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Abstract. Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-
based neighborhood weight matrix, commonly known as neighborhood-based GMRF models, have
been the mainstream approach to spatial smoothing in Bayesian disease mapping. However, there are
cases when there is no evidence of positive spatial correlation or the appropriate mix between local
and global smoothing is not constant across the region being study. Two models have been proposed
for those cases, a conditionally specified Gaussian random field (GRF) model using a similarity-based
non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping, and a
spatially adaptive conditional autoregressive prior model. The former model, named similarity-based
GRF, is motivated for modeling disease mapping data in situations where the underlying small area
relative risks and the associated determinant factors do not varying systematically in space, and the
similarity is defined by similarity with respect to the associated disease determinant factors. In the
presence of disease data with no evidence of positive spatial correlation, a simulation study showed a
consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF
with the determinant risk factors as covariate. The latter model considers a spatially adaptive extension
of Leroux et al. [9] prior to reflect the fact that the appropriate mix between local and global smoothing
may not be constant across the region being studied. Local smoothing will not be indicated when an
area is disparate from its neighbours (e.g. in terms of social or environmental risk factors for the health
outcome being considered). The prior for varying spatial correlation parameters may be based on a
regression structure which includes possible observed sources of disparity between neighbours. We
will compare the results of the two models.
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1 Introduction

Spatial disease mapping models are being extensively used to describe geographical patterns of mortality
and morbidity rates. Information provided by these models is considered invaluable by health researchers
and policy-makers as it allows, for example, to effectively allocate funds in high risk areas, and/or to plan
for localised prevention/intervention programmes.

In cases of rare diseases and/or low populated areas, the classical estimators of the morbidity rates
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show high variability, and spatial disease mapping models overcome that by borrowing strength from
spatial neighbours. One rationale is that the spatial random effects used to implement such borrowing of
strength are proxies for unobserved risk factors that vary smoothly in space. Models used in disease map-
ping are usually generalized linear mixed models (GLMM) formulated within a hierarchical Bayesian
framework, and Poisson likelihood is often assumed for data in the form of counts of cases for each areal
unit. Neighbourhood information is explicitly incorporated into the model by means of an appropriate
prior specification. The seminal work of Besag et al. [3] provides a pair of area-specific random effects
to model unstructured heterogeneity (extra-Poisson variation) and spatial similarity. The Besag-York-
Mollié (BYM) model is an extension of the intrinsic conditional autocorrelation (CAR) model, a well
known Gaussian Markov random field (GMRF) prior in disease mapping [3]. In the same field, Leroux
et al. [9] proposed a conditional autoregressive prior incorporating a spatial correlation parameter, with
its extreme values corresponding to pure spatial and pure unstructured residual variation. One important
aspect of the CAR modelling is the definition of the so-called neighbourhood matrix, which characterizes
the spatial structure of the data at hand, and is based on the concept of neighbours.

The debate on the definition of neighbours can be traced back to Besag [2]. Others have worked
in defining neighbours in several different ways (Besag et al. [3], Best et al. [4], Earnest et al. [6],
Congdon [5] and Lee and Mitchell [8]).

Most of the research in disease mapping is related with diseases resulting from environmental ex-
posures, such as respiratory complications and cancer. Those extrinsic disease determinant factors are
spatially smoothed, and using some kind of spatial proximity, either by adjacency or by distance, be-
tween areas in the definition of neighbours has therefore provided good results. In cases in which no
spatial positive autocorrelation is displayed by the data, the neighbourhood matrix as it exists today
may not be adequate. The similarity-based GRF approach, proposed by Baptista et al. [1], replaces the
neighbourhood-based GMRF approach. The structure of the conditionals is maintained, but the smooth-
ing and borrowing strength mechanisms are now based on the similarity of the areas, regardless of their
relative location in space.

Another approach to the same aspect is proposed by Congdon [5], where is considered that uniform
borrowing of strength based simply on proximity or contiguity may not be appropriate when there are
discontinuities in the spatial pattern of health events or risk factors; for instance, a low mortality area
surrounded by high mortality areas. Such discontinuity may often reflect spatial discontinuities in risk
factors, whether observed or unobserved. An area showing such discontinuity may have a distorted
smoothed rate when smoothing is towards the local mean.

In this submission we will present results of the implementation of the above two mentioned models.
Section 2 will provide a brief overview of the similarity model, Section 3 will provide a brief overview
of the adaptive model and Section 4 will provide a brief overview of the data used. This is still work in
progress, so no results will be presented now.

2 A similarity-based Gaussian random field model

The GRF model proposed no longer retains the Markovian properties as those based on the neighbour-
hood weights. Instead of using spatial distance or spatial adjacency, a measure reflecting similarity
between areas is introduced. Data used should come from: a) a disease determinant factor or a combina-
tion of factors, b) a source external to the survey that collected the disease data. The main objective of the
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proposed model is the provision for borrowing strength between areas with similar disease determinant
factors.

Firstly, regions exhibiting the same or close level of risk in a determinant factor will be regions with
the same or close risk of the disease. Secondly, if disease data need to be strengthened, using disease
determinant factor information collected by the same survey might inflate or not remediate possible
weaknesses of the disease data. Therefore, an external source for the disease determinant factor is critical.

The rationale of our approach is the following: in cases of diseases with no environmental deter-
minant factors, use of a positive spatial correlation based on physical distance or adjacency, in the
GRF/GMRF model, may not be the best way to reflect similarity between areas. By using the GRF
model reflecting how similar each area is to one another, in terms of a disease determinant factor that
was collected by an external source, the disease risk distribution can be better assessed.

We use the BYM model (more detailed specifications can be found elsewhere [3]), with a neigh-
bourhood matrix based on a matrix definition proposed by Best et al. [4], the new similarity matrix, with
elements hi j for each region i, with the following structure:

hi j =

{
e−pi j/b, if j 6= i

1
n−1 ∑h(−i), otherwise,

where pi j is the absolute gap between region i and region j, pi j = |pi− p j|, in terms of the disease
determinant factor, and b is equal to a value that gives a relative weight of 1% (hi j = 0.01) to an area i
whose difference from an area j is the mean inter-region difference for the country. Elements hii need a
specific definition, otherwise their value would be the one contributing the most to the prior, as e0 = 1
and all other di j elements have values between 0 and 1. Therefore, pii values are equal to the average
value of all elements except the ith area value.

More details can be found in Baptista et al. [1].

3 A Spatially Adaptive Conditional Autoregressive Prior

The similarity based GRF prior (Section 2) replaces spatial proximity as a basis for borrowing strength
by similarity in one or more risk factors, and so takes explicit account of the actual spatial pattern of risk
factors, allowing for the case when that pattern may be irregular (not spatially smooth). By contrast, the
spatially adaptive approach retains the principle of spatial borrowing of strength, but modifies it to better
represent discontinuities in the outcome and/or observed risk factors. The degree of spatial correlation is
allowed to vary between sub-regions of the region under consideration, with one possible scheme linking
varying spatial correlation to spatial similarity (or dissimilarity) in risk factors between an area and its
surrounding locality.

We start with the Leroux et al. [9] model and here we propose spatial adaptivity based on area specific
λ ∈ [0,1], the uniform measure of spatial dependence. For areas i, distinctly low λi correspond to spatial
disparate areas, unlike their neighbours in health risk and/or risk factors, so that there may be benefit in
downweighting the principle of uniform pooling to the locality mean.

If predictors Wi measuring dissimilarity in observed risk factors are available, and so relevant to
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whether pooling should be local or global, one can use a regression scheme logit(λi) ∼ N(Wiγ,1/τλ),
where γ are regression parameters. For example, in Congdon (2008) the discrepancy measure is based on

area socioeconomic deprivation zi, with dissimilarity represented as Wi = |zi−
−
Zi| with

−
Zi being average

deprivation in the locality Li around area i, namely
−
Zi = ∑

j∈Li

z j/di.

More details can be found in Congdon [5].

4 The data

The relative merits of the methodologies mentioned in sections 3 and 4 must be investigated by applying
those models to data sets exhibiting different patterns of spatial association. Therefore, both models are
assessed under the spatial association generated by data sets used either in Baptista et al. [1] (alcohol
abuse disorder) and Congdon [5].

Other data sets are under investigation and may be used.
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