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Ítaca 
 

Se um dia partires rumo a Ítaca, 

reza para que o caminho seja longo, 

cheio de aventura e de conhecimento. 

Não temas monstros como os Ciclopes ou o zangado Poseidon: 

Nunca os encontrarás no teu caminho 

enquanto mantiveres o teu espírito elevado, 

enquanto uma rara excitação agitar o teu espírito e o teu corpo. 

Nunca encontrarás os Ciclopes ou outros monstros 

a não ser que os tragas contigo dentro da tua alma, 

a não ser que a tua alma os crie em frente a ti. 

Deseja que o caminho seja bem longo 

para que haja muitas manhãs de Verão em que, 

com quanto prazer, com tanta alegria, 

entres em portos que vês pela primeira vez; 

Para que possas parar em postos de comércio fenícios 

aí comprar coisas finas, madrepérola, coral e âmbar, 

e perfumes sensuais de todos os tipos 

tantos quantos puderes encontrar; 

e para que possas visitar muitas cidades egípcias 

e aprender e continuar sempre a aprender com os seus escolares. 

Tem sempre Ítaca na tua mente. 

Chegar lá é o teu destino. 

Mas não te apresses na viagem. 

Será melhor que ela dure muitos anos 

para que sejas velho quando chegares à ilha, 

rico com tudo o que encontraste no caminho, 

sem esperares que Ítaca te traga riquezas. 

Ítaca deu-te a tua bela viagem. 

Sem ela não terias sequer partido. 

Não tem mais nada a dar-te. 

E, sábio como te terás tornado, 

tão cheio de sabedoria e experiência, 

já terás percebido, à chegada, o que significa uma Ítaca. 

 

Konstantinos Kaváfis (1863-1933) 

.
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Ithaca 

 

When you set out on your journey to Ithaca, 

pray that the road is long, 

full of adventure, full of knowledge. 

The Lestrygonians and the Cyclops, 

the angry Poseidon -- do not fear them: 

You will never find such as these on your path, 

if your thoughts remain lofty, if a fine 

emotion touches your spirit and your body. 

The Lestrygonians and the Cyclops, 

the fierce Poseidon you will never encounter, 

if you do not carry them within your soul, 

if your soul does not set them up before you. 

Pray that the road is long. 

That the summer mornings are many, when, 

with such pleasure, with such joy 

you will enter ports seen for the first time; 

stop at Phoenician markets, 

and purchase fine merchandise, 

mother-of-pearl and coral, amber and ebony, 

and sensual perfumes of all kinds, 

as many sensual perfumes as you can; 

visit many Egyptian cities, 

to learn and learn from scholars. 

Always keep Ithaca in your mind. 

To arrive there is your ultimate goal. 

But do not hurry the voyage at all. 

It is better to let it last for many years; 

and to anchor at the island when you are old, 

rich with all you have gained on the way, 

not expecting that Ithaca will offer you riches. 

Ithaca has given you the beautiful voyage. 

Without her you would have never set out on the road. 

She has nothing more to give you. 

And if you find her poor, Ithaca has not deceived you. 

Wise as you have become, with so much experience, 

you must already have understood what Ithacas mean.  

 

Konstantinos Kaváfis (1863-1933) 
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obtained from AS-15CQ by artesunate drug pressure (parasite line obtained during this 
project), this parasite line was then cloned by limiting dilution 

AS-SENS -  Plasmodium chabaudi clone, totally drug sensitive. Genetically different from AJ. 
AS-PYR -  Plasmodium chabaudi clone, pyrimethamine-resistant obtained from AS-SENS by 

pyrimethamine drug pressure  
AS-3CQ -  Plasmodium chabaudi clone, pyrimethamine and low chloroquine resistant obtained from 

AS-PYR by chloroquine drug pressure 
AS-15CQ -  Plasmodium chabaudi parasite isolate, pyrimethamine and intermediate chloroquine 

resistant, obtained from the AS-3CQ by cloroquine drug pressure  
AS-15MEF -  Plasmodium chabaudi parasite clone, pyrimethamine, intermediate chloroquine resistant 

and mefloquine resistant, obtained from the AS-15CQ by mefloquine drug pressure 
AS-30CQ -  Plasmodium chabaudi parasite clone, pyrimethamine and high chloroquine resistant, 

obtained from the AS-15CQ by cloroquine drug pressure 
ARMD -  Accelerated resistant to multiple drugs phenotype  
ama-1 -  Apical membrane antigen-1 
ATN -  Artesunate 
atp6 -  Encoding the Sarcoplasmic and Endoplasmic Reticulum Ca2+ atpase gene  
C -  Cysteine (Cys) 
CDC -  National Center for Disease Control  
cDNA -  Complementary DNA 
cg10 -  Gene coding for a putative protein transporter, P. chabaudi orthologue of the P. falciparum 

crt. 
CI -  Comparative intensity 
CQ -  Chloroquine 
crt -  Chloroquine resistance transporter gene 
CSP -  Circumsporozoite protein  
D -  Aspartic acid (Asp) 
Dd2 P. falciparum culture, from Indochina, pyrimethamine, mefloquine and chloroquine 

resistant  
DDT -  Dichloro-diphenyl-trichloroethane  
DHA -  Dihydroartemisinin 
DHFR Dihydrofolate-reductase enzyme 
DMSO -   Dimethyl sulfoxide 
DNA -  Deoxyribonucleic acid  
F -  Phenylalanine (Phe) 
gDNA -  Genomic DNA 
HB3 -  P. falciparum culture, from Honduras, pyrimethamine, mefloquine and chloroquine 

resistant  
IC50 -  The drug dose necessary to eliminate 50% of the parasites 
II Intensity index 
i. p. -  Intraperitoneally 
iRBC -   Infected red blood cells (erythrocytes)  
K i Biochemistry catalytic constant 
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L Leucine (Leu) 
LDH -  Lactate dehydrogenase 
LGS -  Linkage group selection 
Mb -  Mega base 
MCD -  Minimum curative dose  
mdr1 -  Multi drug resistance 1 gene 
msp-1 Merozoite surface protein-1 
msp-2 -  Merozoite surface protein-2 
N -  Asparagine (Asn) 
NADH -  Hydrogen nicotinamide adenine dinucleotide 
NCBI/NIH -  National Institute of Health 
nM -  Nanomolar 
PABA -  Paraminobenzoic acid  
pcdhps -  Gene of Plasmodium chabaudi codifying for enzyme dihydropteroate synthetase 
PCR -  Polymerase chain reaction 
Phe -  Phenylalanine 
PYR -  Pyrimethamine 
RBC -  Red blood cells (erythrocytes)  
RIIs -  Relative intensity indices 
RMP -  Rodent malaria parasite   
RNA -  Ribonucleic acid 
rRNA -  Ribosomal RNA  
RTQ-PCR -  Real time quantitative – PCR 
S -  Serine (Ser) 
s. c. -   Subcutaneous 
SDS -  Sodium dodecyl sulfate 
sRNA -  Small RNA 
SP -  Sulfadoxine-pyrimethamine 
T -  Tymine 
tctp -   Translationally controlled tumour protein gene 
tRNA -  Transfer RNA  
Tyr -  Tyrosine 
ubp-1 -  De-ubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase, putative, 1 
ubp-1 De-ubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase, putative, 1 gene 
V -  Valine (Val) 
WHO -  World Heath Organization 
Y -  Tyrosine (Tyr) 
6-PGD -  6-Phosphogluconate dehydrogenase 
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Resistance of Plasmodium falciparum to multiple drugs including chloroquine (CQ) and 

sulfadoxine-pyrimethamine (SP) is a major problem in malaria control. New drugs, such as 

artemisinin (ART) derivatives, particularly in combination with other drugs, are thus 

increasingly used to treat malaria. Although stable resistance to ART has yet to be reported 

from laboratory or field studies, its emergence would be disastrous because of the lack of 

alternative treatments.  

The work presented in this thesis describes the selection of parasites with stable resistance to 

ART and artesunate (ATN), and their genetic analysis. This work was carried out using the 

rodent malaria parasite Plasmodium chabaudi chabaudi (Plasmodium chabaudi). 

Two different rodent malaria parasite lines AS-15CQ and AS-30CQ were continually 

passaged in the presence of increasing concentrations of ATN or ART, respectively. After 

selection, these lines, named AS-ATN and AS-ART, showed 6-fold and 15-fold increased 

resistance to ATN and ART respectively. Resistance remained stable after cloning, 

freeze/thawing, blood passage in the absence of drug pressure and transmission through 

mosquitoes. The nucleotide sequences and the gene copy number of the possible genetic 

modulators of ART resistance mdr1, cg10, tctp and atp6; were compared between sensitive 

and resistant parasites. No mutations or changes in the gene copy number of these genes were 

found.  

Linkage Group Selection (LGS) was used to investigate the genetic basis of ART resistance. 

Genetic crosses between AS-ART or AS-ATN and the ART-sensitive clone AJ were analysed 

before and after drug treatment. Using quantitative markers, a genetic locus on chromosome 2 

was found to be under strong selection. Loci on chromosomes 1, 8 and 14 of P. chabaudi also 

appear to be under selection. On chromosome 2, two different mutations V739F and V770F in 

a de-ubiquitinating enzyme (ubp-1) were identified in AS-ATN and AS-ART respectively, 

relative to their sensitive progenitors. The implications of these results are discussed. 
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A existência de estirpes do parasita, Plasmodium falciparum resistentes a multiplos fármacos 

tais como; cloroquina (CQ) e sulfadoxina-pirimetamina (SP) é um dos problemas mais graves 

no controlo da malária.  

Novos fármacos, como a artemisinina (ART) e seus derivados, particularmente em 

combinação com outros fármacos, são cada vez mais utilizados no tratamento da malaria. 

Embora até ao momento a fármaco-resistência estável à ART quer in vitro quer in vivo não 

tenha sido registada, o seu surgimento seria desastroso devido á falta de alternativas.  

O trabalho apresentado nesta tese descreve a selecção de resistência estável a ART e ao 

artesunato (ATN). Este trabalho foi realizado usando o modelo roedor de malária Plasmodium 

chabaudi chabaudi (Plasmodium chabaudi). 

Duas linhas parasitáricas diferentes, AS-15CQ e AS-30CQ, foram feitas crescer na presença 

de concentrações crescentes de ATN e ART, e que no final apresentavam uma resistência de 6 

e 15 vezes superior ao ATN e à ART, respectivamente (estas novas linhas obtidas foram 

nomeadas AS-ATN e AS-ART).  

A resistência é estável mesmo após clonagem, congelamento/descongelamento, passagem 

sanguínea na ausência de pressão de fármaco e transmissão através do mosquito vector. 

A sequência nucleotídica e o número de cópias dos genes descritos como moduladores 

putativos de resistência à ART: mdr1, cg10, tctp e atp6; foi comparada entre parasitas 

resistentes e sensíveis. Não tendo sido encontradas alterações na sequência ou no número de 

cópias destes genes. 

Numa tentativa de identificar os genes encolvidos na resistância à ART e ao ATN a técnica de 

Linkage Group Selection (LGS) foi utilizada e dois cruzamentos genéticos entre os clones 

fármaco-resistentes; AS-ART e AS-ATN e o clone geneticamente distinto dos anteriores e 

sensível aos fármacos em estudos; AJ; foram realizados. Foram encontrados sobre selecção 

em ambos os cruzamentos genéticos quatro loci; cromossomas de P. chabaudi 1, 2, 6 e 8. 

Atendendo a que, a selecção no cromossoma 2 era mais forte, este locus foi submetido a 

análises genéticas subsequentes. Tendo sido encontradas duas mutações diferentes (V739F e 

V770F) num gene que codifica para um enzima de desubiquitinação (ubp-1). As implicações 

destes resultados serão discutidas.  



 42 



 43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I  

INTRODUCTION 



 44 



 45

1.1 Malaria: general features  

 

Malaria parasites are micro-organisms that belong to the genus Plasmodium. There are more 

than 100 species of Plasmodium, which can infect many animal species such as reptiles, birds, 

and various mammals. Only four species of Plasmodium infect humans; Plasmodium 

falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale [Reviewed by: 

Aikawa M 1971; Collins WE et al. 2005; Cowman et al. 2006; Gauthier C et al. 2005; 

Mackinnon MJ et al 2004]. 

Although the symptoms of malaria were known since ancient times, the discovery of the 

causative agent of the disease had to wait until the end of the nineteenth century. Charles 

Louis Alphonse Laveran, a French army surgeon stationed in Constantine, Algeria, was the 

first to notice parasites in the blood of a patient suffering from malaria (see Figure 1). For his 

discovery, Laveran was awarded the Nobel Prize in 1907 [Anderson WK et al. 1927; Celli A 

1933; Hoeppli R 1959, Hippocrates - English translation by W. H. S. Jones 1923; Jones WHS 

1909, Lehrer S 1979, Schmidt GD et al. 2004]. 
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Figure 1 - Illustration drawn by Laveran of various stages of malaria parasites as seen on fresh blood. Dark 

pigment granules are present in most stages. The bottom row shows an exflagellating male gametocyte. 

Source: National Center for Disease Control (CDC).with kind permission of CDC 
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1.2 Malaria today 

 

Although more than 100 years have gone by since the pioneering malariologists uncovered 

the causes of the disease, malaria is today the world’s most important parasitic infection, 

ranking among the major health and developmental challenges for the poor countries of the 

world [Sachs J et al. 2002]. Although four parasite species of the genus Plasmodium infect 

human beings nearly all malaria deaths and the larger proportion of morbidity are caused by 

Plasmodium falciparum. 

More than a third of the world’s population (about 2 billion people) live in malaria endemic 

areas and 1 billion people are estimated to carry parasites at any one time (See Figure 2). In 

Africa alone, there are an estimated 200-450 million cases of fever in children infected with 

malaria each year [Breman JG et al. 2001]. Estimates for annual malaria mortality range from 

0.5 to 3 million people [Marsh K 1998], although malaria related mortality is particularly 

difficult to measure because the symptoms of the disease are non-specific and most deaths 

occur at home. Although the use of ineffective antimalarials will inevitably result in an 

increase in mortality [Trape JF 2001], the real effects of antimalarial drug resistance on 

malaria morbidity and mortality tend to be under-estimated [White NJ 1999].  

After World War II, the widespread use of DDT coupled with the covering and draining of 

breeding grounds resulted in a substantial reduction in mosquito populations. This, together 

with effective treatment, eradicated malaria in Southern Europe, Russia and some parts of 

Asia. Substantial successes were achieved in subtropical regions but control of malaria in the 

tropics proved far more challenging. The effectiveness of the control effort was undermined 

through a combination of difficulties with access to health facilities, the lack of health 

infrastructures, and the gradual development of insecticide resistance. As a consequence, 

plans for eradication of malaria through mosquito vector control had to be abandoned in the 

late 1960s. 

Nowadays, prompt and effective drug treatment is probably the most cost-effective element of 

malaria control [Goodman CA et al. 1999]. The majority of antimalarial therapy worldwide is 

oral drugs for uncomplicated P. falciparum malaria. Oral treatment prevents progression to 

severe disease and complications, and if the drugs are efficacious and applied effectively they 

reduce overall malaria morbidity and mortality. However, most people living in endemic 

areas have little or no access to correct diagnosis and treatment. Malaria treatment is 

commonly inadequate: drugs are of poor quality, effective drugs are not available or if 

available they are not taken correctly due to incorrect prescription or poor adherence.  
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P. falciparum has become resistant to almost all drug classes except the artemisinin 

derivatives. Nowadays chloroquine-resistant P. falciparum occurs across all malaria endemic 

areas. The effectiveness of sulfadoxine-pyrimethamine has rapidly declined in all regions 

where it has been introduced due to resistance, and multidrug resistance is now established in 

Southeast Asia, South America and Africa (See Figure 3) [Collins WJ et al. 2006; Green MD 

2006; Kshirsagar NA 2006; Linares GE et al. 2007].  

Drug resistance is most likely to emerge when background immunity is weak, parasite 

numbers in an individual are high, transmission is low and drug pressure is intense or very 

intense [Hastings IM et al. 2000]. 

With an increase in insecticide and antimalarial-drug resistance, the development of a malaria 

vaccine and above all new drugs or new drug combinations, using drugs already in use, 

carries huge expectations [Chatterjee S et al. 2006; Girard MP et al. 2007; Greenwood B et al. 

2007; Matuschewski K 2006, Shanks GD 2006; Stepniewska K et al. 2006].  
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Figure 2 – World geographic distribution of malaria, data from 2003.  

Source: National Center for Disease Control (CDC) with kind permission of CDC. 

 

 

 

 

 

 

 

 

Figure 3 – Malaria transmission areas and P. falciparum drug resistance distribution data from World Heath 

Organization data from 2004.  

Source: World Heath Organization (WHO) with kind permission of WHO. 
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1.3 The parasite and its life-cycle 

 

In nature, malaria parasites spread by infecting successively two types of hosts: humans and 

female Anopheles mosquitoes.  

Malaria is transmitted among humans by female mosquitoes of the genus Anopheles. Female 

mosquitoes require blood meals in order to carry out egg production, and such blood meals 

are the link between the human and the mosquito hosts in the parasite life cycle. Of the 

approximately 430 known species of Anopheles, only 30-50 transmit malaria in nature 

(“vectors”). The successful development of the malaria parasite in the mosquito (from the 

“gametocyte” stage to the “sporozoite” stage – See Figure 4) depends on several factors. The 

most important is ambient temperature and humidity and whether the Anopheles survives long 

enough to allow the parasite to complete its cycle in the mosquito host (“sporogonic” or 

“extrinsic” cycle, duration 10 to 18 days). Malaria’s life cycle is comprised of both the sexual 

and asexual forms (See Figure 4). The sexual cycle occurs mainly in the mosquito; while the 

asexual cycle takes place in the human host after the parasites have entered the host’s blood 

stream when the mosquito bites for a blood meal. During a blood meal, a malaria infected 

female Anopheles mosquito inoculates sporozoites into the human host. Though the salivary 

glands of an infected mosquito contain thousands of sporozoites, less than 100 of these are 

transmitted in any one bite [Rosenberg R et al. 1990]. Within 30-45 minutes of the parasite’s 

sporozoites entering the bloodstream, they enter parenchymal cells of the liver; this is 

achieved by the binding of the thrombospondin domains of the circumsporozoite and 

thrombospondin-related adhesive proteins (csp and trap respectively) to the heparin sulphate 

proteoglygan on the hepatocytes [Frevert U et al. 1993]. This phase is called the pre-

erythrocytic stage lasting 5-15 days in which the parasite undergoes asexual reproduction 

(schizogony): the end products of this are the merozoites. In P. vivax and P. ovale a dormant 

stage called hypnozoites, can persist in the liver and can cause relapses by invading 

erythrocytes weeks or years later [Durante Mangoni E et al. 2003].  

Hepatocytes rupture to release merozoites that enter red blood cells. Invasion of erythrocytes 

by merozoites involve an initial low affinity interaction between proteins on the surface coat 

of the merozoite (merozoite surface protein-1 (msp-1), and apical membrane antigen-1 (ama-

1)) and the surface of the erythrocyte. Once inside the erythrocyte the merozoite initiates the 

feeding process forming the intracellular parasite, the trophozoite (erythrocytic schizogony 

stage). Mitotic divisions (asexual reproductive stage) occur in the cells giving rise to 

schizonts, which contain up to about thirty haploid merozoites. This red cell ruptures, 

releasing more mature merozoites, which invade more red blood cells, hence maintaining this 
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“asexual cycle”. Some parasites undergo gametocytogenesis within the erythrocyte, producing 

male or female micro and macrogametocytes respectively. These remain in the blood 

circulation where they are available for ingestion by a feeding mosquito. The asexual 

reproductive stage, occurring in the blood of the vertebrate host (human, primate or rodent), is 

the target of most antimalarial drugs, including artemisinin and its derivatives. Inside the 

mosquito mid-gut, female and male gametocytes undergo gametogenesis, in which the female 

macrogametocyte escapes from the erythrocyte membrane and the male microgametocyte 

undergoes the process of exflagellation which produces 8 motile microgametes. The micro 

and macro-gametes fuse to form a zygote that in turn becomes an ookinete, (the only diploid 

stage of the parasite). The ookinete crosses the gut wall and encysts on the outer wall of the 

gut beneath the basal lamella forming an oocyst or sporocyst. Division and multiplication of 

the sporocyst takes place to produce many haploid sporozoites. When the sporocyst bursts the 

sporozoites are released and then migrate to the salivary gland, waiting to re-infect again once 

the mosquito takes another blood-meal [Barnwell JW et al. 1998; Beier JC et al. 1998; Sinden 

RE 1997].  

See Figure 4 for details on the parasite life cycle.  
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Figure 4 - Life cycle of malaria parasite.  

Most of the biological work presented here occurs in the erythrocytic cycle of the parasite (presented in the 

Figure as B). The drug resistance selection process occurs on this part of the parasite life cycle.  

Briefly: the malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female 

Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cellsand mature 

into schizonts , which rupture and release merozoites. After this initial replication in the liver (exo-

erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic 

schizogony ). Merozoites infect red blood cells. The ring stage trophozoites mature into schizonts, which 

rupture releasing merozoites. Some parasites differentiate into sexual erythrocytic stages (gametocytes). 

Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male 

(microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood 

meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle. While in the 

mosquito's stomach, the microgametes penetrate the macrogametes generating zygotes. The zygotes in turn 

become motile and elongated (ookinetes) which invade the midgut wall of the mosquito where they develop 

into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito's 

salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle.  

Source: National Centre for Disease Control (CDC) with kind permission of CDC.  
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1.4 The genetics of malaria parasites 

 

Malaria parasites, as all members of the phylum Apicomplexa, are haploid for almost their 

entire life cycle (exo-erythrocytic and erythrocytic blood stages, sporogony and 

microgametogenesis), and in the haploid phase of the parasite life cycle they multiply by 

mitosis.  

The only phase of the parasite life cycle where the parasite genome is diploid is the zygote 

stage (ookinetes), prior to the meiotic division that results in the production of sporozoites.  

Malaria parasites have three individual genomes; an extra-chromosomal mitochondrial 

genome, a 35kb circular genome and a large nuclear genome. 

The mitochondrial genome, also known as the 6kb element contains genes encoding two 

truncated ribosomal sRNA and three proteins components involved in the electron transport 

system; cytochrome c oxidase subunits I and II and cytochrome b [Funes S et al 2004]. The 

inheritance of the 6 kb element appears to follow the same pattern as other mitochondrial 

genomes in eukaryotes meaning it is inherited from the female parent only [Creasey AM et al. 

1993]. 

The 35kb circular genome associated with the apicoplast encodes 30 proteins, mainly rRNA, 

tRNA, which are primarily involved in gene expression [Funes S et al. 2004, Gardner MJ et 

al. 2002]. The exact role of the apicoplast remains unclear, but it is known to be involved in 

the anabolic synthesis of fatty acids, isoprenoids and haem [Gardner MJ et al. 2002].  

The haploid nuclear genome of P. falciparum is where most parasite genes reside. It consists 

of 14 chromosomes and encodes approximately 5,300 genes with a total genome size of 22.8 

Mb. The parasite chromosomes have a central domain that contain conserved coding regions 

and chromosome ends that consist of telomeric repeat sequences and subtelomeric repeat 

regions, containing polymorphic gene families (for example pfemp1, stevors and rifins) 

[Lanzer M  et al. 1994].  

The P. falciparum nuclear genome is very (A+T)-rich, with an overall (A+T) content of 81%, 

rising to 90% in intronic and intergenic regions [Gardner MJ et al. 2002]. There is 

considerable chromosomal size polymorphism between strains of parasites [Corcoran LM et 

al. 1986], which could be due to unequal crossing-over of homologous chromosomes during 

meiosis, or non-meiotic chromosome breaking and healing events [Babiker HA et al. 1994, 

Gardner MJ et al. 2002, Hernandez-Rivas R et al. 1996, Scherf A et al. 1992].  

Various genetic polymorphisms can be observed when comparing different strains even 

within the same Plasmodium species. This diversity observed to the genotype level has its 

origin on either spontaneous genetic mutation, occurring at any stage of the parasite 
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development and also through genetic recombination occurring in the mosquito vector stage. 

Genetic recombination which the parasites undergo in the mosquito midgut can then result in 

independent assortment of genes on different chromosomes (See Figure 5) [Walliker D et al. 

1998].  

When a mosquito feeds on an infected host containing two genetically distinct parasites, 

gametocytes from the two parasites are taken up, and may fertilise, recombining into 

heterozygous zygotes, by meiosis, producing four genetically distinct haploid daughter cells, 

which are called the recombinant progeny (See Figure 5). In the case where there are equal 

numbers of male and female gametes present from each parental strain in the mosquito, then 

selfing will occur 50% of the time, resulting in 25% of the zygotes being genetically identical 

to one parental strain, and 25% identical to the other. The remaining 50% will be hybrid 

between the two parentals.What is meant is that if the recombinant progeny was undergoing a 

normal Mendelian segregation pattern meaning without any kind of selfing/crossing bias, thus 

in the presence of a random segregation and if there are equal numbers of male and female 

gametes present from each parental strain in the mosquito, then selfing (recombination within 

the same strain) will occur 50% of the time, resulting in 25% of the zygotes being genetically 

identical to one parental strain, and 25% identical to the other. The remaining 50% will be 

hybrid between the two parentals.  
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                           A                            B                                C                          D 

 

Figure 5 – Crossing and chromosomal events in Plasmodium. 

Clone 1 and clone 2 are gametes (haploid stage) from two genetically distinct parasites, after the blood meal 

zygotes are formed. The formation of these zygotes can result from selfing (equal to the progenitor gametes) or 

from crossing (cross between different clones and are therefore heterozygous). Through meiosis four genetically 

distinct haploid daughter cells are produced, which are called the recombinant progeny. A and D are the result of 

selfing on the other hand B and C are the product of recombination.  

From: Walliker D 2000, with kind permission of Professor David Walliker. 

 

Recombination between malaria parasites was first proven with genetic crossing experiments 

done with the rodent parasites Plasmodium yoelii [Walliker D et al. 1971], and Plasmodium 

chabaudi [Walliker D et al. 1975]. In the P. chabaudi experiments, two cloned parasites 
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which differed in their response to the anti-malarial drug pyrimethamine and in the 

electrophoretic patterns of two enzymes (6-phosphogluconate dehydrogenase (6-PGD) and 

lactate dehydrogenase (LDH)) were mixed in mosquitoes and the resulting progeny were 

cloned and characterized for their enzyme type and their phenotypic response to 

pyrimethamine. It was found that not only had the two enzyme isoforms recombined, but that 

pyrimethamine susceptibility segregated independently [Walliker D et al. 1975], which 

showed that recombination between the parental characters had occurred. 

In P. falciparum the production of heterozygotes (in the oocyst) between two heterologous 

malaria parasites has also been demonstrated experimentally, by dissecting individual oocysts 

from mosquitoes that had fed on a mixed P. falciparum blood infection of clones 3D7 and 

HB3. After performing genetic typing of alleles of msp-1 and msp-2 genes, it was found that 

some oocysts contained alleles exclusively from HB3, some contained alleles only from 3D7, 

and the remainder of the oocysts contained alleles from both parents, and were therefore 

hybrids, meaning, the products of fertilization between the two different parental strains. The 

proportion of the homozygous and heterozygous forms was consistent with random 

fertilization between parents [Ranford-Cartwright L et al. 1993].  

With the objective of sequencing the genome of the human malaria parasite Plasmodium 

falciparum (clone 3D7), an International Malaria Genome Sequencing Consortium was 

formed in 1996. The genome was sequenced by three groups: The Institute for Genomic 

Research and the Malaria Program of the Naval Medical Research Center (chromosomes 2, 

10, 11 and 14), The Wellcome Trust Sanger Institute (chromosomes 1, 3-9, 13) and Stanford 

University (chromosome 12).  

In 2002, the complete genome of Plasmodium falciparum was published, triggering the “post-

genomic” age of malariology [Gardner MJ et al. 2002].  
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1.5 Antimalarial drugs and targets 

 

Antimalarial drugs are one of the most important measures to control the disease. The drug of 

choice depends on the parasite species and local conditions, drug resistance prevalence and 

specificity. Traditionally, antimalarial agents are classified as blood schizontocides, tissue 

schizonticides, gametocides and sporontocides, depending on the stages of the malaria life 

cycle which are targeted by the drug [Tracey J et al. 1996]. For details see Table 1. 

Blood schizontocides are drugs acting on asexual intraerythrocytic stages of malarial 

parasites. They suppress the proliferation of plasmodia in the erythrocytes. 

Tissue schizontocides prevent the development of hepatic schizonts. They are causally 

prophylactic because they affect the early developmental stages of the protozoa and prevent 

the invasion of the erythrocytes.  

A hypnozoiticide acts on persistent intrahepatic stages of P. vivax and P. ovale in the liver. 

Gametocides destroy the intraerythrocytic sexual forms (gametes) of the protozoa and the 

prevent transmission from human to another mosquito. Antimalarials are rarely used clinically 

just for their gametocidal action 

 

Table 1 – Classification of antimalarial agents according to their stage of action. 

 

Stage of Action Antimalarial 
Tissue 
schizontocides 

Primaquine, pyrimethamine, sulfonamides (and other 8-
aminoquinolines and other folate inhibitors) 

Hypnozoiticides Primaquine, tafenoquine 
Blood schizontocides Type 1, quick onset: Chloroquine, mefloquine, quinine, 

halofantrine, artemisinin 
Type 2, slow onset: Pyrimethamine, sulfonamides, sulfones, other 
antibiotics, atovaquone 

Gametocides Primaquine for P. falciparum 
Quinine for P. vivax, P. malariae and P. ovale 

Sporontocides Primaquine, chloroquine 
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1.6 Artemisinin and its derivatives  

 

Artemisinin, known in Chinese as Quinghaosu, is the active principle extract of the medicinal 

herb, know in Chinese as Qinghao (Artemisia annua L. also know as Sweet Wormwood, 

Annual Wormwood, Sweet Annie or Chinese Wormwood), and has been used in traditional 

medicine in China for about 2000 years [Antimalaria studies on Qinghaosu 1979; Klayman 

DL 1985].  

 

 

 

Figure 6- Schematic representation of Artemisia annua L. 

Source: www.hort.purdue.edu/hort/  

 

The effective antimalarial crystal was isolated in 1979. Qinghaosu high resolution mass 

spectrum and elemental analysis have led to the molecular formula of C15H22O5 .Its structure 

is shown in Table 2 based on the data of spectral analysis chemical reactions and X-ray 

diffraction [Antimalaria studies on Qinghaosu 1979].  
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Table 2 – Qinghaosu chemical information.  

 

 

Chemical name 
(3R,5aS,6R,8aS,9R,12S,12aR)-octahydro-3,6,9-trimethyl-3,12-

epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10(3H)-one 

Chemical formula C15H22O5 

Molecular mass 282.332 g/mol 

 

Chemically, artemisinin is a sesquiterpene trioxane lactone containing a peroxide bridge (C-

O-O-C), unique among antimalarial drugs, which is essential for its activity [Antimalaria 

studies on Qinghaosu 1979]. This peroxide bridge corresponds to a very unusual chemical 

property that may contribute to the molecule’s unique bioactivities, and it is more stable in 

general than other peroxides, for example it is poorly soluble in water and in oil and it shows 

remarkable thermal stability [Balint GA 2001, Klayman DL 1985]. The lactone that 

constitutes artemisinin can easily be reduced (with sodium borohydride), resulting in the 

formation of dihydroartemisinin (reduced lactol derivative of artemisinin), which has even 

more antimalarial activity in vitro than artemisinin itself [van Agtmael MA et al. 1999]. See 

Figure 7 for details in the molecule structure. 

Since artemisinin is poorly soluble in water or oil, water-soluble derivatives (artesunate and 

artelinate) and oil-soluble derivatives (artemether and arteether) have been synthesized and 

newer semi synthetic and synthetic derivatives are also being developed. 

Artesunate, the most widely used of the derivatives, is available in oral, parenteral and 

suppository formulations. Artemether, a methyl ether derivative of artemisinin, is available in 

ampoules for intramuscular injection or as capsules for oral administration. Arteether, another 

lipophilic ester is available for intramuscular injection. As artemisinin itself, both the 

lipophilic and hydrophilic derivatives are converted to dihydroartemisinin, the active 

metabolite. Dihydroartemisinin itself is available in an oral preparation [Lee IS et al. 1990; Li 
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WH et al. 1982; Meshnick SR et al. 1996; Woodrow CJ et al. 2005]. See Table 3 for details in 

the pharmacokinetic of artemisinin and some of its derivatives. 

 

 

 

Figure 7 – A - Chemical structure of (1) Qinghaosu or artemisinin and some of its derivatives (2) 

dihydroartemisinin, (3) artemether; (4) arteether and (5) artesunic acid or artesunate. The Chemical Abstracts 

numbering system is used. The active pharmacophore is the peroxide bridge, coloured red. The third non-

peroxidic oxygen atom, coloured magenta, appears to be important in conferring optimal antimalarial activity. 

The ensemble of peroxide and non-peroxidic oxygen atoms are incorporated into six-membered ring called a 1, 

2, 4-trioxane. 

B – Three-dimensional tube, and ball and stick representations of artemisinin. Atoms are colour coded as O red, 

C tan. H atoms are omitted for clarity.  

From: Haynes RK et al. 2004, with kind permission. 

 

The artemisinin compounds have antimicrobial activity against several parasites including 

Plasmodium spp., Schistosoma spp., Pneumocystis carinii and Toxoplasma gondii.  

In vitro pharmacodynamic experiments in P. falciparum show that these compounds are 

active against a broad spectrum of the life cycle of the parasite but are stage specific; late-

stage ring parasites and trophozoites are more susceptible to these drugs than schizonts or 

small rings [Alin MH et al. 1994; Caillard V et al. 1992; Geary TG et al. 1989; ter Kuile F et 

al. 1993]. They are also gametocytocial [Dutta GP et al. 1990; Kumar N et al. 1990, Maeno Y 

et al. 1993; Peters W et al. 1993; Posner GH et al. 1995], due to their activity against both the 

precursors of the sexual stages and early gametocytes. Liver stages of P. vivax and P. 

falciparum are not affected [Antimalaria studies on Qinghaosu 1979]. Artemisinin also 
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decreased the infectivity of the surviving gametocytes [Chen PQ et al. 1994; Targett G et al. 

2001]. This effect may help diminish transmission rates in areas of low transmission [Price 

RN et al. 1996]. In high transmission areas, however, this effect may not be evident, since 

rapidly re-infected individuals will continue to maintain a pool of transmissible parasites. 

This wide stage specificity of killing gives these drugs a major advantage over the 

conventional antimalarials. The activity against the later stages of parasite development 

prevents the releasing of merozoites; this removes or at least attenuates the occasional sharp 

rise in parasitaemia that normally occurs immediately after treatment. 

Artemisinin has been shown to prevent cytoadherence in vitro, probably by preventing 

development to the mature trophozoite stage [Udomsangpetch R et al. 1996].  

 

Table 3 – Some pharmacokinetic data of artemisinin and some of its derivatives. 

Adapted from Balint GA 2001, with kind permission. 

 

Drug Absorption Elimination 

half-life 

(hour) 

Peak plasma 

concentration 

(hour) 

Usual oral dose 

in adults 

(dose/Kg body 

weight) 

Artemisinin (1) Rapid and 

incomplete 

2-5 <2 20 mg 

Arthemether (2) Rapid and 

incomplete 

3-11 3 4 mg 

Arteether Rapid and 

incomplete 

>20 <2 3 mg 

Artesunate(3) Rapid and 

incomplete 

<1 <2 4 mg 

Dihydroartemisinin Rapid and 

incomplete 

3,1 0,65 4 mg 

Note:  (1) Artemisinin is the active parent compound of the plant. Its half-life is intermediate. It is also very 

safe, and can cross the blood-brain and blood-placenta barriers [de Vries PJ et al.1996].  

(2) Artemether has the longest life but, at the doses required for treatment, it is the most toxic. 

(3)Artesunate is the most active and the least toxic of this group of drugs. It also has the shortest life 

within the body  

 

The apparent primary disadvantage of artemisinin drugs is that they are characterized by a 

short half life [Krishna S et al. 2004]. Artemisinin drugs are very efficient and fast acting thus 
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treatment with artemisinin drugs causes reduction of parasite burden below detectable levels 

without eliminating all parasites and these results in a higher risk of recrudescence [Bjorkman 

A et al. 2005; Krishna S et al. 2004]. In addition, a fraction of the parasites exposed to the 

drug are thought to become dormant and unsusceptible to further dosing until reactivation 

[Hoshen MB et al. 2000]. In order to completely eliminate the parasites avoiding parasite 

recrudescence and preventing the emergence of resistant P. falciparum, combination with 

other longer-acting drugs is necessary [Olliaro PL et al. 2004; Menard D et al. 2005]. The 

combination of artemisinin or one of its derivatives with another drug is named artemisinin 

combination therapy (ACT).  

Artemisinin combination therapies (ACTs) are currently recommended by the World Health 

Organization (WHO) as the first line antimalarial treatment for P. falciparum malaria 

[Bulletin of the World Health Organization 2005; World Health Organisation. Chemotherapy 

of malaria and resistance to antimalarials: report of a WHO Scientific Group]. ACTs combine 

drugs with different modes of action which reduces recrudescences and also reduces 

considerably the risk of selecting resistant mutants in the parasite population (just the same 

rationale for combining drugs in the treatment of tuberculosis and HIV-AIDS). Several ACTs 

have been developed. These include Coartem ®, the combination of artemether with 

lumefantrine, and the combination of artesunate with amodiaquine, mefloquine or 

sulfadoxine-pyrimethamine [Balint GA 2001, Bulletin of the World Health Organization 

2005; Bunnag D et al. 1995, Burk O et al 2005, Campbell P et al. 2006, Hien TT et al. 1993; 

Olliaro PL et al. 2004, Svenson US et al. 1998, Svensson US et al. 1999].  
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 1.6.1 Artemisinin mode of action 

 

The mode of action of artemisinin-based compounds, in spite of intense scientific activity, is 

not yet completely understood. Artemisinin and its derivatives are toxic to malaria parasites at 

nanomolar concentrations, whereas micromolar concentrations are required for toxicity to 

mammalian cells [Lai H et al. 1995, Woerdenbag HJ et al. 1993]. One reason for this 

selectivity is the enhanced uptake of the drug by P. falciparum infected erythrocytes to more 

than 100 fold higher concentrations than do uninfected erythrocytes [Gu HM et al. 1984, 

Kamchonwongpaisan S et al. 1994]. This drug uptake is very rapid, reversible, saturable and 

appears to be partially dependent on metabolic energy [Gu HM et al. 1984, 

Kamchonwongpaisan S et al. 1994]. 

Artemisinin and its derivatives being highly hydrophobic localize in specific parasite 

membranes artemisinins are present in the parasite limiting membranes [Ellis DS et al. 1985], 

digestive vacuole membranes [Ellis DS et al. 1985, Maeno Y et al. 1993] and mitochondria 

[Maeno Y et al. 1993]. So the question is once inside the parasite how do artemisinin 

derivatives really act, and a lot of considerable evidences have been indicating that 

artemisinins mode of action is mediated by free radicals.  

The first clue to its mechanism came from synthetic chemists who demonstrated that the 

endoperoxide bridge that is part of the molecular structure was fundamental for its 

antimalarial activity [Brossi A et al. 1988] and since peroxides are a known source of reactive 

oxygen species like hydroxyl radicals and superoxide free radical mode of action was the 

obvious suggestion and further evidences came from the fact that free radical scavengers 

antagonised (like alfa-tocopherol, catalase, ascorbate, etc) the in vitro antimalarial activity of 

these drugs and that other free radical generators (like doxorubicin, micanazole, castecin and 

artemitin) promoted them [Krungkrai SR et al 1987] and also that artemisinin treatment of 

membranes, especially in the presence of heme can cause lipid peroxidation, hemolysis and 

lysis of infected erythrocytes [revised by Meshnick SR 2002]. 

Meshnick and collaborators [Meshnick SR et al. 1991] on an attempt to clarify artemisinins 

mode of action showed that artemisinin interacted with intraparasitic heme, and suggested that 

intraparasitic heme or iron might function to activate artemisinin inside the parasite into toxic 

free radicals [Meshnick SR et al 1991]. One reason that could explain the selective toxicity of 

artemisinin to the parasites is that the Plasmodium parasite is very high rich in heme-iron, 

derived from the proteolysis of host cell hemoglobin [Meshnick SR et al. 1996]. When 

artemisinins are incubated with heme or iron, they decompose in a fashion that suggests the 

generation of free radical intermediates also studies using electron paramagnetic resonance 
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have also shown that the breakdown of artemisinin results in free radicals [Meshnick SR et al 

1996] during this artemisinin breakdown process ferryl ions (Fe[IV]=O) appear to be formed 

[Kapetanaki S et al 2000]. There are other electrochemical studies that have shown that 

heme/iron can catalyse the irreversible breakdown of artemisinin derivatives [Zhang F et 

al.1992] and also structure–activity relationship studies have shown a high correlation 

between antimalarial activities and heme-binding [Meshnick SR et al 1996] and between 

antimalarial activity and protein alkylation [Meshnick SR et al 1996]. Also, the predicted 

pharmacophore or drug receptor from several structure–activity relationship studies seems to 

resemble heme [Meshnick SR et al 1996] and also there are a lot of other theoretical studies 

that have shown that artemisinin could bind to and react with heme itself [Gu HM et al. 1984] 

furthermore, the presence of the heme polymer, hemozoin, is associated with sensitivity to 

artemisinins for example artemisinins are inactive against the RC strain of Plasmodium 

berghei [Peters W et al. 1986], and the related intraerthrocytic apicomplexan parasite, 

Babesia microti [Wittner M et al. 1996],.which both lack hemozoin, yet are most active 

against schistosomes which also produce hemozoin [Utzinger J et al.2001]. 

Though all these evidences one could not say that artemisinins act like the typical oxidating 

drugs which cause promiscuous damage to protein, nucleic acids and lipid firstly because, 

unlike most other oxidant drugs (and oxidizing agents per si), artemisinin cannot be cyclically 

oxidised and reduced causing the cascade effect typical from free radical reactions [Zhang F 

et al.1992] in a way that only one free radical can result from one drug molecule, secondly, all 

of the oxidant end products observed experimentally were only observed at very high drug 

concentrations [Berman PA et al. 1997], but the drug is effective at much lower 

concentrations. This is a very strong indication that, artemisinin derivatives must have a more 

selective toxic effect. One suggestion to the selective toxicity of artemisinins may be the 

formation of covalent adducts with parasite components, which will then serve as mediators 

for free radical intermediates. One important alkylation target is heme itself. Artemisinin–

heme adducts have been demonstrated in parasite cultures treated with therapeutic 

concentrations of artemisinin derivatives [Hong YL et al. 1994] this means that heme is both 

an activator and target of the artemisinin derivatives. 

The modification that occurs in heme via its ligation to artemisinin could kill the parasite in 

several ways, firstly, artemisinin or its heme adduct might be able to inhibit hemozoin 

biosynthesis or cause hemozoin degradation, for example Pandev and co-workers proved that 

at micromolar concentrations, artemisinin inhibits hemoglobin digestion by malaria parasites 

and inhibits hemozoin formation [Pandey AV et al. 1999] though this observation has only 

been demonstrated in cell-free conditions, artemisinin treatment of living intraerythocytic P. 
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falciparum in culture caused no change in hemozoin content [Asawamahasakda W et al. 

1994], suggesting that heme metabolism might not be the major intracellular target. But heme 

is not the only protein that artemisinin forms adducts with, artemisinins also form covalent 

adducts with other protein, but not with DNA [Yang YZ et al 1993, Yang YZ et al. 1994].  

The alkylation of specific malaria proteins by artemisinins has been demonstrated 

[Asawamahasakda W et al. 1994] and this could mediate the killing action of artemisinin 

derivatives since it occurred at therapeutic concentrations of drug. One of the major alkylation 

targets described in the literature is the malarial translationally controlled tumour protein (tctp 

protein), a protein that binds heme [Bhisutthibhan J et al. 1998], also previous microscopic 

studies had proven that some of the malarial tctp protein is present in the food vacuole 

membranes, where it is in proximity to the heme-rich food vacuole [Bhisutthibhan J et al. 

1998]. Thus, it is likely that the reaction between artemisinin and tctp protein occurs because 

of an association between tctp protein and heme, however, there is a lack of evidences of tctp 

or any other malarial protein in association with artemisinin is directly causing the parasite 

elimination though a variety of ultrastructural studies have been carried out on infected red 

cells treated with artemisinin derivatives and from those studies it was described that 

membrane-containing structures, such as the plasma membrane, endoplasmic reticulum, 

nuclear envelope, food vacuolar membrane and mitochondria appear to be most sensitive to 

the action of artemisinins [Maeno Y et al.1993] thought from these observations a variety of 

mechanisms of action might be suggested. Another very interesting observation is that when 

radiolabelled artemisinin derivatives are fed to malaria infected cells, the drug has been found 

to accumulate in hemozoin and in the membranes of the food vacuole and mitochondria 

[Maeno Y et al.1993]. These observations are consistent with the role of heme in the 

mechanism of action. 

Thought there are as described before many theories to explain artemisinin mode of action 

one cannot even say what is the cellular target for artemisinin. Tctp protein for the reasons 

stated before was one of the suggested targets and more recently Krishna and co-workers have 

indicated that artemisinins might inhibit the sarco–endoplasmic reticulum Ca2+-ATPase 

(SERCA) of P. falciparum (Pfatp6) and, therefore, also SERCAs of other Plasmodium 

species because thapsigargin a chemical component that is a potent and selective inhibitor of 

SERCAs and share some chemical similarities with artemisinins [Eckstein-Ludwig U et al. 

2003]. Artemisinins, but not other antimalarial drugs, inhibited Pfatp6 protein activity when 

Pfatp6 was expressed and assayed in Xenopus oocytes [Eckstein-Ludwig U et al. 2003]. 

Others have carried out docking simulation studies of artemisinin derivatives to models of the 

thapsigargin binding site in Pfatp6 protein [Uhlemann AC et al. 2005]. Several potential 
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hydrophobic interactions between side chains of artemisinin derivatives and amino acids of 

Pfatp6 protein have been identified including Leu263 that seems to modulate artemisinin 

susceptibility when examined using mutagenesis experiments of malarial SERCAs [Jung M et 

al. 2005, Uhlemann AC et al. 2005]. Taken together, there are independent lines of evidence 

that have been obtained from a range of experimental techniques to suggest that Pfatp6 

protein might be the primary target of artemisinins. However, it is suggested that genetic 

studies are required to support this hypothesis. 

More recently, Li and co-workers have suggested that the electron transport chain of P. 

falciparum might be a target for artemisinins [Li W et al. 2005]. In support of this idea, when 

yeast was grown in non-fermentable media (making it dependent on mitochondrial 

respiration), sensitivity to artemisinin increases, because over expression of some 

mitochondrial-transport proteins seems to increase sensitivity to artemisinins, it has been 

suggested that the electron transport chain stimulates the activity of artemisinins, and that 

these activated artemisinins impede mitochondrial function by depolarizing mitochondrial 

membrane potential [Li W et al. 2005]. The mechanism of this inhibition is unclear but it 

might be related to the presence of an iron group in the cytochrome center that induces the 

formation of radicals [Haynes RK et al. 2006].  
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1.7 Drug Resistance 

 

The emergence and spread of parasite resistance to anti-malarial drugs has presented one of 

the largest obstacles hindering the effective treatment and control of malaria. 

The WHO’s official definition of malaria parasite resistance dates from 1973; “the ability of a 

parasite strain to survive and/or multiply despite the administration and absorption of a drug 

in doses equal to or higher than those usually recommended but within the limits of tolerance 

of the subject” [World Health Organisation. Chemotherapy of Malaria and Resistance to 

Antimalarials: Report of a WHO Scientific Group].  

The WHO 1973 definition of the level of parasite drug resistance remains in use;  

A - Sensitive (S): The asexual parasite count reduces to <25% of the pre-treatment 

level in 48 hours after starting the treatment, and complete clearance after 7 days, without 

subsequent recrudescence - Complete Recovery. 

 B - RI Delayed Recrudescence: The asexual parasitaemia reduces to < 25% of pre-

treatment level in 48 hours, but reappears between 2-4 weeks. 

 C - RI Early Recrudescence: The asexual parasitaemia reduces to < 25% of pre-

treatment level in 48 hours, but reappears within 2 weeks. 

 D - RII Resistance: Marked reduction in asexual parasitaemia (decrease >25% but 

<75%) in 48 hours, without complete clearance in 7 days. 

 E - RIII Resistance: Minimal reduction in asexual parasitaemia, (decrease <25%) or 

an increase in parasitaemia after 48 hours. 

 

Though it is important to clarify that clinical treatment failure or increased in vitro IC50 values 

alone are not sufficient to prove drug resistance. A parasite isolate should be classified as 

resistant only after analysis of treatment response parameters (parasite and fever clearance) 

and treatment success (determination of possible re-infection, in the case of apparent 

recrudescence) in correlation with the in vitro drug sensitivity. Increased IC50 values 

combined with prolonged parasite clearance and treatment failure define a case of confirmed 

drug resistance [Noedl H 2005]. One might suggest that the first step in the development of 

clinical resistance may be a decrease in parasite in vitro susceptibility, associated with a key 

mutation in a target enzyme which ultimately results in clinical failure. Thought it is also very 

important to notice that the parasite response and resistance is not only dependent on the 

parasite genotype but also involves the general health state and immune status of the patient.  

A number of factors influence the likelihood of resistance occurring and the speed with which 

it spreads. For instance, the mechanism by which the drug works against the parasite is 
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important; simple modes of action such as simple enzyme inhibition are likely to lead to rapid 

evolution of resistance, as the number of genetic mutations required to alter enzyme structure 

is low. This is the case with pyrimethamine resistance, which evolved very quickly after the 

introduction of the drug, in contrast to the pattern seen with the emergence of chloroquine 

resistance, which took much longer to evolve, as most studies described chloroquine mode of 

action has being much more complex than pyrimethamine. 

The pharmacokinetic dynamics of drugs are also important in determining the selection 

pressure for drug resistance. Watkins and Mosobo [Watkins WM et al. 1993], for example, 

showed that the long half-life of sulfadoxine-pyrimethamine was a considerable factor in the 

selection pressure for resistant mutants, as the drug was present in patients at sub-therapeutic 

levels for long periods of time. Drugs with high efficiencies of parasite killing, rapid 

achievement of levels above the minimal inhibitory concentrations and short half-lives, will 

be the most effective at minimizing the selection pressure for resistant mutants [Winstanley 

PA et al. 2002]. 

Resistance has been recorded to every anti-malarial currently in use, with the exception of 

artemisinin and its derivatives. Quinine, the first drug used specifically to treat malaria was 

used extensively. The first reports of resistance to the drug occurred at the beginning of the 

20th century, when Couto (1908) and later Nocht and Werner (1910) reported the treatment of 

patients who did not respond to quinine treatment [Peters W 1987]. Despite the appearance of 

quinine resistance, the drug remains remarkably useful today, especially as a first line drug for 

treating complicated cerebral malaria. In fact, quinine resistance is surprisingly uncommon, 

and in the few instances it has emerged, it is often associated with parasites that are already 

resistant to other drugs such as chloroquine and mefloquine [Looareesuwan S et al.1990; 

Meshnick SR 1997; Peters W 1987; Pukrittayakamee S et al. 1994]. Chloroquine, itself based 

on the structure of quinine, was developed in Germany in the early 1940s, resistance to 

chloroquine was far more forthcoming than with quinine, and the first reports of parasites 

failing to respond to the drug emerged independently from South America and South East 

Asia in the late 1950s [Moore DV et al. 1961; Young MD et al. 1961]. The spread of 

resistance from these pioneer areas was relatively rapid, and chloroquine resistance is now a 

major problem throughout the malaria affected areas of the world.  

One of the proposed mechanisms for the emergence of drug resistance is through the presence 

of a drug at sub-therapeutic levels within a population. There can be no doubt that the 

emergence of chloroquine resistance in South America was facilitated by the policy of 

distributing chloroquinated salt to the area as part of a well-intentioned control problem. This 

resulted in a large proportion of the population being exposed to the drug at sub-curative 
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doses, thus considerably enhancing the chances of selection of chloroquine resistant parasites 

[Payne D 1988]. The proliferation of chloroquine resistance resulted in the development of 

mefloquine, a drug that was effective against chloroquine resistant parasites. Initial 

indications that mefloquine resistance was likely to emerge came, however, in 1977, when 

resistance was experimentally induced in a rodent malaria parasite [Peters W et al. 1977]. 

Efforts to reduce the possibility of the emergence of resistant parasites in the field by using 

mefloquine in combination with other drugs (especially pyrimethamine) met with failure, 

however, and reports of mefloquine resistant parasites emerged throughout the 1980s [Peters 

W 1998]. Introduced as a first line treatment to Thailand in 1984, substantial resistance had 

developed within 6 years [Price RN et al. 2004].  

 

Concerning the genetic of drug resistance, two main genes have been implicated in 

chloroquine resistance; the pfmdr1 (P. falciparum multi drug resistance 1 gene) and the pfcrt 

(P. falciparum chloroquine resistance transporter gene).  

Pfmdr1 protein is a membrane protein, belonging to the sub group of ABC-type multidrug 

transport system. P. falciparum gene mdr1 is localized on chromosome 5 and according to the 

P. chabaudi synteny map the pcmdr1 (gene homologous on P. chabaudi of the pfmdr1) gene 

is localized on chromosome 12. 

Pfcrt protein is a digestive vacuole transmembrane protein, associated to chloroquine 

resistance. P. falciparum gene crt is localized on chromosome 7 and according to the P. 

chabaudi synteny map the pfcrt gene referred to as cg10 gene is localized on chromosome 6.  

It has been shown that some point polymorphisms in the pfmdr1 gene can be correlated with 

chloroquine resistance in some field isolates [Basco LK et al. 1995, Cox-Singh J et al. 1995, 

Duraisingh MT et al. 1997, Duraisingh MT et al. 2000]. Similarly, transfection work has 

suggested that the gene pfmdr1 can modulate the sensitivity to chloroquine [Reed MB et al. 

2000]. However there are other studies found in the literature with parasites collected from the 

field where no association between point polymorphisms in the gene pfmdr1 and chloroquine 

resistance was found [Chaiyaroj SC et al. 1999, Cremer G et al. 1995, Povoa MM et al. 

1998]. In addition, the analysis of a genetic cross between a P. falciparum chloroquine-

resistant clone; Dd2 and a chloroquine sensitive one, HB3, showed that mutations in the gene 

pfmdr1 did not genetically segregate with chloroquine resistance [Wellems TE et al. 1990]. 

Later detailed linkage analysis and fine chromosome mapping of the progeny clones of the P. 

falciparum Dd2 x HB3 genetic cross allowed the identification of another gene, the pfcrt 

gene, in which a particular mutation at the amino acid position 76 (K76T) a lysine to a 

threonine change, that appears to correlate completely with chloroquine resistance among 
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field isolates of P. falciparum [Fidock DA et al. 2000]. Babiker HA and colleagues described 

that the combination of mutation in both pfmdr1 and pfcrt gene loci confer higher chloroquine 

resistance phenotypes in field populations of P. falciparum [Babiker HA et al. 2001]. 

In relation to the genetic of mefloquine resistance, in vitro studies on P. falciparum have 

shown that genetic amplification of the pfmdr1 gene may correlate with both mefloquine and 

quinine resistance [Cowman AF et al. 1994, Peel SA et al. 1994]. However, field studies on 

the association between the pfmdr1 gene and the parasite response to mefloquine have not 

provided unanimous results, while some appear to have shown an association between the 

amplification of the pfmdr1 gene and mefloquine resistance [Price RN et al. 1997, Price RN et 

al. 1999, Wilson CM et al. 1993] others as Chaiyaroj SC and co-workers have not found any 

correlation between the two events [Chaiyaroj SC et al. 1999], one possible explanation 

comes from the fact that the genotype-phenotype associations depends from the parasite 

geographical origin. In addition and as with chloroquine it has also been demonstrated 

through genetic crossing and transfection experiments that point mutations in the pfmdr1 gene 

may modulate the sensitivity to both mefloquine and quinine in P. falciparum [Duraisingh 

MT et al. 2000, Reed MB et al. 2000]. In P. chabaudi Cravo PV and colleagues [Cravo PV et 

al. 2003] shown that amplification of the pcmdr1 gene (gene homologous of the P. falciparum 

mdr1 gene) is an important event in the generation of mefloquine resistance, paralleling the 

situation observed by Cowman AF and co-workers and Peel SA and colleagues [Cowman AF 

et al. 1994, Peel SA et al. 1994] though other genes are suggested to be also involved.  
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 1.7.1 Resistance to artemisinin 

 

Clinical parasite resistance to artemisinin drugs has not yet been observed, although variations 

in sensitivity have been described [van Agtmael MA et al. 1999] for example various isolates 

of P. falciparum from Vietnam and Thailand have been found to vary in their sensitivity to 

artemisinins in vitro [Brockman A et al. 2000; Woitsch B et al. 2004; Wongsrichanalai C et 

al. 1997; Wongsrichanalai C. et al. 1999]. Differences in the sensitivity level of P. falciparum 

isolates to artemisinins can be due to genetic alterations of the parasite that confer differential 

sensitivity to these drugs or simply can be due to the natural genetic variation of the parasite 

in that particular part of the world.  

To this stage, several proteins, including a Ca2+-depending SERCA type ATPase protein that 

in P. falciparum is codified by the pfatp6 gene that is localized in P. falciparum chromosome 

1, the P. falciparum chloroquine resistance transporter protein codified by the pfcrt gene, the 

P. falciparum multidrug resistance protein-1 codified by the gene pfmdr1, and the 

translationally controlled tumor protein (tctp) that is codified by the gene pftctp in P. 

falciparum (this gene being localized in P. falciparum chromosome 5), have been implicated 

in modulation of parasite susceptibility to artemisinin drugs.  

Mutations in pfcrt gene were associated with increased susceptibility of P. falciparum isolates 

gathered in Asia, Africa and South America [Sidhu AB et al. 2002] to artemisinin.  

Measurement of the pfmdr1 gene copy by real-time PCR on filed isolates that were 

significantly more resistant to mefloquine, quinine, artemisinin and artesunate and more 

sensitive to chloroquine showed that this isolates had 3 copies of pfmdr1 gene (in normal 

conditions pfmdr1 is a single copy gene), thus, reduced in vitro sensitivity to artemisinin and 

artesunate was correlated to an increased gene copy numbers of the gene pfmdr1 [Pickard AL 

et al. 2003, Price RN et al. 2004]. Price RN and colleagues also associated polymorphisms in 

the gene pfmdr1 with an increased artemisinin susceptibility in isolates with a single copy of 

the gene pfmdr1, in this study the N86Y mutation was associated with lower IC50s to 

mefloquine than in those isolates with a wild-type pfmdr1 gene. By contrast, the presence of 

either the S1034C mutation or the N1042D mutation in isolates with single copies of the gene 

pfmdr1 was associated with a higher artesunate IC50s than was the wild-type, at both these 

loci. On the other hand other point polymorphisms of the gene pfmdr1 have been associated 

with increased sensitivity to artemisinin [Duraisingh MT et al. 2000]. Likewise, the triple 

mutation in the gene pfmdr1, S1034C/N1042D/D1246Y, highly prevalent in South America, 

was found to enhance parasite susceptibility to mefloquine, halofantrine and artemisinin 

[Sidhu AB et al. 2005]. From all these studies the gene pfmdr1 appears to be one important 
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modulator of the parasite susceptibility to artemisinin drugs. Higher copy numbers of this 

gene predict treatment failure even for chemotherapy with the highly effective combination of 

mefloquine and 3 days artesunate [Price RN et al. 2004]. It seems that there is a correlation 

between the resistance to artemisinins and to other antimalarials. Since the gene pfmdr1 has a 

general importance in antimalarial drug resistance, induction of resistance to one drug may be 

followed by resistance to other drugs that are not active by the same mechanism [Anderson TJ 

et al. 2005; Duraisingh MT et al. 2000; Ferrer-Rodriguez I et al 2004; Ngo T et al. 2003; 

Pickard AL et al. 2003; Price RN et al. 2004; Reed MB et al. 2000; Sidhu AB et al. 2005]. 

Resistance to artemisinin in P. yoelii had been previously been selected by drug pressure and 

was correlated to a high protein expression level of parasite tctp protein (Translationally 

Controlled Tumor Protein Homolog) [Walker DJ et al. 2000], which has been shown to bind 

artemisinin [Bhisutthibhan J et al. 1998], however, the resistant parasites readily lost 

resistance once drug-selection pressure was withdrawn [Peters W et al. 1999], so no clear 

association was actually made between artemisinin resistance and the protein tctp, as being a 

transient phenotype, the genetic involved on this resistance phenotype is not possible, that is 

why one of the mains objectives of this project was to select artemisinin resistance of stable 

phenotype.  

So in conclusion we can say that we think that the genetic mechanism responsible for 

artemisinin and its derivatives resistance need clarification. To start the process of 

clarification it is better to clarify that although studies made directly on P. falciparum may 

provide more incisive information, this presents several limitations starting by the fact that in 

the artemisinin case there is no artemisinin resistance yet reported, so the work in animal 

models can circumvented all the human malaria parasite limitations. There are several rodent 

malaria models available; those will be presented in the following chapter.  
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1.8 Rodent malaria parasites 
 

The host specificity of human malaria parasites represents a major constraint on the study of 

malaria as, unlike the other major tropical diseases such as trypanosomiasis and leishmaniasis, 

the actual causative organisms cannot be maintained in convenient small laboratory animals. 

The need for suitable laboratory models has resulted in the use of avian and simian parasites 

and until 1948 these models were the only ones available. 

In 1948 the situation changed with the discovery and isolation of a malaria parasite that was 

capable of infecting laboratory rats and mice [Vincke IH et al. 1948]. This parasite, 

Plasmodium berghei, soon became the most intensively studied malaria parasite.  

All experiments described within this PhD thesis were carried out using the rodent malaria 

parasite, Plasmodium chabaudi. P. chabaudi belongs to a group of four Plasmodium species 

that infect murine rodents from Central Africa the other species being Plasmodium vinckei, 

Plasmodium yoelii and Plasmodium berghei. A map of the locations from which the various 

rodent parasites were isolated is shown in Figure 8.  

 

 
 

Figure 8 The geographic origins of the rodent malaria parasites. 

From Carlton JM et al.2001 with kind permission of Dra. Jane Carlton. 
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The parasites of rodents have received a vast amount of attention both in their own right and 

as models for human malaria. There are many reasons for using rodent malaria parasites as 

models for human malaria. The most obvious of these is the ease with which the whole life 

cycle can be achieved in the laboratory. Apart from the similarities in basic biology between 

the rodent and human malaria parasites (See Table 4 for details), they share conserved 

genetics and genome organization, conserved housekeeping genes and biochemical processes, 

and there is considerable evidence for conservation of the molecular basis of drug-sensitivity 

and resistance [Janse CJ et al. 2004].  

 

 

Table 4 Some biological similarities and differences between P. chabaudi and the human malaria parasite, P. 

falciparum. 

Adapted from: Janse CJ et al. 2004. 

 

 P. chabaudi P. falciparum 

Merozoites per schizont 6-8 8-24 

Synchronous blood infection Yes Yes 

Optimum temperature range mosquito 

transmission (sporogony) 

24-26º C >26º C 

Duration of the asexual blood stage cycle 

(hours) 

24 48 

Duration of pre-erythrocytic development 50-58 hours 5.5 - 6 days 

Sporozoites in glands at optimum temp. (days 

after infection) 

11-13 10-12 

Note: Plasmodium chabaudi preferentially parasite mature red blood cells and more closely resemble P. vinckei 

than P. berghei.  
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Figure 9 Plasmodium chabaudi parasites (trophozoite stage) in mouse peripheral blood.  

From www.culleton.org/rodent.html, with kind permission of Dr. Richard Culleton. 

 

Although studies made directly on P. falciparum provide more information, this presents 

several limitations, such as the requirement of working with chimpanzees or humans as hosts 

for infection, a fact which poses serious ethical problems, which can be circumvented by 

working with animals models, which make easier the selection of drug-resistant mutants and 

the identification of genes involved in the resistance by performing genetic crosses.  

Of all the rodent malaria models the Plasmodium chabaudi model is the most appropriate for 

studies on the genetics of drug resistance, as P. chabaudi is the rodent malaria model that 

shows most biological similarity to P. falciparum because it preferentially parasitizes mature 

erythrocytes and the schizogony is synchronous [Carlton JM et al. 2001]. In addition several 

clones of this species are already available, which have been selected for resistance to a 

variety of different drugs (see Table 5 for the P. chabaudi clones available for this work). 

These parasites present the ideal starting material for identifying drug resistance genes since 

they have been selected from cloned sensitive parasites. In this way, the mutant parasites 

should have identical genetic backgrounds to the starting sensitive forms except for the genes 
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determining resistance. Furthermore, for the P. chabaudi clones used in this work, an array of 

amplified fragment length polymorphism (AFLPs) have been previously developed which 

allows the characterization of all the progeny of genetic crosses between the sensitive and 

resistant clones and also to pinpoint relevant genes involved in resistant phenotype [Grech K 

et al. 2002]. Using genetic crosses between parents of distinct phenotypes and a recent 

developed genetic approach, named linkage group selection [Culleton R et al. 2005], genes 

which underlie a particular phenotype can be traced among the cross progeny by the analysis 

of large numbers of genome-wide genetic markers. Those markers which follow the 

expression of a phenotype in the recombinant progeny will usually be closely linked to the 

genes which determine its expression.  
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Table 5- Clones of Plasmodium chabaudi available for this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLONE DRUG RESPONSE 

AS - SENS Drug sensitive 

AS - PYR 

[Walliker D et al. 1975] 

Selected from AS - SENS; pyrimethamine-resistant 

AS - 3 CQ 

[Rosário VE 1976] 

Selected from AS - PYR; low chloroquine-resistant 

AS - 15 CQ 

[Padua RA 1981] 

Selected from AS - 3CQ; intermediate chloroquine-resistant 

AS - 30 CQ 

[Padua RA 1981] 

Selected from AS - 15CQ; high chloroquine-resistant 

 

AS -SENS 
 

AS - PRY resistant 
 

AS - 3CQ resistant  
 

AS - 15CQ resistant   
 

AS - 30CQ resistant 
 

pyrimethamine 
selection 

Chloroquine selection 

Chloroquine selection 

Chloroquine selection 

Pyrimethamine selection 
selection 
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 1.8.1 The genetics of rodent malaria parasites 

 

As it is going to be described in more detail later in this thesis, for this research a rodent 

malaria model; Plasmodium chabaudi; was used.  

Rodent malaria parasites, such as P. berghei, P. chabaudi, and P. yoelii, are used as models 

for P. falciparum. Many aspects of the biology, life cycle, and morphology of rodent malaria 

parasites show a high level of similarity with the human parasites, validating their use as 

models for human infection. Both species have 14 linear chromosomes and many genes are 

conserved [Carlton JM et al. 1998, Hunt P et al. 2004]. There are so many similarities both in 

gene sequence but also in the arrangement of genes within chromosomes between rodent 

malaria parasites and P. falciparum that using comparative genomics techniques and making 

use of significant, but partial genome data of the rodent malaria parasites, the construction of 

a virtual composite rodent malaria parasites genome and its comparison with the P. 

falciparum genome was done, generating what is called a synteny map (in comparative 

genomics, synteny describes the preserved order of genes between related species) between 

rodent malaria parasites (Plasmodium yoelii, Plasmodium berghei and Plasmodium chabaudi) 

and P. falciparum [Carlton JM et al. 1998; Janse CJ et al. 1994; van Lin LH et al. 2000].  

To compose the rodent malaria - P. falciparum synteny map advances were taken on the 

release of the complete genome sequence of the human malaria parasite P. falciparum and 

also on the partial genome sequences of the Plasmodium yoelii, Plasmodium berghei and 

Plasmodium chabaudi parasites, a genome wide survey was able to be done. This survey was 

done by merging the sequenced DNA contigs of the three rodent malaria parasites to form 

composite rodent malaria parasites contigs that cover 90% of the core rodent malaria parasite 

genomes [Carlton JM et al. 2002; Hall N et al. 2005]. For rodent malaria parasites, P. yoelii, 

P. berghei and P. chabaudi this synteny map was published in 2005 [Kooji TW et al. 2005]. 

See Figure 10 for details.  
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Figure 10 – Rodent malaria genomes synteny map to P. falciparum.  

Roman numbers represent P. falciparum chromosomes numbers (I-XIV). RMP chromosomes, means, rodent malaria parasite chromosomes from 1 to 14. In different 

colours it is possible to distinguish between the different syntenic blocks, within Plasmodium species. 

From: Kooji TW et al. 2005, with kind permission of Dr. Taco Kooji. 

PcPc

13C 11C14AXIII 13C 11C14AXIII

VI 1VI 1

VIII 2VIII 2

II         3II         3

PyPy PyPy
IXIII 4IXIII 4

XIIIXIVXIV 13XIIIXIVXIV 13

XIIVIIIVIIXIII 14XIIVIIIVIIXIII 14

IVVIII 7IVVIII 7

PvPv
IXIIIVII 8IXIIIVII 8

PvPv
XIVIV 10XIVIV 10

9XI 9XI

14B8A 12C 6D 2BVII 14B8A 12C 6D 2BVII

6A 14DXII 6A 14DXII

5A12AX 5A12AX

12E1 11BVI 12E1 11BVI

7A 14C 12DVIII 7A 14C 12DVIII

10A 6C 7B 5BIV 10A 6C 7B 5BIV

12F11AV 12F11AV

3         II 3         II

PcPc

PyPy PyPy
VIIIVXIVXII 6VIIIVXIVXII 6

XI 9XI 9

XIIIVIV 11XIIIVIV 11

10B 13A13B6BXIV

← ←←
10B 13A13B6BXIV

← ←←

4A 8B 12BIII

← ←
4A 8B 12BIII

← ←

2AI

←
2AI

←

4B 8CIX

←
4B 8CIX

←

IVX 5IVX 5

VVIVIIIVIIIIIX 12VVIVIIIVIIIIIX 12

100 kb100 kb

RMP chromosomes 1 - 14 ↓↓↓↓

↑↑↑↑ P. falciparum chromosomes I - XIV



 80 

1.9 Linkage Group Selection 

 

As any other living organism, in Plasmodium the identification and fully understanding of the 

genetic mechanisms involved in important phenotypes such as drug resistance is of great 

importance. In the particular case of drug resistance the knowledge of the genes involved in 

this phenotype allows epidemiological studies and other long term studies for example as the 

ones monitoring the resistance of a particular antimalarial in the field. In the case of malaria 

parasites there are nowadays mainly two genetic methods that can be used to try to locate 

genes controlling any genetic trait such as drug resistance for example; those are linkage 

analysis and linkage group selection (LGS). 

When using classical linkage analysis to identify the genetic loci involved in drug resistance, 

the resistant mutants need to be crossed with genetically distinguishable parasites (like AS 

and AJ strains for example), this genetically distinguishable parasites must differ in a number 

of genetic markers. These markers can be restriction length polymorphism (RFLPs) or 

microsatelites for example, and will distinguish the sensitive from the resistant parasites. 

When using classical linkage analysis, the progeny of the genetic cross obtained needs to be 

cloned and the resulting cloned progeny will be analysed for linkage of the phenotype, lets 

consider for the moment drug resistance, with the inheritance of any parental markers either 

resistance or sensitive. Classical linkage analyses bring to notice groups of markers whose 

inheritance is linked to the inherence of drug resistance. In the eventual case of having a 

number of markers considered sufficient a linkage map can be constructed [revised by Carter 

R et al 2007]. Classical linkage analysis has been used before with success to identify regions 

of the parasite genome that are important for drug resistance as for example the case of 

Wellems TE and co-workers, Carlton JM and co-workers and Hunt P and collaborators 

[Carlton JM et al. 1998, Hunt P et al. 2004b, Wellems TE et al. 1991] but only once has it 

lead to the actually identification of a gene responsible for a particular phenotype, in this case, 

it was the identification of pfcrt has the gene involved in chloroquine resistance [Fidock DA 

et al. 2000, Su X et al. 1997]. Due to the fact that for using classical linkage analysis a large 

number of genetic markers is indeed necessary, it is also necessary to know the position of 

these markers in the parasite genome and then involves the cloning of a large number of 

clones from the recombinant progeny and also the genetic characterization of each one, this 

technique is very laborious and time consuming.  

The other technique that enables the discovery of genes controlling biological properties in 

malaria parasites as stated before is linkage group selection (LGS). LGS is a novel approach 

developed for malaria parasites in order to identify genes responsible for selectable 
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phenotypes, as for example drug resistance. LGS was previous validated for finding genes 

involved in drug resistance by Culleton R and co-workers [Culleton R et al. 2005]. LGS can 

be applied to the genetic analysis of any malaria parasite as long as there are experimental 

means of infecting mosquitoes with gametocytes from parasites and also means of passaging 

the genetic progeny of a cross through the liver stage of development and into the blood. LGS 

has in common to the classical linkage analysis the fact that it is an approach that uses a 

genetic cross between two unrelated parasites from the same species, one of which is sensitive 

and the other one is resistant to a particular characteristic that is going to be applied as 

selective pressure [Culleton R et al. 2005], but differs from the traditional approach by 

avoiding cloning very large numbers of cloned lines from the progeny of a genetic cross 

[Carter R et al. 2007]. In LGS the uncloned progeny of a genetic cross, between a sensitive 

and a resistant parasite to a particular characteristic and that are genetically distinguishable by 

a large number of genetic markers such as AFLPs markers for example, is placed under a 

selection pressure representing the biological property of use, in the case of our project; 

artemisinin and artesunate resistance. The DNA obtained from the surviving progeny is then 

screened from the presence of a large number of molecular markers distributed throughout the 

parasite genome. Prior to the developed of the LGS technique an atlas of a large number of 

molecular genetic markers distinguishing for example the two different strains AS and AJ was 

developed [Martinelli A et al 2005]. The genetic markers from the sensitive progenitor that 

are linked to the gene of interest (for example in our case the gene conferring artemisinin 

resistance) will be under-represented or even eliminated from the progeny of the genetic cross 

after the drug selection. Finding the genetic position of the markers under selection would 

allow us an area in the genome where the gene of interest might be located. It is important to 

noticed that the intensity of reduction of any particular marker is directly proportional to the 

distance of the gene of interest thus allowing the construction of a selection valley around the 

genetic area of interest, where the target gene in supposedly located at the valley base [Carter 

R et al. 2007]. See Figure 11 for the resume of the LGS protocol. 
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Figure 11 – Schematic representation of the Linkage Group Selection protocol. 
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 1.9.1. Amplified Fragment Length Polymorphism 

LGS requires that the two parental clones are distinguished by a large enough number of 

genetic markers to ensure that some will be linked to the genes of interest. LGS was 

optimized using amplified fragment length polymorphism (AFLP) a PCR-based method for 

amplifying DNA fragments from genetically distinct cloned lines of parasites, for example AS 

and AJ. AFLP is a technique in which large numbers of markers are generated across a 

genome [Masiga DK et al. 2000]. Having a high density of these markers in the genome 

means that there is a high probability that some of them will be linked to the gene of interest. 

It has been previously shown that AFLP meets the requirements of LGS both as regards 

numbers of markers generated in different strains of P. chabaudi [Grech K et al. 2000] and 

their quantisation in a mixture of the strains [Martinelli A et al. 2004].  

The AFLP technique allows the visualization of restriction fragments of DNA. This enables 

the detection of the variation in DNA between two strains without prior knowledge of the 

nucleotide sequence. Depending upon the polymorphism between the two strains, large 

numbers of genetic markers can be produced in a relatively short time [Vos P et al. 1995]. 

AFLP involves cutting genomic DNA into a large number of DNA fragments with two 

different restriction enzymes (an enzyme called a frequent cutter and another called a rare 

cutter), thus generating optimal size fragments for visualization on polyacrylamide gels. 

Using radiation to label one of the primers allows visualization of the products. Genetic 

differences between strains occurring at a cutting site result in fragments of different sizes 

which can then be identified on a gel as being present in one strain and absent in the other 

(See Figure 12 for an example of an AFLP gel).  

Polymorphic bands can be produced as a result of polymorphisms between strains at the 

enzyme recognition sites, polymorphisms between strains at the selective bases used in each 

PCR, or as a result of insertion/deletion polymorphisms within fragments.  
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1.10 Aims of the project 

 

This project involves identifying and characterizing genes involved in resistance to 

artemisinin using the rodent malaria specie P. chabaudi, starting by selecting stable 

artemisinin drug resistance. 

To select artemisinin and artesunate mutants using the rodent model, P. chabaudi, though 

prolonged exposure of drug-sensitive lines to low and increasing levels of the drug in mice. 

Attempts of selecting artemisinin and artesunate mutants in P. chabaudi would be carried out 

though prolonged exposure of drug-sensitive lines to low and increasing levels of the drug in 

mice; so that the surviving parasites of one lower dose of artesunate and artemisinin would 

receive an increasing dose of the same drug. These results will be presented on chapter III . 

After selecting mutant clones resistant to artemisinin and artesunate the objective would be, as 

a first approach, to study the involvement of P. chabaudi gene orthologues pfmdr1, pfcrt, 

pftctp and pfatp6, in the selected mutant clones, previously described as being putative genetic 

modulators for artemisinin. These results will be presented on chapter IV . 

The last objective was to perform genetic crosses in mosquitoes with the previously selected 

and cloned artemisinin and artesunate mutants in P. chabaudi (AS-ART and AS-ATN 

respectively) and the genetic distinctive sensitive parasite line of P. chabaudi AJ, and to 

perform linkage group selection (LGS) on the genetic crosses using artemisinin and 

artesunate; these results will be presented on chapter V. 
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CHAPTER II 

MATERIALS AND METHODS 
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2.1. Mice 

 

Inbred female CD1 (Mus musculus) from Harlan-Tekld Iberica were used for drug tests and 

selection experiments. Inbred female CBA/CA and C57B1/6J mice (Mus musculus) from the 

University of Edinburgh were used in the rest of the experiments described in this work. All 

mice used were 4-6 weeks old at the start of the experiments. They were housed in 

polypropylene cages with sawdust as bedding, and were provided with 41B rat and mouse 

maintenance diet (Harlan-Tekld) ad libidum. Drinking water was supplemented with 0.05% 

paraminobenzoic acid (PABA), an essential element for the parasite growth, and given ad 

libidum. The cages were kept in a room where temperature was maintained at a constant 25º C 

± 3 º C, on a 12-hour light/dark cycle. 

 

2.2. Mosquitoes 

 

Anopheles stepehensi mosquitoes were used for all experiments. Insectaries were maintained 

on a 12-hour light/dark cycle at 25-27º C temperature and 75-86 % humidity. Larvae were fed 

on Liquifry™ until 2nd instar and thereafter on ground Tetramin™ fish food, Adult 

mosquitoes were kept on 10% glucose and 2% PABA-supplemented water solution. Stock 

adults received weekly rat-blood feeds, which are essential for the production of eggs. 

 

2.3. Parasites 

 

All parasites used in the experiments described here were Plasmodium chabaudi chabaudi 

(referred to as P. chabaudi hereafter). See Table 5 and also Table 6.  

 

Table 6 - Parasite clones and lines used in the present work. 

CLONE DRUG RESPONSE 

AJ Drug sensitive, genetically different and distinguishable from AS line 

AS-PYR Derived from AS-SENS; pyrimethamine-resistant 

AS-15CQ  Derived from AS-3CQ; resistant to 6 daily doses of chloroquine at 

5mg/kg mouse body weight 

AS-30CQ  Derived from AS-15CQ; resistant to 6 daily doses of chloroquine at 

30 mg/kg mouse body weight 

 



 88 

2.4 Preparation of 107 standard parasite inocula 

 

107 iRBC was established as the standard parasite number to be infected into individual mice 

at the time of the drug tests, during selection experiments and during preparation of inocula 

for the production of mixed infections. 

The preparation of the inocula for drug tests and for the selection experiments was as follows: 

the parasitaemia and red blood cell density (RBC/ml) were calculated in the donor mouse, 

after which the required amount of blood was collected from the mouse tail by calibrated 

capillary pipette and diluted to a final concentration of 107 iRBCs/0.1 ml in a solution of 

heparinised 1:1 calf serum/mammalian Ringer’s solution (Appendix 1). Preparations were 

kept on ice at all times and an aliquot of 0.1 ml was inoculated into mice. 

For the preparation of inocula for the production of mixed infections containing equal 

proportions of two parasite clones, infections of both clones into a single mouse were induced 

as described above. 

 

2.5 Cloning 

 

Dilutions for cloning were prepared as in 2.4 except that each mouse was infected either with 

a mean of 0.5 or 1 parasite. Groups of 50 mice were inoculated in these experiments. If 

approximately 30% of mice became infected, it could be predicted that 75% of the infections 

had resulted from a single parasite; a lower percentage of infected mice would indicate higher 

proportion of pure clones. Cloning was done once drug resistance stability was verified.  

 

2.6 Preparation and administration of artemisinin and artesunate 

 

Artemisinin powder was obtained as a gift from African Artemisia.  

Artesunate powder was obtained as a gift from Daphra Pharma. 

In the initial tests artemisinin was dissolved in dimethyl sulphoxide (DMSO) and corn oil, and 

artesunate was dissolved in DMSO, Na2CO3 or corn oil, but for further analysis DMSO was 

always used. 

Both artemisinin and artesunate were freshly diluted daily in dimethyl sulphoxide (DMSO) 

and were kept at room temperature protected from the light. Both drugs were administered to 

mice by gavage using a lubricated catheter adapted to a 1 ml syringe. Drug doses were 

expressed as milligrams of drug per kilogram (Kg) of mouse body weight per day. Both drugs 
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were diluted to a concentration such that the amount of drug corresponding to the desired dose 

was present in 0.1 ml when given to a mouse weighing 20 grams. At the time of drugging, 

mice were individually weighed so that the amount of drug given could be adjusted.  

 

2.7 Drug tests  

 

Initially, artemisinin and artesunate drug test trials were carried out on four P. chabaudi 

clones (AS-PYR, AS-15CQ and AS-30CQ), to establish the appropriate drug regimen and a 

standard test to distinguish between resistant and sensitive parasites as well as parasites with 

intermediate levels of resistance. 

Mice received 107 iRBC each by intra-peritoneal (i. p.) injection.  

Groups of five mice were prepared; one group was untreated and used as a control for the 

infection, while the remaining group was drugged three hours after injection, to allow 

parasites to reach the blood stream. Depending on the particular drug regimen the drug dose 

was repeated every 24 hours for the desired number of days. 

Blood smears from control and artemisinin or artesunate treated mice in the single dose, in the 

three-day suppressive test and in the five-day suppressive test, were taken on day five post 

infection and every day thereafter, until the infection peaked or it was clear that no parasites 

were going to appear. The parasitaemias and number of days for recrudescence of the 

different parasite lines were compared. 

 

2.8 Artemisinin and artesunate selection experiments: general procedure 

 

Two groups of five (4-6 week old) CD1 mice were inoculated with 107 parasites of the clone 

to be used for selection for increased artemisinin or artesunate resistance. 

Three hours after inoculation one of the groups were treated orally with the required doses of 

artemisinin or artesunate for a total of five days. The remaining group was left untreated and 

served as a control. Both controls and parasites that survived drug treatment were passaged 

weekly from the mouse exhibiting the highest parasitaemia into uninfected mice and the 

treatment repeated. The drug doses were increased according to the parasite response to 

treatment in the previous passage. To address the possibility that potential increases in drug 

tolerance could be to due to increased virulence attributed to multiple sub-inoculations, an 

untreated and unselected parasite line was maintained in parallel and passaged in untreated 

mice the same number of times as the drug selected line. Following these passages in the 
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presence of increasing drug concentrations, drug selected parasites showing a significant 

increase in drug tolerance in comparison with unselected control lines were cloned by the 

method of limiting dilution described in section 2.5. Cloned parasites were re-tested for their 

responses to both artemisinin and artesunate. 

 

2.9 Tests to evaluate the stability of drug-resistance 

 

To assess whether artemisinin or artesunate resistance was a genetically stable feature, drug-

resistant parasite clones were re-tested for their drug responses after each of three different 

procedures:  

i) Freeze-thaw cycles in liquid nitrogen,  

ii) After 12 blood sub-inoculations in mice in the absence of drug treatment and  

iii) Transmission through Anopheles stephensi mosquitoes. 

A measure of resistance in the drug-selected parasite clones was established in the following 

way. The minimum curative dose (MCD) of each drug was first assessed in drug-selected 

parasites and untreated control lines. MCD was defined as the minimum dose of each drug 

that would prevent re-appearance of parasites in all five mice within each treated group at any 

time during the first 10 days of the follow-up period.  

A resistance index was determined using the following equation: 

 

N-fold resistance = MCD drug selected parasites/ MCD drug unselected parasites 

 

2.10. Transmission through Anopheles stephensi  

 

For each clone a 30cm³ mosquito cage was set up containing ≈ 200 female Anopheles 

stephensi mosquitoes, 5-7 days old.  

Mosquitoes were maintained on glucose and water solution, which was removed 24 hours 

prior to infective mouse feeds. Blood smears were taken from all infected mice on day 6 post 

infection, and the presence of gametocytes was confirmed. Mice were then anaesthetized with 

rohypnol solution (Appendix 1), and attached to cork boards placed on top of the mosquito 

cages. Mosquitoes were allowed to feed for 30 minutes before the mice were removed. Mice 

were then killed before awakening from the anaesthesia. Glucose and water solution was 

placed back into the cages, and egg bowls were provided 2 days post feed. 10 mosquitoes 

were dissected from each cage 7 days after the feeds, to check for the presence of oocysts. 
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Fourteen days after the infective feed, mosquitoes from each cage were dissected, and the 

salivary glands examined for the presence of sporozoites. If the presence of sporozoites was 

confirmed, the mosquitoes were allowed to feed on a group of two uninfected anesthetised 

mice. Starting on day 8 and onwards the mice were checked for the presence of parasites in 

blood.  

 

2.11. DNA extraction  

 

Parasite genomic DNA was extracted when required as follows: parasitized RBCs were 

harvested from mice under general anaesthesia, when trophozoite stages were most prevalent, 

into citrate saline (pH 7.2) and passed through a column of fibrous cellulose powder twice 

(CF11®, WhatmanTM) to remove mouse leukocytes [Homewood CA et al. 1976]. The 

resulting RBC pellet was washed twice in PBS and parasite DNA extracted by overnight 

incubation in lysis solution (10 mM Tris [pH 8.0], 50 mM EDTA, 0.1% sodium dodecyl 

sulfate [SDS], proteinase K [1 mg/ml]) at 42ºC. After phenol extraction, DNA was 

precipitated using propan-2-ol and ammonium acetate (3M) and dissolved in TE buffer (10 

mM Tris-Cl, 1 mM EDTA, pH8.0). DNA samples were stored at –20ºC. 

 

2.12. Identification of the P. chabaudi tctp and atp6 genes 

 

The DNA sequences of the P. falciparum and P. yoelii tctp and atp6 genes were available 

online at the NCBI/NIH (National Institute of Health) database (www.ncbi.nih.gov) with the 

following accession numbers: pctctp NP_703454, pytctp AF124820, pfatp6 AB121053 and 

pyatp6 AABL01001880. To obtain the P. chabaudi orthologues of these genes, these 

sequences were retrieved and used in BLAST searches against the available P. chabaudi 

sequences (shot gun clones and genomic contigs), deposited at the P. chabaudi genome 

database (www.sanger.ac.uk). The two sequences giving significant hits were retrieved and 

used to design P. chabaudi-specific oligonucleotide primers to amplify overlapping DNA 

fragments spanning the coding region, introns and both 5’- and 3’-non-coding sequences. 

These were then used in PCR amplifications containing either P. chabaudi genomic DNA or 

cDNA templates.  



 92 

2.13. Amplification and sequencing of the mdr1, cg10, tctp and atp6 genes of 

P. chabaudi 

 

Genomic DNA was used as template in 50µl PCR reactions, containing 0.2µM of each 

oligonucleotide primer, 1x PCR buffer (Promega), 2.5 mM MgCl2, 0.2mM dNTPs and 

0.025U/µl of Taq DNA polymerase. For amplification of the pcmdr1 and pccg10 genes, 

oligonucleotide primers and PCR amplification conditions previously published were used 

[Cravo PV et al. 2003; Hunt P et al 2004], based on DNA sequences characterised prior to 

this study (pcmdr1 AY123625 and pccg10 AY304549). These were used in PCR 

amplifications of AS-15CQ, AS-30CQ, AS-ATN and AS-ART. Negative controls were also 

prepared, which contained 1µl of sterile distilled water in place of template DNA. Positive 

controls were prepared using a previously amplified DNA template.  

The oligonucleotide primers used for pcmdr1, pccg10, pctctp and pcatp6 are listed in 

Appendix 2. 

All PCR reactions were carried out using a UNO-Thermoblock machine (Biometra).  

PCR products were run on a 2% agarose gel in TBE solution and visualized under UV. 

Products were purified using the QIAquick PCR Purification Kit from QIAGEN and 

sequenced using BigDye chain termination v3.1 (Applied Biosystems). The sequencing 

reactions were analysed by Macrogen®. The primers used in sequencing reactions were those 

used for the initial amplification of the fragments.  

Gene and predicted amino-acid sequences were manually compiled, and then compared 

between drug selected and unselected clones using an internet-based interface denoted 

Multiple Sequence Alignment with hierarchical clustering [Corpet F et al. 1998], using 

default alignment parameters (http://prodes.toulouse.inra.fr/multalin/ multalin.html).  

 

2.14. Estimation of copy numbers of the pcmdr1, pctctp and pcatp6 genes 

 

Gene copy number was assessed by RTQ-PCR. We used sequences within a fragment of the 

Merozoite Surface Protein of P. chabaudi gene (msp1) (accession no. L22982), [McKean PG 

et al. 1993] as an internal calibrator, since msp1 is a single copy gene in P. chabaudi. 

Real-Time Quantitative PCR (RTQ-PCR) was performed using a Roche LightCycler 

[Meshnick SR 2002].  

Ten microliter reactions in LightCycler capillaries (Roche) using FastStart DNA Master 

SYBR Green I kit reagents (Roche) were used according to the manufacturer’s instructions. 
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Magnesium chloride, primer concentration, denaturating, annealing and elongation rates and 

times were varied to determine the optimum conditions under which only the specific 

amplicon was produced. The average amplification efficiencies of the reactions were closely 

matched because small differences can result in large errors in quantification between 

samples. The average amplification efficiency, E, was determined from the slope of the 

standard curves produced in each experiment using the equation E=10-1/slope. PCR reactions 

where the amplicon doubles at every cycle have an optimal efficiency of 2.0 compared to 

reactions where no amplification occurs and efficiency is 1.0. All samples were analysed in 

replicate within each LightCycler run. The fluorescence signal produced from the amplicon 

was acquired at the end of the polymerisation step at 72ºC.  

The gDNA samples used were the same as those used for gene amplification and sequencing. 

The purity and quantity of DNA was determined by fluorimetry, UV spectrophotometry and 

electrophoresis of serially diluted ethidium-bromide stained samples on agarose gels. 

Standards consisting of 10-fold serial dilutions of parasite genomic DNA in the range of 60-

0.006 ng were used as quantification standards for the LightCycler calibration curve for each 

RTQ-PCR experiment. 

Maximum recovery filter tips (AXYGEN Scientific) and “No Stick” microtubes (Alpha 

Laboratories) were used in these experiments. 

The analysis of relative gene expression data was performed using the 2-∆∆Ct method described 

in detail by Livak and Schmittgen [Livak KJ et al. 2001].  

Thus, the average Cycle threshold (Ct) was calculated for both control (pcmsp1) and target 

genes and the ∆Ct (Ct target gene – Ct msp-1) was determined. ∆∆Ct was calculated for the relative 

quantification of the target gene; ∆∆Ct= (Ct target gene - Ct msp-1)α - (Ct target gene - Ct msp-1)β, where 

α = resistant sample and β = sensitive sample. After validation of the method, results for each 

sample were expressed in N-fold changes in α target gene expression, normalised to msp-1 

relative to the expression of β, according to the following equation: amount of target = 2-∆∆Ct.  

The oligonucleotide primers used for pcmsp1, pcmdr1, pctctp and pcatp6 are listed in 

Appendix 3 together with the PCR conditions used to amplify the fragments. 

 

2.15 Production of cross progeny - Overview of procedure 

 

To produce a genetic cross between two strains, the two parental clones are inoculated into 

mice to produce a mixed infection. Infections of both AS-ART/AS-ATN and AJ clones were 

induced in mice. Absolute numbers of parasites per volume of blood were worked out at peak 
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parasitemia for both infections by multiplying the parasitaemia recorded by thin blood smear 

against the numbers of red blood cells per volume of blood of each mouse (calculated by flow 

cytometry; Beckman Coulter). A volume of blood containing known parasite numbers was 

then taken from both AS-ART/AS-ATN and AJ infected mice by incision of the distal portion 

of the tail, and collected in glass capillaries. This blood was then mixed to produce a 50/50 

mixture of the two clones by parasite number, and diluted to a concentration of 1 x 107 

parasites per 0.1 ml with 50% ringers solution, 45% heat-inactivated calf serum and 5% 200 

units/ml heparin solution. This solution was kept on ice, and administered intra-peritoneally to 

each experimental mouse in 0.1 ml aliquots.  

The mixed infections were followed by microscopy for the presence of gametocytes. When 

gametocytes are present in the infection, mosquitoes are allowed to feed on the mice, and the 

sporozoites present in the salivary glands of infected mosquitoes 14 days later are inoculated 

intra-peritoneally into mice. 

Previous work determined the optimum day post mouse inoculation to achieve infections in 

mosquitoes. The results of this work showed that feeding mosquitoes on mice at day 6 post-

inoculation produced the greatest number of infected mosquitoes. All mosquito feeds in this 

experiment, therefore, were carried out at day 6 post mouse-infection.  

 

 2.15.1 Mosquito feeds 

 

Six 30cm³ mosquito cages were set up containing ≈ 200 female Anopheles stephensi 

mosquitoes, 5-7 days old. Mosquitoes were maintained on glucose and water solution, which 

was removed 24 hours prior to infective mouse feeds. Blood smears were taken from all 

infected mice on day 6 post infection, and the presence of gametocytes was confirmed. Mice 

were then anaesthetized with rohypnol solution (Appendix 1), and attached to cork boards 

placed on top of the mosquito cages. Mosquitoes were allowed to feed for 30 minutes before 

the mice were removed. Mice were then killed before awakening from the anaesthesia. 

Glucose and water solution was placed back into the cages, and egg bowls were provided 2 

days post feed. 7 days after the feeds 10 female mosquitoes from each cage were dissected, to 

check for the presence of oocysts. 
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 2.15.2 Infection of mice from sporozoites 

 

Fourteen days after the infective feed, mosquitoes from each cage were dissected, and the 

salivary glands examined for the presence of sporozoites. If the presence of sporozoites was 

confirmed, all the female mosquitoes from the cage were dissected, and the salivary glands 

removed. These were placed in a glass tube containing 50% Ringer’s solution (Appendix 1), 

45% heat-inactivated calf serum and 5% 200 units/ml heparin solution. The glands were then 

gently crushed using a pestle and mortar in order to release the sporozoites. This solution was 

kept on ice, and injected intra-peritoneally into mice in 0.1 ml aliquots. Thin blood smears 

were taken from infected mice daily, and parasitaemias recorded.  

 

2.15.3 Preparation of artemisinin and artesunate 

 

Artemisinin and artesunate solutions were prepared by dissolving artemisinin and artesunate 

powder in dimethylsulfoxide (DMSO), the exact same way has during the selection 

procedure. This was administered to mice orally in 0.1 ml volumes using a lubricated catheter. 

The dose of artemisinin used was 25 mg/kg for five days and the dose of artesunate used was 

5 mg/kg for five days. At the time of drugging, mice were individually weighed so that the 

amount of drug given could be adjusted accurately to each mouse.  

 

2.16 Linkage Group Selection  

 

2.16.1 Selection of cross progeny 

 

When the sporozoite-induced infections reached peak parasitaemia (10%–15%), the parasites 

were harvested, pooled, and inoculated into a group of mice (designated the “non-passaged” 

group containing 3 -5 mice depending on the experiment). Each mouse in the group received 

1 x 107 parasites. This initial experimental group was left untreated, and the parasites were 

harvested at peak parasitaemia for AFLP analysis to provide a reference point for markers 

analyzed in the subsequent treatment groups.  

For the AS-ART x AJ cross, parasites were pooled and sub-inoculated from the “non-

passaged” group into two further groups of mice, one of which was treated with artemisinin 

(“ART treated” group), and the other left untreated (“untreated” group).  
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For the AS-ATN x AJ cross, parasites were pooled and sub-inoculated from the “non-

passaged” group into two further groups of mice, one of which was treated with artesunate 

(“ATN treated” group), and the other left untreated (“untreated” group). These two groups 

provided the material for the comparison of markers between drug-treated and untreated 

parasite populations. Artemisinin was administered orally at a dose of 25 mg/kg of mouse 

body weight daily at 24-h intervals for 5 days, starting 3h after parasite challenge. Artesunate 

was administered orally at a dose of 5 mg/kg of mouse body weight daily at 24-h intervals for 

5 days, starting 3h after parasite challenge. Both the artemisinin-treated and artesunate-treated 

and the untreated blood-stage cross progeny were allowed to grow to peak parasitaemia 

(30%–40% for untreated, and 20%–30% for treated), at which point the blood was harvested. 

Two samples of parasite DNA were prepared for AFLP and other molecular analyses by 

pooling separately the blood from the treated and untreated mice.  

 

2.16.2 Amplified Fragment Length Polymorphism (AFLP) analysis 

 

2.16.2.1 Preparation of parasite DNA from experimental groups 

 

When infections reached peak parasitaemia, blood was extracted from all mice in each group 

by severance of the brachial artery, pooled, and prepared for DNA extraction. Blood was 

filtered in order to remove any mouse lymphocytes or other nucleated cells, by passing it 

twice through a 5 ml column of powdered cellulose (Sigma) washed with citrate saline. Blood 

was then filtered through Plasmodipur™ filters (Euro-Diagnostica) twice. The filtrate was 

centrifuged for 5 mins at 3000 rpm and the supernatant removed, leaving a pellet of packed 

cells. 0.15% saponin in Phosphate Buffered Saline (PBS) was added to promote cell lysis 

cells. After lysis of erythrocytes occurred (associated with a change in colour of the solution 

from bright red to burgundy colour), PBS was added in excess to prevent parasite lysis. This 

solution was then centrifuged again at 4000 rpm for 5 minutes and washed twice in PBS. 

Supernatant was discarded and pellets stored at -70°C. Three thick blood smears were taken, 

one prior to filtration, one after cellulose filtration and one after Plasmodipur™ filtration in 

order to determine the efficiency of host cell removal at each stage.  

The frozen pellet was re-suspended in 0.4 ml buffer A (Appendix 1), and 10 µl of 10% SDS 

and 50 µg Proteinase K (Sigma) were added. The pellet was left at 37°C overnight after which 

an equal volume of 1:1 phenol/chloroform mixture was added, mixed for 3 min, and 

centrifuged at 5,000 g for 1-2 minutes. The upper aqueous layer was transferred to a fresh 
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tube. The step was repeated 2-3 times. Then an equal volume of chloroform was added, and 

the tube was centrifuged as before for 1-2 minutes. The upper aqueous layer was removed to a 

fresh tube. This procedure was repeated once before an equal volume of ether was added, the 

solution centrifuged as before for 1-2 minutes and the upper layer removed. The remaining 

ether was left to dry in the air. Three volumes of absolute ethanol (0º C) and 1/10th volume of 

3M sodium acetate (pH 5.2) were added to the dried pellet, and the tube was mixed and 

placed on ice for 15-45 minutes to precipitate the DNA.  The tube was then centrifuged at 

10,000 g in a Speed Vac (Savant) for 10 minutes and the ethanol mixture removed. The tube 

was again centrifuged at 10,000 g for 5-10 minutes to remove final traces of ethanol and the 

pellet was resuspended in 100-200 µl of TE buffer (pH 8.0) (see Appendix 1) and left at 37°C 

for 10 minutes before storage at -20º C. 

 

2.16.3 AFLP analysis 

 

0.5µg of parasite genomic DNA was cut using two enzymes. Firstly, 10 U of EcoRI (MBI 

Fermentas, recognition sequence: G↓AATTC) were added and DNA incubated at 37°C for 1 

h, then 5 U of TruI/MseI (MBI Fermentas, recognition sequence: T↓TAA) were added and 

DNA incubated for further 3 h at 65°C.  

The digestion stage was performed in a 40 µl solution containing 2X Y+/ Tango buffer 

(Promega). The fragments were then ligated with adapters matching the cut ends produced by 

the enzymes.  

All primers used were provided by MWG-Biotech UK Ltd. Adapters disrupted the cutting site 

recognised by the enzymes in order to prevent cutting of the adapters from the DNA 

fragment.  

These adapters also provided a recognition site for primers. 

 

-MseI adapters: MeI.a1 and MeI.a2  

 -MeI.a1: 5’-GACGATGAGTCCTGAG-3’ 

 -MeI.a2: 3’-TACTCAGGACTCAT-5’ 

 

-EcoRI adapters: EoI.a1 and EoI.a2 

 -EoI.a1: 5’-CTCGTAGACTGCGTACC-3’ 

 -EoI.a2: 3’-CATCTGACGCATGGTTAA-5’ 
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Bold letters indicate base substitution to disrupt enzyme cutting site. 

Adapters were prepared by adding equimolar amounts of both strands and then performing the 

following procedure: 

 

 - Heat adapters at 94°C for 5 mins, then cool to 21°C for 5 mins 

 - Heat adapters at 72°C for 60 s., then cool to 21°C for 5 mins 

 - Heat adapters at 65°C for 60 s., then cool to 21°C for 5 mins. 

 

Adapters were then diluted to 50 pmol/µl. 10 µl of ligation mixture were then added to 40 µl 

of digested DNA and this incubated at 37°C for 3h, then overnight at 15°C. Ligated material 

was diluted 1:10 in TE buffer (pH 8.0) (Appendix 1) and stored at -20°C. 

A preliminary PCR amplification was performed involving the use of “non-selective” primers 

(meaning primers with no extra nucleotides added at their 3’ ends extending beyond the 

adapters sequence) matching the adapters: 

 

 - Non-selective EcoRI primer: 5’-GACTGCGTACCAATTC-3’ 

 - Non-selective MseI primer: 5’-GATGAGTCCTGAGTAA-3’ 

 

A 20µl PCR solution containing 0.32 µM of each of the non-selective primers, 1 µl template 

DNA, 0.4 U Taq polymerase (Promega), 1X Mg-free PCR Buffer (Promega), 1.5 mM MgCl2, 

and 0.2mM of all 4 dNTPs was set up. The following cycles were performed: 

 

 - 94°C for 60 s., then 

 - 94°C for 30 s. 

 - 56°C for 60 s. 

 - 65°C for 60 s. 

repeat the three steps for 20 cycles 

 

The resulting PCR material was diluted 50-fold in TE buffer (pH 8.0) and stored at - 20°C. 

Selective amplification was performed using radiolabelled primer (EcoRI-primer) and 

selective primers (meaning primers with a selective extension at the 3’-end, in order to reduce 

the number of fragments amplified). For radiolabeling, 2.5x Kinase buffer (Promega), 20U T4 

polynucleotide Kinase (Promega), 100 µCi [γ-33P] ATP / [γ-32P] ATP (ICN) and 500 ng of 

oligonucleotide primer were incubated in a 20 µl solution at 37°C for 60 min. The reaction 
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was stopped by adding 1 µl of 0.1 M EDTA pH 8.0 and heating at 70°C for 10 min. The 

mixture was then made up to a volume of 50 µl by adding sterile, distilled water. 

Primer purification was performed using TE Micro Select-D, G-25 microcentrifuge spin 

columns produced by Eppendorf-5 Prime Inc. 

Hot PCR with the radiolabelled primer was performed as follows: 0.32 µM of the selective 

MseI primer, 0.05 µM of the labelled selective EcoRI primer, 1 µl template DNA, 0.4 U Taq 

polymerase (Promega), 1X Mg-free PCR Buffer (Promega), 2.5 mM MgCl2, and 0.2mM of 

all 4 dNTP’s were added to a 20µl total volume PCR solution.  

PCR conditions for this stage were: 

 

 - 94°C for 60 s., then 

 - 94°C for 30 s. 

 - 65°C for 60 s., annealing temperature is reduced at each cycle by 0.7°C for the next 12 

cycles, then remained at 56°C for the remaining 23 cycles 

 - 65°C for 60 s. 

repeat the preceding three steps for 35 cycles 

 

The PCR products were mixed with 20 µl of loading dye specific for poly-acrylamide 

sequencing gels (Anachem), then heated at 99°C for 3 min and immediately cooled on ice. 

5µl of each sample was loaded onto a 5% denaturing polyacrylamide gel (5% acrylamide, 

0.25% methylene bisacryl, 7.5 M urea in 50mM Tris/50mM Boric acid/1mM EDTA). 500 µl 

of a 10% Ammonium Persulfate solution (APS) and 100µl of TEMED (Sigma) were added to 

100 ml of gel solution and the gel cast using a SequiGen 38x50 cm gel apparatus (BioRad). 

Electrophoresis was performed at 110 W for 2 h in 1x TBE buffer. Gels were then dried in a 

vacuum gel drier (model 583, Bio Rad) and exposed overnight in phosphorimager screens 

(Fuji) at -70°C. Results were visualised on an autoradiography film (Kodak XAR-5). They 

were developed in an automatic autoradiographer developer (Exograph). 

As an example of an AFLP gel and the band nomenclature see Figure 12. 

Thus, and just as an example, the marker AJAG02CA denotes the second largest (that is 

where the 02 cames from) AJ-specific band (thus beginning with AJ) obtained using EcoRI 

primers with AG (the first pair of nucleotide letters, like the forward primer) as additional 

“selective” 3’-nucleotides, and CA as “selective” nucleotides on the MseI primers (the second 

pair of nucleotide letters, like the reverse primer). 



 100 

 

 
Figure 12 - An example of an AFLP gel.  

In this particular gel we can see the results of bands generated with Mse1 (CA selective bases, so called forward 

primer) + EcoR1 (AG selective bases, so called reverse primer). One of the markers of the sensitive parent 

(AJAG02CA) was absent in the treated population and is then presumably closely linked to the locus conferring 

resistance. 

Each one of the lanes is labelled as followed; 

AS: denotes DNA extracted from single AS-SENS clone infection (in our project the AS alleles are the 

resistant ones). 

AJ: denotes DNA extracted from single AJ clone infection (in our project the AJ alleles are the 

sensitive ones). 

1: denotes DNA extracted from the unpassaged pooled group. 

2: denotes DNA extracted from the treated pooled group (in the case of our project the AS-ART x AJ 

cross was treated with ART and the AS-ATN x AJ cross was treated with ATN). 

3: denotes DNA extracted from the untreated pooled group. 

Each lane represents a DNA sample obtained from the pooled DNA of all mice on each experimental group. 

Polymorphic markers are bands that are different for AS or AJ. AS specific markers (thus resistant) are marked 

with a broken arrow (�), and AJ specific markers (thus sensitive) with an open arrow (�), bands marks with an 

arrow (�) represent a non-polymorphic marker (there are no differences between AS and AJ within this marker). 

Adapted from Culleton R et al. 2005 with kind permission of Dr Richard Culleton. 
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2.16.4 Measurement and comparison of the intensity of AFLP 

markers 

 

This technique makes uses of a large number of molecular genetic markers distinguishing two 

strains of malaria parasites, the AFLP markers. These markers can be visualised as bands on a 

polyacrilamide gel. Most of the bands that will appear on a gel will be present in both the 

parasites and are called non-polymorphic bands and some are unique of one of the clones in 

our case either AS - resistant or AJ - sensitive. Once the selection pressure is applied in the 

genetic progeny of a cross, in the case of this project, artemisinin or artesunate pressure, the 

parasites that carry the allele that is sensitive (in this case the AJ allele) will be removed, and 

from an experimental point of view this disappearance is visible by the decrease in intensity 

or complete disappearance of an AFLP band specific for the sensitive allele (AJ band). Thus 

the progeny after selection is then screened for markers. Specially those from the sensitive 

parent that would either be significantly reduced or absent because these markers should be 

linked to the locus or loci under selection, in our case under artemisinin or artesunate 

selection. Polymorphic markers (between AS-ART and AJ and between AS-ATN and AJ, 

here simplified to AS and AJ), meaning those that are different between AS and AJ, were 

named and placed in the AFLP map, to denote specificity of the polymorphic band meaning 

the size of the band (relative to other polymorphic bands in the same gel lane) and the 

selective bases used, this would make it very straightforward the identification of a particular 

band to the AFLP map already developed by Martinelli A and collegues [Martinelli A et al. 

2005]. As stated before we were looking for the disappearing of AJ sensitive markers on the 

treated group (meaning artemisinin or artesunate treated group) in comparison of the 

untreated group, each one of these markers decreased in intensity or disappeared is predicted 

to lay in what we call a selection valley that can then be associated to a particular gene 

underling the resistant phenotype or at least responsible for given so type of selective 

advantage over the sensitive parasites. An example of an AFLP gel is represented in Materials 

and Methods Figure 12.  

As described in the materials and methods chapter, each marker band intensity was measured 

with PhosphorImager and IMAGEQUANT software (Molecular Dynamics). For each marker 

of interest, either AS or AJ, an intensity index (II) was calculated by taking the intensity of a 

polymorphic marker (either AS or AJ) and compare it to a no polymorphic marker, making 

sure that this is done using the same PCR material applied in the same polyacrilamide gel. 

Each II is then converted to a relative intensity index (RII) either unselected RIIu or selected 

RIIs. The RIIu is calculated by making a ration between the II obtained for the unselected 
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material and the II obtained for the parental (either AS if we are looking at an AS specific 

markers or AJ is we are looking for an AJ marker). The RIIs is calculated by making the ratio 

between the II obtained for the selected material and the II obtained for the parental (either 

AS or AJ) [Martinelli A et al. 2004]. 

To compare between different markers a comparative Intensity (CI) of the polymorphic 

markers was calculated. This comparative intensities are defined as the RII of an AFLP 

marker in the cross progeny selected in “treated” mice (RIIt), divided by the RII of the marker 

of the cross progeny grown in a parallel “untreated” group of mice (RIIut), and expressed as a 

percentage: 

 

CI = (RII t/RII ut) x 100. 

 

Keeping in mind that the objective is to identify the genomic loci under drug selection either 

by artemisinin or artesunate that would correspond to a selection valley associated to the 

resistant phenotype, AFLP markers with low CIs were identified and their position according 

to the previously define genetic linkage map [Martinelli A et al. 2005] were noted. 

 

2.16.5 Assignment of AFLP markers to locations in a P. chabaudi 

genetic linkage map. 

 

Markers had previously been ordered on a genetic linkage map of P. chabaudi [Martinelli A 

et al. 2004, Martinelli A et al.2005] obtained from previously generated crosses between AS-

derived clones and AJ strains of P. chabaudi [Carlton JM et al. 1998; Rosario VE 1976; 

Walliker D et al. 1975].  

A total of 674 AFLP markers were typed for each uncloned progeny analysed in this work, 

and were subsequently assigned to linkage groups using the previously generated map 

[Martinelli A et al. 2005]. 

A total of 674 AFLP markers were typed for each of 28 cross-progeny clones, and were 

subsequently assigned to linkage groups using the Map Manager QTX software [Manly KF et 

al. 2001]. A total of 44 RFLP markers characterized in a previous study [Carlton JM et al. 

1998] were used as genetic anchors to allow the assignment of the various linkage groups to 

chromosomes. In total, 11 chromosomes could be identified, while 12 linkage groups of as yet 

unknown assignment remain, which include the three remaining chromosomes (chromosomes 

2, 4, and 14).  
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2.16.6 Sequencing of AFLP markers, and their location on the 

Plasmodium falciparum genome 

 

AFLP bands that appeared to be under selection were excised from acrylamide gels using a 

sterile scalpel. The gel fragments were then soaked in an Eppendorf tube in 50 µl of 

autoclaved, distilled water (sdH2O) overnight.  

Gel slices were centrifuged at 12000g prior to removal of the liquid phase containing the 

DNA. DNA was precipitated using 1/10 volume of 3M sodium acetate (pH 5.2) and 3 

volumes of ice-cold absolute ethanol. The solution was placed at -20°C for at least 1 h. 

Thereafter the tubes were spun for 30 minutes at high speed. The liquid phase was removed 

and the DNA pellet washed twice in 70% ethanol, before air drying. The pellet was then 

dissolved in 50 µl TE buffer (pH 8.0).  

The extracted DNA fragment was amplified by PCR, using the same selective AFLP primers 

and PCR conditions that produced it.  

Sequencing reactions were carried out using the protocol described, below in section 2.16.7. 

The sequences of markers were then physically mapped in the P. falciparum genome 

(sequence data for P. falciparum were obtained from the Sanger Centre website, which can be 

accessed at www.sanger.ac.uk_Projects_P_falciparum), using BLAST searches. 

 

2.16.7 AFLP band sequencing and purification of PCR products 

 

Sequencing PCR reactions were set up using the ABI PRISM Big DyeTM Terminator Cycle 

Sequencing Ready Reaction Kit, (PE Applied Biosystems). PCR reactions were prepared to a 

final volume of 10µl, containing the following reagents: 4µl template DNA (100-250ng), 4µl 

Terminator Ready Reaction Mix, 1µl primer (3.2pmol), 1µl sterile distilled water  

 

Sequencing PCR conditions were as follows;  

 

Denaturing 95°C for 30 seconds 

Annealing 50°C for 20 seconds 

Extension 60°C for 4 minutes 

 

Following the sequencing PCR, the products were purified by precipitation with sodium 

acetate and 95% ethanol, and washed in 70% ethanol. 

x 25 cycles 
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For sequencing of purified PCR products, internal primers covering the extreme 5’ and 3’ 

ends of the fragments were used. All fragments were sequenced in opposite directions. 

 

Sequencing results were analysed using the SeqED V 1.0.3 software (Applied Biosystems 

Inc., 1992). The programme allows the visualisation of chromatograms of the sequenced 

DNA.  

 

So as a summary: traditional linkage analysis of individual cross progeny clones, is labour-

intensive and expensive, as it involves the genotypic and phenotypic characterization of 

individual clones from a cloned progeny of a genetic cross. Without the generation of an 

extremely large number of recombinant clones it has a poor resolution, which makes the 

actual identification of the underlying genes extremely difficult unless strong candidates are 

already suspected. There is an inverse relationship between the size of the locus within which 

possible target genes may be located and the number of recombinant clones that must be 

generated [Wellems TE et al. 1991]. 

LGS, used in this project, has enabled the discovery of genes controlling biological properties 

in malaria parasites to be greatly accelerated [Culleton R et al. 2005; Martinelli A et al. 2005]. 

LGS differs from the traditional approach to genetic analysis of malaria parasites by not 

requiring individually characterisation of very large numbers of clones from the progeny of 

the cross [Carter R et al. 2007]. LGS characterises the uncloned progeny of a genetic cross 

(between a resistant and sensitive parasite to the particular parasite characteristic in study) by 

measuring the proportion of parental polymorphic markers at genome-wide loci (AFLP), 

before and after drug treatment. Markers from the sensitive parent that are linked to the gene 

underlying the resistance phenotype will be under-represented or eliminated after drug 

treatment, forming a “selection valley”. In the case of this project, the AJ markers correspond 

to the markers from the sensitive parent; those markers will be under represented or 

eliminated after artemisinin and artesunate treatment.  

As Carter R and colleagues so clearly summarise [Carter R et al. 2007], LGS analysis 

depends upon several distinct experimental components.  

A) The crossing of two genetically distinct lines of malaria parasite by preparing a mixed 

infection of gametocyte-producing blood-stage parasites in a mouse, allowing 

mosquitoes to feed upon the mixture, with consequent parasite development and 

invasion of sporozoites to salivary glands; 
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B) The subjection of the progeny of the cross to a selection pressure (in the case of this 

research, ART or ATN pressure). This drug selection is applied to the blood stage 

parasites in mice infected with the cross progeny sporozoites. 

C) The screening of the uncloned, selected cross progeny with quantitative markers, such 

as quantitative real-time PCR, quantitative AFLP and proportional sequencing. So 

before the LGS technique could be applied the development of quantitative markers 

covering as much the parasite genome as possible is necessary. Prior to this project 

quantitative AFLP were optimized and developed for being use with AS and AJ 

parasite lines from P. chabaudi [Culleton R et al. 2005; Martinelli A et al. 2005]. 

The location of the genetic markers in a Plasmodium genome database with the expectation 

that markers linked to genes controlling the target of drug selection will form a selection 

valley containing the locus of the selected genes. A genetic linkage map, in the case of this 

project already previous developed by Martinelli A and co-workers [Martinelli A et al. 2005], 

a genome sequence database, in the case of our model P. chabaudi sequence though not fully 

complete with a big coverage and a complete syntenic map developed prior to this project 

[Kooij TW et al. 2006] allowed us to map genes and markers genetically and physically, thus 

allowing identification of loci under selection. Then mutations in suspected candidate genes 

within the locus can be identified by comparative sequencing of genes from both the resistant 

mutant and its sensitive progenitor [Carter R et al. 2007]. 

 

2.17 Experiments with genetic crosses of AS-ART and AJ or AS-ATN and 

AJ 

 

To analyse the efficacy and composition of each of the genetic crosses and the progression of 

the drug selection proportional sequencing was used. Proportional sequencing was used with 

DNA samples from sporozoites and mice blood samples before and after drug selection.   

 

 2.17.1 Blood collection for Proportional sequencing analyses 

 

5 µl of blood were removed from each infected mice daily using a glass capillary. The blood 

was placed in an Eppendorf tube which contains 2 drops of citrate saline solution. The 

samples were then spun in a microcentrifuge at 10,000 rpm for 2 minutes, and the supernatent 

removed. The resulting pellet was frozen at -70°C. 
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 2.17.2 Extraction of parasite DNA from blood or sporozoites 

 

Frozen blood pellets and frozen sporozoites crushed were thawed at room temperature, and 

the DNA extracted using the InstaGene™ Matrix (Bio-Rad), following the manufacturers 

handbook protocol. 

 

 2.17.3 Determination of the proportions of clones in genetic crosses by 

proportional sequencing 

 

2.17.3.1 Principle of proportional sequencing 

 

The blood and sporozoite samples taken from each mouse or from the mosquitoes salivary 

glands were analysed using Proportional Sequencing. This technique allows the determination 

of the percentages of each parasite in a mixture on a given day of the infection. By applying 

this technique it was possible to determine the proportions of two parasites in mixed 

infections over the course of an infection.  

To directly quantify the proportions of the sensitive (AJ) and resistant (AS-ART and AS-

ATN) parasites present in the selected and unselected mixed infections, DNA was amplified 

by nested PCR at the dhps locus using primers common to non-polymorphic sequences from 

both parental alleles. The resulting PCR products were purified and sequenced. Sequencing 

results were analyzed using the SeqED v 1.0.3 software (Applied Biosystems, Inc., 1992), 

which allows the visualization of chromatograms of sequenced DNA and the quantitation of 

individual fluorescent peaks.  

The relative heights of peaks at the polymorphic sites in these genes can be used as an index 

of the relative proportions of the AJ and AS-ART and AS-ATN parasites in each sample. 

With five replicate samples, and with reference to a calibrated series of mixtures between AS 

and AJ [Cheesman SJ et al. 2003], it is possible to estimate the percentage of parasites 

carrying the AS or AJ alleles of each gene with a standard error of <3% [Hunt P et al 2005].  

A detailed description of the Proportional Sequencing technique is available elsewhere [Hunt 

P et al. 2005]. Briefly, the technique exploits the fact that during a PCR reaction, DNA is 

amplified in proportion to the initial template. If DNA containing a mixture of both AS and 

AJ type alleles is amplified in the same reaction, then the proportions of these clones will 

remain constant throughout the PCR. This means that the amplified PCR product will contain 

the same proportions of AS-ART or AS-ATN and AJ DNA as the template DNA that was 



 107

amplified. When this DNA is sequenced, it is possible to determine the proportions of the 

clones in a population by measuring the proportions of a single base that differs between 

them. 

For example it is possible to distinguish AJ and AS-ART or AS-ATN parasites by 4 single 

nucleotide polymorphisms on the pcdps gene. As an example the gene and the polymorphisms 

will be presented on Figure 13. 
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Figure 13- The four polymorphisms on the pcdhps gene that allowed differentiating between strains AS and AJ. 

Numbers 1-4 correspond to the polymorphisms. Primers are presented in bold. 

From Hunt P et al. 2005, with kind permission of Dr. Paul Hunt. 

 

When both these parasites are present in an infection, both bases will be present at positions 

indicated in Figure 13 with numbers 1-4 in the sequence. By measuring the proportions of 
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each base (by comparing the size of the peaks on a sequence chromatograph) it is possible to 

determine the proportions of each parasite in the mixture.  

 

2.17.3.2 Proportional sequencing - PCR reagents and reaction 

conditions 

 

Extracted parasite DNA was subjected to a nested PCR, amplifying a portion of the dhps gene 

that contains single nucleotide polymorphisms between AS-ART and AS-ATN and AJ. The 

oligonucleotide primers used were as follows: 

 

pcdhps: 

Outer PCR  

pcdhps –11 : GTACGCAGAATATTTCAAATG  

pcdhps –12 : CTTTTTATTGGGTATTCAAGG 

 

Inner PCR  

pcdhps –07 : CTTTTGTTTCTCATAATCCAG 

pcdhps –08 : GGTTTAGGTTTTGCAAAGAA  

 

Individual PCR reactions were carried out in 50µl volumes containing 10pM of both 

oligonucleotides, 1 X PCR buffer, 1 X dNTP solution, 1 unit Taq DNA polymerase 

(Boehringer Mannheim), and 20µl of extracted DNA solution from for the outer PCR and 1µl 

of the resulting PCR product for the inner PCR. Negative controls were also prepared, which 

contained 1µl of sterile distilled water in place of template DNA. Positive controls were 

prepared using a previously amplified DNA template.  

PCR reactions were carried out using an UNO-Thermoblock machine (Biometra), under the 

following standard conditions;  

 

Denaturing 95°C for 1 minute 

Annealing 52°C for 1 minute 

Extension 65°C for 1 minute 

 

x 30 cycles 
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PCR conditions were the same for both rounds of the nested reaction.  

PCR products were run and visualized on a 1.5% agarose gel in TBE solution. The resulting 

PCR products were then purified using the QIAGEN QIAquickTM PCR purification kit, 

following the manufacturer’s instructions. 

 

2.17.3.3 Proportional sequencing – Sequencing and purification 

of PCR products 

 

Sequencing PCR reactions were set up using the ABI PRISM Big DyeTM Terminator Cycle 

Sequencing Ready Reaction Kit, (PE Applied Biosystems). PCR reactions were prepared to a 

final volume of 10µl, containing the following reagents: 4µl template DNA (100-250ng), 4µl 

Terminator Ready Reaction Mix, 1µl primer (3.2pmol), 1µl sterile distilled water  

Sequencing PCR conditions were as follows;  

 

Denaturing 95°C for 30 seconds 

Annealing 50°C for 20 seconds 

Extension 60°C for 4 minutes 

 

Following the sequencing PCR, the products were purified by precipitation with sodium 

acetate and 95% ethanol, and washed in 70% ethanol. 

For sequencing of purified PCR products, internal primers covering the extreme 5’ and 3’ 

ends of the fragments were used. All fragments were sequenced in opposite directions. 

 

2.17.3.4 Proportional sequencing – Analyses of sequencing 

results 

 

Sequencing results were analysed using the SeqED V 1.0.3 software (Applied Biosystems 

Inc., 1992). The programme allows the visualisation of chromatograms of the sequenced 

DNA. The relative proportions of the two strains in each sample were determined by 

measuring the two peaks associated with the single nucleotide polymorphism that confers 

pyrimethamine resistance. It was possible, therefore, to calculate the percentages of each 

allele of a gene in each sample. For an example of a gel for proportional sequencing for the 

gene pcdhps see Figure 14. 

x 25 cycles 
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Figure 14 – Example of an electropherogram for proportional sequence analysis of two polymorphisms on the 

pcdhps gene. Numbers 1 and 2 represent a polymorphism number; both numbers correspond to the 

polymorphism number on Figure 13. 

From: Hunt P et al. 2005 with kind permission of Dr. Paul Hunt.  

1 21 2
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2.18. Amplification and sequencing of the ubp-1 gene of P. chabaudi 

 

The amplification and sequencing of ubp-1 gene has done using the same protocol as the one 

described for mdr1, cg10, tctp and atp6 genes, and this protocol is already described in 2.13. 

Genomic DNA was used as template in 50µl PCR reactions, containing 0.2µM of each 

oligonucleotide primer, 1x PCR buffer (Promega), 2.5 mM MgCl2, 0.2mM dNTPs and 

0.025U/µl of Taq DNA polymerase. These were used in PCR amplifications of AS-15CQ, 

AS-30CQ, AS-ATN and AS-ART. Negative controls were also prepared, which contained 1µl 

of sterile distilled water in place of template DNA. Positive controls were prepared using a 

previously amplified DNA template.  

The oligonucleotide primers sequence is presented in Appendix 4. 

All PCR reactions were carried out using a UNO-Thermoblock machine (Biometra).  

PCR products were run on a 2% agarose gel in TBE solution and visualized under UV. 

Products were purified using the QIAquick PCR Purification Kit from QIAGEN and 

sequenced using BigDye chain termination v3.1 (Applied Biosystems). The sequencing 

reactions were analysed by Macrogen®. The primers used in sequencing reactions were those 

used for the initial amplification of the fragments.  

Gene and predicted amino-acid sequences were manually compiled, and then compared 

between drug selected and unselected clones using an internet-based interface denoted 

Multiple Sequence Alignment with hierarchical clustering [Corpet F et al. 1998], using 

default alignment parameters (http://prodes.toulouse.inra.fr/multalin/ multalin.html).  



 113

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS 



 114 



 115

 

 

 

 

 

 

 

 

 

The results of the present work are divided into three chapters:  

 

• Chapter III  describes the results of experiments designed to select artemisinin and 

artesunate resistant parasites. These experiments also involved evaluation of certain 

resistance features such as stability. 

 

• Chapter IV describes the results of experiments designed to analyse the involvement of 

previously described putative genetic modulator for artemisinin and artesunate resistance, 

the P. chabaudi genes mdr1, cg10, tctp and atp6.  

 

• Chapter V is concerned with the results of experiments on genetic crosses between an 

artemisinin resistant (AS-ART) and a sensitive (AJ) cloned strain of P. chabaudi and an 

artesunate resistant (AS-ATN) and a sensitive (AJ) cloned strain of P. chabaudi. 

Presented here are also the results of LGS experiments conducted with the uncloned 

recombinant progenies of the genetic crosses. 

 



 116 



 117

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESULTS 

CHAPTER III 
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This chapter presents the results of experiments to select artemisinin and artesunate resistance 

in P. chabaudi, of stable phenotype, of cloning the parasite lines obtained and in the 

characterization of the resistance obtained, including its stability. 

 

3.1. Introduction 

 

The objective of this part of the project was to select artemisinin and artesunate mutants in the 

rodent malaria P. chabaudi, through prolonged exposure of drug-sensitive lines to low and 

increasing levels of the drug, administered to mice. 

Table 7 depicts the maximum doses tolerated by the progenitor parasite lines as established in 

preliminary work. 

 

Table 7 – Maximum doses tolerated by the progenitor parasite lines used to select for resistance. 

 

P. chabaudi  Maximum dose for 

artemisinin (mg/kg/day) 

Maximum dose for artesunate 

(mg/kg/day) 

AS-15CQ 1.2 2 

AS-30CQ 4 1.6 
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3.2 Artemisinin drug selection 

 

P. chabaudi clone AS-30CQ was exposed to gradually increasing concentrations of 

artemisinin, during several consecutive passages in mice, starting with a drug dose of 4 

mg/kg/day, previously determined to be subcurative for these parasites (data not shown). See 

Table 7. 

The drug selection procedure is described in more detail in the Materials and Methods 

Chapter (see Point 2.8) and summarized in Figure 15.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 15 – A schematic representation of the artemisinin selection procedure. AS-ART* is uncloned. 
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Figure 16 represents the stepwise increase in drug dose during the artemisinin selection 

procedure.  
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Figure 16 – The increase of the artemisinin dose (mg/kg/day), tolerated by AS-30CQ clone, during 15 blood 

passages.  

 

Figure 16 shows the stepwise increment on the artemisinin dose during selection, starting by a 

4 mg/kg/day dose of artemisinin, this dose being the maximum dose tolerated by the initial 

parasites, AS-30CQ.  

The drug resistance selection process lasted for approximately 27 weeks (approximately 7 

months); meaning that during this period the P. chabaudi parasite clone AS-30CQ was kept 

under increasing drug pressure until a concentration of 60 mg/kg/day, at the end of which 

resistance seemed to have been selected. Due to time constrains the selection process was 

finished at this stage where stability of resistance was assayed.  

In the first four passages under drug pressure, the total increment on the artemisinin dose was 

of only 6 mg (from first passage to passage number 10) only from passage number five 

onwards we were able to increase 5mg of ART on each passage. 
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Figure 17 – The day of recrudescence on each passage under selection and artemisinin dose (mg/kg/day). 

 

Figure 17 shows the stepwise increment on the artemisinin dose during selection, and time of 

recrudescence.  

The day of recrudescence was considered during the selection procedure as an indication on 

the parasite sensitivity to artemisinin. However, after the five passages, it was noticed that the 

time of parasite presence under pressure remained roughly the same; though drug pressure 

was increased a few fold.  

At the end of the selection procedure, assays were carried out to confirm that a parasite 

resistant line to artemisinin was obtained. This was established by the determination of the 

minimum curative dose (MCD) of each drug from the selected and original sensitive parasite 

populations.  

MCD was defined as the minimum dose of each drug that would prevent recrudescence 

within each treated group at any time during the first 10 days of the follow-up period.  

A resistance index was determined using the following equation: 

 

N-fold resistance = MCD drug selected parasites/ MCD drug unselected parasites 



 123

Table 8 – N-fold resistance, using the equation above and calculated for each passage under artemisinin 

pressure. The MCD drug pressure for the 1st passage is 4 mg/kg/day, which was the initial drug dose tolerated by 

the AS-30CQ clone used for drug selection. 

 

Number of blood 

passage under 

artemisinin pressure 

MCD drug selected 

parasites 

(mg/kg/day) 

N-fold resistance  

(MCD drug selected parasites/ 

MCD drug unselected 

parasite) 

1 4 1 

2 6 1.5 

3 6 1.5 

4 8 2 

5 10 2.5 

6 15 3 

7 20 3.5 

8 25 3.8 

9 30 4 

10 35 4.5 

11 40 5 

12 45 7.5 

13 50 10 

14 55 12.5 

15 60 15 

 

At the 15th passage, when due to time constrain limitations the selection procedure was 

stopped, the parasite line obtained, denoted AS-ART*, (* uncloned parasite population). AS-

ART* has an N-fold resistance of 15 when compared to the initial parasite clone and was 

cloned by the method of limiting dilution [Rosario V, 1976]. See Section 3.4. 

Cloned parasites were re-tested for their responses to artemisinin. 
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3.3 Artesunate drug selection 

 

To select for artesunate resistance, P. chabaudi clone AS-15CQ, was exposed to gradually 

increasing concentrations of artesunate during several consecutive passages in mice, starting 

with a sub curative drug dose of 2 mg/kg/day. See Table 7. 

The procedure was the same as for artemisinin drug selection and is described in more details 

in materials and methods (See Section 2.8) and previous on Section 3.2 and a schematic 

representation of the protocol can be seen on Figure 18. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure18 – A schematic representation of the artesunate selection procedure. AS-ATN* is uncloned. 
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Figure 19 represents the stepwise increase in drug dose during the artesunate selection 

procedure.  
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Figure 19 – The increase of the artesunate dose (mg/kg/day), tolerated by AS-15CQ clone, during 14 blood 

passages.  

 

Figure 19 shows the stepwise increment on the artesunate dose during selection, starting by a 

2 mg/kg/day dose of artesunate, this dose being the maximum dose tolerated by the initial 

parasites, AS-15CQ.  

The drug resistance selection process finished at the 14th passage when the parasite tolerance 

had increased to 12 mg/kg/day, due to time constrains the selection process was finished at 

this stage where stability of resistance was assayed.  
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Figure 20 – The day of recrudescence under selection and artesunate dose (mg/kg/day). 

 

Figure 20 shows the stepwise increment on the artesunate dose during selection versus the day 

of recrudescence.  

As stated before the time of recrudescent parasites appearing in the blood of treated mice was 

used during the selection procedure as an indication on reduced susceptibility to artesunate. 

Here, and in a different fashion from artemisinin, the selection of artesunate resistance was 

carried out in a more consistent increase of the drug pressure within roughly the same period 

of time. It is speculated that this is related to the metabolism of the drug. Thus, being a second 

generation derivative of artemisinin, it is more active than artemisinin itself in the process of 

eliminating the parasites.  

The minimum curative dose (MCD) for artesunate was calculated the same way as for 

artemisinin.  
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Table 9 – N-fold resistance calculated for each passage under artesunate pressure. The MCD drug unselected 

parasites is 2 mg/kg/day, which was the initial drug dose tolerated by the AS-15CQ clone initially used for drug 

selection. 

 

Number of blood 

passage under 

artesunate pressure 

MCD drug selected parasites 

(mg/kg/day) 

N-fold resistance  

(MCD drug selected 

parasites/ MCD drug 

unselected parasite) 

1 2 1 

2 2.5 1.2 

3 3 1.5 

4 3.5 2 

5 4 2.2 

6 5 2.5 

7 6 2.5 

8 7 3 

9 8 3.5 

10 9 4 

11 10 4.5 

12 10 5 

13 11 5.5 

14 12 6 

 

At the 14th passage at the end of the selection procedure, the parasite line obtained, denoted 

AS-ATN*, (* uncloned parasite population). AS-ATN* has an N-fold resistance of 6 when 

compared to the initial parasite clone and was cloned by the method of limiting dilution 

[Rosario V, 1976]. See following Section 3.4. 

Cloned parasites were re-tested for their responses to artesunate. 
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3.4 Cloning of resistant parasites 

 

At the end of the selection procedure, it was considered that a significant level of resistance to 

both to artemisinin and artesunate had been obtained. The N-fold level of resistance was 

calculated. The artemisinin resistant parasite line AS-ART* was 15 fold more resistant than 

the initial clone AS-30CQ; the artesunate resistant parasite line AS-ATN* was 6 fold more 

resistant to ATN than the initial clone AS-15CQ. 

Both parasite populations were cloned by the limiting dilution method. (See Section 2.5 for 

details). The cloning procedure is extensively described at Rosario V 1976. 

From the cloning procedure of the parasite line AS-ART*, from the 50 mice inoculated, five 

mice developed patent parasitemias (10 % infection rate ) from which parasites were 

harvested and frozen in liquid nitrogen  

From the cloning procedure of the parasite line AS-ATN*, from the 50 mice inoculated, seven 

mice developed patent parasitemias (14% infection rate) from which parasites were harvested 

all frozen in liquid nitrogen. 

Of these, one clone from each line was chosen on the basis of their faster growth rate, for 

further studies, including stability assays and genetic crosses and analysis. The artemisinin 

and artesunate resistant clones were designated P. chabaudi AS-ART and AS-ATN 

respectively. See Figure 21 for details. 

 

 

 

 

Figure 21 – A schematic representation of the clones and parasite lines of Plasmodium chabaudi used in this 

project. 
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AS-ART and AS-ATN were tested for their response to artemisinin and artesunate 

respectively, immediately after cloning. AS-ART and AS-ATN clones were inoculated into 

naïve CD1 mice and then re-tested for their susceptibility to artemisinin and artesunate, by 

comparing their response to each drug with that of non-treated and passaged the same number 

of times as the parasites under selection, control parasites, AS-30CQ and AS-15CQ 

respectively.  

AS-ART and AS-ATN were shown to retain the same phenotype as that of the drug-resistant 

population from which they had been derived, under the same drug pressure of respectively 

60 mg/kg/day treatment for 5 days with artemisinin, or a 12 mg/kg/day treatment for 5 days 

with artesunate. These parasites were then used in subsequent studies to investigate further 

whether the observed drug resistance was stable. These results will be presented on Section 

3.5. 
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3.5 Drug resistance stability tests  

 

Once resistance to artemisinin and artesunate were selected and cloned stability of the 

resistant phenotype, under absence of drug pressure was assayed.  

Drug-resistant parasite clones, AS-ART and AS-ATN were re-tested for their drug responses 

after each of three different procedures: 

i) Freeze-thawing cycles in liquid nitrogen,  

ii) 12 continuous sub inoculations in mice in the absence of drug treatment and  

iii) Transmission through Anopheles stephensi mosquitoes into new mice. 

N-fold resistance index was calculated as it has been previously described. 

 

 3.5.1. Resistance stability after liquid nitrogen preservation (deep-

freezing) 

 

To check for resistance stability after liquid nitrogen preservation, resistant clones were 

frozen down in liquid nitrogen and then thawed, and re-tested for resistance.  

Briefly infected blood is drawn, when the majority of asexual parasites are at the ring stage of 

development, into heparinised syringes. The red blood cells are pelleted by centrifugation 

(2000 rpm for 5 minutes) and the majority of the plasma is removed, two volumes of deep-

freeze solution (Appendix 1) are added to one volume of the packed red blood cells with 

constant mixing in a drop wise fashion. Such material, inoculated i. p. into a mouse, after any 

period of storage, induced an infection, which became patent from 7-14 days after 

inoculation. The parasites growing in this fashion were evaluated for their response to 

artemisinin or artesunate in comparison with unselected control parasites, the same way as 

during the drug resistance selection.  

AS-ART and AS-ATN parasite clones phenotypes drug resistance remained unchanged in 

both cases. The two cloned lines retained a 15 and 6 times N- fold resistant phenotype 

respectively. The parasites response to the drug was the same after freezing and thawing. 

Stability of resistance was therefore, confirmed. 
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 3.5.2. Resistance stability after blood passages in the absence of drug 

pressure 

 
AS-ART and AS-ATN cloned parasites were subjected to 12 passages in untreated mice, after 

which they were tested for their drug responses.  

Briefly, 107 infected red blood cells were established as the standard parasite number to be 

infected into individual mice. Infections in the absence of drug pressure were maintained by 

passaging resistant parasites twelve times in CD1 mice i. p. route. Treatment was 60 

mg/kg/day for 5 days for ART and as 12 mg/kg/day for 5 days for ATN.  

Once drug tests were preformed after the twelve passages in the absence of drug treatment, it 

was verified that the resistant phenotype maintained because resistant parasites recrudesced as 

expected while sensitive parasites did not. 

Resistant clones retained resistance to the corresponding drug.  

 

3.5.3. Resistance stability after cyclical transmission through 

mosquitoes 

 

After confirming the stability of the resistance phenotype after cloning, freezing and thawing 

of these clones, in the absence of drug pressure, it was necessary to demonstrate that this 

genetic trait was transmissible through mosquitoes. 

The procedure for cyclical transmission through mosquitoes was previously described by 

Landau and colleagues [Landau I et al. 1966].Briefly, infected splenectomised rats, in which 

gametocytes were present, were exposed to mosquitoes, which had been starved for 24-48 

hours. The infected rodents were exposed to mosquitoes for a varied length of time (1-2 

hours) depending on the feeding performance of the mosquitoes. Seven to ten days later a 

small number of mosquitoes were dissected in order to count the number of oocysts, which 

had developed on each midgut. Fifteen and, eventually, seventeen days after the blood meal, 

when sporozoites were present in the salivary glands, an uninfected mouse was exposed to the 

mosquitoes for transmission of the malaria infection. Patent blood infections could be 

detected after 4-8 days in blood smears from the mice. Resistant clones successfully 

transmitted in this fashion were tested for their response to artemisinin or artesunate in 

comparison with unselected control parasites.  

Mice infected with AS-ART or AS-ATN were used to feed A. stephensi mosquitoes. AS-ART 

was successfully transmitted through mosquitoes on two separate occasions, and the resulting 
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blood forms that developed in mice were renamed AS-ARTA and AS-ARTB. The N-fold 

resistance index of AS-ARTB were then assessed in parallel to the, untreated but passaged 

control line, AS-30CQ (this line was also transmitted through mosquitoes at the same time, as 

a control). AS-ARTB showed an N-fold resistance index of 15-fold to artemisinin relative to 

AS-30CQ. Thus, artemisinin resistance remained stable after transmission of the resistant 

parasites through mosquitoes. AS-ARTA was not tested and the parasites where deep-frozen. 

For simplicity and clarity on further analysis during this project, AS-ARTB clone was 

renamed AS-ART. 

In a similar fashion, AS-ATN was also subjected to mosquito transmission and showed a 6-

fold increase in the N-fold resistance to artesunate relative to sensitive control; therefore we 

also consider artesunate resistance to be stable after mosquito transmission. See Figure 22 for 

a summary of the drug selection / stability tests procedure. 

 

 

 
 

 

 

 

 

 

 

 

Figure 22 – A schematic representation of the artemisinin and artesunate selection procedure.  

Clone AS-30CQ and parasite line AS-15CQ were passaged in the absence and presence of gradually increasing 

doses of drug (artemisinin and artesunate, respectively). Initial drug sensitivities (4 mg/kg/day or 2 mg/kg/day) 

decreased (to 60 or 12 mg/kg/day) after 15 or 14 passages, respectively. The drug responses after cloning, 

passage in the absence of drug (“untreated”) and transmission through mosquitoes remained unchanged. Control 

selection procedures in the absence of drug are also shown.  

Adapted from: Afonso A et al. 2006. 

 

The artemisinin and artesunate resistance phenotypes were unaltered after passaging in the 

absence of drug pressure, after freezing and thawing and after transmission through laboratory 

mosquitoes (Figure 22). Thus artemisinin and artesunate resistance obtained in our rodent 

model P. chabaudi is stable, indicating that resistance is likely to be genetically encoded. 
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3.6 Test for cross-resistance between artemisinin and artesunate clones  

 

In order to evaluate whether the mechanisms of resistance to artemisinin and to artesunate 

share similar features, the responses of AS-ART to artesunate and AS-ATN to artemisinin 

were tested, resistant clones were cross tested with each other’s selective drugs. Artemisinin 

at chosen dose was given to the artesunate resistant clone (AS-ATN) and artesunate at chosen 

dose was given to the artemisinin resistant clone (AS-ART).  

For these tests several drug doses were initially tested for both resistant clones, the maximum 

dose of artemisinin tolerated by the artesunate resistant clone (AS-ATN) is 32 mg/kg/day for 

five days and the maximum dose of artesunate tolerated by the artemisinin resistant clone 

(AS-ART) is 8 mg/kg/day (data not shown). AS-ART showed a five-fold increase in the 

MCD to artesunate relative to AS-30CQ while AS-ATN showed a greater than ten-fold 

increase in the MCD to artemisinin, relative to AS-15CQ. These tests therefore revealed that 

both clones showed cross-resistance and that in both parasites there were greater increases in 

artemisinin resistance (15–26 fold) than for artesunate resistance (5–6 fold). The 

demonstrated cross-resistance suggests some sharing of genetic or pathways features in the 

parasites clones described here. Thought the existence of cross-resistance suggests that 

resistance to artemisinin and artesunate do share similar features, at least in the parasites 

clones described in this project. 

 

Table 10 - N-fold resistance of P. chabaudi AS-ATN and AS-ART. The absolute and relative (N-fold) drug 

sensitivities of AS-ATN and AS-ART after blood passage in the absence of treatment, freeze/thaw and mosquito 

transmission are given. MCD – minimum curative dose.  

From: Afonso A et al. 2006. 

 

P. chabaudi MCD ATN 

(mg/kg/day) 

MCD ART 

(mg/kg/day) 

N-fold ATN N-fold ART 

AS-15CQ 2 1.2 - - 

AS-ATN 12 32 6 26 

AS-30CQ 1.6 4 - - 

AS-ART 8 60 5 15 
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3.7 Discussion 

 

Drug resistance genetic basis can be study using various methodologies. A correct and 

complete method to study drug resistance genetics depends on firstly selecting drug resistance 

mutants of stable phenotype, because only the presence of a stable phenotype guarantees that  

resistance is genetically encoded and not a physiological adaptation to the constant presence 

of drug pressure. Drug resistance can be selected in vitro using for example chemical 

mutagenesis or in vivo by drug pressure either using a single very high dose like the method 

used to select PYR resistance or by progressively increasing the drug concentration. The latter 

situation is the one that most closely mimics the actually scenario taking place in natural 

parasite populations. Therefore, an appropriate method that has been used for selecting and 

understanding drug resistance is the utilization of genetically stable resistant mutants selected 

through drug pressure, originated from cloned sensitive parasite lines. Both the original drug-

sensitive and the selected drug-resistant parasites should be genetically identical, (or 

isogenic), except for any mutations involved in resistance; such mutations can then be 

pinpointed using different approaches.  

This project represents the first study where malaria parasites with genetically stable and 

transmissible resistance to the antimalarial drugs artemisinin and artesunate were selected and 

used in genetic crosses. 

The reasons for obtaining stable resistance where others have previously tried unsuccessfully 

are not clear. One reason could be the use of the rodent model P. chabaudi, which had been 

used before to select for pyrimethamine, chloroquine and mefloquine resistance. The 

existence of parasite clones with an accumulation of drug resistance genetic markers may 

create a favourable background for the selection of artemisinin and artesunate resistance. 

Two parasite lines were selected and cloned: AS-ART is 15 times more resistant to 

artemisinin than its progenitor parasite line, AS-30CQ and AS-ATN which is 6 times more 

resistant to artemisinin than its progenitor parasite line, AS-15CQ.  

In this work the utilization of approximately the same number of blood passages, during a 

similar time period under drug pressure, produced an N-fold resistance for artesunate inferior 

to the N-fold resistance for artemisinin and this is not explainable.  

Metabolization differences between the two drugs may have had an intrinsic difference in the 

selective pressure within the host, but drug concentration studies were not carried out. 

A very interesting finding during this part of the project was the cross resistance between the 

selected resistant clones, giving a very strong indication that resistance to ART and ATN 

share similar features. 
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The successful selection of these parasites and the fact that they can be transmitted through 

Anopheles sp. mosquitoes is a significant achievement for two main reasons: a) these 

observations demonstrate that malaria parasites are genetically and biologically capable of 

sustaining stable resistance to artemisinins which had been selected through drug pressure. 

Consequently, it is also conceivable that, in human malaria, artemisinin resistance may appear 

in the future due to extensive and/or inappropriate drug usage; once it does, it may spread in 

the parasite population and become established; b) the resistant P. chabaudi parasites reported 

here could then be used to investigate the genetic determinants of resistance to these drugs.  

It was possible to generate ART or ATN resistance from two different parasite clones, AS-

30CQ and AS-15CQ which were already resistant to chloroquine and pyrimethamine. Efforts 

to generate ART or ATN resistance from the very original chloroquine sensitive clone (AS-

PYR), were abandoned, because this clone showed, under the same drug pressure 

methodology, high susceptibility to the treatments (data not shown). As stated before, this 

may be a result of a genetic ability, if not potentiation of the parasite ability to generate 

mutations in response to drug treatment (called the “Accelerated Resistance to Multiple 

Drugs” (ARMD) phenotype) [Rathod PK et al. 1997] which might have occurred during the 

generation of previous drug selective methods, including chloroquine. 

Alternatively, it is possible that the ART resistance phenotype is only expressed in 

chloroquine resistant clones, almost as resistance to CQ is required for the selection of ART 

and ATN.  

This suggests the presence of functional interactions between the pathways underlying 

chloroquine and artemisinin resistance or that resistance to cloroquine genetically creates 

genetic conditions which facilitate the appearance of ART and ATN resistance. These 

questions have significant relevance to the practical lifetime of a drug in areas where 

resistance to other drugs (or to chloroquine specifically) is prevalent. 

The inspection of mutation or mutations underlying resistance to ART and ATN, will be 

described in Chapter IV (known or suspected mutations) and in Chapter V using high-

throughput comparative genomic studies based on genome-wide approaches, Linkage Group 

Selection (LGS) (new mutations) [Culleton R et al. 2005].  
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4.1. Sequencing of P. chabaudi mdr1, cg10, tctp and atp6 genes, in the 

selected mutant clones. 

 

The first objective of this research work was the selection resistant parasites in the rodent 

malaria model, P chabaudi, to artemisinin and artesunate and this was achieved. At this stage 

in order to see if there were differences in the previously described putative genetic 

modulators for artemisinin and artesunate resistance, P. chabaudi genetic homologues of the 

P. falciparum mdr1, crt, tctp and atp6, between the sensitive and the resistant parasites, DNA 

was extracted was extracted from the parasites AS-15CQ and AS-30CQ, and from their 

related artemisinin (AS-ART) and artesunate (AS-ATN) resistant clones.  

 

4.1.1 Isolation of the mdr1, cg10, tctp and atp6 P. chabaudi orthologues 

 

Prior to the present work, the P. chabaudi homologues of the P. falciparum genes pfmdr1 and 

pfcrt, which are respectively pcmdr1 and pccg10 had been identified by Cravo PV and 

colleagues and Hunt P and co-workers [Cravo PV et al. 2003; Hunt P et al 2004]. Thus, for 

PCR amplification of the pcmdr1 and pccg10 genes, oligonucleotide primers and PCR 

amplification conditions previously published were used [Cravo PV et al. 2003; Hunt P et al 

2004], based on DNA sequences characterised prior to this study (pcmdr1 AY123625 and 

pccg10 AY304549).  

The DNA sequences of the P. falciparum and P. yoelii tctp and atp6 genes were available 

online at the NCBI/NIH (National Institute of Health) database (www.ncbi.nih.gov) with the 

following accession numbers: pctctp NP_703454, pytctp AF124820, pfatp6 AB121053 and 

pyatp6 AABL01001880. To obtain the P. chabaudi orthologues of these genes, these 

sequences were retrieved and used in BLAST searches against the available P. chabaudi 

sequences (shot gun clones and genomic contigs), deposited at the P. chabaudi genome 

database (www.sanger.ac.uk). The two sequences giving significant hits were retrieved and 

used to design P. chabaudi-specific oligonucleotide primers to amplify overlapping DNA 

fragments spanning the coding region, introns and both 5’- and 3’-non-coding sequences. 

These were then used in PCR amplifications. 

Pcmdr1 gene has a nucleotide sequence identity of 75.0% to P. falciparum and 78.1% amino 

acid identity to P. falciparum. [Hunt P et al. 2004]. Its accession number is AY123625 and it 

encodes a protein of 1416 amino acids and its coding region is of 4248 base pairs.  
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For the P. chabaudi cg10 gene, there is a nucleotide sequence identity of 68.6% and amino 

acid sequence identity of 75.1% within the predicted coding region when compared to P. 

falciparum crt gene. [Hunt P et al. 2004].  

To investigate whether the P. chabaudi orthologue of Pftctp gene play a role in the resistance 

to artemisinin derivatives in our model, P. chabaudi specific database sequences 

(www.sanger.ac.uk/cgi-bin/blast/submitblast/p_chabaudi) were used to design oligonucleotide 

primers for amplifying pctctp. Pctctp gene has an 84% identity with pftctp gene in relation to 

nucleotides and a 90 % identity to pftctp in relation to amino acid. This high degree of 

identity is a confirmation that the gene has been corrected isolated from the database. [Afonso 

A et al. 2006].  

PCR amplifications were initially carried out using genomic DNA from the drug-sensitive 

parasite clone AS-SENS, according to the gene sequence and primer sequence presented at 

the appendix 2, the P. chabaudi tctp gene was first characterised in the drug-sensitive parasite 

AS-SENS (Genbank accession number AY304545).  

In AS-SENS, the gene is encoded by a continuous open reading frame containing 516 b.p., 

which translates into a predicted peptide of 171 amino acids [Afonso A et al. 200].  

In order to identify possible point mutations in tctp gene, in artemisinin (AS-ART) and 

artesunate (AS-ATN) resistant parasites, in comparison to progenitors, DNA from AS-15CQ, 

AS-30CQ, AS-ART and AS-ATN was used to sequence the entire coding region of the pctctp 

gene. See Figure 25 for details in the extent of DNA sequence analysed. 

Pcatp6 gene has a 72% identity with pfatp6 gene in relation to nucleotides and a 72 % identity 

to pfatp6 in relation to amino acid. This high degree of identity is a confirmation that the gene 

has been corrected isolated from the database. [Afonso A et al. 2006]. The atp6 gene has a 

Genbank accession number of DQ171938. In P. chabaudi the gene was verified to be 

constituted of 3539 nucleotides, comprised of three exons interrupted by two introns one of 92 

nucleotides and the other of 90 nucleotides. 

The pcatp6 gene has two introns (intron 1: 92 bps; intron 2: 90 bps) located near the 3´end of 

the gene and in identical positions to the predicted introns in the P. falciparum gene (See 

Figure 26 for details). The full coding sequence translates into a predicted protein of 1118 

amino acids. . Due to the fact that pfatp6 has been pointed as the target for artemisinin the 

non-coding region that lay in the proximal region of the gene was also checked for gene 

mutations, because in the case of existing these mutations could eventually affect the level of 

transcription. However, no differences in nucleotide sequence between the resistant clones 

and their sensitive progenitors were found in 4kb of nucleotide sequence upstream or in 1 kb 

downstream of the gene.  
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The gene sequence and the primers used for amplification of all of the above genes are 

presented in Appendix 2. 

 

 

 

 

 

 

 

 

Figure 23 – Extent of sequence analysed for the gene pcmdr1 for the clones AS-15CQ, AS-30CQ, AS-ART and 

AS-ATN. Numbers refer to nucleotides 5’ to ‘start’ codon ATG (negative) or 3’ to termination codon (positive). 

Adapted from Afonso A et al. 2006 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 – Extent of sequence analysed for the gene pccg10 for the clones AS-15CQ, AS-30CQ, AS-ART and 

AS-ATN. Numbers refer to nucleotides 5’ to ‘start’ codon ATG (negative) or 3’ to termination codon (positive). 

Adapted from Afonso A et al. 2006.  
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Figure 25 – Extent of sequence analysed for the gene pctctp for the clones AS-15CQ, AS-30CQ, AS-ART and 

AS-ATN. Numbers refer to nucleotides 5’ to ‘start’ codon ATG (negative) or 3’ to termination codon (positive). 

Adapted from Afonso A et al. 2006.  

 

 

 

 

 

 

 

 

 

 

Figure 26 – Extent of sequence analysed for the gene pcatp6 for the clones AS-15CQ, AS-30CQ, AS-ART and 

AS-ATN. Numbers refer to nucleotides 5’ to ‘start’ codon ATG (negative) or 3’ to termination codon (positive). 

Adapted from Afonso A et al. 2006. 
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4.1.2. Sequence comparisons of P. chabaudi mdr1, cg10, tctp and atp6 

in the selected mutant clones and their sensitive progenitors. 

 

AS-ATN, resistant to artesunate and its progenitor parasite line AS-15CQ and AS-ART, 

resistant to artemisinin and its progenitor clone AS-30CQ were all sequenced twice in both 

directions (sense and antisense) for all genes described above. Pairwise comparisons were 

made between sensitive and resistant clones as well as the sequence published in the P. 

chabaudi database. The result revealed that the sequence of all genes was identical between 

all parasites and between the database sequences, showing that no mutations had occurred 

during the selection of drug resistance. In other words, the genes do not appear to be involved 

in chemoresistance in the rodent malaria model P. chabaudi. 
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4.2. Estimation of gene copy numbers of the pcmdr1, pctctp and pcatp6 

genes, in the selected mutant clones. 

 

Besides gene mutations, changes in copy numbers may also be responsible for drug 

resistance. Therefore, gene copy number of pcmdr1, pctctp and pcatp6 on the previously 

selected and cloned artemisinin and artesunate mutants in P. chabaudi (AS-ART and AS-

ATN respectively) were studied. At this stage the gene pccg10 was not analysed for gene 

copy number change due to the fact that there were no references found in the literature that 

account for changes in the gene copy number of either pfcrt or its P. chabaudi homologue 

pccg10.  

The gene copy number can be analysed by various methods, the method of using real-time 

quantitative PCR (RTQ-PCR) has been extensively validated for the use in malaria parasites. 

We found that the most robust method for copy number determination by real-time PCR is the 

comparative Ct (2-∆∆Ct) method [Livak KJ et al. 2001]. While requiring an endogenous control 

and a calibrator, meaning a gene from which previous knowledge is needed for the exact gene 

number (for example msp-1 gene that is known for sure to be a single copy gene in P. 

chabaudi) and a sample that is use as a control for that gene, it differs from relative standard 

method by relying on equal PCR efficiencies with the target and the endogenous control 

genes. The 2-∆∆Ct method is described in detail by Livak and colleagues [Livak KJ et al. 2001]. 

Briefly for the ∆∆Ct calculation to be valid, the efficiency of the amplification of target and 

reference gene must be approximately equal. The control gene was msp-1 and the target genes 

were mdr1, tctp and atp6 genes. The average Ct was calculated for both control and target 

genes and the ∆Ct (Ct target gene – Ct msp-1) was determined. Different plots of the log DNA 

dilution versus ∆Ct were made and whenever the slope was close to zero the efficiencies of 

the target and reference genes were similar, the ∆∆Ct was calculated for the relative 

quantification of the target gene; ∆∆Ct= (Ct target gene - Ct msp-1)α - (Ct target gene - Ct msp-1)β, where 

α = ART or ATN resistant sample and β = AS-30CQ or AS-15CQ samples respectively.  

After the method was validated the results for each sample were expressed in N-fold numbers 

in α gene copy number with normalization to the msp-1gene copy number according to the 

equation: gene number of target = 2-∆∆Ct [Livak KJ et al. 2001]. 

After optimisation of all the RTQ-PCR conditions we aimed to investigate if ART and ATN 

resistance could be related to changes in the gene copy number of mdr1, tctp and atp6 genes. 

For this the N-fold gene number was evaluated and mdr1, tctp and atp6 genes were 

normalised to msp-1 gene, in artemisinin resistant parasites P. chabaudi AS-ART relative to 
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artemisinin sensitive P. chabaudi AS-30CQ from which this parasite line was obtained and 

artesunate resistant P. chabaudi AS-ATN relative to artesunate sensitive P. chabaudi 

AS15CQ from which this parasite line was obtained. Three independent experiments were 

carried out; the mean N-fold values of the experiments are presented in Figure 27. There were 

no changes in the gene copy number of mdr1, tctp and atp6 genes detected (Figure 27), 

meaning that during the selection for artemisinin and artesunate resistance the genes pcmdr1, 

pctctp and pcatp6 did not suffer any gene copy number change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 – Relative differences (N-fold) in gene copy number between artemisinin (AS-ART) and artesunate 

(AS-ATN) resistant parasites and their sensitive progenitors, AS (30CQ) and AS (15CQ) respectively.  

The y-axis represents the mean N-fold of gene number (grey bars) and standard deviations (vertical lines) at 95% 

confidence interval of each of the genes under study normalised against msp-1, generated after three independent 

assays. 

From: Afonso A et al 2006. 
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4.3. Discussion 

 

4.3.1. Summary 

 

The previously described putative genetic modulators for artemisinin and artesunate drug 

resistance, pcmdr1, pcg10, pctctp and pcatp6 that are P. chabaudi gene homologues of P. 

falciparum mdr1, crt, tctp and atp6, respectively, were fully isolated and analysed for their 

coding regions. In the case of the gene atp6 gene an area of 4kb upstream and 1 kb 

downstream was also analysed, in both the resistant clone lines, AS-ART and AS-ATN in 

relation to their sensitive progenitors AS-30CQ and AS-15CQ respectively and found to be 

not mutated.  

Collectively, the above data allowed us to conclude that in our model P. chabaudi the 

pcmdr1, pcg10, pctctp and pcatp6 genes are not involved in artemisinin or artesunate 

resistance by gene point mutation.  

Besides looking for point mutations, the genes pcmdr1, pctctp and pcatp6 were also 

investigated for their involvement in artemisinin and artesunate resistance by inspecting 

putative changes in gene copy number. This allowed us to conclude that the phenotype of 

artemisinin and artesunate resistance in our model, P. chabaudi, is also not associated with an 

increase in the gene copy number of the same genes. 
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4.3.2. General Discussion 

 

This study has shown that no changes in nucleotide sequence or copy number for pcmdr1, 

cg10, tctp or atp6 genes were found in the artemisinin or artesunate resistant parasites when 

compared to their sensitive progenitors.  

We consider, however, that other genetic mechanisms such as protein turnover and/or post-

translational modifications of the gene products may account for the involvement of these 

genes in the resistance phenotype. However the investigation of these putative mechanisms 

was not contemplated in this study.  

In malaria, the genetic mechanisms underlying drug resistance have been extensively studied 

for most antimalarials, but are not fully understood, except for resistance to pyrimethamine. 

Resistance to this drug has been to shown to be conferred by cumulative single nucleotide 

mutations in the dhfr gene [Sirawaraporn W et al. 1997] in P. falciparum and in all rodent 

malaria models analyzed. Artemisinin has been used in the field for centuries without 

resistance ever being registered, so one might expect a complex mechanism for resistance, not 

as simple as that for pyrimethamine. 

In our study in a rodent malaria model, we selected for high levels of drug resistance, which 

suggests the involvement of more than one gene.  

The evidences supporting the role for pfatpase6 protein in artemisinin sensitivity in P. 

falciparum arise from the interaction of artemisinin in an ex vivo heterologous system 

(Xenopus oocytes) [Eckstein-Ludwig U et al. 2003] which may reflect a histological, 

physiological and biochemistry point of view which may be difficult to interpret in light of the 

human malaria parasite. Evidence for the involvement of this gene in modulating artemisinin 

susceptibility also came from the fact that recent evidence indicates that mutations in the 

pfatpase6 gene may correlate with varying degrees of in vitro responses of P. falciparum to 

artemisinin derivatives [Jambou R et al. 2005]. In this case the pfatpase6 protein S769N, 

A623E and E431K polymorphisms were associated with an increased mean in the IC50 for 

artemisinins [Jambou R. et al. 2005]. The importance of these findings is unclear however, 

since: i) the correspondence between reduced sensitivity of the field isolates to artemisinins 

and the presence of the different polymorphisms was incomplete and ii) there was a region-

specific association of these polymorphisms with varying degreees of susceptibility 

correlating highly (but not completely) with the S769N mutation in French Guiana but not in 

Senegal or Cambodia. In addition, later studies found no association between mutations in the 

pfatpase6 gene and the sensitivity of field isolates to artemisinins from Tanzania [Mugittu K 

et al. 2007] and São Tomé and Principe [Ferreira ID et al. 2007].  
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Interestingly, it may be possible that another gene closely link to the atp6 gene may be 

involved in the resistance to this drug, which could explain the strong but incomplete 

association observed in French Guiana [Jambou R. et al. 2005]. In actual fact, a similar 

scenario has already been described before with the chloroquine resistance determinant in P. 

falciparum which had been mapped by linkage analysis to a segment on chromosome 7 where 

two candidate genes cg1 and cg2 with complex polymorphisms initially linked to the 

chloroquine resistance phenotype where found [Duraisingh MT et al. 2000a, Fidock DA et al. 

2000a]. More detailed analysis within that region later revealed a different, but closely linked 

gene, pfcrt, to be the major determinant of chloroquine resistance.  

Finally, it is relevant to mention that, if pfatpase6 turns out to be the major modulator of 

artemisinin responses in P. falciparum, it is conceivable that the rodent malaria P. chabaudi 

may reveal alternative mechanisms of resistance to those of P. falciparum, as is the case with 

chloroquine resistance [Hunt P et al. 2004]. 
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5.1 Introduction 

 

As described in the previous chapter (Results – Chapter IV) sequence analysis of genes with 

potential involvement in modulating parasite responses to artemisinin derivatives, was carried 

out for the P. chabaudi orthologues of pfatp6 [Eckstein-Ludwig U et al. 2003; Jambou R et 

al. 2005; Uhlemann AC et al. 2005], pfcrt [Sidhu AB et al. 2002], pfmdr1 [Ferrer-Rodríguez I 

et al. 2004; Price RN et al. 2004; Reed MB et al. 2000; Sidhu AB et al. 2005], and pftctp 

[Bhisutthibhan J et al. 1998; Walker DJ et al. 2000]. Sequencing of AS-ART and AS-ATN 

and their progenitors showed that there were no mutations or copy number changes in these 

genes (data published Afonso A et al. 2006). 

This chapter describes the application of Linkage Group Selection (LGS) as an approach to 

identify the genetic locus or loci involved in artemisinin and artesunate resistance in P. 

chabaudi. 

Some of the results described below have been accepted for publication [Hunt P et al. in press 

at the Molecular Microbiology]. 
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5.2 Production of cross progeny 

 

The procedure to obtain a cross progeny have been already described (See Chapter II - 

Materials and Methods).  

Three independent genetic crosses were obtained using AS-ART and AJ and two independent 

genetic crosses were obtained using AS-ATN and AJ. 

One of the conditions for a correct and useful utilization of LGS for identifying genetic locus 

involved in a particular phenotypic trait, is that large numbers of recombinant progeny clones 

are present both in the progeny prior to the selection, and post selection. For that reason and in 

order to increase the number of recombinants, the uncloned progeny from these crosses 

(called “unpassaged”) were pooled in equal proportions (equal number of parasites) and 

passaged through the two treated and untreated groups. See Figure 28 for details on the 

experimental groups. 

For further analysis pooled crosses were used. Those pooled crosses were named super 

crosses. The three genetic crosses obtained between AS-ART and AJ were pooled together in 

a super cross that for clarity was named AS-ART x AJ. The two genetic crosses obtained 

between AS-ATN and AJ were polled together in a super cross that for clarity was named AS-

ATN x AJ.  

Each cross was not analysed individually during this project. 
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5.3 Selection of cross progeny 

 

5.3.1 General procedure 

 

When the sporozoites-induced infections (so called “unpassaged”) reached parasitaemias of 

between 10%–15%, the parasites were harvested for AFLP analysis (providing a reference 

point for markers analysed in the subsequent treatment groups), pooled, and inoculated (each 

mouse in each group received 1 x 107 parasites) into two groups of mice, one drug treated 

with either artemisinin or artesunate (so called “treated”) and the other left untreated (so 

called “untreated”). See Figure 28 for details. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 - Schematic representation of the selection of the pooled cross progeny (LGS) experiment using 

previously generated individual crosses between AJ and AS-ART 

For the pooled cross AS-ATN x AJ only two individual crosses were used. 

Adapted from Culleton R, 2005 with kind permission from Dr. Richard Culleton. 
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Genetic cross 2 

 
 

Genetic cross 3 

 
 

Unpassaged  
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proportion of parasite numbers 
from individual crosses  
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 5.3.2 Results 

 

We passaged the pooled uncloned cross progeny in the presence and in the absence of drug 

treatment. The dose of artemisinin used for LGS in the treated group of the cross AS-ART x 

AJ was 25 mg/kg of mouse body weight daily for 5 consecutive days, starting 3h after parasite 

challenge. The dose of artesunate used for LGS in the treated group of the cross AS-ATN x 

AJ was 5 mg/kg of mouse body weight daily for 5 consecutive days, starting 3h after parasite 

challenge. These doses were chosen as a likely compromise between a very good selection, 

that would eliminate most sensitive progeny and a dose that allowed the maintenance of a still 

high number of recombinants. 

Both the artemisinin or artesunate treated and the untreated blood-stage cross progeny were 

allowed to grow to peak parasitaemia (30-40 % for untreated approximately day 8 post 

infection and 20-30% for treated approximately day 10 post infection), at which point the 

blood was harvested, and DNA was extracted for future analysis. See Figures 29 and 31: each 

point on these figures corresponds to a group of five mice; means were calculated and 

standard deviations are presented in the graphs.  
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  5.3.2.1 Selection of the pooled AS-ART x AJ cross 

 

Parasitemias of ART treated and untreated uncloned progeny of pooled cross AS-
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Figure 29 - Parasitaemia curves for the “untreated” and “artemisinin treated” uncloned cross progeny of the AS-

ART x AJ cross. Each point corresponds to a mean parasitemia of an experimental group of five mice and the 

vertical bars are standard deviations. 

The dose of artemisinin used for LGS of the cross AS-ART x AJ was 25 mg/kg of mouse body weight daily at 

24-h intervals for 5 consecutive days, starting 3h after parasite challenge.  

 

Parasitaemia curves for both artemisinin treated and untreated groups are shown in Figure 29. 

The ART treated group show a delay in the parasite grow due to drug administration, though 

it does not show a very marked inhibition of parasite growth when compared to the untreated 

group, meaning there is not a very big delay on the parasite recrudescence of the treated group 

indicating presence of relative high amounts of parasites carrying the resistant allele (AS 

allele) in the polled cross used AS-ART x AJ.  

Before engaging in the genome wide analysis using AFLP, the proportions of AS and AJ 

alleles were measure to get information on the quality and genetic composition of the cross 

relative to the number of sensitive and resistant alleles, 

Quantitation of the proportion of each allele on the genetic crosses allowed us to evaluate the 

quality of the selection by calculating the percentage of the resistant allele (AS allele). 

Proportional Sequencing [Hunt P et al. 2005] estimates the proportions of alleles of a gene in 

a mixture by measuring the heights of the peaks in DNA sequence gel electropherograms 

which correspond with the nucleotides at the polymorphic sites under study (See example 

Figure 13, 14 and 30). 
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For analysing the composition of the progeny of the genetic cross AS-ART x AJ (the 

unpassaged, ART treated and untreated experimental groups), proportional sequencing of 

alleles of the dhps gene was performed.  

Each DNA sample (one from AS-ART x AJ and other from AS-ATN x AJ untreated group) 

was prepared with the blood of all mice in each experimental group pooled together. Each 

individual measurement was repeated 5 times from the PCR stage (meaning 5 different PCR 

amplifications using the same DNA sample) and a mean %AS (AS concentration in the 

mixture) was calculated for each polymorphism and for each different PCR amplification for 

the dhps gene. On Table 11 we can se the mean %AS for each one of the four polymorphism 

(named for simplicity 1-4 see Figure 13 and 30 for correspondence) obtained from the 

quintuplicate analysis for each experimental group (unpassaged, untreated and ART treated) 

and for each group another mean was calculated using each mean value obtained for each 

polymorphism each will then gives us the mean %AS on each experimental group. These 

values serve the purpose to quickly evaluate the quality of the genetic cross and its selection, 

prior the extended AFLP analysis. The approximate %AS composition for each 

polymorphism was calculated by the relative peak height corresponding to the nucleotide 

from the AS DNA sequence, normalized with a non polymorphic allele. The data normalised 

treatment is described in detail by Hunt P and colleagues [Hunt P et al. 2005].  

Proportional sequencing protocols are described before (see Materials and Methods - Chapter 

2) and in great detail in Hunt P et al, 2005. 

 

 

 

 

 

 

 

Figure 30 – Detail of the pcdhps gene sequence with indication of polymorphisms in red and bold, 1-4 numbers 

in blue are the numbers used in Tables 11 and 12 to indicate each one of the polymorphism between AS and AJ. 

For entire sequence of the gene please check Figure 13. 

AS – AATCGAGAAACA GAATGATAAATT AAATCAAAATAACCTATCTTTAC 

AJ - --------------------------T-----------------------G--------------------------------------------- 
1  2                                                    

                        3                                                          4 
     AS –AAA CAAAAACATCAACTATTTATAA ACCGCCTATAAGTATAGATACCA 

    AJ - -------A-------------------------------------------G--------------------------------------------- 
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Table 11 – Proportional sequencing results for each group of the selection procedure for the genetic cross AS-

ART x AJ (“unpassaged”, “untreated” and “artemisinin treated”) for all the polymorphisms of the dhps gene 

analysed. There are four polymorphisms between AS and AJ strains for the gene dhps, the mean %AS coming 

from the quintuplicate measurements was calculated for each polymorphism and finally a mean %AS was 

calculated as a mean between the four %AS means. 

 

 dhps gene 

(%AS) 

%AS for the dhps locus 

1 2 3 4 Mean 

Unpassaged group 43.4 42 31.4 30.4 36.8 

Untreated group 13.4 15.8 25.8 16.3 17.8 

ART treated group 42.8 39.8 37.9 36.4 39,2 

 

From the results presented on Table 11 we can observe that though the unpassaged group was 

not submitted to any kind of drug selection, the %AS does not correspond to the 50% initially 

inoculated (the initial inoculum was 50% AS and 50% AJ parasites, calculated by parasite 

numbers), which can be explained by the fact that in previous experiments (data not shown) 

AJ parasites overgrew AS, AJ is a faster grower in comparison to AS. 

As expected under drug treatment, and due to the selective pressure applied, AS overgrows 

AJ which carried the sensitive alleles, this was an expected result and gives us an indication 

that the selection pressure is being efficient. 
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  5.3.2.2 Selection of the pooled AS-ATN x AJ cross 
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Figure 31 - Parasitaemia curves for the “untreated” and “artesunate treated” uncloned cross progeny of the AS-

ATN x AJ cross. Each point corresponds to a mean parasitemia of an experimental group of five mice and the 

vertical bars are standard deviations. 

The dose of artesunate used for LGS of the cross AS-ATN x AJ was 5 mg/kg of mouse body weight daily at 24-

h intervals for 5 consecutive days, starting 3h after parasite challenge.  

 

Parasitaemia curves for both artesunate treated and untreated groups for the AS-ATN x AJ 

pooled cross are shown in Figure 31. The ATN treated group show a delay in the parasite 

grow due to drug administration, thought it does not show a very marked inhibition of parasite 

growth when compared to the untreated group, meaning there is not a very big delay on the 

parasite recrudescence of the treated group indicating presence of relative high amounts of 

parasites carrying the resistant allele (AS allele) in the polled cross used AS-ATN x AJ.  
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Table 12 – Proportional sequencing results for each group of the selection procedure for the genetic cross AS-

ATN x AJ (“unpassaged”, “untreated” and “artesunate treated”) for all the polymorphisms of the dhps gene 

analysed. There are four polymorphisms between AS and AJ strains for the gene dhps, the mean %AS coming 

from the quintuplicate measurements was calculated for each polymorphism and finally a mean %AS was 

calculated as a mean between the four %AS means. 

 

 dhps gene 

(%AS) 

%AS for the dhps locus 

1 2 3 4 Mean 

Unpassaged group 21.9 13.4 24.8 31.7 22.9 

Untreated group 30.5 23.5 21.6 17.9 23.4 

ATN treated group 7.6 11.4 17.5 16.8 13.3 

 

As expected under drug treatment, and due to the selective pressure applied, AS overgrows 

AJ which carried the sensitive alleles, this was an expected result and gives us an indication 

that the selection pressure is being efficient.  
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5.4 AFLP analysis 

 

5.4.1 General procedure 

 

Once the selection pressure is applied in the genetic progeny of a cross, the parasites that 

carry the allele that is sensitive (in this case the AJ allele) will be removed, and from an 

experimental point of view this disappearance is visible by the decrease in intensity or 

complete disappearance of an AFLP band specific for the sensitive allele (AJ band). Thus, we 

were looking for the disappearing of AJ sensitive markers on the treated group (artemisinin or 

artesunate treated) in comparison to the untreated group (an example of an AFLP gel is 

represented in Materials and Methods Figure 12).  

Keeping in mind that the objective is to identify the genomic loci under drug selection either 

by artemisinin or artesunate that would correspond to a selection valley associated to the 

resistant phenotype. AFLP markers with low CIs were initially identified and positioned 

according to the previously defined genetic linkage map of Martinelli A et al. 2005. 

Subsequently, markers under selection were sequenced in order to confirm their location 

though comparative genomics, making use of a rodent malaria genetic sinteny map. 
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 5.4.2 Results 

 

We determined the CIs of 206 AJ specific AFLP markers and 119 AS specific AFLP markers.  

A table showing raw data from all markers (AS and AJ specific markers) comparative indices 

(CI) between all treatment groups is included in Appendix 5. 

When in the genetic cross AS-ART x AJ, the ART treated group was compared to the 

untreated group, 36 of the 206 AJ specific markers showed CIs of less than 0.5 (meaning a 

reduction of more than 50 % on the band intensity when comparing selected and unselected). 

These are shown in Table 13, along with their derived positions as located on the genetic 

linkage map, assigned by Martinelli A and colleagues [Martinelli A et al. 2005]. Those 

positions only correspond to their localization on the genetic map, prior from sequencing of 

each individual band, which then will eventually allowed a physical position on the parasite 

chromosome. The markers that were further analysed are represented in grey in the table.  

By assigning AFLP markers to the P. chabaudi genetic linkage map, it was possible to 

generate graphs showing the change in marker intensities between treatment groups as they 

appear across the P. chabaudi genome. 
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  5.4.2.1 AFLP analysis for the AS-ART x AJ 
 

Table 13 - CI of AJ specific AFLP markers under selection in the ART treated group, compared to the untreated 
group for the AS-ART x AJ genetic cross, and their P. chabaudi chromosomal locations according to the genetic 
linkage map.  
Group 2, 12, 16 and 38 are linkage groups that could not be assigned to any particular chromosome. No data 
means there is not any data for the chromosomal position of this marker.  
Unlinked means a marker that is not linked to any chromosome or group. The marker name, when a marker 
shows reduction in both crosses AS-ART x AJ selected with ART and AS-ATN x AJ selected with ATN is 
coloured in orange. In grey, AJ specific AFLP markers that showed high reduced CI that were sequenced. 
 
 

Marker name Comparative intensities (CI) 

P. chabaudi chromosomal location in genetic 
linkage map according to Martinelli A et al. 

2005 
AJAC03TA 0.4797 Chromosome 1 
AJTT05AT 0.1252 Chromosome 6 
AJTA01CA 0.4483 Chromosome 7 
AJGA03AC 0.4496 Chromosome 7 
AJTG02AT 0.4702 Chromosome 7 
AJAG03AG 0.3000 Chromosome 8 
AJTT02AT 0.1500 Chromosome 8 
AJAT01TA 0.3230 Chromosome 8 
AJTG03AA 0.4667 Chromosome 8 
AJAC03AT 0.3185 Chromosome 8 
AJGA01TT 0.2667 Chromosome 10 
AJAG03AC 0.2500 Chromosome 10 
AJAC02AC 0.3077 Chromosome 10 
AJAC02AA 0.1667 Chromosome 10 
AJGA03AG 0.2195 Chromosome 10 
AJGA01CA 0.2027 Chromosome 10 
AJGA02CA 0.2797 Chromosome 10 
AJTT03AT 0.1538 Chromosome 11 
AJTT04AT 0.1364 Chromosome 12 
AJAT02CT 0.4141 Chromosome 12 
AJTA01AG 0.3622 Chromosome 13 
AJAA01TA 0.4000 Group 2 
AJAG02AT 0.3333 Group 2 
AJGA01GA 0.3770 Group 2 
AJAC05AT 0.4903 Group 2 
AJTA03AC 0.3617 Group 2 
AJAC01TT 0.4379 Group 2 
AJGA02AC 0.4398 Group 12 
AJTG04AT 0.4706 Group 16 
AJTT01AT 0.1488 Group 33 
AJTA02AG 0.2857 Group 38 
AJAC01TG 0.4528 Group 38 
AJGA01TA 0.3182 Group 38 

AJAC04.5AT 0.3600 No data 
AJTC02AG 0.4528 No data 
AJGA03AT 0.4505 Unlinked 

 

Figure 32 shows the CI of AJ specific AFLP markers between the ART treated and the 

untreated group. It was found that all of the AJ markers which were most reduced under ART 
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pressure lie in chromosomes 8 and 10 (in the graph with a red arrow) of P. chabaudi and 

groups 2 and 38 (unassigned).  

Figure 33 shows the same graph but for the AS specific AFLP markers. No markers showed 

significant reductions in the CI between the ART treated and untreated group, except in the 

case of three markers (represented in the graph by a red arrow) which seeme to be found 

under selection, although the reason for this is unclear.  
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Figure 32 - Comparative Intensities (CI) of AJ (sensitive parent) specific AFLP markers in the ART treated 

group compared to the untreated group, for the AS-ART x AJ cross. 

P. chabaudi chromosome numbers (Chromosome number *) correspond to the markers chromosomal location in 

genetic linkage map according to Martinelli A et al. 2005 (prior to individual band sequencing). 

Markers are positioned on the X axis according to their positions in cM along the chromosomes. Each point 

corresponds to an AJ-AFLP specific marker and their position along the chromosome. The gaps correspond to 

areas without any marker. 

The two red arrows indicate the chromosomes where there is a bigger AJ specific marker selection thus a bigger 

drug selection. 
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Figure 33 - Comparative Intensities (CI) of AS (resistant parent) specific AFLP markers in the ART treated 

group compared to the untreated group, for the AS-ART x AJ cross. 

P. chabaudi chromosome numbers (Chromosome number *) correspond to the markers chromosomal location in 

genetic linkage map according to Martinelli A et al. 2005 (prior to individual band sequencing). 

Markers are positioned on the X axis according to their positions in cM along the chromosomes. Each point 

corresponds to an AS-AFLP specific marker and their position along the chromosome. The gaps correspond to 

areas without any marker. 
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  5.4.2.2 AFLP analysis for the AS-ATN x AJ 

 

Once AFLP analysis was done for the AS-ART x AJ cross we wished to investigate whether 

similar loci were involved in the selection of the pooled AS-ATN x AJ cross after artesunate 

treatment. 13 of the 206 AJ markers showed CI of less than 0.5 (meaning a reduction of more 

than 50 % on the band intensity when comparing the treated and the untreated groups). These 

are shown in Table 14, along with their derived positions as located on the linkage map.  

Only four markers were reduced on both the pooled AS-ART X AJ selected with ART and 

this one, pooled AS-ATN x AJ selected with ATN, those were: AJAG03AC located on P. 

chabaudi chromosome 10, AJTA01AG located on P. chabaudi chromosome 13, AJAC05AT 

a marker that belongs to group 2 and finally AJGA03AT a marker that is unlinked 

(represented in orange in Tables 13 and 14). 

Though only one marker on chromosome 10 (AJAC02AC) was significantly reduced in this 

cross, all the AFLP markers from this chromosome are represented in Table 14 in grey, due to 

the fact that although their CI indices in this pooled AS-ATN x AJ were reduced to border 

line values to the cut level of 0.5 of CI those same markers on P. chabaudi chromosome 10 

were significantly reduced in the pooled cross AS-ART x AJ. 
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Table 14 - CI of AJ specific AFLP markers under selection in the ATN treated group, compared to the untreated 

group for the AS-ATN x AJ genetic cross, and their P. chabaudi chromosomal locations according to the genetic 

linkage map.  

Group 2 and 20 are linkage groups that could not be assigned to any particular chromosome.  

Unlinked means a marker that is not linked to any chromosome or group. 

The marker name, when a marker shows reduction in both crosses AS-ART x AJ selected with ART and AS-

ATN x AJ selected with ATN is coloured in orange. 

In grey, AJ specific AFLP markers that showed high reduced CI that were sequenced. 

 

Marker name Comparative intensities (CI) 

P. chabaudi chromosomal location in genetic 
linkage map according to Martinelli A et al. 

2005 
AJTC01TG 0,4549 Chromosome 8 
AJGA01TT 0,6667 Chromosome 10 
AJAG03AC 0,5556 Chromosome 10 
AJAC02AC 0,3571 Chromosome 10 
AJAC02AA 0,6667 Chromosome 10 
AJGA03AG 0,6667 Chromosome 10 
AJGA01CA 0,5316 Chromosome 10 
AJGA02CA 0,6866 Chromosome 10 
AJTT02GA 0,4545 Chromosome 11 
AJTT01CT 0,0313 Chromosome 12 
AJTA01AG 0,4097 Chromosome 13 
AJAG02TT 0,4444 Group 2 
AJAC05AT 0,4419 Group 2 
AJGA01GA 0,3684 Group 2 
AJTC02TA 0,4885 Group 20 
AJAT02CT 0,4426 Group 20 
AJGA03AT 0,4865 Unlinked 
AJTC01AT 0,4750 Unlinked 
AJTT03GA 0,4362 Unlinked 
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Figure 34 - Comparative Intensities (CI) of AJ (sensitive parent) specific AFLP markers in the ATN treated 

group compared to the untreated group, for the AS-ATN x AJ cross. 

P. chabaudi chromosome numbers (Chromosome number *) correspond to the markers chromosomal location in 

genetic linkage map according to Martinelli A et al. 2005 (prior to individual band sequencing). 

Markers are positioned on the X axis according to their positions in cM along the chromosomes. Each point 

corresponds to an AJ-AFLP specific marker and their position along the chromosome. The gaps correspond to 

areas without any marker. 
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Figure 35 - Comparative Intensities (CI) of AS (resistant parent) specific AFLP markers in the ATN treated 

group compared to the untreated group, for the AS-ATN x AJ cross. 

P. chabaudi chromosome numbers (Chromosome number *) correspond to the markers chromosomal location in 

genetic linkage map according to Martinelli A et al. 2005 (prior to individual band sequencing). 

Markers are positioned on the X axis according to their positions in cM along the chromosomes. Each point 

corresponds to an AS-AFLP specific marker and their position along the chromosome. The gaps correspond to 

areas without any marker. 
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  5.4.2.3 AFLP analysis comparison between pooled crosses AS-

ART x AJ and AS-ATN x AJ 

 

As summary of the AFLP analysis on the two pooled crosses: 

A – There is a general reduced pattern of selection in the AS-ATN x AJ pooled cross 

in relation to the AS-ART x AJ that may potentially be attributed to a reduced number of 

recombinants in the AS-ATN x AJ cross; 

B – There are four main genetic loci under strong selection, according to the P. 

chabaudi genetic linkage map defined by Martinelli A and colleagues [Martinelli A et al. 

2005] on chromosomes 8 and 10 and two unlinked groups 2 and 33. The AFLP bands from 

these loci were sequenced and results will be presented in the next section. 
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5.5 Sequencing and mapping of AFLP bands under selection 
 

5.5.1 General procedure 
 

The genetic linkage map [Martinelli A et al. 2005] shows the position of markers upon the P. 

chabaudi genome as determining from the characterisation of 28 clones of a cross between 

AS and AJ. 

The way the genetic linkage map was prepared and published by Martinelli A and colleagues 

[Martinelli A et al. 2005] may not reflect exactly the correct physical linkage in the genome, 

thus and to be absolutely sure about the genetic and chromosomic position of these markers 

sequencing is necessary. In this context, with the objective of obtaining the exact correct 

physical position of those markers in the genome and mapping their physical 

chromosomal/gene position all AFLP markers were sequenced. The strong synteny between P 

falciparum and the rodent malaria parasites [Carlton JM et al. 1998; Hunt P et al. 2004] and 

the synteny map compiled by Kooij TW and colleagues [Kooji TW et al 2006], allowed us to 

physically localize the markers in relation to genes closely linked.  

AFLP bands that appeared to be under selection were sequenced and the corresponding 

sequences in the P. falciparum genome were identified [Hunt P et al. 2004b]. The sequences 

obtained in the P. falciparum database were then used in BLAST searches against the P. 

chabaudi database in addition to the genome-wide previously described syntenic map [Kooij 

TW et al. 2006]. See Table 15 for details. 
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 5.5.2 Results 

 

All the data from AFLP markers sequencing is summarized in Table 18. Though there were 

other markers under selection either by artemisinin or artesunate (see Tables 16 and 17), their 

sequences are not presented there due to the fact that they were either not possible to assigned 

unambiguously to any particular area in P. chabaudi genome or due to poor sequence quality.  

So as a result summary from the AFLP sequencing analysis: 

A – Three AJ specific markers were found to be under selection on P. falciparum 

chromosome 6 that are allocated, using the P. falciparum rodent malaria synteny map, on P. 

chabaudi chromosome 1; 

B – Two AJ specific markers were found to be under selection on P. falciparum 

chromosome 12 and one on P. falciparum chromosome 13 that are all allocated, using the 

P.falciparum rodent malaria synteny map, on P. chabaudi chromosome 14;  

C – Two AJ specific markers were found to be under selection on P. falciparum 

chromosome 9 that are allocated using the P. falciparum rodent malaria synteny map, on P. 

chabaudi chromosome 8; 

D – Four AJ specific markers were found to be under selection on P. falciparum 

chromosome 7 and one on P. falciparum chromosome 1 all of them are allocated using the P. 

falciparum rodent malaria synteny map, on P. chabaudi chromosome 2 (see also Figure 36). 

 

Mostly due to the evidence presented above that all AJ specific AFLP markers on P. chabaudi 

chromosome 2 were under strong selection further analysis was only done on this 

chromosome. The other P. chabaudi loci under selection; chromosome 1, 8 and 14 will be 

analysed within the scope of other projects. 



 172 

Table 15 - Physical and genetic mapping of the AFLP markers with low CI.Most of the AJ specific AFLP 

markers that were found to have CIs under 0,5 are presented. Their names, CIs and physical localization 

according to Martinelli A et al. 2005, and the gene annotation got from the P. chabaudi database is also 

presented. Their chromosomal position in the P. falciparum genome and their correspondence after using the 

correspondences facilitated by the use of the synteny map are also presented.Pfxx means the chromosome 

number in P. falciparum. Na – Not possible to assign. Adapted from: Hunt P et al. in press at the Molecular 

Microbiology, 2007, with kind permission of Dr. Paul Hunt. 

 

AFLP Marker Comparative 
Intensities  

(CI) 

P. chabaudi 
linkage group 
according to 

Martinelli A et al. 
2005 

Gene name P. falciparum 
genomic locus  

P. chabaudi 
chromosome 

location 
according to 
synteny from 

Kooij TW et al. 
2006 

AJAT01TA 0.3230 Chromosome 8 hypothetical Pf09 8 
AJAC03AT 0.3185 Chromosome 8 hypothetical Pf09 8 
AJGA01TT 0.2667 Chromosome 10 hypothetical Pf07 2 

AJAG03AC 0.2500 Chromosome 10 

Insufficient 
sequence for 

analysis 

Na Na 

AJAC02AC 0.3077 Chromosome 10 

Insufficient 
sequence for 

analysis 

Na Na 

AJAC02AA 0.1667 Chromosome 10 

Ubiquitin 
carboxy-
terminal 
hydrolase 

Pf07 2 

AJGA03AG 0.2195 Chromosome 10 hypothetica Pf07 2 
AJGA01CA 0.2027 Chromosome 10 hypothetical Pf01 2 
AJGA02CA 0.2797 Chromosome 10 hypothetical Pf07 2 
AJAA01TA 0.4000 Group 2 hypothetical Pf12 14 

AJAG02AT 0.3333 Group 2 

Translation 
initiation 
factor-2, 
putative 

Pf13 14 

AJAC05AT 0.4903 Group 2 hypothetical Pf12 14 
AJGA01TA 0.2857 Group 38 hypothetical Pf06 1 
AJAC01TG 0.4528 Group 38 hypothetical Pf06 1 
AJTA02AG 0.3182 Group 38 hypothetical Pf06 1 
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5.6 Further investigation of markers under selection on chromosome 2 

 

From a detailed observation of the synteny map in Figure 10, it is clear that P. chabaudi 

chromosome 2 is syntenic with two blocks of the P. falciparum genome, on chromosomes 1 

and 7 [Kooij TW et al. 2006]. One should also note that the fragment from P. falciparum 

chromosome 1 in inverted on P. chabaudi chromosome 2. See Figure 36 for details. 

When we joined the syntenic P. falciparum block of approximately 330 kb from chromosome 

1 with the syntenic P. falciparum block of approximately 220 Kb from the end portion of P. 

falciparum chromosome 7 we obtained a region of 550 Kb in P. falciparum that is expected to 

be most similar in size in P. chabaudi due to the big similarities already published between 

genome sizes of P. falciparum and rodent malaria parasites [Carlton JM et al. 2002]. The 

approximately 150 Kb difference between the described 700 Kb size of P. chabaudi 

chromosome 2 and the 550 Kb obtained by the synthenic map can be due to the fact that 

telomeres and genes from the chromosomes extremities due to the fact that are very variable 

are not included in the syntenic map between P. falciparum and P. chabaudi. 

An interesting finding concerning the genetic localization of the markers found to be under 

selection and their position on P. falciparum genome is that the gene that has been mostly 

suggested and described as the target for artemisinin, the SERCA-type Ca2+-dependent atpase 

gene [Eckstein-Ludwig U et al. 2003] is genetically localized very near the markers under 

selection. 

The AJ specific marker AJAC02AA annotated as an ubiquitin carboxyl-terminal hydrolase, 

putative gene, for simplicity named ubp-1, was sequenced and two major mutations were 

subsequently detected between different parasite clones as described in the ensuing sections.  

Briefly, ubiquitin hydrolases promote the catalysis of the hydrolysis of non terminal peptide 

linkages in oligopeptides or polypeptides. Ubiquitin hydrolases are involved in the hydrolysis 

of esters, including those formed between thiols such as dithiothreitol or glutathione and the 

C-terminal glycine residue of the polypeptide ubiquitin [Hall N et al. 2002]. 
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Figure 36 - P. chabaudi chromosome 2 with syntenic blocks represented, P. falciparum chromosome 1 and P. 

falciparum chromosome 7. 

In red (A) the Ca2+-ATPase-serca type gene. 

In green the AFLP markers that were sequenced. 

Legend for AFLP markers: 

B – AJGA01CA 

C – AJAC02AA 

D – AJGA03AG 

E – AJGA02CA 

F – AJGA01TT 

See Table 18 for details on the AJ specific AFLP markers. 

Note (1): The dimension of P. chabaudi chromosome 1 is approximately 750 Kb. This result was obtained from 

pulse-field gel electrophoresis analysis of P. chabaudi clones AS and AJ by Carlton JM [Carlton JM, personal 

communication]. 

Note (2): 330 Kb is the dimension of the P. falciparum synthenic block. The published size of this chromosome 

is 644 Kb. 330 Kb does not include telomeres and the chromosome extremities where genes like strevor, rifins 

and cir are found.  

Note (3): 1220 Kb approximately the dimension of the P. falciparum chromosome 7 defined by the synteny map 

the first synthenic block is approximately 1000 Kb long and the second synthenic block is approximately 220 Kb 

long. The published size of this chromosome is 1352 Kb. 
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 5.6.1 Identification of ubp-1 gene mutation on P. chabaudi 

chromosome 2 

 
The entire sequence, primers used for its amplification, predicted protein sequence and gene 

and protein alignments relative to the ubp-1 gene are presented in Appendix 4. 

Due to the fact that a mutation was found between the DNA sample from the clone AS-ART 

and the one from the clone AS-ATN, the other clones and parasite lines were fully sequenced; 

those were AS-SENS, AS-15CQ and AS-30CQ.  

The full ubp-1 gene sequence and alignments can be seen found in Appendix 4. For a question 

of simplicity and interest for the discussion, the portion of the alignments where mutations are 

to be found is presented in Figure 37. A summary of gene/protein analysis of the changes 

found in the ubp-1 gene is depicted in Table 16.  
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            2211                                                                                                                          2340 
    AS15CQ  AGATGTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAAGTTCAATGCCAAAAATGTTTTTTTATTTCAAAG 
    AS30CQ  AGATGTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAATTTCAATGCCAAAAATGTTTTTTTATTTCAAAG 
    AS-ART  AGATGTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAATTTCAATGCCAAAAATGTTTTTTTATTTCAAAG 
    AS-ATN  AGATTTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAAGTTCAATGCCAAAAATGTTTTTTTATTTCAAAG 

 
Figure 37 – Part of the ubp-1 gene alignments where the different mutations are highlight. 

The rest of the gene alignment is represented on Appendix 4.  

 

Just to resume the gene/protein analysis of the changes found on the ubp-1 gene Table 16 was built. 

 

Table 16 – A summary of the ubp-1 gene mutations and their correspondence on ubp-1 transcript for each of the P. chabaudi clones and parasite lines analysed. 

 

P. chabaudi clone or parasite line DNA Protein 

2215 bp 2308 bp 739 aa 770 aa 

AS-15CQ G G V V 

AS-30CQ G T V F 

AS-ART G T V F 

AS-ATN T G F V 
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From Table 16 and Figure 37 it can be seen that during the process of artesunate resistance a 

mutation base 2215 of the ubp-1 gene had occurred. This was a transversion where a G was 

changed into a T. This change generates a non-synonymous substitution in the ubp-1 protein 

that results in a swap from a valine in codon 739 to a phenylalanine (V739F). 

Also, in base position 2308 of the ubp-1 gene, a difference was found between the parasite 

line AS-15CQ and the clone AS-30CQ (obtained from AS-15CQ after chloroquine pressure), 

meaning that during the chloroquine selection this gene suffered a transversion of a G to a T 

in this base. This gene change corresponds to a non-synonymous substitution in the ubp-1 

protein from a valine to a phenylalanine at residue 770 (V770F).  

As a summary from the results obtained for the mutational analysis of the ubp-1 gene: 

a) A G to T transversion occurred in DNA base 2308 from AS-15CQ, intermediate 

chloroquine resistant, to AS-30CQ, high chloroquine resistant, under chloroquine pressure.  

b) A G to T transversion occurred in DNA base 2215, from AS-15CQ to AS-ATN 

under artesunate pressure. 

c) The G2215T mutation above does not exist in the AS-30CQ nor in the AS-ART 

clone. Thus whilst this mutation may be responsible for the appearance of artesunate 

resistance in the AS-ATN clone, the gene changes responsible for the appearance of 

artemisinin resistance after artemisinin pressure on clone AS-30CQ are yet to be found. 

At this stage it seemed important to evaluate the biological and biochemical significance of 

the mutations found in the P. chabaudi gene homologue of the P. falciparum ubp-1 gene. A 

profound analysis of this significance was done by Hunt P and colleagues (Hunt P et al. in 

press at the Molecular Microbiology, 2007) and it is out of the scope of this thesis. 

For this thesis only very preliminary comparisons were made between the ubp-1 predicted 

protein of P. chabaudi and for P. falciparum. The two proteins, ubp-1 from P. chabaudi and 

ubp-1 from P. falciparum are only moderated similar, possessing a very high degree of 

identity only in a particular area of the protein, near the C-terminus of the protein. Because 

both mutations V739F and V770F are mapped to the C-end portion of the ubp-1 protein it is 

expected that these mutations occurred in parts of the protein/enzyme that are very important, 

maybe even fundamental for its biological activity. 
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5.7 Discussion 

 

Most of this chapter was devoted to present results from the use of LGS in the analysis of 

pooled genetic crosses called AS-ART x AJ and AS-ATN x AJ. LGS was chosen as a faster 

approach to identify the genetic loci involved in artemisinin and artesunate resistance. 

For the artemisinin resistant line, AS-ART, three independent genetic crosses were obtained, 

these three were not analysed individually and were pooled together in a super cross named 

AS-ART x AJ. For the artesunate resistant line, AS-ATN, two independent genetic crosses 

were obtained, theses two independent crosses were not analysed individually and were also 

pooled together in a super cross named AS-ATN x AJ. 

Four loci were found to be under selection in the uncloned progeny of the treated pooled 

crosses: P. chabaudi chromosomes 1, 2, 8 and 14. 

A note to the fact that the selection observe in the AS-ATN x AJ was much less pronounced 

than the one that we were allowed to observe in the AS-ART x AJ cross. One possible 

explanation to this fact is that in the AS-ATN x AJ pooled cross there was a limited number 

of genetic recombinants. An alternative explanation can also be that the artesunate dose given 

to the cross was higher that the one that allows a more correct discrimination between 

resistant and sensitive progeny.  

Due to the fact that all markers on P. chabaudi chromosome 2 were under strong selection, 

further analysis was only done on P. chabaudi chromosome 2. Within this chromosome 2 a 

gene encoding a deubiquitinating enzyme (ubp-1 protein) was found to be mutated twice. A 

transversion of a G to a T was found in DNA base 2215 of the ubp-1 gene, in the clone AS-

ATN in relation to its parasite line progenitor AS-15CQ, corresponding to a protein change of 

V739F. The same gene was also found mutated in base 2308 in the clone AS-30CQ when 

compared to its progenitor AS-15CQ. Thus the V739F change occurred from AS-15CQ to 

AS-ATN under artesunate pressure, independently from the V770F change that occurred from 

AS-15CQ to AS-30CQ under chloroquine pressure. From the very preliminary alignments 

done between the P. falciparum and P. chabaudi proteins it was possible to observe that the 

changes occurred in the most conversed area of the protein thus for that reason supposedly 

important maybe even fundamental for the enzyme function. 

The analysis of this gene and these two mutations is most incomplete and the physiological 

significance of these mutations is still to clarify. Plus the fact that there were no mutation 

found in any of the genes analysed so far that could explain or justify the artemisinin resistant 

phenotype. 
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The failure to find a new mutation in the AS-ART clone can be explained by the fact that 

there may still be a gene, lets call it gene A, different from ubp-1 gene but still on P. chabaudi 

chromosome 2, which is indeed mutated and which mutation arose during artemisinin drug 

selection. If on future further analysis of this chromosome 2 other gene is found to be 

mutated, then the selection observed after artemisinin and artesunate treatment on the AS-

ART x AJ and AS-ATN x AJ pooled crosses can be explained. This gene A should also be 

found to be mutated on the AS-ATN clone. 

But a pendent question will then remain, if in the future another gene either on chromosome 2 

or any other chromosome, either found under selection like P. chabaudi chromosome 1, 8 and 

14 or not found under selection, is found mutated and the mutation found then could indeed 

explain or justify the resistant phenotype. The question will then be: what would be the 

importance of the mutations already found in the ubp-1 gene? One explanation is that 

mutations on the ubp-1 gene may be compensatory mutations. By compensatory mutations we 

mean a mutation that is not directly responsible for the resistant phenotype per si but on one 

hand is responsible for a change in a protein that might be involved in increasing the parasite 

general fitness, giving him proliferative and surviving advantages in relation to the ones that 

do not posses the same mutation. 

But an important note has to be made again because if another gene on another P. chabaudi 

chromosome either 1, 8 or 14 or any other not under selection on these LGS experiments is 

indeed found mutated there is still unanswered the question, why is there a selection valley on 

chromosome 2?  

A very curious finding was that two different, but at the same time similar mutations were 

found in the ubp-1 gene, that occurred during chloroquine and artesunate selection. Why this 

particular gene? Maybe the ubp-1 protein is involved in a particular cellular function involved 

in drug metabolism like for example the regulation of oxidative stress and drug detoxification 

[Krungkrai SR et al. 1987, Tilley GJ et al. 2001]. 

Artemisinin and its derivatives resistance is most likely to be a multigenic phenomenon and 

many reasons can be pointed to support this statement: first the fact that artemisinin resistance 

in the field is yet to be reported though its enormous use makes it likely, even in vitro stable 

resistance (besides this study) an though many researchers have tried is yet to be reported. 

One can even suggest evidences for the phenomenon of multigenic resistance when in our 

project four loci were found to be under drug selection (though P. chabaudi chromosome 2 

was under greater selection), might each loci correspond to a different gene involved in the 

resistant phenotype? Future studies on these four loci are necessary but before engaging in 

further analysis on P. chabaudi chromosome 1, 8 and 14 for example the recommended 
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procedure is to narrow down the selection valleys and to do that the pooled genetic crosses 

used in this project should be submitted again to another genetic cross (so called back-

crossing) and another round of LGS.  

Another future question that should be answer is what effect might be expected for ubp-1 

gene mutations on malarial parasites. This discussion is largely done in Hunt P et al. in press 

at Molecular Microbiology of which I am a co-author (this paper is in Appendix to this 

thesis). Thus I would not like to repeat Hunt P and colleague’s arguments. Ubp-1 gene allelic 

exchange transfection on P. falciparum parasites in culture and evaluation of the importance 

of the mutations found on this gene. 
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CHAPTER VI 

GENERAL CONCLUSIONS 
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A - Chapter III 

 

Stable resistance to artemisinin and one of its derivatives, artesunate, was described for the 

first time to our knowledge in a rodent malaria model, P chabaudi.  

A line was selected that was 6-fold more resistant to artesunate than the initial progenitor, AS-

ATN and other was selected that was 15-fold more resistant to artemisinin than the initial 

progenitor, AS-ART. Importantly, these results showed that malaria parasites are capable of 

developing resistance to these drugs and that this resistance can be passed on through 

generations, because it is genetically stable. 

There was full cross resistance between ART and ATN selected parasites clone lines. This is a 

strong indication that genetic mechanisms in common might be involved in drug resistant to 

ART and ATN. 

The resistant clones obtained were used downstream to investigate the putative mutations 

involved in these phenotypes. 

 

 B - Chapter IV 

 

The previously described putative genetic modulators for artemisinin and its derivatives, 

Plasmodium chabaudi homologues of the genes pfmdr, pfcrt, pftctp and pfatp6 were 

sequenced and their gene copy number calculated in relation to their progenitors. 

No changes were found, between resistant parasites and related sensitive ones allowing the 

conclusion that, at least in this model, resistance is not determined by these genes.  

 

 C – Chapter V 

 

Genetic crosses between AS-ART and AJ and AS-ATN and AJ were done. These were 

submitted to LGS and four loci were considered to be under selection. These correspond to 

areas in P. chabaudi chromosomes 1, 2, 8 and 14. 

This complex picture clearly points towards a multigenic mechanism of resistance to 

artemisinin and its derivatives. 

Detailed analyses of chromosome 2 allowed to uncover mutations in a gene denoted ubp-1 

whuich may be implicated in resistance to both artesunate and chloroquine. No novel 

mutations could be detected in artemisinin-resistant parasites however implying that 

understanding the genetic basis of resistance to this drug requires further efforts.  
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There may be many hypothetical roles for the involvement of this gene in drug resistance, 

whose study lie outside the time frame of this work. Evidence of a particular role for the 

mutations found in the ubp-1 gene in the rodent malaria parasite P. chabaudi or, eventually, in 

the human malaria parasite, P. falciparum is not yet demonstrated. In this trend, further 

investigations on the role of the mutations detected on ubp-1 gene are necessary. Allelic 

replacement experiments represent an attractive strategy to elucidade functional properties of 

the ubp-1 mutations disclosed. 
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APPENDIX 1 
 

SOLUTIONS AND BUFFERS 
 
1:1 FCS: Ringer’s Solution 
50% (v/v) heat inactivated foetal calf 
serum 
50% (v/v) mammalian Ringer’s solution 
20 units heparin/ml mouse blood 
 
Buffer A 
150 mM NaCl 
25 mM EDTA 
 
Citrate saline     
0.9% (w/v) NaCl  
1.5% (w/v) Sodium citrate 
pH 7.2 
 
Deep-freeze solution 
28% (v/v) glycerol 
3.0% (v/v) sorbitol  
0.65% (v/v) NaCl- sterilise by filtration. 
 
Mammalian ringer solution   
27mM KCl  
27mM CaCl2 
0.15M NaCl 

TBE buffer  (sterilised by filtration) 

100nM Tris   

100 mM Boric Acid  

2 mM EDTA (Ethylenediaminetetraacetic Acid) 

 
TE buffer (Tris/EDTA)    

10mM Tris-HCl  

1mM EDTA 
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APPENDIX 2 
 

GENE AND PRIMER SEQUENCE FOR THE GENES pcmdr1, pccg10, 
pctctp and pcatp6 

 
 
A-pcmdr1 gene 
 
Note: Primers are underlined in the sequence.  
 
TATATTATTACAAAAAGGTCTATAGATGTTGTAAAATTTGTTGTCTTAAATATATTCAGTTATTTTATAAGTATGCATAATTTGTGTCGTTATC
CACAC(45)TATAAAATTACAGAATAAAGTAATCACATATTTTTAACGATAGACATATTTATTTATGATTGCGCTTGATAATATATACCTCATT
ATATAATTTCTTAATACCTGATTTTTCAAAATGGCGGACAAAAGAAGTAATAACAATAGTATCAAAGATGAAGTTGAGAAAG(34)AGTTAAAT
AAGCAATCCACCGTTGATCTGTTTAAAAAG(37)ATAAAGAAACAAAATATCCCACTGTTTTTGCCATTTCATTCACTACCATCCAAACACAAG
AGATTATTAGCTATATCTTTTATATGTGCGACAATATCAGGAGCTGCGTTACCCATTTTTATTTCGGTGTTTGGTCTTACTATGGCAAATATGA
ATATGGGAGAGAGCGTAAATGACATAGTTTTAAAATTAGTAATAGTTGGTATATGCCAATTTGTGATATCATCGATTTCATGTTTATGCATGGG
TACTGTTAC(29)TACAGAGATTATAAGAATGTTAAAATTAAAATATTTAAAAAGTGTTTTTCATCAAGATGGAGAATTTCATGATAATAACCC
AGGTTCTAAATTAACATCCG(30)ATTTAGATTTTTATTTAGAACAAGTAAATTCAGGAATAGGAACAAAATTTACTACAATATTTACATATAG
CAGTTCATTCTTAGGTTTGTATTTCTGGTCACTATATAAAAATGTAAGATTAACATTATGTGTTACATGTGTTTTTCCAGTAATATATATAATC
AGTACGATATGTAATAAAAGAGTTCGATTAAATAAAAAAACATCATTATTATATAATAACAATTCAATGTCTATAATTGAAGAAGCATTAGTTG
GTATTAAAACTGTTGTAAGTTATTGTGGAGAAAGTACAATATTAAAAAAATTTAAATTATCAGAACAATTTTACAGTAAATACATGTTAAAGGC
(44)AAATTTTATGGAATCGCTACATGTTGG(39)TTTTATTAATGGATTTATATTAGCTTCATATGCTATGGGATTTTGGTATGG(23)TACT
AGAATTATGATACATGATATTAAAAATCTGAGTTCACCCAGCGATTTC(25)AATGGAGGATCAGTTATATCAATTTTATTAGGAGTTCTTATA
AGTATGTTTATGCTTACTATTATATTACCAAATGTTACTGAATATATGAAAGCGTTAGAGGCAACGAACAATATACATGAAGTTATTAACAGAA
AACCAGCTGTTGACAGAAATCAAAATAAAGGTAGAAAATTAGATGATATTAAAAAAATAGAATTTAAAAATGTCAAATTTCATTATGGTACTAG
(40)AAAAGATGTTGAAATTTATAAGGATTTAAATTTTACATTAAAAGAAGGAAATACTTATGCATTTGTTGGAGAATCTGGATGTGGTAAATC
AACAATTTTAAAATTGCTTGAGCGATTTTATGATCCAACAGAAGGAGATATTGTTATTAATGGTGCACACAATTTGAAAGACGTTGACTTAAAA
TGGTGGAGATCTAAAATTGG(17)AGTAGTTAGTCAAGATCCTTTATTATTTAGCAATTCGATTAAAAATAATATTAAATATAGTTTAATAAGT
CCAAATACTTTAGAAGCAATGGAAAATGGATTCACCATGAACGGAAGTAGCGATTCTTCATTAAATAATAACAAAAATGGAAAGTCCACTAGTA
TTTTGGATGAAATATCTAAGAGAAATACAACTAATGATTTATTAGAAGTAATATCATCTATTAATTCAGTTGAAGATTCAAAAGTAGTTGATGT
ATCTAAGAAAGTGCTAATCCACGATTTTGTTGCAGCATTACCAGACAAATATGACACTTTAGTAGGTTCTAGCGCATCTAAGTTGTCAGGTGGA
CAAAAACAAAGAATATCGATAGGTAGAGCTGTTATTAGAAACCCTAAGATTTTAATACTTGATGAAGCTACATCATATCTTGATAATAAATCAG
AATATTTAGTTCAGAAAACAATTAACAATTTAAAAGGAAATGAAAATCGTATCACCATTATTATTGCTCATAGATTGAGTACTATTCGATATGC
(26)TAACCAAATTTTTGTCTTATCAAATAGAGATCAAGAATCAACAGGAATTGATGAAAAAAAACAAGGTGCTATAAATAGCAATAACGGAAG
TGTAATAGTTGAACAAGGTACTCATGATAGTTTGATGAAAAATAAAAATGGTATTTACTATTCTATGATTCAAAACCAGAAAGTATCCTCAAGT
GGAAATGGTGAAAATGGTGATGACAATAATAGTAGCGTATATAAAGACTCTAATCCAGGTGATGCTAAATCTGTTACTG(27)ATACAAATATG
GACATTGGTACAAATAAAAATCTTAATACTAAAAAAGAAAAAGAGATTGCTGATGCTGATAAACAAACTAAACCATCAATCTTTAAAAGAATGT
TTGGAAAGAAAAAGAAGAAACCTAACAATTTGAATATGGTGTATAAAGAAATATTTTCTCACAGAAAAGAGGTTGCTATTATGCTTTTAAGTAC
TATAGTAGCAGGTGGTTTATATCCATTGTTTGCTGTATTATATGCAGAATACGTTGTGACATTATTTGATATCCCGAACTTAGAATATAATTCA
AATAAATATTCTATATTCATATTGTTTATTGCTTTAGCTATGTTTATTTCTGAAACATTAAAAAATTATTACAATAATAAAATTGGAGAAAAGG
TTGAAAGCAAAA(14)TTAAATATTTATTATTCGAGAATATAATACACCAAGAAATTGCCTTTTTTGATAAAGATGCACATGCCCCTGGATTTT
TATCATCATATATTAACAGAGATGTACATTTATTAAAAACTGGTTTAGTAAATAATATTGTAATATTTACGCATTTTATTATTTTGTTTATTGT
TAGTATGATTTTGTCATTTTATTTTTGCCCAATAATAGCAGCAGCTTTAACATTAACATATACCTTTATAATGCGAGCTGTTACTGCAAGAGTA
CGAATGGAAAAATCG(18)AATAAAATAGAGAAAATCGGAGATAAAAAAGATGGATGCCTTTCATATACTACTGATGACGAAATATTTAAAGAT
CCTAACTTTTTAATTCAAGAAGCATTTTATAACATGCAGACAATTATTACATATGGATTAGAAGATTATTATTGTAAACTGATAGAAAATGCAA
TAGATCATTACAATAAAGAGCAAAGAAAATCAATTATAGTAAATTCAATATTATGGGGATTTAGTCAATGTACACAATTATTTATTAATGCATT
TGCTTATTGGTTAGGTTCCATTTTGATAAAACACAAAATTATAGTTGTTGATGATTTTATGAAATCTTTATTTACATTTATATTTACTGGTAGT
TATGGTGGTAAGTTAATGTCCTTCAAAGGAGACTCAGATAATGCTAAATTAACATATGAGAAATATTATCCTATAATGGTTAGAAAATCAAATA
TCGATGTAAGAGATGAAGGTGGTATAAGAATAAAGAATCCACATCAAATAGACGGAAAAGTAGAAGTGAAGGATGTTAACTTTAGATATTTATC
TCGACCAAATGTACCAATATATAAAGATTTATCATTTAGTTGTGATAGCAAAAAAACTACTGCTATAGTTGGAGAAACTGGATGTGGTAAATCC
ACAATTATGCATTTATTGATGCGATTTTATGATTTGAAAGATGACCACGTTTTATTAGATAATCAACATGTTGAAAAAGACAATAAAGATAAAT
CAAATGATATAGAAATGACTAATGCAACCTCTATGAACGAATTGAATGAATTGCATAAGAAAAACGCAACTGAAGAATATACTCTTTACAAAAA
TAGTGGTAAAATTTTACTTGATGGTGTAGACATTTGCGATTATAACTTAAAAGATCTAAGAAAATTATTTGCGATAGTTAACCAAGAACCAATG
TTGTTTAATATGTCTATTTATGAAAATATAAAATTCGGTAAAGAAGATGCAACATTAGAAGATGTAAAAAGGGCTTGTAGATTGGCTGCTATTG
ACGAATTTATTGAATCATTACCAAATAAATATGATACTAATGTAGGACCTTATGGAAAAAGC(5)TTATCAGGTGGTCAAAAACAACGTGTTGC
TATTGCTAGAGCCC(3)TATTAAGAGAACCTAAAATATTGTTGTTAGACGAAGCTACATCAGCTCTTGATTCACACTCAGAAAAATTAATCGAA
AAAACTATTGTTGATATTAAAGATAGAGCTGACAAAACCATCATTACTATTGCTCACAGAATTGCATCTATCAAAAGATCAAATAAAATTGTAG
TTTTTAACAACAATGATAAAAATGGATCTTTTGTTCAAGCCC(53)AAAAAACACACGACGAATTGATTCGTGATAAAGATAGTGTTTATACAA
AATATGTCAAATTAACTAAATAAACGATTGAAAGTTGGGCAAATACATAACCAGATAATAGGAATGGAAAAAAATTGTGTTGAAATTTATTATT
AGCTCACTCTTGATCTATGAC(31)TATAGAAAGAGTTCATTTTACCTTTTAATCGGCTATTGAAAAAGAACTAAAAAAAATGAATTTGCTAAT
ACAAGATGATGAGTTGATATTTGGTCATGATTTTTATATAACATATAATTATTATGAACAAATATGCTATTAAAATTATATTTTGATGTATGCT
TTTTGAAAATGTTTTATATGTTCTCTCTTTATATCTTCATATATTTTATTTTTGCATATTTTTTTGTATTCACAATATACATATTGTTTTTTTT
TTTCATTTTTCCTATAAGAGAGGGAATTTTTGTGCATAT(50)TTAGCACCCGCTAAACCCTAATAATGCGCAAAATACATATTTTGTATACAT
ACATTTCTCATTAAATTTTGTTCTTATTATCGTTTGTGTTACTGTATTTTTTTTCATATGTAATATAGTGTATGTAAAATAACACCGTTTTTTA
CCGAATATTATATTTTTATGATTATCTAAATTTTAAACTATTTTTATAAAAAAAAAATGCGATTTTTATATATAGTAAAGATAAGTAGGGATGT
TATTCCCAGGAAAATA(51) 

 
 

B-pccg10 gene 
 
Note: Primers are underlined in the sequence.  
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GTACTATAATATTATTATTATAGGGTGAATAATAAAATTGTTTGCTTTATTAGGAGTCGACCAAAAATAAATGTATTATGGAAATCACCGCATA
C(37)CAATTGATTATAAAAAAATATATATATAATATTTATTGCATTTAAAAAAAAAAAAAAAAAAAATATCCCTATATAAATAATAATTCCTA
TGTATTAGAAAATAAGACTCACCTATATCGAAATAGTGCTGATATGAATGGGAAAAAAAATTTTATGGATAATAAAATTCTAATATATGCATAT
AATAACTACTATAAGCATTCATATTGATTTCCTTATCATTTTTAAAACTATAAAAAAATCAAGGTTTATATTATTTTTATATCTTTTTTTTTTA
AACTATTATATATAGTAAAATAATAAGTTTTTATGGAAAATATTAATATTCCAGTTTGAATATCATCATATTATCCATTAATATATATATAACC
AATTATATTAATACATTATAATATTCTAATTTTTTTAATATTTATTTTAATAGTATAAGAGTTTGTGCTAATTG(35)AAATAAATATATTATA
TATATTTTCTTTAACATTAGGTTATATATATATATAATTGATAATATGAATTATTTTCATTACTTAGTTAATGATATACATTGAGAATAAAACA
ATATATTGAAAAATAATATTATATATTTAATATAAATTATACAATTATATGTAAAAAAACCAAGACATATTATTTATATATCAACTTTTTAAGA
TATACTAAATCATTGTATCAATAATGACAGGAATGAAAAAAGGAAAAAACAAAAAAAAAAATGTAAAAAATGATGAACGCTATAAAGAATTGGA
TAGTCTAATAAGCAATGATAG(15)TAATAATCAAATAAAATTAAAAATGAAAATATAAAAACAAAGGAAACAAAATAAATATGAAAATATTAA
ATAATTAAGCTCGAAGCCAAACAATAAGGGGGGATATAAGAGAAACTAATTGAAATGATAATTAGCTACTAATTTTGGAAGACAGAATAAACTA
TGATGAACTGATTATGTATTTTCACACATGATTACTGATTGTATTATAGTTTTTTTTGTCTTATTTTTCTTATAACCATTCCAAATACT(36)T
ATGTTTGAGACTTAATCGTGGCTTAATTATATTTGACAAAAGTTTCGCAAACTTAATAAAAAAAGTTAAGGGTGTAGTGATATGG(27)TAGTA
GTATTACGACTTATATAGCACTAGTTACTCTAAACTTATTATTATGTTAACGATAAAATATATAGTAATATCACACATGCCATGTATAGAAAAC
ATACATATATTTTTCCCTTATTATAATAAATATATTTGTAGGCGAAATAGGAAATAACTCAC(18)GATGGGGTGGTGCCAAAAGAATTTGCAA
ACTAATTGGAAATGAAATG(20)AGAAATAACATTTATGTTTATTTACTAAGTATATTATATTTATGCGTCAGTGTAATGAATAAAGTTTTTTC
AAAAAGAACCCTGAATAAGATTGGAAATTATAGTTTTGTTACTTCAGAAGTACATAACATGATTTGTAC(17)TATAGTTTTCCAATTATTATA
TTTTATTTACCGTAAAACATCAAATCCTGCATCTAGAAATGAGAGCCAAAAAAATTTTGGATGGCAGTTTTTCCTTATCTCATTATTAGATGCC
TCCACAGTTATAATTACTATGATTGGTATGTCAATTTTATCCCGAAAATTATATATTAAGCTTTAAAACGGCGCATGCTCGCTACTCATATGTA
TATATATGCACACACACACACACTTACGACTCTTCTCCTTTTTAAGGTCTCACAAGAACAACGGGGAACATCCAATCATTTATTATGCAACTGA
TTATTCCAGTTAACATGTATTTTTGTTTCATCTTCCTTGGATATAGGTAAAAAATCGAAATTAAAAAATGGAAACCATTACACGTATATTTATA
GCACCAAATTTTATGCATACTAAAATTTATACATTTTACTATTATCCTTTTTTTGCTACTCTTAGATATCACTTATTTAACTATTTGGGAGCTT
TCATTATACTTATTAC(32)TATAGCCGCCGTAGAAACTGTTTTATCTTATGAAACCCAAAGTGACAACTCAATC(33)ATTTTTAACTTAATT
ATGATTTTCGCCTTAATTGTAAGTTTATTAATATAATCGTCAACGAACAGTTTGCAAATTTATATGCGCCCCTTTTCC(12)TTTTTATTAATA
TTTTTCAATTTTCATTTTTCAATTTTCATTTTTCAATTTTCATTTACAGCCTTTAAGCTTTTCAAATATGACC(13)AGAGAAGTTGTCTTCAA
AAAACACAAAATAAATATCATAAGATTGAATGTAAGAAATATGTTAAAATTGCGTTTGAAAAAGATGGCAAAAAATCGTAGAATTGCAATAGGG
CAATTTATCAAACTGATTGCACCACTAATAATCACACTATGATAAAATTTTTCCAACAATTTTTCCAACAATTTTTTATTTTTATTAGGCTATG
GTCGCTTTGTTCCAATTTTTTACTTCCCTTTTAGTTTTACCAGTCTATAATATCTCATTTTTGAAAGAAAGTAATGAAAATAAGATTTCAGTTT
ATTTGAAAAAGAATAGTACCAGTTTTTAGCTATATTACTG(21)TCTGCAAAATTGTTATTTTTCATTTTTCATTTTTTCACTTTTTAGTTTAT
ATGCCATTCTCTGAAATGGGCACAAACATTAATGACGGTTT(22)AAGATGCTTATTTTATGGACAAAGCACAATCGTTGAGGTAGGACATAAT
TTTACATTCTCAAGATGAAATTCACATATTTTTATTCAGCTAATGTTTTATAACATACTTATACAATCATGTTTATTACTAATTTTGTGTATTA
TTTTTTTTACAGAATTGTGGTGTTGGTATGGTCAAAATGTGTGACCAATGTGAAGGAGCATGGGTAATTAATTTTTATAAAAAAAAAAAAAAAA
AAAATACAGAATAAAATGCATTATTCAAGTTGATATATTCAACAAAATTATCTAACTGTTTTTTATCTCTTTTTCAGAAAACCTTTATAACATA
TTCCTTTTTCAAC(11)ATATGTGACAACTTACTTGTTTGCT(26)ATGTAAGATAAAAAAAATGCACATAATATATCATTATTTAGATCAAAA
AACATATAAAATTATTATTATTTTTTTTTTCGTTTTAGATAATTGATAAATTTTCAACAATGACATATACCATTGTTAGTTGT(16)ATACAAG
GACCAGCCATAACAATAGCTTATTACTTTAAATTTCTTGCGGTAAAATATTTTATAACAGAACAAAATTCGAAATATTTTCACCTTTTTTTTAC
TTTATTTTGACAATATATGTTTTTTTTTTGTGTCTTTAGGGTGATGTTGTAAGACAACCAAGACTATTGGATTTTCTCACTTTG(24)GTAAGG
AATATGAAATAAAAATTTTTAACAATTTTGTACATAGCTAGTAATGATTTC(28)TTTTTTAATATAATTTTTTTGTTTTCTTTCTTACAGTTT
GGATACTTATTGGGAAC(29)AATAATTTACAGAATTGGAAATATCATATTAGAAAGTTAGTTTTAAAAATAGTTAAATAAAACTGGAAAATTA
TATTTATACATATATTATGTGTCTACATATG(30)TGTACAACATATTGATATTTTTTTATTCTTTTTTAATNCAGAAAAAAAAATGTTAAAGG
CACTAAACACCGATGGATCCGAAGCAGAATTAACTTCTATAGAAACATCAACAGCATAATAGATATGACAAGTTTATATGTTAAATATTTTTTT
TAAATGCCACATAAAATTGTAAAGAAG(34)AGTATGCTAATAATTAAATATATGTATTTTTTTTTGAATCAAACTACTTTATTTTGATTCATA
AATATTTATATTTTATAAAATTTGTGAATTTTTTTTTTATGAAAATTATGTGTTACATTTTGAATATTAAATATATGACTTTTTAATACATATT
TTGTAAATCTTAAAATTTGCTGATATTCTGCTATTATATATTAAT 

 

C-pctctp gene 
 
Note: Primers are underlined in the sequence.  
 
AATGATGAAGTATGCTCTGACTCA(1F)TACGCTCAAGAAGATCCATTTGGAAATCCAGAATTCCGTGAAATTGCTTTTGAAGTCAAATCAAAT
AAAAGAATAAAAGGAAATGATGACTATGGTATAGCCGATAATAGTGAAGATGCAGTAGAAGGAATGGGAGCTGATGTTGAACACGTCATTGATA
TTGTTGACTCTTTTCAATTAACATCCACTAGTTTAAGCAAAAAGGAATACAGTGCTTATGTTAAAAACTTTATGCAAAGGATTCTTAAGCATTT
AGAAGAAAAGAAACCAGATCGTGTAGAGATTTTTAAAACAAAGGCACAACCCTTAATTAAACATATTTTAACAAATTTCGATGACTTTGAATTT
TATATGGGAGAATCACTTGATATGGAAGCTGGTTTAATTTATTCATATTATAAAGGTGAAGAAATTACTCCTAGATTTGTTTACATATCA(1R)
A  
 

D-pcatp6 gene 
 
Note: Primers are underlined in the gene sequence, initiating and stop codon are presented in bold, the introns 
are highlighted in grey.  
 
AAGGATCTTTATATAGTTTATATTATATATGAAATAAAAAAATACACATGTATATATAATTATAAAAAACAAATTATCCTAATAATAAAAACAT
TTCAAACAAAAAATAGAAGAAAAGAAAAAAGAAACAATTGCTAAATATGTTTATGCTTATATGTTGATACTCAAAATTTTCTTATAATCTTAGA
AATATTCACAACTCGTTTGGTC(1F)ATTTTTATTTTTTTTTAACCAAAGATGAAATAAATCATTTGTAAAAAAAATATATATTAGCGATTTTT
TCATATAGCTAGAATTTCCCTTTAAAAAAAATATGATAAATATAGCTATTTGCAATAAGAAGTATATAAATTATAAAAAAAAACATGAACAGTT
CAGATTATTTTATCCGTTATGTATGATTTGTACATGTTTTTTTCCCCTTTTACTGAATATTTCAAAATGGTACAAAATAATTTGATATAACAAA
TGTTCATTATTCTTGTTGCTAGTGATATGTTTAATAGACAAAAGTAATTTTTATCACAGGAAAAAAAATATGTGTATATATTTGACTTATTCTG
CATACACATATGTATAGGAAATATTTAGGTTTTTCAATGAGCTTTATTTATTGAATGTCTTCTGATTCATATGAATCCGAATATGCTTGATTGG
AATCGTCCTCATCTGAATATTCGCTAGCTGAATCATCTTCTTCATCTATATCCGCTTCTTGTATTAAATTATGTTCTCTACAAGAGTTTAAATC
GGATTC(2F)TTGTATATTTCTAATTTTTTCAATCATTTCTAAATTATTGTTTTTTAAATCTTTGTACAAATCTAATATTAAATCAGAAACTTC
GATCTACAAATTGG(1R)AAAAAAAATAAAGCGTATAATTGTTAATAAATTAATATTTTTCATAGTTTTGCTTATATTTCTATTATTTATTCGT
TTGTTTGTTTATCTTACATCACTATCATCATCAAGATCCACATTAAAAAGCGTATTAATTTCATCTCTTAAGTAGTCACAAAGTTTATCTTTGG
GTCCCGTGTCTTGAGAATAGTATATGAAAAAAATAAAAAAATGCATATATATATTTTGATTATCTAAGTAATAAGAAATGGGAATGCATTTTAG
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CGGCTAATTCGGTATATGCATACACGTTAACATTTTTTGTGTGCTTACTTGATAAAACATAATTATGGACATATTCAATTAACTTTTTTTTCTT
TTCCTCTGAGGATGTTCCACCCCAATTATTTGTCACAGCTAAACGGAGCACTGTCCTATATC(3F)AATGGAAAACGAAATTTTATATTTTTTT
TATTTATTCAATCGTATGTAAATAAATATAAATTGTAGATATGCATGATGGAAGGTATAGCAATAATCCTTGTAGATGACAAATGCAGG(2R)T
TTTTGCCAAATACATAGAATATTTACATATATTAAATTGCTTTTTTTATATAATACCATTTATCAAATATTAAGTTAATCCCTTCAAGTAATAA
AGTAGATAAATTTTCACTATTCATTATTATTATTATTTTATTTAAAGTAAAATTAAAATATGTTTTTCAAAAAATAACCCGTTATATATTTTAT
AGAAACCCTGTTTCATTAATTTTTAAGCAATCCGTTTTTTTATATTTTTTTTGTCGTTGTTTTTTTTCCACTCGTTTTTTAATTACAACGATTA
CATTTTATTGTGCCCAAAAAAGGGGAAAAAGTATAAAGATACTTTTATTTTATAAAAAAAAATGTCTATATATTCCTGATTTACTATAAAATAA
ATATTATATCCAATTATATATTGCTACAAGTATTGACGTTTGCCATTCTCGTG(4F)ATGCTATTTTTATTTTTTTTATTTTTTACTAGCCAAA
TATTGTTACATATTAGGAAATAACATATAAAAAATATAATAAAAGAAAAAAATTAAAAAATTTACAAACGTAGAAAATGATAGCACGG(3R)TA
AATAAGAATAATAAAACAAGTGAACTTTGAACAACTTTAGAAAAAAGTTAAATGAAAAATATAAATTTCCCAAATAATATATTATTTCTTATTA
TTGCCCCCACCCCAATTTGTAAAATATTACTGTATATTTTTTACATGAACTGTTAATAATTAAATGGGATAATTCATAAATTTTAATTTTATTA
TTCCAAAATGAACAGGTTGAAATCGTAAGTTATCAAAAATAATGCTAATTTTTTCTTTTATTTGTCATATTTTTTATAATTATAAATGAGCATA
GATAAAATATGTGCATATGTAAGTTGGTGTTATACGTTTTTATGGATTAAACTTATAAATGGGCGTATATATTTCTCCTCTATACTTTCGGATA
GCCATATCAATATGCTAATGTTTGTATAACCTTGTTCAGTCTCATAAGGTATAGAAATGGTTATATAACAATGAGGTATAATTTAGCTTATCCA
ATTTCTTTAC(5F)ATAAATTTATTTATTTAAAGACAGAATAATATTATATATATACAAAACAATATTTTTGTATGTAGGGGTATTTTATAAAA
AATATTTTTTCCCCTTTTCTCACACACATAAAG(4R)TAAATAATTATATCCAATGTAATATAAAAAGGGTAACAAAATTAATAAGAGATATAC
TTATCATATCATCTTATGAATAATTTAACACAATGCTTACGCATATGTATGTGCATATTTATTGGGGGTAATATTTATTATTAACATTACAAAG
CAATAATTTTTTTTTCCTAATAAGACTTTTTTTATGACTGTTCATAAATATTTATCTAAAAAAATTATTAGTATAAATTTACTTTTATATCATT
ATGTGTGTTTAGTAAATGTGCTTATGAATAATTTTACACGCATAATATAGTAATACTAAATAAAAGAAAAAAATGTGTTAGTTGCCAAATATCA
TTGTCATTAATTTTATTATTCTTATGAAAGAAATAATATATCATAAAGATAAATTAGCTAAAGATATTTATAAAATAAGCGAATGGAAATATGA
GCATATTTAAAAAAGTATAATATATATTGTTGTTAATTTGCTTTTGTATATTATAAACACTATATGGTATTTACGC(6F)TTTTTCTTATACAC
ATTTTTTATTTAATTTATAATAATTTAGTATGGAATAATTAATTTTTTTTTCTTAATTGAGATATATATTTTATTTTGTGTCAGTTTTCTACAA
TGC(5R)AAATAGAAAAAAAATATATTTTTATGCATACATAACATATTATTTTAAAAATAATTGAAAATTAAGAAATAATAGCAATTTTCATGA
TATATTTTTTTCATTTATTAATCATTTCATTTATGCTTAACATGATCTCGTAACAATAAAAAATAAAAAAATAAATCGCTAAAAAGATACAAAA
ATATATAAAATGTATGGTGATTTATTTTTATAAGTGTACATATATATATATACATACACGGTATTATAAGTGCTCATTACTTAATAGCTTTAAA
ATTTATAAAATTTTTTACCATATTTGTTATGTATGTAAAATAGATACGCTTATTTATGTATACATTTTTTTTTCCTGTTTCAATAAATAAAAAT
ATATATATATATTTTATCCCTTGTTTTATATTTCTATTATTTTTATTTATTTTTCTTTTTTTTTTTAATGTGCTTTTCTTTTTGTTTTACATAA
TGCCAAAAAATGCGTAG(7F)TAAAATTAGGATTTATATATAATATATACACATATATTATTATAAGTATGCACATGAAAAGGATTATAAATAT
ATTGATTTAGGTATGTACATATAGTATAATAAAGTACGCTAATTAAGATAAAACAAACTTAAAAAAAAATTATATAAAAATAATTCTGTGGATT
TACAAAATAATTGATC(6R)CCCCAAAAGAAACAAGAGAAACACATCACGTATGTACATGTATGTATTTATGCGTATTATGTGTTAAATAAACA
TTAGAGGTGATTATATTTGTTTTTTATTTTTTTCATAATATTTTAAAAAAATAATATACAAAATTTGGAGTCACAATTATTTTAATCTATGATA
AAAGTTTATATTGAAGTGTTTGCTTTTCGTCGCAGCATATGCCCGTGAGTATATGCATATATGTATATGTGCCTATATGCATATAGATAAATAG
AAATATAATTTATGAGTAGGTTAGCCCTTTGAT(7R)TTAAAAATAAATTTTGATTTAAGATCACATTACAATTATCAAATAAAAAGATATATA
TATCGAGAGACATTTCCAGTAGATATCATTCGATGTATTTTGCCATATTGTCAATAAAATAAGCATACAAAATAATAATTGATACTGCGAAAAT
ATAATGGAAGATATTTTGAAATATGCACATGTATATAATGTAGAAGATGTTTTGAGAGCAG(8F)TAAAAGTAGATGAAAATCGGGGTTTATCC
GAAAATGAAATAAGAAAGAGAATAATGCAATATGGGTTCAACGAATTGGAAGTAGAAAAAAAAAAAGGAATTTTTGAATTGATATTGAATCAGT
TTGATGACTTATTAGTAAAGATATTGCTTTTAGCTGCTTTTGTTAGTTTTGCACTAACATTACTAGATATGAAAGATAATGAAGTAGCTTTATG
TGATTTTATAGAACCCGTTGTTATATTATTGATACTTATATTAAATGCAGCTGTTGGAGTATGGCAAGAATGTAATGCAGAAAAATCGTTAGAG
GCACTAAAACAGTTGCAGCCAACAAAGGCAAAAGTATTGAGAGAAGGTAAATGGGAAGTTATAGATAGTAAATATTTAACAGTTGGTGATATAA
TTGAATTAAGTGTTGGTAATAAAACACCAGCAGATGTTCGAATTATTAAAATATTTTCAACAAGTATTAAAGCAGAACAAAGTATGTTAAC(9F
)TGGTGAATCATGCTCTGTTGATAAATATGCAG(8R)AAAAATTAGATGAATCATTAAAAAATTGTGAAATTCAATTAAAAAAAAATATATTAT
TTTCTTCTACAGCTATTGTAGCAGGTAGATGTATAGCTGTTGTAATTAAAATAGGTATGAAAACTGAAATAGGTAATATACAACATGCAGTTAT
AGAATCAAATAATGAAGAAACAGATACACCATTACAAATAAAAATAGATTCATTTGGAAAACAATTATCAAAAATTATATTTATTATTTGTGTA
ACCGTTTGGATTATTAATTTTAAACATTTTTCAGATCCAGTACATGAATCATTTTTATATGGATGTTTATATTATTTCAAAATCAGTGTGGCAT
TAGCTGTTGCTGCAATTCCTGAAGGATTACCAGCAGTTATTACTACATGTTTAGCTTTAGGAACCAGACGAATGGTCAAAAAAAATGCTATTGT
TAGAAAGTTACAAAGTGTTGAAACATTAGGTTGTACCACTGTTATATGTTCTGATAAAACCGGAACCTTAACAACAAATCAAATGACAGCTACT
GTTTTTC(10F)ATATATTTAGAGAATCAAATACATTAAAAGAATATCAACTATGTCAAAGAGGAG(9R)AAACCTATTTCTTTTATGAAACTA
ATACTAATCAAGATGGTGAAGAAGATTCATTTTTTAAAAAATTACAAGAAGAGGAAAATAATGAATCTAATTATAAAAGACAAATAAGTAAAAA
TATAATACATGATGAAGAAGATTCAGATGATGAAAGAGCACCGTTAATGAATATGAAATCAAATGTAAATACAATTATAAGTAGAGGTAGTAGA
ATTATTGATGATAAAATAAATAAATATAGTTATTCCGATCTTGATTATCATTTTTATATGTGTTTATGTAATTGTAATGAAGCTAGTATTTTAT
GTAATAGGAATAATAAGATTATTAAAACATTTGGAGATAGTACCGAATTAGCTTTACTTCATTTCGTTCATAATTTTAATATAACTCCTAATAG
TGCAAAAAATAATAAAATGACATCTGAATATGAAAAATTAAATAGTGGAAGCAGAAAAAATAGTGACCTGGATACCGATTGTGATTCTTTATAT
AGTAGTGAAAAAAAAACAAAAGTTTCAGATAAAAAATCGGAACCATCATTCCCAAGTGAATGTATAACTGCATGGAGAAACGAATGTACAACAT
TGCGAATTATTGAATTTACTCGTGAAAGAAAACTAATGAGTGTCATTGTAGAAAATAATAAGAATGAATATATATTATATTGTAAAGGTGCACC
AGAA(11F)AATATTATTAATAGATGTAAATATTACATGTCTAAAAATGATGTACGGTCATTAACTGATTC(10R)TATGAAAAATGAAATTTT
AAATAAAATTAAAAATATGGGAAAAAGAGCTTTGAGAACTTTAAGTTTTGCATATAAAAAAGTTAAAGCCAATGATATTAATATAAAAAATGCT
GAAGATTATTATAAATTAGAATATGATTTAATATATATAGGAGGATTAGGTATAATTGATCCCCCAAGGAAGAATGTAGGAAAAGCTATTAGTT
TATGTCACTTAGCAGGCATTCGTGTTTTTATGATTACTGGTGATAATATTGATACTGCAAAAGCTATTGCTAAAGAAATCCATATATTGAATAA
TGATGATACTGATAAATATAGTTGTTGCTTTAATGGACGTGAATTTGAAGAACTACCTTTAGAAAAACAAAAATATATTTTAAAAAATTATCAA
CAAATAGTATTCTGTAGAACTGAACCAAAACATAAAAAAAATATTGTTAAAATTTTAAAAGATTTAGGAGAAACTGTTGCTATGACAGGTGATG
GTGTAAATGATGCACCTGCTCTTAAATCTGCTGATATAGGTATTGCTATGGGTATAAATGGAACTCAAGTTGCTAAGGAAGCTTCCGATATTGT
TTTAGCTGATGATAATTTTAATACTATTGTTGAAGCTATTAAAGAAGGACGATG(12F)TATATATAACAACATGAAAGCTTTTATACGATATC
TTATAAGTAGTAATATTGGAGAAGTTGC(11R)TTCGATTTTCATTACTGCTATTTTGGGTATCCCCGATAGTTTGGCTCCCGTCCAGTTACTA
TGGGTTAACTTAGTAACTGATGGTTTACCTGCCACTGCTCTCGGTAAGTTTGTGAATCTTCACATGTTTCCATTTTCTCACCTTTTCCATTTCT
TACTTTGTTTCGCTTATTTTGTCATTTCTTTACCATCGCAGGATTCAACCCCCCCGAGCACGACGTGATGAAATGCAAACCCAGACACAGGAAC
GACAACTTAATAAACGGGCTGACATTGCTTAGATACATAATTATAGGTACATATGTTGGAATAGCTACAGTGTCAATCTTTGTATATTGGTTTG
TGTTTTATCCAGATATGGATAATCACACTCTAATAAATTTTTATCAACTTTCTCACTACAATCAATGTAAAACGTGGGAAAATTTTAAAGTGAA
TAAAGTATATGGTATGTCCGAGGATCTATGCTCTTATTTTTCTGCTGGCAAAGTCAAGGTAATAAAATCATTCCGTTTTTATCATAAATTTTGT
ATGCATGCAACAATATAGTTATTCATTTGACGTTTGTTTACTTCTTTTTTTTAGGCAAGTACCTTATCATTATCC(13F)GTTCTAGTCTTGAT
CGAAATGTTCAATGCGCTTAATG(12R)CACTTAGTGAGTATAACTCATTATTTGTGCTTCCACCATGGCGAAATATGTACCTAGTATTTGCAA
CAATAGGATCTTTACTTCTTCACTGTATGATCATATATTTCCCACCACTAGCTAGAATATTTGGGGTTGTGCCACTTAATTTACACGATTGGTT
TTTAGTATTCTTGTGGTCCTTCCCTGTAATAATAATTGATGAAATTATCAAATTTTATGCAAAAAAACAATTAAACAAAGAACTCGGGTATGGT
CAAAAATTGAAGACGC(13R/15F)ACTAATGCACACATTTACTTCGCATCAAATAATTATAAACATGTTGTACATGGAAGTTTATGTCTTCTT
TCGTTTCTTTTCTTTTCTGTTTTTTTTTTTTTTTTTATTGTGATACTTTTCTAAATTAAACCCCCAAATTATGAATATGCATAATGTATACTTA
TCTCTTAATTATTTTACTTCGCTTATTTTTATTTTATTTTCTTCTTCCTATTTTATATTGTATTTAAATTAGTATAACATTATTACTATCCCAT
TTTTATTTTTTTAAATATATTATAAAAGTACAATAAAAAGAAAAATAACGAACATCAATTTTTTATATATTCCTTATTTATAAATATTTACAAT
TTTTTTTTTAAATATATATTGATGTCTTTTTCGAATAATTCTAATTTTTTTTCGACAATTTTTTTAAGTATACACATATTTGGGTATTGAAAAA
GGTGTGCGTAAAATGAGG(14F)AAAATTATACACATTCTTCCTTTTCATTATTTTTAATTTTTATAAAAAAAAATGAAAATAACAAGATATAT
AATTGGTAATTAAAAATATAAACTACGAATTTACTACTGTTTTATGTATTTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAACTTTATT
ATTTGTTACATCCCTATGCAAATGGCC(15R)ACAATGATACTACTTGACAAATAAAGAAGGGAACATAACGAAATACAGTTATTTTAAAAATT
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TTTTTATTTTATACATTTTGAGAAAAAATGGAACTAGCATACGAACATGAAGTTACAAAAAAAATAGTTTATAAAATAATAAACAATATGAACA
GCAAAAATGATGTAACATTAGAAAGGATGCAACACACCAGGTACAGTATTCATTTTGTTACCATCTTACTACTGCCTTACATGTGTATTTACTT
GAAAATATAAGAATGGTCATGAAGTAATGGCACACTTTCAAAAAGGCACAAAGCCAAAACACGTTCATACAATATGCCATATGTCATAGCACAA
AGAATAATTCATTTTGTAATATACTTTATAATTATACTTTATTTTGTACATTTTCTTGCCCTTTTTAGAAATAAGATAGTGAAATACTTTTTCG
AAGCAGAATTGTTATTTAAATACTATGACATAGGAAAGACTGGTGAG(14R)ATAGATGTAAGTCTATTCCCACAAATGGCAAGAACATTAAAA
CAAATATATGATGCAGAAGATATTAAACGGT 
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APPENDIX 3 
 

PRIMER SEQUENCE AND PCR AMPLIFICATION CONDITIONS FO R 
DETERMINING GENE COPY NUMBER OF pcmdr1, pctctp and pcatp6 

GENES 
 

Table A3-1 - Polymerase Chain Reactions for gene quantification of pcmdr1, pctctp and pcatp6 genes in 
comparison to pcmsp1. 
 

Gene Primer sequence 
5’ - 3’ 

[[[[MgCl2]]]] (mM) / 
[[[[Primer ]]]] (µµµµM) 

PCR amplification programme 

pcmdr1  
sense - TCT CGA CCA AAT GTA CCA ATA TA 
 
 
 
 
antisense - GCA TTA GTC ATT TCT ATA TCA TTT G 

 
 
 
 
3 mM / 0.8 µM 

40 cycles 
95ºC for 600’’, 95ºC with a 0’ hold, 
cooling at 20ºC/s to 63ºC with a 7’ 
hold, heating at 20ºC/s to 72ºC with a 
7’ hold. heating at 20ºC/s to 95ºC with 
0’ hold, cooling at 20ºC/s at 65ºC and 
heating at 0.2ºC/s to 95ºC in a 
continuous acquisition mode produced 
the melting curve 

pctctp  
sense - AAT GAT GAA GTA TGC TCT GAC TCA 
 
 
 
 
antisense - CAT TCC TTC TAC TGC ATC TTC AC 

 
 
 
 
4.5 mM / 0.8 µM 

40 cycles 
95ºC for 600’’, 95ºC with a 0’ hold, 
cooling at 20ºC/s to 60ºC with a 7’ 
hold, heating at 20ºC/s to 72ºC with a 
7’ hold. heating at 20ºC/s to 95ºC with 
0’ hold, cooling at 20ºC/s at 65ºC and 
heating at 0.2ºC/s to 95ºC in a 
continuous acquisition mode produced 
the melting curve 

pcatp6  
sense - AGG CAA GTA CCT TAT CAT TAT CC 
 
 
 
 
antisense - GTG AAG AAG TAA AGA TCC TAT TG 

 
 
 
 
4.5 mM / 0.8 µM 

40 cycles 
95ºC for 600’’, 95ºC with a 0’ hold, 
cooling at 20ºC/s to 58ºC with a 7’ 
hold, heating at 20ºC/s to 72ºC with a 
7’ hold. heating at 20ºC/s to 95ºC with 
0’ hold, cooling at 20ºC/s at 65ºC and 
heating at 0.2ºC/s to 95ºC in a 
continuous acquisition mode produced 
the melting curve 

pcmsp1  
sense – ACA GTA ACA CAA GAA GGA AC 
 
 
 
 
antisense – GAT ACT TGT GTT GAT GCT GG 

 
 
 
 
3.5 mM / 0.4 µM 

40 cycles 
95ºC for 600’’, 95ºC with a 0’ hold, 
cooling at 20ºC/s to 59ºC with a 6’ 
hold, heating at 20ºC/s to 72ºC with a 
7’ hold. heating at 20ºC/s to 95ºC with 
0’ hold, cooling at 20ºC/s at 65ºC and 
heating at 0.2ºC/s to 95ºC in a 
continuous acquisition mode produced 
the melting curve 
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APPENDIX 4 
 

GENE AND PRIMER SEQUENCE FOR THE GENE ubp-1 
 

A - Pcubiquitin carboxyl-terminal hydrolase gene summary (ubp-1 gene) 
 

Note: Primers are underlined in the gene sequence, initiating and stop codon are presented in bold.  
 

TTATCAAAGAGTTCAATTTTAATGATATTGTTAATGCTGAGGTGAGTTCAAAAAACCTAATGCACTCCCCTCGCGATCACAATCACGATTCCCA
CGGAACCCCCCCTCCGAATCCATTGAATCAGGTATGTTCGGCGCCCGATGCCACGCCCACCATTTGCTTGTCATGCTTGCCATGCATCGGTTTA
GGCCCACTTGTTTAGTTTCATTGCATTTTCTTTGTTTCACTTGCATTTTCTTTGTTGCACTCGTTTCGTTCTTCGCCCACTCTCACATTGACA(
1F)TTCCCATTCTCTTTGCAGCAGAAAACCGAGAGGAAATCGAACAGGCCAAGGAAAACACGATCGGAATAAAAAATATGCTTAAGTTCATAAT
CCAAAAAAGCAAAAAGGAAAAAAATATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTATTTTTAGGCATATGTATAAAAATTGTC
ATATGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCATAAATCATAAAATATTGGGTTTAAAAATATTTC
GACATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTTATTGAACATGAAATTGATCCAGAAAT
TATTAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATATTGGAAGTAATCCTATGTTACATCCA
TACACTCGTAGTAATACATCATTACCTGAAGTAGATCATTTCTCTTTCCCTTCAAAAGATAAGAATCTAAATCATACTTTTAATAATTTTTCTA
CCCAATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATC(2F)AATAGAAAATAACAATTCAAAACAAAACTTTTTTAAACATA
AACAGAATGATTTATCATTAGATTCTGATTTGCCAACACCAG(1R)ATTTATTTAACCCAAAAAATAAAAAAAAAAAAAAAAAAAATTCTGAAA
AATTTGAAGATTCACATAATAAAAATCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCACAAAAATATAATTAATAA
TATTAATAATATTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGATCACGGTATTACTTATGATGACATGTTTAGAGAT
AATGACAATAGCAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAAACTTACATTTTAATAATT
TACCGGACTATCCTACTTCTTTG(3F)AAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAAAATAAAAAATGAAA
ATCAAAATAGTAAAGAAGAACAAGATAATGGG(2R)GAAGAAGAAAATCATAGTAATAAAACTCAACATAAAGAAAATAATAATATTTCAAAAG
TCAATGAGCAAAATGAAAATATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAACACTACTCGAAA
ATATATGATTGATGAAAACCTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATCACCAACTTTT
GAAGAAGATAAGTATAGACATAATAATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAAGATGCTGATA
ATTCAAATAATATGGTGGATAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAGAGAGAAAAAAGAAAATTTTGGATCCTCAAAAAA
GTTAACTAACATTGAAAGTGCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAACAATTCAAACC
AATGG(4F)ACATACTGTTAACTACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACT(3R)TTGTAAAAGATAAAAAAAACGA
TTTAGATATTATACAAAGAAAAGGAATATCTCTTGTTAATGCTACAACAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAGAA
AAAAATAAACATGTTAGTTCAGATAAGTTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAAAAAAATGCAAA
AAGGAAAATTACGACACCCACCTGTTGGTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTTTC
ATTTGTTGTTAATTTATACATTTTTAATATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCAA(
5F)AAATAAATTATCATTTAACCTGAACAATACAAACATGAATAATAATAATAATAATGCAAACTTACTTTCAAAACGATTTTTATATGAGTTG
AAAATATTATTTAAATTAATGACTACAACAAATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAA
ATCAACAAGATGTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGT
TATACAAAAAGTTCAATGCCAAAAATGTTTTTTTATTTCAAAGAAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAG(
4R)TAAAAAACAGTCTATCCAAAAATTCTTTGATACATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCTCGAAATGCAAC
AAAAGGCGAAATGCCCTCAAGTGGAACGAAATCATATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGGTAAACCAAAAAATGCAAAAAAA
TCCAAAAAAATCCAAAAAAATCCAAAAAAATCCAAAAAAAAGCAAAAAAAAATATTTTTCACTTCGTCAATTTTTCATTTTTCAATTTTCCATT
TCGTCAATTTTTCACTTCGTCAATTTTTCACTTCGTCATTTTTCCATTTTCCACTCCTTCCCACTTTCAGGTACAACTGGTCGTTTAGCTCCAA
CGAAAAGAAGAAAATAAAAACGCACGTCAAGATCAACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGT
GGCGTGTCAGCATC(6F)ATCAGGTCATTATTATTTTATCGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGAC
GACTCAGCTATTACTA(5R)AAGTTAGTTCCAAATCCATAAACCGAATTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTAT
CGTTGCAAACAAGCTCCCGATTCCCCAAGCTTATACTTTTAATCATATTTCAAAATTGCAACAATTTTGCTAACGCTTTATTATTTTATATACG
TGCACCTTTGAACGAAAAC(6R)CCTTTTTAAGTTATATTTTTTGTTTAGTTTTTCCGATTATGTTTGTATATATATATATGTATATATAATGT
GTGCGATCTTTTTTGTCGCCTAATTAATTAATGAGTATTTGCTCTATGAAATCTAGTTTTTTTATAGTTTTCATTTCTTTGTTATTGTATATTA
CATATA 

 
Note: The gene is composed by: 
3 exons, 

197855 – 197933bp 79 b. p.  
197998 – 200899bp 2902 b. p.  
201129 – 201468bp 340 b. p.  
 

2 short introns 
* 63 b. p.  
* 229 b. p.  

 
Total genomic  = 3321 + 63 + 229 = 3613b. p. 
 
Protein =1106 a. a.  
 

B - Pcubiquitin carboxyl-terminal hydrolase predicted translation 
 

MICCSDANELKLLVFLGICIKIVICRISNLLNAKACLEQFYYFINHKILGLKIFRHSHIVLVYFIPFFKKYYFLWKFIEHEIDPEIIKLINAII
NNLENLQNNKNINNIGSNPMLHPYTRSNTSLPEVDHFSFPSKDKNLNHTFNNFSTQYNPHDYKTSFSHSISIENNNSKQNFFKHKQNDLSLDSD
LPTPDLFNPKNKKKKKKNSEKFEDSHNKNQQHPHDYSEFDSHNNFHKNIINNINNINYFRPSSLFNTNENCDHGITYDDMFRDNDNSSDDNYFD
KGKNKICNVKEYITNLHFNNLPDYPTSLKNSDENKKSEDKKKKKKKIKNENQNSKEEQDNGEEENHSNKTQHKENNNISKVNEQNENILLYNIQ
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DNENAENKISKNSNTTRKYMIDENLNEYKIENKKDVSNNYNNKEGSPTFEEDKYRHNNRSSTPQNNGIKKFPTVSYEDADNSNNMVDKKSQKNY
INLELDREKKENFGSSKKLTNIESAKGMNNDDNYNSNNEILNNRRTIQTNGHTVNYNRNNNNMRPDEYENFVKDKKNDLDIIQRKGISLVNATT
NNNYEEINIVNNPIEKNKHVSSDKLIQKRPKYLMLPIDTTELKKMQKGKLRHPPVGLINLGNTCYLNSLLQALYSTVSFVVNLYIFNIDDNKEL
KHINNKNISNEMPIKNKLSFNLNNTNMNNNNNNANLLSKRFLYELKILFKLMTTTNKKYVSPDNILGILPQELNNRNQQDVTELFRYTFEQLGG
SEKKFLRLIFSGVVIQKVQCQKCFFISKKEEIIHDLSFHVPAKSSKKQSIQKFFDTYIQKEKIYGNNKYKCSKCNKRRNALKWNEIISPPCHLI
LILNRYNWSFSSNEKKKIKTHVKINKKIVVNNFDYRLYGGIIHSGVSASSGHYYFIGKKSEKGDNSKNEWYQMDDSAITKVSSKSINRISKDPS
NDHTPYVLFYRCKQAPDSPSLYF* 

  
Note: In grey the codons where mutations were found 
Effect of mutations:G2215T  gives V739F  GTT to TTT 
                                G2308T  gives V770F  GTT to TTT 
 

C – Sequence of the ubp-1 gene of the different P. chabaudi clones  
 
Note: non-coding sequence in small caps 
Length: unspliced 3079 bp; spliced 2942 bp 

 
C.1 - AS-15CQ (Intermediate chloroquine-resistant, progenitor of AS-

ATN) 
 
ttcccattctctttgcagcagaaaaccgagaggaaatcgaacaggccaaggaaaacacgatcggaataaaaaatatgcttaagttcataatcca
aaaaagcaaaaaggaaaaaaatATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTATTTTTAGGCATATGTATAAAAATTGTCATA
TGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCATAAATCATAAAATATTGGGTTTAAAAATATTTCGAC
ATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTTATTGAACATGAAATTGATCCAGAAATTAT
TAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATATTGGAAGTAATCCTATGTTACATCCATAC
ACTCGTAGTAATACATCATTACCTGAAGTAGATCATTTCTCTTTCCCTTCAAAAGATAAGAATCTAAATCATACTTTTAATAATTTTTCTACCC
AATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATCAATAGAAAATAACAATTCAAAACAAAACTTTTTTAAACATAAACAGAA
TGATTTATCATTAGATTCTGATTTGCCAACACCAGATTTATTTAACCCAAAAAATAAAAAAAAAAAAAAAAAAAATTCTGAAAAATTTGAAGAT
TCACATAATAAAAATCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCACAAAAATATAATTAATAATATTAATAATA
TTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGATCACGGTATTACTTATGATGACATGTTTAGAGATAATGACAATAG
CAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAAACTTACATTTTAATAATTTACCGGACTAT
CCTACTTCTTTGAAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAAAATAAAAAATGAAAATCAAAATAGTAAAG
AAGAACAAGATAATGGGGAAGAAGAAAATCATAGTAATAAAACTCAACATAAAGAAAATAATAATATTTCAAAAGTCAATGAGCAAAATGAAAA
TATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAACACTACTCGAAAATATATGATTGATGAAAAC
CTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATCACCAACTTTTGAAGAAGATAAGTATAGAC
ATAATAATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAAGATGCTGATAATTCAAATAATATGGTGGA
TAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAGAGAGAAAAAAGAAAATTTTGGATCCTCAAAAAAGTTAACTAACATTGAAAGT
GCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAACAATTCAAACCAATGGACATACTGTTAACT
ACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACTTTGTAAAAGATAAAAAAAACGATTTAGATATTATACAAAGAAAAGGAAT
ATCTCTTGTTAATGCTACAACAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAGAAAAAAATAAACATGTTAGTTCAGATAAG
TTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAAAAAAATGCAAAAAGGAAAATTACGACACCCACCTGTTG
GTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTTTCATTTGTTGTTAATTTATACATTTTTAA
TATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCAAAAATAAATTATCATTTAACCTGAACAAT
ACAAACATGAATAATAATAATAATAATGCAAACTTACTTTCAAAACGATTTTTATATGAGTTGAAAATATTATTTAAATTAATGACTACAACAA
ATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAAATCAACAAGATGTTACAGAATTATTTAGATA
TACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAAGTTCAATGCCAAAAATGTTTT
TTTATTTCAAAGAAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAGTAAAAAACAGTCTATCCAAAAATTCTTTGATA
CATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCTCGAAATGCAACAAAAGGCGAAATGCCCTCAAGTGGAACGAAATCAT
ATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGgtaaaccaaaaaatgcaaaaaaatccaaaaaaatccaaaaaaatccaaaaaaatccaa
aaaaaagcaaaaaaaaatatttttcacttcgtcaatttttcatttttcaattttccatttcgtcaatttttcacttcgtcaatttttcacttcg
tcatttttccattttccactccttcccactttcagGTACAACTGGTCGTTTAGCTCCAACGAAAAGAAGAAAATAAAAACGCACGTCAAGATCA
ACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGTGGCGTGTCAGCATCATCAGGTCATTATTATTTTAT
CGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGACGACTCAGCTATTACTAAAGTTAGTTCCAAATCCATAAAC
CGAATTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTATCGTTGCAAACAAGCTCCCGATTCCCCAAGCTTATACTTTTAAt
catatttcaaaattgcaacaattttgctaacgctttattattttatata 
 

C.2 - AS-30CQ (High chloroquine-resistant; derived from AS15CQ, 
progenitor from AS-ART) 

 
ttcccattctctttgcagcagaaaaccgagaggaaatcgaacaggccaaggaaaacacgatcggaataaaaaatatgcttaagttcataatcca
aaaaagcaaaaaggaaaaaaatATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTATTTTTAGGCATATGTATAAAAATTGTCATA
TGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCATAAATCATAAAATATTGGGTTTAAAAATATTTCGAC
ATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTTATTGAACATGAAATTGATCCAGAAATTAT
TAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATATTGGAAGTAATCCTATGTTACATCCATAC
ACTCGTAGTAATACATCATTACCTGAAGTAGATCATTTCTCTTTCCCTTCAAAAGATAAGAATCTAAATCATACTTTTAATAATTTTTCTACCC
AATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATCAATAGAAAATAACAATTCAAAACAAAACTTTTTTAAACATAAACAGAA
TGATTTATCATTAGATTCTGATTTGCCAACACCAGATTTATTTAACCCAAAAAATAAAAAAAAAAAAAAAAAAAATTCTGAAAAATTTGAAGAT
TCACATAATAAAAATCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCACAAAAATATAATTAATAATATTAATAATA
TTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGATCACGGTATTACTTATGATGACATGTTTAGAGATAATGACAATAG
CAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAAACTTACATTTTAATAATTTACCGGACTAT
CCTACTTCTTTGAAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAAAATAAAAAATGAAAATCAAAATAGTAAAG
AAGAACAAGATAATGGGGAAGAAGAAAATCATAGTAATAAAACTCAACATAAAGAAAATAATAATATTTCAAAAGTCAATGAGCAAAATGAAAA
TATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAACACTACTCGAAAATATATGATTGATGAAAAC
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CTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATCACCAACTTTTGAAGAAGATAAGTATAGAC
ATAATAATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAAGATGCTGATAATTCAAATAATATGGTGGA
TAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAGAGAGAAAAAAGAAAATTTTGGATCCTCAAAAAAGTTAACTAACATTGAAAGT
GCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAACAATTCAAACCAATGGACATACTGTTAACT
ACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACTTTGTAAAAGATAAAAAAAACGATTTAGATATTATACAAAGAAAAGGAAT
ATCTCTTGTTAATGCTACAACAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAGAAAAAAATAAACATGTTAGTTCAGATAAG
TTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAAAAAAATGCAAAAAGGAAAATTACGACACCCACCTGTTG
GTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTTTCATTTGTTGTTAATTTATACATTTTTAA
TATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCAAAAATAAATTATCATTTAACCTGAACAAT
ACAAACATGAATAATAATAATAATAATGCAAACTTACTTTCAAAACGATTTTTATATGAGTTGAAAATATTATTTAAATTAATGACTACAACAA
ATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAAATCAACAAGATGTTACAGAATTATTTAGATA
TACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAATTTCAATGCCAAAAATGTTTT
TTTATTTCAAAGAAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAGTAAAAAACAGTCTATCCAAAAATTCTTTGATA
CATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCTCGAAATGCAACAAAAGGCGAAATGCCCTCAAGTGGAACGAAATCAT
ATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGgtaaaccaaaaaatgcaaaaaaatccaaaaaaatccaaaaaaatccaaaaaaatccaa
aaaaaagcaaaaaaaaatatttttcacttcgtcaatttttcatttttcaattttccatttcgtcaatttttcacttcgtcaatttttcacttcg
tcatttttccattttccactccttcccactttcagGTACAACTGGTCGTTTAGCTCCAACGAAAAGAAGAAAATAAAAACGCACGTCAAGATCA
ACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGTGGCGTGTCAGCATCATCAGGTCATTATTATTTTAT
CGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGACGACTCAGCTATTACTAAAGTTAGTTCCAAATCCATAAAC
CGAATTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTATCGTTGCAAACAAGCTCCCGATTCCCCAAGCTTATACTTTTAAt
catatttcaaaattgcaacaattttgctaacgctttattattttatata 

 
Note: A mutation G2308T detected between 15CQ and 30CQ 
 

C.3 - AS-ATN (Artesunate-resistant; derived from AS15CQ) 
 
tttcccaaacagaaattataataaactttcatccaaagcttcttcaacatatgctgaatcacaaaacaaaggtaattacaatgatgaatctgat
gatttcaatctttttgatgttgaaaatattatcaaagagttcaattttaatgatattgttaatgctgaggtgagttcaaaaaacctaatgcact
cccctcgcgatcacaatcacgattcccacggaacccacccctccgaatccattgaatcaggtatgttcggcgcccgatgccacgcccaccattt
gcttgtcatgcttgccatgcatcggtttaggcccacttgtttagtttcacttgcattttctttgtttcacttgcattttctttgttgcactcgt
ttcgttcttcgcccactctcacattgacattcccattctctttgcagcagaaaaccgagaggaaatcgaacaggccaaggaaaacacgatcgga
ataaaaaatatgcttaagttcataatccaaaaaagcaaaaaggaaaaaaatATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTAT
TTTTAGGCATATGTATAAAAATTGTCATATGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCATAAATCA
TAAAATATTGGGTTTAAAAATATTTCGACATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTT
ATTGAACATGAAATTGATCCAGAAATTATTAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATA
TTGGAAGTAATCCTATGTTACATCCATACACTCGTAGTAATACATCATTACCTGAAGTAGATCATTTCTCTTTCCCTTCAAAAGATAAGAATCT
AAATCATACTTTTAATAATTTTTCTACCCAATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATCAATAGAAAATAACAATTCA
AAACAAAACTTTTTTAAACATAAACAGAATGATTTATCATTAGATTCTGATTTGCCAACACCAGATTTATTTAACCCAAAAAATAAAAAAAAAA
AAAAAAAAAATTCTGAAAAATTTGAAGATTCACATAATAAAAATCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCA
CAAAAATATAATTAATAATATTAATAATATTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGATCACGGTATTACTTAT
GATGACATGTTTAGAGATAATGACAATAGCAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAA
ACTTACATTTTAATAATTTACCGGACTATCCTACTTCTTTGAAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAA
AATAAAAAATGAAAATCAAAATAGTAAAGAAGAACAAGATAATGGGGAAGAAGAAAATCATAGTAATAAAACTCAACATAAAGAAAATAATAAT
ATTTCAAAAGTCAATGAGCAAAATGAAAATATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAACA
CTACTCGAAAATATATGATTGATGAAAACCTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATC
ACCAACTTTTGAAGAAGATAAGTATAGACATAATAATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAA
GATGCTGATAATTCAAATAATATGGTGGATAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAGAGAGAAAAAAGAAAATTTTGGAT
CCTCAAAAAAGTTAACTAACATTGAAAGTGCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAAC
AATTCAAACCAATGGACATACTGTTAACTACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACTTTGTAAAAGATAAAAAAAAC
GATTTAGATATTATACAAAGAAAAGGAATATCTCTTGTTAATGCTACAACAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAG
AAAAAAATAAACATGTTAGTTCAGATAAGTTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAAAAAAATGCA
AAAAGGAAAATTACGACACCCACCTGTTGGTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTT
TCATTTGTTGTTAATTTATACATTTTTAATATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCA
AAAATAAATTATCATTTAACCTGAACAATACAAACATGAATAATAATAATAATAATGCAAACTTACTTTCAAAACGATTTTTATATGAGTTGAA
AATATTATTTAAATTAATGACTACAACAAATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAAAT
CAACAAGATTTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTA
TACAAAAAGTTCAATGCCAAAAATGTTTTTTTATTTCAAAGAAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAGTAA
AAAACAGTCTATCCAAAAATTCTTTGATACATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCTCGAAATGCAACAAAAGG
CGAAATGCCCTCAAGTGGAACGAAATCATATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGgtaaaccaaaaaatgcaaaaaaatccaaa
aaaatccaaaaaaatccaaaaaaatccaaaaaaaagcaaaaaaaaatatttttcacttcgtcaatttttcatttttcaattttccatttcgtca
atttttcacttcgtcaatttttcacttcgtcatttttccattttccactccttcccactttcagGTACAACTGGTCGTTTAGCTCCAACGAAAA
GAAGAAAATAAAAACGCACGTCAAGATCAACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGTGGCGTG
TCAGCATCATCAGGTCATTATTATTTTATCGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGACGACTCAGCTA
TTACTAAAGTTAGTTCCAAATCCATAAACCGAATTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTATCGTTGCAAACAAGC
TCCCGATTCCCCAAGCTTATACTTTTAAtcatatttcaaaattgcaacaattttgctaacgctttattattttatatacgtgcacctttgaacg
aaaaccctttttaagttatattttttgtttagtttttccgattatgtttgtatatatatatatgtatatataatgtgtgcgatcttttttgtcg
cctaattaattaatgagtatttgctctatgaaatctagtttttttatagttttcatttctttgttattgtatattacatatatttgataactta
tttttatttaattcatttaaagtttgtaataatttcaagcaaaattatgggcacaataaatcctatacttttctatgcataggtaaacctaaac
gggtttcacatcgacaattttttttttcttattttccaactctacaaagtta 
 
Note: There is one difference between this sequence and 15CQ - G2736T 
 
 

C.4 - AS-ART (Artemisinin-resistant; derived from AS30CQ) 
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tttcccaaacagaaattataataaactttcatccaaagcttcttcaacatatgctgaatcacaaaacaaaggtaattacaatgatgaatctgat
gatttcaatctttttgatgttgaaaatattatcaaagagttcaattttaatgatattgttaatgctgaggtgagttcaaaaaacctaatgcact
cccctcgcgatcacaatcacgattcccacggaacccacccctccgaatccattgaatcaggtatgttcggcgcccgatgccacgcccaccattt
gcttgtcatgcttgccatgcatcggtttaggcccacttgtttagtttcacttgcattttctttgtttcacttgcattttctttgttgcactcgt
ttcgttcttcgcccactctcacattgacattcccattctctttgcagcagaaaaccgagaggaaatcgaacaggccaaggaaaacacgatcgga
ataaaaaatatgcttaagttcataatccaaaaaagcaaaaaggaaaaaaatATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTAT
TTTTAGGCATATGTATAAAAATTGTCATATGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCATAAATCA
TAAAATATTGGGTTTAAAAATATTTCGACATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTT
ATTGAACATGAAATTGATCCAGAAATTATTAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATA
TTGGAAGTAATCCTATGTTACATCCATACACTCGTAGTAATACATCATTACCTGAAGTAGATCATTTCTCTTTCCCTTCAAAAGATAAGAATCT
AAATCATACTTTTAATAATTTTTCTACCCAATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATCAATAGAAAATAACAATTCA
AAACAAAACTTTTTTAAACATAAACAGAATGATTTATCATTAGATTCTGATTTGCCAACACCAGATTTATTTAACCCAAAAAATAAAAAAAAAA
AAAAAAAAAATTCTGAAAAATTTGAAGATTCACATAATAAAAATCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCA
CAAAAATATAATTAATAATATTAATAATATTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGATCACGGTATTACTTAT
GATGACATGTTTAGAGATAATGACAATAGCAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAA
ACTTACATTTTAATAATTTACCGGACTATCCTACTTCTTTGAAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAA
AATAAAAAATGAAAATCAAAATAGTAAAGAAGAACAAGATAATGGGGAAGAAGAAAATCATAGTAATAAAACTCAACATAAAGAAAATAATAAT
ATTTCAAAAGTCAATGAGCAAAATGAAAATATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAACA
CTACTCGAAAATATATGATTGATGAAAACCTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATC
ACCAACTTTTGAAGAAGATAAGTATAGACATAATAATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAA
GATGCTGATAATTCAAATAATATGGTGGATAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAGAGAGAAAAAAGAAAATTTTGGAT
CCTCAAAAAAGTTAACTAACATTGAAAGTGCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAAC
AATTCAAACCAATGGACATACTGTTAACTACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACTTTGTAAAAGATAAAAAAAAC
GATTTAGATATTATACAAAGAAAAGGAATATCTCTTGTTAATGCTACAACAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAG
AAAAAAATAAACATGTTAGTTCAGATAAGTTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAAAAAAATGCA
AAAAGGAAAATTACGACACCCACCTGTTGGTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTT
TCATTTGTTGTTAATTTATACATTTTTAATATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCA
AAAATAAATTATCATTTAACCTGAACAATACAAACATGAATAATAATAATAATAATGCAAACTTACTTTCAAAACGATTTTTATATGAGTTGAA
AATATTATTTAAATTAATGACTACAACAAATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAAAT
CAACAAGATGTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTA
TACAAAAATTTCAATGCCAAAAATGTTTTTTTATTTCAAAGAAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAGTAA
AAAACAGTCTATCCAAAAATTCTTTGATACATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCTCGAAATGCAACAAAAGG
CGAAATGCCCTCAAGTGGAACGAAATCATATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGgtaaaccaaaaaatgcaaaaaaatccaaa
aaaatccaaaaaaatccaaaaaaatccaaaaaaaagcaaaaaaaaatatttttcacttcgtcaatttttcatttttcaattttccatttcgtca
atttttcacttcgtcaatttttcacttcgtcatttttccattttccactccttcccactttcagGTACAACTGGTCGTTTAGCTCCAACGAAAA
GAAGAAAATAAAAACGCACGTCAAGATCAACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGTGGCGTG
TCAGCATCATCAGGTCATTATTATTTTATCGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGACGACTCAGCTA
TTACTAAAGTTAGTTCCAAATCCATAAACCGAATTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTATCGTTGCAAACAAGC
TCCCGATTCCCCAAGCTTATACTTTTAAtcatatttcaaaattgcaacaattttgctaacgctttattattttatatacgtgcacctttgaacg
aaaaccctttttaagttatattttttgtttagtttttccgattatgtttgtatatatatatatgtatatataatgtgtgcgatcttttttgtcg
cctaattaattaatgagtatttgctctatgaaatctagtttttttatagttttcatttctttgttattgtatattacatatatttgataactta
tttttatttaattcatttaaagtttgtaataatttcaagcaaaattatgggcacaataaatcctatacttttctatgcataggtaaacctaaac
gggtttcacatcgacaattttttttttcttattttccaactctacaaagtta 
 
Note: This has a mutation G2308T that occurred during the chloroquine selection going from AS-SENS to AS-
15CQ. AS30CQ contains the same mutation. Therefore confirms that ART is a direct descendant of AS30CQ (as 
expected because AS-ART was selected by ART pressure from AS-30CQ), AS-ATN has a different mutation.  
 



D – Alignment of the ubp-1 gene sequence for AS-15CQ, AS-30CQ, AS-ART and AS-ATN 
 
Note: Mutations indicated in the sequence in highlighted grey, bold and underlined.  
 
           1                                                                                                                             130 
    AS15CQ ATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTATTTTTAGGCATATGTATAAAAATTGTCATATGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCA 
    AS30CQ ATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTATTTTTAGGCATATGTATAAAAATTGTCATATGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCA 
    AS-ART ATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTATTTTTAGGCATATGTATAAAAATTGTCATATGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCA 
    AS-ATN ATGATATGTTGTAGTGATGCTAATGAACTGAAACTGTTGGTATTTTTAGGCATATGTATAAAAATTGTCATATGTAGGATATCAAATTTATTAAATGCAAAAGCATGCTTAGAACAATTTTACTATTTCA 
 
           131                                                                                                                            260 
    AS15CQ TAAATCATAAAATATTGGGTTTAAAAATATTTCGACATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTTATTGAACATGAAATTGATCCAGAAATTAT 
    AS30CQ TAAATCATAAAATATTGGGTTTAAAAATATTTCGACATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTTATTGAACATGAAATTGATCCAGAAATTAT 
    AS-ART TAAATCATAAAATATTGGGTTTAAAAATATTTCGACATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTTATTGAACATGAAATTGATCCAGAAATTAT 
    AS-ATN TAAATCATAAAATATTGGGTTTAAAAATATTTCGACATTCTCATATCGTTTTAGTTTATTTTATTCCGTTTTTCAAAAAATATTATTTTTTATGGAAGTTTATTGAACATGAAATTGATCCAGAAATTAT 
 
           261                                                                                                                           390 
    AS15CQ TAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATATTGGAAGTAATCCTATGTTACATCCATACACTCGTAGTAATACATCATTACCTGAAGTAGATCAT 
    AS30CQ TAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATATTGGAAGTAATCCTATGTTACATCCATACACTCGTAGTAATACATCATTACCTGAAGTAGATCAT 
    AS-ART TAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATATTGGAAGTAATCCTATGTTACATCCATACACTCGTAGTAATACATCATTACCTGAAGTAGATCAT 
    AS-ATN TAAACTCATAAATGCAATTATAAATAATTTAGAAAACTTACAAAATAATAAAAATATAAATAATATTGGAAGTAATCCTATGTTACATCCATACACTCGTAGTAATACATCATTACCTGAAGTAGATCAT 
 
           391                                                                                                                            520 
    AS15CQ TTCTCTTTCCCTTCAAAAGATAAGAATCTAAATCATACTTTTAATAATTTTTCTACCCAATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATCAATAGAAAATAACAATTCAAAACAAA 
    AS30CQ TTCTCTTTCCCTTCAAAAGATAAGAATCTAAATCATACTTTTAATAATTTTTCTACCCAATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATCAATAGAAAATAACAATTCAAAACAAA 
    AS-ART TTCTCTTTCCCTTCAAAAGATAAGAATCTAAATCATACTTTTAATAATTTTTCTACCCAATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATCAATAGAAAATAACAATTCAAAACAAA 
    AS-ATN TTCTCTTTCCCTTCAAAAGATAAGAATCTAAATCATACTTTTAATAATTTTTCTACCCAATATAACCCACATGATTATAAAACAAGCTTCTCTCACAGCATATCAATAGAAAATAACAATTCAAAACAAA 
 
           521                                                                                                                            650 
    AS15CQ ACTTTTTTAAACATAAACAGAATGATTTATCATTAGATTCTGATTTGCCAACACCAGATTTATTTAACCCAAAAAATAAAAAAAAAAAAAAAAAAAATTCTGAAAAATTTGAAGATTCACATAATAAAAA 
    AS30CQ ACTTTTTTAAACATAAACAGAATGATTTATCATTAGATTCTGATTTGCCAACACCAGATTTATTTAACCCAAAAAATAAAAAAAAAAAAAAAAAAAATTCTGAAAAATTTGAAGATTCACATAATAAAAA 
    AS-ART ACTTTTTTAAACATAAACAGAATGATTTATCATTAGATTCTGATTTGCCAACACCAGATTTATTTAACCCAAAAAATAAAAAAAAAAAAAAAAAAAATTCTGAAAAATTTGAAGATTCACATAATAAAAA 
    AS-ATN ACTTTTTTAAACATAAACAGAATGATTTATCATTAGATTCTGATTTGCCAACACCAGATTTATTTAACCCAAAAAATAAAAAAAAAAAAAAAAAAAATTCTGAAAAATTTGAAGATTCACATAATAAAAA 
 
           651                                                                                                                            780 
    AS15CQ TCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCACAAAAATATAATTAATAATATTAATAATATTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGAT 
    AS30CQ TCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCACAAAAATATAATTAATAATATTAATAATATTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGAT 
    AS-ART TCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCACAAAAATATAATTAATAATATTAATAATATTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGAT 
    AS-ATN TCAGCAACATCCTCATGATTATTCCGAATTTGATTCACATAATAATTTTCACAAAAATATAATTAATAATATTAATAATATTAATTATTTTAGACCTAGCTCTTTATTTAATACAAATGAAAATTGTGAT 
 
           781                                                                                                                            910 
    AS15CQ CACGGTATTACTTATGATGACATGTTTAGAGATAATGACAATAGCAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAAACTTACATTTTAATAATTTAC 
    AS30CQ CACGGTATTACTTATGATGACATGTTTAGAGATAATGACAATAGCAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAAACTTACATTTTAATAATTTAC 
    AS-ART CACGGTATTACTTATGATGACATGTTTAGAGATAATGACAATAGCAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAAACTTACATTTTAATAATTTAC 
    AS-ATN CACGGTATTACTTATGATGACATGTTTAGAGATAATGACAATAGCAGTGATGATAATTATTTTGATAAAGGTAAAAATAAAATTTGTAATGTTAAAGAATATATTACAAACTTACATTTTAATAATTTAC 
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           911                                                                                                                           1040 
    AS15CQ CGGACTATCCTACTTCTTTGAAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAAAATAAAAAATGAAAATCAAAATAGTAAAGAAGAACAAGATAATGGGGAAGAAGAAAA 
    AS30CQ CGGACTATCCTACTTCTTTGAAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAAAATAAAAAATGAAAATCAAAATAGTAAAGAAGAACAAGATAATGGGGAAGAAGAAAA 
    AS-ART CGGACTATCCTACTTCTTTGAAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAAAATAAAAAATGAAAATCAAAATAGTAAAGAAGAACAAGATAATGGGGAAGAAGAAAA 
    AS-ATN CGGACTATCCTACTTCTTTGAAAAATAGTGATGAAAATAAAAAATCGGAAGATAAAAAAAAAAAAAAAAAAAAAATAAAAAATGAAAATCAAAATAGTAAAGAAGAACAAGATAATGGGGAAGAAGAAAA 
 
           1041                                                                                                                          1170 
    AS15CQ TCATAGTAATAAAACTCAACATAAAGAAAATAATAATATTTCAAAAGTCAATGAGCAAAATGAAAATATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAAC 
    AS30CQ TCATAGTAATAAAACTCAACATAAAGAAAATAATAATATTTCAAAAGTCAATGAGCAAAATGAAAATATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAAC 
    AS-ART TCATAGTAATAAAACTCAACATAAAGAAAATAATAATATTTCAAAAGTCAATGAGCAAAATGAAAATATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAAC 
    AS-ATN TCATAGTAATAAAACTCAACATAAAGAAAATAATAATATTTCAAAAGTCAATGAGCAAAATGAAAATATTTTACTTTATAATATACAAGATAATGAAAATGCAGAAAACAAAATATCCAAAAATTCTAAC 
 
           1171                                                                                                                          1300 
    AS15CQ ACTACTCGAAAATATATGATTGATGAAAACCTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATCACCAACTTTTGAAGAAGATAAGTATAGACATAATA 
    AS30CQ ACTACTCGAAAATATATGATTGATGAAAACCTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATCACCAACTTTTGAAGAAGATAAGTATAGACATAATA 
    AS-ART ACTACTCGAAAATATATGATTGATGAAAACCTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATCACCAACTTTTGAAGAAGATAAGTATAGACATAATA 
    AS-ATN ACTACTCGAAAATATATGATTGATGAAAACCTTAATGAATATAAAATTGAAAACAAAAAAGATGTATCAAACAATTATAATAATAAAGAAGGATCACCAACTTTTGAAGAAGATAAGTATAGACATAATA 
 
           1301                                                                                                                          1430 
    AS15CQ ATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAAGATGCTGATAATTCAAATAATATGGTGGATAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAG 
    AS30CQ ATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAAGATGCTGATAATTCAAATAATATGGTGGATAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAG 
    AS-ART ATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAAGATGCTGATAATTCAAATAATATGGTGGATAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAG 
    AS-ATN ATCGATCAAGCACTCCTCAAAACAATGGAATTAAAAAATTTCCTACTGTTTCCTATGAAGATGCTGATAATTCAAATAATATGGTGGATAAAAAATCACAAAAGAATTATATAAATTTAGAATTAGATAG 
 
           1431                                                                                                                          1560 
    AS15CQ AGAGAAAAAAGAAAATTTTGGATCCTCAAAAAAGTTAACTAACATTGAAAGTGCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAACAATTCAAACCAAT 
    AS30CQ AGAGAAAAAAGAAAATTTTGGATCCTCAAAAAAGTTAACTAACATTGAAAGTGCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAACAATTCAAACCAAT 
    AS-ART AGAGAAAAAAGAAAATTTTGGATCCTCAAAAAAGTTAACTAACATTGAAAGTGCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAACAATTCAAACCAAT 
    AS-ATN AGAGAAAAAAGAAAATTTTGGATCCTCAAAAAAGTTAACTAACATTGAAAGTGCTAAAGGAATGAATAATGATGACAATTATAATAGCAATAATGAAATATTAAATAATCGTAGAACAATTCAAACCAAT 
 
           1561                                                                                                                          1690 
    AS15CQ GGACATACTGTTAACTACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACTTTGTAAAAGATAAAAAAAACGATTTAGATATTATACAAAGAAAAGGAATATCTCTTGTTAATGCTACAA 
    AS30CQ GGACATACTGTTAACTACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACTTTGTAAAAGATAAAAAAAACGATTTAGATATTATACAAAGAAAAGGAATATCTCTTGTTAATGCTACAA 
    AS-ART GGACATACTGTTAACTACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACTTTGTAAAAGATAAAAAAAACGATTTAGATATTATACAAAGAAAAGGAATATCTCTTGTTAATGCTACAA 
    AS-ATN GGACATACTGTTAACTACAACAGAAATAATAACAATATGAGACCAGATGAATATGAAAACTTTGTAAAAGATAAAAAAAACGATTTAGATATTATACAAAGAAAAGGAATATCTCTTGTTAATGCTACAA 
 
           1691                                                                                                                          1820 
    AS15CQ CAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAGAAAAAAATAAACATGTTAGTTCAGATAAGTTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAA 
    AS30CQ CAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAGAAAAAAATAAACATGTTAGTTCAGATAAGTTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAA 
    AS-ART CAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAGAAAAAAATAAACATGTTAGTTCAGATAAGTTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAA 
    AS-ATN CAAATAATAATTATGAAGAAATAAATATAGTTAATAATCCTATAGAAAAAAATAAACATGTTAGTTCAGATAAGTTAATACAAAAACGACCCAAATATTTAATGTTACCAATTGATACGACTGAATTAAA 
 
           1821                                                                                                                          1950 
    AS15CQ AAAAATGCAAAAAGGAAAATTACGACACCCACCTGTTGGTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTTTCATTTGTTGTTAATTTATACATTTTT 
    AS30CQ AAAAATGCAAAAAGGAAAATTACGACACCCACCTGTTGGTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTTTCATTTGTTGTTAATTTATACATTTTT 
    AS-ART AAAAATGCAAAAAGGAAAATTACGACACCCACCTGTTGGTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTTTCATTTGTTGTTAATTTATACATTTTT 
    AS-ATN AAAAATGCAAAAAGGAAAATTACGACACCCACCTGTTGGTTTGATAAATTTAGGAAATACTTGCTACTTAAATAGTTTATTACAAGCATTATATAGTACTGTTTCATTTGTTGTTAATTTATACATTTTT 
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           1951                                                                                                                          2080 
    AS15CQ AATATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCAAAAATAAATTATCATTTAACCTGAACAATACAAACATGAATAATAATAATAATAATGCAAACT 
    AS30CQ AATATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCAAAAATAAATTATCATTTAACCTGAACAATACAAACATGAATAATAATAATAATAATGCAAACT 
    AS-ART AATATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCAAAAATAAATTATCATTTAACCTGAACAATACAAACATGAATAATAATAATAATAATGCAAACT 
    AS-ATN AATATTGATGATAATAAAGAATTAAAACACATAAATAATAAAAATATCTCTAACGAAATGCCCATCAAAAATAAATTATCATTTAACCTGAACAATACAAACATGAATAATAATAATAATAATGCAAACT 
 
           2081                                                                                                                          2210 
    AS15CQ TACTTTCAAAACGATTTTTATATGAGTTGAAAATATTATTTAAATTAATGACTACAACAAATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAAATCAACA 
    AS30CQ TACTTTCAAAACGATTTTTATATGAGTTGAAAATATTATTTAAATTAATGACTACAACAAATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAAATCAACA 
    AS-ART TACTTTCAAAACGATTTTTATATGAGTTGAAAATATTATTTAAATTAATGACTACAACAAATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAAATCAACA 
    AS-ATN TACTTTCAAAACGATTTTTATATGAGTTGAAAATATTATTTAAATTAATGACTACAACAAATAAAAAATATGTTTCACCAGATAATATTTTAGGTATACTACCTCAAGAACTTAACAATAGAAATCAACA 
 
           2211                                                                                                                          2340 
    AS15CQ AGATGTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAAGTTCAATGCCAAAAATGTTTTTTTATTTCAAAG 
    AS30CQ AGATGTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAATTTCAATGCCAAAAATGTTTTTTTATTTCAAAG 
    AS-ART AGATGTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAATTTCAATGCCAAAAATGTTTTTTTATTTCAAAG 
    AS-ATN AGATTTTACAGAATTATTTAGATATACATTTGAACAATTAGGAGGATCAGAAAAAAAATTTCTAAGATTAATATTTTCAGGAGTTGTTATACAAAAAGTTCAATGCCAAAAATGTTTTTTTATTTCAAAG 
 
           2341                                                                                                                          2470 
    AS15CQ AAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAGTAAAAAACAGTCTATCCAAAAATTCTTTGATACATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCT 
    AS30CQ AAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAGTAAAAAACAGTCTATCCAAAAATTCTTTGATACATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCT 
    AS-ART AAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAGTAAAAAACAGTCTATCCAAAAATTCTTTGATACATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCT 
    AS-ATN AAAGAAGAAATTATCCACGATTTATCATTTCATGTTCCTGCAAAGTCAAGTAAAAAACAGTCTATCCAAAAATTCTTTGATACATATATTCAAAAAGAAAAAATTTATGGAAACAATAAATACAAATGCT 
 
           2471                                                                                                                          2600 
    AS15CQ CGAAATGCAACAAAAGGCGAAATGCCCTCAAGTGGAACGAAATCATATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGGTAAACCAAAAAATGCAAAAAAATCCAAAAAAATCCAAAAAAATCCAA 
    AS30CQ CGAAATGCAACAAAAGGCGAAATGCCCTCAAGTGGAACGAAATCATATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGGTAAACCAAAAAATGCAAAAAAATCCAAAAAAATCCAAAAAAATCCAA 
    AS-ART CGAAATGCAACAAAAGGCGAAATGCCCTCAAGTGGAACGAAATCATATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGGTAAACCAAAAAATGCAAAAAAATCCAAAAAAATCCAAAAAAATCCAA 
    AS-ATN CGAAATGCAACAAAAGGCGAAATGCCCTCAAGTGGAACGAAATCATATCCCCCCCCTGCCACCTCATACTAATTCTGAACAGGTAAACCAAAAAATGCAAAAAAATCCAAAAAAATCCAAAAAAATCCAA 
 
           2601                                                                                                                          2730 
    AS15CQ AAAAATCCAAAAAAAAGCAAAAAAAAATATTTTTCACTTCGTCAATTTTTCATTTTTCAATTTTCCATTTCGTCAATTTTTCACTTCGTCAATTTTTCACTTCGTCATTTTTCCATTTTCCACTCCTTCC 
    AS30CQ AAAAATCCAAAAAAAAGCAAAAAAAAATATTTTTCACTTCGTCAATTTTTCATTTTTCAATTTTCCATTTCGTCAATTTTTCACTTCGTCAATTTTTCACTTCGTCATTTTTCCATTTTCCACTCCTTCC 
    AS-ART AAAAATCCAAAAAAAAGCAAAAAAAAATATTTTTCACTTCGTCAATTTTTCATTTTTCAATTTTCCATTTCGTCAATTTTTCACTTCGTCAATTTTTCACTTCGTCATTTTTCCATTTTCCACTCCTTCC 
    AS-ATN AAAAATCCAAAAAAAAGCAAAAAAAAATATTTTTCACTTCGTCAATTTTTCATTTTTCAATTTTCCATTTCGTCAATTTTTCACTTCGTCAATTTTTCACTTCGTCATTTTTCCATTTTCCACTCCTTCC 
 
           2731                                                                                                                          2860 
    AS15CQ CACTTTCAGGTACAACTGGTCGTTTAGCTCCAACGAAAAGAAGAAAATAAAAACGCACGTCAAGATCAACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGTGGC 
    AS30CQ CACTTTCAGGTACAACTGGTCGTTTAGCTCCAACGAAAAGAAGAAAATAAAAACGCACGTCAAGATCAACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGTGGC 
    AS-ART CACTTTCAGGTACAACTGGTCGTTTAGCTCCAACGAAAAGAAGAAAATAAAAACGCACGTCAAGATCAACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGTGGC 
    AS-ATN CACTTTCAGGTACAACTGGTCGTTTAGCTCCAACGAAAAGAAGAAAATAAAAACGCACGTCAAGATCAACAAAAAGATAGTTGTAAACAATTTTGATTACCGATTGTATGGAGGAATAATTCACAGTGGC 
 
           2861                                                                                                                          2990 
    AS15CQ GTGTCAGCATCATCAGGTCATTATTATTTTATCGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGACGACTCAGCTATTACTAAAGTTAGTTCCAAATCCATAAACCGAA 
    AS30CQ GTGTCAGCATCATCAGGTCATTATTATTTTATCGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGACGACTCAGCTATTACTAAAGTTAGTTCCAAATCCATAAACCGAA 
    AS-ART GTGTCAGCATCATCAGGTCATTATTATTTTATCGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGACGACTCAGCTATTACTAAAGTTAGTTCCAAATCCATAAACCGAA 
    AS-ATN GTGTCAGCATCATCAGGTCATTATTATTTTATCGGAAAGAAATCCGAAAAAGGTGACAATTCAAAAAATGAATGGTATCAAATGGACGACTCAGCTATTACTAAAGTTAGTTCCAAATCCATAAACCGAA 
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            2991                                                                                 3079 
    AS15CQ  TTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTATCGTTGCAAACAAGCTCCCGATTCCCCAAGCTTATACTTTTAA 
    AS30CQ  TTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTATCGTTGCAAACAAGCTCCCGATTCCCCAAGCTTATACTTTTAA 
    AS-ART  TTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTATCGTTGCAAACAAGCTCCCGATTCCCCAAGCTTATACTTTTAA 
    AS-ATN  TTTCTAAAGATCCATCAAATGATCACACTCCTTACGTTTTATTTTATCGTTGCAAACAAGCTCCCGATTCCCCAAGCTTATACTTTTAA 
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APPENDIX 5 
 

THE RELATIVE INTENSITY AND COMPARATIVE INTENSITES O F 
ALL AFLP MARKERS ANALYSED IN THE LGS EXPERIMENTS 

DESCRIBED IN CHAPTER V 
 
A - AS-ART x AJ – AJ specific AFLP markers 
 

Marker Name 

CM distance along chromosome 

Relative Intensity 
Comparative Intensity ART 

treated/Untreated AJ Marker 
Non 

passaged Untreated  
ART 

treated 

Chromosome 1 

AJTG01GT 12 1,31 1,26 1,09 0,8651 

AJAC03TA 16,2 1,19 1,23 0,59 0,4797 

AJAG02TC 16,2 0,5 0,3 0,2 0,6667 

AJTA03AT 16,2 0,5 0,42 0,34 0,8095 

AJAG01GT 25,4 1,8 2,3 1,2 0,5217 

AJTG01AA 43,4 0,64 0,9 0,57 0,6333 

Chromosome 5 

AJAA04AC 70 0,5 0,7 0,6 0,8571 

AJAT07AT 70 0,4 0,41 0,23 0,5610 

AJAT01AT 73,9 1,16 2,51 1,28 0,5100 

AJTA01AC 77,5 1,97 1,02 0,56 0,5490 

AJAG01TT 82,7 0,4 0,3 0,3 1,0000 

AJAA03TA 82,9 0,6 0,6 0,3 0,5000 

Chromosome 6 

AJAG02AG 11,3 0,1 0,3 0,3 1,0000 

AJAG02CT 11,3 0,6 0,4 0,2 0,5000 

AJAC01GT 11,3 1,06 0,55 0,8 1,4545 

AJAT02TA 11,3 0,93 0,88 0,8 0,9091 

AJTC02CT 11,3 1,08 0,81 0,64 0,7901 

AJTC01TC 11,3 0,45 0,45 0,45 1,0000 

AJTG02AA 11,3 0,84 0,82 0,75 0,9146 

AJTT05AT 11,3 7,03 10,78 1,35 0,1252 

AJAG01CT 16,1 0,5 0,7 0,5 0,7143 

AJAT03TG 29,3 0,82 0,8 0,6 0,7500 

AJTA02GA 37,1 2,07 2,3 2,22 0,9652 

AJTT01CA 44,3 1,44 0,45 0,38 0,8444 

AJTA02AC 62,7 0,34 0,31 0,22 0,7097 

Chromosome 7 

AJAA02TG 24,1 2 2 1 0,5000 

AJAG01AG 37,2 0,5 0,5 0,5 1,0000 

AJAA01GA 37,3 2,9 1,7 1,2 0,7059 

AJAT01GT 37,3 0,61 0,54 0,31 0,5741 

AJTT06AT 48,5 0,49 2,55 2,66 1,0431 

AJTA01CA 62,3 0,73 0,58 0,26 0,4483 

AJGA03AC 77,5 0,87 1,29 0,58 0,4496 

AJAT02TC 77,5 1,05 0,73 0,45 0,6164 

AJTG02AT 77,5 2,54 1,51 0,71 0,4702 

AJTG01TC 77,5 1,28 1,07 0,69 0,6449 

AJAT02AC 77,7 1,82 1,41 0,81 0,5745 

AJTT03TG 81,4 0,1 0,54 0,88 1,6296 

AJAA05CA 96,3 0,68 0,47 0,29 0,6170 

AJAG02CA 100,3 0,8 0,7 0,6 0,8571 
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AJTG01AG 104,4 0,05 0,15 0,12 0,8000 

AJTG01GA 104,4 0,68 0,96 0,7 0,7292 

AJAC02TT 123,8 3,39 2,44 1,23 0,5041 

AJTC01AG 135,1 0,06 0,03 0,03 1,0000 

AJAA03AT 135,3 0,3 0,4 0,3 0,7500 

Chromosome 8 

AJAG03AG 0 0,2 0,2 0,06 0,3000 

AJTT02AT 17,3 0,8 0,4 0,06 0,1500 

AJAT01TA 21,3 2,99 3,22 1,04 0,3230 

AJTT07AT 25,9 0,86 0,82 1,04 1,2683 

AJAC02AG 43 1,2 1 0,7 0,7000 

AJAC02AT 46,2 0,37 0,42 0,21 0,5000 

AJTG03AA 55 0,69 1,2 0,56 0,4667 

AJTC01TG 58,5 2,13 2,15 1,33 0,6186 

AJAC03AT 73,2 1,96 1,57 0,5 0,3185 

Chromosome 9 

AJAT05TG 40,2 2,26 1,45 1,35 0,9310 

AJAT01TC 40,2 1,86 1,31 0,84 0,6412 

AJTA01GT 40,2 5,96 6,75 4,09 0,6059 

AJAC01AA 51,7 0,83 0,9 0,5 0,5556 

AJAC01CT 51,7 1,45 0,64 0,53 0,8281 

AJAG01TC 63,5 0,2 0,4 0,3 0,7500 

AJAT04TA 67,2 0,57 0,64 0,47 0,7344 

Chromosome 10 

AJGA01TT 7,2 0,65 0,45 0,12 0,2667 

AJAG03AC 10,9 0,8 0,8 0,2 0,2500 

AJAC02AC 10,9 3,7 2,6 0,8 0,3077 

AJAC02AA 18,4 0,75 0,6 0,1 0,1667 

AJGA03AG 18,4 0,67 0,82 0,18 0,2195 

AJGA01CA 18,4 0,75 0,74 0,15 0,2027 

AJGA02CA 18,4 1,46 1,18 0,33 0,2797 

Chromosome 11 

AJAT03CT 5,3 0,64 0,83 0,41 0,4940 

AJAC01CA 9,6 1,26 1,52 0,93 0,6118 

AJTT03AT 9,7 0,7 0,39 0,06 0,1538 

AJTT03CA 9,7 14,2 0,8 0,58 0,7250 

AJTT02GA 9,7 0,26 0,4 0,38 0,9500 

AJTT03AA 13,6 0,99 0,9 0,66 0,7333 

AJAT03AA 17,6 1,67 1,75 1 0,5714 

AJAT01AA 21,6 0,71 0,99 0,46 0,4646 

AJGA02TT 31,2 0,53 0,23 0,12 0,5217 

AJTA01TT 39,3 0,74 0,71 0,55 0,7746 

AJTG05AT 39,3 0,5 0,61 0,38 0,6230 

AJAT06CT 44,6 3,08 2,15 1,72 0,8000 

AJAG01TA 48,7 0,5 0,5 0,4 0,8000 

AJAC01TA 53 1,71 1,11 0,82 0,7387 

Chromosome 12 

AJTT04AT 13,3 1,05 0,44 0,06 0,1364 

AJAC01GA 20,8 0,42 0,38 0,24 0,6316 

AJTT01CT 24,6 0,04 0,19 0,69 3,6316 

AJAA02TC 35,9 2 0,8 0,5 0,6250 

AJTC01CT 50,9 1,29 0,8 0,46 0,5750 

AJAT04CT 79,9 0,53 0,8 0,59 0,7375 

AJAG01TG 106,8 0,3 0,5 0,4 0,8000 
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AJTC01TA 111,4 0,56 0,46 0,29 0,6304 

AJTT02AA 123,5 0,79 0,47 0,34 0,7234 

AJAA03TC 123,6 0,5 0,4 0,3 0,7500 

Chromosome 13 

AJTT01AG 15,2 1,02 0,77 0,69 0,8961 

AJAA03TG 28,5 1 1,5 1 0,6667 

AJAC04.0AT 28,5 0,51 0,65 0,46 0,7077 

AJTA01GA 28,5 1,51 2,38 1,35 0,5672 

AJTT04AA 32,4 0,31 0,29 0,42 1,4483 

AJTT02AC 36,7 0,71 0,97 1,03 1,0619 

AJAA01AT 44,5 0,8 0,8 0,8 1,0000 

AJAT02TG 64 1,01 0,53 0,51 0,9623 

AJTA01AG 72,9 15,39 18,47 6,69 0,3622 

AJGA02AA 76,9 1,02 0,98 0,71 0,7245 

AJAA03AC 136,1 0,7 0,8 0,5 0,6250 

AJAA01TG 151,2 0,3 0,1 0,1 1,0000 

AJAG04AG 177,9 0,9 0,3 0,2 0,6667 

AJTG02AG 183,4 0,57 0,76 0,83 1,0921 

AJTT02TG 183,4 1,4 1,47 1,16 0,7891 

AJTT02TT 183,4 0,95 1,38 1,35 0,9783 

AJTT02CA 183,4 1,28 0,32 0,2 0,6250 

AJGA02AG 183,5 1,88 1,96 1,47 0,7500 

AJGA02CT 183,5 0,3 0,29 0,23 0,7931 

AJTA01TC 187,9 0,3 0,32 0,17 0,5313 

AJAA03CA 200 1,09 1,23 0,73 0,5935 

AJAC03TT 200 5,47 4,07 2,94 0,7224 

AJAT02AT 200 1,49 1,09 0,97 0,8899 

AJAA01AG 208,2 0,5 0,3 0,3 1,0000 

AJTG01TG 217,8 0,04 0,02 0,03 1,5000 

Group 31 

AJTT02CT 0 58,5 1,33 1,11 0,8346 

Group 12 

AJAG02AC 28,3 0,6 0,4 0,3 0,7500 

AJAG02TA 0 0,2 0,3 0,2 0,6667 

AJGA01AG 4 0,35 0,35 0,5 1,4286 

AJAC04TA 4 0,89 1,11 0,67 0,6036 

AJTG03AT 12,8 0,73 0,54 0,37 0,6852 

AJAC04AA 20,3 0,5 0,6 0,6 1,0000 

AJGA01AC 20,3 1,78 1,44 1,06 0,7361 

AJAT04AT 20,3 2,1 1,35 1,15 0,8519 

AJTT03CT 28,3 57,19 0,49 0,42 0,8571 

AJGA02AC 28,3 1,64 1,91 0,84 0,4398 

Group 14 

AJTG02CT 4 1,5 1 1,14 1,1400 

AJTT01TT 8,2 0,31 0,49 0,45 0,9184 

Group 15 

AJAT03AC 0 1,03 0,88 0,5 0,5682 

AJTC01GT 4,4 0,9 0,87 0,64 0,7356 

AJTG04AT 24,5 0,94 1,19 0,56 0,4706 

AJTT01AA 48,4 O,73 0,41 0,28 0,6829 

Group 2 

AJAA02TA 0 0,6 0,5 0,3 0,6000 

AJAG02TT 19,8 0,8 0,9 0,5 0,5556 

AJAC05AT 24,4 2,44 1,49 0,75 0,5034 
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AJAA01TA 28,1 0,4 0,5 0,2 0,4000 

AJGA02TA 33,1 0,67 0,69 0,37 0,5362 

AJAG02AT 36,8 0,7 0,6 0,2 0,3333 

AJTT01TC 44,6 2,25 2,43 1,5 0,6173 

AJGA01GA 71,9 1,37 1,22 0,46 0,3770 

AJTT01GT 71,9 4,82 0,67 1,03 1,5373 

AJTA03AC 79,6 0,55 0,47 0,17 0,3617 

AJAC01TT 88,4 3,9 2,9 1,27 0,4379 

AJGA01AT 88,4 0,42 0,59 0,53 0,8983 

AJAT05AT 120,6 1,13 0,83 0,52 0,6265 

Group 20 

AJAT03TA 4,6 5,01 4,35 3,43 0,7885 

AJAA01GT 8,7 0,5 0,5 0,5 1,0000 

AJAT02AA 8,7 0,36 0,41 0,28 0,6829 

AJAT01AC 8,7 1,26 1,4 0,96 0,6857 

AJTC02TA 8,7 2,36 2,12 1,47 0,6934 

AJAA05AC 16,8 1,5 1,3 1 0,7692 

AJAT02GT 16,8 1,13 0,83 0,61 0,7349 

AJAT04TG 25,5 1 0,65 0,57 0,8769 

AJTT05AA 43,7 0,15 0,11 0,13 1,1818 

AJAT01TG 43,7 0,95 0,5 0,42 0,8400 

AJAT04AA 47,5 0,31 0,45 0,34 0,7556 

AJAT02CT 71,9 1,12 0,99 0,41 0,4141 

AJAT01CT 84,2 1,98 0,9 0,8 0,8889 

AJTG01CT 84,2 0,98 1,08 1 0,9259 

AJTT06AA 84,2 0,16 0,15 0,13 0,8667 

AJAG03AT 92,7 1,5 1 0,6 0,6000 

AJGA02AT 92,7 0,85 0,81 0,74 0,9136 

Group 21 

AJAA01AC 0 1,2 1,3 1,2 0,9231 

Group 29 

AJAT01CA 0 0,33 0,44 0,29 0,6591 

Group 3 

AJTT07AA 40,7 1,63 0,91 0,87 0,9560 

AJAC01AG 44,2 1,44 1,42 1,4 0,9859 

AJTT01AC 49,5 0,49 0,53 0,45 0,8491 

AJTA02AT 51,4 0,29 0,3 0,21 0,7000 

AJAC01AT 63,8 0,88 0,97 0,87 0,8969 

AJAA02TT 75,5 1,9 1,1 0,6 0,5455 

AJTA01AT 86,4 0,58 0,48 0,42 0,8750 

Group 33 

AJTT01AT 8,1 0,52 1,21 0,18 0,1488 

AJGA01AA 22,5 1,28 0,83 0,44 0,5301 

Group 38 

AJTA02AG 7,5 1,24 0,91 0,26 0,2857 

AJAC01TG 11 0,65 0,53 0,24 0,4528 

AJGA01TA 15,8 0,64 0,66 0,21 0,3182 

Group 6 

AJGA01TG 0 1,03 0,86 0,59 0,6860 

AJGA01CT 0 0,64 0,6 0,32 0,5333 

AJTT01TG 0 2,08 1,69 1,51 0,8935 

AJAA02AT 8,5 1 1 0,8 0,8000 

AJAG01AT 19,4 0,4 0,6 0,7 1,1667 

No data  
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AJAG02TG ................................................ 0,7 0,7 0,4 0,5714 

AJAA01TC ................................................ 1 0,9 0,9 1,0000 

AJAC04.5AT ................................................ 0,45 0,25 0,09 0,3600 

AJGA04AT ................................................ 0,56 0,8 0,49 0,6125 

AJGA05AT ................................................ 0,37 0,39 0,25 0,6410 

AJAC02TA .............................................. 0,92 0,75 0,46 0,6133 

AJGA03AA ............................................. 0,86 0,78 0,61 0,7821 

AJTA01TG ............................................. 3,91 3,46 2,86 0,8266 

AJTA03GA .............................................. 0,72 1,39 1,37 0,9856 

AJTC02AG .............................................. 0,43 0,53 0,24 0,4528 

AJTC02TG .............................................. 0,12 0,3 0,42 1,4000 

AJTG04AG ............................................. 0,88 0,97 0,76 0,7835 

AJTG05AG ............................................. 1,16 1,75 2,95 1,6857 

AJTG02TG .............................................. 0,04 0,03 0,04 1,3333 

AJTG03TG .............................................. 2,41 0,98 0,65 0,6633 

AJAG03CA .............................................. 0,3 0,4 0,3 0,7500 

AJAG05CT .............................................. 0,6 0,5 0,3 0,6000 

AJAG01AC .............................................. 0,09 0,09 0,15 1,6667 

AJAT01GA .............................................. 1,69 1,68 0,85 0,5060 

Unlinked 

AJAG01AA ............................................. 0,5 0,8 1 1,2500 

AJAA02AC .............................................. 1 1 1 1,0000 

AJAC03AG .............................................. 3,74 3,11 2,23 0,7170 

AJAA01CA .............................................. 1,39 1,08 0,7 0,6481 

AJAC02CT .............................................. 3,33 2,07 1,57 0,7585 

AJGA03AT .............................................. 1,41 0,91 0,41 0,4505 

AJAT06AT .............................................. 0,66 0,5 0,31 0,6200 

AJAT02CA .............................................. 0,8 0,53 0,3 0,5660 

AJTA01CT .............................................. 0,73 0,61 0,64 1,0492 

AJTC01AT .............................................. 0,86 0,3 0,5 1,6667 

AJTT03GA .............................................. 10,92 1,57 1,32 0,8408 

  
B - AS-ART x AJ – AS specific AFLP markers 
 

Marker Name 

CM distance along chromosome 

Relative Intensity 
Comparative Intensity ART 

treated/Untreated AS Markers 
Non 

passaged Untreated  
ART 

treated 

Chromosome 1 

ASAA01TC 16,2 0,56 0,09 0,28 3,1111 

ASAA02CA 16,2 1,39 0,25 0,9 3,6000 

ASTA01TT 16,2 1,08 0,42 0,65 1,5476 

ASTA02AT 16,2 0,29 0,07 0,22 3,1429 

ASTA02GT 16,2 1,47 0,24 0,57 2,3750 

ASTG01AA 43,4 0,7 0,13 0,3 2,3077 

Chromosome 5 

ASAA03TG 26,7 0,81 0,24 0,46 1,9167 

ASAA02GA 54,4 0,85 0,18 0,38 2,1111 

ASAC03AT 69,9 1,24 0,24 0,68 2,8333 

ASAA04AC 69,9 0,31 0,09 0,19 2,1111 

ASAC01AG 74,6 0,67 0,09 0,32 3,5556 

ASTA01AC 74,6 1,3 0,36 0,63 1,7500 

Chromosome 6 

ASAC02AT 11,3 0,75 0,08 0,2 2,5000 

ASAT01AA 11,3 0,31 0,13 0,24 1,8462 

ASTC01TC 11,3 0,17 0,09 0,18 2,0000 
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ASTG01AT 11,3 1,94 0,3 0,69 2,3000 

ASTT01CA 44,2 0 1,54 0,09 0,0584 

ASAG01TG 62,6 1,6 0,25 0,46 1,8400 

Chromosome 7 

ASAA02GT 31,6 1,08 0,29 0,42 1,4483 

ASAC01GT 31,6 0,68 0,13 0,18 1,3846 

ASAA01CA 48,4 1,21 0,28 1,03 3,6786 

ASAA05CA 62,2 1 0,35 0,97 2,7714 

ASTT03CA 62,2 1,09 0,72 0,8 1,1111 

ASAC05AA 69,7 0,85 0,58 0,6 1,0345 

ASAT02AT 69,7 0,55 0,11 0,37 3,3636 

ASTG01TC 77,5 0,17 0,11 0,31 2,8182 

ASAG02CA 100,3 1,7 0,2 0,6 3,0000 

ASTT01AG 123,6 0,07 0,13 0,14 1,0769 

ASAC01TA 127,6 1,23 0,19 0,61 3,2105 

Chromosome 8 

ASAC01TG 30,8 1,19 0,3 0,85 2,8333 

ASTA01AT 34,3 0,38 0,16 0,25 1,5625 

ASAG01CA 38,2 1,4 0,1 0,5 5,0000 

ASGA02AC 43 1,36 0,41 1,23 3,0000 

ASTG02AA 50,8 0,12 0,59 0,43 0,7288 

ASTC01CT 58,5 44,6 12,7 31,35 2,4646 

ASAC01AT 73,2 0,44 0,05 0,28 5,6000 

ASAT03AC 73,2 1,46 0,39 1,22 3,1282 

Chromosome 9 

ASTA01GT 40,2 4,04 2,18 3,43 1,5734 

ASAA04CA 40,2 1,02 0,24 0,68 2,8333 

ASAC03CT 51,7 0,91 0,18 0,64 3,5556 

ASTT05CA 51,7 0,85 0,8 0,6 0,7500 

ASAT04AA 59,2 0,41 0,16 0,33 2,0625 

ASTT02TT 71,1 389 0,55 0,04 0,0727 

Chromosome 10 

ASGA01TC 7,2 0,46 0,11 0,39 3,5455 

ASTG01CA 7,2 20,8 1,03 0,98 0,9515 

ASTT01TT 10,9 0,01 18,6 2,93 0,1573 

ASGA01CA 18,4 0,99 0,22 0,75 3,4091 

ASAT05AA 18,4 0,31 0,11 0,28 2,5455 

ASTA02AG 18,4 0,37 0,15 0,47 3,1333 

Chromosome 11 

ASAG03CA 5,3 2,4 0,1 0,9 9,0000 

ASAT03AA 5,3 0,95 0,27 0,78 2,8889 

ASTC02AC 5,3 0,25 0,12 0,28 2,3333 

ASTT02AA 5,3 0,09 0,07 0,07 1,0000 

ASTA03GA 21,5 1,17 0,17 0,59 3,4706 

ASTC01CA 21,5 1,21 0,28 0,8 2,8571 

ASTA01TA 39,2 0,29 0,12 0,21 1,7500 

ASTC01AC 39,2 0,07 0,04 0,06 1,5000 

ASTG01TA 39,2 0,59 0,15 0,34 2,2667 

ASAG01TA 48,7 0,6 0,3 0,4 1,3333 

ASAA01TG 52,9 1,32 0,82 0,47 0,5732 

ASAC02TA 52,9 1,65 0,14 0,35 2,5000 

Chromosome 12 

ASAC02CT 20,8 0,83 0,06 0,31 5,1667 

ASAA01AT 54,6 0,82 0,38 0,86 2,2632 
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ASAC03AA 54,6 0,99 0,25 0,66 2,6400 

ASGA02AG 66,4 1,17 0,39 1,09 2,7949 

ASTC01TA 111,4 0,61 0,07 0,33 4,7143 

Chromosome 13 

ASAA05AT 0 1,67 0,56 0,55 0,9821 

ASTG02TT 3,9 0,8 0,1 0,19 1,9000 

ASTA01AA 15,2 1,08 0,41 0,71 1,7317 

ASTT02AG 15,2 0,14 0,1 0,24 2,4000 

ASTT01GA 28,5 1,23 1,84 1,47 0,7989 

ASAA01TA 36,1 1,57 0,14 0,39 2,7857 

ASAA04TA 36,1 0,73 0,09 0,26 2,8889 

ASTA02CA 36,1 0,42 0,14 0,29 2,0714 

ASTA02CA 36,1 1,22 0,29 0,42 1,4483 

ASAA03AT 44,6 0,31 0,15 0,23 1,5333 

ASTA01AG 73 11,2 7,84 5,9 0,7526 

ASTT02TC 132,5 0,01 0,01 0,02 2,0000 

ASGA02TA 177,9 0,14 0,02 0,06 3,0000 

ASAT01AC 177,9 0,94 0,4 0,62 1,5500 

ASGA03CA 177,9 0,58 0,08 0,19 2,3750 

ASTA03TA 183,5 1,65 0,45 1,23 2,7333 

ASTG03AA 183,5 0,43 0,09 0,27 3,0000 

ASTT02CA 183,5 0 2,65 0,93 0,3509 

ASTA01CT 200,1 0,36 0,11 0,16 1,4545 

ASTA01CT 200,1 0,79 0,29 0,42 1,4483 

ASTT04AT 200,1 0,96 1,88 0,98 0,5213 

ASAT01AT 209,2 1,33 0,3 0,65 2,1667 

ASGA02AT 221,9 0,85 0,14 0,34 2,4286 

Group 12  

ASAC01GA 4 1,15 0,24 0,67 2,7917 

ASGA01AG 4 0,82 0,12 0,3 2,5000 

ASAT09AA 4 0,44 0,2 0,25 1,2500 

ASAT08AA 12,8 0,58 0,14 0,29 2,0714 

ASAA01GT 20,3 0,73 0,15 0,4 2,6667 

ASGA03AC 20,3 0,46 0,24 0,23 0,9583 

ASGA01AC 24,4 1,35 0,25 0,93 3,7200 

ASTA02TA 28,3 3,24 0,92 1,74 1,8913 

Group 14  

ASTA03AA 0 2,65 0,26 0,69 2,6538 

ASTA02AA 4 0,62 0,15 0,31 2,0667 

Group 16 

ASAT04AC 0 0,98 0,26 0,64 2,4615 

ASTG01TT 0 0,51 0,1 0,18 1,8000 

ASTT01CT 4,4 0 0,25 0,28 1,1200 

ASAG01CT 12,4 1,6 0,2 1 5,0000 

ASAA03TA 32,2 0,61 0,21 0,35 1,6667 

ASTT01AC 40,3 8,43 2,25 0,93 0,4133 

ASTT03AA 59,2 0,08 0,07 0,08 1,1429 

ASTT01AA 74,5 0,16 2,4 0,65 0,2708 

Group 2 

ASAA02AT 0 0,8 0,17 0,59 3,4706 

ASAG01TT 7,8 1,5 0,3 0,8 2,6667 

ASAC02AG 24,4 0,91 0,16 0,55 3,4375 

ASTC01GA 24,4 3,59 1,04 3,31 3,1827 

ASTT01AT 71,9 0,41 0,28 0,41 1,4643 
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ASTT04CA 71,9 46,8 0,71 1,11 1,5634 

Group 20 

ASGA02CA 4,6 0,59 0,06 0,15 2,5000 

ASAA04TC 8,7 0,77 0,11 0,21 1,9091 

ASAA01GA 8,7 1,34 0,27 0,66 2,4444 

ASTC02TC 8,7 0,04 0,03 0,03 1,0000 

ASAA06AC 16,8 0,17 0,68 0,52 0,7647 

ASAA03TC 43,7 1,06 0,25 0,35 1,4000 

ASAA02TG 55 0,99 0,52 0,65 1,2500 

ASAG01GA 64,2 2,3 0,48 1,4 2,9167 

ASAC01CT 84,2 0,42 0,14 0,36 2,5714 

ASTG02CT 84,2 1,09 1,19 1,07 0,8992 

Group 21 

ASAA01AC 0 0,09 0,05 0,08 1,6000 

Group 3 

ASGA01AT 40 0,81 0,06 0,28 4,6667 

ASAA02TA 44,2 1,11 0,57 0,34 0,5965 

ASAA03CT 44,2 2,55 0,54 0,95 1,7593 

ASAT11AA 44,2 0,94 0,25 0,3 1,2000 

ASAT02AA 63,8 0,21 0,12 0,07 0,5833 

ASTA01CA 75,5 1,24 0,13 0,66 5,0769 

ASTA01CA 75,5 0,8 0,13 0,27 2,0769 

Group 30 

ASTT01TC 11,9 1,97 1,16 1,22 1,0517 

Group 33 

ASTT02AT 0 0,09 0,04 0,02 0,5000 

ASAT02AC 8,1 1,73 0,4 0,62 1,5500 

Group 6 

ASGA01TA 0 1,92 0,49 1,05 2,1429 

ASGA01GA 0 1,7 1,22 0,46 0,3770 

ASTG01GA 0 0,13 1,4 1,18 0,8429 

ASAT06AA 23,4 0,33 0,13 0,25 1,9231 

No data 

ASTA04GA ............................................... 4,25 0,54 2,05 3,7963 

ASTA04CA ............................................... 0,27 0,2 0,18 0,9000 

ASTA02TG ............................................... 0,55 0,76 0,64 0,8421 

ASTA02GA ............................................... 0,71 0,16 0,4 2,5000 

ASTA03TG ............................................... 0,7 0,23 0,33 1,4348 

ASTA04TC ............................................... 2,68 1,39 4,56 3,2806 

ASTA02TC ............................................... 0,96 0,12 0,48 4,0000 

ASTA03TC ............................................... 1,78 0,12 0,58 4,8333 

ASGA01AA ............................................... 1,27 0,12 0,29 2,4167 

ASGA02AA ............................................... 1,26 0,14 0,66 4,7143 

ASGA03AA ............................................... 0,04 0,03 0,07 2,3333 

ASGA04AA ............................................... 1,56 0,94 0,63 0,6702 

ASGA05AA ............................................... 2,68 0,48 1,28 2,6667 

ASGA06AA ............................................... 1,35 0,31 0,68 2,1935 

ASGA07AA ............................................... 1,78 0,37 1,09 2,9459 

ASGA08AA ............................................... 0,78 0,16 0,31 1,9375 

ASTA01GA ............................................... 1,37 0,36 0,84 2,3333 

ASTA04TG ............................................... 1,7 1,33 1,29 0,9699 

ASTA02TT ............................................... 0,83 0,3 0,3 1,0000 

ASTA01TC ............................................... 1,77 0,05 0,04 0,8000 

ASTC02GT ............................................... 1,35 2,06 1,66 0,8058 
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ASTA03CA ............................................... 0,35 0,09 0,1 1,1111 

ASTA01TC ............................................... 1,27 0,13 0,43 3,3077 

ASTC03AA ............................................... 0,51 0,11 0,33 3,0000 

ASTC03TC ............................................... 1,41 0,28 1,19 4,2500 

ASTG04AA ............................................... 0,36 0,15 0,16 1,0667 

ASTG02TC ............................................... 0,58 0,06 0,49 8,1667 

ASTG02GA ............................................... 0,13 1,35 1,28 0,9481 

ASTG0AT ............................................... 0,84 0,08 0,18 2,2500 

ASTG0GT ............................................... 11,6 1,57 1,14 0,7261 

ASTT0TC ............................................... 0,14 0,44 0,44 1,0000 

ASTT00TC ............................................... 0,01 1,12 1,23 1,0982 

ASTT0TT ............................................... 58,1 0,82 0,9 1,0976 

ASTT00TT ............................................... 0,89 0,97 1 1,0309 

ASTT000TT ............................................... 0 1,02 1,15 1,1275 

ASTT0CT ............................................... 0,06 114 5,53 0,0483 

ASTT00CT ............................................... 1,61 1,46 1,14 0,7808 

ASTC02TT ............................................... 0,19 0,02 0,07 3,5000 

ASTG01CT ............................................... 0,03 1 0,84 0,8400 

ASAA05AC ............................................... 0,48 0,12 0,37 3,0833 

ASGA01TT ............................................... 0,38 0,24 0,28 1,1667 

ASTC01TT ............................................... 1,38 0,57 0,05 0,0877 

ASTT03AT ............................................... 1,29 1,04 1,24 1,1923 

Unlinked 

ASAA04AT ............................................... 1,86 0,47 0,72 1,5319 

ASAC06AA ............................................... 5,25 3,33 4,21 1,2643 

ASAA01CT ............................................... 1,28 0,23 0,6 2,6087 

ASAT07AA ............................................... 0,45 0,07 0,17 2,4286 

ASTC01AA ............................................... 0,95 0,31 0,88 2,8387 

ASTC02AA ............................................... 1,04 0,22 0,54 2,4545 
 

C - AS-ATN x AJ – AJ specific AFLP markers 
 

Marker Name 
CM distance along 

chromosome  

Relative Intensity 

Comparative Intensity ATN treated/Untreated AJ Marker Non passaged Untreated  
ATN 

treated 

Chromosome 1 

AJTG01GT 12 1,31 1 1,05 1,0500 

AJAC03TA 16,2 1,19 0,91 0,62 0,6813 

AJAG02TC 16,2 0,5 0,3 0,3 1,0000 

AJTA03AT 16,2 0,5 0,38 0,36 0,9474 

AJAG01GT 25,4 1,8 2,2 2 0,9091 

AJTG01AA 43,4 0,64 1,08 0,79 0,7315 

Chromosome 5 

AJAA04AC 70 0,5 0,8 0,5 0,6250 

AJAT07AT 70 0,4 0,39 0,33 0,8462 

AJAT01AT 73,9 1,16 2,59 1,57 0,6062 

AJTA01AC 77,5 1,97 0,8 0,7 0,8750 

AJAG01TT 82,7 0,4 0,2 0,2 1,0000 

AJAA03TA 82,9 0,6 0,5 0,4 0,8000 

Chromosome 6 

AJAG02AG 11,3 0,1 0,2 0,2 1,0000 

AJAG02CT 11,3 0,6 0,4 0,3 0,7500 

AJAC01GT 11,3 1,06 1,63 2,05 1,2577 

AJAT02TA 11,3 0,93 0,66 0,58 0,8788 
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AJTC02CT 11,3 1,08 0,59 0,56 0,9492 

AJTC01TC 11,3 0,45 0,34 0,35 1,0294 

AJTG02AA 11,3 0,84 0,65 0,63 0,9692 

AJTT05AT 11,3 7,03 1,09 1,28 1,1743 

AJAG01CT 16,1 0,5 0,3 0,4 1,3333 

AJAT03TG 29,3 0,82 0,49 0,44 0,8980 

AJTA02GA 37,1 2,07 1,75 1,09 0,6229 

AJTT01CA 44,3 1,44 1,84 2,6 1,4130 

AJTA02AC 62,7 0,34 0,14 0,1 0,7143 

Chromosome 7 

AJAA02TG 24,1 2 1 1 1,0000 

AJAG01AG 37,2 0,5 0,4 0,7 1,7500 

AJAA01GA 37,3 2,9 1,5 1,8 1,2000 

AJAT01GT 37,3 0,61 0,45 0,45 1,0000 

AJTT06AT 48,5 0,49 2,1 1,75 0,8333 

AJTA01CA 62,3 0,73 0,69 0,39 0,5652 

AJGA03AC 77,5 0,87 0,92 0,84 0,9130 

AJAT02TC 77,5 1,05 0,61 0,69 1,1311 

AJTG02AT 77,5 2,54 1,19 1,28 1,0756 

AJTG01TC 77,5 1,28 0,93 0,74 0,7957 

AJAT02AC 77,7 1,82 1,19 0,98 0,8235 

AJTT03TG 81,4 0,1 32 214 6,6875 

AJAA05CA 96,3 0,68 0,52 0,56 1,0769 

AJAG02CA 100,3 0,8 0,5 0,8 1,6000 

AJTG01AG 104,4 0,05 0,3 0,26 0,8667 

AJTG01GA 104,4 0,68 0,78 1 1,2821 

AJAC02TT 123,8 3,39 2,09 2,02 0,9665 

AJTC01AG 135,1 0,06 0,03 0,02 0,6667 

AJAA03AT 135,3 0,3 0,4 0,6 1,5000 

Chromosome 8 

AJAG03AG 0 0,2 0,14 0,1 0,7143 

AJTT02AT 17,3 0,8 0,5 0,3 0,6000 

AJAT01TA 21,3 2,99 2,37 1,62 0,6835 

AJTT07AT 25,9 0,86 0,83 0,73 0,8795 

AJAC02AG 43 1,2 1,5 0,8 0,5333 

AJAC02AT 46,2 0,37 0,45 0,25 0,5556 

AJTG03AA 55 0,69 1,25 0,73 0,5840 

AJTC01TG 58,5 2,13 2,33 1,06 0,4549 

AJAC03AT 73,2 1,96 1,54 0,91 0,5909 

Chromosome 9 

AJAT05TG 40,2 2,26 2,06 1,76 0,8544 

AJAT01TC 40,2 1,86 0,94 1,05 1,1170 

AJTA01GT 40,2 5,96 2,93 4,98 1,6997 

AJAC01AA 51,7 0,83 0,7 0,7 1,0000 

AJAC01CT 51,7 1,45 0,88 0,94 1,0682 

AJAG01TC 63,5 0,2 0,4 0,4 1,0000 

AJAT04TA 67,2 0,57 0,58 0,55 0,9483 

Chromosome 10 

AJGA01TT 7,2 0,65 0,48 0,32 0,6667 

AJAG03AC 10,9 0,8 0,9 0,5 0,5556 

AJAC02AC 10,9 3,7 2,8 1 0,3571 

AJAC02AA 18,4 0,75 0,6 0,4 0,6667 
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AJGA03AG 18,4 0,67 0,75 0,5 0,6667 

AJGA01CA 18,4 0,75 0,79 0,42 0,5316 

AJGA02CA 18,4 1,46 1,34 0,92 0,6866 

Chromosome 11 

AJAT03CT 5,3 0,64 0,57 0,6 1,0526 

AJAC01CA 9,6 1,26 0,89 1,16 1,3034 

AJTT03AT 9,7 0,7 0,6 0,9 1,5000 

AJTT03CA 9,7 14,2 0,74 1,58 2,1351 

AJTT02GA 9,7 0,26 0,11 0,05 0,4545 

AJTT03AA 13,6 0,99 1 1,05 1,0500 

AJAT03AA 17,6 1,67 1,58 1,41 0,8924 

AJAT01AA 21,6 0,71 0,87 0,95 1,0920 

AJGA02TT 31,2 0,53 0,22 0,24 1,0909 

AJTA01TT 39,3 0,74 0,62 0,75 1,2097 

AJTG05AT 39,3 0,5 0,52 0,44 0,8462 

AJAT06CT 44,6 3,08 2,13 1,49 0,6995 

AJAG01TA 48,7 0,5 0,5 0,5 1,0000 

AJAC01TA 53 1,71 1,21 0,78 0,6446 

Chromosome 12 

AJTT04AT 13,3 1,05 0,47 0,61 1,2979 

AJAC01GA 20,8 0,42 0,32 0,4 1,2500 

AJTT01CT 24,6 0,04 30,7 0,96 0,0313 

AJAA02TC 35,9 2 0,7 0,5 0,7143 

AJTC01CT 50,9 1,29 0,65 0,73 1,1231 

AJAT04CT 79,9 0,53 0,76 0,92 1,2105 

AJAG01TG 106,8 0,3 0,3 0,2 0,6667 

AJTC01TA 111,4 0,56 0,35 0,23 0,6571 

AJTT02AA 123,5 0,79 0,48 0,5 1,0417 

AJAA03TC 123,6 0,5 0,3 0,4 1,3333 

Chromosome 13 

AJTT01AG 15,2 1,02 0,89 1,21 1,3596 

AJAA03TG 28,5 1 1,3 1,4 1,0769 

AJAC04.0AT 28,5 0,51 0,68 0,87 1,2794 

AJTA01GA 28,5 1,51 1,97 2,19 1,1117 

AJTT04AA 32,4 0,31 0,32 0,49 1,5313 

AJTT02AC 36,7 0,71 1,35 1,29 0,9556 

AJAA01AT 44,5 0,8 0,7 0,6 0,8571 

AJAT02TG 64 1,01 0,68 0,67 0,9853 

AJTA01AG 72,9 15,39 13,84 5,67 0,4097 

AJGA02AA 76,9 1,02 0,95 0,94 0,9895 

AJAA03AC 136,1 0,7 0,8 0,5 0,6250 

AJAA01TG 151,2 0,3 0,2 0,2 1,0000 

AJAG04AG 177,9 0,9 0,4 0,3 0,7500 

AJTG02AG 183,4 0,57 0,77 0,76 0,9870 

AJTT02TG 183,4 1,4 1,51 1,29 0,8543 

AJTT02TT 183,4 0,95 0,04 0,04 1,0000 

AJTT02CA 183,4 1,28 0,7 0,5 0,7143 

AJGA02AG 183,5 1,88 2 1,38 0,6900 

AJGA02CT 183,5 0,3 0,26 0,34 1,3077 

AJTA01TC 187,9 0,3 0,32 0,35 1,0938 

AJAA03CA 200 1,09 1,29 0,78 0,6047 

AJAC03TT 200 5,47 3,89 3,18 0,8175 
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AJAT02AT 200 1,49 1,15 0,78 0,6783 

AJAA01AG 208,2 0,5 0,4 0,4 1,0000 

AJTG01TG 217,8 0,04 0,02 0,07 3,5000 

Group 31 

AJTT02CT 0 58,5 1,35 2,07 1,5333 

Group 12 

AJAG02AC 28,3 0,6 0,5 0,3 0,6000 

AJAG02TA 0 0,2 0,2 0,2 1,0000 

AJGA01AG 4 0,35 0,44 0,33 0,7500 

AJAC04TA 4 0,89 1,17 0,94 0,8034 

AJTG03AT 12,8 0,73 0,39 0,44 1,1282 

AJAC04AA 20,3 0,5 0,6 0,7 1,1667 

AJGA01AC 20,3 1,78 1,48 1,2 0,8108 

AJAT04AT 20,3 2,1 1,09 1,07 0,9817 

AJTT03CT 28,3 57,19 0,28 0,62 2,2143 

AJGA02AC 28,3 1,64 1,6 1,11 0,6938 

Group 14 

AJTG02CT 4 1,5 0,81 1 1,2346 

AJTT01TT 8,2 0,31 0,04 0,03 0,7500 

Group 16 

AJAT03AC 0 1,03 0,71 0,82 1,1549 

AJTC01GT 4,4 0,9 0,62 0,94 1,5161 

AJTG04AT 24,5 0,94 0,89 0,94 1,0562 

AJTT01AA 48,4 O,73 0,45 0,45 1,0000 

Group 2 

AJAA02TA 0 0,6 0,5 0,3 0,6000 

AJAG02TT 19,8 0,8 0,9 0,4 0,4444 

AJAC05AT 24,4 2,44 1,72 0,76 0,4419 

AJAA01TA 28,1 0,4 0,4 0,3 0,7500 

AJGA02TA 33,1 0,67 0,57 0,48 0,8421 

AJAG02AT 36,8 0,7 0,5 0,4 0,8000 

AJTT01TC 44,6 2,25 2 1,58 0,7900 

AJGA01GA 71,9 1,37 1,14 0,42 0,3684 

AJTT01GT 71,9 4,82 1,47 0,85 0,5782 

AJTA03AC 79,6 0,55 0,65 0,6 0,9231 

AJAC01TT 88,4 3,9 2,95 1,64 0,5559 

AJGA01AT 88,4 0,42 0,63 0,61 0,9683 

AJAT05AT 120,6 1,13 0,86 0,64 0,7442 

Group 20 

AJAT03TA 4,6 5,01 3,73 2,58 0,6917 

AJAA01GT 8,7 0,5 0,5 0,4 0,8000 

AJAT02AA 8,7 0,36 0,3 0,34 1,1333 

AJAT01AC 8,7 1,26 0,97 1,38 1,4227 

AJTC02TA 8,7 2,36 1,74 0,85 0,4885 

AJAA05AC 16,8 1,5 1 0,9 0,9000 

AJAT02GT 16,8 1,13 0,68 0,43 0,6324 

AJAT04TG 25,5 1 0,79 0,54 0,6835 

AJTT05AA 43,7 0,15 0,13 0,13 1,0000 

AJAT01TG 43,7 0,95 0,55 0,36 0,6545 

AJAT04AA 47,5 0,31 0,36 0,29 0,8056 

AJAT02CT 71,9 1,12 0,61 0,27 0,4426 
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AJAT01CT 84,2 1,98 0,96 0,84 0,8750 

AJTG01CT 84,2 0,98 1,09 0,87 0,7982 

AJTT06AA 84,2 0,16 0,16 0,1 0,6250 

AJAG03AT 92,7 1,5 0,7 0,7 1,0000 

AJGA02AT 92,7 0,85 0,64 0,58 0,9063 

Group 21 

AJAA01AC 0 1,2 1,6 0,8 0,5000 

Group 29 

AJAT01CA 0 0,33 0,35 0,23 0,6571 

Group 3 

AJTT07AA 40,7 1,63 0,88 0,71 0,8068 

AJAC01AG 44,2 1,44 1,6 1,1 0,6875 

AJTT01AC 49,5 0,49 0,36 0,4 1,1111 

AJTA02AT 51,4 0,29 0,34 0,29 0,8529 

AJAC01AT 63,8 0,88 0,84 0,79 0,9405 

AJAA02TT 75,5 1,9 0,9 0,6 0,6667 

AJTA01AT 86,4 0,58 0,36 0,45 1,2500 

Group 33 

AJTT01AT 8,1 0,52 1,65 1,21 0,7333 

AJGA01AA 22,5 1,28 0,86 0,62 0,7209 

Group 38 

AJTA02AG 7,5 1,24 0,65 0,54 0,8308 

AJAC01TG 11 0,65 0,75 0,66 0,8800 

AJGA01TA 15,8 0,64 0,63 0,64 1,0159 

Group 6 

AJGA01TG 0 1,03 0,71 0,57 0,8028 

AJGA01CT 0 0,64 0,33 0,35 1,0606 

AJTT01TG 0 2,08 2,48 0,46 0,1855 

AJAA02AT 8,5 1 0,9 0,9 1,0000 

AJAG01AT 19,4 0,4 0,5 0,8 1,6000 

No data 

AJAG02TG ........................... 0,7 0,6 0,4 0,6667 

AJAA01TC ............................ 1 0,9 1 1,1111 

AJAC04.5AT ............................ 0,45 0,27 0,21 0,7778 

AJGA04AT ............................ 0,56 0,76 0,5 0,6579 

AJGA05AT ............................ 0,37 0,35 0,32 0,9143 

AJAC02TA ............................ 0,92 0,67 0,83 1,2388 

AJGA03AA ............................ 0,86 0,7 0,61 0,8714 

AJTA01TG ............................ 3,91 2,62 2,38 0,9084 

AJTA03GA ............................ 0,72 1,69 1,18 0,6982 

AJTC02AG ............................ 0,43 0,33 0,44 1,3333 

AJTC02TG ............................ 0,12 0,51 0,43 0,8431 

AJTG04AG ............................ 0,88 0,77 0,76 0,9870 

AJTG05AG ............................ 1,16 2,48 0,49 0,1976 

AJTG02TG ............................ 0,04 0,15 0,1 0,6667 

AJTG03TG ............................ 2,41 1,11 0,83 0,7477 

AJAG03CA ............................ 0,3 0,3 0,3 1,0000 

AJAG05CT ........................... 0,6 0,3 0,4 1,3333 

AJAG01AC ............................ 0,09 0,16 0,11 0,6875 

AJAT01GA ............................ 1,69 1,22 1,04 0,8525 

Unlinked 

AJAG01AA ............................ 0,5 0,8 1 1,2500 
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AJAA02AC ............................ 1 1 0,6 0,6000 

AJAC03AG ............................ 3,74 2,89 2,71 0,9377 

AJAA01CA ............................ 1,39 0,89 1,01 1,1348 

AJAC02CT ............................ 3,33 2,04 2,29 1,1225 

AJGA03AT ............................ 1,41 1,11 0,54 0,4865 

AJAT06AT ............................ 0,66 0,47 0,51 1,0851 

AJAT02CA ............................ 0,8 0,62 0,34 0,5484 

AJTA01CT ............................ 0,73 0,69 0,77 1,1159 

AJTC01AT ............................ 0,86 0,8 0,38 0,4750 

AJTT03GA ............................ 10,92 2,82 1,23 0,4362 

 
D - AS-ATN x AJ – AS specific AFLP markers 
 

Marker Name 

CM distance along chromosome 

Relative Intensity 
Comparative Intensity ATN 

treated/Untreated AS Markers 
Non 

passaged Untreated  
ATN 

treated 

Chromosome 1 

ASAA01TC 16,2 0,6 0,2 0,3 2,1 

ASAA02CA 16,2 1,4 0,3 0,4 1,3 

ASTA01TT 16,2 1,1 0,3 0,6 2,3 

ASTA02AT 16,2 0,3 0,1 0,1 1,2 

ASTA02GT 16,2 1,5 0,9 0,7 0,8 

ASTG01AA 43,4 0,7 0,3 0,6 1,8 

Chromosome 5 

ASAA03TG 26,7 0,8 0,4 0,6 1,6 

ASAA02GA 54,4 0,9 0,2 0,4 1,8 

ASAC03AT 69,9 1,2 0,3 0,6 2,4 

ASAA04AC 69,9 0,3 0,1 0,2 2,3 

ASAC01AG 74,6 0,7 0,1 0,3 3,1 

ASTA01AC 74,6 1,3 0,4 0,2 0,5 

Chromosome 6 

ASAC02AT 11,3 0,8 0,2 0,4 1,5 

ASAT01AA 11,3 0,3 0,2 0,4 1,6 

ASTC01TC 11,3 0,2 0,2 0,2 1,1 

ASTG01AT 11,3 1,9 0,7 1,5 2,1 

ASTT01CA 44,2 0,0 3,5 1,5 0,4 

ASAG01TG 62,6 1,6 0,7 0,6 0,8 

Chromosome 7 

ASAA02GT 31,6 1,1 0,5 0,5 1,1 

ASAC01GT 31,6 0,7 0,4 0,8 1,9 

ASAA01CA 48,4 1,2 0,3 0,4 1,3 

ASAA05CA 62,2 1,0 0,4 0,7 1,7 

ASTT03CA 62,2 1,1 1,0 1,0 1,1 

ASAC05AA 69,7 0,9 0,5 0,6 1,2 

ASAT02AT 69,7 0,6 0,1 0,2 1,3 

ASTG01TC 77,5 0,2 0,3 0,3 1,2 

ASAG02CA 100,3 1,7 0,3 0,3 1,0 
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ASTT01AG 123,6 0,1 0,1 0,5 3,7 

ASAC01TA 127,6 1,2 0,4 0,3 0,8 

Chromosome 8 

ASAC01TG 30,8 1,2 0,3 0,9 3,3 

ASTA01AT 34,3 0,4 0,3 0,4 1,3 

ASAG01CA 38,2 1,4 0,1 0,5 6,6 

ASGA02AC 43,0 1,4 0,3 0,9 3,3 

ASTG02AA 50,8 0,1 0,6 0,7 1,1 

ASTC01CT 58,5 44,6 13,8 20,5 1,5 

ASAC01AT 73,2 0,4 0,1 0,3 5,4 

ASAT03AC 73,2 1,5 0,3 1,1 4,1 

Chromosome 9 

ASTA01GT 40,2 4,0 1,9 3,7 2,0 

ASAA04CA 40,2 1,0 0,5 0,8 1,7 

ASAC03CT 51,7 0,9 0,4 0,3 0,7 

ASTT05CA 51,7 0,9 0,7 1,6 2,3 

ASAT04AA 59,2 0,4 0,2 0,2 1,3 

ASTT02TT 71,1 388,8 0,1 0,5 8,8 

Chromosome 10 

ASGA01TC 7,2 0,5 0,1 0,3 3,1 

ASTG01CA 7,2 20,8 1,0 1,1 1,1 

ASTT01TT 10,9 0,0 3,1 0,5 0,2 

ASGA01CA 18,4 1,0 0,1 0,4 3,3 

ASAT05AA 18,4 0,3 0,2 0,2 1,5 

ASTA02AG 18,4 0,4 0,1 0,3 4,1 

Chromosome 11 

ASAG03CA 5,3 2,4 0,3 0,1 0,3 

ASAT03AA 5,3 1,0 0,5 0,4 0,8 

ASTC02AC 5,3 0,3 0,2 0,1 0,7 

ASTT02AA 5,3 0,1 0,1 0,1 1,4 

ASTA03GA 21,5 1,2 0,4 0,3 0,8 

ASTC01CA 21,5 1,2 0,6 0,5 0,9 

ASTA01TA 39,2 0,3 0,1 0,3 2,3 

ASTC01AC 39,2 0,1 0,0 0,1 3,5 

ASTG01TA 39,2 0,6 0,2 0,4 1,8 

ASAG01TA 48,7 0,6 0,3 0,4 1,3 

ASAA01TG 52,9 1,3 0,5 0,3 0,6 

ASAC02TA 52,9 1,7 0,1 0,6 4,6 

Chromosome 12 

ASAC02CT 20,8 0,8 0,2 0,3 1,6 

ASAA01AT 54,6 0,8 0,6 0,5 0,9 

ASAC03AA 54,6 1,0 0,4 0,6 1,8 

ASGA02AG 66,4 1,2 0,6 0,8 1,3 

ASTC01TA 111,4 0,6 0,1 0,4 2,6 
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Chromosome 13 

ASAA05AT 0,0 1,7 0,6 0,6 1,1 

ASTG02TT 3,9 0,8 0,1 0,1 1,4 

ASTA01AA 15,2 1,1 0,4 0,3 0,7 

ASTT02AG 15,2 0,1 1,6 1,5 0,9 

ASTT01GA 28,5 1,2 2,1 1,5 0,7 

ASAA01TA 36,1 1,6 0,1 0,3 2,9 

ASAA04TA 36,1 0,7 0,1 0,2 2,3 

ASTA02CA 36,1 0,4 0,2 0,4 1,7 

ASTA02CA 36,1 1,2 0,2 0,2 0,9 

ASAA03AT 44,6 0,3 0,2 0,2 1,3 

ASTA01AG 73,0 11,2 4,9 4,1 0,8 

ASTT02TC 132,5 0,0 0,0 0,0 2,0 

ASGA02TA 177,9 0,1 0,0 0,1 3,0 

ASAT01AC 177,9 0,9 0,3 0,4 1,5 

ASGA03CA 177,9 0,6 0,1 0,2 2,1 

ASTA03TA 183,5 1,7 0,4 1,0 2,7 

ASTG03AA 183,5 0,4 0,1 0,3 2,2 

ASTT02CA 183,5 0,0 0,9 0,9 1,0 

ASTA01CT 200,1 0,4 0,1 0,1 1,1 

ASTA01CT 200,1 0,8 0,3 0,5 1,9 

ASTT04AT 200,1 1,0 2,1 1,6 0,8 

ASAT01AT 209,2 1,3 0,3 0,6 1,9 

ASGA02AT 221,9 0,9 0,4 0,8 1,8 

Group 12 

ASAC01GA 4,0 1,2 0,4 0,5 1,1 

ASGA01AG 4,0 0,8 0,1 0,6 3,9 

ASAT09AA 4,0 0,4 1,0 0,3 0,2 

ASAT08AA 12,8 0,6 0,2 0,4 1,8 

ASAA01GT 20,3 0,7 0,3 0,4 1,5 

ASGA03AC 20,3 0,5 0,4 0,2 0,6 

ASGA01AC 24,4 1,4 0,4 0,7 1,8 

ASTA02TA 28,3 3,2 1,3 1,1 0,8 

Group 14 

ASTA03AA 0,0 2,7 0,3 0,9 2,8 

ASTA02AA 4,0 0,6 0,2 0,6 2,5 

Group 16 

ASAT04AC 0,0 1,0 0,5 0,4 0,8 

ASTG01TT 0,0 0,5 0,2 0,2 1,1 

ASTT01CT 4,4 0,0 0,9 0,7 0,8 

ASAG01CT 12,4 1,6 0,5 0,7 1,4 

ASAA03TA 32,2 0,6 0,2 0,3 1,2 

ASTT01AC 40,3 8,4 0,9 0,2 0,2 

ASTT03AA 59,2 0,1 0,1 0,1 1,6 
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ASTT01AA 74,5 0,2 2,3 1,6 0,7 

Group 2 

ASAA02AT 0,0 0,8 0,3 0,6 2,6 

ASAG01TT 7,8 1,5 0,4 1,0 2,5 

ASAC02AG 24,4 0,9 0,2 0,5 3,5 

ASTC01GA 24,4 3,6 1,3 2,8 2,2 

ASTT01AT 71,9 0,4 0,3 0,4 1,3 

ASTT04CA 71,9 46,8 2,0 1,9 1,0 

Group 20 

ASGA02CA 4,6 0,6 0,2 0,2 1,1 

ASAA04TC 8,7 0,8 0,2 0,4 1,8 

ASAA01GA 8,7 1,3 0,6 1,0 1,8 

ASTC02TC 8,7 0,0 0,0 0,0 1,5 

ASAA06AC 16,8 0,2 0,6 0,6 1,0 

ASAA03TC 43,7 1,1 0,3 0,5 1,7 

ASAA02TG 55,0 1,0 0,7 1,0 1,4 

ASAG01GA 64,2 2,3 1,0 1,8 1,9 

ASAC01CT 84,2 0,4 0,3 0,5 1,4 

ASTG02CT 84,2 1,1 1,2 0,9 0,8 

Group 21 

ASAA01AC 0,0 0,1 0,1 0,1 1,1 

Group 3 

ASGA01AT 40,0 0,8 0,1 0,3 2,1 

ASAA02TA 44,2 1,1 0,5 0,4 0,9 

ASAA03CT 44,2 2,6 0,6 1,4 2,3 

ASAT11AA 44,2 0,9 0,2 0,5 2,4 

ASAT02AA 63,8 0,2 0,1 0,2 3,0 

ASTA01CA 75,5 1,2 0,1 0,4 2,8 

ASTA01CA 75,5 0,8 0,3 0,4 1,4 

Group 30 

ASTT01TC 11,9 2,0 42,0 0,8 0,0 

Group 33 

ASTT02AT 0,0 0,1 0,0 0,0 0,5 

ASAT02AC 8,1 1,7 0,3 0,4 1,5 

Group 6 

ASGA01TA 0,0 1,9 0,6 1,2 2,0 

ASGA01GA 0,0 1,7 1,1 0,4 0,4 

ASTG01GA 0,0 0,1 2,5 1,1 0,4 

ASAT06AA 23,4 0,3 0,2 0,5 3,2 

No data 

ASTA04GA ............................................ 4,3 1,2 2,8 2,4 

ASTA04CA ............................................ 0,3 0,2 0,2 1,0 

ASTA02TG ............................................ 0,6 0,4 0,4 0,8 

ASTA02GA ............................................ 0,7 0,4 0,5 1,3 
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ASTA03TG ............................................ 0,7 0,3 0,5 1,9 

ASTA04TC ............................................ 2,7 3,2 3,0 0,9 

ASTA02TC ............................................ 1,0 0,3 0,3 1,3 

ASTA03TC ............................................ 1,8 0,4 0,5 1,4 

ASGA01AA ............................................ 1,3 0,3 0,5 2,1 

ASGA02AA ............................................ 1,3 0,4 0,8 2,0 

ASGA03AA ............................................ 0,0 0,0 0,1 4,0 

ASGA04AA ............................................ 1,6 0,7 1,0 1,4 

ASGA05AA ............................................ 2,7 0,5 0,8 1,5 

ASGA06AA ............................................ 1,4 0,5 0,7 1,6 

ASGA07AA ............................................ 1,8 0,3 0,8 2,9 

ASGA08AA ............................................ 0,8 0,4 0,6 1,4 

ASTA01GA ............................................ 1,4 0,3 0,3 0,9 

ASTA04TG ............................................ 1,7 0,2 0,2 1,2 

ASTA02TT ............................................ 0,8 0,5 0,4 0,7 

ASTA01TC ............................................ 1,8 1,0 1,2 1,2 

ASTC02GT ............................................ 1,4 1,9 2,0 1,0 

ASTA03CA ........................................... 0,4 0,1 0,1 1,4 

ASTA01TC ........................................... 1,3 0,3 0,5 1,6 

ASTC03AA ............................................ 0,5 0,3 0,2 0,7 

ASTC03TC ............................................ 1,4 0,7 1,3 1,9 

ASTG04AA ............................................ 0,4 0,2 0,2 1,0 

ASTG02TC ............................................ 0,6 0,1 0,2 1,2 

ASTG02GA ............................................ 0,1 1,3 0,7 0,6 

Unlinked 

ASAA04AT ............................................ 1,9 0,6 0,5 0,9 

ASAC06AA ............................................ 5,3 3,4 3,2 0,9 

ASAA01CT ............................................ 1,3 0,2 0,7 3,4 

ASAT07AA ............................................ 0,5 0,1 0,3 3,0 

ASTC01AA ............................................ 1,0 0,5 0,5 1,1 

ASTC02AA ........................................... 1,0 0,7 1,2 1,9 
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Artemisinin combination 
therapy (ACT) -  

As a response to increasing levels of resistance to antimalarial medicines, WHO 
recommends that all countries experiencing resistance to conventional 
monotherapies, such as chloroquine, amodiaquine or sulfadoxine–pyrimethamine, 
should use combination therapies, preferably those containing artemisinin 
derivatives (ACTs) for falciparum malaria. 
WHO currently recommends the following combination therapies (in alphabetical 
order): 
1. Artemether/lumefantrine  
2. Artesunate plus amodiaquine (In areas where the cure rate of amodiaquine 
monotherapy is greater than 80%) 
3. Artesunate plus mefloquine (Insufficient safety data to recommend its use 
in Africa)  
4. Artesunate plus sulfadoxine / pyrimethamine (In areas where the cure rate 
of sulfadoxine / pyrimethamine is greater than 80%) 
Note: Amodiaquine plus sulfadoxine / pyrimethamine may be considered as an 
interim option where ACTs cannot be made available, provided that efficacy of both 
is high. 

  
Clone -  A collection of parasites in which all individuals have been derived from a single 

cell by asexual reproduction.  
Therefore, a particular clone should represent a population of genetically identical 
parasites, assuming that no spontaneous mutations had taken place during parasite 
growth. 

  
Isolate -  A population of parasites that have been collected from mosquitoes, humans or 

rodents living in the wild on a single occasion and subsequently kept as deep-frozen 
material.  
An isolate does not necessarily represent a homogeneous parasite population and 
may contain more than one representative of the same species or different species. 

  
Line -  A population of parasites that have undergone one or more in vitro or in vivo 

laboratory passages.  
Usually, a line is produced when the parasites being passaged in the laboratory have 
been subjected to some kind of induced pressure, such as drug treatment. As for the 
isolate, parasites constituting a line may not be genetically identical.  

  
Linkage Group 
Selection (LGS) -  

Was devised for application to malaria parasites in order to locate genes that control 
selectable phenotypes such as drug sensitivity, growth rate and strain-specific 
immunity without the disadvantages of classical linkage analysis.  
LGS uses a genetic cross between two unrelated (genetically distinct) parasites of 
the same species, one of which is sensitive and the other resistant to the relevant 
selection pressure (such us drug treatment). Following cross-fertilisation between 
gametes of each parasite and zygote formation in the mosquito, there is 
recombination between the parental genomes during meiosis, producing haploid 
recombinant progeny.  

  
Minimum Curative 
Dose (MCD) -  

The MCD of each drug was first assessed in drug-selected parasites and untreated 
control lines. MCD was defined as the minimum dose of each drug that would 
prevent re-appearance of parasites in all five mice within each treated group at any 
time during the first 10 days of the follow-up period.  

  
N-fold resistance -  A resistance index was determined using the following equation: 

N-fold resistance = MCD drug selected parasites/ MCD drug unselected parasites 
  
Polymerase chain 
reaction (PCR) - 

Is a biochemistry and molecular biology technique for exponentially amplifying 
DNA, via enzymatic replication, without using a living organism (such as E. coli or 
yeast). As PCR is an in vitro technique, it can be performed without restrictions on 
the form of DNA, and it can be extensively modified to perform a wide array of 
genetic manipulations. 
PCR is commonly used in medical and biological research labs for a variety of 
tasks, such as the detection of hereditary diseases, the identification of genetic 
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fingerprints, and the diagnosis of infectious diseases, the cloning of genes, paternity 
testing, and DNA computing. 

  
Proportional 
Sequencing -  

Technique for analysing parasite mixtures. The method is rapid, and in principle can 
be applied to any single nucleotide polymorphism (SNP) at any locus, with only 
minimal requirements for optimisation and assay development. Proportional 
sequencing exploits the fact that during a PCR reaction, DNA is amplified in 
proportion to the initial template. 

  
Quantitative Polymerase 
Chain Reaction (RTQ-
PCR) -  

Is a modification of the polymerase chain reaction used to rapidly measure the 
quantity of DNA, complementary DNA or ribonucleic acid present in a sample. 
Like other forms of polymerase chain reaction, the process is used to amplify DNA 
samples, via the temperature-mediated enzyme DNA polymerase. 
PCR theoretically amplifies DNA exponentially, doubling the number of molecules 
present with each amplification cycle. The number of amplification cycles and the 
amount of PCR end-product should allow one to calculate the initial quantity of 
genetic material, but numerous factors complicate this calculation. The ethidium 
bromide staining typically used to assess a successful PCR prevents further 
amplification, and is only semi-quantitative. The polymerase chain reaction may not 
be exponential for the first several cycles, and furthermore, plateaus eventually, so 
care must be taken to measure the final amount of DNA while the reaction is still in 
the exponential growth phase. To overcome these difficulties, several different 
quantitative methods have been developed. 
The most sensitive quantification methods are done by the real-time polymerase 
chain reaction, where the amount of DNA is measured after each cycle of PCR by 
use of fluorescent markers. Other end-point methods measure DNA after PCR is 
completed. These methods depend on addition of a competitor RNA (for reverse-
transcriptase PCR) or DNA in serial dilutions or co-amplification of an internal 
control to ensure that the amplification is stopped while in the exponential growth 
phase. 
Although real-time quantitative polymerase chain reaction is often marketed as RT-
PCR, it should not to be confused with reverse transcription polymerase chain 
reaction, which is also referred to as RT-PCR, but is used to amplify RNA samples. 
The two methods may be used in concert to reverse transcribe RNA and then 
quantitate the resulting cDNA using real-time PCR (often referred to as real-time 
RT-PCR). 

  
RI - Delayed 
Recrudescence -  

The WHO 1973 definition of the level of parasite drug resistance remains in use.  
According to the WHO the asexual parasitaemia reduces to < 25% of pre-treatment 
level in 48 hours, but reappears between 2-4 weeks. 

  
RI - Early 
Recrudescence -  

The WHO 1973 definition of the level of parasite drug resistance remains in use. 
According to the WHO the asexual parasitaemia reduces to < 25% of pre-treatment 
level in 48 hours, but reappears within 2 weeks. 

  
RII – Resistance -  The WHO 1973 definition of the level of parasite drug resistance remains in use. 

According to the WHO there is a marked reduction in asexual parasitaemia 
(decrease >25% but <75%) in 48 hours, without complete clearance in 7 days. 

  
RIII – Resistance -  The WHO 1973 definition of the level of parasite drug resistance remains in use. 

According to the WHO there is a minimal reduction in asexual parasitaemia, 
(decrease <25%) or an increase in parasitaemia after 48 hours 

  
Sensitive Parasite (S) -  
 

The WHO 1973 definition of the level of parasite drug resistance remains in use. 
According to the WHO the asexual parasite count reduces to 25% of the pre-
treatment level in 48 hours after starting the treatment, and complete clearance after 
7 days, without subsequent recrudescence - Complete Recovery. 

  
Strain -  All parasites of a single subspecies present in a single isolate.  

For example, Plasmodium chabaudi chabaudi strain AS-sens is composed of all the 
parasites belonging to the P. c. chabaudi sub-species in blood isolated from the 
thicket rat Thamnomys rutilans. 
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