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ABSTRACT 

Large wildfires have devastating human, environmental and economic consequences and are 

responsible for the majority of total burned area in Mediterranean Europe, even though they account 

for only a marginal portion of all fire occurrences. Most predictions suggest a global intensification of 

fire danger, and among all European Mediterranean countries Portugal displays the highest fire 

incidence. The purpose of this work is to examine the main factors driving large wildfire ignition and 

spread in central Portugal between 2005 and 2015, contributing with empiric knowledge on their 

importance and variability throughout the study area. 

This research was successful at listing a comprehensive set of elements contributing to fire occurrence 

and at gathering data on these phenomena. Spatial cluster analysis was used to find homogeneous 

regions within the study area concerning the main factors influencing both fire ignition and burned 

area. Probit and two-part regression techniques were used to model the contribution of the different 

elements driving large fire occurrence and propagation. 

The main findings of this analysis confirm the presence of spatial variability in the contribution exerted 

by most structural factors driving large wildfire ignition and spread in central Portugal. Additionally, 

while vegetation characteristics appear much more relevant for fire propagation, socioeconomic 

elements seem to be connected to fire incidence. 

All in all, this research provides relevant input with implementation in different fields, from large fire 

awareness and prevention to the development of wildfire policies, as well as appropriate contributions 

to methodological concerns in fire danger and fire risk analyses. 
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Large wildfires; fire danger; large fire ignition; large fire spread; driving factors; spatial clustering; 

probit regression; two-part models 
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RESUMO 

Os grandes incêndios rurais têm como consequência impactos socioeconómicos e ambientais 

devastadores e são responsáveis pela maior parte do total de área ardida na Europa mediterrânica, 

ainda que representem apenas uma fração pouco expressiva do total de ocorrências. A maioria dos 

estudos prevê uma intensificação do perigo de incêndio, sendo que, entre todos os países europeus 

da bacia mediterrânica, é Portugal quem apresenta a mais alta incidência deste fenómeno. O objetivo 

deste trabalho é estudar os fatores que mais contribuíram para a ignição e propagação de grandes 

incêndios rurais no centro de Portugal entre 2005 e 2015, concorrendo assim com conhecimento 

empírico relativamente à sua importância e variabilidade na área de estudo. 

Esta investigação conseguiu listar um conjunto abrangente de elementos que contribuem para a 

ocorrência de incêndios rurais, assim como reunir os dados necessários. Uma análise de clusters 

espacial foi aplicada para identificar regiões homogéneas dentro da área de estudo no que respeita 

aos principais fatores influenciando a ignição e o alastrar dos grandes incêndios. Modelos probit e em 

duas partes foram utilizados para analisar a contribuição dos diferentes elementos para a ocorrência 

e propagação dos fogos. 

Os resultados deste estudo confirmam a presença de variação espacial no impacto exercido pela 

maioria dos fatores estruturais que contribuem para a ocorrência e propagação dos grandes incêndios 

rurais. Por outro lado, enquanto as características da vegetação se revelam mais relevantes na 

perspetiva do alastrar dos incêndios, os fatores socioeconómicos parecem estar relacionados com a 

ignição destes fenómenos. 

Em suma, este estudo contribui com informação relevante, a implementar em diferentes âmbitos, 

desde a consciencialização das populações à prevenção e ao desenvolvimento de políticas na área dos 

fogos rurais. Este apresenta ainda contributos apropriados na área de metodologias de análise do 

perigo e risco de incêndio. 
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1. INTRODUCTION 

This research seeks to investigate the main factors driving large wildfire occurrences in central Portugal 

between 2005 and 2015, focusing on their spatial patterns, dynamics and impact on the likelihood of 

fire ignition and burned area. This document is divided into 5 chapters: (1) the introduction; (2) a 

review of literary sources; (3) an account of the chosen methodology; (4) the presentation of the main 

findings of this work, complemented by a discussion; and (5) the concluding remarks. 

 

1.1. BACKGROUND AND RESEARCH DEVELOPMENT 

Fire is perceived as an important agent for both ecological development and deterioration of forest 

ecosystems around the world (Ferreira-Leite, Lourenço, & Bento-Gonçalves, 2013; Verde & Zêzere, 

2010). In fact, even though fire has always be present as a landscape transformation and renewal 

factor (Goudie, 2006), fire events can have disastrous human, environmental and economic 

consequences, especially when these develop into large wildfires (Tedim et al., 2013).  

Mediterranean Europe is particularly vulnerable to these destructive phenomena. This region is home 

to the second most diverse community of species worldwide after the tropics, and even though 

Mediterranean ecosystems are historically fire resilient, intense human pressure on the environment 

has favoured fire recurrence, has increased fire size and has made fire events overall more widespread 

(Moreno, Vallejo, & Chuvieco, 2013). Large fires play a significant role in this context because they are 

responsible for the majority of total burned area, while only expressing a small share of all fire events 

(San-Miguel-Ayanz, Moreno, & Camia, 2013). 

These trends in fire dynamics have been observable across European Mediterranean countries, 

although at different rates. In Portugal, there is evidence of higher fire incidence than in other 

Mediterranean countries (Rego & Silva, 2014), a steady increase in the frequency of large wildfires and 

a rise in the extent of burned area during the second half of the 20th century (Ferreira-Leite et al., 

2013). Climatic characteristics, land abandonment and other socioeconomic transformations have left 

the Portuguese inland territory susceptible to the occurrence of large wildfires (Oliveira, Pereira, & 

Carreiras, 2012), and climate change is expected to reinforce fire danger significantly (Rego & Silva, 

2014). 

One aspect that is important in shaping wildfire frequency and size is the role of humans and their 

activities, which is known to both stimulate fire ignition and prevent large burned areas. Human-

caused fires represent 90% of all occurrences in the European Mediterranean (Moreira, Catry, Rego, 

& Bação, 2010), and in Portugal, the main known causes of forest fires are the use of fire, arson and 

rekindling (ICNF, 2014). 

Wildfire risk is partially determined by fire danger, in which fire ignition and propagation likelihood 

play a central role (Chuvieco, Aguado, et al., 2014). In turn, the driving forces of fire occurrence and 

spread can be divided into vegetation and soil factors (the available fuel and its spatial continuity), 

climatic factors (favourable weather conditions), topographic factors, and human factors (usually, a 

source of ignition) (Ganteaume et al., 2013; Martínez-Fernández, Chuvieco, & Koutsias, 2013; Mhawej, 
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Faour, & Adjizian-Gerard, 2015). These structural elements display various relationships among 

themselves, explaining wildfire incidence and determining the behaviour of fire events.  

 

1.2. RESEARCH GOALS 

The overall purpose of this research can be summarised into one main objective and four specific 

research goals, as presented below: 

Table 1 – Main objective and research goals 

Main Objective:  

To study the main determinants of large wildfire occurrences in central Portugal between 2005-2015 

as to their spatial patterns, dynamics and contribution. 

Research Goal #1:  

To recognise and to explain the main general factors driving wildfire ignition and spread, specifically 

in the Mediterranean context. 

Research Goal #2:  

To investigate the spatial patterns of large wildfire incidence and the distribution of the main drivers 

of fire occurrence and propagation. 

Research Goal #3:  

To identify homogenous regions within the study area with respect to the distribution of the main 

drivers of fire ignition and burned area. 

Research Goal #4:  

To model the occurrence and spread of large wildfires from the contribution of its main factors and 

to explore the variability of the factors importance among regions. 
 

In order to accomplish these objectives, a comprehensive literature review on the factors driving 

wildfire ignition and spread will be carried out, along with multivariate data analysis techniques. 

Cluster analysis will be used to identify distinctive regions within the study area. Probit and two-part 

modelling procedures will be used to assess the influence of the main elements driving large wildfire 

occurrence and burned area, as well as the lack of stationarity across regions. 

 

1.3. STUDY RELEVANCE 

The relative influence of a great array of factors driving large wildfire occurrence in Portugal, in which 

we can count biophysical, land use, ownership and socioeconomic aspects, needs to be further studied 

for a richer understanding of fire dynamics. As Tedim et al. (2013) and Calviño-Cancela et al. (2017) 

put it, an insight into the various interactions among the main factors driving wildfire risk and fire 

behaviour – studying their arrangements, patterns and variations – should translate into an 
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improvement in risk management strategies, such as more efficient prevention measures, the 

development of existing regulation and the creation of campaigns aimed at increasing the awareness 

of different stakeholders in connection with specific activities and settings. 

Additionally, a better understanding of wildfire occurrences and their spatial behaviour is essential for 

prevention efforts and firefighting planning, also in the legislative framework (Moreira et al., 2010). In 

fact, the spatial patterns of fire events are counted as one of the essential elements in wildfire danger 

assessment, and the study of these varying distributions helps understanding the reasons behind 

different fire regimes in otherwise similar regions  (Rego & Silva, 2014). 

The results of empirical studies in this area are still considered valuable input for model 

parameterisation in the perspective of risk analysis (Miller & Ager, 2013). There is a high degree of 

uncertainty involved in the study of wildfires, especially of those anthropogenic in nature, connected 

to deliberate, accidental and negligent causes (Rodrigues, Jiménez, & de la Riva, 2016). Furthermore, 

research studying large wildfires has not been very extensive in respect to their main factors, even 

though they are responsible for the majority of wildfire damages in the Mediterranean 

(Dimitrakopoulos, Gogi, Stamatelos, & Mitsopoulos, 2011; Ganteaume & Jappiot, 2013). Deeper 

insights into the mechanisms triggering large wildfire occurrence will hopefully provide the necessary 

knowledge to strengthen prevention efforts (San-Miguel-Ayanz et al., 2013). 

The focus of this study will be on large events considering burned area, making use of the findings of 

previous works. This knowledge should result in beneficial developments in awareness, prevention and 

wildfire policies, and in advances in the effect mitigation of large wildfires (Ganteaume & Jappiot, 2013; 

Grala et al., 2017), specifically in the Portuguese context. 
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2. LITERATURE REVIEW 

This chapter provides an indicative review of the main literary sources on this topic. To start, general 

considerations about wildfires are presented, as well as the most striking and important characteristics 

of large wildfire dynamics, specifically in the Portuguese context. Later, wildfire risk assessment 

frameworks are discussed and the main contributing factors of wildfires are described and explained. 

To conclude a short account of the methods used for analysing wildfire danger is given, with attention 

to the main goals of this research.  

 

2.1. WILDFIRES – SOME CONSIDERATIONS 

A quick look through the reference literature provides a list of different words or expressions to 

designate the phenomenon under study, from the most frequent wildfire and forest fire to a variety of 

other technical expressions. Mhawej, Faour and Adjizian-Gerard (2015) agree that a “wildfire is 

generally the unplanned or unwanted natural or human-caused fire that spreads over a minimum area 

of one hectare, where one or more types of vegetation are concerned” while asserting that the term 

forest fire can be used interchangeably.  

Although the latter is the preferred expression in Portuguese-language studies, the term wildfire 

appears to extend beyond the specific context of forest environments and is the most widely used 

expression in English-language academic settings and elsewhere, making it the choice of this study. 

Fire has a necessary and natural role in the environment as an agent for landscape transformation and 

wildlife development (Verde & Zêzere, 2007). Goudie (2006) discusses at length the different ways in 

which fire contributes to species diversity, pest control and vegetative reproduction. However, 

wildfires also represent the source of great destruction to forested and populated areas alike, with 

recent examples of extensive damage in Greece and other regions with Mediterranean characteristics 

(Mitsopoulos, Mallinis, & Arianoutsou, 2014), including Portugal. All in all, Ferreira-Leite, Lourenço and 

Bento-Gonçalves (2013) consider it to be a fundamental aspect of ecological development or 

deterioration of global forest environments. 

In the literature, the expression large fire is used to identify all wildfires that either have the possibility 

of developing into very large fires or are liable to burn a large area, while the size varies depending on 

the author or study (Ganteaume & Jappiot, 2013).  

In line with the Resolution from the Portuguese Parliament n. 35/2013, of March 19th (Resolução da 

Assembleia da República n.º 35/2013, de 19 de março in Diário da República n.º 55/2013, Série I), large 

wildfires refer to all events with a burned area over 500 ha, replacing the previous institutional 

classification which considered all occurrences with a burned area over 100 ha (Ferreira-Leite et al., 

2013). It is important to mention, however, that this second threshold is still widely used in the 

reference literature to identify large wildfires, and represents the classification used in this research 

work. 

On the other hand, there is an important difference between large fires and mega-fires, which 

represent a specific subgroup of the former. These are considered complex, multidimensional and 

unusual events, specifically in what concerns burned area extension, damage severity and associated 
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firefighting efforts (Dimitrakopoulos et al., 2011; Tedim et al., 2013). According to San-Miguel-Ayanz 

et al. (2013), megafires can be charcaterised on the basis of their damaging impacts, specifically 

economic losses and human casualties. Tedim et al. (2013) also mention the main attribute of these 

phenomena to be their short and long-term impacts. 

 

2.1.1. The consequences of wildfire events 

The negative consequences of wildfires are several, wide-ranging and are well documented 

throughout the literature. Tedim et al. (2013) separate direct damages and indirect losses, stressing 

the environmental and economic impacts of fire events inside and outside the burned area, even 

though many times, in Portugal, damages are measured as a sole function of burned area size. These 

same authors consider that wildfire impacts may be classified as to their type and their spatial and 

temporal scales, for a comprehensive assessment and monitoring of this phenomenon. 

According to Oliveira, Pereira and Carreiras (2012) the three decades of intense fire activity starting in 

1980 and ending in 2010, in Portugal, have resulted in a replacement of large areas of maritime pine 

forests for eucalypt plantations and shrublands, with all the negative conditions it entails for future 

fire regimes. Ricotta and Di Vito (2014) agree that, in Mediterranean ecosystems, recurrent wildfires 

are found to thoroughly disturb landscapes, reducing biodiversity and favouring the growth of 

shrubland areas, since many species require a sufficiently longer time interval to regenerate. In turn, 

this degradation promotes wildfire occurrence, given the apparent lower value of such areas. 

Countless other environmental dangers have been verified, such as the aggradation of rivers, which is 

a real danger in the Mondego basin in central Portugal (Ferreira-Leite, Lourenço, et al., 2013). 

On the other hand, wildfires pose numerous threats to human lives, their resources and their activities 

(Chuvieco, Aguado, et al., 2014), namely a serious impact on the forestry sector, reducing earnings and 

decreasing investment (Álvarez-Díaz, González-Gómez, & Otero-Giraldez, 2015) and negative 

economic effects on the farming activity, damaging machines, burning profitable crops and killing 

animals (Tedim et al., 2013). It is expected that demographic changes increase wildfire impacts on 

human safety, as in some areas of the world, such as California, the urban sprawl has provided a source 

for rising ignition risk in particularly vulnerable settings (Keeley & Syphard, 2016). 

In the words of Moreno, Vallejo and Chuvieco (2013), the Mediterranean Europe is currently classified 

as degraded, as a consequence of long-term human presence and exploitation. This anthropogenic 

impact is known to influence both wildfire occurrence, as well as the ecological response to such 

extreme events. Additionally, destructive effects are more likely to ensue as a result of a high number 

of infrastructures and a prevalence of densely populated areas, particularly during the summer 

months. 

Other important aspects include carbon emissions (Amiro et al., 2001; van der Werf et al., 2003), and 

high economic impacts, especially connected to fire suppression (Westerling & Bryant, 2007), other 

aid expenditures, like evacuation procedures, and the recovery process (Tedim et al., 2013). In fact, 

Moreno, Vallejo and Chuvieco (2013) acknowledge that more than 2.5 billion euros are spent every 

year in prevention and suppression across the European Mediterranean region. 
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When focusing specifically on the consequences of large forest fires, great damages are an expected 

outcome. The work of Tedim et al. (2013) covering the mega-fires occurred in Algarve, south of 

Portugal, in 2003, gives an account of the effects of these extreme events on dwellings, forests and 

agricultural lands, the shortage of stored water and the destruction of power and telephone lines. An 

association has been made by the same study between these high damages and the location of the 

wildfires, which spread to areas on the Wildland-Urban Interface, where human presence is dispersed 

and elements are particularly vulnerable. 

Conversely, Künzli et al. (2006) have demonstrated that health effects on children, namely respiratory 

conditions, are one of the serious concerns of smoke from large wildfires, while Dimitrakopoulos et al. 

(2011) have focused their attention on the high costs of firefighting, particularly due to extended 

suppression times and the use of airborne means. 

It is worth considering the perceptions of different stakeholders when discussing the main effects of 

wildfires. A study conducted in the Portuguese municipality of Mação (NUTS III Médio Tejo) has shown 

that, while forestry technicians mentioned soil erosion and the loss of biodiversity as their main 

concerns, the local community pointed out the loss of timber and the destructive impacts to the local 

economy and private property (Ribeiro et al., 2015). 

 

2.1.2.  An insight into fire dynamics 

The term fire regime defines the regular and constant features of wildfire behaviour and dynamics 

occurring in a given area over a period of time (Jiménez-Ruano, Rodrigues, & de la Riva, 2017). 

According to Seol, Lee and Chung (2012), fire regimes differ in size, regularity, pattern, intensity, type, 

magnitude and seasonality of fire occurrences. 

There is evidence of an increasing frequency and severity of wildfires over the 2nd half of the 20th 

century (Ferreira-Leite et al., 2013). Holsinger, Parks and Miller (2016) argue that this trend is related 

to forest fire deficits created by a decrease in the prevalence of managed wildfires. In fact, there is 

evidence of a rise in wildfire occurrences in the Mediterranean during the 1990s. However, since 2000 

a noticeable but inconsistent decrease has been witnessed by some researchers (San-Miguel-Ayanz et 

al., 2013). 

In Portugal, where the territory is already prone to this phenomenon as a result of climatic 

characteristics, population-related and socioeconomic transformations, as well as climate change, 

have reinforced susceptibility (Oliveira et al., 2012). This tendency is only expected to become more 

prominent for Portugal and other Mediterranean countries given future predictions of warmer and 

drier weather, in connection to structural changes occurring to the social and economic systems 

(Moreira et al., 2010; Rego & Silva, 2014). 

While increasing frequency is an alarming scenario, given that short wildfire recurrence produces the 

most hazardous impacts to land degradation (Ricotta & Di Vito, 2014), an increase in severity has given 

way to wider-ranging damages, specifically to the environment, property and human life (Álvarez-Díaz 

et al., 2015). A clear example of more severe fire regimes is a general intensification of burned area. 

Although there is evidence of large wildfires occurring in Portuguese territory in the 19th century, their 

frequency has been steadily rising during the last three decades (1980-2010), and a very substantial 
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increase in the extent of burned area has been witnessed, with the last decade accounting for more 

than 1 million burned hectares (Ferreira-Leite, Lourenço, et al., 2013). For the southern Europe and 

elsewhere, there is ample agreement in the literature that large fires (>100 ha), which represent a 

marginal portion of all occurrences, are responsible for the great majority of total burned area 

(Dimitrakopoulos et al., 2011; Ganteaume & Jappiot, 2013; Moreno et al., 2013; Ricotta & Di Vito, 

2014; San-Miguel-Ayanz et al., 2013). 

Nevertheless, the analysis conducted by San-Miguel-Ayanz et al. (2013) for a series of countries in the 

Mediterranean basin, including Portugal, has failed to prove a growing trend in the number of large 

fires in the last decades. In fact, there is evidence of negligible variability in the number of large 

occurrences throughout the years and even a slight decreasing trend. 

In Portugal, the same human-induced changes linked to an increase in wildfire risk, specifically what 

concerns population trends and land cover transformations, are believed to be responsible for more 

extensive burned areas (Moreira et al., 2010). Nevertheless, some authors suggest that their 

occurrence follows a cyclic behaviour, either connected to post-fire vegetation dynamics (Moreira et 

al., 2010) or to prolonged drought periods (Ganteaume & Jappiot, 2013).  

When compared with other countries from the European Mediterranean region, there is evidence of 

higher fire incidence in Portugal (Moreira et al., 2010; Oliveira et al., 2012). Nevertheless, Oliveira et 

al. (2012) go on to describe the substantial regional variability of this phenomenon: the north is 

dominated by short fire recurrence intervals, frequent and overall small events considering burned 

area, and is mainly composed of shrubland; the central region, composed predominantly of forested 

areas, is also characterised by short intervals between wildfires, where occurrences are not many but 

usually originated large burned areas; apart from Algarve, in southern Portugal fire intervals are longer 

and burned area is small, considering its composition of mostly agricultural land. 

The results from the work of Moreira et al. (2010) agree with these statements, since the places where 

most ignitions occur do not correspond to the locations subject to large burned areas. Whereas 

ignitions seem to be mostly related to the presence of human activities, depopulated areas seem to 

be more susceptible to fire spread. Therefore, wildfire events igniting along the oceanic shore or in the 

south of the country are more likely to remain small, while wildfire occurrences located near the 

eastern border with Spain, in the central and north-eastern regions or in the mountains in Algarve 

(south) have a greater probability of spreading to large areas, which is a similar pattern to that 

identified by Tedim et al. (2013). 

Other authors have reached the same conclusions, as is the case with Rego and Silva (2014). They 

confirm there are clear geographical differences, in Portugal, between the distribution of ignitions 

developing into large wildfires and that of smaller sized occurrences. They also sustain that the role of 

wildfire effects differs among regions, which is a firm demonstration of the variability of fire dynamics. 

Future perspectives on fire regimes cannot be detached from global climate projections, specifically in 

the Mediterranean. Several studies agree on the most distinctive foreseen weather patterns for this 

region of the world. Global warming will translate into an irreversible increase in annual temperatures 

and a rise in the intensity and frequency of heat waves. Moreover, it will represent a decrease in 

precipitation and wet days and an intensification of drought periods (Keeley & Syphard, 2016; Moreno 

et al., 2013; Rego & Silva, 2014). All in all, these conditions represent a rise in fire danger and imply an 

increase in the duration of the fire season (San-Miguel-Ayanz et al., 2013) 
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Adding to these aspects, the process of land-use changes is believed to keep affecting fire dynamics in 

southern Europe, either related to land abandonment or to a decrease in agricultural areas promoted 

by the Common Agricultural Policy (CAP) (Moreno et al., 2013). 

All these elements bring about significant impacts to wildland and urban landscapes and suggest an 

increase in wildfire risk, especially regarding the occurrence of large fires (Moreno et al., 2013). 

However, climate change might also trigger a decline in fire severity, given the effects of drier and 

warmer weather on fuel availability (Keeley & Syphard, 2016). 

 

2.1.3. The role of human activities 

The role of humans and their activities in shaping wildfire size and frequency is multidimensional, 

representing both causative and deterrent aspects. Man has been an important player in the 

transformation of ecosystems since he has been able to control fire (Chuvieco, Aguado, et al., 2014), 

and this long-lasting impact is known to have altered fire regimes in most regions of the world (Rego 

& Silva, 2014), reducing fire-return intervals considerably (Moreno et al., 2013).  

Long and concentrated human presence, together with weather features and the presence of 

flammable vegetation, has shaped fire regimes in the Mediterranean, making it susceptible to wildfire 

occurrence (Dimitrakopoulos et al., 2011; Ferreira-Leite et al., 2013). Although in some parts of the 

world natural ignitions are the origin of up to half of all fires (Goudie, 2006), and propagation is 

favoured from natural elements such as fuel availability and low humidity, the European 

Mediterranean faces an overwhelming preponderance of human-caused wildfires, which represent 

more than 90% of all wildfires in that region (Chuvieco, Aguado, et al., 2014; Moreira et al., 2010; Rego 

& Silva, 2014; Rodrigues et al., 2016; San-Miguel-Ayanz et al., 2013; Vilar et al., 2016).  

The public report containing the analysis of wildfire causes in Portugal, for the period 2003-2013, goes 

as far as attributing 98% of all investigated fire occurrences to humans, either intentionally or 

negligently (ICNF, 2014).  In fact, anthropogenic factors are the main structural elements influencing 

geographic and temporal ignition patterns in Portugal, as several studies have demonstrated (Rego & 

Silva, 2014). 

Even though the proximity to human settlements has an overwhelming effect on wildfire dynamics, 

this effect is not necessarily harmful. A positive aspect connected to the importance of human factors 

for fire incidence and behaviour stems from our ability to better predict these events (Moreno et al., 

2013), and therefore plan ahead to prevent them. Moreover, humans are a key element of fire 

suppression, reducing fire severity (Rego & Silva, 2014). 

 

2.1.4. The causes of wildfire ignition 

The understanding of the ignition sources and generic causes of wildfires is an integral part of the study 

of this phenomenon and of its main determinant factors. Some authors agree that the ignition typology 

has impact on fire behaviour and dynamics, particularly the extension of burned area, as well as 

wildfire frequency, duration and patterns (Ganteaume & Jappiot, 2013; Grala et al., 2017; Moreno et 

al., 2013). However, caution is necessary when analysing this information, since there is an associated 

component of high subjectivity related to the work of technicians (Álvarez-Díaz, González-Gómez, & 

Otero-Giraldez, 2015; Grala et al., 2017). 
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According to ICNF’s report on the causes of forest fires in Portugal during the period 2003-2013, 76% 

of all events registered in the mainland have been subject to police investigation (ICNF, 2014). This has 

been standard procedure since 2006, when forest rangers were assimilated into the military police 

force (GNR). During this decade a considerable amount of inquiries were inconclusive; this occurred to 

28% of all investigated events in 2013. 

The methodology selected for the investigation of wildfire causes relies on physical evidences, since 

1991, such as fire behaviour patterns and other indicators. The categories linked to wildfire causes 

comprise an extensive list of 71 subclasses, which distinguish specific activities and conducts and can 

be grouped into seven main types: use of fire, accidental, structural, arson (intentional), natural, 

undetermined and rekindling. 

Between 2003 and 2013, the majority of wildfires whose cause has been determined was attributed 

to the use of fire (e.g. fires, debris burning, smoking; at around 30%), to arson (approximately 25%) 

and to rekindling (around 15%). Wildfires originated by the use of fire, although very frequent during 

this period, resulted in small burned areas, whereas natural or machinery (accidental) caused fires 

represented the vastest burned areas. The districts of Santarém, Braga and Viana do Castelo are 

identified as the regions most associated with intentional causes, specifically arson.  

When focusing specifically on large wildfires (>100ha), data for the period of 2005-2015 and the two 

graphs below (Figure 1) show that the single most common cause typology refers to arson without an 

apparent reason (vandalism), standing at about 35% of all occurrences whose inquiries were 

successful, followed by the use of fire for grazing purposes (roughly 23%). The largest burned areas 

can also be attributed to these two causes (38% and 16%, respectively), as well as to other intentional 

sources (8%) and fire rekindling (6%). Overall, the grounds for a total of 570 occurrences, which 

represent more than 1/3 of all large fire events and around 1/3 of all burned area during this decade, 

were left undetermined.  

Figure 1 – Large wildfire events and area burned by large wildfires, by cause of ignition, in Portugal 
(2005-2015) 
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An analysis of the spatial distribution of the main causes of large wildfires, in mainland Portugal, shows 

a balance among districts in respect to the most common category connected to fire events, between 

intentional motivations and accidental or use of fire sources. As shown on the first map below (Map 

1), there is a clear contrast between north coastline and south and inland areas in this case. When 

considering only burned area extent, however, there is a higher incidence of deliberate causes 

throughout the territory (addition of Vila Real and Portalegre). It is interesting to realise that large 

wildfires originating from unknown causes were common in Aveiro (85%), Castelo Branco (76%) and 

Porto (68%), during this period.  

Map 1 – The main causes of large wildfires, by district (2005-2015) 

 

Arson is a particular aspect among human motivations. Álvarez-Díaz et al. (2015) underline the 

importance of this phenomenon in northern Portugal and Galicia, stemming from social conflicts, while 

Ganteaume and Jappiot (2013) describe it as the most frequent cause of wildfires in southern France, 

mostly related to the interests of hunters, shepherds and real estate mediators. This last study has 

been successful in associating arson and burned area, giving emphasis to its role in the occurrence of 

large wildfires. 

It is interesting to observe that the perception of the main causes driving fire spread is not exactly 

coincident among stakeholder groups. Returning to the results of the study conducted in the 

Portuguese municipality of Mação regarding the perspectives of different stakeholders on the subject 

of forest wildfires, local forestry technicians mentioned the density of fuel accumulation, specifically 

shrub, and the type of vegetation as the most important aspects favouring the propagation of fires. 

Local community respondents have referred shrubland areas as well, while favouring the role of 

weather conditions (Ribeiro et al., 2015).  
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2.1.5.  The Portuguese wildfire protection framework 

Forest protection against wildfires is regulated in Portugal in the framework of the National Plan of 

Forest Protection against Wildfires (PNDFCI) and the National System of Forest Protection against 

Wildfires (SNDFCI). These are established in the scope of comprehensive legislation which arose from 

the need for a modern framework tackling the issue of forest fires in Portugal, in the wake of tragic 

wildfire events which affected the country in 2003 and 2005 and set new burned area records (C. 

Ribeiro et al., 2015). In fact, some authors mention wildfire catastrophes as powerful drivers of change 

in forest administration in different Mediterranean regions (San-Miguel-Ayanz et al., 2013). 

The National Plan of Forest Protection against Wildfires stems from the Resolution of the Council of 

Ministers n. 65/2006, of May 26th (Resolução do Conselho de Ministros n.º 65/2006, de 26 de maio in 

Diário da República n.º 102/2006, Série I-B), establishing forest protection measures, lines of action 

and political reforms aiming at increasing the efficiency of forest management and reducing the 

number of wildfire occurrences (Viana, 2010). The SNDFCI was created shortly after the creation of the 

PNDFCI in order to regulate and specify the general measures presented on the national plan.   

The Decree n. 124/2006, of June 28th (Decreto-lei n.º 124/2006, de 28 de junho in Diário da República 

n.º 123/2006, Série I-A) established the measures to be developed under the SNDFCI. This regulation 

has been subject to five revisions since its first publication, the last of which took place in 2017 and 

strengthened the role of the military in firefighting and prevention actions. However, the general 

aspects of the document, including the responsibilities of the different stakeholders, have been kept 

constant throughout the years. 

According to this legislation, three action axes define the National System of Forest Protection against 

Wildfires, which together convey the protection of people, property and the forest: (1) structural 

prevention; (2) vigilance, detection and inspection; and (3) firefighting and post-fire vigilance (C. 

Ribeiro et al., 2015). The responsibility for each of these pillars belongs to a specific entity, with the 

Nature Preservation and Forests Institute (ICNF) coordinating awareness and planning actions, the 

police (GNR) taking charge of operational aspects such as alertness and assessment, and the National 

Authority for Civil Protection (ANPC) managing the combat and post-fire vigilance stages (Viana, 2010). 

Apart from these overarching concerns, the Decree contemplates a reference to the different levels of 

planning. In reality, districts and municipalities have in their structures specific branches in charge of 

producing local forest protection plans and managing the participation of different stakeholders into 

this process (C. Ribeiro et al., 2015). Additionally, it legislates on the circumstances where the use of 

fire is not allowed, specifically in relation with fire-weather information, and the foreseen practices 

regarding wildfire detection and alarm (Viana, 2010).  

Although one of the three main pillars of the Portuguese framework of protection against wildfires 

stands for structural prevention, some experts criticise the present paradigm as predominantly 

reactive, focusing efforts on firefighting (Rego & Silva, 2014). This fact can be demonstrated by the 

disproportionate annual resource allocation in the context of the SNDFCI: 1/3 for prevention and 2/3 

for firefighting (according to the Portuguese State Secretary for Forests, Miguel Freitas, in “Não me 

repugna que os bombeiros intervenham na prevenção”, Público, 01/09/2017). 
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It is important to note, however, that forest fire protection corresponds to one branch of the current 

Portuguese forest planning framework, which encompasses the broad technical and policy areas of 

forest management, forest health and desertification. Together, these comprise the four main levels 

of the Portuguese Forest Planning System (Pinho, 2014). 

 

2.2. WILDFIRE RISK ASSESSMENT 

2.2.1. Conceptual approaches to wildfire risk 

The importance of gathering knowledge on the destructive characteristics of this phenomenon has led 

to the development of many studies on wildfire risk assessment. This is seen as a critical stage in 

resource planning, fire prevention and fire management activities generally speaking, by 

approximating the times and places most susceptible to increased wildfire occurrence and damages 

(Chuvieco, Aguado, et al., 2014). 

According to several authors, the main guiding principles of risk analysis transpose soundly to the field 

of wildfires, for its focus on stochastic events of extreme consequences (Miller & Ager, 2013). Fire is a 

process determined by probability (Oliveira et al., 2012; Seol et al., 2012). As such, wildfire risk is the 

product of aspects related to ignition and burning likelihood, as well as a component linked to fire 

intensity and effects, in which propagation, damage and the difficulty of fire control are contemplated 

(Cao et al., 2013; Mhawej et al., 2015; Moreira et al., 2010).  

Miller and Ager's (2013) wildfire risk assessment framework follows this general structure. As they see 

it, wildfire likelihood can be predicted from ignition probability, or simply the probability of burning, 

accounting for subsequent fire spread. On the other hand, fire intensity and effects, which are closely 

related in most models and come together to denote hazard, refer respectively to fire behaviour and 

the positive or negative modifications in environmental, social and economic values affected by this 

phenomenon. 

On a similar yet distinct note, Mitsopoulos et al. (2014) refer to fire behaviour individually as a specific 

component of wildfire risk, underlining the view of some authors who identify it as the “likely 

behaviour given that a fire does occur”. As we have stated before, in many contexts, the occurrence 

of specific fire types is natural and represents a necessity. This component of wildfire risk is also 

stressed by Tedim et al. (2013), which consider fire intensity, connected to the release of energy, and 

rate of propagation separate from the effects and possible damages of wildfires. 

These views are enriched by those of Chuvieco, Aguado, et al. (2014), which recognise wildfire risk as 

a result of both fire hazard (used interchangeably with danger) and ecosystem vulnerability. 

Nevertheless, while Miller and Ager (2013) understand hazard as a combination of fire intensity and 

effects, separate from the probability of fire occurrence, for the first authors it encompasses ignition 

and propagation danger and is explained by the specific driving factors affecting these two fire 

components. 

In fact, terminology has been an unlimited topic of discussion among researchers in this area of 

knowledge. Bachmann and Allgöwer's (2001) efforts in consistent language standardisation have 

originated a set of concepts borrowed from the field of technical risk engineering. These authors agree 
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with Chuvieco, Aguado, et al. (2014) in what concerns the general notion of wildfire risk, integrating 

both the probability of fire occurrence and the chance of damage, i.e. vulnerability.  

However, fire hazard is perceived by these authors as the phenomenon itself, distancing itself from 

the preconditions that drive fire incidence, as mentioned by Chuvieco, Aguado, et al. (2014), and from 

the potential damage given a fire event stressed by Miller and Ager (2013). Conversely, the term 

“danger” is deemed by these authors too subjective and abstract to be of any relevance to the field of 

study. 

As mentioned before, the concept of fire risk is not complete without vulnerability. It refers to the 

susceptibility of communities to the effects of wildfires, or simply the magnitude of the damages they 

entail, whether environmental or economic (Chuvieco, Martínez, Román, Hantson, & Pettinari, 2014). 

It should be noted that it considers the time of recovery after the event and the adaptive capacity of 

landscapes (Chuvieco, Aguado, et al., 2014; Miller & Ager, 2013) 

Some authors believe that vulnerability also affects hazard itself, by identifying the main human, 

economic and ecological values that drive firefighting operations (Chuvieco, Aguado, et al., 2014), thus 

influencing fire behaviour and spread. Additionally, Tedim et al. (2013) agree that the different 

categories of effects play a bigger role in wildfire risk, interacting with fire behaviour, the landscape 

and firefighting to outline fire severity.   

The wildfire risk assessment framework defined in this study (Figure 2) draws extensive influence from 

the works presented above. This characterisation is important in the context of the identification of 

the main contributing factors of large wildfires in central Portugal. Even though the vulnerability 

component of fire risk stands beyond the scope of this study, its impact on fire danger is mentioned in 

connection to specific human and physical variables influencing fire spread. 

Figure 2 – Adopted wildfire risk framework, adapted from Chuvieco, Aguado, et al. (2014) 

 

 

2.2.2. Factors influencing wildfire ignition and burned area 

The main factors related to fire occurrence and spread, and therefore decisively contributing to 

wildfire risk, have been determined through extensive scientific research in different settings and 



14 
 

under different assumptions. According to Álvarez-Díaz et al. (2015), the four decisive conditions for 

wildfire occurrence and spread are favourable meteorological conditions, the presence of fuel, its 

spatial continuity and a source of ignition. From these stem all significant driving factors of wildfires 

under discussion in this study. 

With a particular interest to this work lies a considerable list of literary references on the topic of 

driving factors, either specifically concerned with burned area extent or focused solely on large fire 

events (Annex A: Table A1). Similarly, most references refer to works studying Mediterranean regions 

around the world and Europe in particular. 

In order to present a structured review of the main elements influencing wildfire incidence, we will 

follow the categorization adapted from Mhawej et al. (2015) and Ganteaume et al. (2013) in which 

driving forces of wildfires are divided into: (i) vegetation and soil factors; (ii) climatic factors; (iii) 

topographic factors; and (iv) human factors. Nevertheless, it is worth stressing the large variety of 

relationships displayed among factors, which are particularly relevant to consider for methodological 

purposes.  

An association can be established between the different categories of factors driving wildfire 

occurrence and specific indices representing wildfire danger. In their 2009 work, Vasilakos, Kalabokidis, 

Hatzopoulos and Matsinos make use of climate, vegetation and terrain, and human variables, 

respectively, to model the Fire Weather Index (FWI), the Fire Hazard Index (FHI) and the Fire Risk Index 

(FRI), with a broader aim to assess the significance of the original variables for the Fire Ignition Index 

(FII). Their study was successful at identifying important factors from all areas in connection to fire 

ignition. 

The categorisation of factors must also take into account the relevant effects produced by each fire 

danger element. Spatial wildfire patterns diverge among ignition and propagation focused analyses, 

meaning that higher fire incidence locations may not necessarily translate into areas affected by large 

wildfires or specifically vulnerable to fire spread. This statement is sustained by Miller and Ager's 

(2013) views on this subject, who believe that fire likelihood can be described by ignition 

characteristics in the case of small occurrences but not in the case of large wildfires. As such, the 

following review will take effort in distinguishing structural aspects driving fire ignition from those 

explaining fire spread.  

 

2.2.2.1. Vegetation and soil factors 

Vegetation conditions represent the decisive component of any fire. In fact, fuel is the main 

requirement for fire ignition and spread (Cao et al., 2013; Holsinger et al., 2016) and different 

vegetation patterns promote the fire susceptibility of landscapes. Even though many fire are human 

caused, specifically in southern Europe, the main features of local vegetation remain a determinant 

factor driving wildfire risk, as they determine the success of the ignition event – irrespective of cause 

– and, most importantly, fire behaviour (Calviño-Cancela et al., 2016). 

Vegetation factors are believed to be poorly stationary over space, as is the influence they exert 

(Fernandes, Monteiro-Henriques, et al., 2016; Martínez-Fernández, Chuvieco, & Koutsias, 2013). As 
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active management of vegetation is possible, knowledge of its effects provides great meaning to 

wildfire prevention strategies (Calviño-Cancela et al., 2017) 

2.2.2.1.1. Type 

Fuel type is known to influence both burned area and wildfire occurrence (Kalabokidis, Koutsias, 

Konstantinidis, & Vasilakos, 2007; Mitsopoulos et al., 2014; Moreira et al., 2010). Although the link is 

not straightforward, many references prefer to label this specific factor as land cover type. In fact, 

while fuel type presents a more detailed view of vegetation characteristics and is expressly connected 

to fuel flammability, land cover involves a more general and human presence related outlook. 

As Calviño-Cancela et al. (2017) explain, the type of vegetation determines the flammability, density 

and continuity of fuels. The susceptibility of specific types of vegetation is well documented within the 

literature; shrublands and other light vegetation are particularly mentioned in connection to higher 

ignition risk and increased burned area (Fernandes, Monteiro-Henriques, et al., 2016; Ganteaume & 

Jappiot, 2013; Martínez-Fernández et al., 2013; Moreira et al., 2010; Nunes, Lourenço, & Meira, 2016; 

Salis et al., 2015). Nunes et al. (2016) and Martínez-Fernández et al. (2013) attribute this fact to a 

higher flammability and rate of fire propagation, as well as to decreased firefighting efforts given the 

low value of these areas, while Calviño-Cancela et al. (2016) attest a higher flammability of these areas 

in connection to great loads of ground fuel. 

Additionally, forest land covers are mentioned in relation to fast-spreading wildfires and increased 

burned area (Calviño-Cancela et al., 2017; Fernandes, Monteiro-Henriques, et al., 2016; Ganteaume & 

Jappiot, 2013; Nunes, Lourenço, Bento-Gonçalves, & Vieira, 2013; Nunes et al., 2016), except for the 

case of native forest cover types. Calviño-Cancela et al. (2017) and Nunes et al. (2016) relate this 

phenomenon to the density of maritime pine tree (pinus pinaster) and eucalyptus (eucalyptus 

globulus) forests, for their specific characteristics favouring moisture loss, heat absorption and fire 

propagation. Among the most common vegetation species of the Portuguese forest, these two are 

considered the most prone to fire, followed by unspecified broadleaf and coniferous forests (Rego & 

Silva, 2014). 

The simplification of the vegetation structure gives way to an increase in fuel loads and promotes the 

extent of burned area (Ganteaume et al., 2013). A mixed-fuel vegetation, on the other hand, 

encourages preferential burning, reducing the size of wildfires (Fernandes et al., 2016). However, the 

same authors who agree with this last statement suggest that the importance of fuel type or land cover 

composition might be mitigated by the overwhelming effect of favourable fire weather. 

2.2.2.1.2. Density 

Ganteaume et al. (2013) underline the role vegetation plays in fire hazard. While fuel availability 

represents the crucial component of any wildfire event (Srivastava, Saran, de By, & Dadhwal, 2014), 

high vegetation densities promote vertical and horizontal fuel continuity which in turn facilitates fire 

propagation and increases fire size (Fernandes, Monteiro-Henriques, et al., 2016; Nunes et al., 2013; 

Ricotta & Di Vito, 2014). This is particularly valid for Mediterranean ecosystems. 

According to Ferreira-Leite et al. (2013), extreme wildfires which are particularly difficult to extinguish 

result from accumulated biomass and more fuel materials in forests, which are a direct consequence 

of socioeconomic changes in rural landscapes. 
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On the other hand, (Vasilakos et al., 2009) correlate fuel density to wildfire ignition. In fact, Nunes et 

al. (2016) propose that, in order to limit the development of shrub vegetation, prepare the land for 

agriculture and encourage forage renewal, farmers make deliberate use of fire. 

The works of Dondo Bühler, de Torres Curth and Garibaldi (2013) and Martínez-Fernández et al. (2013) 

present contrasting views on this topic. The first study takes evidence from Bariloche, Argentina, where 

more vegetation availability is not a driver of wildfire occurrence, attributing a greater weight to 

anthropogenic factors. The second study relates fire density in Spain to fragmented landscapes, even 

though this result might also be connected to human presence. 

2.2.2.1.3. Moisture 

Vasilakos et al. (2009) describe fuel moisture as “the amount of water in a fuel particle”, meaning that 

the higher the content the smaller the amount of fuel that is subject to combustion. Salis et al. (2015) 

attest the variability of this variable and its dependence on climatic conditions. 

Therefore, vegetation moisture is connected to a decreased ignition risk (González-Olabarria, Mola-

Yudego, & Coll, 2015), with the spatial distribution of lightning-caused wildfires depending decisively 

on fuel moisture (Ganteaume et al., 2013).  

Similarly, there is ample consensus among experts that dry fuels help propagate fire and increase 

intense fire behaviour (Holsinger et al., 2016). Low dead fuel moisture content is specifically mentioned 

by Riley et al. (2013) as the main driver of surface fire, with extreme crown fires often resulting from 

large accumulations of dead fuels such as woody debris and litter. 

2.2.2.1.4. Past wildfire activity 

The effect of previous burns is expected to reduce the probability of wildfire occurrence and fire 

growth. Lack of burnable fuel after the wildfire event is the most straightforward explanation for this 

phenomenon (Holsinger et al., 2016; Nunes et al., 2016). However, as Fernandes, Monteiro-Henriques, 

et al. (2016) describe, small-scale pyrodiversity (i.e. the heterogeneity of past fire activity) is assumed 

to control fire size. Recent wildfire activity is likely to restrict fire spread for at least eight years 

(Fernandes, Pacheco, Almeida, & Claro, 2016), irrespective of climate, and is usually considered a proxy 

for vegetation accumulation (Fernandes, Monteiro-Henriques, et al., 2016). 

Contrary to this belief, however, the work of Ricotta and Di Vito (2014) gives evidence of areas 

previously affected by wildfires displaying an increased recurrence probability. This phenomenon is 

related to the rapid post-fire development of susceptible vegetation, an increase of its continuity and 

spatial homogeneity and a proliferation of dead fuels. 

Additionally, fuel age, which is also connected to vegetation build-up, influences fire spread, because 

fire is known to burn increasingly older fuels as it develops (Fernandes, Monteiro-Henriques, et al., 

2016; Fernandes, Pacheco, et al., 2016) 

2.2.2.1.5. Soil 

In the same way vegetation conditions affect wildfire occurrence and propagation, soil characteristics 

have an impact on fire events. Sarris et al. (2014) consider limited soil moisture, in connection to 

climatic aspects, to have important consequences to wildfire behaviour. On the other hand, duff layer 

continuity (i.e. organic soil matter) promotes fire spread (Dimitrakopoulos et al., 2011). Besides 
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moisture and organic matter, texture is also pointed out by Mhawej et al. (2015) as a factor driving 

increased wildfire probability. 

2.2.2.1.6. Large wildfires 

The occurrence of large wildfires is specifically connected to vegetation and soil factors by different 

authors. Dimitrakopoulos et al. (2011) relate an increased rate of large wildfire propagation to 

vegetation density and duff cover continuity, while asserting that this is true for both surface and 

crown fire types. 

The studies by Fernandes, Monteiro-Henriques, et al. (2016) and Fernandes, Pacheco, et al. (2016), on 

the other hand, discuss the reputation of forests as the areas most affected by large wildfires. Pine and 

eucalyptus trees, along with evergreen oaks (quercus suber), vegetation types that are well present in 

the Portuguese landscape, are highlighted as particularly vulnerable species in connection with 

extreme fire events. 

Additionally, large extensions of fuel connexion promote fire spread for long distances and there is 

specific evidence that wildfires with a burned area greater than 500 ha are largely reliant on fuel-

related elements (Fernandes, Monteiro-Henriques, et al., 2016). 

 

2.2.2.2. Climatic factors 

Evidence from several studies, particularly in Mediterranean regions, establishes the importance of 

climatic factors in the analysis of wildfire patterns. Firstly, climate is well noted for its impact in shaping 

fire regimes in those areas (Ganteaume et al., 2013). Moreover, the impact weather exerts during fire 

events is deemed very relevant (Hernandez, Drobinski, & Turquety, 2015). 

Nevertheless, some authors question the key role of weather conditions for wildfire incidence. 

Rodrigues et al. (2016) maintain the less influential effect of climatic factors in connection to fire 

frequency. In addition, Ricotta & Di Vito (2014) argue that the weather-fire relationship is particularly 

weakened in human-dominated landscapes, such as the Mediterranean. Weather aspects are subject 

to significant space-time variability (Keeley & Syphard, 2016), which might support such 

interpretations. 

2.2.2.2.1. Temperature 

Temperature represents one of the most immediate climatic factors controlling fire potential. For 

once, there is a long-established strong relationship between high temperatures and the probability 

of fire ignition (Ganteaume et al., 2013; Martínez-Fernández, Chuvieco, & Koutsias, 2013; Vasilakos et 

al., 2009). On the other hand, Hernandez et al. (2015) explain that extreme heat may also promote 

wildfire propagation by enabling fires to spread in many different directions, posing difficulties to 

suppression forces. 

Interestingly, Keeley and Syphard's (2016) research has shown that while not strongly associated with 

the average yearly temperatures, burned area appeared to be connected to spring and summer 

temperatures in a significant manner. 
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A noteworthy feature connected to temperature and encouraging fire occurrence is the number 

sunshine hours. Either together with high temperature or acting alone, this factor promotes 

evaporation and vegetation dryness (Guo et al., 2016). 

2.2.2.2.2. Precipitation 

Research has demonstrated the importance of precipitation for the occurrence and propagation of 

wildfires, although Martínez-Fernández et al. (2013) restrict its high influence to dry areas. The effects 

of this element are twofold. 

Initially, precipitation during the fire season is noted for its role limiting fire ignition and spread. The 

findings of many studies support this sentence by describing significant negative relationships between 

recent rainfall episodes and wildfire occurrence or propagation (eg. Balsa-Barreiro & Hermosilla, 2013; 

Martínez-Fernández et al., 2013; Vasilakos et al., 2009).  

In contrast, off-season precipitation, months before the fire season, boosts the occurrence of wildfires, 

(Ganteaume & Jappiot, 2013; Martínez-Fernández et al., 2013). Ferreira-Leite et al. (2013) owe this 

phenomenon to the direct effect of rainfall on vegetation development.  Nunes et al. (2013) share this 

view, by connecting the highest number ignitions to the rainiest areas in Portugal. 

Relative humidity is closely related to precipitation, expressing fuel moisture, and shares most of its 

characteristics in regard to wildfire occurrence. Nevertheless, Vasilakos et al. (2009) has failed to find 

significance in relative humidity’s influence in fire ignition, mainly due to the limited range of values 

this variable takes during summer in Greece. 

Another phenomenon associated with precipitation activity is drought. An important characteristic 

shared by this variable, as well as other wildfire driving forces, is its spatial and temporal variability 

(Ganteaume et al., 2013).  

There is a collection of studies establishing the significant effects of both long and short-term drought 

on wildfire occurrence and spread. As Riley et al. (2013) explain, the duration of the drought period 

determines its relationship to fire behaviour. According to their study, short-term precipitation deficits 

upset the moisture levels of dead fuels, while live fuels are instead affected by longer drought 

episodes. The death of vegetation, a consequence of extended periods of low to no precipitation, is a 

direct cause of fire intensity and propagation and is connected to an increase in crown fire probability. 

A positive relationship between drought episodes and burned area has also been proven by Keeley 

and Syphard (2016). 

In their study, Riley et al. (2013) discuss the suitability of two drought indices for modelling wildfire 

incidence and spread: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation 

Index (SPI). Although the former is widely applied within the fire literature to account for drought 

periods driving wildfire events and burned area, the authors in this study suggest that large wildfires 

are rather connected to the SPI based on the 3 previous months. 

2.2.2.2.3. Wind  

Wind, on the other hand, is another determinant aspect included in the literature, with many authors 

indicating the influence of wind direction and speed particularly in connection to fire spread 

(Hernandez et al., 2015; Holsinger et al., 2016; Mhawej et al., 2015).  
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In fact, Dimitrakopoulos et al. (2011) believe it to be the leading climatic factor driving fire spread and 

relate strong winds to surface and crown propagation modes. However, the high spatial variability of 

wind speed and direction, inducing the formation of microclimates, is pointed out by Vasilakos et al. 

(2009) as a possible reason why these variables showed a negligible association with wildfire 

occurrence in the Greek island of Lesbos. 

2.2.2.2.4. Large wildfires 

Other authors claim that there is a strong connection between weather conditions and the duration 

of the fire event, relating the occurrence of large wildfires to climatic factors such as temperature and 

wind speed (Hernandez et al., 2015). 

In fact, large wildfires are specifically mentioned within the literature in connection to a collection of 

climatic factors, which often display a significant influence in respect to area burned or large wildfire 

occurrence.  

Dimitrakopoulos et al. (2011) analysed the weather conditions in which large wildfires propagate in 

Greece, underlining the effect produced by low relative humidity, very high temperatures, and strong 

northern winds, which are also mentioned by Hernandez et al. (2015) for the entire Mediterranean 

Europe. These specific meteorological conditions help produce wildfires with extreme fire behaviour, 

which override firefighting efforts, causing larger burned areas and increasing related losses 

(Fernandes et al., 2016; Salis et al., 2015).  

On the other hand, the importance of high temperature and low precipitation extremes has been 

noted by Sarris et al. (2014), also in a Greek setting. Some of their conclusions relate to the role played 

by summer drought and extreme maximum summer temperatures in burned area extent. Ganteaume 

and Jappiot (2013) are also successful at determining higher likelihood of large burned areas during 

drought periods in southern France. 

2.2.2.2.5. Climate-Vegetation link 

A determinant aspect of climate shaping wildfire behaviour is its influence on vegetation. The moisture 

levels of dead and live fuels and the vegetation growth are equally controlled by short and long-term 

weather conditions (Hernandez et al., 2015).  

Weather is related to vegetation conditions for its influence in humidity levels (Holsinger et al., 2016). 

In fact, as mentioned before, sporadic episodes of lack of precipitation, as well as pronounced dry 

periods, help to reduce the moisture content of live vegetation and increase dead surface fuel loadings, 

which strongly encourage fire ignition and spread immediately afterwards (Riley et al., 2013; Tedim et 

al., 2013). According to Nunes et al. (2013) and Hernandez et al. (2015), high temperatures produce a 

similar scenario, increasing fuel flammability and promoting the propagation of wildfires. 

Additionally, the growth of vegetation translates into an increase in fuel availability. This phenomenon 

is particularly dependent on higher precipitation levels and lower temperature, with some authors 

relating this to the development of shrub cover and specific forest habitats (Nunes et al., 2013; Sarris 

et al., 2014). This apparent dichotomy is well stressed by Keeley and Syphard (2016), who verify the 

role of climate as affecting both fuel moisture and fuel volume. 
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The Canadian Forest Fire Weather Index System (FWI) (Van Wagner, 1987) is a good example of the 

role played by the underlying relationships between vegetation and climate in shaping fire danger. 

From a complete set of records of daily weather observations (temperature, rainfall, relative humidity 

and wind speed), three codes accounting for fuel moisture are calculated. Fire behaviour is then 

derived from two indices combining fuel moisture and weather information, indicating a measure of 

the risk of fire spread. An important output of this system is the daily severity rating, which relates to 

the necessary fire suppression capacity. 

Among the indices comprised by the Fire Weather Index, Fernandes et al. (2016) emphasise the 

importance of the Initial Spread Index (ISI) and the Buildup Index (BUI), which account separately for 

the atmospheric and drought elements of fire occurrence and describe a measure of fire intensity. 

While the ISI infers fire propagation rate from weather conditions, the BUI reflects fuel consumption 

as a consequence of past precipitation values. 

 

2.2.2.3. Topographic factors 

Topography was found to be associated with wildfire risk by many authors, with Ganteaume et al. 

(2013) considering it one of the most determinant environmental factors driving wildfire occurrence 

in Mediterranean Europe. Although the significance and direction of this association varies among 

studies, several authors have mentioned the effect of different topographic features on burned area 

and ignition density, as revealed by Nunes et al. (2016). 

2.2.2.3.1. Slope 

Many references discuss the role of terrain slope in contributing to fire behaviour. First of all, Salis et 

al. (2015) explain that most of the importance of this factor lies on its effect on fire intensity. 

Additionally, landscape ruggedness, which is connected to steep slopes, plays a dual role in its 

connection to fire occurrence and burned area. This variable operates as a significant negative factor 

and its reverse, influencing accessibility and affecting human caused fires and firefighting efforts 

(Ganteaume & Jappiot, 2013). 

2.2.2.3.2. Aspect 

The impact of aspect on wildfire ignition is associated with climatic factors such as temperature, solar 

radiation and wind. In fact, north oriented slopes in the northern hemisphere are characterised by a 

diminished flammability because they receive less sunlight which translates into cooler and more 

humid environments (Calviño-Cancela et al., 2017). Vasilakos et al. (2009) go as far as to sustain a rise 

in fire risk during the day, depending on the different aspects. These authors also distinguish between 

types of fires according to main orientation, with south facing slopes enduring the largest number of 

ignitions and north facing slopes being prone to increased fire intensity, mainly due to favourable fuel 

conditions. 

2.2.2.3.3. Elevation 

Elevation is evident among topographic factors as that more clearly linked to wildfire ignition. A higher 

density of fire occurrences at low elevations might be connected to different aspects of human activity 

(Guo et al., 2016). Nevertheless, this same reason might explain frequent wildfires at higher altitudes, 

largely affected by the use of fire for grazing purposes (Moreira et al., 2010).  
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Vasilakos et al. (2009) confirm a higher fire hazard at lower areas and a particular link to climatic 

conditions at higher altitudes, affecting fire behaviour through time. An increase in the number of 

ignitions at low elevations is also pointed out by Calviño-Cancela et al. (2017) and by Ricotta and Di 

Vito (2014), this last study specifically focusing fire recurrence. All in all, elevation is known to display 

opposing relationships with wildfire behaviour, with studies showing either a positive impact 

motivated by lightning frequency at high altitudes or a significant positive relationship connected to 

vegetation dryness at low elevations (Martínez-Fernández et al., 2013). 

2.2.2.3.4. Other factors related to topography 

The importance of topographic elements, and most of all elevation, for the study of wildfires is due to 

their prominent connection to an array of different environmental and human factors. For instance, 

the elevation-climate link is supported by the study of Calviño-Cancela et al. (2017), which associates 

higher elevations to a drier and windier environment.  

Additionally, vegetation conditions are a determinant aspect in connection with the landscape 

topographic features. As Holsinger et al. (2016) put it, topography is related to vegetation moisture 

levels and fuel concentration. Areas of steep slopes and uneven surfaces, which are less suitable for 

agricultural activity, promote forest and shrub vegetation density (Calviño-Cancela et al., 2017; Nunes 

et al., 2013). The highest mountain elevations, on the other hand, present high fuel humidity values, 

which limit fire occurrence (González-Olabarria et al., 2015). 

Finally, the occurrence and intensity of wildfires is dependent on topography for its marked effect on 

human activities (Calviño-Cancela et al., 2017). Among all human aspects disturbed by elevation and 

slope, accessibility is one of the most important for the study of wildfires. First of all, as Calviño-Cancela 

et al. (2017) describe, lower elevations are associated with an increased number of ignitions as these 

areas are generally more accessible, a fact that is deemed particularly relevant for the occurrence of 

deliberate fires. However, higher elevations may produce larger and more intense fires due to a greater 

propagation risk, connected to the complexity of firefighting operations in these areas. 

Accordingly, lower altitudes are also the place of greater human and infrastructural densities and 

intensive land use, either for agriculture or other activities, with an increase in human fire impact 

(Ganteaume et al., 2013; Martínez-Fernández et al., 2013; Ricotta & Di Vito, 2014). 

 

2.2.2.4. Human factors 

According to the works by Balsa-Barreiro and Hermosilla (2013) and Nunes et al. (2013), human factors 

have been identified as some of the main drivers of wildfires, particularly in the last decades, 

influencing wildfire intensity, recurrence and the unbalanced density and distribution of ignition spots.  

These factors act in combination with the different sets of other identified elements to shape fire 

behaviour. Rodrigues et al. (2016) maintain the importance of this link in the light of specific human-

related variables losing explanatory power in the models, although there is conflicting evidence that 

these same variables are slowly prevailing over the biophysical factors in determining fire incidence 

(Ganteaume et al., 2013).  
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Human-related factors have a distinct influence on fire occurrence and spread, depending directly on 

wildfire cause (Ganteaume & Jappiot, 2013). Naturally, human factors are directly associated with 

human-caused wildfires and their great significance lies in the overwhelming preponderance of these 

type of fire events in the Iberian Peninsula (Romero-Calcerrada, Barrio-Parra, Millington, & Novillo, 

2010). 

Above all, it is important to note that human factors, unlike other identified aspects, are predominantly 

non-stationary in time and space (Rodrigues et al., 2016). 

2.2.2.4.1. Population 

As revealed by Oliveira, Pereira, San-Miguel-Ayanz and Lourenço (2014) and Rodrigues, de la Riva and 

Fotheringham (2014), human-caused fire events are linked to the importance of human presence and 

density as predictors of fire occurrence. This view is supported by Nunes et al. (2013) who agree that 

an increase in population translates into greater fire risk. 

Population density is deemed by many authors an important force driving fire frequency, specifically 

in southern Europe (Balsa-Barreiro & Hermosilla, 2013; Dondo Bühler et al., 2013; Ganteaume & 

Jappiot, 2013; Mhawej et al., 2015; Oliveira et al., 2014; Romero-Calcerrada et al., 2010). This variable 

is usually considered a measure of human pressure (Álvarez-Díaz et al., 2015) and is related to the 

presence of urban areas (González-Olabarria et al., 2015). Additionally, Rodrigues et al. (2016) attest 

the increase in influence this driving factor is displaying nowadays in the case of Spain. 

It is relevant to consider the contrasting implications of human presence and density on wildfire 

behaviour. There is a broad consensus in the literature about the double role of population as a wildfire 

enabler and detractor. While human pressure is known to increase ignition risk, it is also believed to 

promote reduced burned areas as a result of less available fuel, more fire prevention efforts, easier 

accessibility, earlier detection of fire events and a more effective firefighting (Dondo Bühler et al., 

2013; Ganteaume et al., 2013; Moreira et al., 2010; Oliveira et al., 2014). 

Conversely, the issues of ageing and depopulation are also mentioned in connection with general 

wildfire patterns (Dondo Bühler et al., 2013; Tedim et al., 2013). Martínez-Fernández et al. (2013) 

discuss at length the significant effect of these factors on wildfire behaviour, mainly due to fuel 

accumulation and hazardous agricultural practices, confining them to rural areas. These areas are 

affected by a demographic decline, intensified by land abandonment, while urban areas signal positive 

population growth rates, including the balancing effect of migration inflows (Balsa-Barreiro & 

Hermosilla, 2013).  

2.2.2.4.2. Human activities and infrastructures 

Proximity to human activities and infrastructures is considered by Mhawej et al. (2015) an important 

force driving fire ignition. Firstly, as explained by Balsa-Barreiro & Hermosilla (2013) for the Spanish 

region of Galicia, population density is greater in proximity to urban areas and infrastructures. 

Furthermore, negligent and accidental wildfires, which make up a large portion of all fire occurrences 

in the densely populated region of the Mediterranean, are related to a diverse range of human 

activities, such as agriculture, forestry, camping and animal grazing (González-Olabarria et al., 2015). 

Contrary to this belief, however, there is evidence suggesting that fire occurrence is becoming less 

reliant on human activities in recent years (Rodrigues et al., 2016). 
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Oliveira et al. (2014) highlight the importance of non-wildland areas, such as human-managed 

agricultural and forest lands, as locations susceptible to wildfire occurrences. Although other classes 

of vegetative cover, where fuel conditions are more favourable, present higher fire risk, a considerable 

amount of ignitions arise on non-wildland areas in connection with human activities. 

Among human activities, agriculture has been deemed particularly significant in regard to both ignition 

probability and burned area (Álvarez-Díaz et al., 2015), even if describing opposing trends (Nunes et 

al., 2016; Rodrigues et al., 2016). Actually, Rodrigues et al. (2016) argue that agricultural activities and 

fire frequency are still positively linked, specifically in the European Mediterranean region, although 

the significance of this aspect displays a non-stationary behaviour across territorial units.   

There are several well-recognised reasons accounting for these positive patterns. One of these is the 

use of fire connected to farm waste clean-up activities (Grala et al., 2017; Rodrigues et al., 2014). The 

age of farmers and rural populations in general is often considered a reliable proxy variable, mirroring 

the employment of traditional agricultural management practices (Ganteaume et al., 2013). This 

aspect is still considered to be a determinant cause of wildfires in southern European regions (Álvarez-

Díaz et al., 2015). 

Accidents related to the operation of agricultural machinery, particularly near forested areas, are 

equally mentioned by some authors (Martínez-Fernández et al., 2013; Rodrigues et al., 2014). Indeed, 

the issues connected to agricultural activity encouraging fire occurrence are aggravated by the 

proximity to forest stands. As Rodrigues et al. (2016) explain, the wildland-agricultural interface (WAI) 

encompasses the border between land used for agricultural purposes and wildland areas. In these 

locations, there is an additional risk of human-caused fire events spreading to nearby areas with dense 

fuel loadings. 

The burning activities conducted in rural areas are also mentioned in connection to animal grazing 

(Álvarez-Díaz et al., 2015; Rodrigues et al., 2014). Firstly, this phenomenon is linked to the process of 

gaining or preserving cattle grazing through fire (Ferreira-Leite, Lourenço, et al., 2013; Vilar et al., 

2016). Secondly, as Balsa-Barreiro and Hermosilla (2013) discuss, fire is equally used as a tool to reduce 

predatory wildlife and promote herd management and control. 

Nevertheless, livestock presents mixed results throughout the literature as to its influence on fire 

ignition and behaviour. It has been found to have a negative association with ignition points (Romero-

Calcerrada et al., 2010; Romero-Calcerrada, Novillo, Millington, & Gomez-Jimenez, 2008), a 

perspective supported by Oliveira et al. (2014), who understand animal grazing as a powerful fuel 

management tool, particularly effective in less accessible areas. These authors also discuss the 

importance of discriminating among different animal types when studying fire occurrence, for their 

specific characteristics. 

Human activities related to forest stands represent a great economic value, as can be attested by the 

importance of the eucalyptus timber business (Álvarez-Díaz et al., 2015). These areas are under 

constant economic pressure and generally face an absence of steady and effective management, both 

of which incite wildfire occurrence (Balsa-Barreiro & Hermosilla, 2013). In fact, the type of land 

ownership is significantly associated with fire behaviour, with declining conservation accounting for an 

increase in human-caused fires. Martínez-Fernández et al. (2013) explain that private forest land in 
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Spain is mostly subject to less control, as opposed to community managed areas, and therefore liable 

to a greater wildfire risk. 

The environmental value of protected sites, on the other hand, plays a similar role in reducing fire risk. 

Protected forested areas have been found to contribute as a deterrent factor, preventing fire ignition 

and propagation (Rodrigues et al., 2014). This link has become more pronounced in recent years, 

showing a negative relationship between the degree of protection and the amount of wildfire events 

(Rodrigues et al., 2016). 

These authors are not alone in describing the limiting effect of human activities for wildfire incidence. 

Nunes et al. (2016) associate agriculture, forestry and grazing with a reduction of fire ignitions and 

burned area, whereas Oliveira et al. (2014) discuss a negative association between the amount of 

cultivated land and fire occurrence. Moreover, Martínez-Fernández et al. (2013) refer to the high 

fragmentation and uneven distribution of farms and other land properties as a significant factor 

decreasing human-caused fire hazard throughout Spain. 

The abandonment of rural and agricultural areas is related to Nunes et al. (2016) experience of 

traditional wildland activities such as agriculture and livestock being an agent of a decrease in fire 

frequency and burned area. In fact, the depopulation of large country areas and the subsequent 

disappearance of these activities leads to an accumulation of fuel, determinant in the occurrence and 

spread of human and natural-caused wildfires alike (Ganteaume et al., 2013; Nunes et al., 2016; 

Rodrigues et al., 2014; Vilar et al., 2016). Other factors such as the change in energy sources and 

specific forest and agriculture-related European and national policies have further intensified this 

trend (Nunes et al., 2013). 

In many cases, this land use-land cover transformations have been mirrored in the development of 

areas of extremely flammable vegetation types and a general loss of species diversity, with serious 

consequences for wildfire patterns (Tedim et al., 2013). However, Martínez-Fernández et al. (2013) 

found that, despite intense depopulation of rural areas, regions with a higher number of farmers are 

increasingly affected by wildfire events. 

This rural flight phenomenon has been coined as rural exodus in many regions. In Portugal and Spain 

rural depopulation has been in place since 1960, mostly in inland and mountainous areas, and has 

been characterised by an abandonment of agricultural and forested areas of both high and low 

productivity, implying a socioeconomic regression (Almeida, Nunes, & Figueiredo, 2013; Balsa-Barreiro 

& Hermosilla, 2013; Ferreira-Leite, Lourenço, et al., 2013). 

A decrease of population in rural areas during the last decades meant instead a significant increase of 

human concentration in urbanised regions, mostly by the coast in the case of mainland Portugal 

(Moreira et al., 2010). This phenomenon of increased urbanisation is directly linked to urban growth 

and the ensuing increase of the wildland-urban interface area (WUI), in the words of Rodrigues et al. 

(2016) and Romero-Calcerrada et al. (2008). 

In general terms and as previously mentioned, the pressure of humans on the environment, especially 

in forested and other wildland areas, is seen as the central hazard posed by population to fire regimes 

in the Mediterranean (Nunes et al., 2016). The WUI denotes a dispersed system of human settlements 

bordering wildland areas (Rodrigues et al., 2014) and is considered a central aspect in most studies 
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focusing on the human impacts on wildfire occurrence, with some authors arguing that its contribution 

to fire incidence has increased over time (Vilar et al., 2016) and others discussing the loss of predictive 

influence (Rodrigues et al., 2016). 

Indeed, housing density is usually mentioned on the subject of the main human factors driving wildfire 

occurrence (Álvarez-Díaz et al., 2015). Moreover, the density of secondary housing has been found to 

have a significant relationship with fire ignition spots (Romero-Calcerrada et al., 2010, 2008). 

Another factor representing increased human pressure on natural areas is the intensification of 

recreational activities, including a growth in the number of tourists, which is particularly valid in 

Mediterranean regions (Ganteaume & Jappiot, 2013). The works by Romero-Calcerrada et al. (2010, 

2008) are successful at linking wildfire ignition and a proximity to recreational areas and camping sites 

in Spain, while underlining the significant role of these aspects during the height of the fire season, 

given an increase in human pressure during summer months. These driving factors are related to the 

occurrence of negligent fires (Moreira et al., 2010). 

Vilar et al. (2016) also suggest that the services workforce is a significant determinant of wildfire 

occurrence, although it is not clear if this is a confounding predictor, related instead to the presence 

of leisure activities and population density. The proximity to industrial sites is also mentioned by some 

authors (Romero-Calcerrada et al., 2010), although further studies are necessary to evaluate the 

concrete influence it exerts. 

As Ganteaume et al. (2013) describe, spatially explicit variables are of utmost importance for an all-

inclusive assessment of human-caused wildfire events. The distance to infrastructures is considered a 

meaningful factor in regard to fire incidence (Álvarez-Díaz et al., 2015). Among these, communication 

infrastructures such as roads and railways are fully covered by the literature on this topic. 

There is ample agreement that proximity to roads has a favourable impact on the probability of fire 

ignitions, mainly in connection with high accessibility and strengthened human presence (Martínez-

Fernández et al., 2013; Moreira et al., 2010; Oliveira et al., 2014; Ricotta & Di Vito, 2014; Rodrigues et 

al., 2016; Romero-Calcerrada et al., 2010, 2008). Although mentioning that distance to communication 

networks are usually considered within the scope of fire risk modelling, Ganteaume et al. (2013) 

suggest that small road density increases the likelihood of wildfires in places where human 

interference in this phenomenon is limited. 

Additionally, proximity to railroads is connected to a similar positive impact on fire incidence 

(Rodrigues et al., 2014; Romero-Calcerrada et al., 2010). This effect is mostly explained by accidents 

producing fire ignitions (González-Olabarria et al., 2015). In fact, negligent and accidental causes are 

numerous among factors contributing to wildfire ignition. Power lines are a concrete example of 

human infrastructures producing fire ignitions from electric discharges (Oliveira et al., 2014; Rodrigues 

et al., 2014; Rodrigues et al., 2016). 

2.2.2.4.3. Socioeconomic aspects 

The study conducted by Grala et al. (2017) proved an association between the population’s 

socioeconomic characteristics and the occurrence of specific types of human-caused fires. 

Economically deprived regions were found to be more prone to wildfires caused by campfires, children, 

debris burning, smoking, equipment use and railroads than to incendiary fires. The case of higher 
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income areas being linked by Grala et al. (2017) to arson ignitions needs further scientific evidence. 

Rodrigues et al. (2016) sustain that the study of incendiarism related variables might provide new 

insights into human-caused wildfire patterns. 

Similarly, Dondo Bühler et al. (2013) refer to socioeconomic vulnerability as an important force driving 

wildfire ignition in their Argentinean case study. Conflicts may arise from economic difficulties 

promoting an increase in arson events. Furthermore, high unemployment rates might encourage 

incendiarism either as an indication of dissatisfaction or as a means to provide a job for firefighters 

and other seasonal workers. 

The same study also describes the influence of two other socioeconomic aspects on wildfire behaviour. 

First of all, the community’s educational level associates negatively with fire ignition because more 

educated individuals are expected to present a greater understanding of the value of natural 

resources, to be more aware of the effects of wildfires and to have access to more information on 

preventive measures. Secondly, house ownership is linked to increased fire density, because of its 

underlying connection with unemployment in the study area. Nevertheless, the authors agree that this 

finding goes against the results from previous studies, which associate house ownership to building 

conservation and the maintenance of surrounding areas, and therefore to a decreased probability of 

wildfire occurrence 

Other socioeconomic aspects related to political activity (e.g. raising anxiety in politically intensive 

contexts) and criminality (e.g. police arrests) have also been associated with wildfire occurrence 

(Álvarez-Díaz et al., 2015). 

2.2.2.4.4. Firefighting 

Firefighting represents a different human aspect influencing wildfire behaviour and spread (Cao et al., 

2013). Suppression efforts, which entail both ground and airborne firefighting forces, have got a 

definite effect on wildfire development, as mentioned by several authors (Dimitrakopoulos et al., 

2011; Moreira et al., 2010; Tedim et al., 2013). Additionally, Moreira et al. (2010) and Dimitrakopoulos 

et al. (2011) underline the importance of response times to the success of these efforts. 

The role of firefighting as an aspect increasing wildfire severity is discussed by Tedim et al. (2013). The 

rapid suppression of small wildfires brings about an intensification of vegetation growth, promoting 

landscape flammability and increasing the risk of extreme fire events. 

2.2.2.4.5. Large wildfires 

Moreira et al. (2010) are successful at associating human factors and burned area extent in the 

Portuguese mainland, focusing on the role played by population density, distance to roads and land 

use-land cover.  

The importance of population density as an anti-causative factor of large burned areas is well stressed 

by these authors, who assert that an increase in human presence results in reduced likelihood of fire 

propagation. Moreover, ignitions occurring far from roads are related to an increased risk of 

developing into medium/large fire events, given a combined effect of low accessibility and retarded 

fire detection. 
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Other human induced trends, such as the decline of agricultural activity and the rise of shrublands and 

other unmanaged vegetation covers, discussed over the previous chapters, also display a clear impact 

on wildfire behaviour, promoting fire spread, as ignitions resulting in larger burned areas occurred 

preferentially in these land cover types. Landscapes exhibiting mixed land use types, particularly 

urban-rural areas, on the other hand, are at less risk of large wildfire occurrence. 

 

2.2.3. Modelling wildfire danger 

Modelling the probability of fire occurrence and spread and mapping areas of increased hazard has 

been a recurrent topic for researchers in this discipline.  

The temporal scales of wildfire risk assessment are important to consider in a comprehensive review 

of methodologies, specifically what concerns the difference between short-term and structural 

estimations. In fact, the main objectives of these perspectives are contrasting in nature. Whereas 

short-term fire risk assessment is mostly connected to the operational planning of suppression 

activities and the issuing of fire alerts and rely mainly on weather data, long-term exercises intend to 

inform strategic decisions, such as resource management and regional planning, making use of a 

diverse array of structural contributing factors (Yakubu, Mireku-Gyimah, & Duker, 2015). 

The previously mentioned Fire Weather Index (FWI) is a particular case of fire risk assessment, 

dependent on a system of equations integrating information from a different set of weather related 

codes (Van Wagner, 1987). The Portuguese system of fire risk warnings combines the FWI and the 

structural risk, attributed to permanent topographic and vegetation conditions, into a wildfire risk 

index (RCM), as described by IPMA and ICNF. 

On the contrary, the assessment of the fire hazard component of structural fire risk entails the 

combination of many different factors and responds successfully to a great range of statistical and data 

analysis procedures, from each we can count regression models, data mining techniques and statistical 

tests. Other non-statistical methodologies, such as integrated multi-criteria decision-making analysis, 

are also pointed out as viable solutions by some authors, although they stand beyond the scope of this 

work and therefore are not considered in this review. 

The suitability of generalized regression techniques, namely logistic regression, has been long-

established in the field of environmental studies for its ability to model binary response variables 

(Kalabokidis et al., 2007). For wildfire risk assessment, where several different factors play into the 

modelling process, this statistical technique is widespread (Cao et al., 2013).  

Logistic regression is considered a flexible tool, allowing for the integration of numerous continuous 

and categorical variables (Yakubu et al., 2015). As an example, the work developed by Grala et al. 

(2017) makes use of multinomial logistic regression to analyse the influence of different socioeconomic 

and other human-related elements in human-caused wildfire occurrence in Mississippi, USA. In fact, 

human-caused wildfires are commonly modelled with the help of logistic regression (Rodrigues, 2015). 

Nevertheless, some authors maintain that the assumptions of logistic regression regarding spatial 

stationarity are not appropriate for the study of large geographical areas since models are unable to 

adequately reveal the different underlying regional dynamics (Nunes et al., 2016). This statement is 
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especially true for the study of wildfire occurrence, but also its human driving factors, as Rodrigues et 

al. (2016) and Oliveira et al. (2012) reveal, for the case of Spain and Portugal respectively. 

These works integrate the findings of Brunsdon, Fotheringham and Charlton (1998) by applying a 

geographically weighted regression (GWR). This statistical technique incorporates spatial non-

stationarity into model parameter estimation so that the diverse contribution of predictors can be 

measured and model errors can be assessed over space, making use of geographic weights attributed 

to neighbours on a basis of distance to location being estimated.  

Therefore, GWR is different from a simple moving window regression, whose result is simply a set of 

local regression statistics, because it assigns different weights to all observations inside the selected 

bandwidth. Choosing this neighbourhood is a key step for the development of any GWR model and an 

optimal solution can be reached through the minimization of the errors (Rodrigues, 2015). 

The regional variation of wildfire drivers, specifically the case of human-related explanatory factors, 

has been deemed of extreme importance and taken into account by Chuvieco, Aguado, et al. (2014) in 

their estimation of human influence on wildfire occurrence in Spain. They developed a geographically 

weighted logistic regression (GWLR) model as part of a broader strategy to map integrated wildfire risk 

in this region.  

However, Vilar et al. (2016) suggest that generalised linear models might not be applicable at all in the 

particular case of studies making use of human factors, as these tend not to follow a known statistical 

distribution, proposing nonparametric techniques like Maxent instead. This machine learning 

technique works by maximizing entropy in approximating a uniform distribution to empirical data 

(Phillips, Anderson, & Schapire, 2006). 

According to Rodrigues (2015), machine learning methods have a great predictive accuracy in the field 

of data mining, meaning they perform well with a great quantity of input data. Rodrigues and de la 

Riva (2014) employed random forests, boosted regression trees and support vector machines for 

modelling human-caused wildfire occurrence and compared their performance to that of logistic 

regression. 

Methodological concerns in the development of predictive models are discussed by some authors. 

First of all, it is important to realise that the assessment of all relevant factors connected to wildfire 

occurrence and burned area is unrealistic (Kalabokidis et al., 2007). Holsinger et al. (2016) mention the 

robustness of logistic regression dealing with confounding variables, which can prove to be an obstacle 

in the identification of major driving forces, while also warning of spatial autocorrelation in the data. 

The issues of collinearity are also pointed out, with Nunes et al. (2016) underlining the importance of 

this analysis at the local level. Although not influencing the coefficient estimates, a correlation among 

variables generates an increase in their standard error (Rodrigues, 2015).  

Many of the models developed for wildfire risk assessment have taken into consideration solely 

biophysical and other environmental factors. However, many authors advocate the inclusion of 

anthropogenic predictor variables alongside biophysical factors as a way to improve model 

performance (Rodrigues et al., 2016; Vilar et al., 2016). Additionally, as we have previously noted, since 

the majority of Mediterranean wildfires is human-caused, explanatory variables connected to 

population and socioeconomic activities display a key impact on this phenomenon by increasing fire 

frequency and changing its spatial distribution (Grala et al., 2017; Nunes et al., 2016). 
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3. METHODOLOGY 

This chapter presents and describes in detail the data and methods employed in the development of 

this research work. To begin with, the territorial boundaries of the study area are defined, and the 

main biophysical and socioeconomic characteristics of this region are briefly portrayed. Secondly, the 

process of data handling and integration is summarised, and retained variables for analysis are 

presented, along with corresponding data sources. Lastly, all methodological aspects concerning the 

proposed study are discussed, namely the methods applied in exploratory and statistical analyses. 

 

3.1. STUDY AREA 

The study area of this research is limited to the Portuguese mainland territory contained between 

latitude parallels 39°30’0’’N and 40°40’0’’N. This strip of land covers most of the area corresponding 

to NUTS II “Centro”, which is an approximate match to the central region of Portugal, as well as a small 

portion of northern Alentejo (NUTS II “Alentejo”). Altogether, this region encompasses the entire area 

of NUTS III “Coimbra” and “Beira Baixa”, and parts of “Aveiro”, “Leiria”, “Viseu Dão-Lafões”, “Médio 

Tejo”, “Beiras e Serra da Estrela”, “Alto Alentejo” and “Oeste”, which make up 1 004 parishes (before 

the 2013 administrative reform) and represented around 1,6 million inhabitants, in 2011. 

Although Portugal cannot be considered a particularly mountainous country, with less than 1/8 of its 

territory rising above 700m, the central region is home to some important mountain ranges. The study 

area makes up an altitude average of 364 m, from the low-lying western coastal extents to the Serra 

da Estrela ridge (2000m, to the northeast), which marks the highest point in mainland Portugal. This 

area is also characterised by a Mediterranean climate (Köppen-Geiger classification Csa and Csb) 

(Kottek et al., 2006), like the rest of the Portuguese territory, although there is a noticeable contrast 

in annual precipitation totals between northern coastal and southern inland areas. 

Wildland areas are particularly relevant to consider in the context of wildfire research. In Portugal, 

forests are the predominant land-use type, corresponding to approximately 35% of the total area, and 

are mainly composed of eucalyptus plantations, cork and holm oak forests and maritime pine trees 

(ICNF, 2013; Rego & Silva, 2014). Around 75% of the entire forest area is owned by non-industrial 

private holders, specifically in northern and central Portugal, which creates an obstacle to efficient 

forest management (Ribeiro et al., 2015). Agricultural land makes up about 24% of the total area of 

the country, shrublands and grasslands about 32%, and only 5% is taken up by urban spaces (ICNF, 

2013).  

According to the national land cover and land use cartography (DGT, 2010), in 2010, approximately 

65% of the study region accounted for forest areas. The main species composing these forests were 

pine trees (38.5%), followed by eucalyptus (24.5%), evidencing a divergence with national data. In fact, 

whereas pine tree forests were relatively abundant throughout the study area, and particularly in the 

centre, the north-eastern part of the study region (Guarda) displayed virtually no eucalyptus presence. 

On the other hand, shrublands were very common in this north-eastern area (14% overall), and forests 

of other species (predominantly oak trees and sclerophyllous vegetation) were extensive mainly along 

the border (23% overall). Protected areas were also frequent all over the inland extent of this region, 
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with three important natural parks, one natural reserve, one protected landscape and one natural 

monument falling on this half of the study area (in total, there are 12 protected areas intersecting the 

territory under analysis). Grazing grounds, which made up roughly 20% of the entire area, were mostly 

restricted to the south-eastern portion of the study region (Castelo Branco and Portalegre districts).  

Two different reasons explain the selection of this area as the focus of the research work. First of all, 

the study area has been affected by extreme wildfire events, including the recent and infamous 

megafire of Pedrógão Grande, which occurred in June of 2017 and caused unprecedented damage, 

including 65 fatalities and a burned area of 45,328 ha (Tedim et al., 2018). This makes it an interesting 

location for studying the specific dynamics of large wildfire occurrence.  

Additionally, there is a great variation in landscape throughout the territory, which is apparent in forest 

and vegetation characteristics, diverse human activities and type of settlements, as well as other 

biophysical conditions such as elevation and climate. In fact, this region includes both coastline and 

inland features and is considered a borderline area between northern and southern Portugal, 

displaying many of the contrasting Mediterranean and Atlantic features that characterise this country 

(Ribeiro, 2011). This spatial variability provides a rich insight into the factors driving large wildfire 

ignition and spread, depending on location.  

On the other hand, the decision concerning the study period (2005-2015) stems from the need to 

provide the analysis with recent and coherent data. Relevant data sources in the context of this 

research work include the last population and housing census (INE, 2011), the last agricultural census 

(INE, 2009) and the 2010 exercise of national land cover and land use classification (COS 2010) (DGT, 

2010), which represent the years falling in the middle of the reference period. 

 

3.2. DATA COLLECTION AND PROCESSING 

The proposed objectives of this research require the gathering of extensive data on the structural 

factors driving wildfire ignition and spread. For the purpose of this study, some of the variables that 

have been presented in the context of the literature review have been left out, either because of a lack 

of agreement among authors, a higher effort in collecting data or a general impracticality in measuring 

a given phenomenon. A complete list of all identified factors and corresponding scientific references 

can be found in the Annex (Annex A: Table A1), as well as an indication on whether the underlying 

phenomenon has been considered for the subsequent analysis or not. In any case, 58 variables have 

been retained, including four describing wildfire events and burned area. 

The spatial framework of the proposed investigation lies on the European ETRS89-LAEA 1x1km Inspire 

grid, taking evidence from previous analysis in this field of study and benefiting from standardisation 

opportunities. In fact, the adoption of a 1x1km grid in wildfire research is not new and has been 

deemed appropriate in other contexts (Rodrigues, 2015; Vilar, Nieto, & Martín, 2010).  

This spatial data infrastructure is a feature class based on the Lambert Azimuthal Equal Area and 

ETRS89 projections, with the centre of the projection at the point 52°N, 10°E, and false easting: x0 = 

4321000 m, false northing; y0 = 3210000 m. This grid has been developed in the context of the Inspire 

Directive for spatial analysis and statistical reporting purposes and is composed by 1x1km cells. It has 

been used by the Portuguese National Statistical Office (INE) for the dissemination of specific census 
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variables, namely: total population, total buildings and total housing (data that have been retained for 

the analysis).  

The study area (central Portugal) corresponds to 21 570 unique grid cells. Variables have been 

transposed to the 1x1km grid framework following different methodologies. The workflow of data 

processing depends mainly on file format, but also on the type of variable. Data processing and 

integration was performed with the help of ArcMap 10.5.1 GIS software (ESRI), MS Excel and MS Access 

(Microsoft). It is possible to identify six different integration procedures: 

i) Shapefiles (binary target variable): performing a select by location, on ArcGIS, of all grid cells 

that intersect the source feature classes (fire ignitions). 

ii) Shapefiles (proximity variables): distance between the limits of the grid cells and the nearest 

shapefile feature are calculated using the analysis tool Near, on ArcGIS, which creates new 

attribute columns on the feature class data frame indicating the distance in meters to the 

proximity feature and its ID. 

Figure 3 – Data integration for binary target (i) and proximity variables (ii) (respectively) 

      

iii) Shapefiles (administrative units): correspondence between grid cells and the smallest 

Portuguese administrative unit (parishes) is retrieved by computing the intersection between 

feature classes (parishes and grid) by using the overlay tool Union, on ArcGIS, and selecting the 

corresponding parish to the largest area of each grid cell, on MS Access. 

Figure 4 – Data integration for variables related to administrative units (iii) 

 

iv) Shapefiles (other variables, including one continuous target variable): calculation of the 

percentage of each feature class on each grid cell, on MS Access, by performing a Union of 

input variable and grid, on ArcGIS. 
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Figure 5 - Data integration for other variables in shapefile format (iv) 

 

v) Raster files (interpolated climate variables): on ArcGIS, conversion of interpolated raster files 

to polygon feature shapefiles (integer values), then using the tool Union for calculating the 

intersection between polygons and the grid feature class, and finally selecting for each grid 

cell, on MS Access, the value corresponding to most of the cell’s area. 

Figure 6 – Data integration for interpolated climate raster variables (v) 

 

vi) Raster files (topographic variables): following the first two steps of the previous procedure 

(raster to polygon conversion and Union) and computing an average of the unique values of 

each portion of the grid cell, weighted by the percentage of the corresponding area (MS 

Access). This procedure includes the climate variable PRECTOT (mean annual precipitation), in 

addition to all topographic factors. 

Figure 7 – Data integration for topographic raster variables and mean annual precipitation (vi) 

 

 



33 
 

3.2.1. Wildfire events and burned area 

The Decree n. 124/2006, of June 28th (Decreto-lei n.º 124/2006, de 28 de junho in Diário da República 

n.º 123/2006, Série I-A), which establishes the main measures to be implemented under the National 

System of Forest Protection against Wildfires (SNDFCI) and has been since revised by four Decrees and 

the Law n. 76/2017, of August 17th (Lei n.º 76/2017, de 17 de Agosto in Diário da República n.º 

158/2017, Série I), imparts on the Portuguese Institute for Nature Conservation and Forests (ICNF) the 

responsibility of maintaining a national scale wildfire database connected to a geographic information 

system. This database assembles information from several sources, from wildfire to budget 

management systems, providing the necessary data for devising pre and post-fire vigilance, detection, 

firefighting and supervision strategies and processes. 

Part of these data are available to the public on ICNF’s website, namely a complete list of all annual 

wildfire events with information on ignition location, dates and times for alarm, first intervention and 

extinction, total burned area and ignition cause, as well as shapefiles with burned area extensions for 

each year, extracted from satellite imagery and aerial photographs. For the purpose of this study, only 

fires larger than or equal to 100 ha were retained. 

The large fire ignitions binary target variable was taken from the intersection of these data with the 

grid, with 1 indicating at least an ignition, and 0 representing no ignition. The generalisation of this 

variable has been computed from these data: adjacent cells to ignition locations, which correspond to 

a 3x3 grid cell window, have been retained given the uncertainty of ignition locations and the reduced 

number of target observations, which might compromise the proposed analysis. 

Additionally, proximity to ignition locations has been computed in the ArcGIS environment using the 

analysis tool Near, which determines the distance between the boundaries of the grid cells and the 

nearest ignition point. Burned area cells, on the other hand, were translated into a percentage of the 

affected grid cell, for target variable purposes, following the methodology explained above (Figure 3). 

Incomplete data make it difficult to connect wildfire occurrence records with burned areas in some 

cases. However, this link is not considered relevant for the objectives of this study and the data are 

considered trustworthy given their source and the fact that they are subject to ongoing validation 

procedures. During the study period, 378 ignitions that developed into large wildfires occurred in the 

study area, which translate into 2,810 grid cells (considering adjacent cells). Similarly, 383 different fire 

perimeters have been considered in the analysis, corresponding to 5,343 burned grid cells. 

 

3.2.2. Vegetation and soil factors 

Data on vegetation and soil moisture can be estimated from climatic variables such as temperature, 

relative humidity and precipitation (Sharples & Matthews, 2011). Additionally, there is evidence from 

Holsinger et al. (2016) that vegetation moisture is easily approximated through satellite imagery, 

making use of the normalised difference vegetation index (NDVI). However, since these variables are 

intrinsically connected to short-term weather conditions, they lose their meaning if their values were 

to be averaged for a decade. Therefore, these two factors have not been be included in the analysis. 

Moreover, all other information on soil has also been left out because it was judged unobtainable. 
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Information on past fire activity is accessible through the national cartography of annual burned areas, 

which is made available in shapefile and is maintained by ICNF, as required by specific legislation. 

Despite it being considered of great importance to future wildfire occurrence, it is impossible to 

incorporate this variable into the proposed analysis because it is ever-changing and depends on the 

fire events. 

Data on land cover or type of vegetation is available in the Portuguese land-use cartography (COS 2010) 

from Direção-Geral do Território (DGT). The fifth level of breakdown in the land use cartography 

provides a 118 category typology of forests and agro-forestry systems. However, as previously 

mentioned, it is well known from several studies that eucalyptus and pine tree forests are particularly 

fire prone (Rego & Silva, 2014), as are shrublands (Martínez-Fernández et al., 2013; Nunes et al., 2016; 

Salis et al., 2015). Thus, four variables have been created, indicating the percentage of the following 

types of vegetation on a given grid cell: (1) eucalyptus forests, (2) pine tree forests, (3) shrubland and 

(4) all other species. 

The vegetation density features are also reflected on the fifth level of breakdown in COS 2010. The 

work developed by Dimitrakopoulos et al. (2011) separates dense from sparse vegetation on a given 

area by the threshold of 40% of vegetation cover. The different categories of the land use cartography, 

on the other hand, establish 50% as the splitting point for shrubland and sclerophyllous vegetation, 

and 30% for forests (as opposed to open forests). Therefore, the variable describing dense vegetation 

takes in consideration the forests with over 30% cover, as well as the dense shrubs and dense 

sclerophyllous vegetation areas. 

What concerns the vegetation’s flammable characteristics, these are specifically represented in the 

National Fuel Model (ICNF), which organises the different types of vegetation into fine fuel classes. 

This description of Portuguese forest spaces, comprising 18 representative fuel categories, has been 

compiled by Fernandes et al. (2009), and one of the outputs of this study links specific fire behaviour 

characteristics (namely speed of propagation and released energy) to these fuel models. As a result, a 

variable describing highly flammable fuel varieties has been created from the categories which denote 

a higher fuel load per hectare (7 out of 18 fuel varieties of forest, shrub or mixed vegetation).  

 

3.2.3. Cimatic factors 

Information for all identified climatic factors is made available on demand by Instituto Português do 

Mar e da Atmosfera (IPMA), for 20 weather stations in Portugal. This can be either monthly or seasonal 

data (for drought indices) or daily records (for all other variables). Nevertheless, these data are not 

free of charge. Additionally, some of these climate indicators are highly reliant on time windows, such 

as drought indices, or only make sense at short time intervals (days), which is the case of wind 

direction. 

Daily land-based station data is available online, for the Portuguese territory, for some of the climate 

variables, curtesy of the North American governmental agency National Oceanic and Atmospheric 

Administration (NOAA). Daily data on mean temperature, mean dew point, mean windspeed and total 

precipitation, for 29 weather stations in Portugal and border areas in Spain, were collected, for the 

study period, for the purpose of this study.  
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At first, these raw data were subject to minor processing, namely unit conversion (°F to °C, knots to 

km/h and inches to mm). Secondly, and contrary to previous beliefs, since large wildfire occurrences 

were not limited to summer months, annual totals (for precipitation) and averages (for all other 

variables) were computed for the years that had at least 330 records. Given the high number of daily 

records, the fact that some series were not complete was considered of little relevance. Nevertheless, 

this analysis was conducted, and some stations were left out when computing precipitation-related 

variables (total annual precipitation and number of dry months).  

Afterwards, these yearly values were averaged for each station, providing real information on average 

daily climate conditions during the decade. These annual weather variables were also used by Guo et 

al. (2016), Martínez-Fernández et al. (2013) and Nunes et al. (2013) in the identification of wildfire 

long-term occurrence factors and their spatial distribution. 

To complete, these data points were interpolated for the entire study area using the geostatistical 

method inverse distance weighting (IDW). With IDW, values at unsampled locations are estimated as 

the weighted average of their neighbours, and the power function provides weighting proportional to 

the inverse of the distance between data point and predicted point (Lu & Wong, 2008). The calculations 

were conducted in ArcGIS with the help of the geostatistical analyst tool IDW, with default parameters, 

including an output raster cell of 1,5x1,5km. 

Regarding the inclusion of a drought-related variable, this study takes inspiration from Ganteaume & 

Guerra (2018) and Ganteaume & Jappiot (2013), which make use of the Gaussen index for identifying 

the number of dry months. According to this methodology, a given month is considered dry if total 

rainfall (mm) is less than two times the average mean temperature (°C) (Bagnouls & Gaussen, 1957). 

This variable (number of dry months) was calculated from the processed daily climate data presented 

above and follows the same geostatistical interpolation procedure. 

All things considered, data on wind direction, atmospheric pressure, evapotranspiration and sun 

radiation were either unobtainable or impossible to account for given the envisioned analysis. 

 

3.2.4. Topographic factors 

Topographic data in raster files is made available by ESRI for the Portuguese territory. The digital 

elevation models (DEM), as they are called, are available with a resolution of 30m, providing 

information on elevation. The DEM for the Portuguese continental territory was used, generalising its 

resolution to 450m as a way of simplifying data processing.  

From this information and with the help of GIS technology, it is possible to compute other variables, 

such as slope gradient and orientation. ArcGIS was chosen for this task, making use of the spatial 

analyst tools Slope and Aspect. The first one identifies the steepness from each cell of a raster file and 

the output ranges from 0° to 90°. The second tool derives the aspect from the compass direction that 

the downhill slope faces for each location, returning a value between 0° and 360° (measured clockwise 

from north), or -1 if there is no slope. Both these techniques rely on a 3x3 moving window. 
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3.2.5. Human factors 

There are three data sources used as the foundation for the majority of the identified human factors. 

These are official statistical records from Instituto Nacional de Estatística (INE), land use cartography 

from Direção-Geral do Território (COS 2010) and open source data from the Open Street Map platform 

(OSM). 

Most statistical data on human activities such as agriculture and livestock are available from the 

agricultural census of 2009. Variables such as the percentage of farms with agricultural machines, the 

average used agricultural surface (SAU) per farm (ha), the farm density (no./km²) and the average 

number of livestock per farm, are available for one year for the smallest Portuguese administrative 

division (parish). The only exception is made to animal density, which is represented by the number of 

normal heads per SAU (no./ha) and is only available at municipal level (aggregation of parishes). 

Additionally, the agricultural workforce is taken from the last population and housing census (INE, 

2011) and represents the percentage of population employed in agricultural, animal production, 

fishing, forestry and hunting, corresponding to the entire sector A of CAE Rev. 3 (INE, 2007).  

Moreover, COS 2010 is a rich source of evidence on human activities. First of all, it provides information 

on grazing, whether permanent or mixed with other land uses, according to the following breakdown 

levels: 2.3, 2.4.1.03 and 2.4.4.03. Furthermore, it allows for a separation between land-use types, such 

as farming and woodland areas. Agricultural regions are represented by the entire level 2. Forest 

spaces, with less human intervention, are represented by all categories in level 3, apart from entries 

3.3.1 (beaches, dunes and sands) and 3.3.4.01 (non-forested burned areas). 

It was impossible to find data from these or other sources in the subject of forest management, hunting 

and the size and density of agricultural plots. It is worth mentioning that the proportion of single 

agricultural holders over 65 years of age, available from the agricultural census (INE, 2009) for all 

parishes, is used as a proxy variable for the use of fire for agriculture and grazing activities, as it is 

mostly considered a traditional method (Fernandes et al., 2013).  

Variables related to population, employment, educational level and housing also refer to census data 

and are available for all parishes for 2011. The unemployment rate is the sole variable related to 

employment. The percentage of secondary residence housing also denotes seasonal use or empty 

homes, while house ownership refers to the percentage of total housing owned by residents. The 

variables connected to education comprise the proportion of resident population with secondary 

education (high school diploma), the proportion of resident population with post-secondary education 

(university degree) and the illiteracy rate. 

Population variables, taken from the census and considered in the context of this study, include the 

rate of population change since the 2001 census and the ageing index, which corresponds to the ratio 

between children (<14) and the elderly (>65). Nevertheless, for population, building and housing 

density, which are also taken from the census results, the values have been spatialized to the 1x1km 

INSPIRE grid cells, providing an accurate representation of population dynamics at that level. 

Information on other human factors is regularly made available by INE for the municipalities, either 

with an infra-annual, yearly or biennial frequency. This is the case with tourism statistics (number of 

nights at hotel establishments per 100 inhabitants), the per capita purchasing power, the criminality 
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rate and the potentiality index, which is related to female fertility and provides a measure of 

demographic potential. The annual records of these variables have been averaged for a representative 

value of the 2005-2015 decade.  

Still, data on economic difficulties, the rural exodus and the ageing of rural population are 

unobtainable. The per capita purchasing power, the population change (2001-2011) and the age of 

farm holders can be considered as proxy variables. 

An important group of human-related factors, mainly in the perspective of wildfire ignitions but 

concerning fire propagation in some cases, are proximity features. All considered proximity variables 

have been computed with the help of the ArcGIS analysis tool Near, as previously explained. 

In this context, it is significant to take note of the role of the road, track, rail and power line networks. 

These data are available at the open source platform Open Street Map. Roads have been separated 

into two categories: primary roads, which comprise primary roads, trunks and motorways, and 

secondary roads, which also cover tertiary and unclassified roads. Tracks are not included into any of 

these two categories, representing mostly rural makeshift roads. The railway, on the other hand, 

indicates all rail types except for light rail and the subway. 

The cartography of the National Network of Protected Areas (RNAP) is made available by ICNF in 

shapefile format, including sites of national and local significance such as national parks, natural parks, 

natural reserves, protected landscapes, natural monuments and privately owned protected areas. 

Even though there have been additions to RNAP during the study period and after that, these have 

taken place outside of the study area, meaning that the current geography is valid. 

This entity also provides the cartography of the primary network of fuel management fire lines 

(RPFGC), for the year of 2014. This is considered a structural component of the landscape, aiming at 

protecting people, property and forests against wildfires, and has been created in the context of the 

Decree n. 124/2006, of June 28th (Decreto-Lei n.º 124/2006, de 28 de Junho in Diário da República n.º 

123/2006, Série I-A). The value of this variable is specifically connected to fire spread. 

Distance measures to land-use classes can be determined from COS 2010. Industrial areas, campsites 

and landfills correspond to the breakdown levels 1.2.1.01.1, 1.4.2.02.1 and 1.3.2.01.1 plus 1.3.2.02.1 

respectively. In addition, recreational and touristic areas include all sublevels of category 1.4, apart 

from 1.4.1.02.1 (cemeteries) and 1.4.2.02.1 (campsites), and the proximity to urban areas and 

infrastructures encompasses all subclasses of levels 1.1 and 1.2.1, provided that the associated 

polygons have a minimum dimension of 1km². 

The COS 2010 is also one of the sources of two other variables. In the case of changes in land use, a 

selection has been made of all forest areas in COS 2010 (all sublevels of category 3) and all agricultural 

areas in COS 1995 (all sublevels of category 2). The areas resulting from the intersection of these 

selections were retained as indication of a decrease in agricultural area and an increase in area covered 

by forest or semi-natural vegetation (Martínez-Fernández et al., 2013; Nunes et al., 2013; Rodrigues et 

al., 2014). 

The other variable is an indication of whether the grid cell belongs or not to the Wildland-Urban 

Interface, approximated from land-use (COS 2010) and census data. The computation of this variable 

follows the guidelines presented in Stewart, Radeloff, Hammer and Hawbaker (2007) and Platt (2010), 



38 
 

adapted to the Portuguese reality, which split the WUI into the intermix and interface areas. While the 

intermix WUI describes a wildland area of scattered structures, the interface WUI represents a 

borderline region between an urban community and wildland fuels. This is a short description of the 

steps followed on ArcGIS for the calculation of each type of WUI: 

i) Intermix: (1) select grid cells with more than 6 buildings, from census data (Output 1); (2) select 

forest and natural areas (category 3 of COS 2010), except for subclasses 3.3.1 and 3.3.4.01 

(Output 2); (3) intersect Output 1 with Output 2 and select areas with more than 500m² 

(Output 3); (4) select grid cells that intersect Output 3, with a search distance of -1 (Final 

Output 1). 

ii) Interface: (1) select areas with more than 5km² from Output 2 (Output 4); (2) compute a 400m 

buffer from Output 4, as suggested by Calviño-Cancela et al. (2017) (Output 5); intersect 

Output 1 with Output 5 and select areas with more than 500m² (Output 6); select grid cells 

that intersect Output 6, with a search distance of -1 (Final Output 2). 

The WUI corresponds to the union of Final Output 1 and Final Output 2 and makes up about half of the 

whole study area. It is interesting to observe that all WUI grid cells are linked to the intermix type, with 

roughly half of these belonging to the interface group as well. 

To conclude, apart from what is presented on the wildfires database made available by ICNF, which 

enables the calculation of the time lag between alarm and first intervention and the duration of 

firefighting, there is no other information on firefighting efforts (namely, suppression resources). 

Nevertheless, the database provides too many null values, which renders unfeasible the addition of 

these variables to the analysis. 

 

3.3. DATA ANALYSIS 

Two different datasets, referring to fire ignition and propagation factors respectively, have been kept 

as the groundwork matter of all ensuing analyses. These datasets combine and synthesise the 

contributing factors described along the literature review, meeting the target set by the first research 

goal (Research Goal #1): “to recognise and to explain the main general factors driving wildfire ignition 

and spread, specifically in the Mediterranean context”. 

The approach chosen for reaching the other goals proposed by this research work took evidence from 

a comprehensive review of methods for modelling wildfire danger, as previously described, as well as 

other appropriate methodologies employed in different scientific fields. It laid specific emphasis on a 

series of methodological considerations discussed earlier and related to the development of predictive 

models. The methods proposed as an attempt to reach research goals 2 to 4 are the following: 

- Research Goal #2 - Exploratory univariate data analysis; 

- Research Goal #3 - Multivariate data analysis: Cluster analysis; 

- Research Goal #4 - Multivariate data analysis: Probit and two-part regression models. 
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3.3.1. Exploratory univariate data analysis  

All variables contemplated on the fire ignition and propagation datasets were subject to an exploratory 

analysis, in order to investigate the spatial distribution of the main drivers of fire occurrence and 

propagation. Particular emphasis was put in describing the spatial patterns of large wildfire incidence. 

Histograms and box plots, along with basic descriptive statistics (range, average and standard 

deviation) were computed and presented in order to summarise the main characteristics of the 

identified driving factors. Maps were created on ArcMap 10.5.1 GIS software (ESRI) and histograms 

with box plots were plotted on Stata 14.0 statistical software (StataCorp), using the histbox command 

(Ender, 2002). 

3.3.2. Cluster analysis 

Cluster analysis is a widely used technique in multivariate data analysis, with its main purpose being 

the combination of observations into homogeneous groups regarding certain characteristics (Sharma, 

1996). These groups should also be the most different among themselves with respect to the same 

characteristics. 

Cluster analysis has been used by other authors to analyse the spatial patterns and behaviours of 

wildfires, in different contexts (see, e.g., Dimitrakopoulos et al., 2011; Parente, Pereira, & Tonini, 2016; 

Pereira et al., 2015; Seol et al., 2012). Additionally, it has also been used to group territorial units 

according to land cover dynamics and other sets of variables, in the same field of study (see, e.g., 

Ganteaume & Guerra, 2018; Oliveira et al., 2017). Therefore, this method has been deemed 

appropriate for identifying homogeneous regions within the study area with respect to the distribution 

of the main drivers of fire ignition and burned area extent. 

Two different clustering exercises were conducted, to account for both fire ignition and propagation 

factors. The results were two different classifications of the grid cells composing the study area, in 

relation to two specific sets of elements contributing to wildfire occurrence. 

First of all, given the fairly high amount of retained variables (58), Pearson’s correlation coefficient was 

calculated as a measure of the degree of association (or closeness) between all pairs of continuous 

variables (X,Y). All correlation coefficients of 𝜌𝑋,𝑌 > 0.5 or 𝜌𝑋,𝑌 < −0.5 were considered high, meaning 

either x or y could be discarded because part of the information provided by one of these variables is 

present on the other. The chosen threshold was considered adequate in this situation because of (1) 

the great number of observations (𝑁 = 21.750) and (2) the fact that in cluster analysis lower 

correlation coefficients can be perceived as relevant (Asuero, Sayago, & González, 2006). 

Data reduction was completed with a measure of variable worth in predicting the phenomenon under 

study (target variable), which had a determinant role in the choice of the variables to remove from the 

analysis in case of high correlation coefficients. This ordering of variables by their apparent value was 

achieved by calculating the Gini split worth statistic, which makes use of a reduction of the Gini index. 

This method corresponds to building a decision tree of depth one (SAS Institute Inc., 2009), which can 

be described as a Boolean function of one feature.  

The variables retained as a result of the combination of these procedures were standardised with z-

scores, to enable value comparison, and the transformed data were used in the cluster analysis. Two 
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geographical standardised variables denoting the cell’s x and y coordinates were added to the analysis, 

as it provided better results. 

According to Sharma (1996), hierarchical clustering methods rely on a similarity matrix, which 

represents the distances between observations and clusters, building clusters at each step from n to 

1. However, these methods have been considered unsuitable in the presence of a great number of 

observations, due to the chain effect present in these methods, which leaves us with non-hierarchical 

clustering approaches, which divide the data into k groups, depending on the location of k initialisation 

seeds and a process of reassigning observations to the closest cluster in each iteration. These methods 

require k to be defined at the beginning of the analysis, and have proven to be sensitive to the location 

of the initialisation seeds. Hence, both approaches, hierarchical and non-hierarchical, have its own 

advantages and disadvantages.  

Given the restrictions of both approaches, the same author proposes that hierarchical and non-

hierarchical methods be used as complementary techniques, in order to boost clustering performance. 

The following methodology has been adopted in the context of this research: 

1. Performing a hierarchical clustering analysis.  

a. Five different methods were employed and the one performing the best was selected. 

These approaches differ in regard to the preferred methodology for computing 

distances between clusters, i.e. Centroid relies on the clusters’ centroids, Single 

calculates the distance to the nearest neighbour, Complete the distance to the 

farthest neighbour and Average computes the average distance. Ward’s method 

works differently, creating clusters which maximize within-clusters homogeneity. 

b. The chosen measure of similarity was the Euclidean squared distance, which is the 

default parameter for the different methods used within SAS PROC CLUSTER. 

2. Defining the number of ideal clusters to retain, from the R2 plot and the dendrogram.  

a. The R2 denotes the ratio of the between-clusters sum of squares to the sum of the 

between-clusters sum of squares and within-clusters sum of squares1, evaluating the 

extent to which clusters are different among themselves. The R2 values were analysed 

through a scree plot, with the choice of k falling on the number of clusters immediately 

before a considerable drop in R2 (explained information). The rationale behind this 

criterion is to prevent that two very different clusters are joined, which would lead to 

a meaningful drop in the R2. 

b. The dendrogram is a tree diagram depicting the clustering process, which presents an 

immediate visualisation of imbalances in cluster dimension. The vertical lines, 

depending upon the orientation of the dendrogram, are proportional to the distance 

between the clusters that are joined. Hence, looking at it, is possible to choose the 

number of clusters prior to the point where very far apart clusters are joined, in a 

similar criterion to that of the R2. 

3. Conducting a non-hierarchical clustering analysis, following the K-means method and placing 

the initial seeds on the hierarchical clusters’ centroids. This way, the non-hierarchical 

algorithm will work as an optimization technique to the hierarchical methods. In other words, 

                                                           
1 𝑅2 =

𝑆𝑆𝑏

𝑆𝑆𝑡
 where 𝑆𝑆𝑡 = 𝑆𝑆𝑏 + 𝑆𝑆𝑤 
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the limitation of the randomness in the initial placement of the seeds is surpassed. If there is 

any change in the clusters’ composition it will only be those that improve the initial result. 

a. The K-means method follows the principles of the non-hierarchical clustering methods 

explained above, reassigning observations based on the calculation of their distance 

to clusters’ centroids (Tan, Steinbach, Karpatne, & Kumar, 2018). 

The entire cluster analysis has been conducted with the help of SAS Enterprise Guide 7.1 statistical 

software (SAS Institute Inc.). The main commands used were PROC CLUSTER, PROC TREE, PROC MEANS 

and PROC FASTCLUS with the seed= option. 

3.3.3. Probit and two-part regression models 

The short review of the wildfire danger assessment methods carried out previously was evident at 

stressing the suitability of generalised regression techniques, such as logistic regression, in this field of 

study. These regression methods have been chosen for exploring the contribution of the main factors 

of large wildfire occurrence and spread, as well as for recognising the variability of the factors 

importance among regions. Two different methodologies were employed in this analysis, depending 

on the target variable: large fire ignition and propagation. 

The entire analysis, including model development and the assessment of results, was conducted with 

the help of Stata 14.0 statistical software (StataCorp). 

3.3.3.1. Ignition 

According to Wooldridge (2012), binary response models, as they are known, are sophisticated 

regression methods that restrict fitted probabilities to the values between 0 and 1, such that: 

𝑃(𝑦 = 1|𝑋) = 𝐺(𝛽0 + 𝑋𝛽) 

where G is a function presenting values between 0 and 1 and 𝑋𝛽 = 𝛽1𝑥1 + ⋯ + 𝛽𝑗𝑥𝑗.  

The probit model is a specific case of binary response models where G is the standard normal 

cumulative distribution function (cdf). One of the ways it differs from logistic regression, another 

binary response modelling technique, is due to the model’s errors, which follow the standard normal 

distribution and not the standard logistic distribution. The probit model is usually favoured for this 

reason, as well as for the fact that their results are interpreted as probabilities instead of odds. In both 

cases, however, errors are assumed to be independent of X.  

Given the fact that the probit model is primarily derived from a latent variable model, the magnitudes 

of the model’s estimates (𝛽̂𝑗) do not represent the effect of 𝑥𝑗 on 𝑃(𝑦 = 1|𝑋). This fact is made more 

difficult because G does not follow a linear distribution. 

For a continuous variable 𝑥𝑗, the calculation of its partial effect on the response probability 𝑝(𝑋) =

𝑃(𝑦 = 1|𝑋) lies on the partial derivative: 

𝜕𝑝(𝑋)

𝜕𝑥𝑗
= 𝑔(𝛽0 + 𝑋𝛽)𝛽𝑗 

In the case of a binary explanatory variable 𝑥𝑘, the partial effect of changing 𝑥𝑘 from 0 to 1 with the 

other variables remaining constant is given by: 
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𝐺(𝛽0 + 𝛽𝑘 + 𝛽𝑗𝑥𝑗) − 𝐺(𝛽0 + 𝛽𝑗𝑥𝑗) 

These results are usually interpreted as average partial effects, meaning the average of the partial 

effect across the population, or simply as partial effects at the average, i.e. the average value of the 

explanatory variable (Wooldridge, 2012). As it is explained by this author, these are two distinct 

measures: the first corresponds to using the average of the nonlinear function, the second refers to 

the calculation of the nonlinear function of the average. 

For the purpose of this study, partial effects and associated probabilities were estimated and plotted 

for the entire range of population values. These were the results interpreted as the magnitude of the 

factors contribution to large fire ignition events in the study area during this specific period. One model 

was fitted to the entire study area, which was mostly regarded as a measure of comparison. Because 

the main focus of this work is identifying underlying regional patterns, this process was then repeated 

for each of the previously defined clusters in order to explore the variability of the factors importance 

throughout the region. 

All models were fitted through the forward-stepwise selection procedure. It works by beginning model 

specification with no covariates, which are added to the model step by step, based on the coefficients 

statistical significance. Variables can be included and excluded from the model at each step, as 

coefficients are revaluated along the process. Significance thresholds are defined beforehand both for 

adding and removing variables.  

As mentioned by Hosmer and Lemeshow (2000), this methodology is very useful for an effective 

screening of a large number of variables. The chosen thresholds for adding and excluding variables 

were set at 𝑝 < 0.1 and 𝑝 ≥ 0.2 respectively. 

For model assessment, the employed goodness-of-fit statistic was the Pearson 𝜒2, together with an 

analysis of classification tables, particularly sensitivity values and the percentage of correctly classified 

observations, and the area under the receiver-operator (ROC) curve. This methodology follows the 

advice of some authors who believe that model performance evaluation must consider both 

specification and discrimination power (Hosmer & Lemeshow, 2000). This double assessment was 

particularly meaningful in the context of ignition models as the number of target observations is 

particularly low (roughly 13% of all cells). 

The Pearson 𝜒2 goodness-of-fit statistic measures the difference between observed and fitted values. 

It is a summary statistic based on the Pearson residuals and given by: 

𝜒2 = ∑ 𝑟(𝑦𝑗 , 𝑦̂𝑗)2

𝐽

𝑗=1

 

In theory, the lower the Pearson 𝜒2 the better the model. P-values are calculated using the 𝜒2 

distribution with degrees of freedom 𝐽 − (𝑝 + 1). We reject the null hypothesis that the model is 

poorly specified if 𝑃(𝜒2) ≤ 0.1. 

Classification tables result from model estimations, with observations being divided into four groups 

representing correct classification on one hand and target variable behaviour (0,1) on the other. 

Sensitivity values refer to correctly classified positive target outcomes and therefore presents a good 
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measure of the model’s power. The percentage of accurate classifications is also a valuable assessment 

measure, although a great unbalance in target variable distribution may increase the number of correct 

observations with no connection to model performance, as this method favours classification into the 

larger group (Hosmer & Lemeshow, 2000).  

The ROC curve is a similar method, plotting the relationship between sensitivity and the false positive 

rate, i.e. 1-specificity (Phillips et al., 2006). The area under the curve is calculated as a measure of 

accuracy, with 50% meaning no accuracy and 100% meaning maximum accuracy.  

3.3.3.2. Propagation 

Large wildfire propagation can be derived from the burned area extent of large fire occurrences. The 

percentage of burned area in each cell follows a highly skewed distribution, with only 24.8% of the 

study area displaying any sign of burning, which prevents the use of the classic multivariate Ordinary 

Least Squares (OLS) linear regression model. We can assume that 𝑃(𝑦 = 0) > 0, which means that 

using the OLS estimator would bias our estimation. 

The applicability of non-linear two-stage estimation procedures, such as two-part models (2PM), has 

been successfully demonstrated in a variety of fields where observed data (either count or continuous 

data) are characterised by a heavy presence of 0 in the response variable (Farewell et al., 2017). Two-

part models are composed of two distinct stages, the first predicting the probability of occurrence 

(0,1), through a binary response model, and the second predicting the target variable conditional on 

nonzero outcomes, using the linear regression model (Buntin & Zaslavsky, 2004). 

The unconditional expectation on 𝐸(𝑦) is therefore given by the multiplication of the probabilities of 

occurrence from the first part by the expected levels from the second part: 

𝐸(𝑦|𝑋) = 𝑃(𝑦 > 0|𝑋)𝐸(𝑦|𝑋, 𝑦 > 0) 

For the purpose of this study, burned area percentage was first generalised to a binary target variable 

and the methodology defined for modelling large wildfire ignition occurrences (probit model) was 

replicated, including coefficient interpretation and model assessment. Subsequently, an OLS 

regression was fitted to the subpopulation of cells displaying burning activity during the decade, also 

with the forward-stepwise variable selection procedure.  

Different phenomena are being estimated on each of the two stages. In the first part it is the probability 

of a cell burning being modelled, whereas in the second part the extent of burned area is the one being 

predicted, restricted to the occurrence of burning activity. 

Model assessment was determined with the help of the F statistic, the adjusted R2 and by plotting the 

residuals against the fitted values. The models were also checked for normality of the residuals. 

Both the F statistic and the adjusted R2 rely on the residual and total sum of squares. The F statistic is 

useful for model assessment when the overall goal of the analysis is explanation (Sweet & Martin, 

2012). For the F-test, we are able to reject the null hypothesis that the predictors’ coefficients are 

statistically equal to 0 if 𝑃(𝐹) ≤ 0.1, meaning there is at least one coefficient different from 0. 

Adjusted R2 indicates the model’s goodness-of-fit for providing a value for the amount of variance 

explained by the model, with the benefit of only increasing with the addition of explanatory variables 
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if the increase in model fit pays off the loss of degrees of freedom. A high adjusted R2, although 

desirable, is not essential when the final objective is assessing the relationship between the different 

factors and not prediction (Sweet & Martin, 2012). 

The plot of the model’s residuals against the fitted values is particularly useful to identify violations of 

the OLS assumptions. Points should be randomly scattered around 𝑦 = 0 and no pattern should be 

visible from the data plot, particularly linear relations and increased or decreased variability. 
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4. RESULTS AND DISCUSSION 

4.1. LARGE WILDFIRE INCIDENCE 

Large wildfire incidence in central Portugal can be characterised by the amount of large wildfire 

ignitions, the burned area extent and their locations. Summary tables for the four target variables of 

this research are displayed in the Annex (Annex B: Tables B1 to B4), describing the occurrence of large 

wildfires in the study area. 

The spatial distribution of these variables shows that, even though large wildfires occur in all locations 

throughout the study area, both ignitions and burned area are concentrated in northern and southern 

central regions. Large ignitions appear to occur far from the Spanish border, while larger burned areas 

are very rare near the coastline. The overwhelming majority of non-ignition and non-burned cells 

accounts for the unbalanced statistical distributions. 

 

4.2. MAIN DRIVING FACTORS OF LARGE WILDFIRE IGNITION AND SPREAD 

The main driving factors of large wildfire ignition and spread have been identified according to the 

literature review and the elements considered in this research have been specified along with the 

details of the data collection methodology. The summary tables included in the Annex (Annex B: Tables 

B5 to B58) provide a description of the selected driving factors, listing their main features, displaying 

their spatial arrangements and characterising the statistical distributions. 

There is a strong pattern common to the majority of the human factors driving large wildfire ignition 

and spread: the opposition dynamic urban-coastline and depopulated rural-inland. This trend is 

particularly noticeable in the case of agricultural and livestock related variables, variables connected 

to the proximity to infrastructures and urban areas, population and housing density measures, the 

demographic variables POPCHANG_RT and AGE_INDEX, as well as education factors. 

Many socioeconomic factors influencing large fire events display extremely asymmetric distributions, 

resulting from a preponderance of high or low values. Noteworthy exceptions are agricultural 

connected variables AGRMAQ_PERC and AGR65_PERC, housing related variables SSEHOUS_PERC and 

HOBR_PERC, the potentiality index (POTENT_INDEX), the unemployment and crime rates 

(UNEMP_PERC and CRIME_RT) and the rate of population change from 2001 to 2011 (POPCHANG_RT). 

It is possible to observe different vegetation cover patterns across the study area. Eucalyptus forests 

are scattered everywhere except in the highland regions of the northeast. In these regions shrublands 

predominate. Pine cover is very common across the study area, except in the Castelo Branco region, 

and concentrates along the coastline and in the heart of Portugal. Other forest species are mostly 

restricted to the areas along the border with Spain. Additionally, a striking match is visible between 

highly flammable and dense vegetation covers, as expected. 

Apart from annual precipitation values (PRECTOT), climate variables show a small range of possible 

values and are bound by north-south dynamics and elevation patterns. Highest peaks and most rugged 

landscapes are located inland, with low altitudes spreading from the coastline to central areas. 
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After the previously described process of data reduction, the following variables were kept for the 

statistical analyses: 

Table 2 – List of variables kept for the statistical analyses 

EFFECT TARGET VARIABLES 

Ignition IGN_PLUS 

PRECTOT 

CRIME_RT 

NHEST_PERC 

HEADS_NSAU* 

PCPP 

POTENT_INDEX* 

SLOPE* 

URB_DIST 

AGE_INDEX* 

PRIM_PERC* 

UNEMP_PERC 

RPSUP_PERC 

AGRMAQ_PERC 

LVSTK_NFARM* 

POWER_DIST 

GRZ_COS* 

POP_GRID* 

SHRUB_COS* 

AGR_COS* 

SROAD_DIST 

WUI 

PIN_COS 

ASPECT* 

AGR65_PERC 

PROAD_DIST* 

Spread BA_PERC 

IGN_DIST 

SLOPE* 

SHRUB_COS* 

HEADS_NSAU* 

ELEVATION 

AGR_COS* 

POTENT_INDEX* 

LVSTK_NFARM* 

AP2015_DIST 

SSEHOUS_PERC 

AGE_INDEX* 

SAUFARM_HA 

EUC_COS 

PRIM_PERC* 

POP_GRID* 

GRZ_COS* 

FARMDEN_KM 

DRYMONTH 

PROAD_DIST* 

ASPECT* 

OUTR_COS 

* Variables used on both effects.  

4.3. LARGE WILDFIRE IGNITION  

The best performing hierarchical clustering method was Ward’s method. This evaluation is clearly 

presented on the graph below (Figure 8), which shows the plot of the R2 values associated to 10 

different clustering partitions (from 10 groups to one) for each of the previously described hierarchical 

methods: 

Figure 8 – R2 values associated to different clustering partitions and hierarchical methods 
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The Ward’s method curve also suggests that three clusters might be a desirable result, since there is 

an abrupt decrease in explained variance immediately thereafter. However, when interpreting the 

dendrogram (Figure 9) it is evident that the four clusters solution is the most balanced partition. It 

corresponds to an R2 of 0.235 which is not a high value. 

Figure 9 – Ward’s method dendrogram with the cut-off line at four clusters 

  

 

 

 

 

 

 

 

 

Different sets of variables were used in exploratory exercises, including an experience containing only 

socioeconomic factors. Nevertheless, none of these attempts displayed an increase in explained 

variance that could make up for the apparently random exclusion of variables from the study. The 

Wildland-Urban Interface was not used, as it is a binary variable. Lastly, two geographical variables 

representing the longitude and latitude (x and y) values of grid cells were added to the analysis, which 

improved the boundaries of the different clusters. This explicit geospatial procedure has been used 

extensively for clustering purposes in different fields, such as epidemiology (Li, 2018), and accounts for 

the data’s spatial autocorrelation (Ruß & Kruse, 2011). 

K-means non-hierarchical clustering was then performed for four clusters. This process needed a total 

of seven iterations for completion and improved the value of the R2 to 0.258. This small increase in 

explained variance is considered enough given the main objective of this research, the overall size of 

the dataset and the interpretability of the clustering solution. 

The map presenting the clustering solution can be found below (Map 2). It is important to understand 

that not all variables displayed the same proportion of explained variance (R2). The longitude 

(X_COORD), the total annual precipitation (PRECTOT), the distance to power lines (POWER_DIST) and 

the distance to urban centres and infrastructures (URB_DIST) exhibited the highest values (above 45%). 

On the other hand, the average animal headcount in each farm per parish (LVSTK_NFARM), the 

population density (POP_GRID) and the orientation (ASPECT) showed the poorest performance among 

all variables, standing well below 10%. 
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Map 2 – Clustering solution (4 clusters) based on large wildfire ignition driving factors 

 

The following table (Table 3) summarises the clustering solution in regard to group dimension, cluster 

location and specific ignition-related characteristics: 

Table 3 – Description of the ignition clustering solution based on the selected variables 

FEATURES URBAN COASTLINE 
BEIRA BAIXA AND 

BORDER AREAS 

NORTH-EASTERN 

HIGHLANDS 
CENTRAL FORESTS 

Dimension 7,933 2,358 6,611 4,668 

Population 

Density 
High Low Medium-Low Low 

Distance to 

Infrastructures 

High density of urban 

centres and roads 

Very low density of 

urban centres and 

roads 

Average density of 

urban centres and 

medium to high road 

density 

Low density of urban 

centres and medium to 

low road density 

Agriculture and 

Livestock 

Few people employed 

in primary sector 

activities although 

agricultural activity is 

still present, younger 

agricultural population, 

medium to high 

livestock activity and 

high density of animal 

headcount per utilised 

agricultural surface, 

high mechanisation of 

agriculture 

Comparatively high 

number of people 

employed in primary 

sector activities, large 

agriculture and grazing 

areas, old rural 

population, average to 

low livestock activity 

and low density of 

animal headcount, very 

low mechanisation of 

agriculture 

Average number of 

people employed in 

primary sector activities 

and medium to low 

extents of agriculture 

and grazing areas, 

reasonably old rural 

population, medium 

livestock activity and 

low density of animal 

headcount, low 

mechanisation of 

agriculture 

Average number of 

people employed in 

primary sector activities 

and very few 

agriculture and grazing 

areas, very old rural 

population, average to 

low livestock activity 

and average to low 

density of animal 

headcount, low 

mechanisation of 

agriculture 
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FEATURES URBAN COASTLINE 
BEIRA BAIXA AND 

BORDER AREAS 

NORTH-EASTERN 

HIGHLANDS 
CENTRAL FORESTS 

Demographic and 

Socioeconomic 

Aspects 

Young population and 

medium-high 

potentiality index, high 

purchasing power, 

medium to low 

unemployment rate, 

medium to high 

criminality rate, large 

number of residents 

with higher education, 

intense touristic activity 

Very old population 

although an average to 

high potentiality index, 

medium to low 

purchasing power, 

reasonably high 

unemployment rate, 

high criminality rate, 

small number of 

residents with a higher 

education degree, 

relatively intense 

touristic activity 

Moderately old 

population with a very 

low potentiality index, 

average to low 

purchasing power, 

medium to high 

unemployment rate, 

low criminality rate, 

comparatively low 

proportion of residents 

with higher education, 

moderate to little 

touristic activity 

Old population with a 

medium-high 

potentiality index, low 

purchasing power, 

average to low 

unemployment rate, 

low criminality rate, 

very low proportion of 

residents with a higher 

education degree, little 

touristic activity 

Biophysical 

Aspects 

Flat landscape, medium 

incidence of pine trees 

and few shrub, low 

precipitation levels 

Flat landscape, very few 

pine trees and minor 

shrub areas, low 

precipitation levels 

Hilly terrain, little 

presence of pine forests 

and large shrubland 

extensions, high 

precipitation levels  

Very rugged landscape, 

large pine tree forests 

and medium to high 

shrub incidence, low to 

medium precipitation 

levels 

 

There is an evident contrast between groups, with “Urban Coastline” showcasing a clear urban profile. 

“Beira Baixa and Border Areas”, on the other hand, is characterised by a predominance of traditional 

extensive agricultural activities, mostly connected to grazing, olive groves and cork oak forests. “North-

eastern Highlands” is mainly defined in respect to biophysical aspects, with a large extension of shrub 

vegetation and high precipitation values. Lastly, “Central Forests” refers particularly to a rugged 

landscape dominated primarily by pine tree forests. 

This cluster partition is consistent with administrative limits and with widespread knowledge on the 

characteristics of these regions. In fact, the opposition between rural abandonment in inland areas 

and increasing demographic pressure along the coast is a notorious trend in Portugal, well-noted in 

the literature for its connection to wildfire events (Almeida et al., 2013; Moreira et al., 2010). Land use 

trends follow this pattern, with most agricultural areas being located along the central coastal plain 

(“Urban Coastline”) and shrublands overtaking considerable land stretches in eastern Portugal, in 

mountainous and sparsely populated regions (“North-eastern Highlands”) (Oliveira et al., 2012). Forest 

monocultures are also common in central Portugal (“Central Forests”) (Almeida et al., 2013).  

These results can also be compared with findings from the reference literature, connected to the 

difference in large wildfire ignition patterns among regions, with interesting conclusions. One cannot 

dissociate large ignition events from burned area, as they are intrinsically connected. Oliveira et al. 

(2012) discuss how forest-dominated regions are characterised by not many ignitions but where 

wildfire events originate large burned areas (“Central Forests”).  

Inland areas of central Portugal fall into this category, displaying large burned areas (Oliveira, Zêzere, 

Queirós, & Pereira, 2017). The area corresponding approximately to “Central Forests” (Pinhal Interior) 

is historically connected to the occurrence of large wildfires, it is characterised by an ageing population, 

by great extents of uninterrupted forest and shows a strong burning probability dependence on fuel 
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age (Oliveira et al., 2012; Pereira, Carreiras, Silva, & Vasconcelos, 2006). Overall, the coastline displays 

the opposite features. 

Moreira et al. (2010), on the other hand, relate ignitions producing large burned areas to low 

population density and place them preferably along the border with Spain (“North-eastern Highlands” 

and “Beira Baixa and Border Areas”), which, in the case of “Beira Baixa and Border Areas”, is not 

entirely consistent with the data. For “North-eastern Highlands”, however, this is an accurate 

assessment and is linked in some measure to the increase in fuel availability. 

With these regions in mind, probit models were developed for the entire study area and for each 

cluster according to the methodology presented above. The results of this analysis are presented 

below, including the estimated models’ quality assessment measures (Table 4), as well as the average 

partial effects (APE) and statistical significance of the estimates (Table 5). 

Table 4 – Estimated models quality assessment measures (ignition) 

MODEL ASSESSMENT GLOBAL 
URBAN 

COASTLINE 

BEIRA BAIXA 

AND BORDER 

AREAS 

NORTH-

EASTERN 

HIGHLANDS 

CENTRAL 

FORESTS 

Pearson 𝜒2 22027.86 ** 7787.44 1773.06 6481.36 4530.27 

Sensitivity 0.07% 0% 0% 1.42% 2.2% 

Correct classifications 86.96% 88.26% 97.33% 80.77% 88.41% 

Area under the ROC curve 69.12% 67.23% 80.42% 66.76% 72.35% 

Significance of the Pearson 𝜒2: *** (𝑝 < 0.01), ** (𝑝 < 0.05), * (𝑝 < 0.1) 

The ROC curve plots can be found in Annex C, along with the classification tables. The goodness-of-fit 

measures do not look too cheerful for any of the regional models, essentially due to the disparity 

between ignition and non-ignition cells (13% ignition cells overall). Nevertheless, of all methodologies, 

the forward stepwise selection criterion, with the chosen thresholds for adding and excluding variables 

set at 𝑝 < 0.1 and 𝑝 ≥ 0.2 respectively, was the one yielding the best results sensitivity-wise. 

Table 5 – Average partial effects (APE) and estimates significance (ignition) 

VARIABLES GLOBAL 
URBAN 

COASTLINE 

BEIRA BAIXA 
AND BORDER 

AREAS 

NORTH-EASTERN 
HIGHLANDS 

CENTRAL 
FORESTS 

PRIM_PERC  0.0036834 *** 0.0020299 *** -0.0020661 **  

AGRMAQ_PERC 0.0004325 ***  0.0012495 *** 0.0011656 *** 0.0008776 ** 

LVSTK_NFARM 0.00001 *** 0.00000498 ** -0.0003175 *** 0.0000415 *** -0.0002832 ** 

HEADS_NSAU  -0.0026729 **  -0.013785 *** -0.0230373 *** 

AGR65_PERC 0.0009325 *** 0.0014434 ***  0.0015176 ***  

NHEST_PERC -0.000047 ***   -0.0002209 *** -0.0003535 *** 

POTENT_INDEX -0.0010581 **   0.0047426 ***  

AGE_INDEX -0.0000113 **   0.000057 *** -0.0000297 *** 

PCPP     0.0020026 *** 
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VARIABLES GLOBAL 
URBAN 

COASTLINE 

BEIRA BAIXA 
AND BORDER 

AREAS 

NORTH-EASTERN 
HIGHLANDS 

CENTRAL 
FORESTS 

UNEMP_PERC 0.0025004 *** 0.0025886 * 0.0013594 *  0.0051223 *** 

CRIME_RT -0.0009958 ** -0.0032611 ***    

RPSUP_PERC -0.0065255 *** -0.00625 *** -0.0038194 ** -0.0056018 *** -0.004297 * 

POP_GRID  0.0000271 ***   0.0002133 * 

AGR_COS      

GRZ_COS -0.0021489 *** -0.0013045 * -0.0003569 *** -0.0074459 ***  

PIN_COS -0.0004579 ***  -0.0013038 -0.0007647 *** -0.0008468 *** 

SHRUB_COS 0.0006049 ***   0.0012196 *** -0.0011757 *** 

WUI 0.0387819 *** 0.0403855 ***  0.0377415 *** 0.0425118 *** 

PROAD_DIST   0.0032228 ***  -0.005423 *** 

SROAD_DIST -0.0510909 ***  -0.0102155 *** -0.0882342 *** -0.004297 *** 

URB_DIST -0.0041204 *** 0.0056221 *** -0.002652 *** -0.0051581 *** -0.0045913 *** 

POWER_DIST      

PRECTOT 0.0001594 ***  -0.000148 * 0.0003796 *** 0.0005267 *** 

SLOPE 0.0043096 *** 0.0096275 ***  0.0033764 *** 0.0068886 *** 

ASPECT 0.0001844 *** 0.0002757 ***  0.000322 ***  

Significance of average partial effects (APE): *** (𝑝 < 0.01), ** (𝑝 < 0.05), * (𝑝 < 0.1) 

The table above (Table 5) presents the average partial effects (APE), following the methodology 

illustrated before, with emphasis to the estimates significance. All models have a significant (***) 

negative constant (𝛽̂0), except for “Beira Baixa and Border Areas” whose intercept is not statistically 

significant. 

It is interesting to observe that the only variables left out of the models were the percentage of 

agricultural areas (AGR_COS) and the distance to power lines (POWER_DIST), even though these same 

factors were moderate to well represented in the cluster analysis. On the other hand, three variables 

were included into all five model specifications, these being the average number of livestock per farm 

(LVSTK_NFARM), the percentage of resident population with a university degree (RPSUP_PERC) and 

the proximity to urban areas and infrastructures (URB_DIST). However, for LVSTK_NFARM and 

URB_DIST the signs shifted among clusters, which suggests great spatial variability. 

Specific driving factors have been highlighted, given the perceived higher importance or regional 

variability of their estimated partial effects and associated probabilities. The following figure (Figure 

10) summarises the main results of the models by calculating the ignition probabilities associated to 

each real value of the variables included in the modelling exercise. For a correct interpretation of these 

results, it is also important to consider the individual variable plots per cluster, which present the 

estimates’ corresponding 95% confidence intervals, in Annex D. 
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Figure 10 – Main results of the ignition probit model 
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The proportion of residents employed in primary sector jobs (PRIM_PERC) seems to display a positive 

relationship with the occurrence of ignitions developing into large burned areas, in the case of Clusters 

“Urban Coastline” and “Beira Baixa and Border Areas”, and a negative relationship, although not 

significant (see Annex D), in the case of “North-eastern Highlands”. For “Urban Coastline”, 50% of 

primary sector employment corresponded to a probability of almost 40% for a large ignition, while for 

“Beira Baixa and Border Areas” the associated probability was roughly 16%. This might suggest that in 

locations with a stronger incidence of land use activities, such as agriculture, this factor plays a 

determinant role in boosting the number of large wildfire ignitions.  

Oliveira et al. (2014) have shown a positive association between agricultural activities and ignition 

locations in Portugal, while Rodrigues et al. (2016) have proven this link to be non-stationary in Spain, 

with several regions displaying no relationship between both phenomena. Both accounts support the 

findings of this analysis. 

In turn, an increase in the age of farm holders (AGR65_PERC) provides a rise in ignition probability for 

all contemplated models (Global, “Urban Coastline” and “North-eastern Highlands”). This trend is 

particularly valid for “North-eastern Highlands”, where 100% of farm holders over 65 corresponds to 

an ignition probability of approximately 30%. It is important to recall that this variable was used as a 

proxy for the use of traditional methods in agriculture, such as burning pastures. 

These results reinforce the positive association between agricultural activities and large fire ignitions. 

As mentioned by several authors, the use of fire for agricultural purposes, which is common practice 

in many traditional methods, is a well-known contributing factor of fire ignitions (Álvarez-Díaz et al., 

2015; Rodrigues et al., 2014). The modelling outcomes suggest that the same conditions are valid for 

large fires in central Portugal. 

The extent of grazing areas (GRZ_COS) displays a weak negative relationship with the probability of 

large ignition events in the case of all clusters. For “Urban Coastline” this relationship does not seem 

sufficiently strong for interpretation (see Annex D). For “North-eastern Highlands”, however, the 

decrease in ignition probability with an increase in grazing area is very pronounced, starting at 20% for 

no grazing spaces to almost 0% likelihood for 40% pasture land. 
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What concerns animal creation, the results are mixed. Animal density (HEADS_NSAU) displays a 

negative relationship with large wildfire ignition probability for “Urban Coastline”, “North-eastern 

Highlands” and “Central Forests”, not expressive in the case of “Urban Coastline” (see Annex D). For 

“North-eastern Highlands”, an absence of animals per agricultural area utilised for farming represents 

an ignition probability of 20%, while the maximum animal density provides a probability of roughly 6%.  

For “Beira Baixa and Border Areas” and “Central Forests”, the increase in the average number of 

animals per farm (LVSTK_NFARM) also decreases the chances of fire ignition, although these trends 

are somewhat weak. The global model and the other clusters, however, seem to display the opposing 

relationship, with “North-eastern Highlands” showing a very pronounced increasing trend. As seen in 

Annex D, the corresponding probability of no animal activity was less than 20%, whereas a marked 

presence (5 thousand animals per farm on average) resulted in a probability of approximately 45%. 

Livestock activities and animal density are believed to affect ignition patterns in different ways. The 

use of fire is assumed to be widespread, in this context, for gaining or preserving cattle grazing, 

specifically in less accessible areas (Oliveira et al., 2014; Vilar et al., 2016). Apart from “North-eastern 

Highlands”, where a marked livestock activity resulted in a higher large fire ignition probability, the 

results of this modelling exercise seem to go against previous knowledge. It might be the case that, in 

the study area, increased animal creation and larger grazing grounds are associated to a higher density 

of human activities and better territorial management practices, which prevent the development of 

fire ignitions into large burned areas. 

Some socioeconomic aspects exhibit a strong positive relationship with ignition probability. This is the 

case of the unemployment rate (UNEMP_PERC) for some regions. Among all models, “Central Forests” 

shows the most distinct link, with the maximum unemployment rate (35%) corresponding to almost 

40% of large fire ignition probability. 

Previous studies have found a positive connection between unemployment and wildfire ignitions. 

Dondo Bühler et al. (2013) uncovered a link between arson and high unemployment, in Argentina, as 

a result of social unrest. This explanation is not deemed sufficiently relevant in the case of central 

Portugal, particularly “Central Forests”, and further studies focused solely on intentional wildfire 

events are needed to better interpret these results. 

Touristic activity, measured by the number of nights at hotel establishments per 100 inhabitants 

(NHEST_PERC), shows a negative association with ignition likelihood. This relationship can be 

considered somewhat strong for “North-eastern Highlands” where the maximum values are linked to 

a probability of only 5%. 

These findings seem to go against previous knowledge on this subject. In the European Mediterranean, 

tourism is known to provide a source of growing pressure on the environment, which translates 

specifically into an increase in wildfire incidence (Ganteaume & Jappiot, 2013). These results suggest 

that either this trend is not present in central Portugal, particularly in inland areas, or that this variable 

is not appropriate for measuring touristic activity.  

The proportion of resident population with a university degree (RPSUP_PERC) follows a distinct 

pattern. It seems to be linked to urban dynamics, where most highly educated people are located, and 

therefore results show higher large wildfire ignition probabilities in connection to small percentages 
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of university educated residents. “North-eastern Highlands” displays a stronger association than the 

rest of the models, spanning from around 22% probability at 0% university educated inhabitants to 

less than 5% probability at maximum values. 

Input from a study set in Argentina shows that education is negatively associated with wildfire 

ignitions, mainly because educated people have more access to information on fire prevention, are 

aware of the damaging effects of wildfires and understand the importance of preserving the 

environment (Dondo Bühler et al., 2013). Nevertheless, as mentioned before, the inhabitants of urban 

centres in the study area are, comparatively speaking, the people displaying the highest education 

level. Knowing that fire ignitions occur outside of these locations, this driving factor can be assumed 

to mask the effect of the urban dynamics and fuel availability. 

In fact, the distance to urban areas (URB_DIST) seems to be greatly related to large wildfire ignition 

likelihood. Most models show expressive negative relationships (see Annex D), with the highest 

probabilities of large ignitions occurring within 0 to 10 km from urban centres and infrastructures. 

“Urban Coastline”, which corresponds to the most urban region, displays the opposite link, with 

maximum distance from urban centres (35 km) showing an associated ignition likelihood of 40%. 

As these correspond to ignitions originating large burned areas, increasingly urban locations tend to 

enable earlier wildfire containment, due to the presence of population and better accessibility, which 

is the case of “Urban Coastline”. This fact might explain the regional variability found with this driving 

factor. 

The distance to secondary roads also seems to display pronounced negative relationships throughout 

the study area. Higher ignition probabilities are linked to the proximity to these infrastructures 

(maximum for “North-eastern Highlands” at 20%). After 4 km all models show an approximately 0% 

likelihood of large wildfire ignition. As was the case with urban proximity, higher accessibility and 

human presence have also been the aspects mentioned in connection to the roads’ effect on ignition 

probability (Martínez-Fernández et al., 2013; Moreira et al., 2010). Thus, these results suggest that 

large fire ignitions have a similar behaviour to that of wildfires of all sizes, in respect to road proximity. 

Land cover types seem to be associated to the variability in the likelihood of large ignitions. The 

percentage of pine forest cover (PIN_COS) shows a weak negative connection, with higher probabilities 

linked to small areas or to an absence of pine trees (maximum for “North-eastern Highlands” at 20%).  

The shrub extents (SHRUB_COS), on the other hand, show different trends. The global model and 

“North-eastern Highlands” display a positive relationship with ignition probability, prominently in the 

latter case where 100% shrub cover corresponds to a likelihood of over 30%. This area shows a 

considerable presence of this type of vegetation. For “Central Forests” the relationship between shrub 

and ignition is negative, with higher probabilities occurring in other cover types (0% shrub, at roughly 

15% incidence likelihood). 

In the literature, vegetation types are primarily related to fire propagation and not ignition likelihood. 

However, apart from associating shrublands to faster fire spread, Martínez-Fernández et al. (2013) and 

Nunes et al. (2016) link this specific cover type to a decreased value, corresponding to one of the least 

priorities during firefighting. Both these reasons explain that ignitions occurring in shrublands develop 

into large fire events before being extinguished.  
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Two other biophysical aspects show an association with the probability of large wildfire ignition 

occurrences, although to different extents: precipitation and slope. The total annual precipitation 

displays a strong positive relationship in the case of “North-eastern Highlands” and “Central Forests” 

and the global model. In fact, for “Central Forests” this positive link is very pronounced ranging from 

5% likelihood at the minimum precipitation values (600 mm) to almost 55% at the maximum (1300 

mm). In the case of “Beira Baixa and Border Areas”, the association is negative, even though not strong 

(see Annex D). 

These findings, which show an important connection between precipitation totals and large wildfire 

ignition, are consistent with common knowledge in this field of study. In fact, Nunes et al. (2013) show 

that the rainiest areas in Portugal correspond to the highest ignition incidence zones. It is then possible 

to assume that this trend also applies to large wildfires. 

Strong positive relationships are also found with slope for all models, except “Beira Baixa and Border 

Areas”. This statement is particularly apparent in the case of “Urban Coastline”, which displays a very 

fast rise in ignition probability with an increase in terrain gradient. For maximum slope (26°) the 

associated probability is approximately five times the likelihood of large ignition in the case of no slope. 

These results seem to contradict previous knowledge that ignitions tend to occur in flatter, more 

accessible and densely populated areas (Ganteaume & Jappiot, 2013), given the overwhelming effect 

of human interference. However, the fact that only ignitions originating large burned areas are being 

studied, events taking place in rugged surfaces are more likely to spread faster and present a higher 

fire intensity, because of inclination, land cover and low accessibility (Salis et al., 2015). 

The rest of the driving factors included in the models failed to provide enough evidence to support 

further discussion (see Annex D). The Wildland-Urban Interface (WUI) has not shown considerable 

differences in ignition probability, depending on category. Previous studies had already shown that the 

relationship between WUI areas and large wildfires in Portugal is not significant (Modugno, Balzter, 

Cole, & Borrelli, 2016). 

 

4.4. LARGE WILDFIRE SPREAD 

The same methodological steps employed before were repeated for the large wildfire spread analysis. 

All methodological decisions regarding common procedures of the clustering and modelling 

techniques were kept consistent throughout both analyses. 

The best performing hierarchical clustering method was also Ward’s method. This evaluation is made 

evident by the graph below (Figure 11), which shows the plot of the R2 values for each clustering 

partition and hierarchical method: 
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Figure 11 – R2 values associated to different clustering partitions and hierarchical methods 

 

The Ward’s method curve suggests that either four or three clusters might be a desirable result, 

although there is no clear sharp drop in explained variance visible. When interpreting the dendrogram 

(Figure 12), however, it is evident that the five clusters solution is the most balanced partition. It 

corresponds to an R2 of 0.298, which cannot be considered a high value. It is higher than the previous 

ignition clustering solution, partly because it contains one more group. 

Figure 12 – Ward’s method dendrogram with the cut-off line at five clusters 
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explained variance is considered enough for the purpose of this study and given the characteristics of 

the data and the interpretability of the clustering solution. 

The map presenting the clustering solution can be found below (Map 3). It is important to understand 

that not all variables displayed the same proportion of explained variance (R2). The coordinates 

(X_COORD, Y_COORD), the average number of dry months (DRYMONTH), the elevation (ELEVATION) 

and the proportion of seasonal use, secondary residence or empty housing (SSEHOUS_PERC) exhibited 

the highest values (50% or above).  

On the other hand, the average animal headcount in each farm per parish (LVSTK_NFARM), the 

population density (POP_GRID) and the orientation (ASPECT) showed the poorest performance among 

all variables, standing well below 10%. These variables were also the least well represented on the 

ignition clustering solution. 

Map 3 – Clustering solution (5 clusters) based on large wildfire propagation driving factors 

 

The following table (Table 6) summarises the clustering solution in regard to group dimension, cluster 

location and specific fire spread-related characteristics: 

Table 6 – Description of the propagation clustering solution based on the selected variables 

FEATURES 

SOUTHERN 

URBAN 

COASTLINE 

NORTHERN 

URBAN 

COASTLINE 

BEIRA BAIXA 

AND BORDER 

AREAS 

NORTH-

EASTERN 

HIGHLANDS 

CENTRAL 

FORESTS 

Dimension 3,899 5,546 2,726 4,853 4,546 

Population 
Average to high 

population density, 

Medium to high 

population density, 

Average to low 

population density, 

Medium to low 

population density, 

Average to low 

population density, 
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FEATURES 

SOUTHERN 

URBAN 

COASTLINE 

NORTHERN 

URBAN 

COASTLINE 

BEIRA BAIXA 

AND BORDER 

AREAS 

NORTH-

EASTERN 

HIGHLANDS 

CENTRAL 

FORESTS 

young population 

with a medium 

potentiality index 

young population 

with an average to 

high potentiality 

index 

very old population 

with a medium 

potentiality index 

relatively old 

population with a 

very low 

potentiality index 

moderately old 

population with 

medium to high 

potentiality index 

Roads and 

Housing 

Average to high 

density of primary 

roads and high 

ongoing housing 

occupation 

Medium to high 

road density and 

high ongoing 

housing occupation 

Very low density of 

primary roads and 

high number of not 

permanently 

occupied housing 

Average road 

density and high 

number of empty 

housing 

Average density of 

primary road and 

considerable to 

high number of not 

permanently 

occupied housing 

Agriculture 

and Livestock 

Very few people 

employed in 

primary sector 

activities, 

agricultural activity 

is still present and 

grazing areas are 

less dominant, 

average to high 

density of small to 

medium farms, high 

livestock activity 

and very high 

density of animal 

headcount per 

utilised agricultural 

surface 

Average to low 

proportion of 

population 

employed in the 

primary sector, 

average extent of 

agricultural areas 

but smaller grazing 

areas, very high 

density of small to 

medium farms, 

moderate livestock 

activity and animal 

density 

High number of 

people employed in 

primary sector 

activities, large 

agriculture areas, 

especially for 

grazing, low density 

of high dimension 

farms, average to 

low livestock 

activity and low 

density of animal 

headcount 

Considerable 

number of people 

employed in 

primary sector 

activities and 

medium to low 

extents of 

agriculture and 

grazing areas, 

moderate to low 

density of regular 

sized farms, 

medium to low 

livestock activity 

and low density of 

animal headcount 

Average number of 

people employed in 

primary sector 

activities and very 

few agriculture and 

grazing areas, 

medium to low 

density of 

moderate to small 

farms, average to 

low livestock 

activity and animal 

density 

Biophysical 

Aspects 

Flat and low 

altitude landscape, 

moderate presence 

of eucalyptus and 

forests of other 

types, average to 

small shrub extents, 

extended drought 

season 

Terrain is 

reasonably flat and 

at low elevation, 

medium to high 

presence of 

eucalyptus trees, 

average to low 

extents of 

shrublands and 

forests of other 

species, short 

drought season 

Flat landscape at 

medium-low 

altitude, very few 

eucalyptus trees 

and shrubs, large 

forests of other 

types, extended 

drought season 

Rugged surface at 

high elevation, very 

few eucalyptus 

trees, average to 

high presence of 

other types of 

forest and very 

large shrublands, 

short drought 

season 

Rugged surface at 

medium elevation, 

high eucalyptus 

presence, medium 

to low extents of 

other species, 

moderate shrub 

presence, extended 

drought season 

Ignition 

Density 
Medium-high Medium-high Very low High Medium 

 

It is interesting to observe the similarities between both clustering solutions (ignition and spread). The 

results are identical for “Beira Baixa and Border Areas” in both exercises, displaying the same features: 

extensive agriculture and grazing areas, low density of infrastructures and an ageing population. 

Additionally, it presents a very low ignition density. Although some of the selected variables were the 

same for both analysis, many were different, which suggests that the overall regional partition is 

consistent across several sets of variables. 
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Again, a great contrast between groups is visible, although “Southern Urban Coastline” and “Northern 

Urban Coastline” seem very close in respect to their main characteristics, exhibiting a distinct urban 

profile. In fact, they seem to be mostly distinguished based on the number of dry months (extended 

drought season in “Southern Urban Coastline” and smaller in “Northern Urban Coastline”), the 

livestock activity (high in “Southern Urban Coastline” and moderate in “Northern Urban Coastline”) 

and the animal density (high in “Southern Urban Coastline” and moderate in “Northern Urban 

Coastline”).  

“North-eastern Highlands” and “Central Forests” also share a number of resemblances, including an 

ageing population and a high proportion of empty or secondary-use housing, although ignition 

patterns differ significantly. “North-eastern Highlands” is mainly defined in respect to biophysical 

aspects, including high elevations and large shrub extensions. “Central Forests” has very few 

agriculture and grazing areas and is instead dominated by eucalyptus forests. 

As seen before, the overall clustering partition is coherent with previous knowledge on the 

characteristics of these regions, namely the urban coastline-rural inland dichotomy.  When comparing 

these results with findings from other studies, connected to the different patterns in burned area 

among regions, some resemblances can be emphasised. 

Shrublands are mentioned as one of the most significant wildland cover varieties in mountainous areas 

of northern and central Portugal (“North-eastern Highlands” and “Central Forests”), specifically in 

connection to their high flammability and preferential burning (Fernandes, Luz, & Loureiro, 2010). 

These vegetation features are coupled with a rugged landscape, a higher fuel connectivity and a lower 

population density, favouring fire spread (Mateus & Fernandes, 2014). In fact, larger burned areas in 

Portugal concentrate in these regions (Benali et al., 2016; Tedim et al., 2013). 

Nunes et al. (2013) also point out the northern-central districts of Guarda, Viseu and Castelo Branco 

and southern-central Santarém (districts composing part of “North-eastern Highlands” and “Central 

Forests”) as regions affected by large wildfires. They discuss the essential role of socioeconomic 

transformations, such as the rural exodus, and favourable climatic conditions (higher precipitation 

values) for the proliferation of available fuel in uncultivated areas. 

The characteristics of the coastal areas contrast with these patterns, particularly in the north-western 

pocket of the study area (“Northern Urban Coastline”). Even though ignitions are concentrated along 

the coast and around urban areas (medium to high ignition density), higher population density, 

fragmented settlements, intense agricultural activities, higher accessibility and fire suppression efforts 

prevent the occurrence of large wildfire events (Barros & Pereira, 2014).  

The first step of the two-part modelling exercise for burned area follows the same methodology as 

before. Probit models were developed for the entire study area and for each region according to the 

clustering solution. The results of this analysis are presented below, including the estimated models 

quality assessment measures (Table 7), as well as the average partial effects (APE) and statistical 

significance of the estimates (Table 8). 
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Table 7 – Estimated models quality assessment measures (fire spread) 

MODEL ASSESSMENT GLOBAL 
SOUTHERN 

URBAN 

COASTLINE 

NORTHERN 

URBAN 

COASTLINE 

BEIRA BAIXA 

AND BORDER 

AREAS 

NORTH-

EASTERN 

HIGHLANDS 

CENTRAL 

FORESTS 

Pearson 𝜒2 
272234.06 

*** 

4525.97 

*** 
4862.66 2594.80 

18346.06 

*** 
3733.25 

Sensitivity 42.58% 47.76% 39.33% 2.08% 64.14% 50.86% 

Correct classifications 80.06% 82.92% 83.01% 92.81% 72.88% 81.74% 

Area under the ROC curve 84.44% 85.39% 86.33% 84.07% 81.51% 86.40% 

Significance of the Pearson 𝜒2: *** (𝑝 < 0.01), ** (𝑝 < 0.05), * (𝑝 < 0.1) 

The ROC curve plots can be found in Annex C, along with the classification tables. From the goodness-

of-fit measures it is possible to recognise that the fire spread models performed considerably better 

than the attempts at predicting ignition locations, especially when considering sensitivity values and 

the area under the ROC curve. This might be easily explained by the increase in positive response cells 

(corresponding to area burned by large wildfires), roughly double the generalised ignition cells. 

Nevertheless, three models displayed non-significant Pearson 𝜒2 values and the percentage of 

accurate positive classifications for Cluster 3 (both the smallest and the least affected by fire) is still 

very small. 

Table 8 – Average partial effects (APE) and estimates significance (fire spread) 

VARIABLES GLOBAL 
SOUTHERN 

URBAN 

COASTLINE 

NORTHERN 

URBAN 

COASTLINE 

BEIRA BAIXA 

AND BORDER 

AREAS 

NORTH-

EASTERN 

HIGHLANDS 

CENTRAL 

FORESTS 

PRIM_PERC -0.00387 
*** 

-0.00599 
*** 

-0.00442 
*** 

-0.00332 
*** 

-0.00267 
*** 

-0.00383 
*** 

FARMDEN_KM       

SAUFARM_HA 0.000896 
*** 

-0.01097 
*** 

  
-0.00384 

*** 
 

LVSTK_NFARM 0.00000765 
*** 

 
-0.0000239 

*** 
0.000499 

*** 
0.00026 

*** 
 

HEADS_NSAU  
-0.00602 

*** 
  

-0.05414 
*** 

-0.0110341 
** 

SSEHOUS_PERC 0.002147 
*** 

0.001721 
*** 

 
0.001509 

*** 
0.004694 

*** 
 

POTENT_INDEX -0.00765 
*** 

 
-0.00215 

** 
-0.00621 

*** 
-0.01081 

*** 
-0.00431 

*** 

AGE_INDEX -0.0000381 
*** 

 
0.00016 

** 
 

-0.0000336 

*** 

-0.0000232 

** 

POP_GRID -0.0000644 
*** 

 
-0.0000243 

* 
   

AGR_COS -0.00074 
*** 

 
-0.00092 

*** 
-0.00034 

* 
-0.00319 

*** 
 

EUC_COS 0.001402 
*** 

0.004372 
*** 

0.000937 
*** 

0.000547 
** 

-0.0031 
*** 

0.002259 
*** 

GRZ_COS       
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VARIABLES GLOBAL 
SOUTHERN 

URBAN 

COASTLINE 

NORTHERN 

URBAN 

COASTLINE 

BEIRA BAIXA 

AND BORDER 

AREAS 

NORTH-

EASTERN 

HIGHLANDS 

CENTRAL 

FORESTS 

OUTR_COS  
0.000614 

* 
  

-0.00303 
*** 

 

SHRUB_COS 0.0027 
*** 

0.004314 
*** 

0.006178 
*** 

 
0.001626 

*** 
0.003562 

*** 

AP2015_DIST 0.001526 
*** 

0.001709 
** 

 
0.001672 

* 
0.007463 

*** 
0.00385 

*** 

PROAD_DIST  
0.010724 

*** 
0.018557 

*** 
-0.00194  

0.008157 
*** 

DRYMONTH   
0.131673 

*** 
-0.07283 

*** 
-0.28573 

*** 
-0.10114 

*** 

SLOPE 0.005608 
*** 

0.014619 
*** 

0.013525 
*** 

 
0.003301 

** 
 

ASPECT 0.000117 
* 

     

ELEVATION  
0.000339 

*** 
 

-0.00015 
*** 

 
-0.00034 

*** 

IGN_DIST -0.0654134 
*** 

-0.06913 
*** 

-0.07194 
*** 

-0.01363 
*** 

-0.07668 
*** 

-0.07202 
*** 

Significance of average partial effects (APE): *** (𝑝 < 0.01), ** (𝑝 < 0.05), * (𝑝 < 0.1) 

The table above (Table 8) presents the estimated average partial effects (APE) and associated statistical 

significance. The models for Clusters “Beira Baixa and Border Areas”, “North-eastern Highlands” and 

“Central Forests” and the global model have exhibited a significant (***) positive constant (𝛽̂0). For 

“Southern Urban Coastline” and “Northern Urban Coastline” the intercept was negative, with different 

significance levels (𝑝 < 0.01 and 𝑝 < 0.1 respectively). 

Fire spread model specification left out the number of farms per km2 (FARMDEN_KM) and the 

percentage of grazing areas (GRZ_COS), suggesting that these two factors are not determinant for the 

propagation of large wildfires across the study area. Three other variables were deemed significant 

both in the global model and in all five regions: the percentage of resident population employed in 

primary sector activities (PRIM_PERC); the percentage of land covered by eucalyptus forests 

(EUC_COS); and the distance to ignition locations (IGN_DIST), which is unsurprisingly and by far the 

most important factor. The estimated APEs for both PRIM_PERC and IGN_DIST display the same signal 

direction throughout the study area, which conveys a consistency in these variables’ impact on fire 

behaviour. 

Specific driving factors have been highlighted for discussion, as before, because of their impact on 

large fire spread, predictive ability and inconsistency across clusters. The following figure (Figure 13) 

summarises the main results of the six models, displaying the associated burning probabilities for 

specific values within the range of the contemplated variables. For a better interpretation of these 

results, it is also important to consider the individual variable plots per cluster, which present the 

estimates’ corresponding 95% confidence intervals, in Annex D. 

Figure 13 – Main results of the fire spread model (part one) 
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The results of the second part of the burned area modelling exercise provide further insights about the 

impact of each driving factor on fire propagation in the case of large wildfire events, complementing 

the findings from the binary response first part models. The next step of the modelling procedure fitted 

OLS regression lines to each of the study regions, following the methodology presented before.  

Table 9 presents the six models’ quality assessment measures, as well as the dimension of the clusters 

population (𝑦 = 0). The results of the modelling exercise (second part) are summarised in Table 10, 

with an emphasis on the coefficients’ signs and statistical significance. 

Table 9 – Estimated OLS models dimension and quality assessment measures (fire spread) 

MODEL 

ASSESSMENT 
GLOBAL 

SOUTHERN 

URBAN 

COASTLINE 

NORTHERN 

URBAN 

COASTLINE 

BEIRA BAIXA 

AND BORDER 

AREAS 

NORTH-

EASTERN 

HIGHLANDS 

CENTRAL 

FORESTS 

Dimension (n) 5,343 917 1,139 192 1,994 1,101 

F statistic 89.34 *** 36.31 *** 44.10 *** 6.06 *** 28.50 *** 31.47 *** 

Adjusted R2 0.188 0.316 0.294 0.096 0.181 0.200 

Significance of the F statistics: *** (𝑝 < 0.01), ** (𝑝 < 0.05), * (𝑝 < 0.1) 

In addition to the presented quality assessment measures, residuals from all models were found to be 

at least approximately normally distributed. It is possible to observe that Cluster 4 is by far the region 

displaying the higher proportion of burned area cells (roughly 41%), while in Cluster 3 only 7% of the 

territory has experienced burning by large wildfire events during the 2005-2015 period.  

The F statistic values are significant for all models, which is good indication of model suitability. 

However, it is also possible to recognise that the adjusted R2 values are low in all cases, mainly for 

Cluster 3, although these results should be considered lightly. As mentioned before, the purpose of 

this study is merely exploring the relationships and behaviour of the different factors driving large 

wildfire events, and not necessarily developing a predictive model for large fire propagation, hence 

the flexibility in the measurements of the quality assessment statistics. 
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Table 10 – OLS coefficients, associated t-scores and statistical significance (fire spread) 

VARIABLES GLOBAL 
SOUTHERN 

URBAN 

COASTLINE 

NORTHERN 

URBAN 

COASTLINE 

BEIRA BAIXA 

AND BORDER 

AREAS 

NORTH-

EASTERN 

HIGHLANDS 

CENTRAL 

FORESTS 

CONSTANT (𝛽̂0) 
103.231 *** 

t = 11.16 
29.02 *** 

t = 3.48 
71.0937 *** 

t = 4.00 
40.0369 *** 

t = 4.13 
153.46 *** 

t = 10.05 
106.04 *** 

t = 3.96 

PRIM_PERC  
-1.29375 *** 

t = -4.57 
0.71687 *** 

t = 2.76 
-0.60788 ** 

t = -2.14 
 

-0.47366 ** 
t = -2.56 

FARMDEN_KM  
-1.03295 ** 

t = -2.11 
   

-1.59624 ** 
t = -2.57 

SAUFARM_HA     
-0.23557 ** 

t = -2.10 
 

LVSTK_NFARM 0.00107 *** 
t = 3.14 

0.00069 ** 
t = 2.01 

    

HEADS_NSAU 0.39146 * 
t = 1.88 

0.76439 *** 
t = 2.78 

-1.69891 ** 
t = -2.19 

 
-7.00184 *** 

t = -5.34 
 

SSEHOUS_PERC 0.13319 *** 
t = 3.70 

0.56645 *** 
t = 5.43 

    

POTENT_INDEX -0.67417 *** 
t = -6.77 

 
-0.39672 * 

t = -1.86 
 

-0.973 *** 
t = -5.34 

-0.4858 ** 
t = -1.99 

AGE_INDEX     
-0.00324 ** 

t = -2.18 
 

POP_GRID -0.01909 *** 
t = -5.21 

 
-0.01133 *** 

t = -2.85 
 

-0.03855 *** 
t = -2.88 

 

AGR_COS -0.4425 *** 
t = -13.58 

-0.35647 *** 
t = -6.20 

-0.43232 *** 
t = -7.19 

-0.23051 * 
t = -1.95 

-0.64592 *** 
t = -10.47 

 

EUC_COS 0.22741 *** 
t = 10.69 

0.48727 *** 
t = 9.76 

0.26358 *** 
t = 6.82 

 
-0.34679 *** 

t = -2.75 
0.44333 *** 

t = 12.13 

GRZ_COS 0.55225 *** 
t = 7.93 

  
0.41351 *** 

t = 2.97 
0.55249 *** 

t = 2.84 
 

OUTR_COS  
0.19743 *** 

t = 3.94 
  

-0.36986 *** 
t = -7.87 

 

SHRUB_COS 0.24486 *** 
t = 11.41 

0.50703 *** 
t = 3.61 

0.54626 *** 
t = 5.66 

 
0.08008 *** 

t = 2.77 
0.49115 *** 

t = 6.51 

AP2015_DIST 0.10367 ** 
t = 2.25 

 
-0.35040 *** 

t = -2.60 
 

1.10158 *** 
t = 7.90 

0.28249 *** 
t = 2.78 

PROAD_DIST   
1.14231 * 

t = 1.86 
 

1.18853 *** 
t = 3.09 

 

DRYMONTH -2.57044 ** 
t = -2.33 

    
-8.75216 ** 

t = -2.30 

SLOPE 0.61038 *** 
t = 5.73 

 
1.52079 *** 

t = 5.73 
2.24835 * 

t = 1.88 
0.57521 *** 

t = 3.00 
1.33822 *** 

t = 4.41 

ASPECT -0.02087 * 
t = -1.86 

-0.07253 *** 
t = -2.77 

  
-0.03574 ** 

t = -2.18 
 

ELEVATION  
0.02316 ** 

t = 2.54 
  

-0.01151 *** 
t = -3.46 

-0.03843 *** 
t = -5.05 

IGN_DIST -1.16798 *** 
t = -4.3 

-2.40021 *** 
t = -3.82 

-2.83019 *** 
t = -4.03 

 
-1.38465 *** 

t = -2.75 
 

Significance of average partial effects (APE): *** (𝑝 < 0.01), ** (𝑝 < 0.05), * (𝑝 < 0.1) 

A rise in the proportion of residents employed in primary sector jobs (PRIM_PERC) was found in the 

previous exercise to increase the probability of large fire ignitions in most regions. Nevertheless, these 

results suggest that population working on the primary sector impacts fire spread in the opposite 

direction, regardless of geographical location, with all clusters displaying a negative relationship 
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between this variable and the likelihood of large fire spread. The maximum burning probability (higher 

than 40%) is listed at 0% primary sector working force, for “North-eastern Highlands” (Figure 13).  

The results from the models second part also support this evidence, with “Southern Urban Coastline”, 

“Beira Baixa and Border Areas” and “Central Forests” presenting a negative relationship between 

PRIM_PERC and the percentage of burned area per cell (Table 10). This relationship can be considered 

very strong in the case of “Southern Urban Coastline”. For “Northern Urban Coastline”, however, the 

results suggest that the presence of people employed in primary sector activities moderates fire spread 

probability in this region, unless a cell does burn. Even though not strong, this information diverges 

from the results of the models first part (probit model). 

Farm dimension (SAUFARM_HA) can only be considered in terms of spread probability. The global 

model seems to associate larger farms to a higher burning probability, which could be linked to the 

fact that these are located in sparsely populated locations outside urban centres. Nevertheless, 

“Southern Urban Coastline” and “North-eastern Highlands” present a decrease in burning probability 

with an increase in farm size, quite prominent in both situations. Large agricultural holdings may be 

connected to land management activities, which may in turn translate into fire prevention efforts and 

a reduction in fuel availability. 

The influence of agricultural areas (AGR_COS) on burning probability is similar to that displayed by 

PRIM_PERC and can be considered more pronounced in the case of “North-eastern Highlands” (Figure 

13). This region exhibits the highest large fire spread probability (roughly 50%) at 0% agricultural land 

cover, while the behaviour of “Beira Baixa and Border Areas” is very weak (see Annex D).  

When considering the percentage of burned area per cell, the effect of agricultural land cover is very 

similar, with all models displaying negative associations between both phenomena (Table 10). Again, 

the weight of this variable is particularly relevant for “Northern Urban Coastline” and “North-eastern 

Highlands” and for the global model, presenting very high t-scores, and barely significant for “Beira 

Baixa and Border Areas”. 

Many arguments support the findings from this study, which generally agree that agricultural activities 

work as a deterrent factor of large burned areas. Wildfires occurring in agricultural land covers are not 

expected to develop into high intensity events, mainly due to a small amount of fuel load, 

predominantly dry fine fuels (Mitsopoulos et al., 2014). Many are the authors linking the process of 

agriculture, pastures and forestry abandonment, which occurred in European Mediterranean regions 

during the second half of the 20th century, to an increase in size an intensity of wildfires as a result of 

an accumulation of connected flammable materials (Calviño-Cancela et al., 2016; Moreira et al., 2011; 

Viedma, Moity, & Moreno, 2015). 

Another reason explaining the low probability of fire spreading into agricultural spaces, or else a higher 

burning probability in wildland areas, has to do with the interaction between agriculture and 

topography. Farms are usually located in flat lands and slope is known to strongly affect fire spread 

(Calviño-Cancela et al., 2017). 

Agricultural activities are also associated to the presence of humans in rural areas, which supports 

earlier fire detection and more efficient firefighting (Moreira et al., 2011). Farm management requires 

that holders be vigilant and mindful of their property (Calviño-Cancela et al., 2016). 
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Nunes et al. (2016) have found the same overall patterns as this work for the relationship between 

agricultural activities and reduced burned area, in Portugal, in a study conducted at municipal level. 

However, a somewhat contrasting trend has been observed by Martínez-Fernández et al. (2013), in 

Spain, where tightly knit forest-agriculture mosaics are deemed the most fire-vulnerable regions. 

The effect of animal creation variables on burning probability is mixed and is very analogous to what 

was previously found for large fire ignition. A strong positive association is observable for the average 

number of animal per farm (LVSTK_NFARM) in “Beira Baixa and Border Areas” and “North-eastern 

Highlands”, with 500 animals corresponding to a burning probability of over 50% in both regions. The 

results for “Northern Urban Coastline” and the global model in the first part of the model are 

inconclusive, while the second part has shown a positive, although small contribution of this variable, 

possibly connected to foraging necessities and use of fire practices. 

Animal density (HEADS_NSAU), on the other hand, exhibits a negative relationship with large fire 

spread probability for the global model, “Central Forests” and, particularly, “North-eastern Highlands”. 

In the latter case, burning probability drops from around 45% at no normal heads per hectare, to 

virtually 0% when animal density is highest. Therefore, it is interesting to observe that the outcomes 

of the models’ second part differ among themselves, with “Northern Urban Coastline” and “North-

eastern Highlands” displaying a negative association, and the global model and “Southern Urban 

Coastline” presenting the opposite trend.  

The contribution of grazing lands (GRZ_COS) can only be assessed in terms of burned area percentage, 

showing a positive relationship, namely for the model comprising the burned cells of the entire study 

area, which presents a very significant coefficient estimate (Table 10). “Beira Baixa and Border Areas” 

and “North-eastern Highlands” also display a positive association, and higher burned area percentages 

in grazing areas might be explained by fuel availability, as there is an evident contrast with the findings 

from the ignition model. 

Additionally, many authors have highlighted the role of fire for clearing land for grazing purposes in 

Mediterranean areas across the globe and in Portugal (Álvarez-Díaz et al., 2015; Ferreira-Leite, 

Lourenço, et al., 2013; Ganteaume & Jappiot, 2013; Vilar et al., 2016). This phenomenon might also 

explain why pastures are associated with increased burning probability. 

However, animal creation and livestock grazing have been found by Moreira et al. (2011) to contribute 

to a reduced fire hazard, because these activities naturally control fuel availability and density. This 

fact may help justify the effect displayed by animal density in most clusters. In this context it is 

important to consider animal type for the influence exerted by different species (Oliveira et al., 2014), 

and this element was not contemplated in this analysis, which might have had an influence in obtaining 

these results. 

This said, evidence from the literature highlights the different impacts pastures and animal breeding 

display on large wildfire occurrence. Oliveira et al. (2017) have found that Portuguese parishes affected 

by larger burned areas still have a considerable presence of livestock and grazing, although human 

activities in rural areas are linked to less burned area, a trend mentioned before in connection to 

agriculture. 
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Fuel availability represents one of the most relevant contributing factors to large wildfire spread, as 

gathered from the models results. The extent of eucalyptus tree cover (EUC_COS) displays noticeable 

positive associations with burning probability in all regions, except for “North-eastern Highlands” 

(Figure 13). “Southern Urban Coastline” presents a very pronounced rise in burning probability in 

connection with eucalyptus forests (ranging from 20% to 70%), while in “North-eastern Highlands” the 

opposite relationship is also prominent (ranging from 40% to approximately 10%). Model results from 

the second part follow the same behaviour (i.e. a negative association in “North-eastern Highlands”), 

with “Southern Urban Coastline”, “Central Forests” and the global model presenting very high t-scores. 

Shrublands (SHRUB_COS), on the other hand, have been found to encourage burned area probability 

to a great extent in all regions. This pattern is observable in both parts of the model, with only “North-

eastern Highlands” displaying a weaker association. It is relevant to point out the burning probability 

corresponding to 100% shrub cover in “Northern Urban Coastline”, which is roughly 90% (Figure 13). 

Among the OLS coefficient estimates the global model stands out with a very high t-score (Table 10), 

meaning that this factor is very important for large fire spread overall. 

Generally speaking, forests are considered more fire prone than farms, with eucalypt plantations 

displaying the same fire hazard as pine stands (Moreira et al., 2011). Effects connected to the economic 

value and active management of paper and pulp production eucalyptus forests might mitigate the 

influence of fuel availability and other favourable burning conditions (Barros & Pereira, 2014). 

Additionally, it is interesting to note that according to both these authors shrublands are even more 

susceptible to fire than forests, which might explain why the effect of eucalyptus stands in burning 

probability was negative in the shrub-dominated region of “North-eastern Highlands”. 

Comparing these conclusions with the results from the previous ignition exercise provides that 

vegetation characteristics are much more relevant for fire propagation than fire incidence. For 

shrublands, where large ignition and burned area probability display a strong positive association with 

the amount of available fuel, these findings suggest that these areas should be prioritised in large fire 

prevention efforts.  

Other forest types, apart from eucalyptus, pine trees and shrublands, present mixed results across 

regions, displaying a positive relationship with the percentage of burned area in “Southern Urban 

Coastline” and the opposite trend in “North-eastern Highlands”. Types of vegetation cover other than 

eucalyptus, pine trees and shrublands, such as oak forests, are known to be less fire prone (Mateus & 

Fernandes, 2014), and this pattern can be observed in “North-eastern Highlands”. However, in 

“Southern Urban Coastline”, the positive link, which is not particularly strong, might be connected to 

fuel availability, given the fact that this region has a distinct urban profile. 

All models presented a clear positive association between the distance to protected sites 

(AP2015_DIST) and the probability of large fire spread, meaning that areas further from these locations 

are expected burn in large wildfire events. This statement is particularly true for “North-eastern 

Highlands”, where associated probabilities range from 35% to 70% (Figure 13). The majority of the 

estimated OLS coefficients also support these results, with “North-eastern Highlands” displaying a very 

high positive t-score (Table 10). “Northern Urban Coastline”, on the other hand, exhibits a negative, 

although weak connection to the percentage of burned area, which suggests that the weight of this 

variable fluctuates across space. 
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Protected areas are generally assumed to influence fire occurrence, either as a deterrent factor 

connected to landscape protection (Rodrigues et al., 2014, 2016), or related to an increase in ignitions 

resulting from conflicts about the establishment of these protected sites (Calviño-Cancela et al., 2017; 

Fuentes-Santos, Marey-Pérez, & González-Manteiga, 2013). The results from this study are consistent 

with the views of Srivastava et al. (2014) on this topic, which associate protected areas to increased 

success in efficient wildfire suppression, and its spatial variability is also noted by Rodrigues et al. 

(2014, 2016). 

There is a noticeable positive link between the percentage of seasonal, secondary use or empty 

dwellings (SSEHOUS_PERC) and the probability of large wildfire spread. This pattern is particularly 

evident in “North-eastern Highlands”, where 90% empty housing corresponds to 60% burning 

probability. However, apart from “Southern Urban Coastline” and the global model, this variable does 

not seem to be connected to burned area dimension in a cell affected by burning. This driving factor 

might be masked by the urban-rural dichotomy and its characteristics, with most empty houses being 

located in country regions as a result of land abandonment. 

In fact, Oliveira et al. (2017) mention that secondary houses are also located in sparsely populated and 

ageing inland areas, to where emigrants return during the summer months, when there is an 

intensification of outdoor activities. These same authors associate these dwelling characteristics (as 

well as degraded housing conditions) with increased burned area, supporting the findings from this 

work and extending the scope of influence of this factor, which had already been found to stimulate 

fire ignition in Spain (Romero-Calcerrada et al., 2010, 2008). As an explanation, during fire suppression 

activities, these infrastructures are considered less of a priority when compared with primary homes. 

Demographic potential (POTENT_INDEX) seems to be negatively associated with burning probability 

throughout the study area, with “Beira Baixa and Border Areas” and “North-eastern Highlands” 

displaying the most pronounced drops in large fire spread chance with an increase in the potentiality 

index (Figure 13). These same results are also observable in the models second part, where estimated 

coefficients support these negative relationships and where “North-eastern Highlands” and the global 

model stand out (Table 10).  

The population density (POP_GRID) can also be moderately associated with burned area extent in the 

same direction (models second part). Although ageing (AGE_INDEX) has not exhibited a strong 

connection with the phenomenon under study, these outcomes suggest that large wildfires tend to 

spread into demographically depressed regions (less population and demographic potential). 

Many literature references support these claims. Communities affected by larger burned areas in 

Portugal are known to have suffered from depopulation, as young and better educated people 

migrated from inland and mountainous areas to coastal regions, and which in turn render these 

locations increasingly vulnerable to fire (less intervention in prevention strategies) (Oliveira et al., 

2017). The influence of population potential, which is generally connected to human presence and 

density of human activities, has been found to both increase the probability of fire ignition and reduce 

the probability of larger burned areas, in Spain (Martínez-Fernández et al., 2013; Rodrigues & De la 

Riva, 2014). 

Biophysical factors can also be counted among the contributing factors of large fire spread. Terrain 

slope (SLOPE) seems to display a positive relationship with burning likelihood, particularly noticeable 
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for “Southern Urban Coastline” and “Northern Urban Coastline” (Figure 13). The fact that these 

clusters stand out from the rest of the study area might be due to the fact that urban areas are located 

near the ocean, in flat landscapes. The probabilities associated to the different slope values range 

approximately 40 p.p. in these regions, with maximum gradient corresponding to more than 60% 

burning probability in “Southern Urban Coastline”. 

The estimated OLS coefficients also exhibit positive associations for this variable, with highest t-score 

in “Northern Urban Coastline” and on the global model (Table 10). These results reveal that ignition 

and propagation patterns are similar for large wildfires in what concerns slope.   

Slope is known to influence fire spread both directly and indirectly, because of fire dynamics (flames 

closer to ground fuel) and fuel moisture and density patterns (Holsinger et al., 2016). A similar reason 

has been found by Kalabokidis et al. (2007) to justify the positive relationship between slope and fire 

growth in a Mediterranean region in Greece. 

The explanation found for slope, in connection to coastline regions, can also be used to account for 

the pronounced relationship found between an increase in elevation (ELEVATION) and an increase in 

large fire spread probability, in “Southern Urban Coastline” (Figure 13). In fact, the variable plot shows 

a very steep rise in burning chances for this region, while “Beira Baixa and Border Areas” and “Central 

Forests” exhibit the opposite trend. The models second part shows similar mixed results, if not exactly 

for the same clusters (Table 10). “Southern Urban Coastline” presents a moderate positive association 

with burned area whereas for “North-eastern Highlands” and “Central Forests” the relationship is 

negative and stronger. 

Evidence from Australia has found that fires tend to become larger at higher altitudes, with this fact 

being connected to limited fire suppression activities at such elevations (Price, Penman, Bradstock, & 

Borah, 2016). The same pattern has also been confirmed in the European Mediterranean context 

(Silva, Rego, Fernandes, & Rigolot, 2010). The results obtained from the models seem to point out that 

elevation promotes large fire spread in densely populated regions (such as “Southern Urban 

Coastline”), while in inland rural regions large wildfire events occur at lower altitudes, where there is 

more available fuel. These findings are not exactly consistent with previous knowledge on this subject 

which associate larger burned areas to higher elevations in North and Central Portugal (Mateus & 

Fernandes, 2014), meaning further investigation into the effects of this topographic factor is needed. 

The number of dry months (DRYMONTH) also shows mixed results throughout the study area, with 

“Northern Urban Coastline” presenting a positive association with burning likelihood and the other 

three clusters displaying a negative relationship (Figure 13). Contrary to previous knowledge on this 

subject, which states that a longer dry season increases the chances of fire spread (Ganteaume & 

Guerra, 2018), only in “Northern Urban Coastline” a higher number of dry months increases burning 

probability. The estimated OLS coefficient values exhibit weak negative associations in only two 

situations (Table 10), leaving these trends in need of additional corroboration and suggesting that the 

influence of drought on large burned area should be assessed resorting to other data and 

methodologies. 

Last of all contemplated driving factors, the distance to ignition points presents relevant negative 

associations with large wildfire propagation likelihood everywhere in the study area (Figure 13). This 
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effect on probability follows the same behaviour in all regions, with a sharp decline in spread 

probability with the increase in distance to ignition locations by 1km.  

Although this variable represents one of the most important elements driving fire spread, it is not as 

associated to the extent of burned area, given that only three clusters and the global model present 

moderate positive t-scores on the models second part (Table 10). It appears that specific 

characteristics of the cells affected by fire are determinant for the percentage of burned area, with 

proximity to ignition playing only a minor role. Ignition locations were found to impact fire spread in 

Portugal, although it has also been suggested that it depends on complex interactions with biophysical 

elements and that it varies considerably across regions (Benali et al., 2016). 

The rest of the driving factors included in this study failed to provide enough evidence to support 

further discussion (see Annex D). Nevertheless, it can be noted that the results of the models first part 

showed a positive relationship between distance to primary roads and the probability of fire spread 

for “Southern Urban Coastline”, “Northern Urban Coastline” and “Central Forests”, although not 

strong. This has also been found in the models second part for “Northern Urban Coastline” and “North-

eastern Highlands”.  

These results are consistent with the conclusions of Ager et al. (2014) who have found an increase in 

the probability of large fires with distance to roads, relating these infrastructures to enhanced fire 

suppression, and stressing the overall importance of this anthropogenic driving factor in the 

Mediterranean context. In Portugal, however, the contribution of this variable needs to be studied 

further, as results do not show any definite patterns. 
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5. CONCLUSION 

Large wildfire ignition and propagation patterns in central Portugal, between 2005 and 2015, show a 

prevalence of fire events in inland central areas, with ignitions occurring mostly far from the eastern 

border and larger burned areas arising infrequently near the coastline. The overwhelming majority of 

these ignitions are human-caused, with many of these occurring intentionally. 

Many of the most striking conclusions stemming from the analyses and following discussion, on the 

main factors driving large wildfire occurrence and spread in the study area, seem to corroborate 

information from the reference literature: 

- Agricultural activities: Agricultural activities have been found to be connected to increased 

fire ignition, specifically in areas where most agricultural holders are over 65 years, which is 

instead an indication of the use of fire in land use activities. This study also confirms the spatial 

variability of this association. On the other hand, agriculture presents a negative relationship 

with large fire spread, a pattern that had already been found in other studies in the Portuguese 

context, and this connection appears to be mostly constant throughout the study area. 

- Precipitation: Precipitation values have been found to be positively associated to large fire 

incidence. When confronting these results with findings from other studies, it is suggested that 

this relationship is valid for ignitions generating fires of all sizes in central Portugal.  

- Vegetation type: Vegetation characteristics seem to be much more related to large fire 

propagation than to large fire ignition. Eucalyptus forests have been found to intensify fire 

spread, according to previous knowledge, although the real effect of this species varies across 

space. Shrubland areas, on the other hand, have a very expressive positive association with 

burned area, and this association seems mostly stationary.  

- Protected areas: Protected areas are known as a deterrent factor of fire spread, as found by 

this work. However, these findings also confirm the spatial variability of this relationship, 

which had been previously identified in the reference literature. 

- Education: Large wildfire incidence is negatively associated with the educational level, in 

particular higher education, and this relationship is well explained in the reference literature. 

In the context of this study, this aspect seems to be masking the effect of the urban areas. 

- Secondary roads: The distance to secondary roads shows a positive relationship with large 

wildfire ignition, suggesting that this effect is valid for wildfires of all sizes in central Portugal. 

- Proximity to ignition: The proximity to ignition points has been shown to be positively 

connected to fire spread in the entire study area. However, when considering the extent of 

burned area, the characteristics of the cells affected by fire appeared to be more determinant. 

On the other hand, some of the findings of this research seem to contradict knowledge from previous 

sources and need further confirmation: 

- Livestock activities: Livestock activities have been associated with a lower ignition probability. 

This is not consistent with the results from previous studies, which relate these activities to 

the use of fire. Additionally, this factor displays a marked variability throughout the study area. 

- Tourism activity: Contrary to literary sources on this phenomenon, where increased tourism 

activity is known to impact fire ignition positively in the Mediterranean, the results from this 

study show the opposite pattern. This fact might question the suitability of the chosen variable. 
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- Other vegetation types: Other vegetation types, which are mostly different species of oak 

forests, are believed to prevent fire spread. This research suggests that in the study area fuel 

availability plays a more important role that fuel type when large fires are concerned. 

Nevertheless, this effect varies across space. 

- Slope: This study provides evidence that the influence of slope in large fire ignition and 

propagation follows the same patterns (positive association). The connection between slope 

and fire spread confirmed through this research is well known. On the other hand, the 

relationship found between slope and ignition goes against findings from other studies, even 

though the effect displays interregional variability.  

- Elevation: Findings are mostly inconclusive for the association between elevation and large 

wildfire spread. The effects of this variable are mixed throughout the study area, with some 

regions displaying a negative relationship between high altitudes and burned area, which goes 

against previous knowledge on this phenomenon. 

Also requiring further investigation and confirmation are a few other results of this work, whose 

effects are mixed throughout the study area, whose explanation has not been deemed satisfactory in 

the context of this research or whose analysis suffered from significant methodological constraints: 

- Livestock activities and grazing: Livestock activities display variable effects throughout the 

study area in connection with large fire spread, which challenges the identification of specific 

trends concerning these driving factors. Grazing areas have been found to be positively 

associated with large fire spread, displaying an effect contrasting with large fire ignition that 

needs to be explored. 

- Demographic aspects: Population density and the potentiality index show negative 

relationships with fire spread, which had already been confirmed by previous studies. 

Nevertheless, further research on these topics is needed for a detailed account of the effect 

of demographic variables on large fire ignition and propagation. 

- Urban areas: Urban areas are connected to an increase in large fire ignition in most regions of 

the study area, which confirms the results from previous studies. Still, the spatial variability of 

this effect needs to be considered in detail for a clear understanding of this relationship. 

- Unemployment: The association between unemployment and large fire ignition was found to 

be positive, which confirms knowledge from the reference literature. The explanations found 

in previous studies, however, do not seem to apply to central Portugal and further 

investigation is required about the relationship between this socioeconomic aspect and arson. 

- Shrublands: Shrublands are more prone to large fire ignition in the study area, which might be 

connected to the reduced value and higher flammability of this vegetation species, even 

though this trend has not been observed in previous research, as far as this work is concerned. 

The spatial variability of this effect renders the results inconclusive. 

- Drought: The connection between the number of dry months and fire propagation failed to be 

confirmed by this study, mostly because of the contrasting effects displayed. This fact might 

be explained by methodological issues, e.g. possible unsuitability of the chosen variable. 

Overall, this study confirms the presence of spatial variability in the contribution exerted by most 

structural factors driving large wildfire ignition and spread in central Portugal between 2005 and 2015. 

It is important that upcoming studies in the field of large wildfires, specifically in the Portuguese 

context, account for this key feature, which shapes fire behaviour considerably. 
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This research has also shown, through the results of the spatial clustering analysis, that a partition 

based on ignition driving factors is similar to a partition based on variables influencing fire propagation. 

Future studies featuring the same methodology as the one proposed by this work should make use of 

this finding and provide a sole regional clustering partition for both modelling exercises. 

Some methodological issues, which might have had an influence in this study’s conclusions, have 

been identified along this research. These are summarised in the following points: 

- Data availability: There was no data available for some of the main driving factors 

acknowledged in previous studies. This problem had already been recognised by Oliveira et al. 

(2017). In fact, other variables may be important to consider in subsequent studies and model 

performance can be assessed to identify improvements. 

- Data generalisation: The methodological framework (1x1km cell grid) required the 

generalisation of many of the driving factors, which might have had a detrimental effect in the 

overall data analysis. This aspect is closely connected to data availability. 

- Dimensionality: This research intended to study a large set of variables and this high 

dimensionality might have had a harmful impact in the detailed assessment of the main 

structural driving factors. Kalabokidis et al. (2007) had already mentioned the unpracticality in 

evaluating the influence of all relevant aspects. 

- Fire spread vs. large fire ignition relationship: Large wildfire ignitions cannot be dissociated 

from burned area. Therefore, the target variables’ spatial patterns and overall behaviour were 

similar and the results of this research reflect this limitation. 

- Unbalanced target distributions: i.e. ignition cells vs. non-ignition cells and burned cells vs. 

non-burned cells). This unbalance in target distributions impacted model performance on both 

exercises. Methods such as oversampling, undersampling or SMOTE, which generate artificial 

data to achieve more balanced statistical distributions (Douzas, Bacao, & Last, 2018), were not 

used but might be considered in future studies to overcome this constraint. 

Based on the main conclusions of this work and some of the methodological issues presented above, 

the following research topics are proposed for future development: 

- Data mining: Compare the results of this study with those stemming from the use of data 

mining techniques, especially regarding the development of predictive models. This 

methodology may be more suitable given the high data volume (both variables and 

observations). 

- Condensed set of variables: Select a condensed set of variables for a more detailed 

assessment of the effect of different elements in large wildfire ignition and spread, namely 

those factors whose results seem to contradict previous knowledge in this field. 

- Ignition size: In the case of ignition models, confirm if results differ substantially when the 

analysis is performed following the same methodology but focusing on occurrences of any size. 

- Causes of large wildfires: In the case of ignition models, introduce ignition cause as a target 

variable and contribute to the process of identifying the unknown causes of large wildfires. 
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Table A 1 – Identified factors driving large wildfire ignition and spread and corresponding scientific references 
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DENSITY 
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USE OF FIRE FOR AGRICULTURE AND 
GRAZING ACTIVITIES 
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FORESTRY ACTIVITY / FOREST MANAGEMENT  X                            X    

NATURAL PROTECTED AREAS / DEGREE OF 
PROTECTION / PRIORITY OF CONSERVATION 
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HUNTING                        X   X       

TOURISM X      X   X                        
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TRACKS X  X     X    X     X  X         X X     
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PROXIMITY TO URBAN AREAS / 
INFRASTRUCTURES 
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HOUSING DENSITY X      X       X               X X    

SECONDARY HOUSING X           X     X                 
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POPULATION DYNAMICS: VARIATION AND 
POTENTIAL 
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AGEING OF POPULATION X     X              X              
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RURAL EXODUS  X                      X      X    

LAND USE X X     X  X           X              

CHANGES IN LAND COVER X                   X        X  X    
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ANNEX B  

Summary tables: Target and explanatory variables 

 
Table B 1 – Target variable: IGN 

Map DESCRIPTION 

 

Variable:  
Ignition points 
 
Variable name:  
IGN 
 
Type of variable:  
Binary 

Histogram 
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Table B 2 – Target variable: IGN_PLUS 

Map DESCRIPTION 

 

Variable:  
Generalised ignition 
points (ignition points 
plus ignition adjacent 
cells) 
 
Variable name: 
IGN_PLUS 
 
Type of variable:  
Binary 

Histogram 
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Table B 3 – Target variable: BA 

Map DESCRIPTION 

 

Variable: 
Burned area 
 
Variable name: 
BA 
 
Type of variable: 
Binary 

Histogram 
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Table B 4 – Target variable: BA_PERC 

Map DESCRIPTION 

 

Variable:  
Percentage of burned 
area in each cell (%) 
 
Variable name: 
BA_PERC 
 
Type of variable: 
Continuous  
 
Range:  
0% – 100% 
 
Average (burned area 
only): 
50.1% 

Histogram 
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Table B 5 – Explanatory variable: EUC_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of 
eucalyptus tree cover in 
each cell (%) 
 
Variable name: 
EUC_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
16.4% 
 
Standard deviation: 
24.4% 
 
Effect: 
Ignition and spread 

Histogram 

 
 

  



13 
 

Table B 6 – Explanatory variable: PIN_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of pine tree 
cover in each cell (%) 
 
Variable name: 
PIN_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
25.9% 
 
Standard deviation: 
27.3% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 7 – Explanatory variable: SHRUB_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of 
shrubland cover in each 
cell (%) 
 
Variable name: 
SHRUB_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
9.4% 
 
Standard deviation: 
18.3% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 8 – Explanatory variable: OUTR_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of other 
types of tree cover in 
each cell (%) 
 
Variable name: 
OUTR_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
15.4% 
 
Standard deviation: 
21.8% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 9 – Explanatory variable: HIGHFLAM 

Map DESCRIPTION 

 

Variable:  
Percentage of highly 
flammable vegetation 
in each cell (%) 
 
Variable name: 
HIGHFLAM 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
43.9% 
 
Standard deviation: 
29.1% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 10 – Explanatory variable: FUELDEN_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of dense 
vegetation cover in 
each cell (%) 
 
Variable name: 
FUELDEN_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
40.0% 
 
Standard deviation: 
29.0% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 11 – Explanatory variable: MEANTEMP 

Map DESCRIPTION 

 

Variable:  
Average daily mean 
temperature (°C) 
 
Variable name: 
MEANTEMP 
 
Type of variable: 
Continuous 
 
Range:  
9°C – 17°C 
 
Average: 
13.8°C 
 
Standard deviation: 
1.6°C 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 12 – Explanatory variable: DEWPOINT 

Map DESCRIPTION 

 

Variable:  
Average daily mean 
dewpoint (°C) 
 
Variable name: 
DEWPOINT 
 
Type of variable: 
Continuous  
 
Range:  
2°C – 11°C 
 
Average: 
7.5°C 
 
Standard deviation: 
1.8°C 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 13 – Explanatory variable: WINDSPEED 

Map DESCRIPTION 

 

Variable:  
Average daily mean 
wind speed (km/h) 
 
Variable name: 
WINDSPEED 
 
Type of variable: 
Continuous  
 
Range:  
7 km/h – 18 km/h 
 
Average: 
11.6 km/h 
 
Standard deviation: 
1.9 km/h 
 
Effect: 
Spread 

Histogram 
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Table B 14 – Explanatory variable: PRECTOT 

Map DESCRIPTION 

 

Variable:  
Average total annual 
precipitation (mm) 
 
Variable name: 
PRECTOT 
 
Type of variable: 
Continuous  
 
Range:  
600 mm – 1283 mm 
 
Average: 
869.7 mm 
 
Standard deviation: 
137.9 mm 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 15 – Explanatory variable: DRYMONTH 

Map DESCRIPTION 

 

Variable:  
Number of dry months 
(no.) 
 
Variable name: 
DRYMONTH 
 
Type of variable: 
Discrete (treated as 
continuous)  
 
Range:  
3 – 4 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 16 – Explanatory variable: SLOPE 

Map DESCRIPTION 

 

Variable:  
Slope (°) 
 
Variable name: 
SLOPE 
 
Type of variable: 
Continuous 
 
Range:  
0° – 27° 
 
Average: 
6.5° 
 
Standard deviation: 
4.7° 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 17 – Explanatory variable: ASPECT 

Map DESCRIPTION 

 

Variable:  
Aspect (°) 
 
Variable name: 
ASPECT 
 
Type of variable: 
Continuous 
 
Range:  
1° – 312° 
 
Average: 
179° 
 
Standard deviation: 
38.3° 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 18 – Explanatory variable: ELEVATION 

Map DESCRIPTION 

 

Variable:  
Elevation (m) 
 
Variable name: 
ELEVATION 
 
Type of variable: 
Continuous 
 
Range:  
0 m – 1919 m 
 
Average: 
363.9 m 
 
Standard deviation: 
274.3 m 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 19 – Explanatory variable: PRIM_PERC 

Map DESCRIPTION 

 

Variable:  
Proportion of 
population employed in 
agriculture, animal 
production, fishing, 
forestry and hunting 
(CAE Rev3 A) (%) 
 
Variable name: 
PRIM_PERC 
 
Type of variable: 
Continuous 
 
Range:  
0% – 54% 
 
Average: 
8.0% 
 
Standard deviation: 
8.0% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 20 – Explanatory variable: AGRMAQ_PERC 

Map DESCRIPTION 

 

Variable:  
Proportion of farms 
with agricultural 
machines (%) 
 
Variable name: 
AGRMAQ_PERC 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
68.6% 
 
Standard deviation: 
16.3% 
 
Effect: 
Ignition 

Histogram 
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Table B 21 – Explanatory variable: SAUFARM_HA 

Map DESCRIPTION 

 

Variable:  
Average used 
agricultural surface 
(SAU) per farm (ha) 
 
Variable name: 
SAUFARM_HA 
 
Type of variable: 
Continuous 
 
Range:  
0 ha – 441 ha 
 
Average: 
11.1 ha 
 
Standard deviation: 
24.5 ha 
 
Effect: 
Spread 

Histogram 
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Table B 22 – Explanatory variable: FARMDEN_KM 

Map DESCRIPTION 

 

Variable:  
Farm density (no./km2) 
 
Variable name: 
FARMDEN_KM 
 
Type of variable: 
Continuous 
 
Range:  
0 – 22 
 
Average: 
3.5 
 
Standard deviation: 
2.8 
 
Effect: 
Spread 

Histogram 
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Table B 23 – Explanatory variable: LVSTK_NFARM 

Map DESCRIPTION 

 

Variable:  
Average livestock per 
farm (no.) 
 
Variable name: 
LVSTK_NFARM 
 
Type of variable: 
Discrete (treated as 
continuous) 
 
Range:  
0 – 15018 
 
Average: 
186.7 
 
Standard deviation: 
925.7 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 24 – Explanatory variable: HEADS_NSAU 

Map DESCRIPTION 

 

Variable:  
Normal heads per used 
agricultural surface 
(SAU) (no./ha) 
 
Variable name: 
HEADS_NSAU 
 
Type of variable: 
Continuous 
 
Range:  
0 – 14 
 
Average: 
1.7 
 
Standard deviation: 
2.7 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 25 – Explanatory variable: GRZ_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of pasture 
cover (grazing areas) in 
each cell (%) 
 
Variable name: 
GRZ_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
4.6% 
 
Standard deviation: 
13.9% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 26 – Explanatory variable: AGR65_PERC 

Map DESCRIPTION 

 

Variable:  
Proportion of single 
agricultural holders 
over 65 years of age (%) 
 
Variable name: 
AGR65_PERC 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
55.2% 
 
Standard deviation: 
12.3% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 27 – Explanatory variable: AP2015_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to protected 
sites (km) 
 
Variable name: 
AP2015_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 46 km 
 
Average: 
14.7 km 
 
Standard deviation: 
11.0 km 
 
Effect: 
Spread 

Histogram 
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Table B 28 – Explanatory variable: NHEST_PERC 

Map DESCRIPTION 

 

Variable:  
Nights at hotel 
establishments 
(no./100 inhab.) 
 
Variable name: 
NHEST_PERC 
 
Type of variable: 
Continuous 
 
Range:  
0 – 1142 
 
Average: 
159.5 
 
Standard deviation: 
198.1 
 
Effect: 
Ignition 

Histogram 
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Table B 29 – Explanatory variable: PROAD_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to primary 
roads (km) 
 
Variable name: 
PROAD_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 23 km 
 
Average: 
2.3 km 
 
Standard deviation: 
3.0 km 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 30 – Explanatory variable: SROAD_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to secondary 
roads (km) 
 
Variable name: 
SROAD_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 8 km 
 
Average: 
0.3 km 
 
Standard deviation: 
0.7 km 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 31 – Explanatory variable: TRACK_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to tracks (km) 
 
Variable name: 
TRACK_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 5 km 
 
Average: 
0.1 km 
 
Standard deviation: 
0.3 km 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 32 – Explanatory variable: RAIL_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to railroads 
(km) 
 
Variable name: 
RAIL_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 48 km 
 
Average: 
11.7 km 
 
Standard deviation: 
9.6 km 
 
Effect: 
Ignition 

Histogram 
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Table B 33 – Explanatory variable: WUI 

Map DESCRIPTION 

 

Variable:  
Wildland-Urban 
Interface areas 
 
Variable name: 
WUI 
 
Type of variable: 
Binary 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 34 – Explanatory variable: URB_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to urban areas 
and infrastructures 
(km) 
 
Variable name: 
URB_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 34 km 
 
Average: 
7.3 km 
 
Standard deviation: 
6.8 km 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 35 – Explanatory variable: INDUST_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to industrial 
sites (km) 
 
Variable name: 
INDUST_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 29 km 
 
Average: 
3.5 km 
 
Standard deviation: 
3.9 km 
 
Effect: 
Ignition 

Histogram 
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Table B 36 – Explanatory variable: LEISURE_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to recreational 
areas and touristic 
zones (km) 
 
Variable name: 
LEISURE_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 26 km 
 
Average: 
3.7 km 
 
Standard deviation: 
3.2 km 
 
Effect: 
Ignition 

Histogram 
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Table B 37 – Explanatory variable: CAMP_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to campsites 
(km) 
 
Variable name: 
CAMP_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 55 km 
 
Average: 
18.4 km 
 
Standard deviation: 
10.1 km 
 
Effect: 
Ignition 

Histogram 
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Table B 38 – Explanatory variable: POWER_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to electric 
lines (km) 
 
Variable name: 
POWER_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 44 km 
 
Average: 
4.6 km 
 
Standard deviation: 
7.0 km 
 
Effect: 
Ignition 

Histogram 
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Table B 39 – Explanatory variable: LDFLL_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to landfills 
(km) 
 
Variable name: 
LDFLL_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 41 km 
 
Average: 
10.8 km 
 
Standard deviation: 
7.3 km 
 
Effect: 
Ignition 

Histogram 
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Table B 40 – Explanatory variable: ALOJ_GRID 

Map DESCRIPTION 

 

Variable:  
Housing density 
(no./km2) 
 
Variable name: 
ALOJ_GRID 
 
Type of variable: 
Continuous 
 
Range:  
0 – 5266 
 
Average: 
47.8 
 
Standard deviation: 
175.8 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 41 – Explanatory variable: EDIF_GRID 

Map DESCRIPTION 

 

Variable:  
Building density 
(no./km2) 
 
Variable name: 
EDIF_GRID 
 
Type of variable: 
Continuous 
 
Range:  
0 – 2510 
 
Average: 
36.5 
 
Standard deviation: 
84.5 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 42 – Explanatory variable: SSEHOUS_PERC 

Map DESCRIPTION 

 

Variable:  
Proportion of seasonal 
use, secondary 
residence or empty 
housing (%) 
 
Variable name: 
SSEHOUS_PERC 
 
Type of variable: 
Continuous 
 
Range:  
12% – 86% 
 
Average: 
48.2% 
 
Standard deviation: 
15.5% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 43 – Explanatory variable: POP_GRID 

Map DESCRIPTION 

 

Variable:  
Population density 
(inhab./km2) 
 

Variable name: 
POP_GRID 
 
Type of variable: 
Continuous 
 
Range:  
0 – 7584 
 
Average: 
75.6 
 
Standard deviation: 
271.7 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 44 – Explanatory variable: POPCHANG_RT 

Map DESCRIPTION 

 

Variable:  
Rate of population 
change by parish (2001-
2011) (%) 
 

Variable name: 
POPCHANG_RT 
 
Type of variable: 
Continuous 
 
Range:  
-43% – 45% 
 
Average: 
-10.8% 
 
Standard deviation: 
11.9% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 45 – Explanatory variable: POTENT_INDEX 

Map DESCRIPTION 

 

Variable:  
Potentiality index by 
municipality 
 

Variable name: 
POTENT_INDEX 
 
Type of variable: 
Continuous 
 
Range:  
68 – 96 
 
Average: 
81.2 
 
Standard deviation: 
4.8 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 46 – Explanatory variable: AGE_INDEX 

Map DESCRIPTION 

 

Variable:  
Ageing index by parish 
 

Variable name: 
AGE_INDEX 
 
Type of variable: 
Continuous 
 
Range:  
62 – 6000 
 
Average: 
491.1 
 
Standard deviation: 
565.4 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 47 – Explanatory variable: AGR_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of 
agricultural land cover 
in each cell (%) 
 

Variable name: 
AGR_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
25.4% 
 
Standard deviation: 
26.1% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 48 – Explanatory variable: FOREST_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of forest 
cover in each cell (%) 
 

Variable name: 
FOREST_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 100% 
 
Average: 
66.0% 
 
Standard deviation: 
30.9% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 49 – Explanatory variable: LCC9519_COS 

Map DESCRIPTION 

 

Variable:  
Percentage of land that 
had changes in 
use/cover (agricultural 
areas to forested and 
natural areas and other 
areas to forested and 
natural areas) in each 
cell (1995-2010) (%) 
 

Variable name: 
LCC9510_COS 
 
Type of variable: 
Continuous 
 
Range:  
0% – 88% 
 
Average: 
4.7% 
 
Standard deviation: 
8.1% 
 
Effect: 
Ignition and spread 

Histogram 
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Table B 50 – Explanatory variable: PCPP 

Map DESCRIPTION 

 

Variable:  
Per capita purchasing 
power by municipality 
 

Variable name: 
PCPP 
 
Type of variable: 
Continuous 
 
Range:  
53 – 136 
 
Average: 
74.7 
 
Standard deviation: 
15.9 
 
Effect: 
Ignition 

Histogram 
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Table B 51 – Explanatory variable: UNEMP_PERC 

Map DESCRIPTION 

 

Variable:  
Unemployment rate 
(%) 
 

Variable name: 
UNEMP_PERC 
 
Type of variable: 
Continuous 
 
Range:  
0% – 38% 
 
Average: 
11.1% 
 
Standard deviation: 
4.7% 
 
Effect: 
Ignition 

Histogram 
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Table B 52 – Explanatory variable: RPSUP_PERC 

Map DESCRIPTION 

 

Variable:  
Proportion of resident 
population with post-
secondary education 
(%) 
 

Variable name: 
RPSUP_PERC 
 
Type of variable: 
Continuous 
 
Range:  
0% – 52% 
 
Average: 
6.9% 
 
Standard deviation: 
4.9% 
 
Effect: 
Ignition 

Histogram 
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Table B 53 – Explanatory variable: RPSEC_PERC  

Map DESCRIPTION 

 

Variable:  
Proportion of resident 
population with 
secondary education 
(%) 
 

Variable name: 
RPSEC_PERC 
 
Type of variable: 
Continuous 
 
Range:  
3% – 69% 
 
Average: 
18.1% 
 
Standard deviation: 
8.8% 
 
Effect: 
Ignition 

Histogram 
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Table B 54 – Explanatory variable: ILLIT_PERC 

Map DESCRIPTION 

 

Variable:  
Illiteracy rate (%) 
 

Variable name: 
ILLIT_PERC 
 
Type of variable: 
Continuous 
 
Range:  
1% – 42% 
 
Average: 
11.8% 
 
Standard deviation: 
6.8% 
 
Effect: 
Ignition 

Histogram 
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Table B 55 – Explanatory variable: CRIME_RT 

Map DESCRIPTION 

 

Variable:  
Criminality rate (‰) 
 

Variable name: 
CRIME_RT 
 
Type of variable: 
Continuous 
 
Range:  
14‰ – 46‰ 
 
Average: 
28.5‰ 
 
Standard deviation: 
6.8‰ 
 
Effect: 
Ignition 

Histogram 
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Table B 56 – Explanatory variable: HOBR_PERC 

Map DESCRIPTION 

 

Variable:  
Proportion of housing 
owned by residents (%) 
 

Variable name: 
HOBR_PERC 
 
Type of variable: 
Continuous 
 
Range:  
14% – 83% 
 
Average: 
45.9% 
 
Standard deviation: 
13.2%  
 
Effect: 
Spread 

Histogram 
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Table B 57 – Explanatory variable: RPFGC_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to firelines 
(km) 
 

Variable name: 
RPFGC_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 25 km 
 
Average: 
3.4 km 
 
Standard deviation: 
5.2 km 
 
Effect: 
Spread 

Histogram 
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Table B 58 – Explanatory variable: IGN_DIST 

Map DESCRIPTION 

 

Variable:  
Distance to ignition 
points (km) 
 

Variable name: 
IGN_DIST 
 
Type of variable: 
Continuous 
 
Range:  
0 km – 30 km 
 
Average: 
4.5 km 
 
Standard deviation: 
3.9 km 
 
Effect: 
Spread 

Histogram 
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ANNEX C 

ROC curve plots and classification tables: large wildfire ignition and propagation models 

Figure C 1 – Large wildfire ignition model: Global 

 
 

Table C 1 - Large wildfire ignition model: Global 

 True  
Classified D ~D Total 

+ 2 5 7 

- 2808 18755 21563 

Total 2810 18760 21570 

 
 

Figure C 2 – Large wildfire ignition model: Cluster 1 
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Table C 2 – Large wildfire ignition model: Cluster 1 

 True  
Classified D ~D Total 

+ 0 0 0 

- 931 7002 7933 

Total 931 7002 7933 

 
Figure C 3 – Large wildfire ignition model: Cluster 2 

 
 

Table C 3 – Large wildfire ignition model: Cluster 2 

 True  
Classified D ~D Total 

+ 0 0 0 

- 63 2295 2358 

Total 63 2295 2358 

 
Figure C 4 – Large wildfire ignition model: Cluster 3 
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Table C 4 – Large wildfire ignition model: Cluster 3 

 True  
Classified D ~D Total 

+ 18 19 37 

- 1252 5322 6574 

Total 1270 5341 6611 

 
Figure C 5 – Large wildfire ignition model: Cluster 4 

 
 

Table C 5 – Large wildfire ignition model: Cluster 4 

 True  
Classified D ~D Total 

+ 12 7 19 

- 534 4115 4649 

Total 546 4122 4668 
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Figure C 6 – Large wildfire propagation model: Global 

 
 

Table C 6 – Large wildfire propagation model: Global 

 True  
Classified D ~D Total 

+ 2275 1234 3509 

- 3068 14993 18061 

Total 5343 16227 21570 

 
Figure C 7 – Large wildfire propagation model: Cluster 1 

 
 

Table C 7 – Large wildfire propagation model: Cluster 1 

 True  
Classified D ~D Total 

+ 438 187 625 

- 479 2795 3274 

Total 917 2982 3899 
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Figure C 8 – Large wildfire propagation model: Cluster 2 

 
 

Table C 8 – Large wildfire propagation model: Cluster 2 

 True  
Classified D ~D Total 

+ 448 251 699 

- 691 4156 4847 

Total 1139 4407 5546 

 
Figure C 9 – Large wildfire propagation model: Cluster 3 

 
 

Table C 9 – Large wildfire propagation model: Cluster 3 

 True  
Classified D ~D Total 

+ 4 8 12 

- 188 2526 2714 

Total 192 2534 2726 
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Figure C 10 – Large wildfire propagation model: Cluster 4 

 
 

Table C 10 – Large wildfire propagation model: Cluster 4 

 True  
Classified D ~D Total 

+ 1279 601 1880 

- 715 2258 2973 

Total 1994 2859 4853 

 
Figure C 11 – Large wildfire propagation model: Cluster 5 

 
 

Table C 11 – Large wildfire propagation model: Cluster 5 

 True  
Classified D ~D Total 

+ 560 289 849 

- 541 3156 3697 

Total 1101 3445 4546 
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ANNEX D 

Individual variable plots: large wildfire ignition and propagation models 

Figure D 1 – Large wildfire ignition model: Global 
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Figure D 2 – Large wildfire ignition model: Cluster 1 
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Figure D 3 – Large wildfire ignition model: Cluster 2 
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Figure D 4 – Large wildfire ignition model: Cluster 3 
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Figure D 5 – Large wildfire ignition model: Cluster 4 
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Figure D 6 – Large wildfire propagation model (first part): Global 
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Figure D 7 – Large wildfire propagation model (first part): Cluster 1 
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Figure D 8 – Large wildfire propagation model (first part): Cluster 2 
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Figure D 9 – Large wildfire propagation model (first part): Cluster 3 
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Figure D 10 – Large wildfire propagation model (first part): Cluster 4 
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Figure D 11 – Large wildfire propagation model (first part): Cluster 5 
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