defense mechanism that 

stores genetic elements of invading phages or plasmid transfers (Mojica et al., 2005). When the cell is 

attacked, it keeps a record of the genetic elements of that particular phage or plasmid. These elements 

are integrated into the host in the CRISPR loci forming new spacers. At this point the mechanism of 

autoimmunity, is capable of distinguishing the invader DNA from the cell own DNA. A failure in this 

mechanism can lead to an autoimmune response which causes cell death (Jiang and Doudna, 2017). 

This can be considered the first phase of CRISPR, the adaptation phase or spacer acquisition phase. 

The next phase consists in the elimination of the foreign DNA. To do that, the CRISPR array is 

transcribed producing short RNAs that consist in one spacer sequence referring to the foreign DNA. 

These SgRNAs are then used by the Cas endonucleases to find and cleave the foreign DNAs, see 

Figure 1.1 (Marraffini, 2015). 
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Figure 1.1. CRISPR immunization schematics. (a) infection from phage (b) inner working of the CRISPR as a 
defense mechanisms. Image and legend adapted from (Marraffini, 2015). 

 

1.1.2 CRISPR-Cas systems classification  
 

The CRISPR system can be classified as type I, II and III (see Figure 1.2). They all have the same 

molecular mechanism of crRNA guided nucleases, but differ in the biogenesis of crRNAs and the 

targeting requirements. The crRNA is a small RNA transcribed from the CRISPR loci that contains the 

same sequence (spacer) that complements the sequence from the foreign DNA and directs the nuclease 

to that foreign DNA (Jiang and Doudna, 2017). The type I CRISPR-Cas is regulated by the Cas3 

nuclease and Cascade complex (see Figure 1.2, a). When the full array of CRISPR is transcribed a 

repeat-specific endoribonuclease, called Cas6e, cleaves the precursor crRNA (Brouns et al., 2008). 

This process forms a short crRNA. The crRNA remains associated with cascade and helps this complex 

locate the target DNA complementary sequence. Another subunit, Cas8, recognizes a short sequence 

motif located upstream and in close proximity with the target DNA (Sashital et al., 2012). This 

complementary sequence is known as a protospacer adjacent motif (PAM). After PAM recognition, the 
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cascade complex recruits Cas3 that induces double stranded breaks (DSB) in the DNA leading to the 

foreign DNA degradation. 

Type II CRISPR-Cas system is simpler than type I and III, only needing Cas9 protein to achieve a DSB 

in the presence of an existent spacer (Sapranauskas et al., 2011). Although, this system only requires 

one protein, it needs two types of small RNA molecules to achieve immunity instead. One of the small 

RNA molecules is a trans-encoded crRNA (tracrRNA), and the other one the crRNA. The tracrRNA 

binds to Cas9 and forms a secondary structure that mediates its interaction with Cas9. TracrRNA also 

has a homology zone with the repeats of the CRISPR loci forming and heteroduplex between tracrRNA 

and pre-crRNA (Figure 1.2, b)(Deltcheva et al., 2011). The double strand RNA is then cleaved by RNase 

III resulting in the crRNA. The newly formed complex of crRNA and Cas9, tries to locate the PAM which 

is located downstream of the target sequence (Deveau et al., 2008). When located the CRISPR type II 

system provokes a DSB in the PAM sequence with the help of two nuclease domains (HNH and RuvC45) 

(Sapranauskas et al., 2011). 

 

Figure 1.2. Representation of CRISPR different systems. (a) type I system. (b) type II system. (c) type III system. 
Image and legend adapted from (Marraffini, 2015).  

 

At last, type III CRISPR system (Figure 1.2, c), utilizes Cas6, a repeat specific nuclease to cleave the 

pre-crRNA. After cleavage, the pre-crRNA becomes crRNA with 8 nucleotides in the 5’ end of the repeat 

sequence as a result of the Cas6 cleavage (Carte et al., 2008). This sequence is known as crRNA tag. 

Afterwards the crRNA is reallocated to Cas10-Csm, a large complex that matures the crRNA by trimming 

the 3´end in intervals of 6 nucleotides (Hatoum-Aslan et al., 2013). Unlike type I and II CRISPR systems, 
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which target the foreign DNA relying only on recognition of the DNA sequence, type III requires the 

transcription of the target DNA and a crRNA complementarity to the transcripts and to the non-template 

strand of the DNA target (Goldberg et al., 2014). This results in the Cas10 complex cleaving the non-

template strand of the protospacer DNA. Another difference between type III and the other two systems 

is that, to date, the PAM requirement in CRISPR systems does seem to be needed in type III systems 

(Marraffini, 2015). So, to prevent autoimmunity, type III systems require differential base paring between 

crRNA tag and the sequences flaking the protospacer. An incomplete match between crRNA tag and 

sequences flanking the protospacer results in cleavage and a complete match prevents DNA targeting 

within the cell (Samai et al., 2015). 

 

1.1.3 Homologous recombination (HR) vs Nonhomologous end joining (NHEJ) 

 
The double strand breaks (DSB) leave the cell with two possible DNA repair strategies, the homologous 

recombination and the non-homologous end joining (Lieber, 2010). In the absence of a template for the 

damaged zone, the cell DNA repair mechanism will activate NHEJ. The NHEJ mechanism results from 

the protein KU binding to each DNA end. The Ku protein serves as tool belt and recruits nucleases 

(Artemis DNA-PKcs), polymerases (μ and λ) and ligase (XLF XRCC4 DNA ligase IV) to form a complex 

which then reconnects the DNA (Lieber, 2008). This type of mechanism leads to errors in the repair 

process, which results in deletions or insertions or even substitutions. Consequently, these errors can 

cause mutations and disruption of gene function. This approach is very useful when the goal is to study 

gene function, since it is fairly easy to cause a gene knockout or knockdown. On the other hand, with 

the presence of a repair template the cell repair mechanism resorts to HR. The DNA repair through HR 

can be done by two different pathways such as synthesis depended strand annealing (SDSA) or double 

strand break repair (DSBR) (San Filippo et al., 2008). In the SDSA pathway, when a DSB occurs, the 3’ 

ends of the DNA undergoes nuclease degradation and becomes a single strand overhang, this allows 

the HR machinery to search the homologous strand in the partner chromosome, when homology is 

found a displacement-loop (D-loop) is formed between the invading strand and the complementary 

strand and DNA synthesis begins using the complementary strand as the template (Li and Heyer, 2008). 

The D-loop is then disassociated and the newly synthesized DNA strand is captured by the other 3’ end 

of the invading DNA forming heteroduplexes and a gap filing DNA synthesis ensues (San Filippo et al., 

2008). In DSBR, the initial part of the DNA repair is the same, a ssDNA 3’ end finds a homology zone 

creates a D-loop and starts to elongate. However, in DSBR, the second DSB end can also search for a 

homology zone resulting in an intermediate state with two holiday junctions. These holiday junctions are 

an DNA intermediate shaped like a cruciform that are produced when there is a mutual strand exchange 

between two double strand DNAs, result in a final reparation with DNA crossovers (Sharples, 2001). 
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Figure 1.3. Representation of both possible pathway of homologous recombination. (a) a double strand break 
occurs in the DNA. (b) synthesis-depended strand annealing pathway. (c) double strand break repair pathway. 

Image and legend adapted from (San Filippo et al., 2008). 

 

1.1.4 CRISPR-Cas9 as a genetic tool  
 

The appeal of using CRISPR-Cas9 type II system as genetic tool is due to the simplicity of the 

mechanism especially when compared with zinc finger nuclease (ZFN) and transcription activator-like 

effectors nucleases (TALEN). Although, they all stimulate DNA repair systems at a specific target in the 

genome (Barrangou, 2013), CRISPR-Cas9 presents a much easier and more convenient solution for 

gene editing. Both ZFNs and TALENs use protein to achieve homology with the target DNA. In case of 

ZFNs these proteins are completely synthetic, while TALEN proteins are derived from existing proteins 

from another organism (Josa et al., 2017). Using both tools can be a tedious and long task and is prone 

to mistakes. Although TALENs are easier to use, since there is a larger data base with the necessary 

intermediate plasmids, giving the researchers the flexibility to choose the protein with homology with the 

target DNA. In contrast, the use of ZFNs is largely limited, since ZFNs are only available commercially, 

which removes some of the autonomy from the investigations (Josa et al., 2017). These factors along 

with the ease of customization, allows researchers to target different sequences which makes CRISP-
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Cas9 the elected system. By only needing to change the 20 nucleotides of the guide sequence, allows 

researchers to virtually target any part of the DNA (Ran et al., 2013). Furthermore, a predictable 

cleavage pattern and the high efficiency made CRISPR a very compelling alternative (Jinek et al., 2012; 

Hoshijima et al., 2016). The only limitation in using CRISPR-Cas9 is the PAM. Each Cas9 ortholog as a 

different PAM sequence, which can limit the targeting range (Ran et al., 2013). Also, off target mutants 

can also occur. 

This plasticity of CRISPR-Cas9 could allow scientist to target the genome of any species, resulting in a 

range of possibilities. From gene knockout, to study of gene function, to gene editing for creation of 

transgenic organisms or even for genetic therapy. An interesting approach is to use CRISPR-Cas9 as 

tool to create mutations in animal models that mimic diseases present in humans. This would allow a 

better understating of diseases that affect humans. Such is the case of ciliopathies, a group of diseases 

characterized by the malfunction of the cilia, like primary ciliary dyskinesia (PCD). PCD has been linked 

to a number of genes (Verhulst et al., 2007; Castleman et al., 2008; Antony et al., 2013; Lai et al., 2016). 

A better understating of the gene association with cilia motility or assembly, would help characterize 

PCD. 

 

1.2 Cilia  

 

Cilia or flagella, are hair-like structures that protrude from the cell surface in organisms that can range 

from single cell eukaryotes to more complex organisms and are almost ubiquitously present in all cells 

across vertebrates (Fliegauf et al., 2007). These structures were highly preserved throughout evolution, 

which indicates the importance of these organelles in the development and maintenance of cells and 

organisms life. Cilia have been associated with a variety of important roles depending on their subtype. 

Cilia can be motile or not. Non-motile cilia, also known as primary cilia, functions as the cells antenna’s, 

displaying several receptors. Primary cilia malfunction can generate disease like Polycystic Kidney 

Disease (PKD), Bardet−Biedl Syndrome (BBS), Alström Syndrome (ALMS) (Badano et al., 2006).The 

roles of motile cilia include motility of single cell organisms, generating fluid flow and sensing mechanical 

or chemical cues (Ishikawa and Marshall, 2017). These roles can be compromised if there are any 

defects in the cilia assembly or in its components. Impairment in the molecular complexes that are 

needed to cilia structure, functions and maintenance, can lead to ciliopathies. Defects in motile cilia can 

lead to a disease known as primary ciliary dyskinesia (PCD). This pleotropic disorder can present 

phenotypes such as upper respiratory tract infections, male infertility and left-right body asymmetry 

defects (Kobayashi and Takeda, 2012) 
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 1.2.1 Cilia classification 
 

Cilia and flagella are fundamentally equal when compared structurally and functionally, despite having 

different designations. Even so, cilia can differ depending on the function they perform. Different 

specializations of cilia have impact in their structure and regulation. This impact allows the classification 

of cilia in two classes, the primary cilia or motile cilia. 

Primary cilia, typically appear in the cell surface of several cell types including stem, epithelial, 

endothelial connective tissue, muscle cells and neurons. Primary cilia are single, normally non-motile 

organelles that originate from the cell surface of most cells. They are formed by a “9+0” conformation. 

On the other hand, motile cilia have a “9+2” conformation. The 9 refers to the number of peripheral 

doublets present in the ciliary axoneme while the 0 or 2 refers to presence or absence of the central 

pair. Typically, it was thought that primary cilia immobility was due to the lack of central pair, however 

studies demonstrate that motile cilia can have a “9+0” and can still be motile (Sobkowicz et al., 1995; 

Satir and Christensen, 2007). So, the lack of mobility of the primary cilia is not due to the absence the 

central pair, but because the outer and inner dynein arms as well as the radial spokes are missing (Fisch 

and Dupuis-Williams, 2011; Kobayashi and Takeda, 2012). 

Since, most primary cilia are immotile it is thought that they have a major role in cell signaling function 

due to the presence of several receptors in the ciliary membrane, like ion channels and transporter 

proteins. In addition, signaling effectors were found in the basal body and along the cilium (Singla, 2006). 

Primary cilia are often compared to an antenna, as the presence of receptors allows the cilium to 

establish signaling in a concentrated microenvironment (Hilgendorf et al., 2016). 

The ability to signal is very important since signaling in the cilium coordinates key processes during 

development and in tissue homeostasis, including cell migration, differentiation and/or re-entry into the 

cell cycle, specification of the plane of cell division, and apoptosis. The primary cilia can also respond 

to mechanical stimulation (bending of the cilium by the fluid forces) or chemosensation (recognition of 

ligands, growth factors, hormones or morphogens) (Singla and Reiter, 2006). Some sensory organs 

have specialized cilia capable of sensing light and detect odorants (Ishikawa and Marshall, 2017). 

In contrast, the motile cilia are less widespread being present only in a few cell types like sperm, epithelia 

of the upper and lower respiratory tract, oviducts and ependymal cells in the ventricles of the brain. 

Being that this type of cilia are motile they play an integral role in locomotion, in case of the sperm, and 

in making fluids flow (Ishikawa and Marshall, 2017). Motile cilia are normally found in multiciliated cells 

at high density beating in a synchronized fashion. This synchronized beating is responsible for mucus 

clearing in the airways or in aiding passage of cerebrospinal fluid within the brain and spinal cord. In the 

case of motile monocilia cells such as the sperm, only one long cilium generates thrust. This notion that 

motile cilia were only capable of generating fluid motion or cell locomotion was shattered, when it was 

discovered that motile cilia also have the capability of perceiving osmotic forces, bitter taste, stress, fluid 

flow and sex hormones (Jain et al., 2012). 
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1.2.2 Cilia ultra-structure  
 

The cilium is a protrusion from the cell membrane, consisting in a cylindrical structure called the 

axoneme. All axonemes are comprised of nine outer doublets and a central pair in case of motile cilia. 

Primary cilia, lack the central pair. So, immotile cilia are usually classified as “9+0” and motile cilia as 

“9+2”. The outer doubles are microtubules that extend from the basal body of the cilia. One complete 

microtubule extends from the basal body (A tubule) and connects with and incomplete microtubule (B 

tubule) (Ishikawa and Marshall, 2017). These microtubules are often subjected to tubulin post translation 

modifications such as acetylation, glutamylation, and glycytion, these modification are important, since 

the axoneme is the core of the cilium and also responsible for the transportation of ciliary proteins, and 

these modification were implicated in axoneme stability, assembly and even motility of the cilia (Ikegami 

and Setou, 2010). These peripheral microtubules, in the case of motile cilia, are associated with multiple 

accessory proteins like radial spokes, dynein arms and nexin links. The nexin links connects the 

adjacent microtubules to each other whereas the radial spokes connect the outer microtubules with the 

central pair (see Figure 1.4) (Kobayashi and Takeda, 2012). 

 

Figure 1.4. The architecture of cilia. Schematic, foreshortened drawing of a longitudinal section of the primary 
cilium. The inset shows cross sections of motile and primary cilia. Image and legend from (Ishikawa and Marshall 
2017). 
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The dyneins are large protein complexes encompassing several chains, ranging from light (8-55 kDa) 

to intermediate (45-110kDa) to heavy (400-500kDa) and are the force behind the ciliary movement. The 

outer dynein arms (ODAs) are positioned and located closer to the cilium membrane and further from 

the central pair. In contrast, the inner dynein arms (IDAs) are located closer to the central apparatus and 

further form the cilium membrane (Kobayashi and Takeda, 2012). The dynein arms can be classified 

according to the number of heavy chain motors that they contain. Dyneins with only one motor unit form 

the first class. These motors form a subset of inner dynein arms that arrange in a complex manner along 

the axonemal length or even with specific outer doubles. The second class of dyneins include both the 

inner and outer arm dyneins and are composted by two motors that associate together via their amino 

terminal region. These motors are closely related to the motors that power the retrograde intraflagellar 

transport (IFT) (King, 2016).The region between the cilium and the basal body is named transition zone. 

In this zone, there are transition fibers that anchor the mother centriole to the plasmatic membrane. 

Above this region, Y link bridges connect the axoneme microtubules to the cilium membrane (Ishikawa 

and Marshall, 2017). 

 

1.2.3 Ciliogenesis  
 

Ciliogenesis is a highly complex process, involving several steps that are in coordination with the cell 

cycle progression and differentiation. To start the cilium assembling, the cells must exit the mitotic cycle 

in order to free the centrioles for axoneme nucleation. There is a link between ciliogenesis and cell 

division, since improper cell division can lead to an abnormal ciliogenesis (Prachee Avasthia, 2012). For 

ciliogenesis to occur various components need to be dislocated from the Golgi complex and cytoplasm 

to the close vicinity of the basal body. The mother centriole acquires an array of distal and subdistal 

appendages (Anderson, 1972) and forms the basal body. The basal body will then interact with a post 

Golgi vesicle that upon extension of the microtubules will flatten, envelops the axoneme giving rise to 

the cilia membrane (Sorokin, 1962; Lu et al., 2015). This basal body will then dock into a actin-rich cortex 

and fuses with the membrane (Ishikawa and Marshall, 2011). Afterward, the cilium starts to protrude 

from under the membrane, due to the outgrown of the axonemal microtubules. The manner in which this 

basal body is established, dictates the alignment of the emerging cilia. Afterward, the outer doublets 

start to form in the transition zone of the cilium and all the outer doublets assembly occurs in the distal 

part of the cilium. Since the cilium cannot synthesize any protein by itself it recurs to intraflagellar 

transport (IFT), to produce an efficient trafficking of proteins along the cilium. IFT is the bidirectional 

transport of proteins along the axoneme from cilium base to the tip and vice versa (Vincensini et al., 

2011). The bidirectional transport can be characterized as anterograde movement, when the transport 

of particles is made in direction of the cilium tip, or retrograde movement if the transport is made from 

the tip to the cilia base. The anterograde movement is mediated by kinesins of the kinesin2 family while 

the retrograde movement is mediated by dyneins of the cytoplasmic dynein 2 family (Figure 1.5). IFT is 

necessary for cilia growth and maintenance (Ishikawa and Marshall, 2017). 
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Figure 1.5. Intraflagellar transport. The anterograde intraflagellar transport (IFT) motor kinesin-2 transports IFT 
complexes A and B, axonemal proteins, and cytoplasmic dynein 2 to the tip of a cilium. At the tip of the cilium, 
anterograde IFT “trains” release axonemal proteins and rearrange their conformation for retrograde IFT. 
Cytoplasmic dynein 2 transports retrograde IFT trains to the cell body. Image and legend from (Ishikawa and 
Marshall 2017). 

 

1.2.4 Dynein based motility  

 
The motility of the cilia is dependent on the dynein arms (IDAs and ODAs) that are formed in the outer 

doublets. Dyneins are huge molecular motors (1-2 MDa) that can generate force (King, 2000). Although 

IDAs and ODAs are homologous structures and both contribute for motility, their molecular composition 

and arrangement with the axoneme is completely different. Morphologically there is only one form of 

ODAs while IDAs have two, one with two heads and other with three (Goodenough, 1985). The outer 

dynein arms are spaced in the microtubule 24 nm apart, while the triplets dyad heads of the inner arm 

are spaced 96 nm apart along the axoneme (Kamiya, 1991). In Chlamydomonas, analyses of ODA and 

IDA mutants demonstrate that, ODAs are more important for high frequency beating while IDAs are 

necessary for proper formation of ciliary waveforms (Yagi et al., 2005). 

For proper cilia beat function the dynein motors must be extremity well regulated, to allow a wave of 

activity to be propagated from the basal body to the tip of the cilia. For that, opposing hemispheres 

should be turn on and off alternately, allowing the cilia to bend (King, 2000). This is thought to be 

regulated by the interaction between inner dynein arms and the radial spokes, since there is a strong 

suggestion, that the radial spoke regulates the inner dynein motors via phosphorylation. (Zhu et al., 

2017). The core of ciliary movements is the sliding of the doublets of microtubules relative to each other 
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due to the force generated by dynein motors when in presence of Mg-ATP. The sliding of the 

microtubules results in a bend of the axoneme because the basal body anchors the cilium at the base 

and the nexin links connect the doublets along the axoneme (Lindemann and Lesich, 2010). 

 

1.3 Ciliopathies  

 

Throughout the human body, most cells contain cilia. These include the eye, the trachea, the kidney, 

the reproductive system, the intestines, the heart and other organs. In each cell, each cilium has a role 

to fulfill, and impairment in that role can lead to severe consequences. Most contain a single non-motile 

cilium which serves as receptor to capture information from the local environment. Because of this 

signaling role, there is an increased appreciation of the cilium function in developmental processes and 

homeostasis in vertebrates. The role of motile cilia has also been recognized and their dysfunction has 

major manifestations in mammals such as, respiratory dysfunction, reproductive sterility and 

hydrocephalus, see Figure 1.6 (Badano et al., 2006). 

 

Figure 1.6. Organs that can suffer from problems due to ciliopathies throughout the human body. Diseases 
that are caused by ciliary defects and hedgehog defect throughout the human body. Some defects are attribute to 
hg such as skeletal abnormalities, other are exclusively to cilia related defects like infertility in male and females. 
Image adapted from (Goetz and Anderson 2010). 
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Ciliopathies are pleotropic disorders caused by mutations in a great number of gene that are necessary 

for cilium assembly and maintenance. These genes code for proteins that interact with various protein 

complexes that are present in the cilium, basal body, centrosome and others (Hildebrandt et al.,2011). 

A failure in any of these processes can lead to disease such as, retinitis pigmentosa, polycystic kidney 

disease (PKD), nephronophthisis, Bardet-Biedl syndrome (BBS), primary ciliary dyskinesia (PCD), 

various skeletal dysplasias and even cancer (Hildebrandt et al., 2011; Horani and Ferkol, 2016). In case 

of PCD, around 50% of patients also present situs inversus, a total reversal of the internal organs and 

6% may present heterotaxia, a partial reversal of organs (Kennedy et al., 2007). 

 

1.3.1 Primary ciliary dyskinesia (PCD) 
 

Primary ciliary dyskinesia or PCD is a term used to describe patients who suffer from a primary defect 

in cilia structure and function. PCD is usually an autosomal recessive disease with an incidence of 1 in 

10,000 people, making it a rare genetic disorder (Zariwala et al., 2011). PCD true prevalence is unknown 

due to many patients being misdiagnosed or not diagnosed at all. A study shows that 37% of the patients 

have more than 20 visits to a medical professional, with problems related with PCD, before being 

redirected to a proper PCD diagnostic unit (Behan et al., 2016). 

PCD patients have impaired mucociliary clearance, which is an important defense mechanism for 

removing bacteria and debris from the airways. This leads to paranasal sinuses and causes a frequent 

chronic infections of the upper and lower respiratory airways (Rubbo and Lucas, 2017). PCD patients 

can also present signs of infertility or low fertility, due to reduced sperm motility or, in case of women, 

defects in the fimbriae of fallopian (Behan et al., 2016). Around 50% of patients suffer from laterality 

defects like situs inversus (Chodhari et al., 2004) or from situs ambiguous which in some cases can be 

associated with congenital heart failure (Olivier et al., 2014). Sometime patients can present a different 

array of a combinations of symptoms and these can vary during the patient life time. 

 

Figure 1.7. Examples of laterality defects on radiology imaging in various situs groups in the study 
population. A, A participant with situs solitus, or normal organ arrangement, with left cardiac apex, left sided 
stomach bubble, and right-sided liver. B, A patient with situs inversus totalis, or mirror image organ arrangement, 
with right sided cardiac apex, right sided stomach bubble, and left sided liver. C, A patient with situs ambiguous 
with left sided cardiac apex, right-sided stomach bubble, right-sided liver, and intestinal malrotation who also has 
right sided polysplenia visualized on CT scan. C 5 cardiac apex; L 5 liver; M 5 intestinal malrotation; S 5 stomach. 

Legend and image adapted from (Olivier et al., 2014). 
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So far, more than 35 gene have been associated with PCD patients (Kuehni and Lucas, 2017). Defects 

in outer dynein arms and in inner dynein arms are the most common type of ultrastructure defects 

encountered, being that ODAs defects can account for 18% to 30% of the reported cases (Zariwala et 

al., 2011). Defects can range from absent or reduce outer dynein arms or inner dynein arms, or both in 

conjunction, absent radial spokes, absent central pair with transposition of peripheral microtubules 

doublets to the center, peripheral defect, complete ciliary aplasia and defects in cilia orientation 

(Chodhari et al., 2004).  

A gene like dnah5, which encodes a heavy chain protein of the ODA, already has been associated with 

mutations that lead to ODA defects. A premature truncation results in an absent set of ODAs while, 

splice site mutations results in shorten ODAs, but not absent (Verhulst et al. 2007). Other genes like 

ccdc39 and ccdc40 also have been associated with PCD, these genes encode proteins involved in 

dynein regulatory complex (DRC), which interacts with the DRC subunits. Is also possible that ccdc39 

and ccdc40 have roles in cytoplasmic pre-assembly of axonemal proteins or axonemal targeting and 

transport of the axonemal components (Zariwala et al., 2011). Patients with mutation in these genes 

have cilia with a very stiff movement and poor amplitude. 

In PCD diagnostics there is no “gold standard “, instead the use of a combination of PCD-specific tests 

is a requirement for proper diagnosis. The diagnosis testing for PCD should be based in clinical 

symptoms, nasal nitric oxide assessments (nNO), high-speed video microscopy analysis (HSVMA), 

transmission electron microscopy (TEM) and genotyping (Lucas et al. 2016). The use of TEM was once 

considered the “gold standard” in PCD diagnostics. However, TEM became a less effective diagnostic 

tool when it was found out that 15-20% of cases of PCD have a normal ultrastructure (Raidt et al. 2014). 

In alternative HSVMA can be used as a first line of diagnostics, since it is the only test to directly analyzes 

ciliary frequency and beat pattern. Recent studies indicating that an association between CBF, 

ultrastructure defects analyses and genotyping, would help to consolidate HSVMA as a good tool for 

PCD diagnostics. Defects in ODAs and IDAs present an immotile cilia phenotype, while defects in only 

ODAs, like dnah5, defects are associated with reduced movement and regions of static cilia (Raidt et al. 

2014). Although, HSVMA is still dependent on having an expert eye for an accurate diagnose. Other 

methods like genotyping and immofluorescence (IF) of ciliary proteins can be used (Lucas et al., 2017). 

International networks like the ongoing Beat-PCD COST European action are multi-country projects that 

aim to standardize the PCD diagnostic, clinical care, epidemiology and the fundamental scientific 

knowledge on PCD. 

 

1.4 Genes of interest for this Master thesis 

Several genes so far have been associated with PCD, so in order to better characterize the mechanisms 

behind the disease a group of genes were selected, to try to study the effects of their absence in 

zebrafish. The  genes selected were dnah7, a gene encoding for an inner dynein arms responsible for 

motion in the axoneme and rsph4a, a gene responsible for coding the radial spoke head of cilia, which 
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is also responsible for the regulation of inner dynein arms. The MO against ccdc40 gene was later 

considered as a good alternative for replacing the toxic dnah7 MO for cilia movement disruption. 

1.4.1 Dnah7 

 
Dynein axonemal heavy chain 7 or dnah7 is gene responsible for cilia movement and has been identified 

has a component of the inner dynein arms of ciliary axonemes (Zhang et al. 2002). Dnah7 seems to be 

a major player in cilia beat, since when it is not assembled it results in a ciliary dysfunction (Prachee 

Avasthia 2012). To date no PCD patient has been associated with dnah7 mutations. Although it was 

thought to be found in a PCD patient, it was later revealed that there was no mutation in dnah7, only a 

polymorphism and that the likely cause of the phenotype was related to the assembly or transport factor 

of dnah7 and not dnah7 itself (Zhang et al. 2002). Furthermore, other genes like dnah5 and dnah11, 

which also encode for dynein heavy chains, have been linked to PCD patients (Zariwala et al., 2011). 

Additionally, studies with dnah7 morpholino in zebrafish, showed a total absence of CBF in the left-right 

organizer, originating a great number of left-right defects (Sampaio et al., 2014). In zebrafish, dnah7 is 

a gene located in chromosome 9 that codes for 3 transcripts (splice variants) and has 51 orthologues 

and 11 paralogues. Dnah7-202 is the larger transcript, comprised by 12.260 bp and 4001 amino acids. 

Dnah7-201 is the second biggest composed by 3086 bp and 584 amino acids. The smaller transcript in 

dnah7-203 has 557 bp and 165 amino acids. 

 

1.4.2 Rsph4a 
 

Rsph4a is a gene that encodes a protein of the axonemal radial spoke head, hence the name. The 

interaction between radial spokes and the central apparatus of the axoneme with “9+2” configuration 

has fascinated many people (Zhu et al., 2017). The radial spoke is an essential component of “9+2” 

axoneme of motile cilia. The central pair interacts with the radial spokes to activate sub-sets of dynein 

arms and thus controlling cilia waveform (Porter and Sale, 2000). Humans and Chlamydomonas 

reinhardtii missing part or complete radial spoke heads present paralyzed cilia or cilia with an abnormal 

beating pattern (Yang, 2006; Castleman et al., 2008). This gene is located in chromosome 5 of zebrafish 

and has only one transcript with 1775 bp and 524 amino acids with 79 orthologues. 

1.4.3 Ccdc40 
 

The gene ccdc40 or coiled-coil domain containing 40 is responsible for an evolutionary conserved role 

in the assembly of motile cilia and establishment of the left-right axis. It regulates the assembly of inner 

dynein arms and DRC, which are necessary for cilia movement and control (Sui et al., 2016). A mutation 

in ccdc40 leads to structure defects such as duplication or misplacement of microtubule doublets, 

missing or reduced number of IDAs, and affected radial spokes and nexin links (Sugrue and Zohn, 2017). 

Overall, ccdc40 defects create a disorganization on the axoneme and leads to PCD (Antony et al., 2013). 

Ccdc40 is composed by two transcripts, one larger (ccdc40-202) and a smaller one (ccdc40-201). The 
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larger transcript encodes for a protein with 941 amino acids, from 3370 bp and the smaller one is non-

coding. This gene is located in chromosome 6 of the zebrafish. 

In conclusion, we have targeted genes that encode for some important component within the motile 

cilium, either by being part of inner dynein arm or the radial spoke or being an essential assembly factor 

for dynein arms.  

 

1.5 Zebrafish as an animal model 

 

Zebrafish or Danio rerio is a small vertebrate and is used as an animal model due to its great practicality 

and versatility. Danio rerio is a good model for genetic diseases and other type of biological processes 

like tissue regeneration, infectious diseases, cancer metastases  and pharmacology studies (Baxendale 

et al., 2017). Aside this versatility, Danio rerio is also very practical and easy to maintain. A full grown 

zebrafish can reach 3 cm and can be easily maintained in an aquarium with other zebrafish, reducing 

the overall space needed for zebrafish rearing. Breeding zebrafish, is fairly easy, with one female 

capable of laying hundreds off eggs in each clutch (100-200 eggs), resulting in huge number of progeny 

facilitating processes such as screening for a rare mutation where the incidence rate maybe low. 

Furthermore, larva are only a couple millimeters in size and can be pooled together in a petri dish and 

until 5 days post fertilization (Mushtaq et al., 2013). Other reason behind the attractiveness of zebrafish 

for research is the rapid development, since embryogenesis is almost complete by 72 hpf and the 

internal organs are developed and functional and fully mature within 3-4 months (Parng et al., 2002). 

Aside the rapid development, other advantages are the transparency of the embryos enabling the 

imaging of internal cells and structures in real time under the microscope. Furthermore, the embryos 

develop externally, which allow clear visibility of the development stages. Also, zebrafish are relatively 

cheap to maintain when compared to mammals (Baxendale et al., 2017) 

 

Figure 1.8. Adult zebrafish. Side profile of an adult zebrafish, with the classification of all fin present in a healthy 
adult zebrafish. Image adapted from (Gupta and Mullins, 2010). 

The zebrafish animal model is relativity new when compared with other used animal models, however, 

despite of not being a mammal there is a large gene conservation between fish and humans. 
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Approximately 80% of 523 orthologous genes fall in a conserved synteny (Barbazuk et al., 2000). 

Additionally, zebrafish almost have the same number of chromosomes as human, 25 to 23 respectively. 

All these characteristics, coupled with advance in genetics which can introduce many human traits in 

zebrafish (Mushtaq et al., 2013) make a very good argument to use Danio rerio as an animal model. 

 

1.6 Project goals  

 

The main objective of this thesis was to create a Danio rerio / zebrafish mutant using the recent CRISPR-

Cas9 tool. In the process of creating a mutant, a protocol would be established for future use with other 

genes. For this thesis, the principal target was dnah7 gene. This gene codes for a dynein heavy chain 

present in the inner dynein arm of motile cilia. A disruption in this gene was anticipated to cause a 

phenotype similar to the effect of the dnah7 morpholino (MO) previously used in the lab. The dnah7 MO 

generated static cilia and a randomization of the organs in zebrafish (Sampaio et al., 2014). The mutant 

should confirm the morpholino effect and test if the observed ciliary dyskinesia was due to any toxicity 

or to real inner dynein malfunction. A full comparison between the morpholino knockdown and the 

mutant knockout was predicted to be out of scope of the Master project due to time constrains in growing 

the correct number of generations. 

So, while the F0 generation of the dnah7 potential mutants were growing, the secondary aim of this 

thesis was to finish the generation of another cilia motility disease model the, rsph4a mutant, also using 

CRISPR-Cas9 technology. This project was started by a PhD student and was continued in the scope 

of this thesis. The goal was also to disrupt the cilia beat frequency, for the future study of its implications 

in organs that have motile cilia for comparison to human mutations in the same gene. 

The third goal was to functionally study the impact of the generated mutations or knockdowns on the 

cilia motility of the motile cilia present in the spinal canal of the zebrafish larvae. 

In short, the main objectives were: 

1. Establish a CRISPR-Cas9 protocol for future studies 

2. Create dnah7 mutants to validate dnah7 role in cilia function investigated before in the lab by Sampaio 

et al. (2014). 

3. Create rsph4 mutants for mimicking human mutations 

4. Study the cilia beat frequency of the spinal canal motile cilia from wild type and compare it to dnah7 

and ccdc40 knockdown larva.  
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2. Materials and Methods 
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2.1 Establish a breeding guide 

 

The goal of my thesis was to make a clean and stable zebrafish mutant lines for the genes dnah7 and 

rsph4a using the new technology CRISPR-Cas9. After injecting the embryos with the designed short 

guide RNAs and screening for the mutation, the embryos would form the F0 generation or the “Crispant” 

generation (see Figure 2.1). This generation would be formed by heterozygotes fish, meaning that at 

least one of the chromosomes would have the desired mutation. Then, after the F0 generation become 

fully mature, their gametes would have to be collected and screened for mutations in the region of 

interest. If present, the founder fish were then crossed with a wild type line creating the F1 generation. 

The F1 generation is a cross between the “Crispants” and wild type fish, this out-cross is made to “clean” 

the genome from other undesirable mutations created with CRISPR-Cas9 to then hopefully pass along 

only the desirable one. When fully matured, the gametes from F1 would be collected and once again 

checked for mutations. If mutations were found, the F1 generation was then in-crossed, to generate 25% 

of homozygous fish for the mutation. Ideally, these would be grown to adulthood.  

 

 

Figure 2.1. Schematics of the breeding process to achieve a clean and stable mutant line. The embryos 
injected with SgRNAs are screened for heteroduplexes by PAGE. If found they are left to mature for 3 to 4 months. 
When sexually mature, they are out-crossed with a wild type zebrafish and the progeny originated from this cross 
is screened for heteroduplexes. If heteroduplexes are found, the fishes are left to sexually mature. If during the 
previous screening, if a male and a female are found with an interesting mutation, then those fish are in-crossed. 
The result is a progeny consisted with 50% heterozygous zebrafish for wild type and mutants DNA, 25% 
homozygous form wild type DNA and 25% homozygous for mutant DNA. 

 

2.2 Choosing the Short-guide RNAs (SgRNAs) 

 

To induce mutations on the target genes, dnah7 and rsph4a, multiple short-guide RNAs (SgRNAs) were 

chosen based on the novel scoring algorithm program from Giraldez Lab (Yale University) that can be 

found online in www.crisprscan.org. To sketch these SgRNAs, the coding DNA sequence or CDS of 

each gene was acquired at http://www.ensembl.org/. By using CDS instead of the genomic sequence, 
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we guarantee that the chosen SgRNA targets the exons. Therefore, ensuring that the indels remains 

even after the splicing. The SgRNAs were obtained at http://www.crisprscan.org, a sgRNA design web 

page. This web page grants the ability to see SgRNAs target sites available for a specific CDS. The goal 

was to create a SgRNA that could disrupt the gene and hopefully create a deletion or an insertion (indels) 

by non-homologous recombination. The first SgRNA (SgRNA1) for the dnah7 gene was selected to 

disrupt the two largest transcripts from the dnah7 gene (Figure 2.2). This SgRNA targets both transcripts 

very close to the beginning of each transcript. This way, both transcripts could be affected reducing or 

eliminating any redundancy between them. For the second SgRNA (SgRNA2), the strategy was to 

disrupt the ATPase domain of the dnah7 protein and create a malfunctioning protein. This approach 

was selected since, the ATPase region from the human dnah7 gene and the zebrafish dnah7 gene were 

very similar, presenting 72% of homology between both sequences (Annex I). The third SgRNA targets 

the beginning of the first transcript more specifically in the third exon. By targeting closer to transcription 

start site there is a higher chance of creating a null allele and thus generating an interesting strong 

phenotype. The rsph4a SgRNAs were selected by a PhD student in the lab. The strategy was to target 

the third exon of rsph4a, since it presented 50% homology with the human rsph4a and there were known 

human mutations in this region that we wanted to mimic see Annex II. Three sgRNAs were chosen, but 

only two were synthesized. Ultimately, all the SgRNAs were selected to generate non-functioning 

proteins. 

 

 

Figure 2.2. Transcripts of zebrafish dnah7 gene. Number of transcripts that dnah7 encodes, their location and 
in relative size to each other. Image obtained at http://www.ensembl.org/Danio_rerio/Gene/Summary?db=core;g 
=ENSDARG00000060165;r=9:25128793-25254454. 

 

The SgRNAs selected obeyed several parameters to maximize the chance of creating a disruption in 

the target gene. The first parameter was that the sgRNA had to canonical. For a sgRNA to be canonical, 

means that the sgRNA is 100% equal to the genomic DNA target. The problem arises from a necessity 

of the first two base pairs to be “GG”, since the “GG” is needed for the proper transcription of DNA to 

RNA. Some SgRNAs may not have the “GG” in the first two bases, so the match between the sgRNA 

and the genomic DNA will not be 100% therefore, being non-canonical. Although, a non-canonical 

sgRNA can be used, its efficiency may be reduced compared to the counterpart. The second parameter 

was the score that the sgRNA design web page gave to each sgRNA. The higher the score the more 

efficient that particular sgRNA would be. The third parameter was the location of the sgRNA, generally 

all the sgRNA were chosen to target the beginning of the CDS sequence. Aside from the dnah7 SgRNA1 

that was selected to target the ATP region of the gene. The forth parameter used was the number of 

mismatched that the sgRNA could have in the DNA. All SgRNAs selected had zero mismatches, this 

http://www.crisprscan.org/
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way we can guaranty that the SgRNA doesn’t match in other regions of the DNA, therefore, having a 

specific SgRNA that matches only in the region of interest. 

Table 2.1. SgRNAs selected to use in dnah7 gene disruption. 

Target gene Forward strand Reverse strand 

dnah7 Sg1 TACTCTAAAGCCCATCAT ATGATGGGCTTTAGAGTA 

dnah7 Sg2 CTTGTGGCTGACCAGTT AACTGGTCAGCCACAAG 

dnah7 Sg3 CGCTGGCATGAAGCAAGTCC GGACTTGCTTCATGCCAGCG 

 

Table 2.2. SgRNAs selected to use in rsph4a gene disruption 

Target gene Forward strand Reverse strand 

rsph4a Sg1 CGATTCTGGGGCAAGATTCT AGAATCTTGCCCCAGAATCG 

rsph4a Sg2 GCTCTTGCGGTGTCGATTCT AGAATCGACACCGCAAGAGC 

 

2.2.1 Making the SgRNA compatible with the target site 

 

The sgRNA in its raw form would not be useful unless cloned in to a plasmid (Annex III) and later 

transcribed to RNA. To do that, the SgRNA needed to be compatible with the enzyme restriction zone. 

BsaI cut in 5’ GGTCTC(N)1 3´ and in 3’ CCAGAG(N)5 5’. Therefore, the SgRNAs need to have the 

necessary homology zones for later plasmid integration. To achieve homology between SgRNA and the 

target site an “TAGG” was added in the 5’ to 3´region of the forward strand and “ACCC” to the 5’ to 3´ 

region of the reverse stand. With the homology zone added to each respective side, the SgRNAs were 

ordered. 

 

Figure 2.3. Region of pDR274 plasmid where Bsal restriction enzyme performances and where the SgRNA 
is inserted. The sequences in red represent the local where the SgRNA inserts and also shows the necessary 

homology arms. 

 

2.3 Designing primers to amplify the SgRNAs target zone  

The primers were created using the NCBI primer blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

I inserted the sequence of interest, and selected the range which the primers should amplify. There 

range of the PCR product size was between 70 bp to 200 bp and the melting temperature between 63ºC 

(minimal) 65ºC (optimal) and 67ºC (maximum) The genome data base was changed from “Refseq 

mRNA” to “Genome (reference assembly from selected organisms)” and the species to “Danio rerio 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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(Hamilton, 1822) (taxid: 7955)”. On the advance parameters, the primers size was designated to 21 

(minimal), 23 (optimal) and 25 (maximum). 

After being redirected to the new page, the pair of primes that suited better the situation was chosen. 

Meaning that the position and melting temperatures of the primers were taken into account. The 

temperature of each primer pair should be as close to each other as possible. The self-complementarity 

was also taken in to account.  

 

Table 2.3. Primers used to amplify the regions of interest of dnah7 and rsph4a 

Target 

gene 

 

Forward strand 

(5´ to 3’) 

Reverse strand 

(5´ to 3’) 

PCR 

product 

size 

 

Dnah7 

Sg1 

(version 1) 

TGTACTCAGAATGGCCTGGCCC CGTCTGACCTTCTCCTGCTGGG 94 

Dnah7 

Sg1 

(version 2) 

TGCAGTCTTTACTGTGATCCCTGCC AAAGGCTCAGCACTTTCTGCACG 171 

Dnah7 

Sg2 

CCACCCTTGAACGTGTTTGTGAGGAGT CAACTTCCCTGTGGCTGTGCTG 105 

Rsph4a 

Sg2 

TTTCTTTGAGCAAGCTGGCGTGG CCTTCCGCCACCAGGTAGTTTCC 153 

 

 

2.4 SgRNAs annealing and integration on pDR274 plasmid  

 

To perform the junction of both strands of DNA, SgRNA forward strand and SgRNA reverse strand, 5 µl 

of each strand was added in an eppendorf with 24 µl of annealing buffer and 23 µl of Milli-Q water. The 

reaction tube was then placed on a thermoblock at 95°C for 5 min and let to cool down at room 

temperature. To avoid evaporation all tubes were wrapped with parafilm. The annealing buffer consisted 

in 10mM of Tris, 50 mM of NaCl and 2mM of EDTA. Afterwards, the SgRNAs were diluted 1:10 in Milli-

Q water. 

The pDR274 linearization was made using Bsal enzyme, which cuts in two places in the pDR274 

plasmid guaranteeing that the SgRNA integration would be only in one direction and that the plasmid 

itself would not close. The linearization of the plasmid was made overnight at 37°C and confirmed using 

a 1% agarose gel. The plasmid was cleaned and concentrated using a DNA clean & concentrator™ kit 

by ZYMO RESEARCH™. With Nanodrop spectrophotometer for nucleic acid and protein quantitation 

the exact concentration of the plasmid was known. 
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With the SgRNAs and pDR274 prepared both were joined in a ligation reaction. In an Eppendorf, 0,33 

µl of pDR274 plasmid (at 100ng/µl), 1,5 µl of the diluted SgRNA (1:10), 5 µl of 2x T4 buffer, 1 µl of T4 

ligation enzyme were added and the tube filled with Milli-Q water until a volume of 10 µl is reached. 

Incubated overnight at 16°C. 

 

2.5 Bacterial transformation 

 

The bacterial transformation was performed using DH5α competent cells (E. coli strain). The cells were 

stored in 1, 5 ml eppendorf at -80°C. The DH5α cells were defrosted on ice for 20 minutes and the 

pDR274 plasmid with the SgRNA was added to the eppendorf and stayed on ice for more 30 minutes. 

The cells were heat-shock treated, 1 minute at 42°C followed by to 2 minutes on ice. After the heat-

shock treatment, 1 mL of LB (Luria broth) medium, previously heated, was added followed by an 

incubation at 37ºC for 1 hour and 30 minutes at 250 RPM. Next, the cells were centrifuged at 5000 RPM 

for 10 min. The medium was discarded and the pellet was carefully resuspended in the remaining 

medium in the 1.5 ml eppendorf. The bacteria were plated in LB agar plates with Kanamycin (50ng/ µL) 

and left to incubate overnight at 37ºC, for no more than 16 hours. 

 

2.6 Colony PCR 

 

The objective of the colony PCR was to identify which of the individual colonies had the plasmid with 

the SgRNA incorporated. Using the plates with the transformed bacteria, each plate corresponded to is 

respective SgRNA, SgRNA 1, 2 and 3 for dnah7 and SgRNA 1 and 2 for rsph4a. An individual colony 

was picked, with a micropipette tip, and dropped in a PCR tube filled with PCR mix. This process was 

repeated several times for each SgRNA, assuring that each SgRNA had at least 5 individual colonies. 

Next, I removed the tip from the PCR tube and plated the product in one quadrant of a previously divided 

LB agar plate. The primers were added: m13R was used as the forward primer and as a reverse primer, 

the forward strand of each SgRNA oligo was used. As for the controls, two positive controls were used 

one with M13R and pDR274_c3pcr3F and the other with M13R and pDR274_c3pcr3R. As for the 

negative control, it was used a blank tube without DNA, but with PCR mix and M13R and 

pDR274_c3pcr3F primers. 

 

2.6.1 Bacterial liquid suspension 
 

In the event of positive colonies, analyzed by electrophoresis in a 1% agarose gel at 100 Volts, those 

colonies were then replicated in a 15ml falcon with of LB medium with kanamycin at 50ng/ µL. The 

colonies were then incubated at 37ºC overnight, no more than 16 hours. 
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2.6.2 Preparation for sequencing  
 

A Mini-prep kit ™ kit by ZYMO RESEARCH™ was used to prepare the DNA samples. Afterwards a 

nanodrop spectrophotometer quantification was made. All samples were diluted to reach Stabvida, Lda 

concentration guidelines of 100 ng/µl and were sent for sequencing. 

 

2.7 In vitro DNA transcription  

 

After sequencing and guaranteeing that the SgRNA integration in the pDR274 plasmid was successful, 

the DNA was transcribed into RNA. First, a mix of 15 µl of H2O ,10 µl of transcription buffer 5X, 5µl DTT 

and 5µl NTP was prepared and incubated at 37ºC for 5 minutes. Afterwards 12 µl of DNA was added to 

the mix and incubated for 1 minute, at 37ºC. Next, 1 µl of RNA inhibitor was added and again incubated 

for 1 minute at the same temperature. The next step consisted in adding 1 µl of RNA polymerase and 

proceed with the incubation for one hour. In the next hour, 2 µl of RNA polymerase where added again 

in the mix and the incubation proceed for one more hour. At last, 1µl of Dnase was added to the mix 

and incubated for 30 minutes. To check if the reaction was successful the samples were run in a 1% 

agarose gel. 

 

2.8 Preparing the SgRNA for injecting 

 

The RNA was cleaned using a RNA clean & concentrator™ kit by ZYMO RESEARCH™ and the RNA 

concentration was measured in a nanodrop spectrophotometer. With the concentrations known, I then 

mixed 100ng/µl of Cas9 mRNA with 50ng/µl of SgRNA. 

 

2.9 Zebrafish maintenance 

 

General maintenance, breeding and egg bleaching were carry out by two technicians at CEDOC´s fish 

facility. All procedures were made and according to the DGAV. 

 

2.9.1 Zebrafish breeding 
 

To breed zebrafish, wild type males and wild type females are removed, with a net, from the main facility 

tanks, and put together in a breeding box, normally in the evening. The breeding box consists in a small 

acrylic container, a sieve to prevent the adult fish from eating their own progeny, a transparent divisor 
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to allow visual contact, but no physical contract and a lid to avoid the fish jumping off the breeding box. 

With the breeding box assembled and filled with water, an individual male is placed on one side of the 

divisor and one or multiple females are placed on the opposing side, up to two can be put simultaneously. 

The breeding box is closed and left overnight in the dark. On the following morning, the divider is 

removed and used to create slight slope, which helps to simulate the slope in a river bank, facilitating 

the breading process. If the zebrafish male and female engage in courtship behavior, the female will 

start spawning eggs and the male will externally fecundate the eggs, by releasing the sperm in to the 

water. The eggs will sink through the sieve and deposit in the bottom of the box. The fishes are removed 

from the breeding box and put back in the same main facility tank and a label is placed in the tank 

indicating the day of the crossing. The eggs are collected by pouring the water from the breeding box 

with the eggs into a strainer, and then removing the eggs attached to the strainer by squirting embryonic 

medium (5 mM NaCl, 0.2 mM KCl, 0.3 mM CaCl2, 0.3 mM MgSO4, ddH2O – pH 6.5). The eggs are 

collected in a petri dish filled with embryonic medium. To maximize the survival rate, each petri dish is 

filled with 50 to 100 eggs. With the eggs collected, each petri dish is identified with a name of the fish 

lines crossed, date, researchers name and other relevant information. At this point the eggs can be used 

right away for experimental procedures or left in an incubator at 25ºC or 28ºC until the desired 

developmental stage is reached.  

 

2.9.2 Relocating the fish from petri dishes to the main facility tanks 
 

To move the embryos from the petri dishes to the main facility tanks, they need to be bleached, while 

they are still inside the chorion so that any harmful bacteria do not get introduced in the main system. 

This procedure is made by the fish facility technicians. 

 

2.10 SgRNAs and MOs microinjections  

 

The microinjections of SgRNAs and MO were made with a Nikon microinjector coupled with an PV820 

Pneumatic PicoPump pressure injector (World Precision Instruments, Inc.;( Sarasota FL) and 50x Nikon 

SMZ745 zoom stereomicroscope. The microinjector is a Three-axis micromanipulator (Nashige, 

Greenvale, NY) and is used to manipulate a fine needle which is filled with SgRNA or MO solutions. The 

needle calibration can be done before or after the fish start laying eggs. Usually, it is recommended that 

the calibration is made before crossing the fishes or between the time that the divisor is removed and 

the fish start laying eggs. This way we can ensure that the eggs are injected in one cell stage, therefore 

the delivery and uptake of the SgRNAs or MO is made by only one cell, minimizing mosaicism. If the 

calibration is made after the laying, it needs to be done quickly, so that injecting the embryos starts 

within the 40 minutes time window between one cell stage and two cell stage.  

The calibration is made by putting a drop of oil above a S1 stage micrometer ruler (10mm/0.1mm 

Graticule Ltd., Tonbridge, Kent) and pumping 10 times into the oil, the goal is to create a 0.3 nm diameter 
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bubble with 10 pumps. This allows to calculate the volume of each individual pump. Knowing that with 

10 pumps the bubble occupies 0.3 nm, in diameter, we can calculate the sphere volume. This way we 

know that each pump injects 1.4 nL of solution in to the egg. To reach 0.3 nm bubble with 10 pump, the 

needle tip is broken by small increments using tweezers or by adjusting the duration and/or the eject 

pressure of each pump in the Pneumatic PicoPump pressure injector. 

When calibrated, the embryos are slowly positioned against a microscope slide in a petri dish lid and all 

excess embryonic medium is removed to prevent embryo rotation or any undesirable movements of the 

embryo when in contact with the needle. The needle is positioned in an angle and pointed to the center 

of the embryo. For each injected embryo, the needle is moved back while the petri dish moved up and 

the position of the needle is then restarted. Each injection is made in the yolk. Afterwards the injected 

embryos are relocated to a new petri dish with embryonic medium and placed in an incubator at 25ºC.  

 

2.11 DNA extraction of SgRNA injected embryos  

 

The potential mutants were screened, 24 hours post injection, with 8 embryos randomly selected, per 

petri dish, and their DNA was extracted. These 8 larvae are gathered in a 1.5 ml Eppendorf and the 

excess embryotic medium is removed and 20µl of NaOh (50Mm) is added. The Eppendorf is incubated 

at 96ºC for 20 minutes followed by another incubation at -4ºC for 20 minutes. Between the incubations, 

the embryos were smashed to provoke cell lysis. After both incubations, 2µl of Tris-HCl (1M, pH8) was 

added followed by a 10 minutes centrifugation at 13200 RPM. To conclude the DNA extraction, the 

supernatant was removed, with special attention to not touch the pellet with all the cell debris, and placed 

in a new 1,5 ml Eppendorf and stored at -20ºC. 

 

2.12 PCR 

 

The DNA extracted from the 8 injected embryos was used in a standard PCR. The following table shows 

the components and quantities of the master mix used and the PCR temperature protocol. 

Table 2.4. Master mix used for dnah7 and rsph4a colony PCR. 

Mix components PCR mix (1x) 

Buffer 2,5 µl 

Dntps 0.5 µl 

MgCl2 1,25 µl 

Primer F 1 0.5 µl 

Primer R 2 0.5 µl 

Taq polymerase 0.2 µl 

Sample (gDNA) - µl 

H20 19.55 µl 

Total 25 µl 
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Table 2.5. PCR temperature protocol used for dnah7 and rsph4a colony PCR. 

 Temperature Time Cycles 

Initial 
denaturation 

95°C 10 min --- 

Denaturation 95°C 60 sec 30 

Annealing 61-51°C 60 sec 30 

Elongation 72°C 60 sec 30 

Final 
extension 

72°C 10 min --- 

Storage 12°C infinite --- 

 

Table 2.6. Master mix used for dnah7 SgRNA1 and 2 PCRs. 

Mix components PCR mix (1x) 

10X Buffer 2,5 µl 

Dntps 1.25 µl 

MgCl2 1,25 µl 

Primer F 1 0.5 µl 

Primer R 2 0.5 µl 

Nzt taq polymerase 0.2 µl 

Sample (gDNA) 1 µl 

H20 17.8 µl 

Total 25 µl 

 

Table 2.7. PCR temperature protocol used for dnah7 SgRNA1(1) and SgRNA2 (2). 

 Temperature Time Cycles 

Initial 
denaturation 

95°C 10 min --- 

Denaturation 95°C 20 sec 39 

Annealing 56(2)/61°C (1) 30 sec 39 

Elongation 72°C 45 sec 39 

Final 
extension 

72°C 10 min --- 

Storage 12°C infinite --- 

 

Table 2.8. Master mix used for dnah7 SgRNA1 new primers. 
 

Mix components PCR mix (1x) 

Buffer 5 µl 

Dntps 0 µl 

MgCl2 0 µl 

Primer F 1 1 µl 

Primer R 2 1 µl 

Taq polymerase 0.25 µl 

Sample (gDNA) 1 µl 

H20 16.75 µl 

Total 25 µl 
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Table 2.9. PCR temperature protocol used for dnah7 SgRNA1 new primers. 

 Temperature Time Cycles 

Initial 
denaturation 

95°C 1 min --- 

Denaturation 95°C 15 sec 35 

Annealing 70°C 15 sec 35 

Elongation 72°C 10 sec 35 

Final 
extension 

72°C 3 min --- 

Storage 16°C infinite --- 

 

Unfortunately, the first set of primers used for amplifying dnah7 SgRNA1 stopped amplifying. They were 

promptly replaced with new primers, with a bigger PCR product but, still amplified the same region.  

 

2.13 Polyacrylamide gel electrophoresis (PAGE) for mutant detection  

 

A polyacrylamide gel electrophoresis was utilized to detect the presence or absence of mutant DNA 

caused by the SgRNAs microinjections. The PAGE consists in a polyacrylamide mesh, which when 

applied a voltage, can separate fragments by their size. When applied a voltage, the negative charged 

fragments, in this case DNA fragments, migrate in the direction of the opposing charge. Therefore, 

bigger fragments have more difficulty migrating through the gel, while smaller fragments migrate easier, 

thus migrating further in the gel. 

The goal of the SgRNAs is to cause a double strand break in the zebrafish genomic DNA and, hopefully, 

lead to a non-homologous end joining recombination which can lead to insertions or deletions on the 

genomic DNA. These insertions and deletion are detected trough PAGE, since they generate 

heteroduplexes causing the mutated DNA to migrate at a different rate than the wild type DNA. 

Heteroduplexes occur when the forward strand and the reverse strand are not 100% complementary 

but, still present sufficient complementarity to form a duplex. By having a mismatch in one or more base 

pairs, these heteroduplexes migrate slower through the gel than the homoduplexes from the wild type 

DNA, that have 100% complementarity. 

To set up a PAGE all the necessary components were gathered. The short and top glass plates were 

cleaned with 70% ethanol, aligned and put in a casting frame. The casting frame was then put in a 

casting stand. The 15% polyacrylamide gel was prepared by adding 6.170 ml of Mili-Q water, 1.2 ml 

TBE buffer 10x, 4.5 ml of acrylamide/bis-Acrylamide (29:1 solution; Nzytech MB04501), 120 µl of 

ammonium persulfate and 9,6 µl TEMED in a 15 ml falcon. Between adding each reagent, the falcon 

was slowly inverted a couple of times to mix the reagent properly. The TEMED reagent was added 

inside a HOTT since, it is a very toxic reagent. Immediately after adding and mixing the last reagent, the 

mixture was put in between the glass plates, with and electric accurpette, and a comb placed. In the 15 

to 20 minutes that takes the polyacrylamide gel to polymerize, the samples were prepared. After 



30 
 

polymerizing, the comb was carefully removed, the casting frame was detached from the casting stand 

and the glass plates removed from the framing stand. The glass plates were placed in a support that 

went inside the electrophoresis chamber. The chamber was filled with TBE running buffer (1X) and an 

ice pack was place inside to prevent overheating. Before loading the gel, the wells were cleaned by 

doing an up and down with a pipette. The polyacrylamide gel was loaded with 6 µl of PCR product with 

0.6 µl of loading buffer (6X) and one well with 2 µl of gene ruler ladder. The chamber was connected to 

the power supply. The power supply was set up to 150 Volts for 3 hours. After 3 hours, the power supply 

was turned off and the gel removed from the glass plates with extra caution to avoid ripping or damaging 

the gel. The gel was placed in a resolving solution, consisted by 2 µl of GreenSafe Premium (Nzytech 

MB13021) and 50 ml of TBE running buffer (1X), were it reveals for 10 minutes. Two optional washes 

with ddH2O, 5 minutes each, can be made to eliminate any excess GreenSafe in the gel, resulting in a 

shaper picture. The picture was taken using a Molecular imager ® ChemiDoc ™ XRS Imaging system 

from Bio-Rad and ChemiDoc software.  

 

2.13.1 Finding heteroduplexes 
 

Whenever heteroduplexes were found, the corresponding batch of injected eggs was transferred to the 

main facility tank, after no longer than 6 days of staying in a petri dish. 

 

2.14 Microscopy setup to image moving cilia in live embryos 

 

The microscopy setup consisted in a Nikon Eclipse Ti-U inverted brightfield microscope coupled with 

high speed FASTCAM MC2 camera (Photron Europe, Limited). A Pan Fluo 100x /1.30NA oil immersion 

objective was used. The software used was PFV (Photron FASTCAM viewer). 

 

2.14.1 Mounting live zebrafish embryos for cilia beat frequency recording  
 

To obtain the CBF at 48 hpf the larva were treated with an melanogenesis inhibitor, 1-phenyl 2-thiourea 

(PTU sigma), otherwise would be impossible to visualize the ciliary beating due to the development of 

the skin pigmentation. The PTU was added at 24 hpf. To mount the larvae a mold was used which 

consisted of 2% agarose mixed with embryotic medium. The mold had wells where the larva were placed 

and handled with extreme caution, since at this stage they are very fragile and can be killed or damaged 

with ease. To immobilize the larvae, tricaine 1X was used. The larvae where positioned in a way that 

the tail was against the glass bottom of the Fluorodish™ for World Precision Instruments Inc, China. 

With this setup, the larvae where kept alive and immotile during the video capture and the tail stayed 

always in focus. 
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2.14.2 Video acquisition - Recording cilia present in the tail end 
 

Before starting recording cilia, it was important the know the number of frames per seconds necessary 

to capture the CBF optimally. The unit frame per second (FPS) refers to the images that the camera 

captures per one second. Capturing images with higher FPS allows visualization of quick events in slow 

motion therefore, we can analyze these events in greater detail. The CBF measurements were 

dependent on the frame rate used. A too low FPS will not provide the necessary detail for CBF measure 

and a too high FPS will reduce the resolution and brightness of each picture, because to capture more 

images in a second the resolution needs to be lower due to camera limitations and the brightness is 

lower as well, since there is less time for the light to be in contact with the sensor, resulting in loss of 

image quality. Therefore, the right balance needs to be achieved between FPS used and the speed of 

the event. To achieved that balance, we followed the Nyquist-Shannon sampling theorem which says 

that to capture the frequency F0 of cilia, the image should be acquired at a rate twice as fast as the native 

cilia frequency (Jaffe et al., 2010). This condition is necessary to remove any aliasing (motion artifacts). 

So, we opted to capture at 250 FPS during 1000 frames, which at 250 FPS is 4 seconds. At this rate, 

we would be recording with 70 more frames that the recommend 180 FPS. 

 

2.14.3 Video processing  
 

All the video processing was made using ImageJ software (https://imagej.nih.gov/ij/). To analyze the 

Cilia Beat Frequency (CBF) all videos were stabilized using the registration plugin present in ImageJ. 

This eliminated any unnecessary motion, like the hearth beat, allowing a smoother and more accurate 

analysis of the CBF. Next, we used the CiliarMove, a software created in the Lopes lab tailored to 

analyze CBF in a standard and faster way. 

 

2.15 Statistical analyses  

 

All statistical analyses referent to CBF comparison were made using the software GraphPah – Prism® 

version 5.0 (GraphPad Prism Software Inc. San Diego, CA). GraphPah used to compare data sample 

using parametric tests (T test). All values were considered significantly different when p value is below 

0.05.  
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3. Results 
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From the four goals conceived in the beginning of this thesis, three are still ongoing and one was only 

partiality achieved. All the goals related to the creation of mutant lines were severely affected by the 

lack of reagents in the lab due to a change in NOVA University fiscal status that became a Foundation. 

This meant that when important reagents, like TAQ polymerase for PCRs, TBE buffer for running 

agarose gels and PAGE gels finished the screening was stopped. Other reagents like T7 RNA 

polymerase necessary for RNA transcription, were severely delayed after being ordered months before, 

delaying the injection of SgRNAs. Furthermore, the fish facility suffered from a heat stroke in the 

previous year which provoked bad postures throughout the rest of 2016, delaying even more the 

injections of the SgRNAs. Therefore, all CRISPR-Cas9 goals are still ongoing meaning that remaining 

crispants still need to be screened in the future and rsph4a SgRNAs need to be transcribed and injected 

in the near future. 

 

3.1 Confirming the linearization of pDR274 with BsaI restriction enzyme  

 

To produce to CRISPR-Cas9 mutants, I linearized the plasmid so that the SgRNA could then be inserted 

and reclose the plasmid upon junction. The utilization of BsaI restriction enzyme allows the SgRNA to 

be inserted in only one direction, since BsaI cuts the plasmid in two distinct zones creating two distinct 

homology zones, which the SgRNA has a complementary homology arm that matches for each of the 

homology zones. 

 

Figure 3.1. 1% agarose gel used to check pDR274 plasmid linearization with BsaI restriction enzyme.  
Gel sample order: (1) 100 bp ladder, (2) linearized pDR274 plasmid, (3) circular pDR274 plasmid. 

 

The linearization was confirmed using electrophoresis. In the first lane of the 1% agarose gel, a 100 bp 

ladder was loaded, followed by the linearized pDR274 plasmid and then the circular plasmid. The 

expected results were that the linearized plasmid would migrate slower through the gel, therefore 

       1            2             3 
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traveling less distance than the circular plasmid. This is due to the plasmid conformation, since they are 

equal in size, the only factor to take into account is the plasmid conformation. A circular plasmid, in vivo, 

is a compact structure referred as supercoiled. A supercoiled plasmid creates less resistances when 

migration in a gel matrix, due to his compact structure. On the other hand, a linear plasmid is a long 

strand of DNA and presents greater resistance when traveling through the gel. The circular plasmid 

traveled further than the linear one, confirming that the plasmid linearization was successful. 

 

3.2 Colony PCR results 

 

After the junction of the linearized plasmid and each SgRNA. The plasmid with the SgRNA was ready 

to be cloned. For that a colony PCR was used. This technique allowed to clone the plasmid and by 

means of electrophoresis verify the success of the junction between plasmid and SgRNA. An agarose 

gel would indicate the presence of the SgRNA in the plasmid, if the band corresponded to the PCR 

product matched the predicted product. The predicted PCR product is the number of base pairs between 

the primers used to amplify the DNA. In the case of Colony PCR, the number of base pairs between 

M13 primer and the respective forward strand of each SgRNA that was used as a primer. If the SgRNA 

was inserted correctly, then the forward strand of each SgRNA would match the reverse strand in the 

plasmid and thus amplifying the PCR product. 

 

3.2.1 Colony PCR for dnah7 
 

 

Figure 3.2. Agarose gel at 1% to check dnah7 SgRNA colony PCR results. Gel sample order: (1) 100 bp ladder, 
(2) postive control 1, (3) positive control 2 , (4) negative control , (5 -16)  5th to 16th well are non related smaples, 
(17) SgRNA1 colony 1, (18) SgRNA1 colony 2, (19)  SgRNA1 colony 3, (20) SgRNA1 colony 4, (21) SgRNA1 colony 
5, (22) SgRNA1 colony 6 , (23) SgRNA2 colony 1, (24)  SgRNA2 colony 2, (25) SgRNA2 colony 3, (26)  SgRNA2 
colony 4, (27) SgRNA2 colony 5, (28) empty well, (29) SgRNA2 colony 6, (30) 100 bp ladder. 

This agarose gel (Figure 3.2) showed that all the samples referring to SgRNA1 were negative. The 

expected molecular weight (around 300 bp) did not match what was observed in the gel, which was 

1      2      3      4      5      6      7      8      9     10    11    12   13   14    15    16    17    18   19    20    21   22    23   24    25   26     27    28    29    30  
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around 100 bp. On the other hand, all the samples for SgRNA2 matched the predicted molecular weight 

of 300 bp apart from colony 5 which did not amplify. As for the positive controls, none of them seemed 

to amplify in the correct region. Although, a faint band could be seen in the region of 300 bp, for the 

positive control 1, it did not match the expected molecular weight of 180 bp. The negative control showed 

no signs of contamination. Even with both positive controls, negative, we still processed to the next step. 

Since there was a band in the correct zone for all SgRNA2 samples, indicating SgRNA integration. 

Due to time constrains the colony PCR for SgRNA1 was not repeated. Instead the Colony PCR was 

bypassed and new colonies were picked for a bacterial suspension and sent directly for sequencing 

after the DNA extraction and purification. 

The third SgRNA for dnah7 was eventually dropped, after three colony PCRs, where none of the 

colonies picked showed amplification. 

 

3.2.2 Colony PCR for rsph4a 
 

 

Figure 3.3. Agarose gel at 1% to check rsph4a SgRNA colony PCR results. Gel sample order: (1) 100 bp ladder, 
(2) SgRNA1 colony 1, (3) SgRNA1 colony 2, (4) SgRNA1 colony 3, (5) SgRNA1 colony 4, (6) SgRNA1 colony 5, (7) 
SgRNA1 colony 6, (8) SgRNA1 colony 7, (9) SgRNA1 colony 8, (10) SgRNA1 colony 9, (11)  SgRNA1 positive 
control 1, (12) SgRNA1 positve control 2, (13)  SgRNA 2 negative control, (14) 100 bp ladder, (15) SgRNA2 colony 
1, (16) SgRNA2 colony 2, (17) SgRNA2 colony 3, (18) SgRNA2 colony 4, (19) SgRNA2 colony 5, (20) SgRNA2 
colony 6, (21)  SgRNA2 colony 7, (22) SgRNA2 colony 8, (23) SgRNA2 colony 9, (24) SgRNA2 positive control 1, 
(25) SgRNA2 positve control 2, (26) SgRNA2 negative control, (27) 100 bp ladder. 

 

In the Figure 3.3, the first group of samples referring to rsph4a SgRNA1(2nd to 12th well) showed mostly 

negative results for all colonies except for colonies 2 and 7. Both colonies presented bands in the 300bp 

region which matched the predicted molecular weight. The positive controls for the group of samples 

had mixed results. Positive control 1 presented multiple bands, which extended from 300 bp to 1000 bp. 

Positive control number 2 was positive, showing a band in the correct region, around 340 bp. The second 

group of samples referred to rsph4a SgRNA2 (14th to 25th well) showed positive results for four colonies, 

colony 5 ,7, 8 and 9. They all had an intense band in the 300 bp region especially colonies 7 and 9. 

However, colony 8 and 9 had multiple bands. This time both positive controls showed troublesome 

results. Both controls had the expected band, but control 1 also had more bands in non-expected areas, 

and positive control 2 has a smear, which maybe a sign for DNA degradation. In both groups the 
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negative controls showed no sign of contamination. Either way, all the colonies, which had a band in the 

300 bp region, were sent for sequence after DNA purification, and quantification. 

 

3.3 Sequencing results 

 

By sequencing the PCR product of the colony PCRs, after proper sample treatment, I knew if the SgRNA 

was inserted the plasmid. In theory, it should be, since, like it was previously mentioned, the amplification 

of colony PCR only happens if the forward strand of each SgRNA, used as a primer, finds its complement 

in the plasmid. Either way, all positive samples from the colony PCR were sequenced. 

 

 

Figure 3.4. Alignment between pDR274, pDR274 with each respective SgRNA and each individual SgRNA. 
(A) Alignment between pDR274, pDR274 inserted with dnah7 SgRNA1 and dnah7 SgRNA1. (B) Alignment between 
pDR274, pDR274 inserted with dnah7 SgRNA2 and dnah7 SgRNA2. (C) Alignment between rsph4a SgRNA2, 
pDR274 and pDR274 inserted with rsph4a SgRNA2. 

 

After finding positive colonies for dnah7 SgRNA2 and rsph4a SgRNA2, the respective samples were 

sent to sequence. As previously mentioned, dnah7 SgRNA1 integration was not confirmed with colony 

PCR instead, the new colonies picked were directly sent to sequence. Figure 3.4, shows the alignment 

between the native pDR274 plasmid, pDR274 plasmid with a SgRNA inserted and the respective 

SgRNA. “A”, “B” and “C”, shows a 100% match between the native SgRNA and the SgRNA interest in 

to the plasmid.  

 

3.4 Confirming the linearization of pDR274 with Hind III restriction enzyme  

 

Once confirmed the correct SgRNA sequence is in the plasmid, the plasmid was re-opened using Hind 

III restriction enzyme. In contrast with bsaI, this restriction enzyme only cuts in one zone. Like before 
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the linearization was checked using electrophoresis. A positive result meant that the plasmid would be 

ready to be transcribed to RNA. When transcribed into RNA the SgRNA would be ready to inject. 

 

Figure 3.5. 1% agarose gel used to check pDR274 plasmid with dnah7 SgRNA1 linearization with Hind III 
restriction enzyme. Gel sample order: (1) 100bp ladder, (2-5)  2nd to 5th well are non-related samples, (6) circular 
plasmid, (7) linear plasmid, (8) 100bp ladder. 

 

 

Figure 3.6. 1% agarose gel used to check pDR274 plasmid with dnah7 SgRNA2 linearization with Hind III 
restriction enzyme. Gel sample order: (1) 100bp ladder, (2) linear plasmid, (3) circular plasmid. 
 

Results presented in Figure 3.5 and Figure 3.6, demonstrated the Hind III linearization was successful 

for pDR274 plasmid with dnah7 SgRNA1 and SgRNA2, respectively. Once again, the linearization was 

successful, since the circular plasmid migrated further than the linearized one. Linearization with Hind 

III was necessary for in vitro transcription from DNA to RNA. There was no linearization of rsph4a 

SgRNA2. The development of SgRNA2 for rsph4a stopped after the sequencing results, due to time 

constrains and long waiting timings for new reagents to arrive. With dnah7 SgRNA1 and SgRNA2 

prepared and ready to use, the fish were injected. 
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3.5 PAGE screening for potential heteroduplexes 

 

The preliminary screening for mutants was again done using PAGE. The goal was to find 

heteroduplexes, which would indicate the presence of indels in the genome of the extracted DNA from 

the injected embryos. If found, the fish from the correspondent batch would be let to mature for 3-4 

months, depending on space availability and food intake, for later screening. 

 

Figure 3.7. 15% polyacrylamide gel for early dnah7 SgRNA1 mutant screening. Gel sample order: (1) 100 bp 
ladder, (2) non-injected embryos (control 1), (3) batch 1.1 of injected embryos, (4) batch 1.2 of injected embryos, 
(5) non-injected embryos (control 2), (6) batch 2.1 of injected embryos, (7) batch 2.2 of injected embryos, (8) batch 
2.3 of injected embryos, (9) positive control for the PCR, (10) negative control. 
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Figure 3.8. 15% polyacrylamide gel for early dnah7 SgRNA2 mutant screening. Gel sample order: (1) 100 bp 
ladder, (2) non-injected embryos (control 1), (3) batch 1 of injected embryos, (4) batch 2 of injected embryos, (5)  
batch 3 of injected embryos,  (6) non-injected embryos (control 2), (7) batch 4 of injected embryos, (8) PCR control,  
(9) negative control, (10) 100 bp ladder. 

 

Results from Figure 3.7, were comprised by two different batches of embryos, batch 1 and batch 2, both 

with dnah7 SgRNA1 injected fish. The control for batch 1, was positive, appearing a band below 100 bp 

which is concurrent with the expected 94 bp PCR product. This indicated a successful PCR and a correct 

amplification of PCR product for the wild type DNA. Furthermore, the control band helps to distinguish 

between wild type band and potential heteroduplexes. From the two batches referent to control 1, only 

in batch 1.1 could heteroduplexes be detected. The heteroduplexes can be seen above the band 

referring to the wild type (94 bp band) around the 150 bp ladder mark (red box). Although, the bands 

are faint, this can be explained by the low success rate in mutant creation. Meaning that, from the eight 

larva that each batch had, perhaps one larvae had the mutation, resulting in a faint band for the mutated 

DNA and a more intense band for the wild type DNA. With this finding, all the remaining embryos that 

were injected at the same time of batch 1.1, were bleached and reallocated into the main fish facility for 

later screening. 

Batch 2 control, did not amplify, but the control from batch 1 could still be used to compare the wild type 

band. None of batch 2 samples demonstrated any heteroduplexes, only the wild type band. So, all the 

remaining fish larva were euthanized. The positive control for he PCR was used to check if the PCR 

itself worked, since this sample of wild type DNA worked previously. This was made to ensure that in 

case of failure in amplifying batch 1 and batch 2 DNA, the error was in the DNA extraction and not the 

PCR. The negative control didn’t show any sign of contamination. 
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The screening for dnah7 SgRNA2, came out negative for all samples. The positive control for wild type 

DNA had a band slightly above the 100 bp which was concurrent with the expected 105 bp. The PCR 

control and the negative control were both successful, showing a successful PCR and without 

contamination. 

These results demonstrated that we were able to produce heteroduplexes in one batch of injected fish. 

Although, not all the PAGE gels are showed here, the only heteroduplex detected was from the batch 

1.1 in Figure 3.7. All the other PAGE gels did not present any heteroduplexes. 

 

3.6 Rearing Crispant fish until sexual maturation  

After finding heteroduplexes for dnah7 SgRNA1, fish from that batch were transferred in to aquariums 

where they would be kept until they reach full adulthood. Optimistically, this period would last three 

months. To speed up growing they were split into two tanks (Figure 3.9, A and B), resulting in a less 

crowed aquarium, and fed three times a day instead of two. These practices were made to try to speed 

up the sexual maturation process, since the next step of screening for mutation was depended in the 

ability of the fish to reproduce. The next screening would be made to the progeny of the cross between 

the crispants, the injected fish with possible mutations, and wild type fish. By screening the progeny, I 

would know if the mutation was present in the gametes, and whether it was passed along to futures 

generations. 

 

 

Figure 3.9. Aquarium where the potential mutants were kept while in their sexual maturation phase. (A) Tank 
number 1 for zebrafish injected with dnah7 SgRNA1 and screened by PAGE gel. (B) Tank number 2 for zebrafish 
injected with dnah7 SgRNA1 and screened by PAGE gel. (C) Tank number 3 for zebrafish injected with dnah7 
SgRNA1 and screened by looking at L-R defects. 
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Tank C in Figure 3.9, is another batch of injected fish with dnah7 SgRNA1. Although, these fishes were 

not screened by using a PAGE gel. Instead, they were screened by looking for laterality defects, curly 

up tails or heart edemas. This approach was designated, because heteroduplexes could not be identified 

due to lack of reagents in the lab.  

This period of fish sexual maturation, was longer than expected, reducing the already short time frame 

for progeny screening. Furthermore, other complications arose in the same time frame worsening ever 

more the task at hand.  

 

3.6 Screening dnah7 “Crispants” by PAGE 

 

Screening batch 1.1 progeny followed the same process as screening the injected embryos for 

mutations. Although the primers used for screening were different, since some complications arose with 

the old primers. Nonetheless, this new pair of primers was designed to target the same region as the 

older ones. The change in primers, did not influence the screening. This time, the expected PCR product 

would have 171 bp instead of 94 bp. The doubling in PCR product was to enable an easier detection of 

heteroduplexes since the previous primers would often be confused with primer dimers. 

 

Figure 3.10. First 15% polyacrylamide gel for dnah7 SgRNA1 “crispants” screening. Gel sample order: (1) 
wild type zebrafish (control), (2) Male 1, (3) 100 bp ladder, (4) Male 2, (5) Male 3, (6) Male 4, (7) Male 5, (8) Male 
6, (9) PCR control, (10) negative control. 
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Figure 3.11. Second 15% polyacrylamide gel for dnah7 SgRNA1 “crispants” screening. Gel sample order: (1) 
wild type Zebrafish (control), (2) 100 pb ladder, (3)  Female 1, (4)  Female 2, (5) Female 3, (6)  Female 4, (7)  
Female 5, (8) negative control. 

 

Both Figure 3.10 and Figure 3.11 represent the later stage of zebrafish screening. The samples are the 

DNA extracted from larva after the cross between the batch 1.1 and wild type. Screening in this way, 

would allow to detect mutations in the progeny of the early detected mutants, which would mean that 

the mutation was present on the gametes and could be passed along through generations. In Figure 

3.10, the wild type DNA which is used as control, matched the predicted 171 bp by having a band around 

the same region. As for the DNA from the progeny of the Crispant, none of them demonstrated the 

formation of heteroduplexes. The same was seen in Figure 3.11, the controls matched the 171 bp region, 

and none of the other samples presented heteroduplexes. In both Figures the negative control was 

blank, showing no sign of contamination. 

Unfortunately, the first round of screening did not yield any positive results. Therefore, all the fish were 

euthanized. The remaining fish were not screened due to a prolonged maturing stage, which reduced 

the screening time. However, these fish are going to be screened in the future by other students in the 

lab. 

 Consequently, in order to learn how to perform the functional studies on cilia beat frequency, a CBF 

analysis was done in wild type fish and fish injected with different MOs. 

3.7 Cilia beat frequency analysis   

 

Since, the end of the project could not be reached because the potential mutants needed more time to 

grow, we decided to evaluate the CBF in another model in order to learn a new technique. Initially, the 
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plan was to use dnah7 MO to cause CBF disruption. But, the morpholino yielded unusual high mortality 

rates, that could range from 50 to 80%, depending on the batch, using a concentation previously tested 

to only cause a mortality rate of 15%. So, the possibility of comparing the wild type CBF to dnah7 MO 

was dropped, as well as the comparison with the dnah7 CRISPR mutant progeny, since they were still 

growing to reach the sexual maturation. Either way, an alternative was found and the dnah7 MO was 

substituted by ccdc40 MO. Similar to dnah7, this morpholino also created defects in left-right symmetry 

when injected in the correct concentration. Indicating a possible reduction in CBF due to low mobility, 

static cilia or the non-assembly of the correct dyneins along the axoneme of the cilia. 

The analysis of the cilia beat frequency was made in the ependymal cells located in the spinal canal at 

the tip of the tail of a 48 hpf larvae. The cilia in this region were only developed at 48 hpf, any time earlier 

they were not found. The measurements were made in two zones, one closer to the tip of the tail and 

one further apart from the tip. The zone further from the tip of the tail was defined as the proximal zone 

(black arrow, image A, Figure 3.12), since the reference point was the head and not the tail, while the 

zone closer to the tip was defied as distal (red arrow, Image A, Figure 3.12). 

 

Figure 3.12. Microscope photographs of the end of the tail of a 48 hpf larvae. (A) Photo taken at 10X 
magnification of the end of the tail to demonstrate the proximal zone (red arrow) and the distal zone (black arrow). 
(B) Photo taken at 100x magnification of the proximal zone with the black arrows indicating the zone were all three 
measurements were taken.  

Within each zone, three measurements were taken as can be seen in arrows from image B, Figure 3.12. 

A kymograph of the CBF, obtained thought plugins within ImageJ, was used to measure the CBF 

manually. Each peak in the kymograph was counted and the total was divided by kymograph duration 

resulting in a frequency. The digital measurements were made using the software CiliarMove. This 
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software would analyze the most recurrent frequency present in the video. The software would then 

originate a bar graph with all frequencies in “x” and in “y” its respective percentage (Figure 3.13). 

 

Figure 3.13. Graphical output from CiliarMove of one distal zone of one of the analyzed larvae. (A) Graphical 
output from the first measurement of the distal zone of larvae 6 with a most recurring frequency of 4,44 Hz. (B) 
Graphical output from the second measurement of the distal zone of larvae 6 with a most recurring frequency of 
8.7 Hz. (C) Graphical output from the third measurement of the distal zone of larvae 6 with a most recurring 

frequency of 6,8 Hz. 

 

The most recurrent frequency would be picked and the average of three measurements would originate 

the reported frequency of the proximal or distal zone. This process was made for ten wild type larva. 

Although, the final number of larva digitally analyzed was only seven, since the videos corresponding to 

2 of the larva had excessive motion, distorting the ability to analyze CBF digitally. The videos for the 

third larvae could not be opened with software, resulting always in an error. The analysis of ccdc40 MO 

injected larva was made in the same way, but only digitally. In contrast with wild type larvae, the ccdc40 

MO injected larva were not randomly selected. They were first screened for the presence of left-right 

defects or any other types of anomalies, such as heart edemas and curly up tails.  

 

3.7.1 Wild type CBF analysis with manual measurements vs software 

measurements (CiliarMove)  
 

As stated before a wild type CBF analysis was made manually and digitally. This arose from the 

necessity to establish the CiliarMove software as a trustworthy tool for CBF analysis in these cilia. A 

comparison was made to see if there were statistical differences between both types of methods used 

to measure CBF (Figure 3.14). CiliarMove was a software developed to be used as a diagnostic tool for 
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identifying potential patients that suffer from PCD. Since then, the software has been submitted to a 

peer reviewed journal and is waiting for the reviews. 
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Figure 3.14. Graphical comparison between manual and digital CBF measurements of wild type fish. 
Scatter plot graphic comparing manual measurements (n=16) with digital measurement (n=14) of CBF in wild type 

fish. 

 

A parametric test (student t test) showed that the difference between methods is not statistical 

significant. The p value of the t test was 0.4652 and data sets can only be considered significantly 

different when p value is below 0.05. The software measurements seem to be less error prone, by not 

having any outliers when compared do manual measurements. This would make sense, since there is 

the human element involved. We can conclude that there is not a difference in the data obtained using 

the distinct methods, therefore validating CiliarMove software for the zebrafish spinal canal cilia at 48 

hpf. 

 

3.7.2 Wild type CBF vs ccdc40 morphants CBF 
 

Since, Figure 3.14 showed that both methods yield data that is not statistical different, the analysis 

between wild type CBF and ccdc40 MO injected larva was only made digitally. Figure 3.15 shows the 

result from the comparison of proximal and distal zones from wild type and ccdc40 injected fish. 
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Figure 3.15. Graphical comparison between the proximal and distal zones of wild-type and fish injected 
with ccdc40 MO. Scatter plot graphic comparing the proximal zone of wild type fish (n=7) with ccdc40 injected 
fish (n=6) measurement of CBF and the distal zone of wild type fish (n=7) with ccdc40 injected fish (n= 6) 
measurements of CBF. 

The statistical analysis demonstrated that the difference between wild type CBF and ccdc40 MO injected 

fish CBF in both proximal and distal regions is not statistically different. Both proximal zone and distal 

zone, presented p values of 0.1855 and 0.7182, respectively. These results were interesting because 

the injection of the ccdc40 MO in those fish embryos had caused L-R defects. 
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4. Discussion 
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This study started as a follow up of a previous work performed in the lab (Sampaio et al., 2014). Sampaio 

et al. characterized the importance of flow speed and pattern generated by motile cilia present in 

Kupffer’s vesicle (KV) and its impact in the Left-Right asymmetry establishment. They demonstrated 

that cilia number and clustering within the KV are crucial for a strong asymmetric flow and establishment 

of normal situs. To achieve these results they had to manipulate cilia motility and generate static cilia. 

For this purpose they selected to knockdown the dnah7 gene based on a gene expression study done 

in the lab (Tavares et al., 2017). Additionally, Zhang et al. (2002) reported that dnah7 was an important 

component in the inner dynein arm in human cilia and necessary for motility. With this in mind, dnah7 

MO was successfully used to manipulate cilia motility and its impact was evaluated by measuring the 

CBF and fluid dynamics in the in KV (Sampaio et al., 2014). 

Sampaio et al. demonstrated, through in situ hybridization with a dnah7 RNA probe, that the transcript 

was present in the KV, in the pronephros and brain ventricles. At 24 hpf other ciliated organs like the 

posterior tail dorsal region and proximal pronephric tubes also showed dnah7 expression. Between 24 

to 48 hpf dnah7 appeared in the brain ventricles, otic vesicles and at 48 hpf in the olfactory pits. 

The utilization of dnah7 MO generated several left-right phenotypes. By screening heart and liver 

orientation in 80 embryos injected with dnah7 MO, they detected, 44% situs solidus, 20% of heterotaxia, 

27% situs inversus and 9% situs ambiguous. The percentage of L-R defects was considerably higher 

than in the control with 85% of situs solitus. Importantly, with immunofluorescence with anti-acetylated 

alpha tubulin, they validated that the L-R defects were not due to a reduction in the number of cilia or 

cilia length (Sampaio et al., 2014).  

All these results cemented the ground work for my thesis. Although, Sampaio et al. established that the 

knockdown of dnah7 could generate totally immotile cilia, this work also rouse many questions. The first 

being, if the phenotypes caused by the dnah7 MO injections were due to the dnah7 knockdown or due 

MO toxicity. Other studies like Schulte-Merker and Stainier (2014) propose alternative methods to test 

gene function other than MOs, since it is difficult to distinguish between the specific effects of MOs from 

the non-specific. 

The use of CRISPR-Cas9 has been widely spread throughout the scientific community. It became a 

cheap and versatile tool when compared to other genetic tools available like TALENs or Zinc Finger 

Nucleases. CRISPR-Cas9 can be implemented in any lab without a big initial investment, and when well 

established within the laboratory, it can become a very standardized process with a large range of 

genetic applications. Furthermore, (Hoshijima et al., 2016) among others made compelling arguments 

for the use of CRISPR for its accessibility and ease of use. With these factors in mind, my goal was to 

establish a CRISPR-Cas9 protocol for the lab and while doing that validate the phenotype described in 

(Sampaio et al., 2014). In Summary, it was important to test if the immotile cilia phenotype caused by 

dnah7 knockdown was really due to the lack of the dnah7 protein. For achieving this aim the creation of 

a dnah7 mutant line was crucial. 
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Additionally, so far no patients diagnosed with PCD have been associated with dnah7 mutations, which 

made us question what would be the phenotype in humans. Studies from other labs (O’Callaghan et al., 

2011),(Li et al., 2016) and (Ben Khelifa et al., 2014) demonstrated that inner dynein arms are necessary 

for cilia motility and their absence can lead to PCD and infertility in men. Moreover, (O’Callaghan et al., 

2011) diagnosed 15 PCD patients that had exclusively inner dynein problems. However, in these 

patients their cilia were not static. Instead, they were reported to be beating with a stiff beat pattern. It 

was therefore interesting and important if we could understand if the lack of dnah7 specifically blocks 

motility. Hopefully, it will be a matter of time before someone is diagnosed with a mutation in dnah7. 

Meanwhile, we will have the zebrafish mutant line ready to explore and study which might indicate how 

dnah7 regulates ciliary motility. 

In the present study, screening the SgRNA1 injected embryos for heteroduplexes, indicative of the 

mutations, yielded a very poor induction rate. Out of the ten pools of eight embryos each, only one pool 

(batch 1.1) demonstrated heteroduplexes in a PAGE gel. Making the induction rate of SgRNA 1 around 

10%. However, this induction rate is probably lower, since it would be highly improbable that all 8 

embryos would present heteroduplexes. This can be reinforced by the fact that the heteroduplexes that 

appeared presented very faint bands meaning that, most likely only one or two embryos from that batch 

had the mutated DNA, lowering induction rate to 2.5%. The results of SgRNA1 could not be replicated 

again. As for SgRNA2 injected embryos, the induction rate of mutation was 0%, no heteroduplexes were 

found in the 8 pools screened. The most likely cause for these poor result is the selection of the SgRNAs 

used. To try to compensate this lack of results, a third SgRNA was selected, but this SgRNA did not 

pass from the colony PCR stage, since no positive colonies were detected. 

The screening for the progeny of the injected embryos so far did not yield any positive results. Although, 

the screening was only made to the progeny of 11 embryos, 6 males and 5 females, there are still more 

65 fish to be screened in the fish facility. Hopefully, a mutation might be found within these 65 fish. The 

reasoning behind this low percentage of fish screened was due a combination of events described below. 

During the summer of 2016, the fish facility suffered from severe high temperatures, due to bad planning 

of the air-conditioned unit capacity to cool the fish facility. This resulted in a rise of temperature within 

the fish facility, meaning that the temperature of the water in the aquariums could not be regulated 

appropriately. This problem resulted in a severe lowering in the number of postures, and could only be 

solved after 2 generations of outcrossing our fish lines, that lasted until early 2017, delaying the first 

step of injecting the SgRNAs. 

For this thesis was crucial to start injecting as early and often as possible, since there would be inevitably, 

a period reserved for the sexual maturation of the crispants (F0) and then of the potential mutants (F1). 

To worsen this situation, the maturation process also took longer than expected. Pushing the second 

phase of screen even closer to the deadline. Then, by the time that the crispants started to lay eggs, 

another unforeseen problem arose, all the reagents necessary for PCR and PAGE had run out and the 

lab could not place any orders. This occurred due to a change of status of the NOVA University. NOVA 

Medical School (NMS) had to change into a Foundation and all the ordering platforms changed within 

our Institute. This lead to a complete block in the NMS financial system and resulted in a total inability 
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to orders products in all the laboratories from the CEDOC. As a consequence, my work flow was 

severely impaired.  

Nevertheless, if a mutation is still found within the progeny of the fish being raised in the fish facility it 

would be expectable that these fish would have similar phenotypes to the dnah7 morphants. Being that 

dnah7 encodes for a heavy chain dynein, forming the inner dynein arm. It would be interesting to know 

if, when dnah7 is absent, the mutants present immotile cilia or stiff beating cilia.  

Studies from (Lindemann and Lesich, 2010) and (Yang, 2006) confirm that both the heavy chain dyneins 

from the IDAS and the radial spokes are arranged in repeats throughout the axoneme’s microtubules, 

precisely 96 nm spaced apart. Furthermore, (Castleman et al., 2008) says that radial spoke (RS) form 

a “signal-transduction” between the central pair (CP) and the dynein arms which can regulate dynein 

induce movement and govern cilia waveform. The link between the radial spoke and inner dyneins arms 

influences the velocity which the microtubules slide along each other. While the link between the central 

pair and radial spoke regulates the waveform of the cilia. This regulation of RS and CP form the dynein 

regulation complex (DRC). DRC is responsible for coordinating the sliding movement between 

microtubules, but may also coordinate inner arms by ATP inhibition by activating inner arms in a 

coordinated faction (Porter and Sale, 2000), hence the association between the IDAs and efficient 

waveform formation. Aside from DRC regulating IDA, (Oda et al., 2013) established that ODA-DRC 

activity regulates flagellar beating by managing the activity in both ODA and IDAs. 

So, there is scope for more regulatory roles of IDAs and it seems that IDAs are an important component 

in regulatory processes within the cilia. I hypothesize that an absence of dnah7, could mean that the 

link between the radial spokes and inner dyneins arms could disappear resulting in the inability to 

regulate the IDAs and therefore resulting in phenotype of uncoordinated ciliary beating, reduce mobility 

and even loss of mobility (as observed by Sampaio et al., 2014). 

On the other hand, mutations in radial spoke genes like rsph4a, rsph9 and rsph1 have been detected in 

PCD patients (Castleman et al., 2008; Horani and Ferkol, 2016). With this in mind a collaboration 

between Cilia regulation and disease lab and an Italian group from Pisa led by Mauro Pistello began. In 

this partnership, the goal was to disrupt rsph4a using CRISPR-Cas9. A PhD student initiated the project 

by selecting three rsph4a SgRNAs. To honor the partnership between labs, I continued the project. So 

far, the only thing left to do before starting injecting, is to linearize the plasmid where the SgRNA was 

inserted and transcribe the DNA to RNA. If in the future, a mutant line is generated from these SgRNAs, 

it would be expectable to cause cilia motility defects as has been reported in various studies. The lack 

of radial spoke would mean that, nothing would be regulating the IDAs and ODAs, since radial spokes 

are necessary for microtubule sliding regulation in IDAs and are an important component in the DRC 

that controls overall dynein activity. 

Since the study from Sampaio et al. 2014 measured the CBF of dnah7 morphants it was important to 

learn how to measure CBF to then compare the CBF from dnah7 MO injected fish and dnah7 mutants. 

Although this was the original plan, it seems that, since last used, the dnah7 MO became too 

concentrated and too toxic. When using the same concentration of the MO that Pedro Sampaio used, I 
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had mortality rates between 50 to 80%. The surviving embryos had severe malformations and none of 

them seem to be linked to L-R asymmetry defects. It was confirmed that the MO liquid phase evaporated, 

concentrating the MO and precipitating to non soluble forms. Even injecting a fourth of the original 

concentration, the mortality rates were extremely high. The idea of using dnah7 MO was canceled and 

this MO was replaced by another one this time for the gene ccdc40 MO. 

Mutations in ccdc40 and ccdc39 have been found to be a major cause of axonemal disorganization and 

absent IDAs in PCD patients (Blanchon et al., 2012). It has been proposed that these genes interact 

with DRC components and are involved in some way in IDAs attachment to the axoneme (Antony et al., 

2013). So, because I was interested in the DRC and specifically in inner dynein arm regulation, the use 

of this morpholino was not out of my main focus. 

Gene expression of dnah7 conducted by Pedro Sampaio during his Master Thesis showed that dnah7 

transcripts were present at the very end of the tail of zebrafish larva with 48 hpf. Since, this same area 

has many motile cilia in the spinal canal it was interesting to question what would happen to the CBF 

when comparing controls to dnah7 MO. Since, dnah7 MO was toxic it was decided that the CBF 

analyses would take place in that same region using ccdc40 MO. Unfortunately, the data obtained would 

not be as useful, since I detected no differences in the CBF between wild types fish and injected fish 

with ccdc40 MO.  

Ccd40c has been associated with immotile cilia and even demonstrated L-R defects in the injected 

embryos. The fact that my results showed that there is no statistical difference between wild type CBF 

and ccdc40 CBF makes us question if these particular tail cells express ccdc40. All embryos analyzed 

were screened beforehand for L-R defects and other anomalies, such heart edemas. Since, they all 

presented defects it would be expected that overall cilia motility would also be impaired, but that was 

not the case. Some explanations may be hypothesized: 1) since, the CBF analyses were conducted at 

48 hpf maybe the MO effect was already gone. However, these effects were still present when cilia in 

the KV established the L-R asymmetry resulting in L-R defects. 2) Another possible explanation is that 

those tail cells do not express ccdc40. However, there is no literature to back this statement. As future 

work, an in situs hybridization with ccdc40 could be conducted in that region. If ccdc40 is not expressed 

in that region it would be telling us that ccdc40 is not used in all cilia. This would implicate that other 

factors exist and can replace ccdc40 in the DRC for the assembly of the radial spokes and IDAs. 

As I pioneered the use of CRISPR-Cas9 in the Lab, this Thesis is more technical. However, a lot of 

ground work was made. At the moment, there is the possibility of having generated a dnah7 mutant line 

and the tools are in place for a creation of a rsph4a mutant line. In addition, I helped to establish that 

the software CiliarMove is a valid software also for spinal canal CBF measurements 

 

 

 

 



54 
 

  



55 
 

References  
 

Anderson, R. G. W. The Three-Dimensional Structure of the Basal Body from the Rhesus Monkey 

Oviduct. The Journal of Cell Biology 1972, 54 (2), 246–265. 

Antony, D.; Becker-Heck, A.; Zariwala, M. A.; Schmidts, M.; Onoufriadis, A.; Forouhan, M.; Wilson, R.; 

Taylor-Cox, T.; Dewar, A.; Jackson, C.; et al. Mutations in CCDC 39 and CCDC 40 Are the Major 

Cause of Primary Ciliary Dyskinesia with Axonemal Disorganization and Absent Inner Dynein Arms. 

Human Mutation 2013, 34 (3), 462–472. 

Badano, J. L.; Mitsuma, N.; Beales, P. L.; Katsanis, N. The Ciliopathies: An Emerging Class of Human 

Genetic Disorders. Annual Review of Genomics and Human Genetics 2006, 7 (1), 125–148. 

Barbazuk, W. B.; Korf, I.; Kadavi, C.; Heyen, J.; Tate, S.; Wun, E.; Bedell, J. A.; McPherson, J. D.; 

Johnson, S. L. The Synthenic Relationship of the Zebrafish and Human Genomes. Genome Research 

2000, 10, 1351–1358. 

Barrangou, R. CRISPR-Cas Systems and RNA-Guided Interference. Wiley Interdisciplinary Reviews: 

RNA 2013, 4 (3), 267–278. 

Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D. A.; 

Horvath, P. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 2007, 

315 (5819), 1709–1712. 

Baxendale, S.; van Eeden, F.; Wilkinson, R. The Power of Zebrafish in Personalised Medicine. In 

Advances in Experimental Medicine and Biology; Advances in Experimental Medicine and Biology; 

Springer International Publishing: Cham, 2017; Vol. 1007, pp 179–197. 

Behan, L.; Galvin, A. D.; Rubbo, B.; Masefield, S.; Copeland, F.; Manion, M.; Rindlisbacher, B.; 

Redfern, B.; Lucas, J. S. Diagnosing Primary Ciliary Dyskinesia: An International Patient Perspective. 

European Respiratory Journal 2016, 48 (4), 1096–1107. 

Blanchon, S.; Legendre, M.; Copin, B.; Duquesnoy, P.; Montantin, G.; Kott, E.; Dastot, F.; Jeanson, L.; 

Cachanado, M.; Rousseau, A.; et al. Delineation of CCDC39/CCDC40 Mutation Spectrum and 

Associated Phenotypes in Primary Ciliary Dyskinesia. Journal of Medical Genetics 2012, 49 (6), 410–

416. 

Brouns, S. J. J.; Jore, M. M.; Lundgren, M.; Westra, E. R.; Slijkhuis, R. J. H.; Snijders, A. P. L.; 

Dickman, M. J.; Makarova, K. S.; Koonin, E. V.; van der Oost, J. Small CRISPR RNAs Guide Antiviral 

Defense in Prokaryotes. Science 2008, 321 (5891), 960–964. 

Carte, J.; Wang, R.; Li, H.; Terns, R. M.; Terns, M. P. Cas6 Is an Endoribonuclease That Generates 

Guide RNAs for Invader Defense in Prokaryotes. Genes & Development 2008, 22 (24), 3489–3496. 

Castleman, V. H.; Romio, L.; Chodhari, R.; Hirst, R. A.; de Castro, S. C. P.; Parker, K. A.; Ybot-

Gonzalez, P.; Emes, R. D.; Wilson, S. W.; Wallis, C.; et al. Mutations in Radial Spoke Head Protein 

Genes RSPH9 and RSPH4A Cause Primary Ciliary Dyskinesia with Central-Microtubular-Pair 

Abnormalities. American Journal of Human Genetics 2008, 84 (2), 197–209. 

Chodhari, R.; Mitchison, H. M.; Meeks, M. Cilia, Primary Ciliary Dyskinesia and Molecular Genetics. 

Paediatric Respiratory Reviews 2004, 5 (1), 69–76. 

Deltcheva, E.; Chylinski, K.; Sharma, C. M.; Gonzales, K. CRISPR RNA Maturation by Trans -



56 
 

Encoded Small RNA and Host Factor RNase III. Nature 2011, 471 (7340), 602–607. 

Deveau, H.; Barrangou, R.; Garneau, J. E.; Labonte, J.; Fremaux, C.; Boyaval, P.; Romero, D. A.; 

Horvath, P.; Moineau, S. Phage Response to CRISPR-Encoded Resistance in Streptococcus 

Thermophilus. Journal of Bacteriology 2008, 190 (4), 1390–1400. 

Doudna, J. A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science 

2014, 346 (6213), 1258096–1258096. 

Fisch, C.; Dupuis-Williams, P. Ultrastructure of Cilia and Flagella - back to the Future! Biology of the 

Cell 2011, 103 (6), 249–270. 

Fliegauf, M.; Benzing, T.; Omran, H. When Cilia Go Bad: Cilia Defects and Ciliopathies. Nature 

Reviews Molecular Cell Biology 2007, 8 (11), 880–893. 

Goetz, S. C.; Anderson, K. V. The Primary Cilium : A Signalling Centre during Vertebrate 

Development. Nature Publishing Group 2010, 11 (5), 331–344. 

Goldberg, G. W.; Jiang, W.; Bikard, D.; Marraffini, L. A. Conditional Tolerance of Temperate Phages 

via Transcription-Dependent CRISPR-Cas Targeting. Nature 2014, 514 (7524), 633–637. 

Goodenough, U. W. Substructure of Inner Dynein Arms, Radial Spokes, and the Central 

Pair/projection Complex of Cilia and Flagella. The Journal of Cell Biology 1985, 100 (6), 2008–2018. 

Gupta, T.; Mullins, M. C. Dissection of Organs from the Adult Zebrafish. Journal of Visualized 

Experiments 2010, No. 37, 3–7. 

Hatoum-Aslan, A.; Samai, P.; Maniv, I.; Jiang, W.; Marraffini, L. A. A Ruler Protein in a Complex for 

Antiviral Defense Determines the Length of Small Interfering CRISPR RNAs. Journal of Biological 

Chemistry 2013, 288 (39), 27888–27897. 

Hermans, P. W. M.; Van Soolingen, D.; Bik, E. M.; De Haas, P. E. W.; Dale, J. W.; Van Embden, J. D. 

A. Insertion Element IS987 from Mycobacterium Bovis BCG Is Located in a Hot-Spot Integration 

Region for Insertion Elements in Mycobacterium Tuberculosis Complex Strains. Infection and 

Immunity 1991, 59 (8), 2695–2705. 

Hildebrandt, F.; Benzing, T.; Katsanis, N. Ciliopathies. New England Journal of Medicine 2011, 364 

(16), 1533–1543. 

Hilgendorf, K. I.; Johnson, C. T.; Jackson, P. K. The Primary Cilium as a Cellular Receiver: Organizing 

Ciliary GPCR Signaling. Current Opinion in Cell Biology. 2016, pp 84–92. 

Horani, A.; Ferkol, T. W. Primary Ciliary Dyskinesia and Associated Sensory Ciliopathies. Expert 

Review of Respiratory Medicine 2016, 10 (5), 569–576. 

Hoshijima, K.; Jurynec, M. J.; Grunwald, D. J. Precise Editing of the Zebrafish Genome Made Simple 

and Efficient. Developmental Cell 2016, 36 (6), 654–667. 

Ikegami, K.; Setou, M. Unique Post-Translational Modifications in Specialized Microtubule 

Architecture. Cell structure and function 2010, 35 (1), 15–22. 

Ishikawa, H.; Marshall, W. F. Ciliogenesis : Building the Cell ’ S Antenna. Nature Publishing Group 

2011, 12 (4), 222–234. 

Ishikawa, H.; Marshall, W. F. Intraflagellar Transport and Ciliary Dynamics. Cold Spring Harbor 

Perspectives in Biology 2017, 9 (3), a021998. 

Jaffe, K. M.; Thiberge, S. Y.; Bisher, M. E.; Burdine, R. D. Imaging Cilia in Zebrafish. In Methods in 



57 
 

Cell Biology; Elsevier Inc., 2010; Vol. 97, pp 415–435. 

Jain, R.; Javidan-Nejad, C.; Alexander-Brett, J.; Horani, A.; Cabellon, M. C.; Walter, M. J.; Brody, S. L. 

Sensory Functions of Motile Cilia and Implication for Bronchiectasis. Frontiers in bioscience (Scholar 

edition) 2012, 4 (314), 1088–1098. 

Jiang, F.; Doudna, J. A. CRISPR–Cas9 Structures and Mechanisms. Annual Review of Biophysics 

2017, 46 (1), 505–529. 

Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A Programmable Dual-

RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337 (6096), 816–821. 

Josa, S.; Seruggia, D.; Fernández, A.; Montoliu, L. Concepts and Tools for Gene Editing. 

Reproduction, Fertility and Development 2017, 29 (1), 1. 

Kennedy, M. P.; Omran, H.; Leigh, M. W.; Dell, S.; Morgan, L.; Molina, P. L.; Robinson, B. V.; Minnix, 

S. L.; Olbrich, H.; Severin, T.; et al. Congenital Heart Disease and Other Heterotaxic Defects in a 

Large Cohort of Patients With Primary Ciliary Dyskinesia. Circulation 2007, 115 (22), 2814–2821. 

Ben Khelifa, M.; Coutton, C.; Zouari, R.; Karaouzène, T.; Rendu, J.; Bidart, M.; Yassine, S.; Pierre, V.; 

Delaroche, J.; Hennebicq, S.; et al. Mutations in DNAH1, Which Encodes an Inner Arm Heavy Chain 

Dynein, Lead to Male Infertility from Multiple Morphological Abnormalities of the Sperm Flagella. 

American Journal of Human Genetics 2014, 94 (1), 95–104. 

King, S. M. The Dynein Microtubule Motor. Biochimica et Biophysica Acta - Molecular Cell Research 

2000, 1496 (1), 60–75. 

King, S. M. Axonemal Dynein Arms. Cold Spring Harbor Perspectives in Biology 2016, 8 (11), 1–12. 

Kobayashi, D.; Takeda, H. Ciliary Motility : The Components and Cytoplasmic Preassembly 

Mechanisms of the Axonemal Dyneins Radial Spokes. Differentiation 2012, 83 (2), S23–S29. 

Kuehni, C. E.; Lucas, J. S. Diagnosis of Primary Ciliary Dyskinesia: Summary of the ERS Task Force 

Report. Breathe 2017, 13 (3), 166–178. 

Lai, M.; Pifferi, M.; Bush, A.; Piras, M.; Michelucci, A.; Di Cicco, M.; del Grosso, A.; Quaranta, P.; 

Cursi, C.; Tantillo, E.; et al. Gene Editing of DNAH11 Restores Normal Cilia Motility in Primary Ciliary 

Dyskinesia. Journal of Medical Genetics 2016, 53 (4), 242–249. 

Li, X.; Heyer, W. D. Homologous Recombination in DNA Repair and DNA Damage Tolerance. Cell 

research 2008, 18 (1), 99–113. 

Li, Y.; Yagi, H.; Onuoha, E. O.; Damerla, R. R.; Francis, R.; Furutani, Y.; Tariq, M.; King, S. M.; 

Hendricks, G.; Cui, C.; et al. DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary 

Ciliary Dyskinesia. PLoS Genetics 2016, 12 (2), 1–20. 

Lieber, M. R. The Mechanism of Human Nonhomologous DNA End Joining. Journal of Biological 

Chemistry 2008, 283 (1), 1–5. 

Lieber, M. R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-

Joining Pathway. Annual Review of Biochemistry 2010, 79 (1), 181–211. 

Lindemann, C. B.; Lesich, K. A. Flagellar and Ciliary Beating: The Proven and the Possible. Journal of 

Cell Science 2010, 123 (4), 519–528. 

Lu, Q.; Insinna, C.; Ott, C.; Stauffer, J.; Pintado, P. A.; Rahajeng, J.; Baxa, U.; Walia, V.; Cuenca, A.; 

Hwang, Y.-S.; et al. Early Steps in Primary Cilium Assembly Require EHD1/EHD3-Dependent Ciliary 



58 
 

Vesicle Formation. Nature Cell Biology 2015, 17 (3), 228–240. 

Lucas, J. S.; Barbato, A.; Collins, S. A.; Goutaki, M.; Behan, L.; Caudri, D.; Dell, S.; Eber, E.; Escudier, 

E.; Hirst, R. A.; et al. European Respiratory Society Guidelines for the Diagnosis of Primary Ciliary 

Dyskinesia. European Respiratory Journal. January 2017, p 1601090. 

Makarova, K. S.; Grishin, N. V; Shabalina, S. A.; Wolf, Y. I.; Koonin, E. V. A Putative RNA-

Interference-Based Immune System in Prokaryotes: Computational Analysis of the Predicted 

Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of 

Action. Biology direct 2006, 1 (1), 7. 

Marraffini, L. A. CRISPR-Cas Immunity in Prokaryotes. Nature 2015, 526 (7571), 55–61. 

Mojica, F. J. M.; Montoliu, L. On the Origin of CRISPR-Cas Technology: From Prokaryotes to 

Mammals. Trends in Microbiology 2016, 24 (10), 811–820. 

Mojica, F. J. M.; Diez-Villasenor, C.; Soria, E.; Juez, G. Biological Significance of a Family of Regularly 

Spaced Repeats in the Genomes of Archaea, Bacteria and Mitochondria. Molecular Microbiology 

2000, 36 (1), 244–246. 

Mojica, F. J. M.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening Sequences of Regularly 

Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution 

2005, 60 (2), 174–182. 

Mushtaq, M. Y.; Verpoorte, R.; Kim, H. K. Zebrafish as a Model for Systems Biology. Biotechnology 

and Genetic Engineering Reviews 2013, 29 (2), 187–205. 

O’Callaghan, C.; Rutman, A.; Williams, G. M.; Hirst, R. A. Inner Dynein Arm Defects Causing Primary 

Ciliary Dyskinesia: Repeat Testing Required. European Respiratory Journal 2011, 38 (3), 603–607. 

Oda, T.; Yagi, T.; Yanagisawa, H.; Kikkawa, M. Identification of the Outer-Inner Dynein Linker as a 

Hub Controller for Axonemal Dynein Activities. Current Biology 2013, 23 (8), 656–664. 

Olivier, K. N.; Sagel, S. D.; Milla, C.; Zariwala, M. A.; Wolf, W. Laterality Defects Other Th an Situs 

Inversus Totalis in Primary Ciliary Dyskinesia Insights Into Situs Ambiguus and Heterotaxy. CHEST 

2014, 146 (5), 1176–1186. 

Parng, C.; Seng, W. L.; Semino, C.; McGrath, P. Zebrafish: A Preclinical Model for Drug Screening. 

ASSAY and Drug Development Technologies 2002, 1 (1), 41–48. 

Porter, M. E.; Sale, W. S. The 9 + 2 Axoneme Anchors Multiple Inner Arm Dyneins and a Network of 

Kinases and Phosphatases That Control Motility. The Journal of Cell Biology 2000, 151 (5), F37–F42. 

Prachee Avasthia, W. F. M. Stages of Ciliogenesis and Regulation of Ciliary Length. 2012, 83 (2), 1–

29. 

Ran, F. A.; Hsu, P. D.; Wright, J.; Agarwala, V.; Scott, D. A.; Zhang, F. Genome Engineering Using the 

CRISPR-Cas9 System. Nat Protoc 2013, 8 (11), 2281–2308. 

Ritsu Kamiya, Eiji Kurimoto, E. M. Two Types of Chlamydomonas Flagellar Mutants. Cell 1991, 112 

(3), 441–447. 

Rubbo, B.; Lucas, J. S. Clinical Care for Primary Ciliary Dyskinesia: Current Challenges and Future 

Directions. European Respiratory Review 2017, 26 (145), 170023. 

Samai, P.; Pyenson, N.; Jiang, W.; Goldberg, G. W.; Hatoum-Aslan, A.; Marraffini, L. A. Co-

Transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell 2015, 161 (5), 



59 
 

1164–1174. 

Sampaio, P.; Ferreira, R. R.; Guerrero, A.; Pintado, P.; Tavares, B.; Amaro, J.; Smith, A. A.; 

Montenegro-Johnson, T.; Smith, D. J.; Lopes, S. S. Left-Right Organizer Flow Dynamics: How Much 

Cilia Activity Reliably Yields Laterality? Developmental Cell 2014, 29 (6), 716–728. 

San Filippo, J.; Sung, P.; Klein, H. Mechanism of Eukaryotic Homologous Recombination. Annual 

Review of Biochemistry 2008, 77 (1), 229–257. 

Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The 

Streptococcus Thermophilus CRISPR/Cas System Provides Immunity in Escherichia Coli. Nucleic 

Acids Research 2011, 39 (21), 9275–9282. 

Sashital, D. G.; Wiedenheft, B.; Doudna, J. A. Mechanism of Foreign DNA Selection in a Bacterial 

Adaptive Immune System. Molecular Cell 2012, 46 (5), 606–615. 

Satir, P.; Christensen, S. T. Overview of Structure and Function of Mammalian Cilia. Annual Review of 

Physiology 2007, 69 (1), 377–400. 

Schulte-Merker, S.; Stainier, D. Y. R. Out with the Old, in with the New: Reassessing Morpholino 

Knockdowns in Light of Genome Editing Technology. Development 2014, 141 (16), 3103–3104. 

Sharples, G. J. The X Philes: Structure-Specific Endonucleases That Resolve Holliday Junctions. 

Molecular Microbiology 2001, 39 (4), 823–834. 

Singla, V. The Primary Cilium as the Cell’s Antenna: Signaling at a Sensory Organelle. Science 2006, 

313 (5787), 629–633. 

Sobkowicz, H. M.; Slapnick, S. M.; August, B. K. The Kinocilium of Auditory Hair Cells and Evidence 

for Its Morphogenetic Role during the Regeneration of Stereocilia and Cuticular Plates. Journal of 

Neurocytology 1995, 24 (9), 633–653. 

Sorokin, S. Centrioles and the Formation of Rudimentary Cilia by Fibroblasts and Smooth Muscle 

Cells. The Journal of Cell Biology 1962, 15 (2), 363–377. 

Sugrue, K. F.; Zohn, I. E. Mechanism for Generation of Left Isomerism in Ccdc40 Mutant Embryos. 

PLoS ONE 2017, 12 (2), 1–17. 

Sui, W.; Hou, X.; Che, W.; Ou, M.; Sun, G.; Huang, S.; Liu, F.; Chen, P.; Wei, X.; Dai, Y. CCDC40 

Mutation as a Cause of Primary Ciliary Dyskinesia: A Case Report and Review of Literature. The 

Clinical Respiratory Journal 2016, 10 (5), 614–621. 

Tavares, B.; Jacinto, R.; Sampaio, P.; Pestana, S.; Pinto, A.; Vaz, A.; Roxo-Rosa, M.; Gardner, R.; 

Lopes, T.; Schilling, B.; et al. Notch/Her12 Signalling Modulates, Motile/immotile Cilia Ratio 

Downstream of Foxj1a in Zebrafish Left-Right Organizer. eLife 2017, 6, e25165. 

Verhulst, S. L.; Desager, K.; Van Gaal, L.; De Backer, W. Genotype-Phenotype Correlations in PCD 

Patients Carrying DNAH5 Mutations. Journal of Pediatrics. February 15, 2007, pp 372–373. 

Vincensini, L.; Blisnick, T.; Bastin, P. 1001 Model Organisms to Study Cilia and Flagella. Biology of the 

Cell 2011, 103 (3), 109–130. 

Yagi, T.; Minoura, I.; Fujiwara, A.; Saito, R.; Yasunaga, T.; Hirono, M.; Kamiya, R. An Axonemal 

Dynein Particularly Important for Flagellar Movement at High Viscosity: Implications from a New 

Chlamydomonas Mutant Deficient in the Dynein Heavy Chain Gene DHC9. Journal of Biological 

Chemistry 2005, 280 (50), 41412–41420. 



60 
 

Yang, P. Radial Spoke Proteins of Chlamydomonas Flagella. Journal of Cell Science 2006, 119 (6), 

1165–1174. 

Zariwala, M. A.; Omran, H.; Ferkol, T. W. The Emerging Genetics of Primary Ciliary Dyskinesia. 

Proceedings of the American Thoracic Society 2011, 8 (5), 430–433. 

Zhang, Y. J.; O’Neal, W. K.; Randell, S. H.; Blackburn, K.; Moyer, M. B.; Boucher, R. C.; Ostrowski, L. 

E. Identification of Dynein Heavy Chain 7 as an Inner Arm Component of Human Cilia That Is 

Synthesized but Not Assembled in a Case of Primary Ciliary Dyskinesia. Journal of Biological 

Chemistry 2002, 277 (20), 17906–17915. 

Zhu, X.; Liu, Y.; Yang, P. Radial Spokes—A Snapshot of the Motility Regulation, Assembly, and 

Evolution of Cilia and Flagella. Cold Spring Harbor Perspectives in Biology 2017, 9 (5), a028126. 

 

  



61 
 

 

 

 

 

 

 

 

Annexes 
  



62 
 

Annex I: 

 

Figure S1. Alignment of Homo sapiens dnah7 ATPase region and danio rerio dnah7 sequences. The 
sequence comparison was made using Clustal Omega at http://www.ebi.ac.uk/ Tools/msa/clustalo/. 
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Annex II: 

 

Figure S2. Alignment of Homo sapiens rsph4a and Danio rerio rsph4a sequences. The sequence comparison 
was made using Clustal Omega at http://www.ebi.ac.uk/ Tools/msa/clustalo/.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

Annex III: 

 

Figure S2. pDR274 plasmid. Pdr274 is a 2174 pb plasmid with an origin of replication (ori), a T7 terminator, a 
kanamycin resistance with a cat promoter. The plasmid also as an insertion zone, gRNA scaffold accessible with 
bsaI restriction enzyme. The location of M13F (which is used as a reverse primer), pDR274_Cpcr_3F and 
pDR274_Cpcr_3R primers. All plasmid modifications were made SnapGene® Viewer 2.8.2. Software (GSL Biotech 
LLC, Chicago) 

 


