
UNIVERSIDADE NOVA DE LISBOA 
INSTITUTO DE HIGIENE E MEDICINA TROPICAL 

 
 
 
 

 

Anaplasma phagocytophilum and  
human granulocytic anaplasmosis in Portugal 

 
 

 
Ana Sofia Pereira dos Santos 

 
Dissertação apresentada ao Instituto de Higiene e Medicina Tropical, 
Universidade Nova de Lisboa, para obtenção do Grau de Doutor no Ramo de 
Ciências Biomédicas, Especialidade de Microbiologia 
 

 
 

LISBOA 
2007 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Neutrophil with Anaplasma phagocytophilum morulae. Pheripheral blood smear stained with Diff-Quik. 
Photograph kindly provided by Professor J Stephen Dumler, The Johns Hopkins University School of 
Medicine, Baltimore. 
 
Neutrófilo com uma mórula de Anaplasma phagocytophilum. Esfregaço de sangue periférico corado com 
Diff-Quik. Fotografia gentilmente cedida pelo Professor J Stephen Dumler, The Johns Hopkins University 
School of Medicine, Baltimore. 



Este trabalho foi financiado pela Fundação para a Ciência e a Tecnologia através da atribuição da 
bolsa de doutoramento refª SFRH/BD/8610/2002. 
 

ORIENTAÇÃO: 
 
Doutora Fátima Bacellar 
Investigadora Principal Aposentada 
Centro de Estudos de Vectores e Doenças Infecciosas 
Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa 
 
Professor John Stephen Dumler 
Professor Associado 
Division of Medical Microbiology, Department of Pathology 
The Johns Hopkins University School of Medicine, Baltimore 
 

COMISSÃO TUTORIAL: 
 

Doutora Margarida Collares Pereira 
Investigadora Principal com Habilitação 
Instituto de Higiene e Medicina Tropical 
Universidade Nova de Lisboa, Lisboa 
 
Professor Doutor Paulo Almeida 
Professor Associado 
Instituto de Higiene e Medicina Tropical 
Universidade Nova de Lisboa, Lisboa 
 
Doutora Fátima Bacellar 
Investigadora Principal Aposentada 
Centro de Estudos de Vectores e Doenças Infecciosas 
Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa 
 





 
 
 
 
 
 
 
 
 
 
Na presente dissertação incluem-se resultados que foram ou estão a ser alvo de publicação em 
co-autoria. Para efeitos do disposto no nº1 do Despacho nº2303/2000 do Regulamento de 
Programas de Doutoramento do Instituto de Higiene e Medicina Tropical, Universidade Nova de 
Lisboa (Diário da República, 2ª série, nº23, de 28 de Janeiro de 2000), o autor da dissertação 
declara que interveio na concepção e execução do trabalho experimental, na interpretação dos 
resultados e na redacção dos manuscritos publicados, no prelo ou que aguardam submissão. 
 
 
 
 
 
 
Lisboa, 11 de Setembro de 2007 
 
 
 

 
Ana Sofia Pereira dos Santos 

 
 
 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

a Arminda  
 



 
 



ACKNOWLEGEMENTS / AGRADECIMENTOS 
 
 
Ao Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA) a possibilidade de realizar os trabalhos que 
permitiram a elaboração da presente dissertação; 
 
À Fundação para a Ciência e a Tecnologia, a atribuição da bolsa de doutoramento (refª 
SFRH/BD/8610/2002), sem a qual teria sido impossível a realização deste projecto; 
 
Ao Professor Doutor Armindo Filipe e Doutora Maria Sofia Núncio, responsáveis pelo Centro de Estudos 
de Vectores e Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge (CEVDI/INSA), em 
diferentes fases do meu percurso, pelo apoio e incentivo que tenho merecido desde os primeiros passos 
no mundo da Ciência e pela disponibilização de todos os recursos do Centro para o bom andamento da 
parte experimental desta dissertação; 
 
À Doutora Fátima Bacellar, minha orientadora no CEVDI/INSA e mentora, a quem devo a minha formação, 
o apoio incondicional e a amizade que tem sido uma constante desde que as nossas vidas se cruzaram; 
 
To Professor John Stephen Dumler, my sponsor at The Johns Hoopkins University School of Medicine, for 
all the knowledge, support and stimulation. I am grateful for knowing you and honoured to be able to share 
some of your expertise in A. phagocytophilum field. 
 
À Doutora Margarida Collares Pereira e ao Professor Doutor Paulo Almeida, por terem aceite ser o elo de 
ligação ao Instituto de Higiene e Medicina Tropical (IHMT), e que com as suas sugestões, apoio e incentivo 
simplificaram várias etapas deste trabalho; 
 
Ao Professor Doutor Virgílio do Rosário e Professora Doutora Maria Amélia Grácio, anterior e actual 
Presidente do Conselho Científico do IHMT, pelo acolhimento institucional e disponibilidade na resolução 
de todas as questões académicas determinantes para a boa consecução deste projecto; 
 
Ao Mestre João Lavinha, ex-Director do INSA e presentemente responsável pelo Centro de Genética 
Humana do mesmo Instituto, por acreditar e apoiar todos os projectos que me proponho desenvolver; 
 
 

 



To all the Researchers that since a long time have collaborated with CEVDI/INSA in Anaplasmatacea field, 
from which the work developed in this dissertation has beneficiated, especially to Jackie Dawson from CDC 
- Atlanta, Professor Didier Raoult and Philipe Brouqui from Unité des Rickettsie - Marseille, José António 
Oteo and Arantza Portillo from Hospitales San Millán-San Pedro  de La Rioja – Logroño. 
 
Também aos Investigadores portugueses, Professor Doutor João David de Morais, Doutora Susana da 
Franca, Professor Doutor Victor Caeiro e Professor Doutor António José do Santos Grácio, com quem tive 
o privilégio de colaborar em várias etapas do meu percurso científico. 
 
A presente dissertação é ainda testemunho da cooperação, dedicação e amizade de muitos a quem 
gostaria de expressar o meu profundo reconhecimento, como os colegas e amigos do CEVDI/INSA, do 
Dumler’s lab, do Laboratório de Microbiologia e Ecologia e da Unidade de leptospirose e borreliose de 
Lyme; 
 
Por último, aos primeiros em matéria de partilha de sofrimento e alegrias nestas etapas da minha vida, aos 
meus pais, em nome de toda a família, amigos e ao Jorge. 
 

Foi por vós que aqui cheguei… 
 

 



Abstract / Resumo 
 
 

ABSTRACT 
 
 

Anaplasma phagocytophilum and granulocytic anaplasmosis are of increasing interest to the 
scientific community as indicated by the expanding number of reports published in the past two decades, 
and especially since the emergence of the first cases of human granulocytic anaplasmosis (HGA). The 
growing recognition of the Public Health importance of A. phagocytophilum in North America and in Europe, 
along with its recent detection in Portugal has signalled the need for more detailed studies that address the 
emergence of HGA and its causative agent in our country. 

Initially based on an methodological training in research units dedicated to Anaplasmataceae, this 
work enabled the transfer of technology as currently applied to A. phagocytophilum research and made 
possible the development of a new line of investigation at Centro de Estudos de Vectores e Doenças 

Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge (CEVDI/INSA). By establishing the foundations 
for concerted study on A. phagocytophilum and HGA, the work described herein has facilitated development 
of a broad approach toward fundamental issues in Anaplasmataceae ecobiology and disease by focusing 
attention on identification of potential ixodid vectors, mammals likely to be involved in the infectious agent’s 
life cycles either as reservoirs or affected hosts, and garnered the evidence indicating the potential for 
human exposure in Portugal. 
 The studies conducted in ixodid ticks proves the involvement of two Ixodes species in A. 

phagocytophilum cycles, including Ixodes ricinus on Madeira Island and I. ventalloi on the mainland. The 
detection of A. phagocytophilum DNA in I. ricinus reinforces prior studies and suggests its persistence on 
Madeira Island. This thesis also adds new data to the understanding of the natural history of A. 

phagocytophilum by providing the first evidence of infections in I. ventalloi ticks. The fact that some infected 
arthropods infest domestic cats not only mandates the inclusion of these mammals on the national list of 
vertebrate hosts parasitized by I. ventalloi ticks, but also shows their potential complicity in A. 

phagocytophilum maintenance. Moreover, molecular data shows the existence of A. phagocytophilum 
variant genotypes in Portuguese ticks. Partial gene sequences from infected ticks demonstrates nucleotide 
polymorphisms that support a close relationship of A. phagocytophilum on Madeira Island I. ricinus to North 
American strains isolated from humans as well as genotypes detected in Central and Northern Europe. Yet, 
these variants diverge from those found in mainland I. ventalloi, which represents a new genotype of 
undetermined pathogenicity. 

Serological evidence of exposure to A. phagocytophilum or a close related agent is shown in Mus 

spretus mice, horses, and dogs in mainland. Molecular analysis of biological samples from these animal 
populations provides the first definitive evidence of A. phagocytophilum active infection in Portuguese 
vertebrates with detection of its DNA in one seropositive horse from mainland Portugal, where the A. 
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phagocytophilum genotype found is closely related to strains isolated from humans, suggesting the potential 
for HGA in Portugal. This thesis further extends study to identification of another closely related Anaplasma 
species, and its potential for serological cross-reactions with A. phagocytophilum, as evident with the 
detection of A. platys DNA in seropositive dogs. These data also underscore the importance of veterinarians 
maintaining vigilance for detection of not only granulocytic anaplasmosis but also canine infectious cyclic 
thrombocytopenia as causes of tick-borne diseases in Portugal.  

Both prospective and retrospective serological and molecular investigations of human exposure to 
A. phagocytophilum were performed on samples received at CEVDI/INSA for the laboratory diagnosis of 
patients with suspected tick-borne diseases during 2000-2006. The results provide evidence for seropositive 
Portuguese patients, including cases that fulfil serological criteria for HGA, although active infections were 
not detected. Moreover some seropositive patients had additional evidence of other tick-borne agents or 
related bacteria infections, including Lyme borreliosis, Q fever and bartonellosis. Although possibly false 
positive cross-reactions to shared antigens, these reactions potentially could be the result of active dual 
infections, or past exposure to several agents transmitted by Ixodes species. Overall, these results argue for 
continued development of improved A. phagocytophilum diagnostics, especially direct detection techniques, 
and integrated analysis of diagnostic tests for patients with suspected Ixodes-borne disease. 

Although many aspects introduced and explored here will require expanded and more detailed 
investigations, this thesis contributes positively to a fundamental understanding of the extent to which A. 

phagocytophilum occurs in Portugal and its potential as a disease agent. It is hoped that these beginning 
studies will help to delineate new lines of research that more fully address granulocytic anaplasmosis and 
other emerging Ixodes-borne diseases. 
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Abstract / Resumo 
 
 

RESUMO 
 
 
 Anaplasma phagocytophilum e anaplasmose granulocítica têm vindo a merecer um crescente 
interesse na comunidade científica, facto demonstrado pelo crescente número de publicações que surgiram 
nas duas últimas décadas, particularmente desde que foram documentados os primeiros casos de 
anaplasmose granulocítica humana (AGH). O reconhecimento da importância de A. phagocytophilum em 
termos de Saúde Pública na América do Norte e na Europa, associado à recente detecção do agente em 
Portugal, pôs em evidência a necessidade de estudos mais detalhados sobre a emergência deste 
Anaplasmataceae e de AGH no nosso país. 
 Inicialmente baseado num treino metodológico em Unidades de Investigação especializadas em 
Anaplasmataceae, o presente trabalho permitiu a transferência da tecnologia correntemente aplicada ao 
estudo de A. phagocytophilum e consequentemente o desenvolvimento desta linha de investigação no 
Centro de Estudos de Vectores e Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge 
(CEVDI/INSA). Ao estabelecer as bases para um estudo concertado em A. phagocytophilum e AGH, este 
trabalho tornou possível uma abordagem abrangente a aspectos essenciais da ecobiologia deste 
Anaplasmaceae e da doença que lhe está associada, focando-se na identificação de potenciais ixodídeos 
vectores, de mamíferos envolvidos no ciclo natural do agente, quer como reservatórios quer como 
hospedeiros susceptíveis, recolhendo evidências que apontam para a possibilidade de exposição do 
homem a este agente em Portugal. 
 Os estudos levados a cabo nos ixodídeos demonstram o envolvimento de duas espécies de 
Ixodes no ciclo de A. phagocytophilum, concretamente Ixodes ricinus na Ilha da Madeira e I. ventalloi no 
continente. A detecção de ADN do agente em I. ricinus vem reforçar estudos anteriores, sugerindo a sua 
persistência na Ilha da Madeira. Esta tese acrescenta ainda um novo dado ao conhecimento da história 
natural de A. phagocytophilum, com a primeira detecção de infecção em I. ventalloi. O facto de alguns dos 
artrópodes infectados terem sido obtidos a partir de gatos domésticos, não só acrescenta este mamífero à 
lista nacional de hospedeiros vertebrados parasitados por I. ventalloi mas sugere também o seu potencial 
envolvimento no ciclo de transmissão de A. phagocytophilum. A análise molecular dos dados obtidos 
evidencia ainda a existência de diferentes genótipos deste Anaplasmaceae nos ixodideos portugueses. As 
sequências nucleotídicas obtidas sugerem a proximidade genética entre A. phagocytophilum detectado em 
I. ricinus na Ilha da Madeira e estirpes isoladas de humanos na América do Norte, bem como de 
sequências detectadas na Europa Central e do Norte. No entanto estes genótipos divergem das 
sequências nucleotídicas obtidas a partir do I. ventalloi no continente, que representa um novo genótipo de 
patogenia não determinada. 
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São também apresentadas evidências serológicas da exposição a A. phagocytophilum ou a outro 
agente antigenicamente semelhante em ratinhos Mus spretus, cavalos e canídeos domésticos no 
continente. A análise molecular das amostras biológicas obtidas a partir das populações em estudo permitiu 
a detecção da primeira infecção activa por A. phagocytophilum em vertebrados portugueses, com a 
identificação de ADN do agente num dos cavalos seropositivos. Sendo as sequências nucleotídicas obtidas 
semelhantes à das estirpes associadas aos casos de infecção em humanos, é reforçada uma vez mais a 
possibilidade de AGH ocorrer em Portugal. Esta tese refere ainda a identificação de outra 
Anaplasmataceae filogenicamente próxima de A. phagocytophilum - A. platys, detectada em canídeos 
seropositivos, evidenciando a possibilidade de ocorrerem reacções cruzadas entre estes dois agentes. 
Estes dados salientam a importância da vigilância em termos veterinários da ocorrência não só de 
anaplasmose granulocítica mas também de trombocitopénia cíclica infecciosa canina como causa de 
doença associada a ixodídeos em Portugal. 
 Para averiguar a possibilidade de exposição humana a A. phagocytophilum foram realizados 
estudos serológicos e moleculares retrospectivos e prospectivos, em amostras biológicas recebidas no 
CEVDI/INSA durante 2000-2006 para o diagnóstico laboratorial de pacientes com suspeita de doença 
associada a ixodídeos. Os resultados provam a existência de reacções serológicas positivas na população 
estudada, incluindo alguns casos que satisfazem os critérios serológicos para definição de AGH, embora 
sem evidência de infecção activa. Adicionalmente, alguns dos doentes seropositivos apresentaram 
evidência de infecção causada por outros agentes transmitidos por ixodídeos ou por bactérias 
relacionadas, nomeadamente borreliose de Lyme, febre Q e bartonelose. Embora estes resultados possam 
ser interpretados como falsos positivos resultantes de reacções cruzadas, a possibilidade de se tratarem de 
co-infecções ou exposições anteriores a vários agentes transmitidos por ixodídeos do género Ixodes 
também deverá ser considerada. Em suma, estes resultados apontam para a necessidade de desenvolver 
o diagnóstico de A. phagocytophilum, nomeadamente no que diz respeito à aplicação de técnicas directas 
de detecção do agente, bem como à integração dos dados do diagnóstico laboratorial em casos de 
suspeita de doença associada a Ixodes spp. 
 Embora muitos dos aspectos focados neste trabalho requeiram uma investigação mais detalhada, 
esta tese contribui positivamente para a compreensão das questões fundamentais relacionadas com a 
ocorrência de A. phagocytophilum e o seu potencial como agente de doença em Portugal. Termina-se com 
a esperança de que estes primeiros passos ajudem a delinear novas linhas de investigação no âmbito do 
estudo da anaplasmose granulocítica e outras doenças emergentes associadas a espécies do género 
Ixodes. 
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Introduction 
 

OUTLINE AND OBJECTIVES 
 
 

Ticks are obligate hematophagous acarines that present widespread distribution and 
parasitize a broad range of terrestrial vertebrates, including amphibians, reptiles, birds, domestic 
and wild mammals and humans. Its implication in infectious disease was first evident in veterinary 
medicine when Boophilus annulatus was linked to Texas cattle fever via transmission of Babesia 

bigemina (Smith & Kilbourne, 1893). In the beginning of the 20th century, ticks were additionally 
implicated in human disease with the description of tick-borne relapsing fever, caused by Borrelia 

duttonii, and its association with Ornithodoros moubata bites (Dutton & Todd, 1905), as well as 
recognition of the role that Dermacentor andersoni plays as vectors of Rickettsia rickettsii, the 
agent of Rocky Mountain spotted fever (Ricketts, 1909). Since then, ticks were linked to several 
other protozoal, bacterial and viral infections. The last three decades in particular have revealed 
the emergence of an increasing number of human tick-borne diseases, mostly due to the 
expanding knowledge of ticks, their pathogenic potential and the development of more reliable 
diagnostic tools. 

Human infections caused by bacteria belonging to the family Anaplasmataceae represent 
some of the best examples of newly emergent tick-borne diseases. Some of these agents have 
been long known as veterinary pathogens but their implication in human cases has only recently 
been recognized, such as for Anaplasma phagocytophilum the etiologic agent of human 
granulocytic anaplasmosis (HGA). Disease caused by this microorganism was first recognized in 
1932 in European sheep and cattle (Gordon et al., 1932), and a similar agent was also later found 
to be the cause of equine pathology in the United States of America (US) (Gribble, 1969; Stannard 
et al., 1969). However, only in the 1990’s were the first cases of human infection described in US 
(Bakken et al., 1994; Chen et al., 1994) and in Europe (Petrovec et al, 1997). At present, HGA 
stands out as the most prevalent human disease caused by an Anaplasmataceae member, due to 
the number of cases that are reported annually in US; in some areas of the country HGA is the 
second most frequent vector-borne disease following Lyme borreliosis (LB)1. Moreover, it is 
suggest that A. phagocytophilum is found broadly across several countries in Europe, Middle East 
and Asia, raising the possibility of human and animal infections over the same geographic regions.

                                                 
1 Lyme borreliosis (LB) is a tick-borne disease caused by the eubacteria Borrelia burgdorferi senso lato (s.l.). 
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Although the number of HGA cases outside the US is still limited, the possibility that this zoonosis 
is under-diagnosed owing to a lack of physician awareness or inavailability of current laboratory 
diagnostics is controversial and of great concern. 

As HGA has now been readily recognized in other European countries, this thesis was 
undertaken to contribute to the fuller understanding of A. phagocytophilum ecobiology, with an 
emphasis on its potential importance to human health in Portugal. 
In summary, the general aims of this thesis are: 
- To investigate the role of Portuguese tick species as vectors of A. phagocytophilum; 
- To search for potential reservoirs and affected vertebrate hosts in Portugal; 
- To ascertain the importance of A. phagocytophilum in human disease; 
- To develop methodological and technical approaches applied to HGA laboratory diagnosis; 
- To isolate and/or characterize A. phagocytophilum strains circulating in the country. 
 
 

DISSERTATION PLAN 
 
The thesis is organized in six chapters: 
 
The first chapter is the introduction to the theme providing general information about tick-borne 
bacteria belonging to the family Anaplasmataceae and a broad updated perspective of A. 

phagocytophilum and its role in HGA. 
 
Chapter two reflects the collaborative work focused on Anaplasmataceae field, developed during 
the technology exchange and the acquisition of tools and knowledge that provided the basis for 
developing the proposed research plan. 
 
Chapter three is devoted to the study of A. phagocytophilum vectors. It describes molecular-based 
analyses of Anaplasmataceae within several tick species obtained either questing or parasitizing 
vertebrates in several areas of the country. 
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Chapter four explores the possibility of non-human vertebrate exposure to A. phagocytophilum 
supported by serological and molecular-based analyses of biological samples obtained from both 
wild and domestic animals. 
 
Chapter five addresses the epidemiological basis of HGA in Portugal based on serologic studies of 
patients with suspected or confirmed tick-borne diseases and in the application of serologic testing 
in routine diagnosis performed at the Centro de Estudos de Vectores e Doenças Infecciosas, 
Instituto Nacional de Saúde Dr. Ricardo Jorge (CEVDI/INSA). 
 
Finally, chapter six summarises the results presented and discussed in previous chapters in an 
integrated analysis, highlighting their implications in Public Health and delineating future research 
objectives. 
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Chapter I. State of the art 

1.1. FAMILY ANAPLASMATACEAE 
 
 
1.1.1. DEFINITION 
 

Members of the family Anaplasmataceae are non-motile, obligatory intracellular Gram-
negative bacteria that reside in a membrane-bound cytoplasmic vacuole of the host cell, either 
singly or more often in characteristic microcolonies resembling mulberries, termed morulae (Latin 
morum = mulberry, Figure 1). They are represented by fifteen or sixteen species, classified in five 
distinct genera: Aegyptianella, Anaplasma, Ehrlichia, Neorickettsia and Wolbachia (Table 1). 
(Garrity et al., 2004; Dumler et al., 2005b). 

Most Anaplasmataceae are etiologic agents of worldwide veterinary diseases, some of 
which are now also regarded as emerging human pathogens. The only exception is the genus 
Wolbachia that includes arthropod and nematode endosymbionts, but that may be involved in the 
pathogenesis of filiariasis (Hoerauf et al., 2001; Taylor et al., 2005). In general, the biological cycle 
of Anaplasmataceae involves the infection of invertebrates (Wolbachia), and incidentally also 
vertebrates (Neorickettsia) or both invertebrate and vertebrate hosts (Aegyptianella, Anaplasma 
and Ehrlichia). Unique cell tropisms are displayed by these agents and depending on bacterial 
species, endothelial and/or hematopoietic lineage cells (erythrocytes, monocytes/ macrophages, 
granulocytes or platelets) are specifically infected in vertebrate hosts. The most important 
biological, ecological and epidemiological features of Anaplasmataceae with medical importance 
are showed in table 2. 

 
FIGURE 1. Electron photomicrograph 
of a canine macrophage-like cell 
(DH82, ATCC CRL-10389) infected 
with Ehrlichia canis (adapted from 
Popov et al., 1998). 

e 

e 

m 

Ct 

 
The cytoplasm (Ct) contains seven morulae 
(m) filled with ehrlichiae (e), showing coccoid 
to ellipsoidal, often pleomorphic shape. Bar 
1µm.  
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TABLE 1. Current classification of the family Anaplasmataceae (adapted from Garrity et al., 2004). 
 

Family Anaplasmataceae 
 

Genus 
 
Anaplasma Aegyptianella 

(incertae sedis) 
 

Ehrlichia Neorickettsia Wolbachia 

 
A. bovis  
A. caudatum 
A. centrale 
A. marginale 
A. platys 
A. phagocytophilum 
 

 
A. pullorum 

 
E. canis 
E. chaffeensis 
E. ewingii 
E. muris 
E. ruminantium 

 
N. helminthoeca 
N. risticii 
N. sennetsu 

 
W. pipientis 
 

 
 
1.1.2. PHYLOGENY AND TAXONOMY 
 

The family Anaplasmataceae is taxonomically classified in the Domain Bacteria, Phylum 
Proteobacteria, Class "Alphaproteobacteria" and Order Rickettsiales. For many years, 
Anaplasmataceae were categorized based solely on morphological, ecological, epidemiological 
and clinical characteristics such as infected host cells, infected mammalian species, geographic 
location, and antigenic cross-reactivity (Philip, 1957; Moulder, 1974; Weiss & Moulder, 1984). The 
development of molecular tools for phylogenetic studies and the improvement of methods for the 
cultivation of obligate intracellular bacteria has helped clarify the exact phylogenetic positions of 
Anaplasmataceae, which in turn has lead to profound reorganization of this Family and other 
closely related taxa (Garrity et al., 2004) (Figure 2).  

The family Anaplasmataceae was first proposed in the seventh edition of Bergey's Manual 
of Determinative Bacteriology to include the genus Anaplasma composed of three species, A. 

centrale, A. marginale and A. ovis (Philip, 1957). Four additional genera, Aegyptianella (A. 

pullorum), Eperythrozoon (E. coccoides, E. ovis, E. parvum, E. suis and E. wenyonii), 
Haemobartonella (H. canis, H. felis and H. muris) and Paranaplasma (P. caudatum and P. 

discoides) were included in the revision that followed (Moulder, 1974). In the first edition of 
Bergey’s Manual of Systematic Bacteriology Paranaplasma was assigned to the genus 
Anaplasma, and P. caudatum was renamed as A. caudatum, which represented the last 
categorization of this family based exclusively in phenotypic similarity (Weiss & Moulder, 1984). 

 10



Chapter I. State of the art 

In the following years the analysis of conserved genes such as 16S rRNA (rrs), heat shock 
operon (groESL), and citrate synthase (gltA) sequences started to outline phylogenetic 
relationships of Anaplasmataceae and other closely related bacteria (Weisburg et al., 1989, 1991; 
Dame et al., 1992; O’Neill et al., 1992; Wen et al., 1995, 1996; Pretzman et al., 1995; Rikihisa et 

al., 1997; Zhang et al., 1997; Sumner et al., 2000; Inokuma et al., 2001a, 2001b; Yu et al., 2001). 
This approach has been widely used to both identify newly discovered bacteria as well as to 
redefine existing taxonomy, thus showing that the taxonomic classification of Anaplasmataceae 
needed to be restructured. 

Molecular analysis has shown that Eperythrozoon and Haemobartonella species did not 
cluster with the other Anaplasmataceae, so their removal from the order Rickettsiales to Mollicutes 
was proposed (Rikihisa et al., 1997). It has also been shown that some agents classified in the 
family Rickettsiaceae, especially those of the tribe Ehrlichieae and Wolbachieae, were closely 
related to Anaplasma (O’Neill et al., 1992; Drancourt & Raoult, 1994; Wen et al., 1995; Walker & 
Dumler, 1996; Sumner et al., 2000; Inokuma et al., 2001a, 2001b; Yu et al., 2001). Based on an 
exhaustive analysis of rrs, groESL and surface protein gene sequences deposited in GenBank, 
Dumler and coworkers (2001) proposed a reorganization of the Order Rickettsiales. Concerning 
Anaplasmataceae, it was proposed: i) to include the closely related species of the family 
Rickettsiaceae (Ehrlichia, Neorickettsia, Cowdria, Wolbachia); ii) to expand the genus Anaplasma 
and incorporate Ehrlichia bovis, Ehrlichia platys and Anaplasma phagocytophilum (including 

Ehrlichia phagocytophila, Ehrlichia equi and human granulocytic ehrlichiosis [HGE] agent). The 
unification of E. phagocytophila, E. equi and HGE agent as a single species confirmed previous 
studies that suggested a close molecular (Chen et al., 1994; Pretzman et al., 1995; Goodman et 

al., 1996; Sumner et al., 1997; Zhang et al., 1997; Inokuma et al., 2001a, 2001b) and antigenic 
(Barlough et al., 1995; Dumler et al., 1995; Madigan et al., 1995) similarity between those agents; 
iii) to fuse Cowdria with the genus Ehrlichia and place the sole species, Cowdria ruminantium, with 
the existing species Ehrlichia canis, Ehrlichia chaffensis, Ehrlichia ewingii and Ehrlichia muris; iv) 
to expand the genus Neorickettsia to include Ehrlichia risticii and Ehrlichia sennetsu; v) to exclude 
Wolbachia persica and W. melophagi from the genus Wolbachia and to include the genus 
Wolbachia with its sole member Wolbachia pipientis; vi) to retain provisional Aegyptianella as 
Genus incertae sedis due to the lack of molecular information. 

Almost all the proposed reorganizations in family Anaplasmataceae were introduced in the 
second edition of Bergey’s Manual of Systematic Bacteriology (Garrity et al., 2001, 2002a, 2002b, 
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2003, 2004; Dumler et al., 2005b). The heterogeneity of W. pipientis might also justify the revision 
of species concept with creation of additional taxa to include the distinct host-associated clades 
that have been described (Lo et al., 2002; Fen et al., 2006). Moreover, the incertae sedis 
classification of Aegyptianella has been called to question owing to its phenotypic similarities with 
Anaplasma spp., and later reinforced by genetic data (Rikihisa et al., 2003). In future revisions new 
agents might be included in Anaplasmataceae, such as Candidatus Neoehrlichia mikurensis 
(Ehrlichia walkerii), E. shimanensis, and Xenohaliotis californiensis (Friedman et al., 2000 ;Brouqui 
et al., 2003; Kawahara et al., 2004, 2006; Rikihisa, 2006a). 
 
FIGURE 2. Current phylogeny and taxonomic classification of genera in the family 
Anaplasmataceae. The distance bar represents substitutions per 1,000 bp (adapted from Dumler et 
al., 2005a). 

 

 
1.1.3. HISTORICAL PERSPECTIVE OF HUMAN INFECTION  
 

Our current knowledge of Anaplasmataceae started at the beginning of the 20th century 
with the descriptions of Theiler (1910) implicating Anaplasma marginale as the etiologic agent of 
anaplasmosis, a tick-borne disease of ruminants that is still associated to enormous worldwide 
annual economic losses. In the following years several other agents causing disease in domestic 
and wild animals were identified, such as Anaplasma centrale (Theiler, 1911); Cowdria (now 

Ehrlichia canis 

Rickettsia rickettsii Rickettsia typhi 

Ehrlichia chaffeensis 
Ehrlichia muris 

Ehrlichia  
Ehrlichia ewigii Orientia tsutsugamushi ruminantium 

Anaplasma marginale 

Anaplasma platys 

Anaplasma phagocytophilum 

Wolbachia pipientis 

Neorickettsia helminthoeca Neorickettsia risticii 
Neorickettsia sennetsu 
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Ehrlichia) ruminantium (Cowdry, 1925), Ehrlichia (now Anaplasma) ovis (Lestoquard, 1924), 
Ehrlichia phagocytophila (now Anaplasma phagocytophilum) (Gordon et al., 1932; Foggie 1951), 
Ehrlichia canis (Donatien & Lestoquard, 1935), Ehrlichia (now Anaplasma) bovis (Donatien & 
Lestoquard, 1936), Neorickettsia helminthoeca (Philip et al., 1953), Ehrlichia equi (now Anaplasma 

phagocytophilum) (Gribble, 1969; Stannard et al., 1969), Ehrlichia (now Anaplasma) platys (Harvey 
et al., 1978), Ehrlichia (now Neorickettsia) risticii (Holland et al., 1985; Rikihisa & Perry, 1985), 
Ehrlichia ewingii (Ewing et al., 1971; Anderson et al., 1992), Ehrlichia muris (Wen et al., 1995) 
(Table 2). 

In spite of abundant reports in the veterinary field, no case of human infection by 
Anaplasmataceae was described before the 1950s. Sennetsu fever, documented in Japan in 1954 
(Misao & Kobayashi, 1955), was formally the first known human disease caused by an 
Anaplasmataceae member, although it now commands little medical significance. In fact, the 
mononucleosis-like illness caused by Neorickettsia (formerly Ehrlichia) sennetsu occurs only in 
limited areas of the Far East, rarely outside Japan and Malaysia and is usually mild, with no deaths 
having ever been reported. However, in the last decade of the 20th century, the scientific 
community’s view of Anaplasmataceae infections changed dramatically with the description of two 
new severe to fatal forms of disease in United States (US). In 1986, human monocytic ehrlichiosis 
(HME) was reported from Central Arkansas (Maeda et al., 1987). This disease was caused by a 
new species named Ehrlichia chaffeensis, closely related to the veterinary pathogens E. canis and 
E. ewingii (Anderson et al., 1991; Dawson et al., 1991) and later proven to be also infective for 
animals, as summarized in Paddock and Childs (2003). In the early 1990’s, cases of human 
granulocytic anaplasmosis (HGA) (formerly human granulocytic ehrlichiosis [HGE]) were reported 
from Minnesota and Wisconsin (Bakken et al., 1994; Chen et al., 1994). The exact nature of the 
causative agent, originally named “HGE agent”, remained uncertain for several years until its 
unification with the animal pathogens E. phagocytophila and E. equi into a single species 
designation, Anaplasma phagocytophilum (Dumler et al., 2001; Garrity et al., 2003). Additionally, 
two other Anaplasmataceae of well known veterinary importance were also described as a cause 
of human infection. In 1996, E. canis - the etiologic agent of canine monocytic ehrlichiosis was 
isolated from an apparently healthy man (Perez et al., 1996; Unver et al., 2001b), and later 
associated with several symptomatic cases (Perez et al., 2006) in Venezuela. More recently in 
1999 E. ewingii, the etiologic agent of canine granulocytic ehrlichiosis, was also identified as a 
human disease agent in US, mostly in immunocompromised patients (Buller et al., 1999). 
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HME and HGA are now considered the most important human diseases caused by 
Anaplasmataceae members. In the US, 1,223 cases were reported by 30 state health departments 
from 1986 to 1997, 742 (60.7%) categorized as HME, 449 (36.7%) as HGA and 32 (2.6%) not 
ascribed to a specific agent (McQuiston et al., 1999; Paddock & Childs, 2003). In 1999, both 
diseases had become nationally notifiable and official reports show that HGA is more frequently 
recognized than HME (CDC, 2001, 2002, 2003, 2004, 2005, 2006). As an example, the average 
reported annual incidences during 2001-2002 were 14 and 6 cases per 105 inhabitants for HGA 
and HME, respectively (Demma et al., 2005). Moreover, worldwide investigation has revealed 
increasing evidence of a potential role of E. chaffeensis and especially A. phagocytophilum in 
human disease also outside the US. Serological studies have suggested the occurrence of HME in 
febrile illness patients from Europe (David de Morais et al., 1991; Pierard et al., 1995; Nutti et al., 
1998), Africa (Uhaa et al., 1992), and South America (Da Costa et al., 2006), but so far neither E. 

chaffeensis isolation nor DNA detection has been achieved in human cases to reinforce these 
data. Concerning HGA, the first patient with confirmed disease outside the US was reported from 
Slovenia in 1997 (Petrovec et al., 1997) and more than fifty cases have been reported in Europe 
since then. The majority occurred in Northern and Central Europe, especially Slovenia (Lotric-
Furlan et al., 2006), but there are also individual case reports from other European countries, later 
discussed in detail. Polymerase chain reaction (PCR)-based studies of potential tick vectors and 
reservoir animals have also shown the wide distribution of A. phagocytophilum across Europe and 
in some parts of Middle East and Asia, which will be object of further revision. 

It seems that human A. phagocytophilum-associated infections rather than E. chaffeensis 
are more commonly recognized over various continents. Thus, HGA possibly represents a 
widespread and significant public health problem of increasing but undefined magnitude in most 
countries, and that should be better investigated. 
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TABLE 2. Biological, ecological and epidemiological features of medically important Anaplasmataceae species. 

Genus/Species   Vector/
Transmission 

Host Target Cell Disease Geographic Distribution  First Reference 

 

Anaplasma       

A. bovis 
 

Ixodid ticks/ Bite Ruminants Monocytes Bovine “ehrlichiosis” Africa, Middle East and Asia Donatien & Lestoquard, 1936 
A. caudatum 
 

Ixodid ticks / Bite Ruminants Erythrocytes Anaplasmosis Worldwide Ristic & Kreier,1984 
A. centrale 
 

Ixodid ticks / Bite Ruminants Erythrocytes Anaplasmosis Worldwide Theiler, 1911 
A. marginale 
 

Ixodid ticks / Bite Ruminants Erythrocytes Anaplasmosis Worldwide Theiler, 1910 
A. ovis 
 

Ixodid ticks / Bite Ruminants Monocytes  Asia Lestoquard, 1924 
A. platys 
 

Ixodid ticks / Bite Canids Platelets Infectious cyclic thrombocytopenia  
   

      

Worldwide Harvey et al., 1978 
A. phagocytophilum 

 
Ixodid ticks / Bite Ruminants 

Equines 
Humans 
Canines 
Felines 
 

Neutrophils Tick-borne fever
Equine granulocytic anaplasmosis  
Human granulocytic anaplasmosis 
 

Europe 
America and Europe 
United States and Europe 
United States and Europe 
United States and Europe 

Gordon et al., 1932 
Gribble, 1969; Stannard et al., 1969 
Bakken et al., 1994; Chen et al., 1994 
Madewell & Gribble, 1982 
Bjoersdorff et al., 1999c 

Aegyptianella 
A. pullorum 
 

Argasid ticks /Bite Birds Erythrocytes  Worldwide Carpano, 1928 
Ehrlichia       
E. canis Ixodid ticks/Bite Canines 

Humans 
 

Monocytes, macrophages Canine monocytic ehrlichiosis Worldwide; 
Venezuela 

Donatien & Lestoquard, 1935 
Perez et al., 1996 
 

E. chaffeensis Ixodid ticks / Bite Humans 
Canines 
 

Monocytes, macrophages Human monocytic ehrlichiosis United States Maeda et al., 1987 
Dawson et al., 1996 
 

E. ewingii Ixodid ticks / Bite Canines 
Humans 
 

Neutrophils Canine granulocytic ehrlichiosis United States Ewing et al., 1971 
Buller et al., 1999 
 

E. muris Ixodid ticks / Bite Rodents 
 

Monocytes, macrophages  Japan Wen et al., 1995 
E. ruminantium 
 

Ixodid ticks / Bite Ruminants Endothelial cells, neutrophils Heartwater disease Africa and Caribbean region Cowdry, 1925 

Neorickettsia       
N. helminthoeca Trematodes/ Ingestion Canines 

 
Monocytes, macrophages Salmon poisoning disease United States Philip et al., 1953 

N. risticii Trematodes/ Ingestion Equines 
 

Monocytes, macrophages Potomac horse fever America and Europe Holland et al., 1985; Rikihisa & Perry, 1985 
 

N. sennetsu 
 

Trematodes/ Ingestion Humans 
 

Monocytes, macrophages Sennetsu fever Japan and Malaysia Misao & Kobayashi, 1955 
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1.2. ANAPLASMA PHAGOCYTOPHILUM 
 
 
1.2.1. GENERALITIES 
 

A. phagocytophilum is a small coccoid to ellipsoidal, often pleomorphic bacterium with a 
cell diameter ranging from 0.2 to 2.0 µm. Ultrastructurally, it contains a nucleoid with electron-
dense DNA strands and ribosomes surrounded by two limiting membranes, an inner cytoplasmic 
membrane and a rippled outer cell wall. Like the majority of Anaplasmateaceae, this 
microorganism forms characteristic microcolonies (morulae) in the cytoplasm of infected cells, as 
the result of the agent’s binary fission in a confined area defined by membrane-bounded vacuole 
(Popov et al., 1998). 

The natural history of A. phagocytophilum involves both the infection of arthropods, 
especially Ixodes ticks, and several mammalian species, in which man is included as an incidental 
dead-end host. Depending on the infected host, different cell types are targeted by this agent in a 
replication cycle that is still not entirely understood. In vertebrates the microorganism has a marked 
tropism for polymorphonuclear leucocytes, preferentially infecting neutrophils, a characteristic 
feature often noted with disease. A. phagocytophilum causes a pathologic process commonly 
known as granulocytic anaplasmosis (GA). The designation based on cell tropism may become 
less useful as additional Anaplasmataceae members are recognized as pathogens and since more 
than one species may be responsible for the broad category of "granulocytic" disease. However, 
this nomenclature is firmly established in the literature, and to avoid confusion here it will be used 
to designate disease caused by A. phagocytophilum. 

GA affects humans as well as several domestic animals including ruminants, horses, dogs 
and cats (Gordon et al., 1932; Gribble, 1969; Madewell & Gribble, 1982; Bakken et al., 1994; Chen 
et al., 1994; Greig et al., 1996; Bjoerdorf et al., 1999c). The disease is generically characterized as 
a non-specific febrile illness accompanied by hematological abnormalities and hepatic injury. 
Historically, GA has been recognized by different designations, each of them associated with 
fingdings thought to be caused by a distinct etiologic agent. According to the affected host and 
implicated pathogen, the disease was named ruminant tick-borne fever (or pasture fever), equine 
granulocytic ehrlichiosis and human granulocytic ehrlichiosis as the result of infections by E. 

phagocytophila, E. equi and the HGE agent, respectively. The unification of these agents into a 
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single species proposed by Dumler and coworkers (2001) expanded the dimensions and 
broadened the perspective of this tick-borne disease. 

Not cultivable in cell-free media or chicken embryos, the in vitro manipulation of A. 

phagocytophilum was initially based on direct purification from infected blood or short-term cultures 
of blood cells collected from infected animals. The development of cell culture systems able to 
mimic in vivo situations made the continuous propagation of the pathogen possible and allowed a 
more detailed analysis of its biological features. The first in vitro isolation of A. phagocytophilum 
was achieved by Goodman and coworkers (1996) after inoculation of a patient’s blood in a human 
promyelocytic leukemia cell line (HL-60, ATCC CCL-240) developed by Gallagher and coworkers 
(1979). In addition to undifferentiated cell lines, other cells are also currently used for A. 

phagocytophilum cultivation, including HL-60 cells induced to differentiate into functional 
granulocytes (rHL-60), as well as embryonic Ixodes scapularis tick cell lines IDE8 and ISE6 
(Goodman et al., 1996; Munderloh et al., 1996, 1999; Heimer et al., 1997). Furthermore, the 
development of murine models that in part reproduced the infection process has greatly expanded 
the understanding of A. phagocytophilum pathogenesis. The use of inbred and targeted gene-
deleted (knockout) mice has allowed insight into precise mechanisms of disease and host cell-
pathogen interactions in the context of a whole organism, complemented studies based on in vitro 
tissue culture, ex vivo human and ruminant neutrophil cultures and in vivo large animal 
experiments (Borjesson & Barthold, 2002). 

The complete genome sequence of A. phagocytophilum HZ strain has been recently 
achieved by Hotopp and coworkers (2006), illustrating the existence of a single circular 
chromosome of 1,471,282 bp with an average G+C content of 41%. Comparison analysis has 
shown that most genomic features of A. phagocytophilum are typical of other sequenced 
Anaplasmataceae, but also reveals new species-specific genes indicating particular niche 
adaptations (Hotopp et al., 2006). 
 
 
1.2.2. LIFE-CYCLE 
 

The study of naturally- and experimentally-infected neutrophils as well as human and tick-
derived cell cultures has allowed a detailed analysis of the intracellular replication cycle of A. 

phagocytophilum (Chen et al., 1994; Goodman et al., 1996; Munderloh et al., 1996, 1999; 
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Popov et al., 1998; Webster et al., 1998). This bacterium undergoes a simple cycle involving three 
fundamental steps: invasion of host cells likely through receptor-mediated endocytosis; proliferation 
by binary fission in a membrane vacuole that does not fuse with lysosomes (parasitophorous 
vacuoles); exit via rupture of both A. phagocytophilum-containing vacuole and the adjacent host 
cell membrane when the morula is located at the periphery of the infected cell.  

In general, morulae tend to be much larger and contain more microorganisms in tick cells 
than in neutrophils or HL-60 cells. Pathogen morphology is also more variable presenting a higher 
degree of pleomorphism (Munderloh et al., 1996, 1999). Genome analysis has shown that A. 

phagocytophilum lacks genes for both lipopolysaccharide and peptidoglycan biosynthesis (Lin & 
Rikihisa, 2003; Hotopp et al., 2006). The peptiglycan layer is a polymer consisting of sugars and 
amino acids that form a homogeneous layer between the plasma membrane and the cell-wall of 
eubacteria, conferring structural strength to bacteria. The lack of this layer justifies the morphologic 
pleomorphism of A. phagocytophilum that should be expected to be higher in environments with 
less osmotic pressure than those experienced inside the body of invertebrate vector (Rikihisa, 
2006b). 

In both mammalian and tick cells, A. phagocytophilum presents two distinct ultrastructural 
forms: reticulate cells (RC) characterized by a loosely packed and randomly dispersed nucleoid 
and dense-cored cells (DC) with a condensed electron-dense protoplast. By temporal examination 
of A. phagocytophilum development in HL-60 cells, Webster and coworkers (1998) concluded that 
the early forms of the agent have the round reticular appearance while later structures are small 
and dense. In tick-cells the agent also presented the same temporal pattern; A. phagocytophilum 
colonies comprise appreciable numbers of condensing organisms in older tick-cell cultures 
(Munderloh et al., 1996, 1999). This data suggests the existence of an intracellular biphasic 
development that undergoes from RC towards DC cells, similar to that observed for other closely 
related agents such as A. marginale (Blouin & Kocan, 1998) and E. chaffeensis (Zhang et al., 
2007), in which DC are the infective form and RC the metabolic active form that multiplies by binary 
fission (Figure 3). However, both the dense core and reticulate forms undergo binary fission in 

vitro, suggesting plasticity to any potential developmental or differentiation cycle (Popov et al., 
1998). 

Depending on the infected host, A. phagocytophilum replication takes place in different 
cells types. In naturally infected ticks the agent has been detected in midgut cells, hemocytes and 
salivary gland cells (Magnarelli et al., 1995b; Telford et al., 1996; Alberti et al., 1998; 2000; 
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FIGURE 3. Representation of the intracellular 
cycle proposed for A. phagocytophilum. 

Rc 

A 
Dc 

D 

B 

C 

 
A- Dense core (Dc) microorganism starts the cycle by 
attaching and entering into a susceptible host cell; B- 
Once inside the cell it remains within the vacuole that 
does not fuse with lysossomes. The microorganism 
differentiates into a metabolic active reticulated form 
(Rc) and multiplies by binary fission, forming 
characteristic dense packed microcolonies known as 
morulae; C- After multiple rounds of division Rc starts 
to differentiate into DC forms; D- Finally, by exocytosis 
or host cell lysis the infectious DC are released to 
initiate new cycles in new host cells (Blouin & Kocan, 
1998; Zhang et al., 2007). 

 
 

 

Kim et al., 2003; Ohashi et al., 2005). These different locations are presumed to represent part of a 
life-cycle similar to that observed for A. marginale (Ge et al., 1996; Kocan et al., 2004). It is 
assumed that following ingestion in the blood meal by feeding ticks, A. phagocytophilum primarily 
infects midgut epithelial cells, passes through this barrier and, via circulating hemocytes, 
subsequently colonizes salivary gland cells from where it is transmitted to vertebrates via salivary 
emissions released during the next feeding. The infection of salivary glands seems to be an early 
event that may take place during or soon after the infective blood meal, since questing ticks 
already present A. phagocytophilum in acinus cells (Telford et al., 1996; Ohashi et al., 2005). Up to 
now, salivary glands are regarded as the most important organ for the agent’s maintenance in 
vector ticks and subsequent transmission to vertebrate hosts. Other organs might also be infected 
by A. phagocytophilum, which may contribute to the agent’s ability to persist in the vector tick, but it 
does not seem to include ovarian tissue. In fact, infected ticks show persistent bacteremia, with the 
agent surviving arthropod molts and being maintained in successive life stages (transstadial 
transmission) but with no, or inefficient offspring infection (transovarial transmission) (Richter et al., 
1996; Telford et al., 1996; Des Vignes & Fish 1997; Hodzic et al., 1998; Goethert & Telford, 2003). 
Of interest, Sukumaran and coworkers (2006) described an Ixodes tick salivary gland protein, 
Salp16, that in part determines successful colonization of salivary glands by A. phagocytophilum 
after acquisition of a blood meal from an infected mammalian host. 

Once inside a mammalian host the agent targets cells derived from bone marrow 
precursors, most often neutrophils and band neutrophils. The infection is not localized, affecting 
circulating peripheral blood cells, but A. phagocytophilum has occasionally been detected in

 20



Chapter I. State of the art 

spleen, lung, liver, bone marrow, lymph node and heart (Madigan et al., 1995; Walker & Dumler, 
1997; Bunnel et al., 1999; Lepidi et al., 2000; Martin et al., 2000, 2001; Trofe et al., 2001; Remy et 

al., 2003; Bayard-Mc Neeley et al., 2004). Both ex vivo and in vitro data have emphasized that 
pathogen tropism is especially directed to the mature granulocyte population (Heimer et al., 1997; 
Klein et al., 1998; Zeman et al., 2002a; Bayard-Mc Neeley et al., 2004) and its detection in several 
organs seems to reflect vascular perfusion or focal sequestration of infected neutrophils (Lepidi et 

al., 2000). However, Walker and Dumler (1997) also discussed the possibility that the ligand 
recognized by A. phagocytophilum adhesion is broadly distributed over a wide variety of cells from 
different lineages, justifying the occasional detection of this agent in endothelial cells, fibroblasts 
and macrophages. Recent experimental studies have reinforced the hypothesis that other cell 
types might be involved in A. phagocytophilum cycle by the demonstration that the bacterium is 
capable of infecting endothelial cells and passing from the infected endothelium into neutrophils 
(Munderloh et al., 2004; Herron et al., 2005). As conjectured in those studies an endothelial 
reservoir cell may mediate the infection of blood cells and A. phagocytophilum spreads from the 
site of tick feeding, and offers opportunities for ongoing, direct cell-to-cell infection of neutrophils, 
avoidance of host immune effectors, and completion of the pathogen life-cycle by infection of 
circulating leukocytes available for transfer to blood-feeding ticks (Munderloh et al., 2004; Herron et 

al., 2005). 
 
 
1.2.3. PATHOGENESIS 
 

A. phagocytophilum undergoes substantial selection pressure to be able to survive and 
replicate in different environments during its life-cycle. In vector ticks, pathogens must survive 
extreme fluctuations in temperature, pH, osmotic pressure, and other factors related to the 
physiological status of these arthropods. In vertebrate hosts, they must overcome the highly 
developed inflammatory and immunologic defences of mammals. Moreover, A. phagocytophilum 
possesses an unusual intracellular lifestyle in that it colonizes neutrophils, the key cells in innate 
immunity and the first line of defence against invading pathogens. These short-lived, terminally 
differentiated cells ingest invading microorganisms and destroy them by various means, which 
include fusing the bacteria-containing phagosome with acidic lysosomes as well as directing toxic 
oxidative and proteolytic compounds into the phagosomal lumen (Mayer-Scholl et al., 2004). The
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specific cell tropism displayed by A. phagocytophilum is thus far known to be shared only by E. 

ruminantium, E. ewingii, and Chlamydophila pneumoniae, among eubacteria, and indicates that 
these microorganisms have developed strategies to evade and/or subvert neutrophil killing 
mechanisms in order to promote their survival and perpetuation. Recent investigations have been 
providing important data regarding A. phagocytophilum survival strategies and interactions with 
their host-cells, allowing a more complete understanding of granulocytic anaplasmosis 
pathogenesis (Borjesson & Barthold, 2002; Carlyon & Fikrig, 2003, 2006; Dumler, 2005; Dumler et 

al., 2005a). 
 
Lack of lipopolysaccharide 

An adaptation of A. phagocytophilum that likely increases its chance of successful 
colonization of vertebrate neutrophils is the lack of lipid A and peptidoglycan biosynthesis genes 
(Lin & Rikihisa, 2003). Lipopolysaccharide (LPS) elicits profound innate immune responses via 
interactions with Toll-like receptor 4 and activating leukocytes and proinflammatory responses. 
Therefore, it is interesting to that comparative genomics among the Anaplasmataceae reveals cell-
wall biosynthetic machinery only in W. pipientis and A. marginale, neither of which are associated 
with leukocyte infection (Hotopp et al., 2006). Thus, LPS genes could have either been horizontally 
acquired in these microorganisms or were lost in the other Anaplasmataceae as an adaptation to 
successfully infect vertebrate immune cells (Hotopp et al., 2006). 
 
Antigenic variation 

A. phagocytophilum has a genome with numerous repeats of functionally important genes, 
especially those of surface proteins. The whole genome sequence of A. phagocytophilum HZ strain 
demonstrates the existence of three outer membrane protein (omp)-1, one major surface protein 
(msp)-2, two msp2 homologs, one msp4, and one hundred and thirteen 44-kDda surface 
protein(p44) loci belonging to the Omp-1/Msp2/P44 superfamily (Hotopp et al., 2006)2. The p44s 
represent the largest expansion of this surface protein superfamily and are annotated as full-length 
silent/reserve, truncated, and fragments that recombine to generate antigenic variation (Figure 4). 
The expression of as many as 65 different p44 genes (p44–1 to p44–65) has been reported in 
infected mammals and ticks (Felek et al., 2004; Lin et al., 2002; Wang et al., 2002; 

                                                 
2 Although established in the literature, the Omp-1/Msp2/P44 division is controversial, and some researchers defende 
that insufficient differences exist in the surface proteins to warrant the division, thus referring to them by the generic 
designation of Msp2. 
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Zhi et al.,2002). Additionally, genome sequencing of A. phagocytophilum HZ strain has identified 
23 novel p44 genes (p44-66 to p44–88), but they have not yet been experimentally identified as 
being expressed (Hotopp et al., 2006). 
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FIGURE 4. Representation of p44 genes 
(adapted from Hotopp et al., 2006). 
 
The p44s consist of a central hypervariable 
region of approximately 280 bp containing a 
signature of four conserved amino acid regions 
(C, C, WP, A) and conserved flanking sequences 
longer than 50 bp. In A phagocytophilum HZ 
strain there are 22 full-length p44s identified that 
have ORFs longer that 1.0 Kb with conserved 
start and stop codons. These genes recombine 
into one of three genomic expression loci 
(p44ES/APH_1221) [(Barbet et al., 2003; Lin et 
al., 2003) in Hotopp et al., 2006]. Other 64 
shorter p44s were identified presenting ORFs 
less than 1.0 Kb and likely serve as reserve/silent 
p44s. They may have either the conserved or 
alternative start and/or stop codons and are not 
likely to be expressed at their current genome 
location, but can recombine into the expression 
locus (p44ES/APH_1221). In addition 21 5’ and 
3’ fragments and 6 truncations of p44 genes 
larger than 60 nucleotides have been identified in 
the genome. Truncated p44s carry the complete 
hypervariable region, or a portion thereof, but 
only one of the two conserved regions. 
Fragments of p44 have only a conserved region 
and no hypervariable region. Each annotated p44 
is longer than 60 bp, although smaller fragments 
can be identified throughout the genome. These, 
as well as p44 truncations and fragments, are 
likely to be non functional remnants of previous 
recombination events. 
 

 
Antigenic variation of surface proteins is regarded as a mechanism for promoting the 

pathogen’s evasion of the immune system and persistence in the vertebrate host. This strategy is 
evident in other arthropod-borne agents such the extracellular Borrelia hermsii and Trypanosoma 

brucei, but also in the closely related intracellular A. marginale (Barbour & Restrepo, 2000 in 
Palmer et al., 2006). Like those pathogens, A. phagocytophilum cannot be transovarially inherited 
in its arthropod vector and its persistence in vertebrates may be a mechanism for promoting
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pathogen acquisition by ticks and transmission to new hosts. As surface proteins of A. 

phagocytophilum has been demonstrated to be adhesins, antigenic variation may also represent 
an ecological adaptation to different host environments or varying species host cells independent 
of immune selection. As showed by Zhi and coworkers (2002), transcription of specific p44s is 
dominantly expressed by A. phagocytophilum in mammals at an early stage of infection and in HL-
60 cells at 37ºC but differ from those associated to ticks that are upregulated in infected HL-60 cell 
at low temperatures of 24 to 25ºC (Zhi et al., 2002). Restricted transcription and expression of p44 
over many passages in cell culture and in tick salivary gland cells suggest selection by fitness for 
new niche, a finding underscored by the role of surface proteins to act as adhesins (Zhi et al., 
2002; Scorpio et al., 2004a; Park et al., 2003a; Dumler et al., 2005a). However, more recent 
comprehensive studies do not confirm a restricted expression profile in vitro or in vivo, suggesting 
the concept that the changing expression of surface proteins does little to promote survival via 
antigenic variation among animals with a self-limited infection (Choi et al., 2007). 
 
Cell invasion by mediated-endocytosis and isolation of the parasitophoros vacuole 

It has been suggested that A. phagocytophilum attaches to neutrophils by specific 
interaction between surface proteins and fucosylated, and possibly sialylated ligands, of surface 
proteins; platelet selectin glycoprotein ligand-1 (PSGL-1) has been chiefly implicated in this 
process (Goodman et al., 1999; Herron et al., 2000, Park et al., 2003a). Such a receptor-mediated 
interaction seems to be determinant in A. phagocytophilum tropism for neutrophils and leads to the 
downstream events resulting in pathogen internalization by endocytosis and successful 
colonization of host cells (Mott et al., 1999; Carlyon & Fikrig, 2003, 2006).  

One of the primary means by which neutrophils destroy phagocytosed pathogens is 
through the production of toxic oxygen intermediates derived from superoxide anion (O2–). The pH 
change resulting from the O2– influx triggers a potassium-dependent release of proteases which 
along with reactive oxygen species (ROS) kill and degrade ingested microorganisms (Mayer-Scholl 
et al., 2004). O2– is produced by the multi-component enzyme, NADPH oxidase that lies 
unassembled in resting cells and is activated by several stimuli, such as bacterial uptake (Figure 
5). It has been shown that the addition of A. phagocytophilum to neutrophils elicits little or no 
detection of ROS in vitro (Mott & Rikihisa, 2000; Carlyon et al., 2004; Ijdo & Mueller, 2004 
Borjesson et al., 2005). This likely stems from the fact that the pathogen enters its host-cell via 
non-opsonin phagocytic receptor-mediated endocytosis (Mott et al., 1999), which presumably
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2O2 2O2-B. Activated A. Resting 

 

FIGURE 5. Representation of NADPH oxidase (adapted from Carlyon & Fikrig, 2003, 2006). 
NADPH oxidase is a multi-component enzyme that lies unassembled in resting neutrophils (A). The cytochrome b558, 
consisting of gp91phox and p22phox, is integrated into the membrane of secretory vesicles and specific granules. The 
additional subunits are present in the cytosol, and include p40phox, p47phox, p67phox and Rac2. This latter component 
functions as the molecular switch for initiating the respiratory burst. Upon activation, either by the binding of opsonized 
microorganisms or by binding of high concentrations of chemoattractants to their cognate surface receptors, Rac2 
dissociates from its inhibitor, RhoGDI, switches from a GDP- to a GTP-bound state and migrates to the site of oxidase 
assembly. The vesicle/granules fuse with the phagosomal or cell membranes to deliver cytochrome b558 to the site of 
oxidative formation. Concomitantly, p47phox becomes phosphorylated and, along with the other cytosolic components 
translocate to join cytrochrome b558 and form the functional enzyme (B). The redox center of assembled oxidase 
transfer electrons from NADPH to molecular oxygen to generate O2– outside the cell or within the lumen containing the 
ingested microorganism. 
 

 
allows it to bypass the phagocytic route of oxidative stimulation. However, several studies have 
demonstrated that A. phagocytophilum-neutrophils interaction results in a dose-dependent 
stimulation of NADPH oxidase assembly and degranulation (Choi & Dumler, 2003; Carlyon et al., 
2004; Choi et al., 2004). This suggests that the pathogen is able to directly detoxify O2–, providing it 
with a means of protection from oxidative damage and contributing to the inability to detect ROS in 

vitro (Carlyon et al., 2004; Borjesson et al., 2005). Although the O2– scavenging mechanism is 
currently undefined, genomic location and transcriptional expression of a superoxide dismutase 
homologue (sodB) has been reported for A. phagocytophilum (Ohashi et al., 2002). Superoxide 
dismutase is an enzyme that catalyses the rapid dismutation of O2– to H2O2 and O2. The 
cotranscription of sodB with components of the type IV secretion system may also facilitate the 
transfer of molecules between the A. phagocytophilum and the host (Ohashi et al., 2002; 
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Hotopp et.al., 2006). Moreover, genome sequencing has identified two other ortholog clusters of 
proteins potentially involved in response to oxidative stress - a putative heme copper oxidase and a 
putative flavohemoglobin (Hotopp et al., 2006). 

After entering the host cell, A. phagocytophilum resides in an endosome that ceases to 
mature and does not fuse with lysosomes. The nature of this parasitophorous vacuole is unique 
when compared with other vacuoles resulting from either phagocytosis or endocytosis. Several 
studies have showed that although A. phagocytophilum vacuoles are part of the endocytic 
pathway, they are somehow modified and do not colocalize with markers of either early or late 
endosomes (Webster et al., 1998; Gokce et al., 1999; Mott et al., 1999). The vacuolar membrane 
also fails to colocalize with cytochrome b558, demonstrating that A. phagocytophilum continues to 
overcome the oxidative killing capacity by inhibiting the fusion of cytochrome b558-carrying 
vesicles/granules (Carlyon et al., 2004; Ijdo & Mueller, 2004). It thus seems that A. 

phagocytophilum avoids destruction by isolating itself from host endocytic and exocytic vesicular 
traffic (Rikihisa, 2003). This phenomenon is restricted to A. phagocytophilum-containing vacuoles 
and is dependent on bacterial protein synthesis, as oxytetracycline treatment results in vacuole 
maturation into phagolysosomes (Gokce et al., 1999; Ijdo & Mueller, 2004).  
 
Subversion of host cell functions  

Besides evading the host cell killing mechanisms as above mentioned, A. phagocytophilum 
subverts several biological functions of its host cell and thereby potentially promotes its intracellular 
survival and dissemination. 

One of the most critical subversions elicited by A. phagocytophilum is the inhibition of 
NADPH oxidase activity in their host cells. Although not yet shown in neutrophils, HL-60 cells with 
established infections become severely inhibited in their ability to generate reactive oxygen species 
(ROSs) (Banerjee et al., 2000; Wang et al., 2002). This phenomenon is time-dependent and has 
been linked to the inhibition of transcription of genes encoding two NADPH oxidase components, 
gp91phox and Rac2 (Banerjee et al., 2000; Carlyon et al., 2002; Choi & Dumler, 2003). The 
mechanism by which the pathogen downregulates CYBB expression (gene encoding gp91phox) has 
been already identified in HL-60 cells and is related to the inhibition of promoter activity (Thomas et 

al., 2005). However the pathogen’s determinants implicated in the process are currently unknown. 
An interesting observation regards the localization of A. phagocytophilum AnkA, a 153-160 kDa 
protein with at least 11 tandemly repeated ankyrin motifs with no homology with other proteins
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(Caturegli et al., 2000). Park and coworkers (2004) showed that this protein forms a complex with 
the chromatin of infected HL-60, binding to nuclear proteins and complexes to AT-rich nuclear DNA 
that lacks specific conserved sequences. As mentioned by Dumler and coworkers (2005b), the 
mere presence of AnkA in the nucleus of a cell in which gene transcription appears to be altered by 
infection compels further investigation of a direct pathogenesis role in regulation of eukaryotic gene 
expression.  

Delayed apoptosis is another abnormal function of A. phagocytophilum infected 
neutrophils. Apoptosis is a process that regulates inflammation by programmed cell death of 
activated neutrophils usually within 24 to 48 hours (Dumler et al., 2005a). A. phagocytophilum not 
only fails to activate the apoptosis program usually triggered by bacterial uptake, but it also delays 
spontaneous neutrophil programmed cell death by dysregulating and delaying the expression of 
apoptosis-associated genes (Yoshiie et al., 2000; Scaife et al., 2003; Borjesson et al., 2005; Ge et 

al., 2005). This phenomenon is not dependent on viable bacteria and is mediated, at least in part, 
by a heat-resistant surface molecule, as heat-killed A. phagocytophilum delays apoptosis as 
effectively as live bacteria (Borjesson et al., 2005). 

Additional dysregulations of neutrophil function by A. phagocytophilum includes reduction 
of adhesion to endothelial cells and inhibition of phagocytosis (Choi et al., 2003, 2004; Garyu et al., 
2005). The adhesion defects have been associated with shedding of PSGL-1 and L-selectin as a 
result of cell degranulation (Choi et al., 2003, 2004). The inhibition of phagocytosis seems to 
results from alterations of Rac2 expression and loss of important surface receptors (Garyu et al., 
2005). 

Altogether the activated-deactivated phenotype of the A. phagocytophilum-infected 
neutrophil may benefit the bacterium by increasing concentrations of infected cells in the peripheral 
blood that are unresponsive to tissue recruitment and may have a prolonged lifespan. However, 
the cost to the host includes activation of neutrophils to participate in proinflammatory reactions 
while they are unable to act as microbicidal effectors or regulators of inflammation (Dumler et al., 
2005a). It has long been speculated that the antimicrobial capacities of granulocytes infected with 
A. phagocytophilum was altered, in large part this was due to early recognition that the pathogen in 
sheep and cattle exacerbates other diseases, including louping ill, listeriosis, pasteurellosis, 
staphylococcal abscesses, and parainfluenza 3 [(Gordon et al., 1932; Foggie, 1951, 1956; Gronstol 
& Ulvund, 1977; Gilmour et al., 1982; Batungbacal & Scott, 1982) in Borjesson & Barthold, 2002; 
Stuen et al., 2003b]. Severe opportunistic infections have also been associated to fatal cases of
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HGA, including invasive pulmonary aspergillosis, cryptococcal pneumonia, ulcerative Candida and 
herpes simplex esophagitis (Bakken et al., 1994; 1996c; Hardalo et al., 1995; Walker & Dumler, 
1997; Jahangir et al., 1998; Lepidi et al., 2000). Although not directly proven, it is likely that loss of 
one of the primary means of host-mediated microbial killing contributes to the increased 
susceptibility to other infections (Carlyon & Fikrig, 2003). 
 
Modulation of the inflammatory response 

Two independent investigations have shown that neutrophils, bone marrow progenitors or 
HL-60 cells differentiated into neutrophil-like cells (rHL-60) infected with A. phagocytophilum 
produce striking quantities of CXC and CC chemokines, including monocyte chemotactic protein 
(MCP)-1, macrophage inflammatory protein (MIF)-1α, MIF-1 β, regulated on activation normal T-

cell expressed and secreted (RANTES) and interleukin (IL)-8, but not the classic pro-inflammatory 
cytokines IL-1, IL-6 and tumor necrosis factor (TNF)-α (Klein et al., 2000; Akkoyunlu et al., 2001). 

Chemokine production is induced specifically by a heat-stable A. phagocytophilum component 
independent of classic LPS stimulation (Klein et al., 2000), suggesting a potential role for the 
pathogen in neutrophil activation. In fact, Akkoyunlu and coworkers (2001) dissected the biological 
relevance of chemokine production, especially the neutrophil chemoattractant IL-8, during A. 

phagocytophilum infection. They showed that bacterium induces IL-8 secretion from rHL-60 cells in 
a dose- and time-dependent fashion and the incubation with supernatants from A. 

phagocytophilum-infected, but not uninfected cells, results in chemotaxis of human neutrophils 
similar to that of recombinant IL-8. Human neutrophils respond to IL-8 through the receptors 
CXCR1 and CXCR2 (Mahalingam & Karupiah, 1999 in Carlyon & Fikrig, 2003). It was also showed 
that A. phagocytophilum-infected rHL-60 cells demonstrate elevated surface expression of CXCR2, 
and the antibody blockade of this receptor resulted in a decreased bacteremia (Akkoyunlu et al., 
2001). Moreover, in vivo experiments also showed the importance of neutrophil chemoattraction in 

A. phagocytophilum infection. Blockade of the murine homolog CXCR2 results in considerable 
decreases in bacterial load compared with control background (Akkoyunlu et al., 2001; Scorpio et 

al., 2004b). As an obligate intracellular bacterium, the successful maintenance of A. 

phagocytophilum is dependent on its transfer to new host-cells, thus inciting chemokine production 
could be a mechanism of attracting naïve neutrophils to sites of infection for further bacterial 
propagation (Carlyon & Filrig, 2003).  
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The disadvantage of inciting chemokine production to the host is that recruitment of inflammatory 
cells that are activated and could induce inflammation, leads to damage to tissues (Dumler et al., 
2005a). Sera from HGA patients (Dumler et al., 2000) and experimentally inoculated mice 
(Akkoyunlu & Fikrig, 2000; Martin et al., 2000) demonstrate elevated levels of interferon (IFN)-γ 

and IL-10, but lack TNF-α, IL-1β, IL-4 and IL-6, which suggests a role for macrophage activation in 

recovery and disease (Dumler et al., 2005a). It is well established that IFN-γ protects against 

infections by obligate intracellular bacteria and against A. phagocytophilum (Akkoyunlu & Fikrig, 
2000; Martin et al., 2001). However, there is a consequence to such protection as IFN-γ is also 

damaging against host cells (Fresno et al., 1997 in Carlyon & Fikrig, 2003). Kinetic studies of the 
distribution of A. phagocytophilum-infected neutrophils and inflammatory injury in mouse models 
suggested a role of IFN-γ in restriction of infection but also in tissue injury (Martin et al., 2000, 
2001). As demonstrated by Martin and coworkers (2001) A. phagocytophilum IFN-γ knockout mice 
have a 6- to 7-fold increase in bacteremia compared to wild-type controls but with no 
histopathologic lesions. In contrast, IL-10 knockout mice, which poorly restrict IFN-γ production, 
present an identical bacterial load to that of wild-type mice although a substantially greater degree 
of inflammatory histopathologic injury (Martin et al., 2001). Several other murine models have 
showed that host innate immune response plays a more important role in histopathologic lesions 
than does pathogen load. Indeed, the infection of mice in which innate immunity has been 
genetically altered, such as Toll-like receptor 2 (TLR2)-, Toll-like receptor 4 (TLR4)-, TLR adaptor 
molecule MyD88, TNF-α and CYBB knockout mice does not affect bacterial burden, yet abrogates 
inflammatory tissue lesions (Von Loewenich et al., 2004; Scorpio et al., 2005). Such findings 
suggest that disease relates to immune effectors that inadvertently damage tissue. Indeed, in HGA 
tissue histopathology and clinical illness are greater than predicted by bacterial burden (Walker & 
Dumler, 1997; Dumler & Bakken, 1998; Lepidi et al., 2000). The disease processes appear to be 
immune and inflammatory in nature, not directly related to pathogen burden, and the result of 
triggering of a detrimental and poorly regulated host response (Dumler, 2005). 

A. phagocytophilum modulation of host factors in order to promote survival and 
dissemination might not be limited only to vertebrates. A recent investigation performed by 
Sukumaran and coworkers (2006) has shown that the pathogen interacts with its vector tick 
modulating the gene expression of salivary proteins (Salps). In a comprehensive series of 
experiments, the authors measured the production of 14 Salps and documented a 55-fold
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increase in Salp16 expression in salivary gland tissue of I. scapularis nymphal ticks infected with A. 

phagocytophilum. Production of ten other salivary proteins was not affected, whereas Salp10, 
Salp13 and Salp17 were downregulated (Sukumaran et al., 2006). The study also showed that the 
inhibition of Salp16 affects pathogen survival in midgut and successful colonization of arthropod 
salivary glands (Sukumaran et al., 2006). However, the mechanism by which A. phagocytophilum 
modulates Salp expression, the direct role of Salp16, or other salivary proteins in pathogen 
survival, or the consequences for the vector tick is so far unknown. The molecular aspects of 
arthropod–pathogen interactions are only beginning to be explored. 
 
 
1.2.4. ECOLOGY 
 

A. phagocytophilum has a circumglobal distribution within the Northern hemisphere, being 
maintained in enzootic cycles that correlate with the geographic distribution of vector ticks and 
competent reservoir hosts. Ticks from the Ixodes persulcatus/ricinus genospecies complex Oliver & 
Needham, 1992 (Camicas et al., 1998), are considered the primary vectors for this agent, 
comprising I. scapularis and I. pacificus, respectively in Eastern and Western parts of North 
America, I. ricinus in Western, Central and Northern Europe (Macleod & Gordon, 1933; Richter et 

al., 1996; Telford et al., 1996) and most certainly I. persulcatus in Western Europe and Asia (Cao 
et al., 2000, 2003, 2006; Morozova et al., 2002; Kim et al., 2003, 2006; Wen et al., 2003; Rar et al., 
2005) (Figure 6). Other species of the genus Ixodes are also involved in perpetuation of A. 

phagocytophilum cycles, such as I. spinipalpis in Colorado (Zeidner et al., 2000; Burkot et al., 
2001), I. dentatus in New England Coast (Goethert & Telford, 2003), and possibly I. trianguliceps in 

United Kingdom (Ogden et al., 1998; Bown et al., 2003). Although the direct role of these latter 
ticks in human and domestic animal disease is discussed due to their relative host specificity and 
limited questing potential, when compared with members of I. persulcatus/ricinus complex, they are 
regarded as important bridge-elements, maintaining parallel transmission cycles that would provide 
support for primary vector infections (Zeidner et al., 2000; Bown et al., 2003; Goethert & Telford, 
2003). Additionally, A. phagocytophilum has also been detected in the salivary glands of questing I. 
ovatus in Japan, but the vector competence of this species still needs to be proven (Ohashi et al., 
2005). The same is true for almost all other non-Ixodes ticks and mites that have been sporadically 
reported with A. phagocytophilum DNA, including Dermacentor variabilis, Dermacentor occidentalis 
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and Haemaphysalis leporispalutris in US (Goethert & Telford, 2003; Holden et al., 2003), 
Haemaphysalis longicornis in Korea (Kim et al., 2003), Hyalomma detritum in Tunisia (Sarih et al., 
2005), Dermacentor silvarum in China (Cao et al., 2006), the Trombiculidae mite Neotrombicula 

autumnalis in Spain (Fernandez-Soto et al., 2001), Syringophilidae quill mites Torotrogla merulae 

and Syringophilopsis sturni in Poland (Skoracki et al., 2006). The majority of these arthropods were 
collected when feeding in vertebrate hosts. Thus the possible role of host infected blood in A. 

phagocytophilum positive results should not be excluded. Regarding H. leporispalutris and D. 

variabilis, experimental studies have already demonstrated that although these ticks are infected 
by A. phagocytophilum they are unable to either maintain the agent transstadially or to successfully 
transmit it to a susceptible vertebrate host, respectively, and are now considered incompetent 
vectors (Des Vignes et al., 1999; Goethert & Telford, 2003).  
 
 
 
 
 
 
 
 
 
 
 

I. scapularis 

I. ricinus 

I. persulcatus I. pacificus 

FIGURE 6. Approximate geographic distributions of four medically important Ixodes 
persulcatus/ricinus complex ticks (adapted from Swanson et al., 2006). 
 
 

 
Numerous PCR-based studies have accessed the prevalence of A. phagocytophilum 

infection among ticks in several countries. However, they are difficult to compare due to 
considerable differences in the methods of tick collection, specimen preparation, DNA extraction, 
selection of nucleic acid probes (primers), and in some cases the lack of further sequencing of 
positive samples. In general, these studies show pronounced differences according to spatial and 
temporal distribution, tick species and stage. Table 3 summarizes the prevalences of A. 

phagocytophilum in questing ticks according to different geographic location. 
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TABLE 3. Prevalence (%) of questing ticks detected with A. phagocytophilum infections by PCR-
based methods*. 

Comulative Analysis Median Analysis  
Region/Tick species  Mean prev (n**) Median prev Minimum-maximum prev 

Africa      
 Ixodes ricinus 0.5 (418) 0.5 0.0 – 1.0 

Asia     
 Dermacentor silvarum 0.7 (286) 0.7  
 Ixodes ovatus 14.1 (64) 14.1  
 Ixodes persulcatus 4.3 (1,876) 4.0 0.8 –18.6 

Europe     
 Haemaphysalis cocina 2.1 (47) 1.6 0.0 – 3.1 
 Ixodes ricinus 4.7 (23,741) 4.3 0.0 – 57.1 
 Ixodes persulcatus 1.8 (563) 2.4 0.0 – 12.5 

North America     
Eastern part Ixodes scapularis 12.5 (5,881) 11.5 0.0 – 50.0 

Western part Dermacentor occidentalis 0.6 (651) 1 0.0 –  6.1 
 Dermacentor variabilis 4.4 (113) 7.6 0.0 – 15.2 
 Ixodes pacificus 3 (3,934) 5.2 0.0 – 33.3 

*All the presented data comes from published reports: 
African references - Sarih et al., 2005; 
Asian references- Cao et al., 2000, 2003, 2006; Ohashi et al., 2005; European references - Cinco et al., 1997; Guy et 
al., 1998; Ogden et al., 1998; Fingerle et al., 1999; Leutenegger et al., 1999; Petrovec et al., 1999; Pusterla et al., 
1999a; Alekseev et al., 2001b; Christova et al., 2001; Jenkins et al., 2001; Liz et al., 2001; Oteo et al., 2001; 
Grzeszczuk et al., 2002, 2004b; Oehme et al., 2002; Morozova et al., 2002; Santino et al., 2002; Spitalska et al., 2002; 
Derdakova et al., 2003; Hildebrandt et al., 2003; Makinen et al., 2003; Sixl et al., 2003; Skotarczak et al., 2003; Hartelt 
et al., 2004; Polin et al., 2004; Stanczak et al., 2004; Tomasiewicz et al., 2004; Cisak et al., 2005; De la Fuente et al., 
2005a; Rar et al., 2005; Ferquel et al., 2006; Grzeszczuk & Stanczak, 2006; Halos et al., 2006; Mantelli et al., 2006; 
Piccolin et al., 2006; Shpynov et al., 2006; 
North American references - Magnarelli et al., 1995b; Pancholi et al., 1995; Barlough et al., 1997a; Chang et al., 1998; 
Daniels et al., 1998; Varde et al., 1998; Kramer et al., 1999; Lane et al., 2001, 2004; Fang et al., 2002; Massung et al., 
2002, 2003a; Courtney et al., 2003; Holden et al., 2003; Adelson et al., 2004; Dolan et al., 2004; Caporale et al., 2005; 
Fritz et al., 2005; Schulze et al., 2005; 
**Total number of tested ticks. 

 

 
The patchy distribution of A. phagocytophilum in nature is multifactorial and may depend 

on the existence of both competent vector ticks and reservoir hosts. In many regions Ixodes ticks 
are found beyond the areas of pathogen endemicity. The discrepancies between vector ticks and 
pathogen distribution are not well understood but might be related to feeding behaviour and 
reservoir-host dynamics (Swanson et al., 2006). In fact, the apparent lack of A. phagocytophilum 
transovarial transmission in ticks directs attention to competent vertebrates, especially those which 
represent a feeding support for larvae and nymphs, as playing a critical role in the maintenance of 
agent’s active cycles in nature.  
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Members of I. persulcatus/ricinus complex are usually characterized by a permissive 
feeding behaviour with a broad range of potential vertebrate hosts, including avian, reptilian, and 
numerous mammalian species (Sonenshine, 1991). Immature stages often parasitize rodents and 
other small animals, contrasting with adult ticks that quest medium to large-size mammals. The 
role of reptiles in A. phagocytophilum cycle is largely unknown. Several researchers support the 
idea that although birds seem to lack systemic infections, they promote agent exchange between 
cofeeding ticks and contribute to the dispersion of infecting ticks (Alekseev et al., 2001a; 
Bjoersdorff et al., 2001; Daniels et al., 2002). However, a recent study has detected A. 

phagocytophilum in several bird blood specimens in Spain (De la Fuente et al., 2005a). But the 
most relevant role is most certainly played by mammals, especially rodents and other small 
mammals that are often parasitized by immature stages of ticks. Several species of rodents have 
been already implicated in A. phagocytophilum cycle as primary reservoirs, especially Peromyscus 

leucopus in the Northeastern and North Central US (Telford et al., 1996; Levin et al., 2002), 
Neotoma mexicana, N. fuscipes, and Peromyscus maniculatus in Western US (Zeidner et al., 
2000; Burkot et al., 2001; Foley et al., 2002), Myodes (formerly Clethrionomys) glareolus, 
Apodemus flavicollis and A. sylvaticus in Europe (Odgen et al., 1998; Liz et al., 2000; Bown et al., 
2003), and A. agrarius in Asia (Chae et al., 2003). Natural infections have also been reported from 
a wide range of other mammalians that may as well integrate the primary transmission cycle of A. 

phagocytophilum or even settle parallel cycles that would help to perpetuate the agent in nature 
(Table 4 and Figure 7). Examples of parallel transmission cycles have been observed between 
lagomorphs and rodents and their host-specific ticks, such as Sylvilagus floridanus and I. dentatus 
in Nantucket Island, Massachusetts (Goethert & Telford, 2003), Neotoma sp. and I. spinipalpis in 
Colorado (Zeidner et al., 2000; Burkot et al., 2001) and Myodes glareolus, Microtus agrestis and I. 
trianguliceps in United Kingdom (Bown et al., 2003, 2006).  
 

 

1.2.5. OTHER IXODES-BORNE AGENTS 
 

A. phagocytophilum geographic distribution may overlap those of other pathogenic agents 
either because they share the same reservoir hosts and/or the vectors ticks. This latter aspect is of 
particular interest regarding the epidemiology of concurrent tick-borne diseases. Besides A. 

phagocytophilum transmission, members of I. persulcatus/ricinus complex are also potential or
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confirmed vectors of several other agents with Public Health relevance, including Anaplasma spp., 
Babesia spp., Bartonella spp., B. burgdorferi s.l., Coxiella burnetii, Francisella tularensis, Rickettsia 

helvetica, Toxoplasma gondii and some tick-borne viruses (Table 5) (Rehacek et al., 1994; 
Estrada-Pena & Jongejan et al., 1999; Parola & Raoult, 2001b; Gray et al., 2002; Sonogo et al., 
2003; Sroka et al., 2003; Holden et al., 2006). Moreover, newly described agents with unknown 
pathogenicity have also been associated to these tick species, such as candidatus Neoehrlichia 

mikurensis (“Ehrlichia walkerii”), Rickettsia monacensis and IRS3 (Márquez et al., 1998; Sekeyova 
et al., 2000; Simser et al., 2002; Brouqui et al., 2003; Kawahara et al., 2004). 
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 FIGURE 7. Schematic representation of A. phagocytophilum transmission cycle. 
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TABLE 4. A. phagocytophilum infection in wild mammals detected by PCR-based studies. 

Region/Order Vertebrate species (common name) References 

Asia   

Artiodactyla Cervus nippon nippon (wild sika deer) 
 C. nippon yesoensis (wild sika deer) 

Kawahara et al., 2006 

Rodentia Apodemus agrarius (black-striped field mouse) 
 A. peninsulae (korean field mouse) 

Tamias sibiricus (siberian chipmunk) 

Chae et al., 2003; Cao et al., 2006; Kim et 
al., 2006 

Soricomorpha Crocidura lasiura (ussuri white-toothed shrew) Kim et al., 2006 

Europa   

Artiodactyla Capreolus capreolus (roe deer) 
 Cervus elaphus (red elk) 
 Rupicapra rupicapra (chamois) 
 Sus scrofa (wild boar) 

Alberti et al., 2000; Stuen et al., 2001; Liz 
et al., 2002; Petrovec et al., 2002, 2003; 
Oporto et al., 2003; Polin et al., 2004; 
Skarphedinsson et al., 2005 

Rodentia Apodemus agrarius (black-striped field mouse) 
 A. flavicollis (yellow-necked mouse) 
 A. sylvaticus (long-tailed field mouse) 
 Microtus agrestis (field vole) 
 M. oeconomus (tundra vole) 
 Myodes glareolus* (bank vole) 
 Rattus rattus (black rat) 

Ogden et al., 1998; Liz et al., 2000; Bown 
et al., 2003, 2006; Christova & Gladnishka, 
2005; Grzeszczuk et al., 2006a 

Soricomorpha Sorex araneus (eurasian shrew) Liz et al., 2000 

North America   

Artiodactyla Cervus elaphus nannodes (tule elk) 
 Odocoileus hemionus columbianus (black-tailed deer) 
 O. hemionus hemionus (mule deer) 
 O. virginianus (white-tailed deer) 

Belongia et al., 1997; Foley et al., 1998; 
Massung et al., 2005a; Michalski et al., 
2006 

Carnivora Canis latrans (coyote) 
Procylon lotor (Raccoon) 

 Puma concolor (mountain lion) 
 Ursus americanus (american black bear) 

Foley et al., 1999b; Drazenovich et al., 
2006; Pusterla et al., 2000; Levin et al., 
2002  

Lagomorpha Lepus californicus (black-tailed jackrabbit) 
 Sylvilagus audubonii (desert cottontails rabbit) 
 S. floridanus (eastern cottontails rabbit) 

Goethert & Telford, 2003; Yabsley et al., 
2006 

Rodentia Microtus ochrogaster (prairie vole) 
 Myodes gapperi** (southern red-backed vole) 
 Neotoma fucipes (dusky-footed wood rat)  
 N. mexicana (mexican wood rat) 
 Peromyscus leucopus (white-footed mouse) 
 P. maniculatus (deer mouse) 
 P. truei (pinyon mouse) 

Reithrodontomys megalotis (western harvest mouse) 
 Sciurus griseus (western grey squirrel) 
 Spermophilus lateralis (golden-mantled ground squirrel) 
 Tamias minimus (least chipmunk) 
 T. striatus (eastern chipmunk) 

Walls et al., 1997; Yeh et al., 1997; Foley et 
al., 1999b; Nicholson et al., 1999; Stafford 
et al., 1999; Zeidner et al., 2000; Burkot et 
al., 2001; Castro et al., 2001; DeNatale et 
al., 2002; Levin et al., 2002; Massung et 
al., 2002; Lane et al., 2005; Drazenovich et 
al., 2006; Nieto et al., 2007  

 

* Formerly Clethrionomys glareolus; ** formerly Clethrionomys gapperi. 
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TABLE 5. Members of Ixodes persulcatus/ricinus complex as potential (*) and confirmed vectors 
for other tick-borne agents. 

Pathogen Disease Affected hosts Vectors 

Virus     
CCHF virus Crimean–Congo hemorrhagic fever (CCHF) Humans *I. ricinus 
Looping ill virus Looping ill Sheep I. ricinus 
TBE virus Tick-borne encephalitis (TBE) Humans I. ricinus, I. persulcatus  

Bacteria     
Anaplasma bovis Anaplasmosis Bovines *I. ricinus 
A. marginale Anaplasmosis Bovines *I. ricinus 
Bartonella henselae Bartonellosis Humans/ animals *I. ricinus; *I. pacificus, 

*I. scapularis 
Borrelia burgdorferi s.l. Lyme borreliosis (LB) Humans/ animals  

Borrelia afzelii    I. ricinus, I. persulcatus 
B. burgdorferi s.s.   All four species 
B. garinii   I. ricinus, I. persulcatus 
B. lusitaniae   I. ricinus 
B. valaisiana   I. ricinus 

Coxiella burnetii Q fever Humans/ animals *I. ricinus 
Ehrlichia walkerii Unknown Unknown I. ricinus 
Francisella tularensis Tularemia Humans/ animals *I. ricinus 
Rickettsia helvetica Febrile illness Humans I. ricinus 
R. monacensis/ IRS3 Unknown Unknown *I. ricinus 

Protozoa     
Babesia divergens Babesiosis Humans/ bovines I. ricinus 
B. microti Babesiosis Humans I. scapularis 
B. odocoilei Babesiosis Wild ruminants *I. ricinus, I. scapularis 
Toxoplasma gondii Toxoplasmosis Humans/ animals *I. ricinus 

 
Several studies have attempted to identify simultaneous infection in I. persulcatus/ricinus 

complex but available data are essentially the result of focused detection of B. burgdorferi s.l. and 
Babesia spp. and/or A. phagocytophilum (www.pubmed.gov). Thus, the true prevalence of other 
coinfecting pathogens among Ixodes ticks remains largely unknown in the majority of geographic 
locations. These molecular studies have evidenced that although single infections are substantially 
more common, the possibility for coinfections exists. In a recent revision of published articles about 
this subject, Swanson and coworkers (2006) have shown that dual infection with any combination 
of B. burgdorferi s.l., B. microti, and A. phagocytophilum occurs in 1% to 28% of Ixodes ticks from 
regions of LB endemicity in the US and in <1% to 13% of sampled European Ixodes ticks. Triple 
infection is rarely detected in geographic regions where all these tick-borne disases are endemic 
and likely represents an incident occurrence of <1%. Moreover, A. phagocytophilum coinfection 
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with Babesia odocoilei, Bartonella henselae, Bartonella spp., and spotted fever rickettsiae have 
also been sporadically reported in ticks (Spitalska et al., 2002; Holden et al., 2003,. 2006; Adelson 
et al.,2004; Hartelt et al., 2004; Halos et al., 2006; Steiner et al., 2006). Table 6 summarizes the 
prevalences of A. phagocytophilum coinfections detected in ticks. 
 
 
1.2.6. VARIANT STRAINS AND DISEASE 
 

A. phagocytophilum presents a minor degree of variation in the nucleotide sequences of 
conserved genes, such as rrs, groESL, and ankA2 which has strengthened its unification into a 
single species (Sumner et al., 1997; Caturegli et al., 2000; Massung et al., 2000; Dumler et al., 
2001; Yu et al., 2001). Nevertheless, the existence of sequence polymorphisms has been a matter 
of interest in the scientific community suggesting the occurrence of variant strains with distinct 
geographic origin, reservoir hosts and pathogenicity (Shukla et al., 2007). 

Phylogenetic analysis of the ankA gene sequences has separated A. phagocytophilum into 
three distinct clades, representing the US Northeasthern and Upper Midwesthern strains, and 
European strains (Massung et al., 2000). But more genetic heterogeneity may exist, as 
demonstrated by Von Loewenich and coworkers (2003a) with the description of unexpected ankA 
diversity in infected German ticks. The analysis of groESL has reinforced the association of 
variability with geographic origin but it also suggested the existence of distinct A. phagocytophilum 
lineages related with specific reservoir hosts, possibly the result of coevolution (Sumner et al., 
1997; Petrovec et al., 1999; Chae et al., 2000; Bjoersdorff et al., 2002a; Petrovec et al., 2002; Von 
Loewenich et al., 2003a; Polin et al., 2004). Moreover the analysis of the most conservative rrs, 
has shown that only two genotypes of A. phagocytophilum have thus far been associated with 
human disease: the prototype described by Chen and coworkers (1994), that occur in both Europe 
and North America (Northeast and Upper Midwest), and the strain described by Foley and 
coworkers (1999a) in California. These strains, referred to as Ap-ha (GenBank acession nos 
U02521; AF093788/ AF093789), are also pathogenic for horses, dogs and possible for cats, but 
less commonly associated with ruminants. The dominant genotype responsible for ruminant 
disease is referred to as Ap-variant 1 (GenBank acession no M73220) (Bjoersdorff et al., 2002a; 
 
                                                 
2 Gene encoding AnkA, the 153-160 kDa protein with several tandemly repeated ankyrin motifs, as previously 
mentioned. 
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TABLE 6. Prevalence of A. phagocytophilum coinfections in questing Ixodes ticks detected by PCR-based methods. 

Region  Reference Ixodes species No ticks sampled Coinfecting agents* Prevalence (%) of infection Prevalence (%) of coinfection** 

Asia       
China Cao et al., 2003 I. persulcatus 1,345 Ap/Bb Ap 4.6; Bb 33.8 Ap/Bb 0.5 

Europe      
 

 
Bulgaria Christova et al., 2001 I. ricinus 112 Ap/Bb Ap 33.9; Bb 32.1 Ap/Bb 13.4 
Germany
 

 

 
 

 
 
 

 
 

 

Fingerle et al., 1999 I. ricinus 492 Ap/Bb Ap 1.6; Bb 36.2 Ap/Bb 0.8 
Oehme et al., 2002 I. ricinus 898 Ap/Bb Ap 2.9; Bb 20.4 Ap/Bb 0.8 
Hildebrandt et al., 2003 I. ricinus 305 Ap/Bb Ap 2.3; Bb 11.1 Ap/Bb 0.7 

Italy Cinco et al., 1997 I. ricinus 86 Ap/Bb Ap 24.4; Bb 19.8 Ap/Bb 8.14 
Poland Skotarczak et al., 2003 I. ricinus 514 Ap/Bb; Ap/Bm; Ap/Bb/Bm Ap 4.7; Bb 15.8; Bm 13.0 Ap/Bb 1.4; Ap/Bm 0.8; Ap/Bb/Bm 0.6 

Stanczak et al., 2004 I. ricinus 303 Ap/Bb; Ap/Bm Ap 19.5; Bb 29.7; Bm 3.6 Ap/Bb 8.3; Ap/Bm 2.0 
Stanczak et al., 2002 I. ricinus 424 Ap/Bb Ap 19.2; Bb 11.6 Ap/Bb 5.0 

Russia Morozova et al., 2002 I. persulcatus 150 Ap/Bb Ap 8.0; Bb 38.0 Ap/Bb 6.0 
Slovakia Spitalska et al., 2002 I. ricinus 137 Ap/RSFG Ap 4.4; SFGR 10.9 Ap/SFGR 0.7 

Derdakova et al., 2003 I. ricinus 60 Ap/Bb Ap 8.3; Bb 38.3 Ap/Bb 5.0 
Switzerland  Leutenegger et al., 1999 I. ricinus 100 Ap/Bb Ap 2.0; Bb 49.0 Ap/Bb 2.0 
United Kingdom Guy et al., 1998 I. ricinus 60 Ap/Bb Ap 7.0; Bb 37.0 Ap/Bb 1.7 

North America 
 

      
California Holden et al., 2003 I. pacificus 776 Ap/Bb Ap 6.2; Bb 5.7 Ap/Bb 1.0 
 Lane et al., 2004 I. pacificus 158 Ap/Bb Ap 3.2; Bb 3.8 Ap/Bb 1.3 
 

 

 
 

 

Holden et al., 2006 I. pacificus 168 Ap/Bh-like Ap 28.6; Bh-like 6.5 Ap/Bh-like 3.0 
New Jersey 
 

Varde et al., 1998 I. scapularis 100 Ap/Bb; Ap/Bm Ap 17.0; Bb 43.0; Bm 5.0 Ap/Bb 6.0; Ap/Bm 2.0 
Adelson et al., 2004 I. scapularis 107 Ap/Ba spp; Ap/Bb/Ba; Ap/Bm/Ba;  Ap 1.9; Bb 33.6; Ba 34.5; Bm 8.4 Ap/Ba 0.9; Ap/Bb/Ba 0.9; Ap/Bm/Ba 0.9 
Schulze et al., 2005 I. scapularis 147 Ap/Bb Ap 6.1; Bb 50.3 Ap/Bb 2.7 

New York 
 

Chang et al., 1998 I. scapularis 229 Ap/Bb Ap 9.0; Bb 54.0 Ap/Bb 4.0 
Daniels et al., 1998 I. scapularis 1,268 Ap/Bb Ap 13.5; Bb 15.1 Ap/Bb 2.2 
Schauber et al., 1998 I. scapularis 188 Ap/Bb Ap 42.6; Bb 66.0 Ap/Bb 28.2 

Pennsylvania Courtney et al., 2003 I. scapularis 454 Ap/Bb Ap 17.8; Bb 41.2 Ap/Bb 3.5 
Wisconsin Pancholi et al., 1995 I. scapularis 89 Ap/Bb Ap 7.9; Bb 11.2 Ap/Bb 2.2 

* Ap Anaplasma phagocytophilum; Ba Bartonella spp.; Bb Borrelia burgdorferi s.l.; Bm Babesia microti; Bh-like Bartonella henselae–like; SFGR spotted fever group Rickettsia spp.; 
** Coinfection data overlaps with the single-pathogen prevalence percentages. 
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Stuen et al., 2002b, 2003a, 2003b, 2005; Von Loewenich et al., 2003b; Poitout et al., 2005; 
Massung et al., 2006). Both Ap-ha and Ap-variant 1 have been detected in vector ticks and hosts 
but the existence of distinct enzootic cycles is suggested by the association of Ap-ha to small 
mammals and Ap-variant 1 to wild ruminants (Belongia et al., 1997; Massung et al., 1998, 2002, 
2003a, 2003b, 2005a, 2006; Leutenegger et al., 1999; Zeidner et al., 2000; Petrovec et al., 2002; 
Cao et al., 2003; Courtney et al., 2003; Sreter et al., 2004; Tate et al., 2005; Michalski et al., 2006). 
However, the detection of coinfection in questing ticks indicates that those cycles are linked to 
some extent and both strains are capable of coexisting in the same tick vector (Massung et al., 
2002). Several other genetic variants of A. phagocytophilum have been described, some of those 
with unknown pathogenic potential (Walls et al., 1997; Baumgarten et al., 1999; Schouls et al., 
1999; Cao et al., 2000, 2003; Massung et al., 2002; Michalski et al., 2006). 

The distinction between ruminant and non-ruminant lineages of A. phagocytophilum was 
initially suggested by experimental cross-infections [(Barlough et al., 1995; Madigan et al., 1995; 
Stuen et al., 1998 in Stuen et al., 2002b); Pusterla et al., 1999b, 2001]. A thorough understanding 
of the significance of A. phagocytophilum genetic variants is still far from complete, but their impact 
on both human and animal disease is already a matter of debate. Based on a 4-year field work 
study Massung and coworkers (2002) have hypothesized that variants strains of A. 

phagocytophilum may interfere with the maintenance and transmission of those causing human 
disease, resulting in a lower incidence of HGA in regions where different variants are common. 
Moreover, Stuen and coworkers (2005) have recently shown direct interference of A. 

phagocytophilum strains by the dominance of the genotype Ap-variant 1 over Ap-variant 2 in 
experimentally infected sheep. As discussed by those researchers, the reason for this dominance 
is unknown, but factors such as growth rate, immunogenicity, receptor competition, and antigenic 
variation may be involved in the infectivity and interaction of A. phagocytophilum variants. Further 
research is needed to investigate the role of competitive interactions between genetic variants of A. 

phagocytophilum that may modulate human and animal disease in each geographic area. 
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1.2.6.1. TICK-BORNE FEVER  
(A. phagocytophilum synonyms: Rickettsia phagocytophila, Cytoecetes phagocytophila, Ehrlichia phagocytophila, 
Anaplasma phagocytophila) 
 

Tick-borne fever (TBF) or pasture fever was first recognized in 1932 as a disease of sheep 
grazed on tick-infested pastures in Great Britain (Gordon et al., 1932 in Dumler et al., 2001). In the 
preceding years considerable information was acquired concerning the host range, pathogenicity 
and vector relationships. TBF affects domestic ruminants, chiefly sheep and cattle, in several 
European countries but is rarely reported in North America. Only a sporadic case of the disease 
was described in a llama (Barlough et al., 1997b) which suggests that the North American Ap- 
Variant 1 or other ruminant strain have evolved into a less pathogenic form than the European 
counterparts. TBF is characterized by fever, apathy, anorexia, tachypnea, cough, nasal discharge, 
and reluctance to move [(Gordon et al., 1932; Hudson, 1950; Foggie, 1951) in Dumler et al., 2001]. 
Additionally, abortion commonly occurs if naïve pregnant sheep are introduced into pastures 
infested with vector ticks (Jones & Davis, 1995 in Borjesson & Barthold, 2002; Garcia-Perez et al., 
2003). Indirect losses are also associated with a decrease in milk production and reduced growth 
rate in both calves and lambs [(Gordon et al., 1932; Hudson, 1950; Foggie, 1951) in Dumler et al., 
2001; Stuen et al., 2002a]. The disease is usually moderate, but serious complications that may 
lead to death have also been observed. The most serious problem associated with TBF, especially 
in sheep, is the increase in severity of concurrent louping ill and the predisposition to secondary 
infections, such as staphylococcal abscesses, septicemia, and pasteurellosis, among others 
[(Gordon et al., 1932; Foggie, 1951, 1956; Gronstol & Ulvund, 1977; Gilmour et al., 1982; 
Batungbacal & Scott, 1982) in Borjesson & Barthold, 2002; Stuen et al., 2003b]. 
 
 
1.2.6.2. EQUINE GRANULOCYTIC ANAPLASMOSIS  
(A. phagocytophilum synonym: Ehrlichia equi, Anaplasma phagocytophila) 
 

Equine granulocytic (formerly ehrlichiosis) anaplasmosis (EGA) was initially reported in 
1969 associated to severe disease in horses in the foothills of the Sacramento Valley, California 
[(Gribble, 1969; Stannard et al., 1969) in Dumler et al., 2001]. Since then, the disease has been 
observed chiefly in California but sporadic cases are also reported in other parts of US and Europe 
(Engvall et al., 1996; Madigan et al., 1996; Pusterla et al., 1998a; Bullok et al., 2000;
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Von Loewenich et al., 2003b; Alberti et al., 2005). EGA is usually a mild.to moderately severe 
disease characterized by fever, depression, anorexia, icterus, limb oedema, petechiation, ataxia 
and reluctance to move.  
 
 
1.2.6.3. OTHER GRANULOCYTIC ANAPLASMOSIS 
 

The susceptibility of dogs and cats to A. phagocytophilum was first demonstrated in an 
experimental study (Lewis et al., 1975 in Greig et al., 1996) and later confirmed to occur naturally. 
In dogs, the disease was originally documented in California after the successful transmission of 
the agent from febrile, thrombocytopenic dogs to horses by blood transfusion (Madewell & Gribble 
1982 in Greig et al., 1996). Natural infection in domestic felines was initially recognized in Sweden 
(Bjoersdorff et al., 1999c). In both cases, clinical disease was also found in other parts of North 
America and Europe (Engvall et al., 1996; Greig et al., 1996; Tozon et al., 2003; Lappin et al., 
2004; Alberti et al., 2005; Lester et al., 2005; Shaw et al., 2005). In general, the disease ranges 
from subclinical to mild febrile illness accompanied by depression, lethargy, and classic 
hematologic alterations. 

Regarding human infection by A. phagocytophilum more detailed consideration is given 
below. 
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1.3. HUMAN GRANULOCYTIC ANAPLASMOSIS 
 
 
1.3.1. DEFINITION 
 

A. phagocytophilum infection in humans, previously known as human granulocytic or 
granulocytotropic ehrlichiosis (HGE), is now called human granulocytotropic anaplasmosis (HGA). 
The synonym, HGE agent, was originally used to designate the etiology of the disease. 
 
 
1.3.2. EPIDEMIOLOGY 
 

Epidemiologic information regarding HGA is still limited. The available data seem to reflect 
the geographic distribution of A. phagocytophilum associated with human disease, competent tick 
vectors and reservoir hosts, their seasonal activity, and also human behavior that places persons 
at risk of tick attachment, and individual factors that determine the subsequent development of the 
disease. Understanding disease trends may help target prevention efforts and assist physicians in 
accurate and timely HGA diagnosis. 

To date, HGA descriptions are restricted to the Northern hemisphere. As previously stated, 
the majority of patients have been diagnosed in the US, although a limited number of cases have 
also been reported from some European countries. In the US, HGA was originally described in 
1994 from a series of patients residing in Wisconsin and Minnesota (Bakken et al., 1994). In the 
following years, HGA was increasingly recognized also in other states, such as Connecticut, New 
York, Massachusetts and Rhode Island (Hardalo et al., 1995; Telford et al., 1995; CDC, 1995; 
Aguero-Rosenfeld et al., 1996; Bakken et al., 1996c; Goodman et al., 1996; McQuiston et al., 
1999; Belongia et al., 2001a; Gardner et al., 2003). The disease became nationally notifiable in 
1999 and is now in the rank of the 30th most important infectious diseases regarding the total 
number of incident cases reported to the Centers for Disease Control and Prevention (CDC, 2006). 
HGA cases are reported by State Health Departments to CDC through both the National Electronic 
Telecommunications System for Surveillance (NETSS) and Tick-Borne Rickettsial Disease Case 
Report Form (CRF). According to NETSS (CDC, 2001-2006), more than 2.000 cases have been 
reported in the six years of national surveillance representing an average annual incidence of 0.15  
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per 105 inhabitants (Figure 8). The disease occurs mainly in the Upper Midwest, and parts of New 
England and the Mid-Atlantic States, which is consistent with previous surveillance reports (CDC, 
1998; McQuiston et al., 1999). In those areas, HGA is even more prevalent than other tick-borne 
diseases, such as Rocky Mountain spotted fever (RMSF)4 and HME, and is the second most 
reported tick bite-associated illness after LB (CDC, 2001-2006). The total number of HGA cases 
reported per state during 1999-2004 is presented in figure 9. Because nationally reportable 
diseases are recorded by state of residence rather than state of exposure, undoubtedly some 
cases might be incorrectly classified. Underreporting and inadequate diagnosis of HGA are also 
referred to as important limitations of the current passive surveillance system which might account 
for an incomplete overall distribution and regional prevalence of the disease (IJdo et al., 2000; 
Demma et al., 2005). 

 The first European case of HGA was described in 1997 in Slovenia (Petrovec et al., 1997), 
and more than 50 patients have been identified since then. The majority of cases have occurred in 
Central and Northern Europe, in areas at high prevalence of tick-borne encephalitis (TBE)5 and LB. 
Slovenia and Sweden account for the highest record of the disease (Bjoersdorff et al., 1999a, 
2002b; Laferl et al., 1999; Arnez et al., 2001; Karlsson et al., 2001; Lotric-Furlan et al., 2006) 
although sporadic cases have also been reported in Austria (Walder et al., 2003a, 2006a), Czech 
Republic (Hulinska et al., 2002), Croatia (Misić-Majerus et al., 2006), Estonia (Prukk et al., 2003), 
France (Remy et al., 2003), Italy (Ruscio & Cinco, 2003; De la Fuente et al., 2005b; Beltrame et al., 
2006; Mastrandrea et al., 2006), Netherlands (Van Dobbenburgh et al., 1999), Norway (Bjoersdorff 
et al., 1999a, Kristiansen et al., 2001), Poland (Tylewska-Wierzbanowska et al., 2001; Grzeszczuk 
et al., 2006b), and Spain (Oteo et al., 2000; Garcia et al., 2006). The geographic distributions of 
European HGA cases that have been reported since 1997 are presented in figure 10. 

Seroepidemiological studies, however, suggest that human infection by A. 

phagocytophilum might be more common than clinical illness. The presence of antibodies against 
A. phagocytophilum has been reported from endemic areas in US and Europe and also from other 
European and Asiatic countries where HGA is not known to occur (Park et al., 2003b; Ongut et al., 
2006; Walder et al., 2006b). Reported seroprevalence rates range from zero or very low to up to 
25% of the examined populations (Table 7). Generally, the proportion of seropositive persons 
increases with age and is higher for at-risk populations, such as forestry workers, persons with a 
                                                 
4 Rocky Mountain spotted fever (RMSF) is caused by the α-proteobacteria Rickettsia rickettsii. 
5 Tick-borne encephalitis (TBE) is caused by the infection of a Flavivirus that received the same designation as the 
disease (TBE vírus). 
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history of tick bite(s) and/or patients with LB and those with TBE, than in control subjects who are 
not (or who are less) exposed to ticks (Magnarelli et al., 1995a; Bakken et al., 1998b; Nuti et al., 
1998; Pusterla et al., 1998b; Wittesjo et al., 2001; Aguero-Rosenfeld et al., 2002; Grzeszczuk et 

al., 2004b). 
 

FIGURE 8. Number of HGA cases 
reported to NETSS, US 1999-2004 
(adapted from CDC 2001-2006). 
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†Note. Incidence is presented per 
100,000 inhabitants, based on data for 
the US total resident population. 
Population estimates are from the Bureau 
of the Census.  
Available from: http://www.census.gov/ 
 
FIGURE 9. Total number of HGA 
cases reported to NETSS by 
State, US 1999-2004 (adapted 
from CDC 2001-2006). 
Available from: 
http://www.cdc.gov/mmwr/summary.html 
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FIGURE 10. Total number of HGA cases reported in each European country since 1997 (based 
in a medline search http://www.pubmed.gov). 
 

It is believed that asymptomatic or subclinical infections may contribute to the broad 
seropositivity. In four prospective serological studies up to 11% seroconversions were detected in 
individuals with a high degree of exposure without evidence of clinical illness, over a single tick 
season (Hilton et al., 1999; Wittesjo et al., 2001; Woessner et al., 2001; Grzeszczuk et al., 2004a). 
Nevertheless, it still remains unclear whether the discrepancy between the seroprevalence and 
incidence rate results from underdiagnosis of mild infections, asymptomatic serologic responses to 
A. phagocytophilum variants not associated with HGA, or even infections with other agents that 
produce cross-reactive serologic responses. 
 Exposure to tick bites is considered the most common route of human infection by A. 

phagocytophilum, although sporadic cases of HGA have been reported after perinatal transmission 
or contact with infected animal blood (Bakken et al., 1996a; Horowitz et al., 1998c). Transfusion 
transmission is also biologically plausible, but only a single possible case of transfusion-related 
HGA has been identified (McQuiston et al., 2000; Kalantarpour et al., 2000; Leiby & Gill, 2004). 
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TABLE 7. Meta-analysis of A. phagocytophilum seroprevalence (%) among various human 
populations based in seropositivity obtained from immunofluorescence assay* (adapted from 
Dumler, 2005). 

 Cumulative Analysis Median Analysis 
 Mean (Number of Subjects) Median Maximum Minimum 

Number 
Studies 

Overall      
Asiaa 5.9 (816) 3.7 11.1 2.3 2 
Europeb 7.0 (8,956) 7.3 23.0 0.0 26 
North Americac 9.7 (4,452) 8.6 35.6 0.0 14 

At-riskd      
Asia  11.1 (271) 11.1 11.1 11.1 1 
Europe 9.3 (5,517) 8.8 23.0 0.0 22 
North America 10.1 (3,693) 8.8 35.6 0.0 14 

LB and/or TBEe      
Asia  naf na na na 0 
Europe 10.8 (2,047) 9.7 23.0 0.0 13 
North America 17.0 (393) 7.5 35.6 5.3 5 

*All the data presented come from published reports: 
aReferences from Asia: Park et al., 2003b; Walder et al., 2006b; 
bReferences from Europe: Brouqui et al., 1995; Bakken et al., 1996b; Dumler et al., 1997; Fingerle et al., 1997; Lebech 
et al., 1998; Nuti et al., 1998; Pusterla et al., 1998b; Bjoersdorff et al., 1999b; Christova & Dumler, 1999; Hunfeld & 
Brade, 1999; Cizman et al., 2000; Oteo et al., 2001; Skarphedinsson et al., 2001; Daniel et al., 2002; Groen et al., 
2002; Guillaume et al., 2002; Zeman et al., 2002b; Topolovec et al., 2003; Walder et al., 2003b; Grzeszczuk et al., 
2004b; Santino et al., 2004; Tomasiewicz et al., 2004; Cisak et al., 2005; ; Kowalski et al., 2006; Ongut et al., 2006; 
Stanczak & Grzeszczuk, 2006; 
cReferences from North America: Magnarelli et al., 1995a, 1998; Pancholi et al., 1995; Mitchell et al., 1996; Fritz et al., 
1997; Wong et al., 1997; Yeh et al., 1997; Bakken et al., 1998b; Wallace et al., 1998; Hilton et al., 1999; Ijdo et al., 
2000; Belongia et al., 2001b; Aguero-Rosenfeld et al., 2002; Leiby et al., 2002; 
dIncludes adult and pediatric B. burgdorferi seropositive patients, farm workers, febrile patients, forest workers, patients 
with fever or undetermined origin, LB and TBE patients, individuals with tick bites or tick exposure; 
eIncludes adult and pediatric B. burgdorferi seropositive patients, LB and TBE patients; 
fna, not available. 
 

 
 The occurrence of HGA is seasonal, with the majority of cases being reported between 
late spring and fall (McQuiston et al., 1999; Ijdo et al., 2000; Belongia et al., 2001a; Blanco & Oteo, 
2002; Gardner et al., 2003; Lotric-Furlan et al., 2006). In US, a bimodal distribution has additionally 
been demonstrated with a first peak of the disease in July through August and a second peak in 
October and November (CDC, 2001-2006). The seasonal pattern might result in part from the 
increase in outdoor activities during April-September, either recreational pursuits (e.g., camping, 
hiking, fishing, hunting, gardening, and walking dogs) or occupational activities, which involve an 
increased risk to tick exposure. Moreover, it also overlaps the period of the year when nymphal-
stage of Ixodes ticks are most active. Even though both adults and nymphs are able to transmit A. 

phagocytophilum, the diminutive size of the latter stage allows them to often feed undetected on 

 47



humans long enough to transmit the pathogen. For this reason, it is currently believed that nymphs 
of the Ixodes genus are the main stage involved in A. phagocytophilum transmission to humans. 

Despite the characteristically geographic and temporal pattern, HGA distribution might be 
influenced by changes in ecological or environmental conditions. Increased development in 
suburban and rural sites can result in an additional risk of tick exposure and local increases in HGA 
cases. Moreover, an impact from climate warming on the vertical disease distribution should be 
expected as has been suggested for other Ixodes borne-disease (Zeman & Bene, 2004; Ogden et 

al., 2006). 
 Cases of HGA have been reported in both sexes and in different age groups from <1 to 
≥90 years, although older male adults (median age 40-60 years) appear to be at higher risk for 
developing the disease (Gardner et al., 2003; CDC, 2001-2006). Pediatric cases are restricted to 
only a few reports (Horowitz et al., 1998c; Arnez et al., 2001; Krause et al., 2003; Moss & Dumler, 
2003). This tendency is still not well understood and could be multifactorial. The rates of clinical 
infection could be related to age and/or gender specific increased susceptibility to recognizable 
disease and/or greater risk of exposure to A. phagocytophilum. Moreover, the nonspecificity of 
signs and symptoms that characterize HGA and the reluctance to draw blood, especially 
convalescent samples, from paediatric patients may contribute to fewer-than-expected enrolled 
children and, hence, underdiagnosis of HGA cases in children compared to adults. Two cross-
sectional studies in endemic areas (Slovenia and Westchester County, New York) have indicated 
that up to 15% of children and younger adults (age, ≤24 years) have serologic evidence of 
previous exposure to A. phagocytophilum antigens, suggesting that infection might be more 
common than previously recognized (Cizman et al., 2000; Aguero-Rosenfeld et al., 2002). 
 Co-infections with A. phagocytophilum and other Ixodes-borne agents have occasionally 
been reported in humans, including B. burgdorferi s.l. and less frequently Babesia sp. in US and 
both B. burgdorferi s.l. and TBE virus in Europe (Nadelman et al., 1997; Horowitz et al., 1998a; 
Krause et al., 2003; Moss & Dumler, 2003; Hermanowska-Szpakowicz et al., 2004; Lotric-Furlan et 

al., 2005, 2006; Grzeszczuk et al., 2006b). Dual infections may result from a single tick bite and 
simultaneous transmission of different pathogens, from multiple tick bites or even from sequential 
infections that took place at different times (Levin & Fish, 2000, Des Vignes et al., 2001; Belongia 
et al., 2002). Although a rare event, coinfection should be taken into account in the clinical 
evaluation, diagnosis and treatment of patients potentially exposed to Ixodes ticks, a topic that will 
be further mentioned. 
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1.3.3. CLINICAL PRESENTATION 
 

HGA is clinically variable ranging from mild self-limited flu-like illness, in the majority of 
cases, to severe multisystemic disease (Blanco & Oteo, 2002; Strle, 2004; Dumler, 2005). The 
undefined localization and nonspecific presentation defines a disease that is usually difficult to 
differentiate from many other infectious and non-infectious conditions. 

Onset occurs after an incubation period of 1 to 2 weeks and clinical manifestations are 
dominated by fever, headache, myalgia and malaise (Aguero-Rosenfeld et al., 1996; Bakken et al., 
1996c; Horowitz et al., 1998a; Lotric-Furlan et al., 2006). A minority of patients may also present 
with arthralgia or involvement of the gastrointestinal tract (nausea, vomiting, diarrhea and 
abdominal pain), respiratory tract (cough, pulmonary infiltrates), liver, or central nervous system. 
Despite the observation of stiff neck and other signs and symptoms that may suggest meningeal 
involvement, very little evidence supports invasion of the central nervous system by A. 

phagocytophilum (Dumler, 2005), although cases of lymphocytic meningitis have been described in 
coinfection with TBE (Grzeszczuk et al., 2006b; Lotric-Furlan et al., 2006). Some patients may 
present with conjunctivitis or lymphadenopathy, findings that are especially common in HGA 
European series (Laferl et al., 1999; Arnez et al., 2001; Karlsson et al., 2001; Prukk et al., 2003; 
Lotric-Furlan et al., 2006). Local skin reactions at the site of the tick bite have not been described, 
and nonspecific skin-rashes have been reported only occasionally. The presence of erythema 
migrans has been documented in concurrent LB (Nadelman et al., 1997; Horowitz et al., 1998a; 
Grzeszczuk et al., 2006b).  

Variable changes in blood cell counts and chemistry parameters are reported (Hossain et 

al., 1999; Bakken & Dumler, 2000; Bakken et al., 2001; Lotric-Furlan et al., 2006). Most patients 
develop transient depletion in platelet and total leukocyte (WBC) concentrations, usually 
accompanied by mild increases in serum hepatic transaminase concentrations (aspartate 
aminotransferase, alanine aminotransferase) or lactate dehydrogenase. Elevation of inflammatory 
markers, such as C-reactive protein and the erythrocyte sedimentation rate have also been found 
in the many HGA patients (Bakken et al., 2001; Lotric-Furlan et al., 2002). Other less common 
laboratory findings include anaemia, elevated serum creatinine and blood urea nitrogen levels. 
Although total WBC, absolute neutrophil, and lymphocyte counts may be below normal, patients 
with HGA often have a left shift during the first week of illness. Neutrophil counts gradually return to 
normal thereafter accompanied by relative and absolute lymphocytosis. The hematological 
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abnormalities tend to normalize by the end of the second week of illness, even in the absence of 
antimicrobial therapy. Thus, as stated by Bakken and Dumler (2000), caution is advised against 
dismissing HGA from the differential diagnosis if blood cell counts are normal at the time of 
presentation, especially for patients who have been ill for more than one week. 

The results of physical examination are often unremarkable. Interestingly, several 
European cases of HGA have been presented as atypical pneumonitis, a fact that has also been 
mentioned in US literature (Bakken et al., 1994, 1996c; Hardalo et al., 1995; Lepidi et al., 2000; 
Karlsson et al., 2001; Remy et al., 2003; Bayard-Mc Neeley et al., 2004; Lotric-Furlan et al., 2006; 
Mastrandrea et al., 2006). Additionally, Halasz and coworkers (2005) have reported the association 
of HGA and Sweet Syndrome. 

In regions where several Ixodes-borne diseases are known to occur, distinguishing 
between concurrent infections in the early stages of illness can be difficult. Infections with different 
agents can complicate disease presentation, and unusual signs, symptoms and laboratory 
abnormalities may be present. According to Krause and coworkers (2002), patients with LB and 
HGA and/or human babesiosis (HB)6 experience more persistent flu-like symptoms with leukopenia 
and thrombocytopenia than those with LB alone. Acute LB is readily diagnosed when the 
pathognomonic erythema migrans is present, but some cases can lack that characteristic rash, 
overlapping HGA and HB clinical spectrum (Belongia et al., 1999; Krause et al., 2002). Likewise, 
HGA has a remarkably similar clinical and laboratory presentation to the initial phase of infection by 
TBE virus. However, prospective studies performed by Lotric-Furlan and coworkers (2000, 2002) 
have found statistically significant differences in the frequency of arthralgia and elevated 
concentration of C-reactive protein in patients with acute HGA than those with the initial phase of 
TBE. To sum up, the likelihood of coinfection should be considered when pursuing laboratory 
testing or selecting antimicrobial therapy. 

 
 

1.3.4. COMPLICATIONS AND OUTCOME 
 
HGA is usually an uncomplicated disease but nearly half of identified patients require 

hospitalization (Blanco & Oteo, 2002; Strle, 2004; Bakken & Dumler, 2006). In the US up to 17% of 

                                                 
6 Human babesiosis is the general designation for infections caused by the tick-borne protozoan species Babesia 
microti and B. divergens. Cases of B. microti and B. divergens are chiefly reported from US and Europe, respectively. 

 50



Chapter I. State of the art 

patients are admitted to an intensive care unit (Bakken & Dumler, 2006). The severity of the 
disease appears to correlate with advanced age, immunosuppressive therapy, chronic 
inflammatory illnesses, or underlying malignant diseases (Bakken & Dumler, 2000). Delayed 
diagnosis and onset of specific antibiotic therapy are also risk factors for an adverse outcome. 
Severe complications have been described in the literature and are listed in table 8. Even though 
the fatality rate of HGA is low (<1%), at least 5 deaths have been identified in the US, three of 
which were the result of opportunistic infections, including exsanguination after ulcerative Candida 
esophagitis, ulcerative herpes simplex virus esophagitis with cryptococcal pneumonia, and invasive 
pulmonary aspergillosis (Bakken et al., 1994; 1996c; Hardalo et al., 1995; Walker & Dumler, 1997; 
Jahangir et al., 1998; Lepidi et al., 2000). As previously mentioned, this might result from the 
potential role of A. phagocytophilum in suppressing host defense or immune function. The risk of 
contracting HGA in immunocompromised patients, such as organ transplant recipients and persons 
infected with human immunodeficiency virus, is unknown. However, several cases have been 
described and severe manifestations may occur (Hardalo et al., 1995; Adachi et al., 1997; Trofe et 

al., 2001; Vannorsdall et al., 2002; Springer et al., 2003; Bayard-Mc Neeley et al., 2004). 
Regarding European cases, the disease appears to be generally milder and resolves sooner, even 
in the absence of specific antimicrobial therapy (Laferl et al., 1999; Arnez et al., 2001; Remy et al., 
2003; Lotric-Furlan et al., 2006). Complications are unusual. No opportunistic infections have been 
described so far and only one case of fatal infection was reported in an article from Czech Republic 
(Hulinska et al., 2002). 
Ultimately, the immunosuppressive nature of HGA may also affect the clinical course of concurrent 
infection. Experimental studies have provided results with regard to the effect of A. 

phagocytophilum on B. burgdorferi dissemination, pathogen burden and host immune response 
(Thomas et al., 2001; Holden et al., 2005; Nyarko et al., 2006). Nevertheless, the potential 
contribution of concurrent infections toward a more severe clinical course in humans remains to be 
defined. The available data is limited to few cases and in some instances are paradoxical. So far 
only two patients with TBE and HGA have been reported and both presented a relatively mild 
illness with uneventful recovery (Lotric-Fulan et al., 2005, 2006). Regarding concurrent LB and 
HGA, although the diversity and duration of symptoms reported by patients with dual infections 
exceeds that for patients with LB alone, the frequencies of disseminated blood, skin, joint, cardiac, 
and neurologic disease and of hospital admission appear to be similar (Krause et al., 2002). 
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TABLE 8. Clinical complications of HGA reported in North America and in Europe. 

Clinical Complications Reference(s) 

North America   

Acute abdominal syndrome  Greshel, 2000; Lepidi et al., 2000 
Acute renal failure Modi et al., 1999 
Acute respiratory distress syndrome (ARDS) and 
pneumonitis 

Bakken et al., 1994; Hardalo et al., 1995; Bayard-Mc Neeley 
et al., 2004

Carditis (pancarditis, pericarditis, myocarditis) Goodman et al., 1996; Jahangir et al., 1998  
Coagulopathy and hemorrhage Bakken et al., 1994, 1996c 
Neuropathies  Horowitz et al., 1996; Bakken et al., 1998a; Lee et al., 2000 
Opportunistic infections Bakken et al., 1994, 1996c; Hardalo et al., 1995 
Rhabdomyolysis Shea et al., 1996 
Septic or  toxic shock-like syndrome Bakken et al., 1994 

Europe   

ARDS and pneumonitis Bjoersdorff et al., 1999a; Karlsson et al., 2001; Tylewska-
Wierzbanowska et al., 2001; Remy et al., 2003; Lotric-Furlan 
et al., 2006 

Rhabdomyolysis Van Dobbenburgh et al., 1999 

 
In general, the HGA outcome is favourable and disease resolves either after specific 

antibiotic therapy or even spontaneously (Lotric-Furlan et al., 2001). Complete resolution of HGA 
can take only a few days, although biphasic courses with recurrent fever may occur in the absence 
of appropriate antibiotic therapy (Horowitz et al., 1998d; Karlsson et al., 2001; Walder et al., 2003a, 
2006a). This condition in humans seems to be rare but is not totally unexpected, since A. 

phagocytophilum is known to cause relapsing illness in ruminants (Tuomi, 1967 in Horowitz et al., 
1998d). In general, patients respond to treatment within 24 to 48 hours, but some with advanced 
infections may take longer or present persistent residual symptoms and signs, reflecting slow 
resolution of inflammation or accumulated tissue injury (Dumler, 2005).  

Relapses or chronic infections have never been reported, even for those patients who 
were never treated with an active antibiotic. Reinfection, albeit rare, may occur, and was 
demonstrated in one US case (Horowitz et al., 1998a). Persistence of A. phagocytophilum in 
humans is rarely observed in convalescent patients (Dumler & Bakken 1996; Ijdo et al., 2000). 
Only two patients are known to have developed chronic sequelae following HGA (Horowitz et al., 
1996; Dumler & Bakken, 1998). Both patients received appropriate antibiotic therapy, and in each 
case, the irreversible neurological or tissue damage was believed to be caused by the acute 
inflammatory response elicited by the microorganism rather than by persistent infection. According
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to Ramsey and coworkers (2002), some patients may also develop an apparently post-infectious 
syndrome, with persistent constitutional symptoms 1-3 years after treatment, such as fevers, 
fatigue, sweats, body pain, but without functional disability, but such conditions require much  more 
study.  
 
 
1.3.5. CONFIRMATORY LABORATORY TESTS 
 

Confirmatory laboratory testing is required for a definitive diagnosis of HGA, as this is 
virtually impossible based only on epidemiologic, clinical and routine laboratory findings. 
Confirmatory methods include direct and indirect tests that allow the detection of A. 

phagocytophilum (microscopy, molecular analysis, in vitro culture) and antibodies elicited by 
infection (serological assays), respectively. The sensitivity of each confirmatory test regarding the 
disease onset is represented in figure 11. 

Guidelines for HGA diagnosis have been published recently as the result of joint effort of 
epidemiologists, infectious disease clinicians, microbiologists, and pathologists to develop criteria 
for case definition and a consensus approach for laboratory testing (Walker et al., 2000; Brouqui et 

al., 2004).  
 
 

1.3.5.1. OPTICAL MICROSCOPY, MOLECULAR ANALYSIS AND IN VITRO CULTURE 
 

Direct tests are useful to confirm HGA during active disease, prior to the initiation of 
effective antimicrobial therapy. Data based on observations of human and animal infection show 
that bacteremia occurs for a limited period of time that may persist for up two weeks or until the 
administration of effective antibiotic therapy, and diminishes rapidly to become undetectable 
thereafter (Bakken et al., 1996c; Dumler, 2003). Since A. phagocytophilum infects granulocytic 
leukocytes, mostly mature neutrophils, direct tests are routinely performed in peripheral blood 
obtained at initial presentation to physician. Other available samples, including bone marrow 
aspirates and tissue specimens obtained at biopsy or autopsy may also be used. Blood-samples 
should be collected in ethylenediaminetetraacetic acid (EDTA) and kept refrigerated until 
processed, preferably within 24 to 48 hours. The use of heparin as an anticoagulant should be 
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avoided because of its ability to compromise PCR-based detection methods. Aseptic conditions for 
collection and preparation of samples is required if bacterial culture is to be done. 
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FIGURE 11. Relative sensitivity of diagnosis tests used for laboratory confirmation of HGA 
(Houpikian & Raoult, 2002; Bakken & Dumler, 2006). 

 

 
Microscopic detection of A. phagocytophilum in blood is best achievable if smears are 

prepared immediately after sample collection. Buffy coat smears are preferred to regular whole-
blood preparations, as most patients are leukopenic at the time of presentation and very few 
leukocytes are usually infected. Light microscopic examination of samples is performed under 
400X or 1000X magnification and at least 800 to 1,000 granulocytes should be observed before 
considering a negative result (Aguero-Rosenfeld, 2000). The characteristic mulberry-shaped 
intraleukocytic morulae of A. phagocytophilum typically appear as dark blue to purple cytoplasmic 
densities after staining with eosin-azure (Romanovsky)-type dyes (including, Wright, Diff-Quik, 
Giemsa and Leishman stains) (Figure 12A). Although microscopy has been routinely applied for 
blood-smear testing, the examination of other available samples might also be useful. In severely ill 
patients, A. phagocytophilum morulae have been detected in bone marrow and other tissue 
samples, such as spleen, lung, liver and heart (Bakken et al., 1994; Walker & Dumler, 1997; 
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Jahangir et al., 1998; Lepidi et al., 2000; Trofe et al., 2001; Remy et al., 2003; Bayard-Mc Neeley 
et al., 2004). The examination of bone marrow smears should be performed after sample staining 
with eosin-azure (Romanovsky)-type dyes (Remy et al., 2003; Bayard-Mc Neeley et al., 2004). 
Other tissue specimens can be tested either fresh, following formalin fixation and paraffin 
embedding, using immunohistochemistry techniques (Figure 12B) (Bakken et al., 1994; Walker & 
Dumler, 1997; Lepidi et al., 2000). 
 

A B 

FIGURE 12. A. phagocytophilum morulae in neuthrophils: A- pheripheral blood smear stained by 
Diff-Quik; arrows- infected neutrophils, 1000X magnification (courtesy of JS Dumler); B- spleen 
section stained by immunoalkaline phosphatase/ hematoxylin; arrows- infected neutrophils within 
splenic red pulp sinusoids, bar- 20 µm (adapted from Lepidi et al., 2000). 
 

Observation of blood smears is the most inexpensive and fastest laboratory test, but is 
also the least sensitive. A. phagocytophilum morulae may be sparsely distributed and difficult to 
detect, even by experienced observers and a negative result should not rule out HGA. Case series 
describing US patients with culture-confirmed HGA report only 60% morulae visualization, and 
although as much as 40% of peripheral granulocytes may contain A. phagocytophilum inclusions, 
the majority of patients with positive smears had less than 1% infected granulocytes (McQuiston et 

al., 1999; Bakken et al., 2001). In Europe the detection of A. phagocytophilum in peripheral-blood 
smears seems to be an infrequent finding, observed only in four patients (Van Dobbenburgh et al., 
1999; Remy et al., 2003; Beltrame et al., 2006; Garcia et al., 2006) (Table 9). Moreover, false 
positive interpretations may also occur due to toxic granulations, Döhle bodies, or superimposed 
platelets, contaminant particles, or other inclusions which may be mistaken for organisms. Thus, 
microscopic examination of samples should be always conducted in parallel with other tests to 
confirm HGA diagnosis (Walker, 2000; Brouqui et al., 2004).  
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TABLE 9. Results of confirmatory laboratory testing for 330 patients with HGA from case series or 
case reports in North America† and Europe‡. 

No. (%) patients with positive test 
result 

Total  
 
 
Confirmatory test North America†

n=277 
Europe‡ 

n=53 
 

Morulae in neutrophils 116/238 (48.7) 4/43 (9.3) 120/281 (42.7) 
Positive PCR result 112/185 (60.5) 31/47 (65.9) 143/232 (61.6) 
Isolation of A. phagocytophilum in cell-culture 39/64 (60.9) - 39/64 (60.9) 
Seroconversion or ≥four-fold change in antibody titera  232/273 (85.0) 50/58 (86.2) 282/331 (85.2) 

†References of 277 HGA patients (representing 266 confirmed and 11 probable cases): Aguero-Rosenfeld et al., 1996, 
2000; Goodman et al., 1996; Horowitz et al., 1998b; Wallace et al., 1998; Belongia et al., 1999; Foley et al., 1999a; 
Bakken et al., 2002; 
‡References of 53 HGA patients: Laferl et al., 1999; Van Dobbenburgh et al., 1999; Oteo et al., 2000; Arnez et al., 
2001; Karlsson et al., 2001; Kristiansen et al., 2001; Tylewska-Wierzbanowska et al., 2001; Bjoersdorff et al., 2002b; 
Prukk et al., 2003; Remy et al., 2003; Rusio & Cinco, 2003; Walder et al., 2003a, 2006a; De la Fuente et al., 2005b; 
Beltrame et al., 2006; Garcia et al., 2006; Grzeszczuk et al., 2006b; Lotric-Furlan et al., 2006; Mastrandrea et al., 2006; 
Misić-Majerus et al., 2006;
aIndirect immunofluorescence assay for acute- and convalescent-phase samples. 
 

The detection of A. phagocytophilum DNA is now becoming the standard complement for 
serologic assays (Dumler 2003; Brouqui et al., 2004). As for other direct tests, the most appropriate 
sample for molecular analysis is EDTA-anticoagulated whole-blood or buffy coat, although the 
usefulness of other available samples, such as serum, cerebrospinal fluid (CSF), and skin biopsies, 
has been described (Massung et al., 1998; Comer et al., 1999b; Lee et al., 2000; Halasz et al., 
2005). Several primer sets are described in the literature for the amplification of specific nucleic 
acid sequences of A. phagocytophilum by PCR in simple or nested reactions (Table 10). Among 
the targeted genes are the rrs, groESL, ankA, msp2 (p44) (Chen et al., 1994; Pancholi et al., 1995; 
Goodman et al., 1996; Sumner et al., 1997; Massung et al., 1998; Walls et al., 2000; Caspersen et 

al., 2002). However, PCR-based methods are not yet standardized and may yield discrepant 
results. Sensitivity might be dependent on sample quality, target sequence (that may have multiple 
copies in A. phagocytophilum genome, as in the case of ankA and msp2 and in the amplicon 
length (Dumler, 2003; Brouqui et al., 2004). The detection limits of 13 published PCR assays have 
been assessed, and those targeting fragments of the outer surface proteins homologues or rrs 
were found to be the most sensitive (Massung & Slater, 2003), but this study was conducted prior 
to the availability of many other gene targets, application of real time PCR, and the publication of 
the genome sequence. Whichever DNA target is chosen, sequencing of PCR products is strongly 
encouraged to confirm their identity.  
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TABLE 10. DNA targets that have been used for the detection of A. phagocytophilum in samples 
from infected patients. 

Target gene Primer pair PCR method/ 
 amplified fragment 

Detection Limit/ 
Specificity† 

Reference 

ankA LA1/LA6 regular/ 444-bp 2.5/ – Walls et al., 2000 

groESL HS1/HS6; HS43/HS45 nested/ 442-bp 2.5/ Ec Sumner et al., 1997 
msp2 (p44) MSP465f/MSP980r regular/ 550-bp NT Caspersen et al., 2002 
rrs GE9f/GE10r regular/ 919-bp 2.5/ – Chen et al., 1994 

 Ehr521/Ehr747 regular/ 247-bp 0.25/ Bh, Ec, Rk Pancholi et al., 1995 
 Ehr521/Ehr790 regular/ 293-bp 0.25/ Ec Kolbert, 1996 
 PER1/PER2 regular/ 451-bp 2.5/ Ec Goodman et al., 1996 
 GER3/GER4 regular/ 151-bp NT Goodman et al., 1996 
 GE3a/GE10r; GE9f/GE2 nested/ 546-bp 0.25/ – Massung et al., 1998 

 EC9/EC12; GE9f/GE10r nested/ 919-bp 2.5/ – Chen et al., 1994 

†According to Massung & Slater, 2003: 
Detection limit was estimated by the minimum number of A. phagocytophilum infected cells that could be detected per 
test sample. Sensitivity was detected using template DNA from Bartonella henselae strain Houston-1 (Bh), Ehrlichia 
chaffeensis strain Arkansas (Ec), and Rickettsia rickettsii strain Sheila Smith (Rk); 
NT- not tested; – no detection of B. henselae, E. chaffeensis or R. rickettsii, DNA. 

 
Since the first report of A. phagocytophilum isolation in HL-60 cells by Goodman and 

coworkers (1996), several investigators have used this modality of direct HGA diagnosis. Cells are 
maintained in antibiotic-free RPMI-1640 medium, supplemented with 2 mM glutamine and fetal 
bovine serum 5% v⁄v, and incubated at 37ºC in an atmosphere of 5% CO2. For isolation assays, 
0.1 to 0.5 ml anticoagulated whole-blood or buffy coat is inoculated straight into HL-60 cells that 
are maintained at a final concentration of 2x105 cells/ml. Cultures are evaluated every 2 to 4 days 
to adjust cell concentration and detect any microbial growth. Infection can be assessed by direct 
observation of cytocentrifuged culture aliquots after staining by eosin-azure type dyes. To date, 
almost all human isolates of A. phagocytophilum came from US patients, with the exception of one 
isolate obtained from a Slovenian patient (JS Dumler, personal communication), and in the majority 
of cases they were obtained from blood-samples. Only two reports describe the isolation of A. 

phagocytophilum from CSF and bone marrow samples (Lee et al., 2000; Bayard-Mc Neeley et al., 
2004). According to Aguero-Rosenfeld (2002), most of the cultures from patients showing morulae 
on blood smears become positive during the first week of incubation, and for patients with negative 
smears it can take two weeks or more. Culturing of A. phagocytophilum is regarded as the most 
specific method to confirm the diagnosis of HGA although it is still not widely available. Only a 
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limited number of research institutions are currently able to perform culture assays. Even so, this 
might not be a constraint; Kalantarpour and coworkers (2000) have showed that A. 

phagocytophilum can remain viable in infected blood kept for up 18 days under refrigerated 
conditions thus biological samples can be easily transported to a referral laboratory where the 
appropriate assays can be carried out. The only limitation is that cultures will require more time to 
become positive (Kalantarpour et al., 2000).  
 
 
1.3.5.2 SEROLOGY  

 
In most cases definitive HGA diagnosis relies on the demonstration of a serologic 

response to A. phagocytophilum. Indirect immunofluorescence assay (IFA) is currently the best 
overall option. Other serological methods include enzyme immunoassay and immunoblotting 
methods that employ purified antigens or recombinant proteins, but to date no standardization of 
these tests exists, and all are performed at the research level. 

IFA testing is performed with serum or plasma samples, using A. phagocytophilum strains 
as a source of antigen, and most laboratories detect IgG and IgM separately, or total 
immunoglobulins. Antibody titer values are expressed as the reciprocal of the representative serum 
dilution at which unequivocal apple-green fluorescence of microbial inclusion bodies is focally 
located in the cytoplasm of the infected cells (Figure 13). Slide examination is performed in an UV 
microscope under 400X or preferably 1000X magnification. The cut-off value should be determined 
in each laboratory based upon well-characterized sera from patients with proven HGA and an 
uninfected control population (Walker et al., 2000). Samples reactive at a dilution of 1:64 or 1:80 
are usually considered positive (Dumler et al., 1995; Bakken et al., 1998b), and serial dilutions are 
done to determine the end-point titer.  

In general, IFA testing of acute and convalescent-phase samples is the most sensitive 
laboratory tool for diagnosis confirmation of HGA (Table 9). The lack of humoral response has 
been described only in few cases and is still not well-understood (Aguero-Rosenfeld et al., 1996, 
2000; Bakken et al., 2002; De la Fuente et al., 2005b, Lotric-Furlan et al., 2006). One possible 
explanation is that early therapy may abrogate antigenic mass sufficiently to preclude a detectable 
antibody response (Aguero-Rosenfeld et al., 2000; Bakken et al., 2002).  
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BA

FIGURE 13. Immunofluorescence assay (IFA) using HL-60 cells infected with A. phagocytophilum 
Webster strain as antigen, 1000X magnification: A- negative sample; B- reactive sample evidenced 
by green fluorescence of A. phagocytophilum morulae. 

 

 
The major disadvantage of IFA is that diagnosis confirmation is usually achieved 

retrospectively. Antibodies usually appear within two weeks after the onset of disease, reaching the 
highest titer during the first month of illness, and may remain detectable for a year or more 
(Aguero-Rosenfeld et al., 2000; Lotric-Furlan et al., 2001; Bakken et al., 2002). Therefore, a 
negative serologic result in an acutely ill patient is typical and does not exclude HGA. Diagnostic 
confirmation usually depends on the availability of paired serum samples from acute and 
convalescent phases (obtained 2 to 4 weeks apart) to show seroconversion or a four-fold increase 
in antibody titer. Several studies have showed that only 20-40% of patients with confirmed HGA 
had antibodies detected by IFA at the time of initial presentation to the physician; however, more 
than 90% patients developed titers exceeding the cut-off within the first month of illness (Comer et 

al.,1999a; Aguero-Rosenfeld et al., 2000; Lotric-Furlan et al., 2001; Bakken et al., 2002). 
 Another limitation of IFA testing is cross-reactivity that might be present between antigens 
from other pathogens not only in the same genus but also from different genera. Cross-reactivity 
between A. phagocytophilum and E. chaffeensis is suspected to occur in approximately 10-20% of 
patients tested (Wong et al., 1997; Walls et al., 1999; Comer et al., 1999a). In these 
circumstances, serologic differentiation is best accomplished by simple comparison of antibody 
titers, since higher titers are usually developed to the homologous microorganism. Simultaneous 
testing for antibodies to both agents is advised to differentiate between the two diseases, 
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especially in regions where both pathogens are present. The diagnosis of HGA or HME would 
depend on the presence of a four-fold or greater titer against A. phagocytophilum or E. chaffeensis, 
respectively. Although less frequent, cross-reactivity with other agents such as B. burgdorferi s.l., 
C. burnetii, and Rickettsia spp. has also been described (Comer et al., 1999a; Blanco & Oteo, 
2002). Moreover, patients with Q fever and bartonellosis have been described to react with A. 

phagocytophilum antigen (Brouqui et al., 2001). Whether these findings represented cross-
reactivity directed to common antigens, such as the heat shock proteins, or antibody induced by 
separate exposures to different organisms remains to be ascertained (Wong et al., 1997; Ijdo et al., 
1998b; Unver et al., 2001a). At least in some cases, B. burgdorferi and TBE virus serologic cross-
reactions with A. phagocytophilum have been explained by confirmed coinfections with both agents 
(Nadelman et al., 1997; Horowitz et al., 1998a; Belongia et al., 1999; Bjoersdorff et al., 2002b; 
Moss & Dumler, 2003; Lotric-Furlan et al., 2005, 2006; Grzeszczuk et al., 2006b).  

The problem of potential cross-reactivity of antibodies and the possibility of dual or past 
infections indicate that additional testing is required to confirm simultaneous HGA. Another way to 
distinguish cross-reactivity is by use of immunoblots demonstrating reactivity to specific antigens. 
As mentioned by Dumler (2003), several recombinant proteins- including members of the Msp2 
(P44) major outer surface protein family, AnkA, and GroEL - have been cloned and evaluated as 
potential serodiagnosis reagents with variable promise (Ijdo et al., 1998a Murphy et al., 1998; 
Storey et al., 1998; Zhi et al., 1998; Caturegli et al., 2000). 
 
 
1.3.5.3. CASE DEFINITION  
 

The diagnosis of HGA requires the combination of an adequate history of tick exposure, 
suggestive clinical and laboratory findings, such as documented fever in the absence of specific 
findings during physical examination, abnormal hematological/ metabolic values and diagnosis 
confirmation by use of one or several specific laboratory tests.  

The criteria for case definition of confirmed and probable infection by A. phagocytophilum 
are showed in table 11.  
 
 

 60



Chapter I. State of the art 

TABLE 11. Proposed case definition for human granulocytic anaplasmosis (adapted from Brouqui 
et al., 2004). 

Confirmed infection  

Febrile illness with a history of a tick bite or exposure to tick-infested habitats 
and 
Demonstration of seroconversion or ≥four-fold change in antibody titer in acute and convalescent samplesa 

or 
Positive PCR result with subsequent sequencing of the amplicons demonstrating Anaplasma-specific DNAb 

or 
Isolation of A. phagocytophilum in culture 

Probable infection  

Febrile illness with a history of a tick bite or exposure to tick-infested habitats 
and 
Presence of a stable antibody titer in acute and convalescent samples if titer >four-fold above the cut-off valuec 

or 
Positive PCR result without sequence confirmationd 
or 
Presence of intracytoplasmic morulae in neutrophils 

aBy indirect immunofluorescence antibody test with A. phagocytophilum antigen; bThe American Society of 
Microbiology’s Task Force on Consensus Approach for Ehrlichiosis considers positive PCR alone (without other 
laboratory support) to represent probable laboratory evidence of HGA (Walker et al., 2000); cA cut-off value of 1:80 is 
currently used; dWith A. phagocytophilum species-specific primers. 
 
 
1.3.6. TREATMENT 

 

Since it is difficult to predict whether patients with A. phagocytophilum infection will 
experience a mild or severe clinical course, prompt institution of antibiotic therapy is advocated for 
all individuals who are symptomatic and suspected of having HGA (Bakken & Dumler, 2006; 
Chapman et al., 2006; Wormser et al., 2006a). Specific laboratory tests that confirm clinical 
suspicion are generally not available in the acute care setting, making empiric antibiotic therapy 
necessary pending the results of confirmatory tests. Table 12 shows the recommended antibiotic 
therapy for HGA. 

Tetracyclines have been traditionally considered the first-line antibiotics for treatment of 
HGA, based on clinical efficacy and uniform in vitro susceptibility of A. phagocytophilum strains for 
these compounds (Bakken et al., 1994; Dumler & Bakken, 1995; Aguero-Rosenfeld et al., 1996; 
Bakken et al., 1996c; Walker & Dumler, 1996; Klein et al., 1997; Dumler & Bakken, 1998; Horowitz 
et al., 2001; Maurin et al., 2003; Branger et al., 2004). Doxycycline hyclate is the treatment of
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choice due to its excellent pharmacokinetic properties and less frequent gastric intolerance 
compared with other tetracycline derivatives (Bakken & Dumler, 2006). It also has the advantage of 
showing additional activity against B. burgdorferi (Bakken & Dumler, 2006; Wormser et al., 2006a), 
covering potential coinfections in areas where both LB and HGA are endemic. Although broad-use 
of tetracyclines derivatives is typically contraindicated during pregnancy, its use is advocated in 
life-threatening situations (Chapman et al., 2006). Moreover, the American Academy of Pediatrics 
Committee on Infectious Diseases has revised its recommendations in 1997 and precluded limited 
doxycycline courses that do not pose a substantial risk for tooth staining, as the preferred antibiotic 
treatment for children of any age diagnosed with clinically apparent HGA, RMSF or HME 
(Chapman et al., 2006). In fact, doxycycline therapy has been successfully used for treatment of a 
newborn with HGA (Horowitz et al., 1998c) and a 5-year-old child, who had simultaneous LB (Moss 
& Dumler, 2003). 

 
TABLE 12 – Recommended adult and pediatric antibiotic treatment for HGA (adapted from Bakken 
& Dumler, 2006; Wormser et al., 2006a). 

Dosea Antibiotic 

Adults Children 

Duration 
(days) 

Doxycycline hyclateb 100 mg i.v. or p.o.q 12hc 2 mg/Kg p.o.q 12h (max. 100 mg/dose)d 5-14 

Rifampine 300 mg p.o.q 12h 10 mg/Kg p.o.q 12h (max. 300 mg/dose) 7 

ai.v. Intravenous administration, p.o. Oral administration; bIneffective for HB; cA treatment of 10 days is usually 
recommended for adults with HGA or 14 days if coinfection with B. burgdorferi is suspected; dChildren ≥8 years-old 
may be treated with a 10-day course. Children >8 years-old are recommended to receive an abbreviated treatment of 
4–5 days (i.e., for 3 additional days after resolution of fever). If concomitant LB is suspected, administration of 
amoxicillin (50 mg/kg per day in 3 divided doses [maximum of 500 mg per dose]) or cefuroxime axetil (30 mg/kg per 
day in 2 divided doses [maximum of 500 mg per dose]) is recommended at the conclusion of doxycycline treatment to 
complete a 14-day total course of antibiotic therapy; eIneffective therapy for LB and HB. 

 

 
In vitro studies also showed that rifamycins have excellent activity against Anaplasma 

species (Klein et al., 1997; Horowitz et al., 2001; Maurin et al., 2003; Branger et al., 2004). This 
group of antibiotics is regarded as an alternative therapy for patients in whom tetracyclines use are 
contraindicated or limited, such as pregnant or lactating women, children younger than 8 years of 
age if not seriously ill, and intolerant or allergic individuals. Rifampin has already been used 
successfully in a small number of pediatric patients and pregnant women (Buitrago et al., 1998; 
Dumler & Bakken, 1998; Krause et al., 2003). However, the use of rifampin should be considered 
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with caution because of the possibility of rapid selection of resistant microbial populations, as has 
been demonstrated for other bacterial species [(Enright et al., 1998; Heep et al., 1999) in Maurin et 
al, 2003]. Other compounds such as fluoroquinolones have also showed in vitro activity against A. 

phagocytophilum, although further clinical data is needed to define a safe alternative to 
tetracyclines (Klein et al., 1997; Horowitz et al., 2001; Maurin et al., 2003; Branger et al., 2004). For 
example levofloxacin, one of the most active fluoroquinolones against A. phagocytophilum, has 
been recently implicated in poor in vivo activity with the report of a clinical and microbiological 
relapse after completion of treatment (Wormser et al., 2006b). Moreover, a gyrA-mediated 
resistance in the related species E. canis and E. chaffeensis that likely corresponds to a single 
amino acid difference in the GyrA protein in A. phagocytophilum, has recently been described 
(Maurin et al., 2001).  

In vitro investigations of several clinical isolates have demonstrated that A. 

phagocytophilum is resistant to the majority of broad-spectrum antimicrobials such as β-lactam 
compounds (ampicillin, amoxicillin, ceftriaxone), macrolides (azithromycin, clarithromycin, 
erythromycin, telithromycin), amikacin, sulfamethoxazole-trimethoprim and chloramphenicol (Klein 
et al., 1997; Horowitz et al., 2001; Maurin et al., 2003; Branger et al., 2004). The lack of a 
peptidoglycan layer or LPS in A. phagocytophilum outer membrane (Lin & Rikihisa, 2003; Hotopp 
et al., 2006) is a possible explanation for β-lactam resistance. This situation is similar to that of 
mycoplasmas, which are also naturally resistant to all β-lactam compounds (McCormack, 1993 in 
Branger et al., 2004). Macrolide resistance is probably the result of point mutations that have been 
observed in A. phagocytophilum 23S rRNA genes, and are known to confer resistance in other 
bacteria (Vester & Douthwaite, 2001 in Maurin et al, 2003; Branger et al., 2004). Amoxicillin, 
azithromycin, and erythromycin, as well as the cephalosporin ceftriaxone, are agents that may be 
used to treat B. burgdorferi infection (Wormser et al., 2006a). Thus, persistent symptoms or slow 
resolution of LB after treatment with β-lactam or macrolides antibiotics may suggest underlying 
HGA. The same is applicable for HB that uses atovaquone in combination with azithromycin as one 
of the treatment options (Wormser et al., 2006a). 

A close clinical follow-up is recommended to ensure that patients respond as expected to 
therapy. Although severely ill individuals might require longer periods before clinical improvement 
is noted, especially if they have dysfunction of multiple organs, administration of effective HGA 
therapy usually results in defervescence within 24 to 48 hours (Bakken et al., 1994; 
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Dumler & Bakken, 1995; Aguero-Rosenfeld et al., 1996; Bakken et al., 1996c; Walker & Dumler, 
1996; Buitrago et al., 1998; Dumler & Bakken, 1998; Horowitz et al., 1998c; Krause et al., 2003; 
Bakken & Dumler, 2006). Thus, patients who fail to respond to treatment within this time frame 
should be reevaluated for alternative diagnosis, including the possibility of coinfections. Although 
tetracyclines are active against B. burgdorferi but not Babesia spp., rinfampin is inactive against 
both (Wormser et al., 2006a).  
 
 
1.3.7. PREVENTION 
 

The best currently available method for preventing infection with A. phagocytophilum, as 
for other tick–borne pathogens, is to avoid tick exposure. Strategies aimed to reduce vector 
densities in backyards and regular application of ectoparasite control on pets help to control 
infestations of domestic environments. Moreover, the use of both protective clothing and tick 
repellents when entering tick-infested habitats are also important measures recommended to 
reduce the risk of infection.  

Long-sleeved shirts tucked into pants, long pants tucked into socks, and closed-toe shoes 
are helpful in preventing ticks from reaching the skin and attaching. The selection of khaki neutral-
colored clothing is preferred to allow a background contrast with any eventual crawling ticks. 
Various over-the-counter products containing DEET (N,N-diethyl-m-toluamide) are available for 
topical application on exposed skin. The optimal concentration ranges from 15%-35%, which 
allows high performance and a high margin of safety. There is no evidence that concentrations 
>50% are more efficient or provide longer protection period. The timing of reapplication depends on 
the specific preparation utilized. Some products may provide up to 12 hours protection from one 
application, but long-acting formulations are being developed (Salafsky et al., 2000). Neurologic 
manifestations in children after excessive application of DEET-containing repellents have been 
reported (CDC, 1989), but the compound appears to be safe when used as directed in the product 
labels, even for young children 12 months old (Fradin, 1998; Qiu et al., 1998; Koren et al., 2003). 
Products containing Permethrin can be used to treat outer clothing (e.g., shirts and pants). It 
should be applied according to label directions in a well-ventilated area and clothing must 
completely dry before being worn. This chemical is nontoxic to humans although it is not licensed 
for direct application to the skin.  
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In tick-infested habitats it is also important to avoid wooded or grassy areas and walk on 
cleared trails. Brushing against tall grass and other vegetation is regarded as a risk factor (Lane et 

al., 2004). This practice is particularly essential during periods of peak tick activity (i.e., late spring  
and summer) but should be followed throughout the year, regardless of the season. Frequent 
visual inspection of skin and clothes may help to identify crawling ticks preventing attachment. 
Limited data exist regarding the interval of A. phagocytophilum transmission after tick attachment, 
but animal studies indicate that 24-48 hours might elapse before effective pathogen transmission 
(Hodzic et al., 1998; Katavolos et al., 1998; Des Vignes et al., 2001); transmission has been 
demonstrated under experimental circumstances in as little as 4 hours after attachment. The risk of 
A. phagocytophilum infection and other tick borne-diseases can therefore be reduced substantially 
by performing daily inspections of entire body and by promptly removing attached ticks after 
outdoor activities. 

Attached ticks should be removed preferably by grasping with tweezers or fine-tipped 
forceps close to the skin and gently pulling in a constant and steady motion. Folk methods of 
removing ticks, such as using lighted cigarettes, petroleum jelly, fingernail polish, etc, should be 
avoided because they may increase the risk of agent transmission by increasing tick salivation or 
body damage and consequent fluid leaking into the wound (Needham, 1985; Boer & Van den 
Boggard, 1993). If a portion of the ticks mouth parts remains embedded in the skin, only topical 
disinfection of the site is suggested, because attempts to remove this material can cause tissue 
damage and are unnecessary as the risk of agent transmission is unaffected. Ticks that have been 
removed should not be crushed between the fingers to prevent contamination. After tick removal, 
the bite wound should then be disinfected and hands should be washed to avoid potential 
conjunctival contamination. Although there is a potential risk of infection, most tick bites are 
uncomplicated and result only in benign cutaneous inflammatory reactions that may be pruritic for a 
few days. Sometimes a granuloma may develop, supposedly as a result of mouthparts being 
retained at the feeding site (Parola & Raoult, 2001a). 

The prophylactic potential of antimicrobials have been studied in animal model of 
granulocytic anaplasmosis (Blagburn et al., 2004; Massung et al., 2005b) but its usefulness for 
humans has not been demonstrated. In general, the use of antibiotics is strictly recommended for 
clinically ill individuals. 
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1.4. ANAPLASMATACEAE IN PORTUGAL 
 
 

The presence of Anaplasmataceae family member species in Portugal has been long 
recognized starting with the 1943 description of bovine and ovine anaplasmosis due to A. 

marginale (Silva Leitão, 1943). Today the disease is still regarded as a veterinary problem that 
affects flocks and herds across the country, with the highest prevalence found in Alentejo region, 
Southern mainland Portugal (J Gomes, personal communication). 

In 1990, Filipe and coworkers described an Ehrlichia-like organism in the hemolymph of 
Rhipicephalus sanguineus ticks parasitizing a domestic dog from Setúbal District (Filipe et al., 
1990). The agent was later maintained in a R. sanguineus-laboratory reared colony by intracelomic 
inoculations and found to be antigenically similar to E. canis (Santos, 1997). Additional studies, 
report that E. canis seroprevalence ranges from 45.4 - 54.5% in stray dogs from this same 
geographic area (Silveira, 1992; Bacellar et al., 1995). More recently, E. canis DNA was detected 
in a dog hospital population in the Algarve region, Southern mainland, definitively confirming the 
association of this Anaplasmataceae family member with canine disease in Portugal (Alexandre, 
2006). Due to the association of E. canis and R. sanguineus, one of the most prevalent tick species 
in the region (Caeiro, 1999), it is expected that canine monocytic ehrlichiosis occurs broadly across 
the country, especially in the Southern regions. 

The existence of other Anaplasmataceae member species and their potential involvement 
in human disease was first suggested by David de Morais and coworkers (1991). The authors 
described a case of febrile illness without rash, accompanied by leucopenia, thrombocytopenia, 
mild anemia and increase of hepatic enzymes in a 21-year-old man from Évora District, Alentejo 
region. The patient worked in an office and had no regular contact with animals and no history of 
tick bite, although he had visited a farm two weeks before the onset of symptoms in January 1991. 
Serological tests for typhoid fever, brucellosis, Mediterranean spotted fever (MSF), and LB were 
negative. Human monocytic ehrlichiosis was suggested by a >four-fold decrease in IFA titer 
against E. chaffeensis antigen in two consecutive samples collected 15 days after the onset and 
two months later, showing an antibody decrease from 1024 to 128. Three months after the onset of 
disease, the serum titer against E. chaffeensis was 64. A high, stable IFA titer of 512 against C. 

burnetii phase II antigen was also observed in all three serum samples (David de Morais et al., 
1991, 1992b). Based on serology, another patient with a febrile illness associated with E
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chaffeensis antibody was described by Rodrigues and coworkers (1998). However, neither agent 
isolation nor convincing DNA detection have been achieved in human, animal, or tick samples to 
reinforce these data. 

Additionally, a study performed in Madeira Island designed to clarify the importance of I. 
ricinus as vector of tick-borne agents showed for the first time the presence of A. phagocytophilum 
DNA in this tick species (Núncio et al., 2000). The finding was not completely unexpected since the 
agent was long known to occur in Europe (Gordon et al., 1932) and had been previously detected 
in I. ricinus from another Mediterranean region (Cinco et al., 1997) but this observation highlighted 
the possible role of Anaplasmtaceae in Public Health, and added to the list of Ixodes-borne agents 
in Portugal potentially involved in human diseases. 

I. ricinus is described as a hygrophilic tick [(Daniels et al., 1977; Gray, 1991; EUCALB) in 
Baptista, 2006] dispersed throughout Portugal with a patchy geographic distribution mainly 
influenced by environmental determinants such as climate (temperature, humidity and 
precipitation), landscape fragmentation, and landscape composition (open areas, mixed and 
deciduous forests) (Baptista, 2006). Although it has been reported from all districts of mainland 
Portugal (Dias et al., 1994; Caeiro, 1999), when compared with other species such as R. 

sanguineus and Dermacentor marginatus, it has a more restricted distribution, with the highest 
prevalence registered in rural regions (Baptista, 2006). Moreover, I. ricinus is also present in the 
Atlantic Archipelagos of Madeira and Açores, essentially in Madeira and Pico Islands, respectively 
[(Dias, 1992; Vieira, 1997) in Núncio, 2001; Almeida, 1996]. In some areas with favorable 
ecological conditions, it is of interest that this tick is a dominant species, as in Mafra (Lisboa 
District, Estremadura region, mainland Portugal) and Madeira Island (Almeida, 1996; Baptista, 
2006; MM Santos-Silva, personal communication). As observed in other countries, here I. ricinus is 
a permissive feeder, parasitizing a broad-range of mammalian hosts from at least six different 
orders, including Artiodactyla, Rodentia, Soricomorpha, Erinaceomorpha, Carnivora, and 
Lagomorpha (Tendeiro, 1962 in Dias et al., 1994; Dias et al., 1994; Bacellar, 1996; Caeiro, 1999; 
Estrada-Peña & Santos-Silva, 2005). Human parasitism by this species is also commonly reported 
and is associated with expected Public Health consequences (Dias et al., 1994; Bacellar, 1996; 
Caeiro, 1999; MM Santos-Silva, personal communication). To date, seven species of tick-borne 
bacteria have either been isolated or detected in Portuguese I. ricinus, and some are already 
associated with human disease: Borrelia lusitaniae, B. valaisiana, B. afzelii, B. garinii, B. 

burgdorferi s.s., and R. helvetica, beside A. phagocytophilum (Núncio et al., 1993; 
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Matuschka et al., 1994, 1998; Bacellar et al., 1999a; De Michelis et al., 2000; Núncio et al., 2000; 
Núncio, 2001; Baptista et al., 2004; Baptista, 2006). It is worth mentioning that the first Portuguese 
isolation of B. burgdorferi s.l. from this tick vector reported by Núncio and coworkers (1993), was 
later identified as a new species, B. lusitaniae (Le Flèche et al., 1997). The first human clinical 
case of LB was reported in Alentejo region by David de Morais and coworkers (1989), and this was 
followed by several other reports from the same area and other parts of the country (David de 
Morais et al., 1992c, 1994; Collares-Pereira & Franca, 2000; Núncio, 2001; Baptista, 2006). The 
research investment in LB revealed its national importance as a tick-borne disease, and in 1999, 
LB was included in the list of national notifiable diseases (http://www.dgsaude.pt). Despite the 
pathogenic potential of several B. burgdorferi s.l. species that circulate in the country, so far only 
three species are linked to human disease, including B. garinii, B. afzelii and B. lusitaniae, the latter 
never before reported as human pathogen (Collares-Pereira et al., 2004; Baptista, 2006). R. 

helvetica is another example of an Ixodes-borne bacterium that has recently been linked to human 
pathology after its detection in French patients with febrile illnesses (Fournier et al., 2000) although 
it has not yet been identified as a cause of disease in our country. Moreover, another Ixodes-borne 
disease, HB caused by Babesia divergens, was reported in a splenectomized patient (Centeno-
Lima et al., 2003). 

Given to i) the presence of I. ricinus in several regions of the country and its known role as 
a primary European vector of A. phagocytophilum, ii) the existence of the A. phagocytophilum itself 
in Portugal, and iii) the substantial opportunity for human exposure to the vector tick, proven by 
occurrence of Ixodes-borne diseases such as LB, the hypothesis that human A. phagocytophilum 
infections and HGA disease in Portugal were considered, further stimulating the investigation 
described in the following chapters. In order to promote a better awareness of tick-borne diseases, 
especially that caused by A. phagocytophilum, two revision articles were published and directed 
toward the practicing medical community (Appendix 1 and 2). 
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* Article published in collaboration with the Unité des Rickettsies, Faculté de Medécine, Marseille, 
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ABSTRACT: 
 
The presence of tick-borne rickettsial agents in Ixodes ricinus ticks was investigated in a densely 
infested Portuguese recreational park, Tapada Nacional de Mafra. A total of 998 Ixodes ricinus 
were tested by PCR, individually or in pools, for detection of Rickettsia spp., Ehrlichia chaffeensis 
and Anaplasma phagocytophilum. Rickettsia DNA exhibiting sequences similar to those of 
Rickettsia helvetica, and R. monacensis strains IRS3 and IRS4 were identified. This is the first 
report of I. ricinus infection by other spotted fever rickettsiae beside R. helvetica in Portugal. 
Further consideration should be given to I. ricinus as vector of several rickettsiae whose 
pathogenicity to humans is still unknown. 
 

 

RUNNING TITLE 

Rickettsia spp. in Ixodes ricinus, Portugal 

 
 
KEY WORDS: Ixodes ricinus; Spotted fever group rickettsiae; Rickettsia helvetica; IRS3; IRS4; 
gltA; OmpA; OmpB; Portugal. 
 
 
INTRODUCTION: 
 

Ixodes ricinus are among the most important European ticks regarding Public Health 
concerns. It is a well-known vector of several agents causing diseases in humans, such as tick-
borne encephalitis virus (TBE), Borrelia burgdorferi s.l. (Lyme borreliosis), Anaplasma 

phagocytophilum (human granulocytic anaplasmosis), Babesia divergens and B. microti (human 
babesiosis) (Estrada-Pena & Jongejan, 1999). It is also responsible for the transmission of 
Rickettsia helvetica recently associated to cases of febrile illness (Fournier et al., 2000). I. ricinus is 
regarded as a hygrophilic species presenting in Portugal a patchy distribution influenced mainly by 
environmental determinants, such as climate, landscape fragmentation and composition (Baptista, 
2006). Regardless, in some areas of the country with adequate conditions this tick species can be 
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abundant as in the case of Tapada Nacional de Mafra (TNM). This national park with more than 
800 ha is a densely wooded territory located in the Central Western Coast of Portugal (38º 56’N 9º 
17’W). It was originally created as a hunting area, but it is also used as a recreational and 
educational park. TNM supports a diverse wildlife population composed of birds, reptiles, and small 
to large mammals, including rodents, insectivores, carnivores, lagomorphs, and artiodactyls (wild 
boars, fallow deer and elks). The availability of such diverse vertebrate hosts helps to maintain an 
abundant tick’s population, dominated by I. ricinus but also including other Ixodes, Dermacentor, 
Haemaphysalis, and Rhipicephalus species (MM Santos-Silva, unpublished data). Given the 
repeated contact between humans and ticks in TNM, the occurrence of tick-borne agents with 
potential Public Health importance has been a matter of concern for the park’s administration which 
has promoted the realization of several studies to increase knowledge regarding this subject. The 
occurrence of a great variety of B. burgdorferi s.l. in ticks, including B. afzelii, B. garinii, B. 

lusitaniae, and B. valaisiana has already been documented (Baptista et al., 2004, 2006). However, 
no studies have yet addressed the occurrence of other tick-borne agents, such as those belonging 
to the Order Rickettsiales. In this study, the presence of Anaplasma phagocytophilum, Ehrlichia 

chaffeensis, and Rickettsia spp. was investigated in I. ricinus ticks from TNM. 

 

 

MATERIALS AND METHODS: 

 
Tick sampling. During 4 day-trials in February 2002, a total of 1064 ticks were collected from 
TMN, including: 998 I. ricinus, 29 Haemaphysalis inermis, 28 H. puntacta and 9 Dermacentor 

marginatus. This work details only the study regarding I. ricinus ticks. The majority of I. ricinus (132 
males, 130 females and 710 nymphs) was collected when questing for hosts, by means of flagging 
vegetation in 4 sampling areas. These areas are designated feeding places for the large animal 
population, and were selected for hosting a large number of animals daily. Additional specimens 
were collected from Dama dama, captured during the hunting season (9 males and 17 females). 
Most arthropods were processed in groups pooled by sex, stage, and sampling area comprising 36 
pools of adult ticks (ranging from 2 to 20 arthropods) and 6 pools of immatures (ranging from 55 to 
200 arthropods). Approximately 9% of the questing adults collected in each sampling area were 
processed individually, representing a total of 24 ticks (12 males and 12 females). The ticks were 
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washed in alcohol 70%, passed through distillate water and dried in filter paper. Using a sterile 
pestle per sample, ticks were homogenized in 400µl PBS supplemented with 10% fetal calf serum 
(Gibco, Invitrogen, UK). Half sample homogenate was used for DNA extraction and the other 200µl 
was stored at –80ºC. 
Polymerase chain reaction (PCR). Genomic DNA was extracted using DNeasy Tissue Kit, 
according to the manufacture’s instructions (Qiagen GmbH, Germany). To monitor the occurrence 
of false-positive samples, homogenates of laboratory-reared ticks were included during extraction 
as negative controls (one control per each extraction run containing 5 tick samples). Several sets 
of primers were used for Rickettsiales detection, including: i) GE9f/GE10r for the amplification of A. 

phagocytophilum 16S rRNA (rrs) gene (Chen et al., 2004) and MSP465f/MSP980r, for the 
amplification of a hypervariable region of A. phagocytophilum surface protein genes (Caspersen et 

al., 2002); ii) ECC/ECB followed by HE1/HE3, outer and inner primer pair, respectively, targeting E. 

chaffeensis rrs (Dawson et al., 1996); iii) RpCs415/RpCs1220 and Rr190.70p/Rr190.602n, which 
target a fragment of Rickettsia spp. genes encoding for citrate synthase (gltA) and outer membrane 
protein A (ompA), respectively (Regnery et al., 1991). Due to the lack of ompA gene in some 
Rickettsia spp., to complement these later screening all gltA positive samples that were not 
amplified with ompA primers were re-tested with OF/OR pair, for the amplification of the alternative 
outer membrane protein B (ompB) gene (Choi et al., 2005). Primer sequences and amplification 
conditions have been previously described (Regnery et al., 1991; Chen et al., 1994; Dawson et al., 
1996; Choi et al., 2005; Caspersen et al., 2002). PCR were performed in Biometra T3 thermoblock 
thermal cycler (Biometra GmbH, Germany) using a total volume of 50µl master mix containing 1 

µM of each primer, 2.5 U of Taq DNA polymerase, 20mM of each dNTP, 10 mM Tris-HCL, 1.5 mM 

MgCl2, 50 mM KCl and 10µl DNA extract (1µl in nested reactions). As PCR negative controls we 
have used DNA extracted from arthropods reared in a laboratory tick colony and as positive 
controls R. conorii Malish strain, A. phagocytophilum Webster strain and E. chaffeensis Arkansas 
strain. 
Sequencing. DNA amplicons from positive samples were purified (Jetquick PCR Purification Kit; 
Genomed GmbH, Germany) and sequenced using an ABI automated sequencer (Applied 
Biosystems). After manual review and editing, sequence homology searches were performed using 
BLASTn and the NCBI nr nucleotide database. 
Nucleotide sequence accession numbers: The GenBank nucleotide sequence accession 
numbers for partial sequences generated in this study are: DQ910783 (PoTiR1dt), DQ910784 
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(PoTiR2dt), DQ910785 (PoTiR3dt), and EF051167 (PoTiR4dt) for gltA gene; DQ910781 
(PoTiR1dt), DQ910782 (PoTiR2dt) and EF053275 (PoTiR4dt) for ompA gene; EU126928 
(PoTiR3dt) for ompB. 
 
 
RESULTS: 
 
Seven out of 42 pools and 1 out of 24 individually processed I. ricinus, tested positive for 
rickettsiae. Positive amplicons were obtained only from questing ticks and the sequencing results 
are presented in table 1. DNA from female I-7 (named PoTiR1dt) and pool 26 (named PoTiR2dt) 
exhibited nucleotide sequence 99% similar to spotted fever Rickettsia strain IRS3 to both gltA 
(372/373 bp) (AF140706) and ompA (497/499) (AF141909) genes. Pool 1 (named PoTir3dt) 
contained rickettsial DNA exhibiting nucleotide sequences 99% similar in both gltA and ompB 
(positions 361/363 bp and 495/499 bp, respectively) when compared to R. helvetica sequences 
available in GenBank (U59723 and AF123725, respectively). The tick pool 4 (named, PoTiR4dt) 
presented DNA with a 100% homology to R. monacensis (IRS4) in both gltA (373/373) 
(DQ100163) and ompA (499/499) (DQ100169) sequences. Additionally, 4 other pools (P31-33) 
revealed appropriate amplicons with gltA and ompA fragments of 376-bp and 534-bp, respectively. 
However, DNA sequencing of these PCR products showed ambiguous bases in the sequence, 
probably resulting from polling samples and they were excluded from further analysis. Neither A. 

phagocytophilum nor E. chaffeensis DNA was detected in this study. 
 
 
DISCUSSION: 

In Europe several agents belonging to the order Rickettsiales have been associated to I. 
ricinus. A. phagocytophilum is now reported in several countries and cases of human disease 
associated to this agent are especially documented in Northern and Central Europe (Strle, 2004). 
Rickettsia helvetica, initially described in Switzerland as the Swiss agent, was the first rickettsia to 
be isolated from this tick species (Beati et al., 1994). More recently, R. monacensis (previous 
known as IRS4) was isolated from ticks collected in a public park in Munich, Germany (Simser et 

al., 2002). Other yet-to-be-cultured rickettsiae have also been detected by PCR testing, such as 
the Cadiz agent in southwestern Spain and IRS3 in Slovakia (Márquez et al., 1998; Sekeyova et 
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al., 2000), probably representing variant genotypes of the R. monacensis. So far R. helvetica is the 
only rickettsiae species transmitted by I. ricinus that has been associated to human disease after 
its detection in French patients with febrile illness (Fournier et al., 2000). 

In Portugal, both A. phagocytophilum and R. helvetica has been already identified in I. 

ricinus (Bacellar, 1999; Santos et al., 2004), but no cases of human infection by these Rickettsiales 
have been definitely proven. Additionally, the description of a case fulfilling the serological criteria 
for E. chaffeensis infection (David de Morais et al., 1991), suggested the occurrence of this agent 
in our country. Since the vector of E. chaffeensis is largely unknown in Europe, it was considered 
of interest to include this agent’s screening in the present study. The results presented herein 
evidenced the occurrence of R. helvetica, IRS3 and IRS4 in TNM. The detection of R. helvetica in 
an area such as TNM, where the exposure to tick infested habitats is highly promoted, could have 
direct implication in Public Health and thus deserves further investigation. Moreover, the 
association of IRS3 and IRS4 to I. ricinus, a tick species that frequently bites humans, should also 
merit attention. Regarding the other Rickettsiales in study, no active infections could be identified in 
the analysed ticks. Given the presence of A. phagocytophilum in other Portuguese areas where 
Ixodes spp. are known to occur, the present results may be justified by the patchy seasonal and 
spatial distribution that usually characterizes this agent. 

Further investigation should be planed in TNM to investigate aspects such as the absence 
of A. phagocytophilum, rickettsiae prevalence, occurrence of co-infection in ticks and the rickettsiae 
species involved in human diseases in the area. 
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TABLE 1 – Tick samples detected with Rickettsia DNA 

PCR results  

A. phagocytophilum  E. chaffeensis  Rickettsia spp.  

Samplea 

 

Tested ticks  
stageb(origin)c

rrs msp2  rrs  gltA OmpA (OmpB)  

Rickettsia homology 
(genotype designation) 

I-7         1F(V) - - - + +  IRS3 (PoTiR1dt)
P1         

         
          
           
           
           
           

10M(V) - - - + (+)  R. helvetica (PoTiR3dt) 
P4 10M(V) - - - + +  R. monacensis/IRS4 (PoTiR4dt) 
P26 20F(V) - - - + +  IRS3 (PoTiR2dt)
P30 100N(V) - - - + +
P31 100N(V) - - - + +
P32 200N(V) - - - + +
P33 200N(V) - - - + +

aI individually processed arthropods, P pool of ticks; bM male, F female, N nymph; cV ticks collected in vegetation (questing ticks). 
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ABSTRACT 
 
A total of 2006 ticks, collected in Madeira Island and seven districts of Mainland Portugal, 

were examined by polymerase chain reaction (PCR) for the presence of Anaplasma 

phagocytophilum. Active infections were detected exclusively in Ixodes species, including six 
questing I. ricinus nymphs from Madeira Island, one questing I. ventalloi nymph from Setúbal 
District, and two I. ventalloi adults found parasitizing domestic cats in both Setúbal and Santarém 
District. These findings confirm prior observations and suggest the persistence of A. 

phagocytophilum on Madeira Island, where its presence was first documented in 2000. Moreover, it 
adds I. ventalloi and domestic cats to the list of potential elements of the agent’s enzootic cycles in 
Portugal. Molecular analysis of PCR amplicons suggests the existence of two A. phagocytophilum 
genotypes in Portugal, one of which is identical or very similar to North American strains implicated 
in human disease. 
 

 

RUNNING TITLE 

Anaplasma phagocytophilum in Portuguese ticks 

 
 
KEYWORDS 
 
Ticks; Tick-borne agent; Anaplasma phagocytophilum; Polymerase chain reaction (PCR); Portugal; 
 
 
INTRODUCTION 
 

Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila, E. equi and the human 
granulocytic ehrlichiosis agent [HGE agent]) (Dumler et al., 2001) is an obligate intracellular 
bacterium that is well established as a worldwide tick-borne agent of veterinary importance and is 
also currently considered an emerging human pathogen in both US and Europe (Strle, 2004; 
Dumler, 2005; Lotric-Furland et al., 2006). The disease in humans is known as human granulocytic 
anaplasmosis (HGA), formerly human granulocytic ehrlichiosis, and presents clinically as a non-

 128



Chapter III. Anaplasma phagocytophilum in ticks (Acari:Ixodidae)  

specific febrile illness accompanied by hematological abnormalities and hepatic injury. Severe and 
fatal infections have been occasionally reported, especially in US (Bakken et al., 1994, 1996; 
Hardalo et al., 1995; Jahangir et al., 1998). The main route of A. phagocytophilum transmission is 
via infected tick salivary secretions during a tick-bite. Several ticks species in the Ixodes 
persulcatus/ricinus complex are considered primary vectors for this agent, including I. scapularis 
and I. pacificus, respectively in Eastern and Western parts of North America, I. ricinus in Western, 
Central and Northern Europe (Macleod & Gordon, 1933; Richter et al., 1996; Telford et al., 1996) 
and I. persulcatus in Western Europe and Asia (Cao et al., 2000, 2006; Morozova et al., 2002; Kim 
et al., 2003; Wen et al., 2003; Rar et al, 2005). 

When this study was initiated in 2002, limited information was available regarding the 
presence of A. phagocytophilum in Portugal, except for Madeira Island that described its presence 
in I. ricinus (Núncio et al., 2000). Thus a broader study was undertaken to investigate the 
occurrence of A. phagocytophilum in Portuguese ticks and to further characterize the agent by 
molecular approaches. It was integrated with other research activities of Center for Vector and 
Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge (CEVI/INSA), in a joint 
effort to promote improved knowledge of tick-borne agents potentially involved in human disease in 
the country. The present report summarizes all available data regarding A. phagocytophilum 
detection in ticks collected by active surveillance in Portugal during 2002-2006. 
 

 
 
MATERIAL AND METHODS 
 
Ticks sampling. During 2002 to 2006, ticks were collected in several areas of Bragança, Braga, 
Leiria, Lisboa, Portalegre, Santarém, and Setúbal Districts, mainland Portugal and on Madeira 
Island, Madeira Archipelago. The areas were selected for the field-trials, either because Ixodes 
species were known to be present, or because specific interest in a given tick-borne disease was 
expressed for integration with ongoing projects. Detailed information regarding 1,384 ticks was 
previously described (Santos et al., 2004; Santos-Silva et al., 2006a, 2006b; Santos et al., in 
submission). The remaining 622 ticks included in this study were obtained either from additional 
field work or collected during the above mentioned surveys (Santos et al., 2004; Santos et al., in 
submission). Ticks were obtained by flagging vegetation or were directly removed from wild and 
domestic animals. Some additional specimens found parasitizing humans and sent to our 
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laboratory by medical institutions or directly removed from persons who presented at CEVDI/INSA 
were also included in this study. All specimens were identified to the species level by standard 
taxonomic keys (Cordas et al., 1993; Dias, 1994), and either immediately processed or frozen at -
80ºC until used. 
 
DNA extraction and polymerase chain reaction (PCR). Ticks were processed individually, or in 
some samples obtained from Lisboa District, pooled according to feeding condition, stage, sex, and 
site of collection, as described elsewhere (Santos et al., in submission). Genomic DNA was 
extracted from individual ticks by crude digestion of tissues in 0.7 mol/L ammonium hydroxide at 

100°C, as described by Schouls and coworkers (1999). DNA from pooled samples was extracted 

from 200 µl of tick homogenates prepared in PBS using the DNeasy Tissue Kit, according to the 
manufacturer’s instructions (Qiagen GmbH, Germany). To monitor the occurrence of cross-
contamination, laboratory-reared ticks were included during extraction as negative controls (one 
control per each extraction run containing 6 to 23 tick samples). The presence of A. 

phagocytophilum DNA in tick samples was screened by PCR or nested PCR using different sets of 
primers: i) MSP465f/MSP980r derived from the highly conserved 5’ region of major surface protein-
2 (msp2) paralogous genes (Caspersen et al., 2002); ii) GE9f/GE10r which amplify a 919 bp 
fragment of the 16S rRNA gene (rrs) (Chen et al., 1994); iii) HS1/HS6 followed by HS43/HS45 for 
the amplification of a 442-bp sequence of heat-shock operon, groESL (Sumner et al., 1997). Both 
msp2 and rrs primers were used for the initial screening of part of the samples, as described 
elsewhere (Santos et al., 2004; Santos et al., in submission). The rest of the ticks presented here 
were screened using msp2 testing alone. All samples that tested positive with the msp2 and rrs 
screening during 2002-2006 were further analysed using groESL primers. PCR was performed in a 
total 50 µl volume containing 1 µM of each primer, 2.5 U of Taq DNA polymerase, 200 mM of each 
dNTP, 10 mM Tris-HCl, 1.5 mM MgCl2, 50 mM KCl and 5 to 10 µl of DNA template (1 µl in nested 
reactions). Primer sequences and PCR conditions were previously described (Chen et al., 1994; 
Sumner et al., 1997; Caspersen et al., 2002). In each PCR run, known positive and negative 
samples (extraction controls and water) were included as controls. DNA amplicons from positive 
samples were purified (Jetquick PCR Purification Kit; Genomed GmbH, Germany) and sequenced 
using an ABI automated sequencer (Applied Biosystems). After manual review and editing, 
sequence homology searches were performed using BLASTn using the NCBI nr nucleotide 
database. 
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GenBank accession numbers. The accession numbers of A. phagocytophilum 16S rRNA partial 
gene (rrs) sequences obtained in this study are: EU098006 for ticks nos. 118 and 122; EU098007 
for ticks nos. 160 and 246. The A. phagocytophilum groESL partial sequences are: EU004826 for 
ticks nos. 93 and 118; EU004827 for ticks nos. 160 and 246. 
 
 
RESULTS  
 

A total of 2006 ticks belonging to 14 species were collected, including 117 Dermacentor 

marginatus, 76 D. reticulatus; 6 Hyalomma lusitanicum, 12 H. marginatum, 29 Haemaphysalis 

inermis, 34 H. punctata, 2 Ixodes acuminatus, 1 I. bivari, 5 I. hexagonus, 1202 I. ricinus, 144 I. 
ventalloi, 49 Rhipicephalus bursa, 77 R. pusillus and 252 R. sanguineus group (Figure 1, Table 1-
2). PCR testing was performed either on individually processed ticks (n=1032) or using pooled ticks 
(n=974, divided in 42 tick samples), representing a total of 1074 DNA samples. Of the 320 samples 
initially screened by both msp2 and rrs primers, A. phagocytophilum DNA was detected in 8 
samples, corresponding to 6 questing I. ricinus nymphs collected from Madeira Island, previously 
referred as nos. 11, 60, 118, 122, and 137 (Santos et al., 2004) and 1 questing I. ventalloi nymph 

and 1 male I. ventalloi collected from a domestic cat, both obtained from Setúbal District and 
referred as nos. 160 and 246, respectively (Santos et al., 2004). All 8 positive samples were 
identified by msp2 primers, although rrs PCR failed to amplify DNA in 3 of these ticks. The 
standard amplification of rrs can be limited by low sensitivity owing to the presence of a single copy 
in each bacterial genome. In contrast msp2 is a member of a multigene family composed as many 
as 105 paralogs per genome, which enhances detection sensitivity (Scorpio et al., 2004). Because 
of the higher sensitivity of PCR for msp2 compared to rrs, the remaining study samples (712 DNA 
samples) were screened only using msp2 DNA testing. Of these, one additional sample was found 
positive for A. phagocytophilum, corresponding to an I. ventalloi female collected from a domestic 
cat in Santarém District (no. 348). Additional amplifications with the groESL primers were 
performed in 4 A. phagocytophilum msp2 and rrs positive samples (nos. 93, 118, 160, 246). 

Partial sequences of msp2 obtained from all 9 ticks showed between 85.7% to 98.5% 
similarity, between 86.9% and 94.2% similarity when compared to representative msp2 sequences 
from North American A. phagocytophilum strains isolated from humans (Webster strain - Wisconsin 
and USG3 strain - eastern US), and between 35.0% and 63.7% similarity compared to outgroup A. 
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marginale msp2 and msp3 sequences, respectively (Figure 1A). Of interest, the sequences 
obtained from I. ventalloi from mainland Portugal clustered together and separate from other msp2 
sequences obtained from I. ricinus on Madeira Island (Figure 1A). When amplified using rrs 
primers, compared to other US A. phagocytophilum strains obtained from humans 
(U02521,Wisconsin strain and CAHU–HGE1 and CAHU–HGE2, California strains), sequences 
were 100% (783/783) identical for the I. ventalloi nos. 160 and 246 and I. ricinus no. 118 and 100% 
(645/645) identical for I. ricinus no 93 (Figure 1B). Moreover, the groESL partial sequences were 
also identical for the two I. ricinus (nos. 93 and 118) and two I. ventalloi (nos. 160 and 246) 
showing 100% (463/463) and 97.8% (453/463) similarity to the Californian strains, CAHU-HGE1 
and CAHU-HGE2. Although the rrs failed to provide any evidence of differences between the 
mainland and Madeira Island strains, the groESL analysis reinforced the differences observed in 
msp2 sequences of A. phagocytophilum strains derived from I. ricinus and I. ventalloi ticks (Figure 
1C). 

 
 

DISCUSSION 
 
These data confirm, in actively questing I. ricinus collected from Madeira Island, the 

presence of A. phagocytophilum that is closely related to the North American strains involved in 
human disease. I. ricinus is regarded as a hygrophilic tick that presents a patchy distribution in 
Portugal mainly influenced by environmental determinants, such as climate, landscape composition 
and fragmentation (Baptista, 2006). Regardless, in areas with favorable conditions, as is the case 
for Madeira Island and Mafra (Lisboa District, mainland), it can be the dominant tick species 
(Almeida, 1996; Baptista, 2006). Moreover, I. ricinus is also frequently found parasitizing humans in 
Portugal (MM Santos-Silva, unpublished data) and their potential for transmitting pathogenic 
agents is illustrated by the occurrence of at least one Ixodes-borne disease, Lyme borreliosis 
caused by the bacteria Borrelia burgdorferi s.l., which has been included in the list of national 
notifiable diseases since 1999 (Lopes de Carvalho & Núncio, 2006). Thus, one can assume that 
the presence of A. phagocytophilum in I. ricinus on Madeira Island presents a potential health 
threat to both humans and animals that needs further investigation. 

These data also illustrate that A. phagocytophilum might not be uniformly distributed in our 
country. For example in Mafra (Lisboa District), an area where I. ricinus are abundant no infected 
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ticks were found. In contrast, on Madeira Island, A. phagocytophilum seems to be endemic given 
the detection of infected I. ricinus in surveys conducted at two different times (Núncio et al., 2000; 
Santos et al., 2004). This reflects either continuous introduction of the agent by migrating birds 
and/or the existence of vertebrate hosts that sustain the agent’s active cycles, again likely 
rewarding subjects for further investigation. 

Another ecologically interesting finding was the identification of A. phagocytophilum in I. 

ventalloi ticks either collected from vegetation in Setúbal District or parasitizing cats in both Setúbal 
and Santarém District. Besides the major vectors of the I. persulcatus/ricinus complex species, the 
involvement of other Ixodes ticks in natural enzootic cycles of A. phagocytophilum is already 
reported, such as with I. spinipalpis in Colorado (Zeidner et al., 2000), I. dentatus on the New 
England Coast (Goethert & Telford, 2003) and possibly I. trianguliceps in England (Bown et al., 
2003). Although the direct role of these ticks in human and domestic animal diseases still needs to 
be evaluated, it seems to be limited due to their relative host specificity and restricted questing 
potential. When compared with members of I. persulcatus/ricinus complex, I. spinipalpis, I. 

dentatus, and I. trianguliceps are regarded as important bridge-elements, maintaining parallel 
transmission cycles that could provide support for primary vectored infectious agents (Zeidner et 

al., 2000; Bown et al., 2003; Goethert & Telford, 2003). This is a possible explanation for the 
results obtained here, although the vector competency of I. ventalloi for A. phagocytophilum 
transmission has yet to be demonstrated. 

Of interest is the fact that msp2 and groESL sequences of A. phagocytophilum derived 
from I. ventalloi were closely related to each other and divergent from those obtained in I. ricinus. 
The A phagocytophilum HZ strain genome has at least 105 copies of the msp2 (or p44) gene 
multifamily and msp2 primers were designed to target the highly conserved 5' flanking sequences 
detected in a sample of about 30 of these copies (Caspersen et al., 2002). The msp2 possesses 5' 
and 3' conserved sequences that flank a hypervariable region that recombines to generate 
antigenically diverse bacterial populations. Thus, msp2 is best known for diversity and not for its 
potential application as a molecular phylogenetic or epidemiological tool. Yet, given the high 
degree of nucleotide conservation surrounding the msp2 hypervariable region, its application for 
molecular phylogeny is likely valid, and the agreement with groESL results supports the hypothesis 
that distinct A. phagocytophilum lineages exist in Portugal. 

Since 2 of the 3 infected I. ventalloi ticks were obtained from domestic cats, a potential role 
is suggested for these animals in agent’s maintenance cycles. In fact, domestic cats are on the list 
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of vertebrate hosts affected by A. phagocytophilum infections in both US and Europe (Bjoerdorff et 

al., 1999; Lappin et al., 2004; Shaw et al., 2005). Additionally, a study performed by Levin and 
coworkers (2002) also describes the presence of active infection in feral cats captured in 
Connecticut, US. Although no clinical evaluation was undertaken in the current study, the cat that 
harboured the infected ticks in Setúbal District was apparently healthy but free-roaming; no 
information was available regarding the Santarém District cat. Additionally, I. ventalloi has also 
been found parasitizing wild birds and several orders of mammals, such as Carnivora, 
Erinaceomorpha, Lagomorpha, Rodentia, and Soricomorpha (Dias et al., 1994; Santos-Silva et al., 
2006b). So far, no cases of human parasitism by this species are reported in Portugal, although I. 
ventalloi has been found on humans in France (Gilot & Marjolet, 1982). Thus, the enzootic cycles 
of this A. phagocytophilum strain may involve several wild animals and the pathogenic potential for 
both humans and domestic animals should be evaluated. 

It is also worth mentioning the lack of A. phagocytophilum detection in non-Ixodes ticks, 
such as in a 500 m2 site in Baixa de Palmela, Setubal District where positive Ixodes ticks were 
found, and the analysis of several other tick species revealed no A. phagocytophilum. In this site 
during the morning flagging performed on April 2003, 1 positive I. ventalloi was collected with 13 R. 

pusillus and 5 R. sanguineus group (data not detailed). These results are in accordance with 
several other studies that link A. phagocytophilum to the genus Ixodes and only sporadically to 
other arthropods, such as Dermacentor variabilis, Dermacentor occidentalis and Haemaphysalis 
leporispalutris in US (Goethert & Telford, 2003; Holden et al., 2003), Haemaphysalis longicornis in 
Korea (Kim et al., 2003), Hyalomma detritum in Tunisia (Sarih et al., 2005), Dermacentor silvarum 

in China (Cao et al., 2006), the Trombiculidae mite Neotrombicula autumnalis in Spain (Fernandez-
Soto et al., 2001), Syringophilidae quill mites Torotrogla merulae and Syringophilopsis sturni in 
Poland (Skoracki et al., 2006). The majority of these arthropods were collected while feeding on 
vertebrate hosts. Thus, it is possible that these reports represent the passive acquisition of A. 

phagocytophilum infected blood and not the capacity for reproduction or transmission. Regarding 
H. leporispalutris and D. variabilis, experimental studies demonstrate that although these ticks are 
susceptible to infection, they are unable to maintain the agent transstadially and to successfully 
transmit it to a vertebrate host, respectively, and are therefore considered incompetent vectors 
(Des Vignes et al., 1999; Goethert & Telford, 2003). 

In summary, the results of this 4-year study of Portuguese ticks show that A. 

phagocytophilum occurs in Ixodes species from both mainland and Madeira Island and as such, 
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the potential exists for both human and animal infections. Moreover, these molecular analyses 
document the existence of two A. phagocytophilum genotypes in Portugal, one of which is identical 
or very similar to North American strains implicated in human cases of disease. 
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FIGURE 1. Tick species* and collection areas on the mainland Portugal and in the Madeira 
Archipelago (2002-2006). 
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*Ticks species in study: Dermacentor marginatus, D. reticulatus, Haemaphysalis inermis, H. puntacta, Hyalomma lusitanicum, Ixodes bivari, I. 
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From a total of 2006 ticks, 34 could not be ascribed to any specific collection area. 
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TABLE 1. A. phagocytophilum PCR results from ticks collected in vegetation, according to 
sampling area, species and gender. 
 

Area Ticks species*  No tested†‡ No of positives†‡ Sample code 

D. marginatus (5M, 5F)a 1M, 1F -  
D. reticulatus (1M, 1F)a 2M, 1F -  

1 

R. sanguineus group 8M, 8F -  

2 I. ricinus 3N -  

D. marginatus 2F -  
H. lusitanicum 2M, 1F -  
I. ricinus 3F, 1M -  

3 

R. sanguineus group 24M, 21F -  

D. marginatus 14M, 21F -  
H. lusitanicum 2M, 1F -  
R. bursa 1F -  
R. sanguineus group 5M, 7F -  

4 

I. ricinus 2M, 1F -  

D. marginatus 14M, 18F -  5 
R. sanguineus group 7M, 7F -  

D. marginatus 3M, 6F -  
H. inermis 26M, 3F -  
H. puntacta 9M, 19F -  

6 

I. ricinus (12M, 12F)b 

(120M, 118F, 710N)b, pool

-  

D. marginatus 6M, 1F -  
H. puntacta 2M, 1F, 3N -  
I. ricinus (21M, 19F, 3N)c -  
I. ventalloi (36M, 19F, 28N)c (1N)c 160 
R. pusillus 27M, 47F -  

7 

R. sanguineus group 56M, 44F -  

8 I. ricinus (1M, 2F, 139N)c (6N)c 11; 60; 93; 118; 122; 137 

*Ticks species in study: Dermacentor marginatus, D. reticulatus, Haemaphysalis inermis, H. puntacta, Hyalomma lusitanicum, Ixodes ricinus, I. 
ventalloi, Rhipicephalus bursa, R. pusillus, R. sanguineus group; 
†M male, F female, N nymph; 
‡Ticks in parentheses were previously processed for A. phagocytophilum testing and described elsewhere: aSantos-Silva et al., 2006a; bSantos et 
al., in submission; cSantos et al., 2004; 
poolticks were processed in pools according to sampling area, stage and gender, comprising 30 pools of adult ticks (ranging from 2 to 20 arthropods) 
and 6 pools of immatures (ranging from 55 to 200 arthropods). 
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TABLE 2. A. phagocytophilum PCR results from ticks collected parasitizing vertebrate hosts, 
according to sampling area, species and gender. 
 
Host Ticks Species* No tested per area†‡ No of positives†‡ Sample code 

Wild birdsΨ     

Alcedo athis H. marginatum Area NA - (7N)a -  
Athene noctua H. marginatum Area NA - (1N)a -  
Asio flammeus I. ventalloi Area NA - (5M, 7F, 5N)a -  
Bubo bubo H. marginatum Area NA - (4N)a -  
Buteo buteo R. sanguineus group Area NA - (3F)a -  

Feral mammals     

Canis lupus D. reticulatus Area 1 - (1F)b -  
 I. ricinus Area 2 – 1N -  
Capreolus Capreolus I. ricinus Area 2 – 1F -  
Dama dama  I. ricinus  Area 6 - (9M, 17F)c, pool -  
Meles meles  I. hexagonus Area 3 - 1F -  
Mustela putoris  I. acuminatus Area NA - 2F -  

Domestic mammals/ Men     

Canis familiaris D. marginatus Area 1 - (2F)b 5M, 6F -  
 D. reticulatus Area 1- (20M, 13F)b 19M, 15F -  
 I. hexagonus Area 1- 1F, 3N -  
 R. sanguineus group Area 1 - (1F, 27N)b 4M, 4F -  
 R. pusillus Area 1 - 1M, 2F -  
Capra hircus D. marginatus Area 1- 1M, 1F -  
 R. sanguineus group Area 1 1M, 1F Area 3 1M, 3F -  
Equs caballos R. bursa Area 2 - 29M, 19F -  
Felis catus  I. bivari Area 7 - 1F -  
 I. ventalloi Area 5 14F; Area 6 4M, 6F;  

Area 7 (4M, 6F)d 2M, 8F 
Area 5 1F 
Area 7 (1M)d

348 
246 

Ovis aires D. marginatus Area 1 - 2M, 3F -  
 D. reticulatus Area 1 - 1M, 2F -  
 R. sanguineus group Area 1 - 8M, 8F -  

Homo sapiens I. ricinus Area 2 1N; Area 4 1F; Area 7 5F   
 R. sanguineus group Area 7 - 1F, 3N   

*Ticks species in study: Dermacentor marginatus, D. reticulatus, Hyalomma marginatum, Ixodes acuminatus, I. bivari, I.hexagonus, I. ricinus, I. 
ventalloi, Rhipicephalus  sanguineus group; 
†M male, F female, N nymph; 
‡Ticks in parentheses were previously processed for A. phagocytophilum testing and described elsewhere: aSantos-Silva et al., 2006b; bSantos-Silva 
et al., 2006a; cSantos et al., in submission; dSantos et al., 2004; NA Ticks that could not be ascribed to any specific collection area; 
ΨBirds in study were found wounded and sent to 2 rehabilitation centres located in Setúbal and Lisboa Dstrict, respectively. The geographic area of 
capturing was missing for all animals. 
poolTicks were processed in pools comprising 6 pools of adult ticks (ranging from 2 to 10 arthropods), according to the animal sampled and ticks 
gender. 
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FIGURE 2- Dendrograms showing the phylogenetic relationships between A. phagocytophilum 
sequences presented in this study and other Anaplasmataceae based on partial nucleotide 
sequences of the msp2 (A), rrs (B), and groESL (C). Bootstrap values (out of 1000 iterations) are 
shown at the nodes. Bar = substitutions/1000 bp. 
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C) groESL 
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ABSTRACT 
 
The recent detection of Anaplasma phagocytophilum in Portugal stimulated further research on the 
agent’s enzootic cycle, which usually involves rodents. Thus a total 322 rodents belonging to five 
species, including Apodemus sylvaticus, Mus musculus, M. spretus, Rattus norvegicus and R. 

rattus, where studied by indirect immunofluorescent assay (IFA) and/or polymerase chain reaction 
(PCR) for A. phagocytophilum exposure in four sampling areas of mainland and two areas of 
Madeira Island, Portugal. Overall, 3% (6/194) of M. spretus presented with IFA-positive results. 
Seropositive mice were detected in all three sampling areas of mainland where this species was 
captured, with prevalence of 5.2% (5/96) and 5.0% (1/20) for the Ixodes-areas of Arrábida and 
Mafra, and 1.3% (1/78) for Mértola, a difference that was not statistically significant. Regardless 
neither the seropositive mice nor the additional sample of 23 M. musculus and 5 R. norvegicus 
collected in Madeira Island showed evidence of A. phagocytophilum active infections when spleen 
and/or lung samples were tested by PCR. Either the M. spretus results represents residual 
antibodies from past A. phagocytophilum infections, present infections with limited bacteremia, or 
cross-reactions with closely related agents deserves more investigation.  
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INTRODUCTION 
 
Rodents are important hosts for several Ixodes spp. ticks (Acari:Ixodidae), especially for 

larvae, to some extent also for nymphs, and in the case of host-specific species, for adults as well 
(Zeidner et al., 2000; Brown et al., 2003, 2006). Thus, it is not surprising that rodents play a role in 
enzootic cycles of some Ixodes-borne agents, such as the human pathogens Borrelia burgdorferi 

s.l., Babesia spp. and tick-borne encephalitis (TBE) viruses (Labuda & Randolph, 1999; Kjemtrup & 
Conrad, 2000; EUCALB). 

Anaplasma phagocytophilum [formerly Ehrlichia phagocytophilum, E. equi and human 
granulocytic ehrlichiosis (HGE) agent] is another example of an agent transmitted by Ixodes 
species (Dumler et al., 2001). This bacterium is distributed worldwide and has long been known in 
the veterinary field as a cause of disease in ruminants and horses, more recently also in dogs and 
cats, and it is additionally considered an emerging human pathogen that is increasingly being 
diagnosed in both North America and Europe (Dumler et al., 2001; Strle, 2004; Dumler, 2005; 
Lotric-Furland et al., 2006). Despite the broad-range of susceptible hosts, the occurrence of A. 

phagocytophilum variant strains with distinct pathogenicity and enzootic cycles has been 
suggested. Both molecular and experimental cross-infection studies has demonstrated that A. 

phagocytophilum strains associated to human, equine, and canine disease are identical or highly 
similar but distinct from those associated with ruminants (Chae et al., 2000; Pusterla et al., 2001; 
Stuen et al., 2003). Variant strains have been detected in ticks but the apparent lack of A. 

phagocytophilum transovarial transmission in these arthropods indicates that competent 
vertebrates, especially those that represent a feeding support for larvae and nymphs, play potential 
roles in the maintenance of agent’s active cycles. Although the natural history of A. 

phagocytophilum is still unfolding, variant strains causing disease in cows and sheep are especially 
found in wild ruminants such as cervids (Massung et al., 2005, 2006). In contrast, the maintenance 
of variant strains involved in non-ruminant disease is believed to be dependent on tick-rodent 
cycles (Massung et al., 2003), with humans and possibly domestic animals being involved as 
incidental “dead-end” hosts. In the United States Peromyscus leucopus (white footed mouse) and 
Neotoma fuscipes (dusky footed woodrat) are competent reservoirs in Eastern and Western 
regions, respectively (Telford et al., 1996; Castro et al., 2001; Foley et al., 2002). Moreover, PCR-
based studies show A. phagocytophilum DNA in several other rodent species, including Myodes 
(formerly Clethrionomys) gapperi, Neotoma mexicana, Microtus orchogaster, Peromyscus 
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maniculatus, P. truei, Sciurus griseus, Spermophilus lateralis, Tamias minimus and T. striatus in 
North America (Walls et al., 1997; Nicholson et al., 1999; Zeidner et al., 2000; DeNatale et al., 
2002; Lane et al., 2005), Apodemus agrarius, A. flavicollis, A. sylvaticus, Myodes (formerly 
Cletrionomys) glareolus, Microtus agrestis, M. oeconomus and Rattus rattus in Europe (Liz et al., 
2000; Brown et al., 2003, 2006; Christova & Gladnishka, 2005; Grzesczuk et al., 2006), and 
Apodemus agrarius, A. peninsulae and Tamias sibiricus in Asia (Cao et al., 2006). 

In Portugal, A. phagocytophilum DNA has been detected in two Ixodes species, Ixodes 

ricinus collected from Madeira Island and I. ventalloi on the mainland (Núncio et al., 2000; Santos 
et al., 2004). Moreover, the Public Health importance of Portuguese strains of A. phagocytophilum 
is under study given the recent detection of active infection in a horse (Santos et al., in submission 
b) and given the presence of antibodies against this agent in Ixodes-exposed patients (Santos et 

al., 2006). Although no information is available regarding the natural history of A. phagocytophilum 
in Portugal, several rodents might be involved in agent’s maintenance as they are known hosts for 
Ixodes species that can sustain active infection, including Apodemus sylvaticus, Elyomis 

quercinus, Mus spretus, Rattus norvegicus for both I. ricinus and I. ventalloi, and also Rattus rattus 
and Sciurus vulgaris for I. ricinus (Dias et al., 1994; MM Santos-Silva, unpublished data). Based on 
serological and molecular analyses of archived rodent sera and organ samples available from 
Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge 
(CEVI/INSA), the present study investigates the potential role of Portuguese rodent species in the 
maintenance A. phagocytophilum enzootic cycles. 
 
 
MATERIAL AND METHODS 
 
Sample collection. The rodents in this study were captured from 1998 through 2004 in three 
littoral areas (Arrábida, Gerês, Mafra) and one inland area (Mértola) of mainland Portugal and from 
1998 through 1999 on Madeira Island (Santana, Seixal). In all the mailand littoral areas and 
Madeira Island the existence of Ixodes species was previously documented (further designated as 
Ixodes-areas). The animals were captured as part of ongoing projects to study rodent population 
dynamics and rodent-borne diseases by using baited Sherman and Tomahawk live-traps (H. B. 
Sherman Traps, Inc., Tallahassee, Florida; Tomahawk Live Traps Company, Tomahawk, 
Wisconsin). One trapping session was performed per season on the mainland, and only in spring
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on Madeira Island, each conducted over 3 consecutive nights. Trapping and handling procedures 
were approved by the Institute for Conservation of Nature and Biodiversity (ICNB). Once in the 
laboratory, rodents were anesthetized with ethyl ether and biometric measurements were recorded 
to aid in identification to the species level. The presence of ectoparasites was investigated (no 
ectoparasite specimens were available for A. phagocytophilum testing) and whole-blood samples 
were collected in serum-gel microtainers (Microtainer; Becton Dickinson, New Jersey) by 
submandibular venous plexus puncture. Sera were recovered from blood either by gravity 
sedimentation or by centrifugation at 1000 x g for 10 min, and saved for serology. After euthanasia 
by cervical dislocation, organs were aseptically harvested, in most cases including spleen and lung 
samples (mainland specimens) or only lung samples (Madeira Island specimens); samples were 
individually cryopreserved in liquid nitrogen until use. 

Serology. For detection of A. phagocytophilum antibodies, an indirect immunofluorescent 
assay (IFA) was used to screen all the available rodent sera. This included only mainland 
specimens, since no sera were available from Madeira Island rodents. IFA was performed 
according to CEVDI/INSA procedure using A. phagocytophilum Webster strain as a source of 
antigen. Briefly, uninfected HL-60 human promyelocytic leukaemia cells (ATCC CCL-240), at a 
concentration of 2x105 cells/ml, were inoculated at a 3:1 ratio with A. phagocytophilum-infected HL-
60 cells, and maintained in antibiotic-free RPMI-1640 medium (Gibco-BRL, UK), supplemented 
with 2 mM L-glutamine (Gibco-BRL, UK), 1% heat-inactivated fetal bovine serum (FBS; Gibco-
BRL, UK) at 37ºC in 5% CO2 atmosphere. When cultures reached an infection rate of 85-95%, 
cells were harvested by a low speed centrifugation (400 x g for 10 min) and resuspended in 0.1M 
phosphate buffered saline (PBS; Sigma-Aldrich, Germany) containing 2% FBS and 0.05% sodium 
azide. The optimal cell concentration was empirically determined by microscopic inspections of 
Diff-Quik (Medion Diagnostics GmbH, Germany) -stained preparations. Diluted antigen was applied 
to the wells of teflon-covered slides, allowed to air dry, fixed in cold acetone for 10 min and stored 
at -20ºC until use. For detection of A. phagocytophilum antibodies, sera were initially diluted at 1:40 
in PBS and applied to antigen-coated wells. Serum obtained from laboratory-reared mice after A. 

phagocytophilum infection (positive control) and PBS (negative control) were included on each 
antigen slide. After incubation for 30 min at 37ºC in a humidified chamber, slides were washed 
twice in PBS for 5 min, passed through distilled water and air dried. Bound antibodies were 
dectected after an additional incubation of antigen wells with fluorescein isothocyanate (FITC)-
labelled rabbit anti-mouse immunoglobulin G (IgG) (Dako Cytomation, Denmark) or anti-rat IgG
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(Serotec, UK) in an optimal dilution of 1:40 in PBS containing 1:6000 Evans blue. The slides were 
washed as above, mounted with 0.3 M 1,4-diazabicyclo[2.2.2]octane (DABCO; Sigma-Aldrich, 
Germany) in glycerol-PBS (9:1) buffer at pH 9.0 and examined by fluorescence microscopy. 
Reactions were assessed for distribution, quality, morphology and intensity of fluorescent staining. 
Specimens were considered reactive when homogeneous fluorescence of A. phagocytophilum 
morulae or individual organisms were observed in the cytoplasm of HL-60 cells in a distribution 
similar to that observed using positive control sera. For the purpose of this study an IFA titer ≥40 
was interpreted as seroreactive, and was subsequently serially diluted to determine the end-point 
titer, which was reported as the reciprocal of the highest dilution at which specific fluorescence is 
observed. The independence of proportions of rodent reactive sera was compared using Fisher’s 
exact test. An alpha level of 0.05 was selected to indicate statistical significance. 

Molecular analysis. Organ samples from all seropositive rodents captured on mainland 
Portugal and from 16% of rodents obtained from Madeira Island were tested for A. 

phagocytophilum DNA by polymerase chain reaction (PCR). Genomic DNA was extracted from 
available spleen (10 mg) and lung (20 mg) samples following the Qiamp Tissue Kit procedure 
(Qiagen GmbH, Germany). Samples from naïve laboratory-reared mice A. phagocytophilum were 
included as extraction controls. Molecular analysis was performed using nested or single tube PCR 
reactions target three A. phagocytophilum genes with several sets of primers: GE3a/GE10r 
followed by GE9f/GE2 for the amplification of a 546-bp sequence of rrs (16S rRNA gene) 
(Massung et al., 1998); HS1/HS6 followed by HS43/HS45 for the amplification of a 442-bp 
sequence of the groESL heat-shock operon, (Sumner et al., 1997); and the species-specific 
MSP465f/MSP980r for the amplification of a 550-bp region including the central hypervariable 
domain of the major surface protein-2 (msp2 or p44) genes (Caspersen et al., 2002). Primer 
sequences and amplification conditions were previously described (Sumner et al., 1997; Massung 

et al., 1998; Caspersen et al., 2002). PCR was performed in a total volume of 50 µl, containing 1 

µM of each primer, 2.5 U of Taq DNA polymerase and 200 µM of each deoxynucleotide 

triphosphate and 50 mM KCl 10 mM Tris-HCL pH 8.3, and 1.5 mM Mg2+ (Eppendorf MasterTaq Kit, 
Germany), and 10 µl DNA extract (or 1 µl of amplicon in nested reactions). Water and DNA from 
known negative samples and A. phagocytophilum Webster strain genomic DNA were tested in 
each PCR run as controls. Prevention of cross-contamination was managed by using barrier 

 156 



Chapter IV. Anaplasma phagocytophilum in non-human vertebrate hosts 
 

 

pipette tips and by performing PCR in a separate room from that used for DNA extraction. 
 
 
RESULTS 

 
A total of 322 rodents belonging to five species in four genera were included in this study, 

comprising 30 Apodemus sylvaticus (wood mouse), 65 Mus musculus (house mouse), 194 M. 

spretus (algerian mouse), 5 Rattus norvegicus (brown rat) and 28 R. rattus (black rat). The 
distribution of rodent species per sampling area in mainland Portugal and Madeira Island are 
presented in figure 1. 

The 294 rodents captured on the mainland, including 30 A. sylvaticus, 42 M. musculus, 
194 M. spretus and 28 R. rattus, were initially screened by IFA for the presence of A. 

phagocytophilum antibodies. Overall, 7 mice identified as M. spretus were found to be 
seroreactive, presenting with IFA titters ranging from 80 to 320 (Table 1). The IFA-reactive M. 

spretus were detected in all three sampling areas where this species was captured, including 
Arrábida, Mafra and Mértola. The highest seroprevalences were observed in the Ixodes-areas of 
Arrábida and Mafra (n=5 [5.2%] and n=1 [5%], respectively), although the difference was not 
statistically significant when compared to Mértola (n=1 [1.3%]; P>0.22). Moreover, M. spretus were 
not more likely to have A. phagocytophilum antibodies (P=0.09) than the other species. 
Seroreactive mice were captured in all seasons: August 2002 (n=1), March 2003 (n=2), January 
2004 (n=1) and April 2004 (n=1) in Arrábida; Jun 2000 (n=1) in Mafra; October 2003 (n=1) in 
Mértola. Analysis of proportions showed that spring was the season when seroreactive mice where 
more likely to be found when considering either Arrábida alone (P=0.026) or all M. spretus 
sampling areas together (P=0.021). Spleen and lung samples from all IFA-positive mice were 
additionally tested by PCR for the presence of A. phagocytophilum DNA but no positive results 
were detected (Table 1).  

The 28 rodents captured in Madeira Island, including 23 M. musculus and 5 R. norvegicus, 
were tested only by PCR, since no sera samples were available at CEVDI/INSA for serology. 
PCRs performed on lung samples were negative for the three A. phagocytophilum genes analysed 
(Table 1). 
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DISCUSSION 
 

This study provides evidence for exposure of M. spretus to A. phagocytophilum or a closely 
related agent in Portugal. Seropositive mice were detected in all sampling areas where this species 
was captured, including the Ixodes-areas of Arrábida and Mafra, as well as Mértola. Of interest is 
that collection sites in Arrábida were located in the same valley and nearby the area defined as 
Baixa de Palmela (Setúbal District) where a previous PCR-based study detected A. 

phagocytophilum infections in I. ventalloi ticks (Santos et al., 2004). Moreover, M. spretus is a 
known vertebrate host for both I. ventalloi and I. ricinus ticks (Dias et al., 1994); the latter tick 
species is regarded as the major vector of A. phagocytophilum in Southern, Central and Northern 
Europe (Dumler et al., 2001; Strle, 2004). Thus these mice could be involved both in A. 

phagocytophilum primary infection cycles, promoting agent circulation between the exophylic I. 

ricinus, and in parallel cycles between endophylic species, or ticks with a more limited questing 
behaviour, such as I. ventalloi. This double involvement in A. phagocytophilum cycles occurs with 
other rodents, as with Neotoma sp. parasitized by I. pacificus and I. spinipalpis ticks in Colorado 
(Zeidner et al., 2000; Burkot et al., 2001), and with M. glareolus, and M. agrestis parasitized by I. 
ricinus and I. trianguliceps ticks in United Kingdom (Bown et al., 2003, 2006). 

In general, M. spretus mice can be found across the country especially in grassland, arable 
land, and rural gardens, selecting for humid biotypes. This mouse is usually crepuscular to 
nocturnal and is maximally active during spring through summer. The period from spring to early 
summer is also regarded as the time when most of A. phagocytophilum infections or reinfections 
occur in rodents, a seasonality that possibly results from the abundance of Ixodes spp. nymphs, 
and has been demonstrated in multicapture studies by examining PCR and/or by examining 
increase in specific antibody titers of rodent populations (Stafford et al., 1999; Castro et al., 2001). 
In our study, spring was indeed the season in which the most significant number of A. 

phagocytophilum reactive mice were detected. However, no other statistically significant difference 
was found in the proportion that were seropositive, even between rodent species or sampling 
areas, probably due to the limited number of animals studied in each location. 

In areas where A. phagocytophilum cycles are known to occur, a proportion of rodents are 
simultaneously PCR and IFA-positive, varying from 20-68% for P. leucopus (Walls et al., 1997; Yeh 
et al., 1997; Stafford et al, 1999; Levin et al., 2002), 58-100% for N. fuscipes (Nicholson et al., 
1999; Castro et al., 2001; Foley et al., 2002) and 20-33% for P. truei (Nicholson et al., 1999; Castro 
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et al., 2001). These findings seem to reflect either the occurrence of persistent infections or the 
interval during which immunity is strengthening before the elimination or suppression of 
bacteremia. Most of the studies regarding seasonal dynamics of A. phagocytophilum showed that 
although the majority of infections appeared to be transient, in a limited number of rodents, the 
agent can persist. Active infections of A. phagocytophilum can last at least 1 month in naturally-
infected M. glareolus in United Kingdom (Brown et al., 2003), 60 days-14 months in naturally and 
experimentally infected N. fuscipes in Western US (Castro et al., 2001; Foley et al., 2002), and 1-
10 months in naturally and experimentally infected P. leucopus (Stafford et al., 1999; Levin et al., 
2002; Massung et al., 2004). Additionally, Levin and Fish (2000) showed that seropositive P. 

leucopus are only partially protected from reinfection. Regardless, in our case no A. 

phagocytophilum IFA-reactive M. spretus had an active infection, even using a cut-off criteria of 
1:16-1:80 as the referenced studies (Walls et al., 1997; Yeh et al., 1997; Stafford et al., 1999; 
Castro et al., 2001; Nicholson et al., 2001; Foley et al., 2002; Levin et al., 2002). Since the range, 
distribution, and magnitude of antibody titers produced by most wildlife species for A. 

phagocytophilum infection are largely unknown, it is prudent to avoid setting an arbitrary cut-off. 
Analysis of low titers is essential, particularly when little is known and clinical signs of illness cannot 
be discerned (as often the case in wildlife), although the risk is false positive serological reactions 
that could bias seroprevalence results. As a compromise for sensitivity and specificity, all sera 
were screened at 1:40, a dilution bellow the cut-off value currently used in our laboratory for human 
serology that is broadly accepted as the minimal definition of seropositivity against A. 

phagocytophilum (Dumler et al., 1995). In fact, all samples that were found reactive in the initial 
dilution also had detectable antibody at a dilutions equal to or above 1:80. Moreover, molecular 
analyses were performed using PCR protocols generally considered to be highly sensitive (Sumner 
et al., 1997; Massung et al., 1998; Caspersen et al., 2002) and using organ samples that are 
widely accepted as adequate for detection of A. phagocytophilum infection in both natural and 
experimentally-infected rodents (Liz et al., 2000; Martin et al., 2000). 

The presence of residual antibodies could result from past infections or active A. 

phagocytophilum infection with low level bacteremia that is undetectable by current methods. In 
fact, inefficient transient infections in mice were described in an experimental study using Ap-
variant 1, a dominant A. phagocytophilum genotype that seems important in ruminant disease 
(Massung et al., 2003). A. phagocytophilum identified in Portuguese ticks seems distinct from Ap-
variant 1, and at least for those detected in I. ricinus, similar sequences as those in non-ruminant 
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disease strains were observed. These data imply that infection of mice and other small mammals is 
likely important in natural maintenance of A. phagocytophilum in Portugal. Besides rodents, both I. 
ricinus and I. ventalloi may parasitize several other small and medium size mammalian hosts that 
could be potential reservoirs for A. phagocytophilum, including members of the orders 
Soricomorpha, Lagomorpha, Erinaceomorpha, and Carnivora (Dias et al., 1994; MM Santos-Silva 
unpublished data). Moreover, the potential presence of A. phagocytophilum ruminant strains in our 
country can not be excluded because no study has yet addressed this animal population. A 
Spanish study performed on I. ricinus collected from bovines identified the presence of Ap-variant 
1, and this proximity is motivation for further study (Portillo et al., 2005). Apart from the economic 
relevance of A. phagocytophilum ruminant strains, a new and interesting epidemiological context 
for these strains has been recently suggested. This concept argues that A. phagocytophilum 
ruminant strains could interfer or compete with the non-ruminant strains for tick niches, perhaps 
influencing the incidence or prevalence of human and non-ruminant animal infections (Massung et 

al., 2002, 2003). Finally, it is also important to consider the possibility of cross-reactions with 
agents that share antigenic similarities with A. phagcocytophilum. For example the closely related 
A. platys recently detected in Portugal among dogs with active infections stimulated serologic 
reactions against A. phagocytophilum (Santos et al., in submission a); although, other details 
regarding the enzootic cycle of A. platys are largely unknown active infections in rodents have 
been already documented in other countries (Chae et al., 2003; Kim et al., 2006). 

Rodents from the other Ixodes-area on Madeira Island were also studied by PCR for the 
presence of A. phagocytophilum infections, but no positive results were obtained in the 16% of the 
captured animals available for analysis. R. norvegicus and M. musculus were the only species 
captured in the two sampling areas of Santana and Seixal, despite the fact that the rodent fauna of 
this Island also includes R. rattus (Almeida, 1996). To date, no report has yet described R. 

norvegicus as a potential reservoir for A. phagocytophilum. In contrast, the peridomestic M. 

musculus is known to be susceptible to infection by this agent, and several inbred strains derived 
from this species are frequently used in experimental infections with A. phagocytophilum 
(Borjesson & Barthold, 2002). Other studies have demonstrated the persistence of A. 

phagocytophilum in Madeira Island, since infected I. ricinus were detected at different periods of 
time (Núncio et al., 2000; Santos et al., 2004). Yet whether the agent’s cycles are supported by 
rodents or other vertebrate animals remains unknown. This Island presents a great variety of fauna 
that could serve as hosts for I. ricinus, including several bird species, bats, ferrets, goats, sheep, 
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cows, horses, dogs and cats (domestic and feral). The amphibian Rana peresi and the lizzard, 
Teira dugesii (formerly referred to as Lacerta dugesii) are also described (Almeida, 1996). The 
presence of an A. phagocytophilum strain closely related to human disease strains in North 
America (Santos et al., 2004, in submission c), argues for a more detailed and directed study to 
investigate the agent’s enzootic cycles and the potential vertebrate reservoir hosts in this 
Portuguese Island. 
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FIGURE 1. Total number of rodent studied by IFA and/or PCR, according to 
sampling area (trapping period). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

aStudied by IFA; bIFA-seropositives studied by PCR (lung and spleen samples were 
available for testing); cStudied by PCR (only lung samples were available for testing 
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TABLE 1. A. phagocytophilum results obtained from mainland mice tested by both IFA and PCR and Madeira Island rodents tested by PCR. 

IFA results PCR results 

No. (%) positive 

 

Sampling area 

 

Rodent species No. tested 
 

No. (%) positive IFA titer 

 

No. tested 

rrs   groESL msp2

Mainland Portugal:          

Arrábida Mus spretus          
          
          

          

         
         

         

96 5 (5.2) 80 5 - - -
Mafra Mus spretus 20 1 (5.0) 320 1 - - -
Mértola Mus spretus 78 1 (1.3) 80 1 - - -

Madeira Island:

Santana Mus musculus Na Na Na 10 - - -
 Rattus norvegicus Na Na Na 5 - - -
Seixal Mus musculus Na Na Na 13 - - -
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ABSTRACT 
 
Three hundred and two horses from 10 districts of mainland Portugal were tested for serum 
antibodies against Anaplasma phagocytophilum by indirect fluorescent antibody test (IFA). The 
results demonstrated a seroprevalence of 3% (9/302) with titers ranging from 80 to 640. Moreover, 
DNA exhibiting nucleotide sequence similarities of 98.9% (rrs) and 99.7% (groESL) to A 

phagocytophilum HZ strain were found in an IFA-positive serum sample from Faro District, Algarve 
region - Southern mainland. This is first definitive evidence of A. phagocytophilum active infection 
in Portuguese mammals and the zoonotic potential of this agent supports the continuing 
surveillance effort in the country. 
 
 
RUNNING TITLE 
 

Anaplasma phagocytopophilum in horses, Portugal 
 
 
KEYWORDS 
 
Tick-borne disease; Anaplasma phagocytophilum; Horses; Indirect Immunofluorescent Assay 
(IFA); Polymerase chain reaction (PCR); Portugal; 
 
 
INTRODUCTION 

 

Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila, E. equi and HGE agent) 
is a worldwide, Ixodes tick-borne bacterium that affects several domestic animals, including 
ruminants, horses, dogs and cats, but is also regarded as an emerging human pathogen (Dumler 
et al., 2001). It causes a disease generically known as granulocytic anaplasmosis, formerly 
granulocytic ehrlichiosis, a designation that reflects the agent’s tropism for polymorphonuclear 
leucocytes, especially neutrophils. In horses, the disease is usually mild, characterized by fever, 
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anorexia, depression, limb oedema, petechiae, icterus, ataxia and hematologic abnormalities, such 
as leukopenia, thrombocytopenia, and anemia (Madigan & Pusterla, 2000). Mortality is low, 
although complications from opportunistic secondary infection and injury due to ataxia can occur 
(Madigan & Pusterla, 2000). Equine granulocytic anaplasmosis (EGA) was initially described in 
1969, in horses raised in the foothills of the Sacramento Valley, California (Gribble, 1969; Stannard 
et al., 1969). Since then, it has been chiefly observed in California but sporadic cases of EGA have 
also been reported in other parts of US and Europe (Johansson et al., 1995; Madigan et al., 1996; 
Pusterla et al., 1998; Shaw et al., 2001; Bermann et al., 2002; Von Loewenich et al., 2003; Alberti 
et al., 2005). 

The geographic distribution of EGA, as well as other non-ruminant cases of granulocytic 
anaplasmosis, commonly overlaps those regions where human infection occurs. In fact, several 
studies demonstrate that A. phagocytophilum strains able to cause equine, canine or human 
disease are genetically identical or highly similar (Johansson et al., 1995; Madigan et al., 1996; 
Pusterla et al., 1998; Bullock et al., 2000; Chae et al., 2000; Von Loewenich et al., 2003). This 
relation has also been suggested by experimental cross-infections (Barlough et al., 1995; Madigan 
et al., 1995; Pusterla et al., 2001). Thus, the study of A. phagocytophilum infections in horses or 
other non-ruminants is important not only for veterinary management, but also to predict human 
disease risk. In Portugal A. phagocytophilum is present in Ixodes ricinus and I. ventalloi ticks, but 
its Public Health potential is still incompletely appreciated (Santos et al., 2004). Using serological 
and molecular surveys, we studied the possibility of A. phagocytophilum infection in horses as part 
of an integrated effort to define the medical importance of this agent in Portugal. 

 
 

MATERIAL AND METHODS 
 
Sera used in this study were obtained between 2002 and 2006 in collaboration with several 

Institutions, including Serviço Nacional Coudélico (now, Fundação Alter-Real), Faculdade de 

Medicina Veterinária and Instituto Nacional de Investigação Veterinária. The samples were 
collected either for routine evaluation or for serosurveillance of infectious diseases such as 
babesiosis, brucellosis, leptospirosis, herpes virus, contagious metritis, viral arteritis and West Nile 
virus. Clinical histories were not obtained, although limited information was available for some 
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animals. Sera were frozen at - 20ºC until assayed. 
For detection of antibodies against A. phagocytophilum, an indirect immunofluorescent 

assay (IFA) was performed as previously described (Santos et al., in submission). Briefly, sera 
were diluted at 1:40 and incubated on antigen slides prepared with A. phagocytophilum Webster 
strain-infected HL-60 cells. A second incubation with fluorescein isothiocyanate (FITC)-labelled 
rabbit anti-horse immunoglobulin G (Sigma-Aldrich, Germany), was used to identify bound 
antibodies resulting in homogeneous fluorescence of A. phagocytophilum morulae. All reactive 
samples were serial diluted to determine the end-point titer, which was expressed as the reciprocal 
of the serum dilution. An IFA titer ≥80 was interpreted as positive. Unvariate statistical analysis for 
verification of the association between infection, gender, origin, and age class was performed using 
Fisher’s exact test. Statistical analysis was performed using SAS version 9.1 (SAS Institute, Inc., 
2002-2003, Cary, NC). An alpha level of 0.05 was selected to indicate statistical significance. 

All IFA-positive samples were also tested for the presence of A. phagocytophilum DNA by 
polymerase chain reaction (PCR). Genomic DNA was extracted from 200 µl of horse serum using 
the Qiamp Blood Kit procedure (Qiagen GmbH, Germany). A known negative sample was included 
in every group of three sera extractions as quality control. Nested or single tube PCR reactions 
targeting rrs (16S rRNA gene), groESL, and msp2 (p44) genes were performed as previously 
described (Sumner et al., 1997; Massung et al., 1998; Caspersen et al., 2002), in a total volume of 

50 µl, containing 1 µM of each primer, 2.5 U of Taq DNA polymerase, 200 µM of each 

deoxynucleotide triphosphate, 50 mM KCl 10 mM Tris-HCL pH 8.3, 1.5 mM Mg2+ (Eppendorf 
MasterTaq Kit, Germany), and 10 µl DNA extract (or 1 µl of amplicon in nested PCR reactions). In 
each run, in addition to known negatives (three extraction controls and water), known positive 
samples were used as controls. Prevention of cross-contamination was managed by using pipette 
tips with filter barrier, and performing PCR in a three separate room (extraction, master mix 
preparation, and amplification/electrophoresis). DNA amplicons from positive samples were 
purified (Jetquick PCR Purification Kit; Genomed GmbH, Germany) and sequenced using an ABI 
automated sequencer (Applied Biosystems). After manual review and editing, sequence homology 
searches were performed using BLASTn.  

Nucleotide sequence accession numbers: Partial gene sequences generated for rrs and 
groESL were deposited in GenBank under the accession numbers EF693890, and EF693889, 
respectively. 
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RESULTS 
 
A total of 302 serum samples from 10 districts of Mainland Portugal were studied by IFA 

(Figure 1). From the limited information provided, horse age and breed were available for 38.4% 
and 30.8% of the cases, respectively. Individuals represented at least 6 different breeds, including 
Arabian (n=3), Garrano (n=33), Lusitano (n=47), Quarter (n=1), Sorraia (n=3) and Thoroughbred 
horses (n=6). Antibodies against A. phagocytophilum were detected in 3% (9/302) of sera with 
titers ranging from 80 to 640 (Table 1). No association was found between A. phagocytophilum 
seroprevalence and the origin of the horses. There was no consistent pattern of seropositivity 
among age groups or when gender was examined (Table 2). Molecular analysis of IFA-positive 
sera showed the presence of A. phagocytophilum DNA in 1 mare (Seara) from Faro District. The 
nucleotide sequences obtained exhibited a high degree of similarity with the human A. 

phagocytophilum HZ strain (CP000235), with values of 98.9% (459/464) and 99.7% (466/467) for 
partial sequences of both rrs and groEL, respectively.  

 
 

DISCUSSION 
 
Indirect immunofluorescent antibody test (IFA) is the gold standard for routine A. 

phagocytophilum diagnosis and has been also widely applied in seroprevalence studies. Here, 
antibodies against A. phagocytophilum or another antigenically similar agent were detected in 3% 
of the horses studied, which is in accordance with the wide range of seroprevalence (0-17.6%) 
reported in other countries (Madigan et al., 1990; Bullock et al., 2000; Magnarelli et al., 2000; 
Engevall et al., 2001; Teglas et al., 2005; Amusatequi et al., 2006; Levi et al., 2006). Nevertheless, 
our seroprevalence is somewhat lower than that obtained in other parts of Europe (Engevall et al., 
2001; Amusatequi et al., 2006), but is similar to that reported from A. phagocytophilum non-
endemic regions in the US (Madigan et al., 1990; Bullock et al., 2000). 

In Europe, Ixodes ricinus has long been known as a competent vector for A. 

phagocytophilum (Macleod & Gordon, 1933). This tick species present in Portugal a patchy 
distribution mainly influenced by climate (temperature, humidity and precipitation), landscape 
fragmentation, and landscape composition (open areas, mixed and deciduous forests) (Baptista, 
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2006). Although, it has been reported from all districts of mainland Portugal (Caeiro, 1999), the 
highest prevalence is registered in the littoral of the country (Baptista, 2006). An example of an I. 
ricinus-area is Gerês (in Braga District, Northern litoral) (Caeiro, 1999), from where the 33 Garrano 
horses studied in this work came from. These are feral horses, traditionally raised freely in the hills; 
thus, contact with I. ricinus is highly likely. Nevertheless, only Rhipihicephalus bursa and 
Hyalomma marginatum were found parasitizing these horses at the time of blood collection (data 
not shown) and none of the animals had A. phagocytophilum antibodies. Whether the serological 
results indicate absence of A. phagocytophilum in this region, the inability of any A. 

phagocytophilum variant strains present in I. ricinus in this region to establish infection in horses, or 
simply limited contact between horses and tick species linked to the agent´s transmission is a 
matter deserving further investigation. 

An important limitation of IFA testing is the potential for false positive reactions. Several 
studies demonstrate A. phagocytophilum cross-reactivity with phylogenetically-related agents, such 
as A. marginale, A. platys, Ehrlichia chaffeensis and E. canis (Comer et al., 1999; Hinokuma et al., 
2001; Waner et al., 2001; Dreher et al., 2005). Although these microorganisms are not known to 
infect horses, cross-reactions with heat-shock proteins or surface proteins from other non-
relatedagents should not be ruled out. In fact, one horse from Braga District (named Shuma) that 
presented an IFA titer of 320 against A. phagocytophilum also had positive serologic results for 
both Leptospira grippotyphosa and equine rhinopneumonitis EHV 1 and EHV 4. 

Another issue of serology is the difficulty in differentiating active infection from residual 
antibodies when only one serum sample is available. Follow-up studies on naturally infected 
horses have shown the presence of high antibody titers detectable by IFA several months after 
infection (Van Andel et al., 1998; Artursson et al., 1999). To overcome these limitations, serology is 
occasionally coupled with molecular testing to detect active A. phagocytophilum infections (Bullock 
et al., 2000; Teglas et al., 2005). In this study, the molecular analysis of all IFA-positive sera 
revealed A. phagocytophilum DNA in one animal from Faro District (named Seara). Confirmation of 
active A. phagocytophilum infection was achieved only by nested PCR, but using 2 separate 
assays that targeted rrs and groESL that are much more likely to reflect infection than amplicon 
contamination. Nested reactions are regarded as highly sensitive and are able to detect very small 
amounts of DNA, even in serum (Massung et al., 1998). However, it is important to note that 
negative results obtained from the other IFA-positive horses could be falsely negative because of 
the inavailability of more reliable samples for molecular testing, such as whole-blood or buffy coat. 
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The results presented herein are the first definitive evidence of active A. phagocytophilum 
infection in Portuguese mammals, but due to inavailability of complete clinical records, a 
relationship between infection and disease could not be effectively analyzed. The partial nucleotide 
sequences of both rrs and groESL obtained from 1 horse were highly similar to those of A. 

phagocytophilum HZ strain, an isolate obtained from a New York human patient in 1995 (Rikihisa 
et al., 1997; Hottop et al., 2006); thus, the possibility of human infections by this agent in Portugal 
cannot be excluded. Algarve is an international tourist destination which receives visitors and their 
pets from all over the world. In addition, Algarve is in the migratory route of several bird species 
which could promote the introduction or spread of ticks and tick-borne pathogens. These data 
coupled with the zoonotic potential of A. phagocytophilum supports a countinuos surveillance for A. 

phagocytophilum and granulocytic anaplasmosis in Portugal. 
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FIGURE 1. Number of A. phagocytophilum seropositive cases per 
total horses studied in each district (origin information was not 
available for nine animals). 
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TABLE 1. A. phagocytophilum results obtained from mainland mice tested by both IFA and PCR and Madeira Island rodents tested by PCR. 

IFA results PCR results 

No. (%) positive 

 

Sampling area 

 

Rodent species No. tested 
 

No. (%) positive IFA titer 

 

No. tested 

rrs   groESL msp2

Mainland Portugal:          

Arrábida Mus spretus          
          
          

          

         
         

         

96 5 (5.2) 80 5 - - -
Mafra Mus spretus 20 1 (5.0) 320 1 - - -
Mértola Mus spretus 78 1 (1.3) 80 1 - - -

Madeira Island:

Santana Mus musculus Na Na Na 10 - - -
 Rattus norvegicus Na Na Na 5 - - -
Seixal Mus musculus Na Na Na 13 - - -
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TABLE 2. Univariate statistical analysis of A. phagocytophilum seropositive horses 
according to age, gender and origin. 
 

Variable No of tested horses† No of seropositive (%) p value 

Age (years)    

0-4 6 0 
5-9 42 4 (9.5) 
>9 68 1(1.5) 

0.14 

Gender    

Male 80 4(5.0) 
Female 81 5(6.2) 

1 

Origin    

Bragança 37 1(2.7) 
Beja 5 0 
Coimbra 1 0 
Évora 15 0 
Faro 103 4(3.9) 
Lisboa 24 1(4.2) 
Portalegre 9 1(11.1) 
Porto 3 0 
Santarém 74 1(1.4) 
Setúbal 22 1(4.5) 

0.64 

†includes only animals with available information. 
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FIGURE 2. Phylogenetic relationships between A. phagocytophilum sequences detected in this 
study and other Anaplasmataceae based on partial nucleotide sequences of the groESL (A) and 
rrs (B). The scale bar represents substitutions per 1,000 base pairs; numbers at nodes represent 
bootstrap values out of 1,000 iterations. The nucleotide sequences of the index horse are shown in 
a box; accession numbers for each sequence are also included after the genus and species 
designations. 
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ABSTRACT 
 
Fifty five dogs with clinical signs of suspected tick-borne disease were tested by both 
immunofluorescence assay (IFA) and polymerase chain reaction (PCR) for A. phagocytophilum. 
Overall, 30 (54.5%) dogs presented with IFA positive results, 5 of which fulfilled the serologic 
criteria for active infection presenting either seroconversion or four-fold increase in antibody titers. 
PCR analysis failed to detect active A. phagocytophilum infections, but A. platys DNA was found in 
2 seropositive and 3 seronegative animals. This provides the first definitive evidence of A. platys 

infection in Portuguese dogs and emphasizes the importance of considering infectious cyclic 
thrombocytopenia in the differential diagnosis of canine tick-borne disease in Portugal. 
 

 

RUNNING TITLE 
Anaplasmataceae infections in dogs, Portugal  
 
 
KEYWORDS 
 
Tick-borne disease; dogs; Anaplasma phagocytophilum; Anaplasma platys; IFA; PCR; Portugal. 
 
 
INTRODUCTION 
 

Five members of the Family Anaplasmataceae are currently implicated in canine tick-borne 
disease, including Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeensis, and E. 

ewingii (Dumler et al., 2001; Shaw et al., 2001). These Gram-negative obligate intracellular 
bacteria present a marked tropism for myeloid derivatives, multiplying within a membrane-bound 
cytoplasmic vacuole of the host cell and forming characteristic mulberry shaped microcolonies 
(morulae). Depending on the bacterial species, monocytes/macrophages (E. canis, E. chaffeensis), 
granulocytes (A. phagocytophilum, E. ewingii), or platelets (A. platys) are infected by these 
microorganisms. Acute Anaplasmataceae infections are multisystemic disorders generically 
characterized by a non-specific febrile illness with depression, lethargy, anorexia, splenomegaly, 
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hepatomegaly, lymphadenopathy and hematological abnormalities (Shaw et al., 2001). Persistent 
infection is a common feature of many of these organisms in canines, which in some cases may 
evolve into chronic disease. Canine monocytic ehrlichiosis, caused by E. canis, was the first canine 
Anaplasmataceae infection to be documented and is also one of the most important due to the 
number of deaths that occur with chronic disease (Donatien & Lestoquard, 1935; Huxsol, 1970; 
Milonasky et al., 2004; Gal et al., 2007). 

In European dogs, only A. phagocytophilum, A. platys and E. canis have been isolated or 
detected by molecular tests (Johansson et al., 1995; Sparagano et al., 2003; Aguirre et al., 2004). 
In Portugal, serology has long provided evidence for E. canis infection in both stray and clinically ill 
dogs (Silveira, 1992; Bacellar et al., 1995). Additionally, E. canis DNA was recently identified in a 
case study of 55 dogs with suspected tick-borne disease, confirming canine monocytic ehrlichiosis 
in approximately one third of the cases (Alexandre, 2006). In the Alexandre study, a number of 
other tick-borne diseases such as babesiosis, hepatozoanosis, Lyme borreliosis and Rickettsia 

conorii infections were also identified in some cases (Alexandre, 2006). However, the majority of 
dogs remain undiagnosed. Knowing that A. phagocytophilum is present in Portuguese ticks 
(Santos et al., 2004) the objective of this work was to retest the available samples from those 
animals in order to investigate the possible role of A. phagocytophilum in canine disease. 
 
 
MATERIAL AND METHODS 
 

The dogs included in this study presented with clinical signs between February and 
October 2004 among one hospital and seven veterinary clinics located in the Algarve region, in the 
South of Portugal. During the clinical evaluation, an EDTA-anticoagulated blood sample was 
collected from each animal for laboratory testing that included complete blood cell count, buffy coat 
smear examination after Diff-Quik staining (Medion Diagnostics GmbH, Germany), detection of 
specific antibodies by immunofluorescence assay (IFA), and DNA analysis by polymerase chain 
reactions (PCR). Whenever possible, a convalescent blood sample was taken to compare the 
evolution of IFA titers. The procedure adopted for laboratory diagnosis of Babesia canis, Borrelia 

burgdorferi s.l., Hepatozoon canis, E. canis, and Rickettsia spp. is described elsewhere 
(Alexandre, 2006). For A. phagocytophilum testing, plasma samples were screened by IFA at an 
initial dilution of 1:80. Sera were incubated on antigen slides prepared with A. phagocytophilum 

 191



Webster strain, as described elsewhere (Santos et al., in submission). Fluorescein isothiocyanate 
(FITC)-conjugated rabbit anti-dog immunoglobulin G (IgG) and M (IgM) (Sigma-Aldrich, Germany) 
was used to identify bound antibodies that resulted in homogeneous fluorescence of A. 

phagocytophilum morulae. All positive samples were serial diluted to determine the endpoint titer. 
Serum from a naturally infected dog in the US and phosphate-buffered saline (PBS) were used as 
controls. Genomic DNA was extracted from the buffy coat following the Flexigene DNA Kit 
procedure (Qiagen GmbH, Germany). Molecular analysis was performed as nested or single tube 
PCR reactions using several sets of primers that target three A. phagocytophilum genes: 
GE3a/GE10r followed by GE9f/GE2 for the amplification of a 546-bp sequence of rrs (16S rRNA 
gene) (Massung et al., 1998), HS1/HD6 followed by HS43/HS45 for the amplification of a 442-bp 
sequence of heat-chock operon, groESL (Sumner et al., 1997), and the species-specific 
MSP465f/MSP980r for the amplification of a 550-bp hypervariable region of surface protein genes, 

msp2 (Caspersen et al., 2002). PCR was performed in a total volume of 50 µl, containing 1 µM of 

each primer, 2.5 U of Taq DNA polymerase and 200 µM of each deoxynucleotide triphosphate and 

50 mM KCl 10 mM Tris-HCL pH 8.3, and 1.5 mM Mg2+ (Eppendorf MasterTaq Kit, Germany), and 
10 µl DNA extract (or 1 µl of amplicon in nested reactions). Primer sequences and amplification 
conditions have been previously described (Sumner et al., 1997; Massung et al., 1998; Caspersen 
et al., 2002). DNA extracts obtained from the buffy coat of a healthy dog and A. phagocytophilum 
Webster strain propagated in HL-60 cells were used as controls. Since rrs and groESL primers are 
able to amplify DNA from other related bacteria besides A. phagocytophilum, PCR results from all 
positive reactions were confirmed by sequence analysis after DNA purification (Jetquick PCR 
Purification Kit; Genomed GmbH, Germany). Sequencing was performed with the forward and 
reverse primers used for PCR identification (internal primers in nested reactions) in an ABI 
automated sequencer (Applied Biosystems), according to manufacturer’s instructions. After review 
and editing, sequence homology searches were made by BLASTN analysis. Sequences derived 
from this approach were aligned using the neighbor joining protocol with other Anaplasmataceae 
sequences for rrs and groESL using ClustalX. After trimming sequences to compare those of 
similar length, the sequences were re-aligned with ClustalX using the neighbor joining method, with 
1000 replicate bootstraps. The resulting trees were produced using TreeView, rooting with E. coli 

as an outgroup for rrs and R. rickettsii as an outgroup for groESL. Partial gene sequences 
generated in this work are deposited in GenBank under the accession numbers EU004823 (rrs), 
EU004824 and EU004825 (groESL). Partial nucleotide sequences determined for groEL were 
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translated into amino acid sequences to determine whether the low level nucleotide heterogeneity 
identified had an impact on protein structure. To do this, the translated amino acid sequences were 
aligned (using ClustalX), and truncated so that each began with the initial methionine; 
dendrograms were constructed using TreeView. 
 
 
RESULTS 

 
Of 55 dogs with suspected tick-borne disease, 30 (54.5%) had at least one plasma sample 

with detectable IgG antibodies against A. phagocytophilum. The endpoint titers were 80 for 12 
samples, 320 for 11 samples, 640 for 4 samples, 1280 for 5 samples, 2560 for 2 samples, 5120 
and 10240 for 1 sample each, altogether 36 positive samples. No IgM antibodies against A. 

phagocytophilum were detected in studied animals. In dogs with more than one available sample, 
25% (5/20) fulfilled the serologic criteria for active infection, presenting seroconversion (No. 1, 3, 5 
and 8) or four-fold increase in antibody titer (No. 6) (Table 1). PCR amplification with rrs and 
groESL primers generated products of the expected size in buffy coat samples from 5 dogs, 
including 3 seronegative animals (No. 4, 7 and 9), 1 which seroconverted (No. 5) and 1 that had a 
single positive IFA titer (No. 2). No sample was found PCR positive when tested with A. 

phagocytophilum species-specific msp2 primers. Nucleotide analysis of rrs and groESL amplicons 
confirmed this latter result and identified the etiologic agent to be the closely related species A. 

platys. Partial sequences of rrs (GenBank accession no. EU004823), excluding the primers regions 
were identical in all dogs and were 100% (496/496 bp) homologous with previously reported A. 

platys sequences, such as GenBank accession number AY530806 that was identified in a Spanish 
dog (Figure 1A). Sequence polymorphisms were observed in groEL and resulted in 2 different 
genotypes. DNA nucleotide sequences 99.3% (438/441) and 100% (441/441) similar to A. platys 
described in Venezuela (AF399916) were detected in dogs 2 and 9 (GenBank accession no. 
EU004825) and in dogs 4, 5 and 7 (GenBank accession no. EU004824), respectively (Figure 1B). 
Thus, despite the minimal heterogeneity observed at the nucleotide level, the GroEL proteins 
produced by each of the A. platys infecting these Portuguese dogs were identical in the regions 
examined (Figure 2). Although the A. platys positive PCR results, no morulae were found within 
platelets on blood smear examination. Moreover, the results from other tick-borne agents 
molecular tests also revealed coinfections. Dog 7 that was previously identified actively infected
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with R. conorii was also found infected with A. platys. Additionally, three dogs (No. 1, 6 and 8) with 
either R. conorii or E. canis DNA also fulfilled IFA criteria for active A. phagocytophilum infection, 
although all were A. platys PCR negative. Clinical examination revealed that all dogs with 
molecular confirmation of A. platys infection had lymphadenopathy accompanied in the majority of 
cases by fever (except in dog 9). The most frequent haematological abnormality was 
thrombocytopenia (5/5 dogs) and anaemia (4/5 dogs). Clinical and laboratory data of dogs fulfilling 
serodiagnostic criteria for active infection or positive PCR results are summarized in table I. 
 
 
DISCUSSION 

 

Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila, E. equi and HGE agent) 
is the etiologic agent of worldwide veterinary tick-borne disease that affects several domestic 
animals including ruminants, horses, dogs and cats, but it is also regarded as an emerging human 
pathogen with increasing importance (Gordon et al., 1932; Gribble, 1969; Madewell & Gribble, 
1982; Bakken et al., 1994; Chen et al., 1994; Bjoerdorf et al., 1999). The disease is generically 
known as granulocytic anaplasmosis (GA) and in dogs it was first recognized by Madewell and 
Gribble (1982). The geographic distribution of GA in dogs correlates with the endemic areas of the 
vector ticks, members of the Ixodes persulcatus/ricinus complex. The disease is frequently 
reported in the Northeastern and Upper Midwest parts of United States and in Central and 
Northern Europe, but there are also some references to its presence in the Mediterranean Region 
(Manna et al., 2004; Alberti et al., 2005). The recent description of A. phagocytophilum in 
Portuguese Ixodes ticks (Santos et al., 2004) suggested a possible role for human and animal 
infection in Portugal, stimulating further examination of populations with suspected tick-borne 
disease. In this report we present the cytological, serological and molecular screening of A. 

phagocytophilum infections in a population of dogs with clinical signs who resided in the Algarve 
region, South of Portugal. 

Serological data obtained by IFA testing demonstrated the presence of antibodies against 
A. phagocytophilum in 40% of animals studied, 25% of which fulfilled case criteria for active 
infection, either by seroconversion or four-fold increase in titer. Despite these findings, the 
molecular analysis of buffy coat samples failed to identify A. phagocytophilum but instead revealed 
sequences that were highly homologous with the closely related A. platys. Serologic cross-
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reactivity is common among phylogenetically-related agents that often share antigenic 
determinants. In fact, at least some of the A. phagocytophilum IFA-positive sera detected here 
were derived from dogs with active A. platys infections, a finding also documented by others 
(Inokuma et al., 2001). Thus it seems likely that A. platys rather than A. phagocytophilum is the 
agent responsible for these serologic reactions, although prior infections can not be conclusively 
excluded. The possibility of cross-reactions with heterologous, Anaplasmataceae, such as E. canis, 
should also be considered. Cross-reactivity between the E. canis and A. phagocytophilum has 
been experimentally demonstrated in dogs with canine monocytic ehrlichiosis by the detection of 
antibodies against A. phagocytophilum about 90 days post-infection (Waner et al., 1998). It was 
proposed that the development of the cross-reacting antibodies was dependent on persistence of 
E. canis infection (Waner et al., 1998). In our study both dogs no. 1 and no. 8 seroconverted for A. 

phagocytophilum but had only E. canis DNA in the peripheral blood. 
A. platys (formerly Ehrlichia platys) was first recognized in the US by Harvey and 

coworkers (1978) as a cause of canine infectious cyclic thrombocytopenia (CICT). This member of 
the family Anaplasmataceae is distributed worldwide, particularly associated with the brown dog 
tick Rhipicephalus sanguineus, one of the most prevalent species in Portugal (Caeiro, 1999). In 
fact, A. platys infections were previously suggested by the occasional observation of intra-platelet 
inclusions on dog peripheral blood smears (Simões & Puente, 1997), but its presence was never 
definitively proved. This study represents the first documentation of active A. platys infections in 
Portuguese dogs, although in our case no morulae were observed in blood smear examinations. 
The cyclical nature of CICT, with intermittent bacteremia may increase the difficulty in detection of 
the agent in peripheral blood (Woodly et al., 1991; Martin et al., 2005). This could explain not only 
the inability to directly visualize the bacteria in PCR-confirmed cases, but could also explain 
negative molecular results in dogs with positive A. phagocytophilum serology. 

CICT is usually described as an asymptomatic or mild disease without obvious clinical 
signs in spite of the occasional presence of lymphadenopathy and thrombocytopenia (Harvey et 

al., 1978; Woodly et al., 1991). In our case series, both these hematological findings were present 
in all confirmed A. platys-infected dogs, although the health condition of the animals was 
sufficiently deteriorated to motivated a visit to the veterinarian. A few other reports also linked CICT 
to clinical illness, either as a result of A. platys infection alone or as a coinfection with other tick-
borne agents such as E. canis (Mylonakis et al., 2004; Gal et al., 2007). Although most of the 
present cases apparently represent single infections, DNA from both A. platys and R. conorii was, 
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detected in one animal. To our knowledge this study represents the first molecular evidence that A. 

platys infects and causes disease in Portuguese dogs. It further supports the hypothesis that 
coinfections with multiple tick-borne agents are not uncommon for those that share tick vectors 
such as R. sanguineus. The extent to which coinfections potentiate disease manifestations or 
complicate the diagnosis and management of sick dogs will require further study. 
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TABLE 1. Dogs presented with Anaplasma active infections detected by IFA and PCR. 

PCRfDog No. Sexa Ageb Breed Clinical signs Hematologic 
abnormalitiesc

IFAd

16S rDNA groESL Msp2 

Other tick-borne 
infectionsg

1- Babylon F 8y Cross-breed Fever (39.4ºC), lymphadenopathy, pale 
mucosa 

A, Lc, T <80; 1,280 - - - Ec 

2- Bamboo M 3y Cross-breed Lymphadenopathy, pale mucosa, weight loss, 
diarrhea, vomit  

A, T 320 + + - - 

3- Black F 2 y Pequinois Fever (39.3ºC), lymphadenopathy, pale 
mucosa 

A, T <80; 320 - - - - 

4- Duke M 4y Doberman Fever (40.5ºC), lymphadenopathy, pale 
mucosa 

A, T <80 + + - - 

5- Luna F 1 y Boxer Fever (40.1 ºC), lymphadenopathy T <80; 80 + + - - 

6- Nina F 5y Pincher Fever (40.4), lymphadenopathy, pale mucosa A, T 80; 1280 - - - Rc 

7- Olívia F 3 m Serra da Estrela 
Mountain Dog 

Fever (39.6ºC), lymphadenopathy, pale 
mucosa 

A, T <80 + + - Rc 

8- Sniper M 1 y Pittbull Fever (41.4ºC), lymphadenopathy A, L, T <80; 80 - - - Ec 

9- Zizzi M 1y Cross-breed Fever (40.1ºC), lymphadenopathy, anorexia A, Lc, T  <80 + + - - 

aM male, F female; by year, m month; cA anemia <5,5 x106 /µl; Lc leukocytosis  > 17 x103 /µl; L leukopenia <6 x103 /µl; T thrombocytopenia <200 
x103 /µl; dIFA titer(s) of available plasma samples; fGenes tested by PCR; gResults of previous PCR testing has detected active infection with Ec 
Ehrlichia canis and Rc Rickettsia conorii (Alexandre, 2006). 
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FIGURE 1. Phylogenetic relationships between A. platys sequences detected in this study other 
Anaplasmataceae based on partial nucleotide sequences of the rrs (A) and groESL (B). The scale 
bar represents substitution rates of 10 per each 100 nucleotides. 
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B) groESL 
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FIGURE 2. Dendrogram demonstrating the similarity among GroEL amino acid sequences derived 
from A. platys-infected Portuguese dogs compared to other Anaplasmataceae species. Note that 
despite the nucleotide heterogeneity found among the Portuguese dogs (Figure 1), the amino acid 
sequences and therefore GroEL protein structure are predicted be identical. 
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ABSTRACT 
 

The present work summarizes the available data concerning Anaplasmataceae diagnosis, 
including Anaplasma phagocytophilum and Ehrlichia chaffeensis, performed at the the Center for 
Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge 
(CEVI/INSA) during 2000-2006. As part of routine diagnosis, CEVDI/INSA prospectively 
investigated the presence of antibodies by indirect immunofluorescent assay (IFA) against E. 

chaffeensis from 2000-2006 and against A. phagocytophilum in 2006. Sera archived in 2000-2005 
from patients with suspected Anaplasmataceae infection were also retrospectively studied by IFA 
for A. phagocytophilum. Positive sera were subsequently screened by PCR to detect 
Anaplasmataceae active infections. Investigation of active infection by PCR and in vitro isolation 
were also performed on whole-blood samples submitted in 2006. A total of 619 sera from 425 
patients was tested. Overall, antibodies to E. chaffeensis and A. phagocytophilum were detected in 
5.6% (24/425) of patients. Serologic reactions to A. phagocytophilum were detected in 70.8% 
(17/24), to E. chaffeensis in 12.5% (3/24), or to both antigens in 16.6% (4/24) of cases. The 
majority had stable or less than four-fold changes in antibody titer between consecutive samples. 
A. phagocytophilum seroconversion was observed in only one patient, fulfilling criteria for recent 
infection, although this patient also seroconverted to Coxiella burnetii. Neither A. phagocytophilum 
nor E. chaffeensis active infections were detected by PCR. Laboratory testing for other tick-borne 
agents or related bacteria also provided evidence for bartonellosis and acute Q fever in one and 
five A. phagocytophilum-seropositive patients, respectively, for rickettsiosis in two E. chaffeensis-
seropositive patients, and for acute and chronic Q fever in two patients with both A. 

phagocytophilum and E. chaffeensis antibodies. Moreover one patient with stable A. 

phagocytophilum titer seroconverted to C. burnetii, which was later isolated from the patient’s blood 
sample. These findings could represent false positive cross-reactions to shared antigens, 
antibodies induced by active dual infections, or past exposures to Anaplasmataceae species and 
other agents. Regardless, the results argue for continued development of improved diagnostics 
and integrated analysis of diagnostic tests for patients with suspected tick-borne disease. 
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TRODUCTION 

Human infections caused by bacteria belonging to the family Anaplasmataceae (Class α-
roteobacteria, Order Rickettsiales), represent some of the best examples of emerging vector-
orne diseases. Sennetsu fever (SF), documented in Japan in 1954 (Misao & Kobayashi, 1955), 
as the first human disease known to be caused by a member of the Anaplasmataceae family. 
his usually mild mononucleosis-like illness is caused by Neorickettsia (formerly Ehrlichia) 
ennetsu, likely acquired after ingestion of raw fish infested by infected trematodes. The infection 
ccurs only in limited areas of the Far East, rarely outside Japan and Malaysia, and no deaths 
ave been reported.  

In 1986, human monocytic ehrlichiosis (HME) was reported in a patient from Central 
rkansas. The infection was caused by a previously unknown tick-borne agent, closely related to 
e animal pathogen E. canis that was later named Ehrlichia chaffeensis (Maeda et al., 1987; 

tic anaplasmosis (HGA) (formerly human granulocytic ehrlichiosis 
nsin (Bakken et al., 1994; Chen et al., 1994). The 

inally named “HGE agent”, remained uncertain for several 
ears until its unification with the animal pathogens E. phagocytophila and E. equi into a single 
pecies, Anaplasma phagocytophilum (Dumler et al., 2001, 2005).  
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Anderson et al., 1991; Dawson et al., 1991). Additionally, other tick-borne Anaplasmataceae of 
veterinary importance were also described as causes of human infection. In the early 1990’s, 
cases of human granulocy
[HGE]) were reported from Minnesota and Wisco
exact nature of the causative agent, orig
y
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In 1996, E. canis - the etiologic agent of canine monocytic ehrlichiosis was isolated from an 
pparently healthy man (Perez et al., 1996), and was later associated with several symptomatic 

infection

ed either 
om state hospitals, public health centers, or directly from physicians practicing in diverse regions 
f the country. 
erology. An indirect immunofluorescent assay (IFA) was used for serologic diagnosis of

a
s (Perez et al., 2006) in Venezuela. More recently, in 1999 E. ewingii, the etiologic agent of 

canine granulocytic ehrlichiosis was also identified as a human disease agent in US, mostly in 
immunocompromised patients (Buller et al., 1999). Of the above human diseases caused by 
pathogens assigned to Anaplasmataceae family, HME and HGA are now considered the most 
important due to the number of cases annually reported in US, the potential for fatal outcome and 
the broad worldwide geographic distribution of the etiologic agents, especially in Europe. 

In Portugal, the potential involvement of Anaplasmataceae species in human disease was 
first suggested by David de Morais and coworkers (1991), with the description of a case fulfilling 
serologic criteria for active E. chaffeensis infection. Additionally, a study performed on Madeira 
Island designed to clarify the importance of Ixodes ricinus as a vector of tick-borne agents showed 
for the first time A. phagocytophilum DNA in Portuguese I. ricinus ticks (Nuncio et al., 2000). A 
project was then initiated to evaluate whether A. phagocytophilum could be an important pathogen 
in the country and confirmed its presence not only on Madeira Island but also in mainland Ixodes 
ticks (Santos et al., 2004), and the presence of antibodies against this agent in patients with tick-
borne diseases (Santos et al., 2006). The potential for human exposure to Anaplasmataceae in 
Portugal justified the implementation of laboratory diagnostics for these tick-borne agents by the 
Center for Vector and Infectious Diseases Research from the National Institute of Health Dr. 
Ricardo Jorge (CEVDI/INSA). This work summarizes all available data concerning E. chaffeensis 
and A. phagocytophilum diagnostics performed in CEVDI/INSA during 2000-2006. 

 
 

MATERIAL AND METHODS 
 
Patient Samples. This study includes patients from which at least one biological sample, including 
whole-blood and/or serum, was received at CEVDI/INSA during 2000 to 2006 for laboratory 
diagnosis of A. phagocytophilum and/or E. chaffeensis infection. The samples were receiv
fr
o
S
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Anaplasmataceae infections. The presence of antibodies against E. chaffeensis was studied 
rospectively in all available sera as part of CEVDI/INSA routine diagnosis conducted from 2000-

 was available only in 2006; thus, sera archived 
uring 2000-2005 from patients with suspected Anaplasmataceae infection were studied 
trospectively. Institutional Review Board approval was obtained for this retrospective study. In 

ceived for either A. phagocytophilum or E. chaffeensis testing were examined 
rospectively for antibodies against both agents. IFA was performed according to CEVDI/INSA 

 for 30 min at 37ºC using commercial A. phagocytophilum and E. chaffeensis 
ntigen slides (Focus Diagnostics, Cypress CA, USA). The retrospective study was performed 
sing A. phagocytophilum Webster strain antigen slides prepared in-house (Santos et al., in 

cond incubation for 30 min at 37ºC with fluorescein isothiocyanate (FITC)-
belled rabbit anti-human immunoglobulin M (IgM) and polyvalent IgA,G,M conjugates (Dako 

Cytoma

E. chaffeensis DNA in EDTA-blood samples received at CEVDI/INSA during 
2006. A

p
2005. For A. phagocytophilum, laboratory diagnosis
d
re
2006, sera re
p
procedures, as previously described (Santos et al., in submission). Briefly, sera were diluted in 
PBS and incubated
a
u
submission). A se
la

tion, Denmark) were used to identify bound antibodies resulting in homogeneous 
fluorescence of Anaplasmataceae morulae. The IFA was interpreted as positive whenever titers of 
IgM ≥80 or IgA,G,M ≥80 for A. phagocytophilum or when IgM ≥32 or IgA,G,M ≥64 for E. 

chaffeensis were found. All reactive samples were serially diluted to determine the end-point titer, 
which was expressed as the reciprocal of the serum dilution. Positive and negative sera were 
included on every antigen slide as IFA controls. 
Molecular analysis. Polymerase chain reaction (PCR) was used to attempt detection of A. 

phagocytophilum and 
dditionally, Anaplasmataceae IFA-positive sera were tested by PCR. Since treatment 

information was missing on the majority of submission forms accompanying samples, molecular 
analysis was performed only on the first sample that more likely represented the acute or active 
phase of infection at time of presentation to the physician and prior to antibiotic therapy. Genomic 
DNA was extracted from 200 µl of buffy-coat or serum using the Qiamp Blood Kit procedure 
(Qiagen Gmbh, Germany). Known negative samples were included as controls with every set of 1 - 
4 sample extractions. Nested or single tube PCR reactions targeting both the A. phagocytophilum 
and E. chaffeensis groESL operon, and A. phagocytophilum rrs (16S rRNA gene) and msp2 (p44) 
genes were performed as previously described (Sumner et al., 1997; Massung et al., 1998; 
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Casper

nsis was 
attempt

, 2 mM sodium 

pyruvate (Gibco, Invitrogen™, UK) and non-essential aminoacids (MEM NEAA; Gibco, 

2. Twice weekly, the medium was changed and infection 

sen et al., 2002) in a total volume of 50 µl containing 1 µM of each primer, 2.5 U of Taq 

DNA polymerase, 200 µM of each deoxynucleotide triphosphate, 50 mM KCl 10 mM Tris-HCL pH 

8.3, 1.5 mM Mg2+ (Eppendorf MasterTaq Kit, Germany), and 10 µl DNA extract (or 1 µl of first 
stage amplicon in nested PCR reactions). In each run, known negative (including the extraction 
controls and water) and positive samples were used as controls. Prevention of cross-contamination 
was managed by using pipette tips with filter barriers, and by performing PCR in 3 separate rooms 
(extraction, master mix preparation, and amplification/ electrophoresis). 
Isolation attempts. During 2006, isolation of A. phagocytophilum and E. chaffee

ed from patients for whom an EDTA or heparinized blood sample was available at the time 
of their initial presentation, using the culturing methods previously described (Dawson et al., 1991; 
Goodman et al., 1996). Briefly, for A. phagocytophilum isolation, approximately 0.5 ml of whole-
blood or 0.2 ml of crude buffy coat recovered after blood sedimentation by gravity or low speed 
centrifugation, was directly inoculated into flasks with HL-60 cells maintained at a final 

concentration of 2x105 cells/ml in RPMI 1640 medium (Gibco, Invitrogen™, UK), supplemented 

with 1% FBS (Gibco, Invitrogen™, UK) and 2 mM L-glutamine (Gibco, Invitrogen™, UK). The 

cultures were incubated at 37ºC in a 5% CO2 atmosphere and checked twice weekly to adjust cell 
concentrations and to investigate infection. Microbial growth was ascertained by microscopy of 
cytocentrifuged culture aliquots stained by Diff-Quik (Medion Diagnostics GmbH, Germany). E. 

chaffeensis isolation was performed by direct inoculation of whole-blood or crude buffy coat onto 

monolayers of DH82 cells, maintained in minimum essential medium (MEM; Gibco, Invitrogen™, 

UK) supplemented with 10% FBS, 2 mM L-glutamine (Gibco, Invitrogen™, UK)

Invitrogen™, UK) at 37ºC and 5% CO

monitored as described above. 
Differential Diagnosis. For Anaplasmataceae IFA-positive patients, when requested by the 
physician, data concerning CEVDI/INSA tested for other tick-borne agents or related bacteria such 
as Bartonella spp., Borrelia burgdorferi sensu lato, Rickettsia spp., and Coxiella burnetii were also 
included in the presented work. Routine laboratory diagnosis of active infections by the latter 
agents depended on the type of sample submitted, but was usually based on serology (IFA, ELISA; 
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or WB), molecular analyses (PCR) and/or isolation attempts. Based on the agent suspected, the 
techniques used included: i) IFA and gltA gene PCR for Bartonella spp. (Norman et al., 1995; 
Sander et al., 2001); ii) IFA or ELISA followed by confirmatory WB of suspected or positive 
samples, 5S (rrf)-23S(rrl) intergenic spacer and flgB PCR, and isolation by direct inoculation in 
BSK-II medium for B. burgdorferi s.l. (Johnson et al., 1992; Rijpkema et al., 1995; Lopes de 
Carvalho & Nuncio, 2006); iii) IFA and transposon-like repetitive region PCR for C. burnetii 
(Williems et al, 1994; Maurin & Raoult, 1999); and iv) IFA, ompA and gltA PCR, and isolation on 
Vero E6 shell-vials for Rickettsia spp. (Regnery et al., 1991; Bacellar et al., 2003; De Sousa et al., 
2006). 
Criteria for laboratory confirmation. CEVDI/INSA’s case definition criteria for bartonellosis, Lyme 
borreliosis (LB), Q fever, rickettsiosis, HGA and HME are based on published guidelines, with slight 
modifications in some cut-off values according to the background reactivity as determined by the 
National Institute of Health for the Portuguese population (Maurin & Raoult, 1999; Walker et al., 
2000; Sander et al., 2001; Brouqui et al., 2004; Lopes de Carvalho & Nuncio, 2006; EUCALB). 
Thus, given an adequate epidemiologic and clinical context, a confirmed laboratory case is defined 
by: i) agent isolation in culture, or ii) positive PCR result with the demonstration of agent-specific 
DNA by subsequent amplicon sequencing, or iii) demonstration of a seroconversion or ≥four-fold 
increase in antibody titer between acute and convalescent samples. A single high titer also 
suggests disease, such as for bartonellosis and rickettsiosis (IFA IgM ≥32 and IgG ≥128), acute Q 

collected in the proper anticoagulant were additionally used for PCR testing (n=6) and/or isolation  

fever (IFA phase II IgM ≥50 and IgG ≥200), chronic Q fever (IFA phase I titer of IgG ≥800) and 
Lyme disease [IFA IgM≥32 and/or IgG≥256, Elisa IgM and/or IgG≥5, according to Virion ELISA Kit 
(Sirion, Germany), followed by the demonstration of 2 of 3 IgM bands and/or 5 of 10 IgG bands in 
western blots]. 
 
 
RESULTS 

 
From 2000 to 2006, a total of 619 sera samples from 425 patients were received by CEVDI/INSA 
for Anaplasmataceae infection diagnostic testing. In 125 patients (29.4%), more that one serum 
was available for testing. Moreover, all “first” blood samples received during 2006 that were 
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attempts in DH82 and HL-60 cells (n=16). In patients with Anaplasmataceae IFA-positive results, 
the first serum sample was also used for DNA preparation and PCR testing. 

Overall, Anaplasmataceae IFA-positive reactions were detected in 5.6% (24/425) of 
patients, with seropositivity values ranging from 2.0% (in 2000) to 11.6% (in 2003) (Figure 1). 
Seropositive patients were found to react with either A. phagocytophilum in 70.8% (17/24) of the 
cases, E. chaffeensis in 12.5% (3/24), or with both antigens in 16.6% (4/24). However neither A. 

phagocytophilum nor E. chaffeensis active infections were detected by agent isolation or PCR in 

decrease in IFA-titer from 160 to 80 (no. 17/2005). Of interest is the observation that patient no. 
eroconverted to both 

in the second serum sample that are 

culture aliquots (Figure 2), and subsequently confirmed by using species-specific PCR (Williems et 

al., 1994). The partial sequences of transposon-like repetitive region of C. burnetii obtained from  

any sample tested during 2006. Moreover, the PCR analysis of IFA-positive sera was negative in 
all cases. 

A detailed analysis of available data from patients that reacted only with A. 

phagocytophilum antigens revealed that almost all had polyvalent antibody titers ranging from 80 to 
320 (Table 1). The only exception was patient no. 12/2005 who had a single serum sample with 
both IgM and IgA,G,M IFA titers of 80 and 320, respectively. Evolution of antibody titers was 
demonstrated among 7 of the 17 cases, showing stable IFA titers in 4 (57.1%), two-fold decreases 
in titers in 2 (28.6%) and seroconversion in 1 (14.3%; patient no. 11/2004). 

Tests for other tick-borne agents or related bacteria conducted by CEVDI/INSA when 
requested by the physician provided laboratory evidence of bartonellosis in 1 case and acute Q 
fever in 5 cases. Nondiagnostic results were obtained in 11 cases. A suggestive IFA-titer of 
Bartonella sp. active infection was detected in a single serum from patient no. 2/2001 (IgM≥32 and 
IgG≥256, data not shown in Table 1) who also had a polyvalent A. phagocytophilum antibody titer 
of 320. Acute Q fever-compatible titers were present in 3 patients, showing either single polyvalent 
A. phagocytophilum antibody titers of 80 (patient no. 12/2004) and 160 (no. 20/2006), or a two-fold 

11/2004 s A. phagocytophilum and C. burnetii, as evidenced by phase II IgM 
≥50 and IgG ≥200 titers (data not shown in Table 1) 
diagnostic of acute Q fever. Additionally, patient no. 15/2006, who presented with a stable IgA,G,M 
IFA-titer of 160 but was PCR-negative for A. phagocytophilum DNA in both buffy coat and serum, 
also had a seroconversion to C. burnetii, and a buffy coat PCR that was positive for this latter 
agent. Moreover, the inoculation of buffy coat into HL-60 cells resulted in the isolation of C. 

burnetii. The agent isolation was initially detected by microscopic observation of cytocentrifuged 
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this isolate are available in GenBank under the accession number EU009657. Table 1 presents all 
the available data from A. phagocytophilum IFA-positive patients detected during 2000-2006. 

Among the 3 patients who had E. chaffeensis antibodies alone, stable IgA,G,M titers were 
found in two cases (patient nos. 18/2001 and 19/2002) and stable IgA,G,M and IgM titers in 
another case (no. 20/2005) (Table 2). In the first two patients, a seroconversion and compatible 
titers against Rickettsia spp. were found when sera were tested by IFA using R. conorii Malish 
strain antigen, supporting the laboratory diagnosis of rickettsiosis. For patient no. 20/2005 who 
presented with stable IgM and IgA,G,M E. chaffeensis titers in consecutive samples, no diagnostic 
laboratory tests were obtained. Moreover, the small amount of first sample serum was insufficient 

Since the report of E. chaffeensis in a Portuguese man (David de Morais et al., 1991), 
 has included IFA testing for this Anaplasmataceae as a routine laboratory diagnostic 

available for the community. In the last 6 years (2000-2006), a mean of 61 requests were received 

 

for DNA extraction and PCR analysis. 
For four patients with both A. phagocytophilum and E. chaffeensis antibodies, stable 

polyvalent antibody titers (≤two-fold change) were observed (Table 3). Other laboratory tests 
demonstrated C. burnetii antibodies with titers consistent with acute (patient no. 21/2004) and 
chronic infections (patient no. 23/2005). In 2 other cases, differential testing was inconclusive, 
although patient no. 24/2006 had a stable C. burnetii titer, serodiagnostic criteria for active infection 
were not fulfilled (phase II IgM ≥50 IgG <200 and phase I IgM ≥50 IgG 400, data not shown in 
Table 3). Patient no. 19/2005 had the highest polyvalent titers in this study for A. phagocytophilum 
and E. chaffeensis, 640 and 256, respectively. Moreover he also had very high titers against C. 

burnetii (phase II IgM 200 and IgG 51,200, phase I IgM 100 and IgG 25,600; data not shown in 
Table 3), which in the clinical context of prolonged disease and endocarditis was highly supportive 
of a diagnosis of chronic Q fever. 
 
DISCUSSION 
 
 
CEVDI/INSA

annually for E. chaffeensis testing, representing 3.1 to 7.4% of the total number of requests 
received annually for serodiagnosis at CEVDI/INSA. In addition, the recent detection of A. 

phagocytophilum in Portuguese Ixodes ricinus and I. ventalloi ticks (Nuncio et al., 2000; Santos et 

al., 2004) and the possibility of human exposure (Santos et al., 2006) have stimulated further
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research in this field and led to the implementation in 2006 of routine laboratory diagnostic testing 
for this Anaplasmataceae family member. The potential for cross-reaction between E. chaffeensis 
and A. 

tophilum (17 patients) than to E. chaffeensis (3 patients). Reactivity to both agents was 
addition

of human infection has 
yet bee

l, 

phagocytophilum, as previously documented in both HME and HGA case series (Bakken et 

al., 1996; Wong et al., 1997; Comer et al., 1999; Walls et al., 1999; Lotric-Furlan et al., 2006), 
imposes that all sera received based on a clinical suspicion of infection with either 
Anaplasmataceae be tested for both. Moreover, archived sera received during 2000-2005 for E. 

chaffeensis serodiagnosis were also analysed retrospectively for antibodies against A. 

phagocytophilum. This cross-testing study demonstrated a higher proportion of IFA seropositivity to 
A. phagocy

ally found in 4 patients. These results are in accordance with those obtained in several 
seroprevalence studies performed on European populations (farmers, hunters, tick-exposure 
residents and patients with febrile illness with ascribed aetiology) and which suggest a greater 
exposure to A. phagocytophilum or an antigenically related agent, than to E. chaffeensis (Dumler et 

al., 1997; Thomas et al., 1998; Groen et al., 2002). In spite of E. chaffeensis serological reactions 
among patients with febrile illnesses after tick-bite, no definitive evidence 

n obtained by either DNA amplification or agent isolation (Lotric-Furlan et al., 2006). 
Despite the serological reactions to both A. phagocytophilum and E. chaffeensis found 

here, no active infections caused by either agent was definitively proven by laboratory testing. In 
fact, all isolation attempts using available buffy coat samples and PCR testing of IFA-positive sera 
for the above mentioned agents were unsuccessful. Nevertheless it is important to state that direct 
diagnosis suffered from constraints that could have influenced the final results. For example, 
isolations in both HL-60 and DH82 cells were only routinely attempted in 2006. Moreover, for the 
great majority of seroreactive patients, an adequate whole-blood sample for direct testing was not 
provided. Even using known sensitive PCR approaches, the ability to amplify small amounts of 
target DNA (Sumner et al., 1997; Massung et al., 1998; Caspersen et al., 2002) from archived sera 
of known positive patients is only 14% sensitive, a significant limitation to this approach (Comer et 

al., 1999). In addition, very little information about antecedent treatment that could reduce 
Anaplasmataceae DNA was available, further confounding detection methods. Thus, despite 
negative results in both culture and sensitive molecular detection methods, the possibility of false-
negative results can not be excluded.  

Despite the lack of direct confirmation of Anaplasmataceae active human infections, one 
patient seroconverted to A. phagocytophilum antigen in consecutive samples, fulfilling serologica
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criteria for a confirmed case. However, when tested for other tick-borne or related agents by 
physician request and presumptive diagnosis, one patient also seroconverted to C. burnetii 
develop

cytic leukaemia, but they can also be induced to terminal 
differen

performed using serum from confirmed C. burnetii cases 
emonstrated that not all patients present with Anaplasmataceae cross-reactive samples (data not 

er these findings represent a distinct cross-reactive potential for different C. burnetii 
trains that is directed toward common antigens such as heat shock proteins, distinct host immune 

goats, dogs and cats are regarded as the most important reservoirs for human infection, and the 

ing an antibody titer in the second serum that was alone highly presumptively diagnostic for 
acute Q fever. Additionally, other patients with serological reactivity to A. phagocytophilum alone or 
in association with E. chaffeensis also had laboratory diagnostic results compatible for Q fever in 6 
cases and for bartonellosis in 1 case. Of interest was the direct confirmation of Q fever in 1 patient 
by isolation of C. burnetii in HL-60 cells and by PCR detection of C. burnetii DNA in buffy coat and 
culture samples. The HL-60 cells are currently known as an in vitro cellular target for A. 

phagocytophilum cultivation, due to its tropism for polymorphonuclear leucocytes. These cells are 
derived from a patient with promyelo

tiation into either monocyte/macrophage-like cells or neutrophil-like cells by stimuli such all-
trans Retinoic acid (granulocyte differentiation) or Vitamin D3 (monocyte/macrophage 
differentiation), and even long-term culture. The fact that our cultures were maintained ≥ 1 month 
after inoculation might have led to HL-60 monocyte/macrophage differentiation, as this agent is 
known to preferentially target cells from the mononuclear lineage. 

The possibility of cross-reactivity between non-related agents has been already addressed. 
Brouqui and coworkers (2001), in an evaluation trial of serodiagnosis by IFA testing using distinct 
A. phagocytophilum from different sources as well as varying antigen preparations demonstrated 
cross-reactions in patients with confirmed Q fever and bartonellosis. In the present series, Q fever 
was the main disease identified in cross-reactions with A. phagocytophilum, although the results of 
an internal CEVDI/INSA study 
d
shown). Wheth
s
responses to infections, or antibody induced by active dual or past exposures to both A. 

phagocytophilum and C. burnetii, remains to be ascertained.  
In Portugal, Q fever was recognized in 1948 (Fonseca et al., 1949 in Santos et al., 2007), 

and has been listed as a reportable disease since 1999 (http://www.dgsaude.pt). On average, 0.14 
cases per 105 inhabitants are reported annually (1999-2003), however official reports may not 
accurately reflect the true Q fever incidence and little information is available regarding C. burnetii 
natural history in Portugal (Santos et al., 2007). Domestic mammals, especially cattle, sheep, 

 227



pathogen is usually acquired by aerosol contamination (Maurin and Raoult, 1999). Although tick-
exposure is not considered relevant in the epidemiology of Q fever human cases, ticks are thought 
to play an important role in the maintenance of agent’s enzootic cycle among wild animals (Maurin 
& Raoult, 1999). Several tick species have been found infected with C. burnetii (Maurin & Raoult, 
1999) and the isolation of this agent from I. ricinus has been reported in Europe (Rehacek et al., 
1994; Jacomo et al., 2002). Moreover, A. phagocytophilum coinfections with Bartonella henselae 
and Babesia spp. have also been sporadically reported in Ixodes ticks (Adelson et al., 2004; 
Holden et al., 2006). Thus, like other Ixodes-borne agents that share vector ticks, such as B. 

burgdorferi s.l., A. phagocytophilum and C. burnetii or other agent’s enzootic cycles might 
potentially overlap. A previous study of Portuguese patients with confirmed and suspected LB 
showed a significant association of with A. phagocytophilum seropositivity when comparing to 
controls (Santos et al., 2006). The additional identification of A. phagocytophilum seroreactivity 
among patients with confirmed Q fever and the fact that I. ricinus is one of the most frequently 
reported tick species parasitizing humans in Portugal, underscores the need for further 
investigation regarding the potential exposure of humans to several Ixodes-borne agents in 
Portugal. 

Another interesting finding of this work was the detection of antibody titers only to E. 

chaffeensis antigen in 2 patients who presented with compatible laboratory diagnostics for 
rickettsiosis. Thus far, the apparent lack of any definitive E. chaffeensis identification by DNA 
detection or agent isolation in most European countries, as in Portugal, suggests exposure to other 
Ehrlichia spp. as a possible explanation for the serological reactions. Rhipicephalus sanguineus, 
one of the most prevalent tick species in Portugal, is a recognized vector of the two Rickettsia 

conorii strains causing Mediterranean spotted fever (MSF) (Bacellar, 1999; Santos-Silva et al., 
2006). This disease is presently the most important rickettsial infection in Portugal due not only to 
its high reported incidence and associated fatality rates, but also because of the broad-geographic 
distribution of cases throughout Portugal (Amaro et al., 2003; De Sousa et al., 2003). Additionally, 
R. sanguineus is a recognized vector of the canine Anaplasmataceae pathogen, Ehrlichia canis. 
Canine disease due to E. canis infection has long been suggested by several serological studies 
and was definitively proven by a PCR-based study of a clinically-ill Portuguese dog population 
(Alexandre et al., in submission). Thus, the likely contact of R. sanguineus with humans and their 
potential for harbouring an Ehrlichia sp. might belie serological reactions detected using antigens of 
the closely related E. chaffeensis given the absence of irrefutable proof for its presence. In fact, E. 
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canis can evoke immune responses in Venezuelian patients with both asymptomatic and 
symptomatic infections (Perez et al., 1996, 2006). Thus serological cross-reactions after E. canis 
exposure in humans could be considered as a possible explanation for antibodies reactiveness 
with E. chaffeensis, although the human pathogenic potential of this canine agent deserves 
considerable further investigation. 

In conclusion, although no definitively confirmed Anaplasmataceae infection was detected 
in the present study it is suggested that in Portuguese patients with a clinical suspicion of tick-
borne disease or related illness, exposure to A. phagocytophilum, or a close related agent, is more 
likely to occur than to E. chaffeensis, or other Ehrlichia spp. Moreover, serological reactions to A. 

phagocytophilum antigen in patients with confirmed Q fever and to E. chaffeensis in patients with 
rickettsiosis were recognized. Whether these findings reflect serological cross-reactions, 
coinfections, or present/past exposure deserves further investigation. A continuing integrated 
analysis of Anaplasmataceae and other tick-borne or related agent laboratory diagnostics, when 
justified by clinical suspicion, is indispensable to better understand the present results. Moreover, 
the potential for native Anaplasmataceae infections in residents at risk for tick-borne disease, 
especia
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lly due to A. phagocytophilum, or imported cases associated with international travelers to 
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FIGURE 1. Number of patients that had at least one sera sample submitted to CEVDI/INSA with a 
request for A. phagocytophilum and/or E. chaffeensis diagnosis during 2000-2006. 
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FIGURE 2. Light microscopic appearance of C. burnetti human isolate in HL-60 cells. Culture 
cytocentrifuge preparations stained by Diff-Quik (A) and by IFA, using

A B

 a positive control sera (B). 
Arrow indicate intracytoplasmic inclusions filled with numerous bacteria, 1000X magnification. 
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TABLE 1. Patients with positive results for A. phagocytophilum in serologic tests (2000-2006). 
 

A. phagocytophilum Patient No./ 
Year 

Gender/Age(y)/ 
Residencea

Clinical informationb Sample 
date 

IFA 
(IgM/IgA,M,G) 

PCR 
(Blood/Sera) 

Isolation 
(HL60) 

Other pathogen testsc Interpretation of laboratory diagnosis 

1/2000       M/52/Lisboa Febrile illness 06/Jul –/80 NA/– NA Ec (S –) Inconclusive 

2/2001       

       

      

      

     
  

 

      

  

  

  

  

 

     

  

 

F/NA/Lisboa Febrile illness 19/Jun –/320 NA/– NA Ba (S +); Ec, Rk (S –) Bartonellosis (compatible titers) 

3/2002 F/NA/Santarém Febrile illness 04/Apr –/160 NA/– NA Ec, Rk (S –) Inconclusive 

4/2002 M/43/Setúbal NA 12/Aug –/80 NA/NA NA Ec, Rk (S –) Inconclusive 

5/2003 M/35/Lisboa NA 21/Jun –/80 NA/– NA Ec, Rk (S –) Inconclusive 

02/Jun –/80 Ec, Rk (S –)  6/2003 M/64/Santarém Febrile illness
09/Oct –/80

NA/– NA
Ec, Rk (S –) 

Inconclusive 

7/2003 M/44/Lisboa Polyarthralgia 13/Mar –/80 NA/– NA Ec, Rk (S –) Inconclusive 

10/Apr –/80 Ec, Rk (S –)  

17/Apr –/80 Ec, Rk (S –) 

8/2003 M/49/Évora Febrile illness 

23/Sep –/80

NA/– NA

Cb; Ec, Rk (S –) 

Inconclusive 

26/Dec –/160 Ec, Rk (S –)  9/2003 M/40/Évora Arthritis

19/Feb –/80

NA/– NA

Bb, Ec, Rk (S –) 

Inconclusive 

10/ 2004 M/NA/Évora NA 05/Nov –/80 NA/– NA Cb (S +); Ec, Rk (S –) Acute Q fever (compatible titers) 
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TABLE 1 (cont.). Patients with positive results for A. phagocytophilum in serologic tests (2000-2006). 
 

A. phagocytophilum Patient No./ 
Year 

Gender/Age(y)/ 
Residencea

Clinical informationb Sample date 

IFA 
(IgM/IgA,M,G) 

PCR 
(Blood/Sera) 

Isolation 
(HL60) 

Other pathogen testsc Interpretation of laboratory diagnosis 

16/May  –/– Cb, Ec (S –); Rk (S/P/I –) 11/2004   
  

 

      

    
  

 

    
  

  

     
  

  

    
  

 

      

M/NA/Setúbal Febrile illness
18/Jul –/80

NA/– NA 
Cb (S +); Ec, Rk (S –) 

Acute Q fever (seroconversion); 

12/2005 M/60/Évora Polyarthralgia 09/Jun 80/320 NA/– NA Cb, Ec (S –); Rk (S/P/I –) Inconclusive 

06/Feb –/160 Cb (S +); Ec, Rk (S –)  13/2005 F/51/Lisboa Febrile illness 
25/Feb –/80

NA/– NA
Cb (S +); Ec, Rk (S –) 

Acute Q fever (compatible titers) 

13/Mar NA Ec, Rk (S –) 14/2006 F/68/Évora Febrile illness 
03/Apr –/160

NA/NA NA
Cb (S +); Ec, Rk (S –) 

Acute Q fever (compatible titers) 

27/Jun –/160 Cb (S –; P +); Bb (S -–); Ec, Rk (S/P/I –)  15/2006 F/39/Faro Febrile illness
03/Jul –/160

–/– –
Cb (S +); Bb, Ec, Rk (S –) 

Acute Q fever (seroconversion; C. 

burnetii isolation on HL60; DNA detection 
in both culture, and buffy coat) 

14/Nov –/80 Ba; Cb, Ec, Rk (S –)  16/2006 F/53/Coimbra Febrile illness 
30/Nov –/80

NA– NA
Ba; Cb, Ec, Rk (S –) 

Inconclusive 

17/2006 F/NA/NA Sepsis 29/Nov –/80 –/– – Bb, Cb, Ec, Rk (S/P –) Inconclusive 

(-) Negative result; (+) Positive result; (NA) Not available sample; aDistrict of residence; bClinical information available in submission forms; cAvailable information regarding other tick-borne agents or 
related bacteria tested in CEVDI/INSA according to physician suspicion - (Bb) Borrelia burgdorferi s.l., (Cb) Coxiella burnetii, (Ba) Bartonella spp., (Ec) Ehrlichia chaffeensis, (Rk) Rickettsia spp. The 
laboratory diagnosis was based in (S) serology, (P) PCR testing and (I) isolation attempts. 
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TABLE 2. Patients with positive results for E. chaffeensis in serologic tests (2000-2006). 
 

E. chaffeensis Patient No./ 
Year 

Gender/Age(y)/ 
Residencea

Clinical informationb Sample date 

IFA 
(IgM/ IgA,M,G) 

PCR 
(Blood/Sera) 

Isolation 
(DH82) 

Other pathogen testsc Interpretation of laboratory diagnosis 

17/Aug  –/64 Ap, Rk (S –) 18/2001   
  

  

     
  

  

      

F/NA/Évora NA
18/Oct –/64

NA/– NA
Ap (S -); Rk (S +) 

Rickettsiosis (seroconversion) 

20/Sep –/64 Ap (S -); Rk (S +) 19/2002 F/NA/Évora Febrile illness
18/Oct –/64

NA/– NA
Ap (S -); Rk (S +) 

Rickettsiosis (compatible titers) 

30/Jun 128/128 Ap, Cb (S –); Rk (S/P/I –) 20/2005 F/29/Évora Febrile illness 

21/ Jul 128/128 

NA/NA NA

Ap, Cb, Rk (S –) 

Inconclusive 

(-) Negative result; (+) Positive result; (NA) Not available sample; aDistrict of residence; bClinical information available in submission forms; cAvailable information regarding other tick-borne agents or 
related bacteria tested in CEVDI/INSA according to physician suspicion – (Ap) Anaplasma phagocytophilum, (Bb) Borrelia burgdorferi s.l., (Cb) Coxiella burnetii, (Ba) Bartonella spp., (Rk) Rickettsia spp. 
The laboratory diagnosis was based in (S) serology, (P) PCR testing and (I) isolation attempts. 
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TABLE 3. Patients with positive results for both A. phagocytophilum and E. chaffeensis in serologic tests (2000-2006). 
 

Anaplamataceae A. phagocytophilum  E. chaffeensis Patient No./ 
Year 

Gender/Age(y)/ 
Residencea

Clinical informationb Sample date 

PCR 
(Blood/Sera) 

 

IFA  
(IgM/ IgA,M,G) 

Isolation 
(HL60) 

  IFA
(IgM/ IgA,M,G) 

Isolation 
(DH82) 

Other pathogen testsc Interpretation of 
laboratory diagnosis 

25/Mar      NA/NA NA NA Rk (S –) 
30/Mar      

  

      

         

      

  

      
      
      

   

      

            

–/80 –/64 Cb (S +); Rk (S –) 
21/2004 F/60/Évora Febrile illness with 

rash 

06/May –/80

NA 

 
–/128

NA 

Cb (S +); Rk (S –) 

Acute Q fever 
(compatible titers) 

02/Jun NA/NA NA –/12822/2004 M/33/Lisboa NA

13/Jun –/160

NA 

–/64

NA Cb (S –); Rk (+) Inconclusive

23/Aug NA/– –/640 –/256 Cb (S +); Rk (S –) 
08/Sep –/320 –/128 Cb (S +); Rk (S –) 
29/Sep –/320 –/128 Cb (S +); Rk (S –) 

23/2005 M/52/Évora Endocarditis

13/Dec –/320

NA 

–/128

NA 

Cb (S +) 

Chronic Q fever 
(compatible titers) 

24/2006 M/58/Évora NA 19/Dec –/– –/640 – –/128 – Cb (S +); Rk (S/I –) Inconclusive  

(-) Negative result; (+) Positive result; (NA) Not available sample; aDistrict of residence; bClinical information available in submission forms; cAvailable information regarding other tick-borne agents or 
related bacteria tested in CEVDI/INSA according to physician suspicion - (Cb) Coxiella burnetii, (Rk) Rickettsia spp. The laboratory diagnosis was based in (S) serology, (P) PCR testing and (I) isolation 
attempts. 
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Chapter VI. Final remarks and future perspectives 
 

FINAL REMARKS AND FUTURE PERSPECTIVES  
 
 

This thesis continues earlier studies on Ehrlichia species infections started at Centro de 

Estudos de Vectores e Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge 
(CEVDI/INSA) during the 1990s. It focuses on methodological training, especially regarding A. 

phagocytophilum. Much of the work was under the guidance of Professor John Stephen Dumler, 
initially at the Unité des Rickettsies - Faculté de Medécine, Marseille - France, and later continued 
in the Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University 
School of Medicine, Baltimore, Maryland - USA. As presented in Chapter II, the technical training 
included the integration of research teams resulting in broad studies of Anaplasmataceae, such as 
“Distribution of “Ehrlichia walkeri” in Ixodes ricinus (Acari:Ixodidae) from the Northern Part 
of Italy”, conducted while training at the Unité des Rickettsies. The opportunity to work and learn 
in Research Units devoted to Anaplasmataceae was essential for the proposed objectives of this 
thesis, allowing technology transfer and development of this area research investigation at 
CEVDI/INSA. Establishing the foundations for a concerted study on A. phagocytophilum enabled 
cooperation in a Spanish study partially developed by our laboratory “Detection of a non-
pathogenic variant of Anaplasma phagocytophilum in Ixodes ricinus from La Rioja, Spain”, 
and permitted the fundamental study of A. phagocytophilum in Portugal, presented in Chapters III 
to V either as published articles, or as original studies submitted for publication in scientific 
journals. 
 

The study of vector ticks potentially involved in A. phagocytophilum enzootic cycles, 
addressed in Chapter III, was based on collaborative field-work developed in coordination with 
other research teams of CEVDI/INSA in order to promote a fuller understanding of ticks and tick-
borne agents of potential Public Health relevance in Portugal. Several regions of the country were 
selected for the field-trials, either because Ixodes species were known to be present, or because 
specific interest in a given tick-borne disease was expressed for integration with ongoing projects. 
Nevertheless, it is important to state that several areas of interest were not covered by this study 
due to time restrictions or high cost usually associated with this kind of research.  

The majority of ticks included in the present study were obtained by flagging vegetation in 
selected collection sites. Additional specimens were also collected from parasitized domestic and  
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wild animals, as well as from humans. The analysis of questing ticks generally allows a better 
assessment of the tick-borne agent’s prevalence in a given environment, by reducing the potential 
bias introduced by infected host blood resulting in positive results when vector competence for 
pathogen replication and transmission is uncertain. Moreover, the study of free-living ticks has 
additional informative value with regard to the potential of a given species to sustain the agent 
transstadially, which is one of the fundamental requirements considered for competence as a 
vector. Regardless, important information can also be obtained with the analysis of ticks in their 
parasitic phase, especially regarding the potential role of wild and domestic animals as feeding-
support for hematophagous arthropods of interest and their involvement in an infectious agent’s 
natural cycles when serving as either susceptible vertebrate host or reservoir. 

One conclusion of this study was that A. phagocytophilum persists on Madeira Island, 
Madeira Archipelago. The presence of this agent was first reported in questing I. ricinus collected 
on the Island by Núncio and coworkers (2000) and observed again in field work performed during 
this study. The estimated prevalence of A. phagocytophilum on Madeira Island ticks was 4 - 7.5%, 
which is in the range of 0 – 57.1% described in questing I. ricinus from other European countries, 
as detailed in Chapter 1 - State of the Art. Studies using a greater number of samples, and 
targeting different seasons, locations and habitats were identified as important requirements for 
confirming levels of infection and to better investigate the natural cycles of the agent on the Island. 
Two projects have already been submitted to obtain government financial support to continue 
research on Madeira Island. Another interesting finding was the detection of a natural focus of A. 

phagocytophilum that involves other Ixodes species - I. ventalloi in Baixa de Palmela (Setúbal 
District, mainland). Infected ticks were obtained from both vegetation and a stray cat (Felis catus 

domesticus). This was the first documentation of A. phagocytophilum infection in I. ventalloi ticks. 
Moreover, it added domestic cats to the national list of vertebrate hosts parasitized by this tick 
species and potentially involved in A. phagocytophilum natural cycles. The highlighted findings are 
presented in the article “Detection of Anaplasma phagocytophilum DNA in Ixodes ticks 
(Acari:Ixodidae) from Madeira Island and Setúbal District, Mainland Portugal”. This 
association is now reinforced by the detection of additional I. ventalloi parasitizing cats in Lisboa 
and also in Santarém District, where another tick was found infected with A. phagocytophilum, as 
summarized in “PCR-based survey of Anaplasma phagocytophilum in Portuguese ticks 
(Acari: Ixodidae)”. 
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Chapter VI. Final remarks and future perspectives 
 

The continued study of Portuguese ticks suggests that A. phagocytophilum is not widely 
distributed but is concentrated in certain environments that either sustain it or possibly allow its 
continuous introduction. As noted by several authors, wild birds could play a role in the introduction 
and/or dispersion of A. phagocytophilum infected ticks to widespread regions (Alekseev et al., 
2001a; Bjoersdorff et al., 2001; Daniels et al., 2002; De la Fuente et al., 2005a). Investigation of 
this aspect was started during this study, but only a limited number of ticks have been analysed so 
far. Ticks were collected from wounded birds, recovered in two rehabilitation centers in Lisboa and 
Setúbal District (mainland), and all specimens were found to be negative for A. phagocytophilum in 
spite of the detection of other tick-borne bacteria, as stated in “Ticks Parasitizing Wild Birds in 
Portugal: Detection of Rickettsia aeschlimannii, R. helvetica and R. massiliae”. Nevertheless, 
a collaborative agreement between CEVDI/INSA and Instituto de Conservação da Natureza e da 

Biodiversidade (ICNB) will provide new opportunities for continuing evaluations of the potential for 
resident, occasional migrant, or migratory birds to maintain ticks and tick-borne agents in Portugal. 

During the four years of this study, ticks were obtained from several sampling areas within 
seven mainland districts, Bragança, Braga, Leiria, Lisboa, Portalegre, Santarém and Setúbal, and 
also from Madeira Island. The majority of ticks were obtained in collections directed toward areas 
where the existence of Ixodes species was previous documented, as in the Lisboa, Leiria and 
Setúbal Districts, and on Madeira Island. Additional specimens were obtained as part of ongoing 
projects with other specific interests, such as from sampling areas in Bragança District. This region 
was included in a CEVDI/INSA project because it had the highest incidence of MSF reported 
during 1989-2003, yet little was known about the Rickettsia species that circulated in this region of 
the country or about their prevalence in ticks. In Portugal, MSF is the most important tick-borne 
disease with an incidence rate of 8.9 per 105 inhabitants over 1999-2003 (De Sousa et al., 2003). 
The disease is caused by bacteria belonging to the complex Rickettsia conorii which are 
transmitted by the brown-dog tick, R. sanguineus (Bacellar, 1996; Bacellar et al., 1999a, 1999b; De 
Sousa et al., in press). This tick is widely distributed on the mainland, and according to Baptista’s 
prediction maps, Rhipicephalus spp. are especially prevalent in the South, in the Centre and also in 
Northern inner regions of the country coinciding with the majority of districts reporting the highest 
prevalences of MSF (De Sousa et al., 2003; Baptista, 2006). By contrast, I. ricinus has a more 
restricted distribution occurring in the littoral region increasing from South to the North (Baptista, 
2006). In fact, the samples collected in Bragança District were in accordance with Baptista’s data, 
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showing a low prevalence of Ixodes species; although several rickettsiae were found in the studied 
arthropods, no A. phagocytophilum infection was detected. These preliminary results are presented 
in “Ticks and tick-borne rickettsiae surveillance in Montesinho Natural Park, Portugal” and 
the results from an additional sample of ticks that was further tested for A. phagocytophilum are 
included in the article that summarized all the tick study work: “PCR-based survey of Anaplasma 
phagocytophilum in Portuguese ticks (Acari: Ixodidae)”. 

Additionally, the study of Portalegre District reinforced the observation of a limited number 
of Ixodes spp. among inland regions of the country when compared to littoral areas. The field work 
in Portalegre were performed in a similar manner as those in Lisboa and Setúbal districts, i.e. 
focused in the spring season and carried out over the same number of days, but in those littoral 
districts Ixodes species were found to be generally more abundant. Regardless, due to the 
exploratory rather than exhaustive nature of this work, it cannot exclude the occurrence of natural 
foci of A. phagocytophilum cycles among inland regions. Although the Continental and 
Mediterranean climates that generally characterize the North and Southern inland regions are 
regarded as limiting factors for maintenance of Ixodes spp. populations, when compared to the 
littoral dominated by an oceanic influence, local favourable environmental conditions have been 
identified. In fact, several authors documented the presence of I. ricinus, the main European vector 
of A. phagocytophilum, in all inland districts of Portugal (Dias, 1994; Caeiro, 1999). Interestingly, 
also in littoral areas Ixodes spp. do not seem to present a regular distribution, as in the example of 
the District of Leiria where only a limited number of specimens were obtained. Again, this patchy 
distribution may relate to the strict ecological requirements that characterize Ixodes spp., so it is 
possible that some microenvironments that sustain these ticks are not identified when performing 
sample collections even in areas where these ticks are expected to occur. Madeira Island and 
Tapada Nacional de Mafra (TNM), a confined Natural Park belonging to Lisboa District, remain as 
the few exceptions of this, presenting an abundant tick fauna dominated by I. ricinus. 

The importance of adequate ecological conditions for the maintenance of A. 

phagocytophilum enzootic cycles, starting with the existence of competent vectors of the genus 
Ixodes, has been demonstrated in all Northern hemisphere countries where this agent is present. 
Only sporadic reports document A. phagocytophilum in other genera of ticks and mites (Des 
Vignes et al., 1999; Fernandez-Soto et al., 2001; Goethert & Telford, 2003; Holden et al., 2003; 
Kim et al., 2003; Sarih et al., 2005; Cao et al., 2006; Skoracki et al., 2006), but thus far no study
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has proven their role in the agent’s transmission, as reviewed in Chapter I. This ecological 
requirement is also shown here by the exclusive association of A. phagocytophilum with Ixodes 
spp., in spite of screening of several other ticks species, some even collected in the same area as 
infected Ixodes ticks, such as Baixa de Palmela in Setúbal District. This study included 
Dermacentor marginatus, D. reticulatus, Hyalomma lusitanicum, Haemaphysalis inermis, H. 

puntacta, Rhipicephalus bursa, R. pusillus, and the R. sanguineus group, which represents 75% of 
the non-Ixodes species present in Portugal, as described in “Carraças associadas a patologias 
infecciosas em Portugal” (Apendix 1). 

Regardless, competent Ixodes ticks are found in many regions beyond the areas of 
pathogen endemicity, and seasonal fluctuations in A. phagocytophilum-endemic foci have also 
been reported. Discrepancies between the presence of vector ticks and pathogen spatial and 
temporal distribution are not well understood but could be related to arthropod feeding behaviour 
and reservoir-host dynamics (Swanson et al., 2006). A patchy distribution of A. phagocytophilum 
was also documented in this study. The best example of this phenomenon is shown in TNM in 
opposition to Madeira Island. As previously mentioned, both areas sustain abundant populations of 
I. ricinus, but no active infections by A. phagocytophilum were found in TNM in the arthropod 
sampling in spite of the detection of other Rickettsiales associated with I. ricinus, as presented in 
“Detection of Rickettsia helvetica and other Spotted Fever Group Rickettsiae in Ixodes 
ricinus from Tapada Nacional de Mafra, Portugal”. Of interest is the observation that both TNM 
and Madeira Island sustain a great variety of another I. ricinus-borne agent, B. burgdorferi s.l. 
including: B. afzelii, B. burgdorferi s.s., B. garinii, B. lusitaniae and B. valaisiana in Madeira Island 
(Matuschka et al., 1994, 1998; Núncio, 2001; Lopes de Carvalho et al., in submission); B. afzelii, B. 

garinii, B. lusitaniae, and B. valaisiana in TNM (Baptista et al., 2004, 2006). The apparent lack of A. 

phagocytophilum transovarial transmission in ticks directs attention to competent vertebrates, 
especially feeding hosts for larvae and nymphs, as critical in the natural maintenance of A. 

phagocytophilum active cycles. Thus, the patchy distribution of A. phagocytophilum seems to be 
multifactorial and probably depends on the existence of both competent vector ticks and reservoir 
hosts. However, TNM possesses a mammal population with small and large-size animals, 
including rodents, insectivores, carnivores, lagomorphs, and artiodactyls (wild boars, fallow deer 
and elks), that are capable of acting as both feeding support for ticks and as potential reservoirs for 
A. phagocytophilum. Thus, this aspect alone apparently does not seem to be a limiting factor for 
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agent maintenance. If further research confirms that the absence of A. phagocytophilum in TNM is 
not the result of seasonal fluctuation or methodologic approaches, other aspects should be 
considered as determinants of the agent’s presence and maintenance. 

Another interesting finding was the detection of A. phagocytophilum variant genotypes in 
Portuguese ticks. Analysis of A. phagocytophilum rrs, groESL and msp2 (p44) partial gene 
sequences obtained from positive ticks demonstrated nucleotide polymorphisms, especially in 
groESL and msp2. A. phagocytophilum sequences found in Madeira Island I. ricinus suggest a 
close relationship with North American strains isolated from humans, and also with those detected 
in Central and Northern Europe. Yet, these were divergent from genotypes found in mainland I. 

ventalloi, which represent new variant genotypes of unknown pathogenicity, as detailed in “PCR-
based survey of Anaplasma phagocytophilum in Portuguese ticks (Acari: Ixodidae)”. 
 

The existence of A. phagocytophilum genotypes with distinct geographic origins, reservoir 
hosts and possibly pathogenicity is a significant matter of interest in the scientific community. 
Ongoing research suggests that genotypes identified in human disease are identical or closely 
related to those infecting other non-ruminant animals, such as horses, dogs and possibly cats. It is 
proposed that these genotypes are maintained in an enzootic cycle that is dependent on ticks and 
small mammals, such as rodents. Thus, to complement the ecological study of A. phagocytophilum 
and address the existence of variant genotypes potentially involved in human granulocytic 
anaplasmosis in Portugal, several animal populations that could act as reservoirs (rodents) or 
susceptible hosts (horses and dogs) were screened for active infections, as presented in Chapter 
IV. To maximize resources and limit the time-consuming and costly collection of samples, 
biological specimens were obtained from ongoing CEVDI/INSA projects or from other independent 
studies performed by Institutional partners. 

The study of potential reservoirs addressed five of the twelve rodent species that are 
known to inhabit Portugal (Madureira & Ramalhinho, 1981; McDonald & Barret, 1999), including 
Apodemus sylvaticus, Mus musculus, M. spretus, Rattus norvegicus and R. rattus. The majority of 
these species are regarded as hosts for both I. ricinus and I. ventalloi (Dias, 1994; MM Santos-
Silva, personal communication) and were captured in Arrábida, Mafra and Gerês in mainland, 
Santana and Seixal in Madeira Island, areas where Ixodes ticks are known to be present. The 
additional inland area of Mértola was also included in this study. Antibodies against A. 

phagocytophilum or a closely related agent were detected in M. spretus sera from all mainland

 248



Chapter VI. Final remarks and future perspectives 
 

sampling areas where this mouse was captured (Arrábida, Mafra and Mértola). The greatest 
number of seropositive animals was found during spring but, despite the capture season no other 
proportion with statistically significant was observed, probably due to the limited number of rodents 
analysed. Spring is recognized as the season when M. spretus are most active and is also 
regarded as the time of the year when A. phagocytophilum infections or reinfections occur in 
rodents (Stafford et al., 1999; Castro et al., 2001). However, active infections by A. 

phagocytophilum were not detected in seropositive animals, as presented in “Detection of 
antibodies against Anaplasma phagocytophilum in wild-rodents, Portugal”.  

Whether the M. spretus seropositivity reflects residual antibodies from past A. 

phagocytophilum infections or active infections with bacteremia lower than detection thresholds 
deserves a more detailed investigation. The occurrence in ticks of A. phagocytophilum ruminant-
like genotypes that are regarded to have limited infective potential for rodents was suggested by 
Massung and coworkers (2003b), and could explain the inability to detect active infection in M. 

spretus. In fact, the dominant ruminant strain (Ap-variant 1) was identified in I. ricinus collected 
from cattle in Spain, as demonstrated in the collaborative study “Detection of a non-pathogenic 
variant of Anaplasma phagocytophilum in Ixodes ricinus from La Rioja, Spain”. Although 
ruminant populations were not addressed in this thesis and all genotypes detected in ticks had 
sequence polymorphisms distinct from the Ap-variant 1 and other ruminant variants, the existence 
of genotypes with limited infective potential for rodents and other non-ruminants can not be 
excluded. In this regard, it is of interest the spatial proximity between the area defined as Arrábida 
in this rodent study, and Baixa de Palmela, where I. ventalloi where found infected with a new A. 

phagocytophilum genotype for which pathogenicity potential is unknown. Moreover, in Mafra no A. 

phagocytophilum-infected Ixodes spp. could be identified despite the presence of seropositive 
mice. Thus, the possibility of cross-reactions with antigenically similar agents should also be 
considered as another explanation for the M. spretus serologic results. As further discussed in this 
chapter, A. platys, that is closely related to A. phagocytophilum, was recently identified in a 
Portuguese dog population that had A. phagocytophilum serologic reactions. Although the enzootic 
cycle of this agent remains largely unknown, active infections in rodents are documented in other 
countries (Chae et al., 2003; Kim et al., 2006). 

An important unexplained aspect is the lack of A. phagocytophilum detection in Madeira 
Island rodents despite the documented persistence of this agent in I. ricinus ticks in that location. 
The possibility of inadequate rodent sampling exists due to i) the limited number analysed
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compared to the total number of captures, ii) the limited collection studies restricted to only two 
locations on the Island, or iii) the potential that other unexamined small or medium size animals 
serve as feeding support for Ixodes spp. In fact, both I. ricinus and I. ventalloi have been detected 
parasitizing several other feral animals beside rodents, including birds, and members of the Order 
Carnivora, Erinaceomorpha, Lagomorpha and Soricomorpha (Dias, 1994; MM Santos-Silva, 
personal communication). Such uncertainties argue for further investigation of A. phagocytophilum 
cycles on Madeira Island. 

With regard to possible infections in domestic animals, equine samples were obtained 
during routine evaluations for serosurveillance of 10 mainland districts, and, seropositive animals 
were identified in 6, including Braga, Faro, Lisboa, Portalegre, Santarém and Setúbal. Even though 
no significant association was found between seroprevalence rates and horse origin, age groups or 
gender, an active A. phagocytophilum infection was detected by molecular analysis in one 
seropositive mare from Faro District, Algarve region, Southern mainland. Nucleotide sequences 
obtained from this animal exhibited a high degree of similarity to strains involved in human disease, 
as presented in “Serological survey and molecular detection of Anaplasma phagocytophilum 
infection in Portuguese horses”. Additionally, a population of dogs from Algarve region was also 
tested for active A. phagocytophilum infections. These animals were presented to veterinarian with 
clinical signs compatible of tick-borne disease; the great majority were seroreactive for A. 

phagocytophilum. In five animals the serological criteria for A. phagocytophilum active infection 
were fulfilled by either seroconversion or four-fold increase in antibody titers. Regardless, 
molecular analysis failed to detect any active A. phagocytophilum infections but A. platys DNA was 
found in two seropositive (one presenting seroconversion for A. phagocytophilum antigen) and 
three seronegative animals, as presented in “Anaplasmataceae as etiologic agents of canine 
tick-borne disease in Portugal”. 

Horses and dogs are two of the non-ruminant animals that have been documented with 
granulocytic anaplasmosis in both North American and European areas where A. phagocytophilum 
is known to exist (Engvall et al., 1996; Greig et al., 1996; Madigan et al., 1996; Pusterla et al., 
1998a; Bullok et al., 2000; Tozon et al., 2003; Von Loewenich et al., 2003b; Alberti et al., 2005; 
Lester et al., 2005; Shaw et al., 2005). Identification of infections in these animals is also regarded 
as a surrogate predictor of human disease. This study provided the first definitive evidence of A. 

phagocytophilum infections in Portuguese horses and suggests the potential occurrence of HGA in 
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Portugal as well. Despite the lack of active infections in dogs, the close contact of these animals 
with humans argues for continued evaluations. In a study of patients with dermatological lesions 
resulting from infection by Ixodes-borne agent B. burgdorferi s.l., 1/3 of the individuals owned 
companion animals, especially dogs but also cats, birds and rodents (Franca, 2004). Moreover, 
these data add A. platys to the list of Anaplasmataceae that circulate in Portugal and emphasize 
the importance of veterinarians considering not only equine granulocytic anaplasmosis but also 
canine infectious cyclic thrombocytopenia in the differential diagnosis of tick-borne diseases in 
Portugal. 

Molecular analyses demonstrate that A. phagocytophilum with genotypes closely related to 
those known to cause human disease were found only in I. ricinus from Madeira Island and in a 
horse from the Algarve region. These two geographic regions are well known as tourist 
destinations and also as nidification or resting sites for several migratory bird species, suggesting 
the possibility of tick-borne agent introduction, a concept that deserves much more study. 
 

The potential occurrence of human Anaplasmataceae infections in Portugal was first 
proposed by David de Morais and coworkers (1991). These authors described a febrile patient with 
negative serological results for typhoid fever, brucellosis, MSF and LB, stable titers for C. burnetii, 
but a >four-fold decrease in E. chaffeensis antibodies in three consecutive samples. This finding 
was reported in the same year that E. chaffeensis was first isolated in the US and prior to the 
published description of the first cases of human granulocytic anaplasmosis; thus, evaluation for A. 

phagocytophilum infection was not performed. The diagnosis was made possible as a 
consequence of pioneering research initiated at CEVDI/INSA by Armindo Filipe, the coordinator of 
a study of emerging tick-borne agents and their potential impact on human diseases. The 
determination and enthusiasm of these investigators were undoubtedly the stimuli for development 
of Anaplasmataceae and other emerging tick-borne disease research in Portugal. In fact, two years 
before the report of this case that fulfilled serological criteria for E. chaffeensis infection, the same 
investigators documented the first clinical case of LB in Portugal (David de Morais, 1989). 

Since the report of the first Portuguese E. chaffeensis case, CEVDI/INSA has included E. 

chaffeensis IFA as a routine laboratory test available for the community, and over the last year, this 
was also extended to include testing for A. phagocytophilum. Moreover, within the scope of this 
thesis, the technological exchange with The Johns Hoopkins University School of Medicine. 
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permitted the implementation of direct tests, including molecular and culture techniques that were 
performed on an experimentally basis in 2006 and are now being used routinely. In order to alert 
the practicing medical community about the emergence of Anaplasmataceae, two review articles 
were published regarding this subject. The first focused on the epidemiological, clinical 
manifestations, diagnosis and treatment of HME (David de Morais, 1992a). More recently, in 
response to the increasing detection of A. phagocytophilum infections in Europe, an update 
“Ehrlichiose granulocítica humana. Conceitos actuais” (Apendix 2) was published. To better 
address whether A. phagocytophilum is involved in human infection in Portugal, Chapter V of this 
thesis is devoted to analysis of biological samples received annually at CEDVI/INSA from patients 
with suspected tick-borne disease. 

The occurrence of A. phagocytophilum and HGA positively correlates with the geographic 
distribution of other Ixodes-borne agents and associated diseases, such as B. burgdorferi s.l., 
Babesia microti and B. divergens, and TBE virus. This correlation is demonstrated by coinfections 
in ticks (Swanson et al., 2006), the geographic convergence of diseases (CDC, 2001-2006; 
Dumler, 2005), and increasing recognition of human coinfections (Nadelman et al., 1997; Horowitz 
et al., 1998a; Krause et al., 2003; Moss & Dumler, 2003; Hermanowska-Szpakowicz et al., 2004; 
Lotric-Furlan et al., 2005, 2006; Grzeszczuk et al., 2006b). Thus, the first study addresses A. 

phagocytophilum infections in Portuguese patients and is based on a retrospective serological 
evaluation of samples received in 2002 from individuals with confirmed or suspected LB. Given the 
non-specific presentation of HGA that is in common with other-tick borne illnesses, an additional 
cohort representing patients with clinical suspicion of LB/MSF, but lacking laboratory confirmation 
for these diagnoses was also included. Indeed, this study demonstrated a significantly higher 
proportion of A. phagocytophilum seropositive patients among those with suspected/confirmed LB 
when compared to the overall population and the control cohort, defined by healthy blood-donors. 
Although no statistically significant differences in age, gender, or province of origin were noted 
between A. phagocytophilum –seropositive and –seronegative individuals, the majority of samples 
came from Estremadura region, and among these positive results were more often found in 
patients who resided in Oeiras than in other locations. Regardless, only a 63 year-old female from 
Elvas, Alto Alentejo region, who presented with fever and had a >four-fold increase in A. 

phagocytophilum IFA titer in two consecutive samples collected 68 days apart, fulfilled the HGA 
laboratory diagnostic criteria for active infection (Walker et al., 2000; Brouqui et al., 2004). These  
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results are presented in the article “Human exposure to Anaplasma phagocytophilum in 
Portugal”.  

This study corroborated previous reports that document a higher A. phagocytophilum 
seroprevalence in at-risk populations, in this case, documented LB patients (reviewed in detail in 
Chapter I, State of the art). Regardless, for the majority of seropositive patients, A. 

phagocytophilum diagnostic criteria could not be fulfilled because of the lack of paired serum 
samples. Moreover, application of direct laboratory tests that could definitively confirm HGA, such 
as isolation and molecular analysis, were not applicable due to the retrospective character of the 
study and the inavailability of appropriate samples when A. phagocytophilum testing was 
eventually available. The association of seropositivity with Oeiras residence in patients from the 
Estremadura region is worthy of further consideration. Interestingly, the first human isolate of B. 

burgdorferi s.l. in Portugal, identified as B. lusitaniae, was obtained from a patient residing in 
Oeiras (Collares-Pereira et al., 2004; Franca, 2004). Oeiras is located near the urban perimeter of 
Lisboa city and is one of the administrative divisions of Lisboa District, a littoral area where Ixodes 

spp. are known to occur. This district is also described in several studies as having the highest 
number of laboratory-confirmed cases of LB in Portugal (Franca, 2004; Baptista, 2006; Lopes de 
Carvalho & Núncio, 2006), and Oeiras is mentioned in Franca’s work (2004) as the residence place 
of at least three LB patients. The authors discussed potential biases for these results, focusing on 
the possibility that some patients could acquire infection in districts or countries other than their 
area of residence while working or in leisure activities (Franca, 2004), or biased by the more ready 
access to samples from patients of South Central and Southern regions due to the locations of 
health institute partners and research units where these studies were conducted (Baptista, 2006; 
Lopes de Carvalho & Núncio, 2006). Nevertheless, the possibility of Lisboa District to be an 
endemic area for Ixodes-borne disease, requires further evaluation. 

An additional study analysed available data concerning Anaplasmataceae diagnoses 
performed in CEVDI/INSA during 2000-2006, as presented in “Six years of Anaplasmataceae 
serodiagnosis in humans. Data from a state laboratory, Portugal”. IFA tests for E. chaffeensis 
were performed prospectively as part of routine laboratory diagnosis. Potential cross-reactions 
between E. chaffeensis and A. phagocytophilum, as previous documented in both HME and HGA 
case series (Bakken et al, 1996c; Wong et al, 1997; Comer et al, 1999a; Walls et al, 1999; Lotric-
Furlan et al, 2006), prompted testing of samples received based on clinical suspicion of infection 
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for both agents. Thus, archived sera received during 2000-2005 for E. chaffeensis serodiagnosis 
were analysed retrospectively for the presence of antibodies against A. phagocytophilum. In 2006, 
serological testing was performed prospectively and in parallel for both agents. Such testing 
demonstrated a higher proportion of A. phagocytophilum than E. chaffeensis seropositive samples, 
although reactivity to both agents was also found. These results are in accordance with 
seroprevalence studies on European population, which suggest greater exposure to A. 

phagocytophilum or an antigenically related agent (Dumler et al, 1997; Groen et al, 2002). For the 
majority of seropositive patients that had paired sera, stable antibody titers or less than four-fold 
titer changes were observed. Only one male patient from Setúbal District seroconverted for A. 

phagocytophilum, fulfilling serological criteria for a confirmed case. However neither A. 

phagocytophilum nor E. chaffeensis active infections could be detected in the samples analysed by 
direct techniques. 

This study also analysed the results among A. phagocytophilum and/or E. chaffeensis 
seropositive patients of tests requested by physicians for other tick-borne agents or related 
bacteria that were conducted at CEVDI/INSA. These supplemental laboratory tests provided 
serological evidence of bartonellosis in one and acute Q fever cases in five A. phagocytophilum-
seropositive individuals, rickettsiosis in two E. chaffeensis-seropositive patients, and individual 
cases of acute and chronic Q fever in two patients with both A. phagocytophilum and E. 

chaffeensis antibodies. Moreover, culture attempts using samples from a patient with stable A. 

phagocytophilum titers and a C. burnetii seroconversion resulted in the isolation of C. burnetii in 
HL-60 cells. Of interest was the observation of another patient with C. burnetii seroconversion that 
also fulfilled serologic criteria for the diagnosis of active A. phagocytophilum infection. Whether 
reactivity to multiple vector-borne agents represents cross-reactivity to shared antigens, such as 
heat shock proteins or antibodies induced by active coinfection or past exposures to one or more 
Anaplasmataceae, C. burnetii, Rickettsia spp., or Bartonella spp., remains to be ascertained. 

Fifteen years have past since the findings of David de Morais and coworkers (1991), but 
the question still remains about the interpretation of serologic reactivity to Anaplasmataceae 
observed among Portuguese patients. For at least A. phagocytophilum, potential exists for human 
infection given identification of genotypes that are similar or closely related to those associated to 
HGA. However, the possible presence of E. chaffeensis or other Ehrlichia spp. of medical interest 
can not be excluded, since this aspect was not investigated. Continued integrated analysis of the 
results of laboratory diagnostic tests for Anaplasmataceae and other tick-borne infections, with a 
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special emphasis on applications of direct approaches is indispensable to better understand 
whether active infections with these agents occur in Portugal. Moreover, the potential for imported 
cases associated with international travellers to European- or US-endemic areas, underscores the 
need for continuing active surveillance and vigilance. 
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