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Summary 

 

The Host presents different innate immune components to fight 

bacterial infections, most of which are evolutionary conserved strategies. 

Conversely, Bacteria present numerous mechanisms of virulence and 

evasion, transversal to different bacterial species, that confer resistance or 

subvert the activity of the Host components. This thesis presents a study 

on how the Host perceives the Bacteria and reacts to them and how the 

Bacteria protect themselves from those responses. 

Peptidoglycan (PGN) is a ubiquitous cell surface bacterial polymer. 

It is composed of glycan chains cross-linked through peptide bridges. The 

residue at the third position of the peptide moiety shows the highest 

variability among the different PGNs. Nevertheless, most bacteria possess 

either a lysine (Lys) or a meso-diaminopimelic acid (DAP) residue. 

The Host components that act on the PGN, range from enzymes 

that degrade it to receptors that upon recognition initiate downstream 

signalling cascades leading to the production of antimicrobial peptides. 

The Peptidoglycan Recognition Proteins (PGRPs) are evolutionary 

conserved innate immune receptors in Invertebrates and Vertebrates, 

including Humans. In Drosophila melanogaster, PGN is the main bacterial 

component that triggers an immune response and it is recognised by the 

PGRPs. According to the current model of bacterial recognition, the PGRPs 

possess discriminatory ability between Lys- and DAP- type PGN. PGRP-SA, 

in vivo, binds exclusively to Lys-type bacteria, whereas PGRP-LC 

specifically binds to DAP-type bacteria.   

Previous work from the Host Labs1 has shown that bacteria 

                                                           
1 Filipe Lab, Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia 

Química e Biológica António Xavier, Universidade Nova de Lisboa. 
Ligoxygakis Lab, Laboratory of Cell Biology, Development and Genetics, Department of 
Biochemistry, University of Oxford. 
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present components at the cell surface that impair detection of the PGN 

and thus compromise host survival [1], [2]2. The wall teichoic acids (WTA) 

are phosphate-rich polymers of the Gram-positive cell wall that exert 

stereo hindrance by shielding the PGN from PGRP-SA [1]. Atl is an 

autolysin that cleaves PGN in order to sustain cell growth and division. In 

the absence of this enzyme, the bacteria accumulate cell surface exposed 

PGN which is recognised by PGRP-SA and allows the survival of the Fly [2]. 

From the Bacteria side, I aimed to understand: 1) whether WTA are 

a transversal bacterial evasion mechanism that impair PGN recognition by 

Host receptors; 2) whether other autolysins could impair the binding of 

PGN by PGRP-SA and contribute to evasion. From the Host side, I aimed to 

ascertain the discriminatory ability of PGRP-SA and PGRP-LC towards the 

Lys and DAP residues. Why are two major immune receptors limited in 

bacterial recognition due to the discrimination of two residues? As the 

work evolved, the data suggested that PGRP-SA could engage in cellular 

responses. Thus, the final goal of my work was to evaluate the role of PGRP-

SA in phagocytosis. 

As an overall, the work here presented asks for a re-evaluation of 

the current model of bacterial recognition and confirms the importance of 

cellular responses as a first line of defence, followed by the prolonged and 

protective humoral responses. In addition, I show that recognition of PGN 

is paramount for the triggering of efficient responses by both the cellular 

and humoral responses. 

I show that PGRP-SA has access to PGN fragments that are 

                                                           
2 [1] M. L. Atilano, J. Yates, M. Glittenberg, S. R. Filipe, and P. Ligoxygakis, “Wall teichoic 

acids of staphylococcus aureus limit recognition by the drosophila peptidoglycan 
recognition protein-SA to promote pathogenicity,” PLoS Pathog., vol. 7, no. 12, 2011. 

   [2] M. L. Atilano, P. M. Pereira, F. Vaz, M. J. Catalão, P. Reed, I. R. Grilo, R. G. Sobral, P. 
Ligoxygakis, M. G. Pinho, and S. R. Filipe, “Bacterial autolysins trim cell surface 
peptidoglycan to prevent detection by the drosophila innate immune system,” Elife, 
vol. 2014, no. 3, pp. 1–23, 2014. 
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temporarily surface exposed during the bacterial cell division. Thus 

autolysins do play a role in the impairment for PGN detection. If their 

activity is compromised, there is accumulation of PGN at the cell surface. 

Particularly, Atl and Sle1 have a great impact in cell division. Besides Atl, 

Sle1 also contributes to impair PGN detection. In the absence of Sle1, there 

is the accumulation of newly synthesised PGN fragments at the septum 

which are recognised by PGRP-SA. However, the amount of PGN that is 

recognised is fundamental for the triggering of a potent immune response. 

Therefore, paradoxically, Sle1 does not seem to contribute for virulence 

regarding PGN recognition. I propose that it is the sum of the autolysins 

activity that can properly impair the detection of PGN during cell division, 

albeit the Atl protein presents a more preponderant role 

 I show that PGRP-SA and PGRP-LC are promiscuous for the Lys 

and DAP residues of the PGN and both participate in the immune 

responses upon infection. When the PGN is detected, both PGRPs act as 

opsonins and engage in the phagocytic and clearance processes. In 

particular, PGRP-SA has optimal binding ability and presents lytic activity 

at low pH, indicating that it may act as an enzyme inside the 

phagolysosomes. After phagocytosis, the macrophages seem to present 

two ways of clearance: phagocytosis-exocytosis or phagocytosis-

apoptosis. Through induction of apoptosis, the macrophages may be able 

to incorporate the internalised bacteria in the apoptotic bodies which will 

be phagocytosed. The bacterial destruction can then be achieved through 

a new phagocytosis process. This strategy of phagocytosis-apoptosis is 

likely to occur until complete bacterial clearance.  

Concomitantly, the clearance is dependent on the degradation of 

the PGN, which is compromised by the WTA. Therefore, the WTA are a dual 

strategy of immune evasion. At a first level, they impair the primary 

recognition by both PGRPs which is crucial to trigger the phagocytic 

processes (and also the induction of antimicrobial peptides). At a second 
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level, they impair the processes of clearance by impairing the activity of 

these PGRPs (and perhaps by other Host components).  

I propose that it is the accessibility of the PGRPs through the cell 

wall that determines the PGN recognition and not the discrimination 

between the DAP and Lys residues. Furthermore, I propose that the WTA 

of the Gram-positive bacteria and the outer membrane of the Gram-

negative bacteria, are conserved bacterial immune evasion strategies 

towards the recognition and activity of PGN host receptors.  In addition, I 

propose that the macrophages present two pathways of clearance: 

phagocytosis-exocytosis and phagocytosis-apoptosis. The activation of 

either pathway is in turn dependent on the bacterial type and the factors 

that they possess that interfere with an efficient phagocytosis-clearance 

process. 
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O Hospedeiro apresenta inúmeras estratégias de resposta inata 

contra a Bactéria. Estas estratégias estão presentes em diferentes 

Hospedeiros por serem conservadas ao longo da evolução das espécies. A 

Bactéria, por seu turno, apresenta diferentes mecanismos de virulência e 

de evasão que permitem a sobrevivência e o estabelecimento de uma 

infeção no Hospedeiro. Estas estratégias são transversais a diversas 

espécies de bactérias. A presente tese de doutoramento descreve um 

estudo sobre o modo como o Hospedeiro perceciona e reage à Bactéria e o 

modo com que esta se protege de tais respostas. 

 O peptidoglicano (PGN) é um polímero ubiquitário da superfície 

das bactérias. É composto por cadeias polissacarídeas que se interligam 

por pontes peptídicas. A terceira posição da cadeia peptídica alberga o 

aminoácido mais variável dentro dos vários tipos de PGNs. Ainda assim, na 

maioria dos casos, encontra-se ou uma Lisina (Lys) ou um ácido 

diaminopimélico (DAP). 

O PGN é detetado por componentes do Hospedeiro que iniciam 

respostas imunitárias. Estes componentes compreendem quer enzimas 

que degradam o PGN, quer recetores que o reconhecem e ativam cascatas 

imunitárias que conduzem à expressão de péptidos antimicrobianos. As 

“Peptidoglycan Recognition Proteins” (PGRPs) são recetores 

evolutivamente conservados do Sistema Imunitário Inato de 

Invertebrados e Vertebrados, inclusive o Homem.  

O PGN é o principal componente bacteriano que inicia respostas 

imunitárias na mosca Drosophila melanogaster. Segundo o modelo de 

reconhecimento do PGN em D. melanogaster, as PGRPs possuem 

especificidade para os aminoácidos Lys ou DAP. A PGRP-SA, in vivo, liga-se 

exclusivamente à Lys e a PGRP-LC ao DAP.   
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Os Grupos de Investigação que participaram no presente trabalho1, 

verificaram anteriormente que as bactérias apresentam componentes à 

sua superfície que impedem o reconhecimento do PGN com consequências 

na sobrevivência da mosca [1], [2]2. Os ácidos teicóicos da parede das 

bactérias Gram-positivas (WTA – “Wall teichoic acids”) são polímeros de 

fosfato que impedem o reconhecimento do PGN pela PGRP-SA por 

comporem uma camada que impede o acesso da proteína ao ligando [1]. A 

“major autolysin” Atl, cliva o PGN para promover a duplicação e a divisão 

da célula. Na ausência do Atl, a bactéria acumula à sua superfície 

fragmentos de PGN que são reconhecidos pela PGRP-SA o que resulta na 

sobrevivência da Mosca. 

Pelo lado da bactéria, o meu trabalho de doutoramento teve dois 

objetivos: 1) avaliar se o efeito dos WTA é um mecanismo bacteriano 

conservado que permitem a evasão do reconhecimento do PGN; 2) se 

outras autolisinas impede o reconhecimento do PGN pela PGRP-SA como 

mecanismos de evasão. Concomitantemente, procurei averiguar a 

capacidade discriminatória da PGRP-SA e da PGRP-LC ao PGN. Por que 

motivo estes recetores centrais à resposta antibacteriana, encontram-se 

limitados na deteção devido à especificidade a uma molécula? Com o 

avançar do trabalho, os resultados obtidos levantaram a hipótese de que a 

PGRP-SA participa em respostas celulares. Com efeito, o trabalho culminou 

com o objetivo de avaliar a função da PGRP-SA no processo de fagocitose. 

                                                           
1 Filipe Lab, Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia 
Química e Biológica António Xavier, Universidade Nova de Lisboa. 
   Lygoxygakis Lab, Laboratory of Cell Biology, Development and Genetics, Department of 
Biochemistry, University of Oxford. 
2 [1] M. L. Atilano, J. Yates, M. Glittenberg, S. R. Filipe, and P. Ligoxygakis, “Wall teichoic 

acids of staphylococcus aureus limit recognition by the drosophila peptidoglycan 
recognition protein-SA to promote pathogenicity,” PLoS Pathog., vol. 7, no. 12, 2011. 

   [2] M. L. Atilano, P. M. Pereira, F. Vaz, M. J. Catalão, P. Reed, I. R. Grilo, R. G. Sobral, P. 
Ligoxygakis, M. G. Pinho, and S. R. Filipe, “Bacterial autolysins trim cell surface 
peptidoglycan to prevent detection by the drosophila innate immune system,” Elife, 
vol. 2014, no. 3, pp. 1–23, 2014. 
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 As conclusões do trabalho constante nesta tese pedem que a 

comunidade científica reconsidere o modelo atual de reconhecimento das 

bactérias e intensifica a importância das respostas imediatas celulares 

como primeira linha de defesa, seguidas pelas respostas prolongadas e 

protetoras humorais. O trabalho aqui presente demonstra ainda que o 

reconhecimento do PGN é crucial para a ativação de respostas imunitárias 

celulares e humorais eficientes contra as bactérias. 

O meu trabalho demonstra que a PGRP-SA reconhece fragmentos 

de PGN que são temporariamente expostos à superfície durante a divisão 

das células. Por conseguinte, as autolisinas assumem um papel importante 

na protecção do reconhecimento desta molécula. Quando a actividade das 

autolisinas é comprometida de tal modo que a célula não consegue 

controlar a exposição do PGN durante a divisão, fragmentos de PGN 

recentemente sintetizados não são prontamente incorporados no 

polímero da macromolécula e por isso acumulam-se à superfície. 

Particularmente, a ausência do Atl e do Sle1 têm um forte impacto na 

divisão da bactéria. Com efeito, para além do Atl, também o Sle1 assume 

um papel importante contra o reconhecimento pela PGRP-SA. Na ausência 

do Sle1, há acumulação de fragmentos de PGN recentemente sintetizados 

na região septal que são reconhecidos pela PGRP-SA. Porém, a quantidade 

de PGN que é reconhecida revela-se crucial para a ativação de uma 

resposta eficiente. Por conseguinte, paradoxalmente, o Sle1 não contribui 

para a virulência da bactéria através da evasão ao reconhecimento do PGN. 

Por fim, eu proponho um modelo que se baseia no todo das atividades das 

autolisinas que eficientemente conseguem impedir que uma grande 

quantidade de PGN esteja acessível ao reconhecimento, sendo que o Atl 

assume um papel preponderante. 

Eu demonstro que a PGRP-SA e a PGRP-LC reconhecem quer a Lys 

quer o DAP do PGN e que ambas participam nas respostas imunitárias 

contra os dois tipos de bactérias. Aquando da deteção do PGN, ambas as 
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PGRPs atuam como opsoninas e participam nos processos de fagocitose e 

degradação da bactéria. A PGRP-SA demonstrou ser uma potencial enzima 

lítica que atua em condições acídicas, indicando que deverá exercer 

atividade no fagolisosoma. Após a fagocitose, os resultados sugerem que 

os macrófagos seguem uma de duas estratégias para a degradação da 

bactéria: fagocitose-exocitose ou fagocitose-apoptose. Através da indução 

da apoptose, os macrófagos potencialmente podem conter  as bactérias 

dentro dos corpos apoptóticos que serão por seu turno fagocitados. As 

bactérias serão eliminadas ao sofrerem uma nova fagocitose. É provável 

que este processo de fagocitose-apoptose se repita até se atingir a 

destruição total das bactérias.  

Por outro lado, a degradação do PGN é essencial para a destruição 

da bactéria e os WTA comprometem e dificultam a clivagem do PGN. Assim 

sendo, os WTA atuam a dois níveis contra as defesas do Hospedeiro. 

Primariamente, eles impedem o reconhecimento pela PGRP-SA e PGRP-LC 

e, por conseguinte, a ativação do processo de fagocitose (e a indução da 

expressão de péptidos antimicrobianos). Quando o Hospedeiro ultrapassa 

esta barreira de reconhecimento, os WTA atuam contra a segunda linha de 

resposta que é a destruição da bactéria após fagocitose, ao impedirem a 

ação da PGRP-SA e PGRP-LC (e provavelmente de outros componentes). 

Em suma, eu proponho um modelo de reconhecimento segundo o 

qual é a acessibilidade das PGRPs através da parece celular que determina 

o reconhecimento do PGN. Eu proponho que os WTA das bactérias Gram-

positivas e a “outer membrane” das bactérias Gram-negativas são 

estratégias bacterianas conservadas de evasão ao Sistema Imunitário. Por 

fim, proponho que possivelmente  os macrófagos apresentam duas vias de 

degradação de microrganismos: fagocitose-exocitose e fagocitose-

apoptose. A ativação de uma das vias está por sua vez dependente do tipo 

de bactéria e de fatores que possuem que dificultam a eficiente destruição 

por parte dos macrófagos. 
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Thesis at a glance 

Chapter I. The Bacteria and the Host 
 Are autolysins redundant in impairing access to surface exposed 

peptidoglycan by PGRP-SA? 
 Are PGRP-SA and PGRP-LC specific towards Lys and DAP residues of 

the peptidoglycan? 
 Are WTA a transversal Gram-positive mechanism to shield different 

peptidoglycans from different PGRPs? 

 Is PGRP-SA involved in phagocytosis? 
Chapter II. Recognition of peptidoglycan determines efficient 
antibacterial responses 
 PGRP-SA recognises PGN that is temporarily exposed at the cell 

surface during cell division, which can be impaired by the temporal 
and spatial activity of the autolysins. 

 Sle1 appears to be crucial for cleavage of septal PGN to allow septum 
re-shaping upon splitting of the cells. 

 Recognition of peptidoglycan is key for efficient antibacterial 
responses. 

Chapter III. PGRP-SA and PGRP-LC recognise both Lys and DAP 
residues of the peptidoglycan in vivo 
 In vitro assays showed promiscuity of the PGRPs towards Lys and 

DAP residues. 
 In vivo assays showed that the recognition of both PGN types by both 

PGRPs is paramount for host survival. 

 WTA impair recognition of both peptidoglycan types by both PGRPs. 
Chapter IV. PGRP-SA is involved in bacterial clearance 
 PGRP-SA and PGRP-LC participate in phagocytosis and clearance. 
 PGRP-SA has lytic activity towards different peptidoglycans. 

 Apoptosis is a mechanism to promote clearance. 
Chapter V. Bacteria present mechanisms to evade cellular and 
humoral responses mediated through peptidoglycan recognition by 
PGRP-SA and PGRP-LC  
 The access through the cell wall to the peptidoglycan determines the 

detection by PGRPs. 
 PGRP-SA and PGRP-LC play dual roles in phagocytosis and humoral 

responses. 

 Bacteria possess conserved mechanisms that impair accessibility to 
the PGN. 
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CHAPTER I 

The Bacteria and the Host 

 

The event of the first cell was paramount in shaping all the 

subsequent steps of Evolution of Life. The first cell was the first individual 

and self-sufficient structure that presented defined boundaries, raising the 

concepts of intra- and extracellular environment. Thus, it constituted the 

primordial individualized entity that clearly presented a “self” and 

therefore a “non-self” – the surrounding environment and other cells that 

were grown from it, identical but not the same individuality.  

Colonial organisms evolved to multicellularity, which can be 

described as whole organisms that in their own self are composed of many 

non-self-individualities. Evolution of multicellularity culminated in 

organisms composed of interconnected systems and finally the idea of self 

and non-self was fully stablished and thus shaped the evolution of the 

Immune System (IS).  

As an integrated system in an organism, like the other systems, the 

IS guarantees and maintains homeostasis, i.e. it helps to maintain a state of 

equilibrium in the organism. Particularly, the IS plays the role of protecting 

the organism against danger [1]. As the scientific knowledge grew, we 

became aware of the two branches of the IS – the Innate and the Adaptive. 

Whereas only the Vertebrates possess an Adaptive Immune System, the 

most basic mechanisms of an Innate Immune System (IIS) are found to 

some extent in almost all life forms across the Eukarya Domain. The IIS is 

a constant vigilant of danger signal and is the first line of defence in an 

organism. 

The surveillance and detection of invading microorganisms relies 

on an evolutionary conserved system of receptors that are constitutively 

expressed, non-clonal and independent of immunological memory. They 
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are collectively known as Pattern-recognition receptors (PRR) and 

recognise specific structures in the microorganisms, i.e. they detect danger 

through discrimination of non-self [2]. Whether the detection of danger is 

followed by an immune response is dependent on the confirmation of the 

danger signalling, which is in turn dependent on how the microorganism 

is perceived. It is within these interactions that two concepts became 

implemented: a “Host organism”1 and a “pathogenic organism”2. 

These evolutionary conserved PRR detect conserved microbial 

structures that are specific of a class of microbe and absent in the Host. 

These microbial structures are designated as Pathogen Associated 

Molecular Patterns (PAMP) [2], however nowadays they are also 

commonly referred to as Microbe Associated Molecular Patterns (MAMP), 

since these structures are not specific of pathogenic microorganisms [3], 

[4]. As PAMP are not present in the Host and are conserved in a class of 

microbes, it is the logical that they are crucial for the microbial life. Hence, 

the pathogens present various mechanisms to avoid the detection of their 

PAMP by PRR. The Host-pathogen interaction can be viewed as a 

battlefield that in extreme cases, upon failure of efficient recognition and 

response, can culminate with either the survival of the Host or of the 

pathogen. 

As the definition of boundaries in a cell, the cell surface, was of 

extreme importance to evolution of Life, again we find that it is at the 

surface of the cells that most immune responses begin. Upon breaching of 

the Host surface, many of the first encounters of a PRR and a pathogen 

happen mainly at the level of the microbial cell surface. Thus, many PRR 

are specific for PAMP that are components of the outer surface of the 

pathogens – viruses, bacteria, fungi and parasites. 

                                                           
1 An organism that harbours another organism to which provides nutrients and shelter. 
2 An organism that can cause disease in a Host. 
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 The basic mechanisms underlying Innate Immunity are 

conserved among Plants, Invertebrates and Vertebrates, including 

Humans [5]. Moreover, the virulence determinants and strategies that 

bacteria employ against Host defences are also conserved among a group 

of pathogens, such as Bacteria [6], [7]. Therefore, it is possible to study 

fundamental questions in one organism and extrapolate to others. Hence, 

the concept of model organisms became a foundation for studying 

processes and mechanisms both in Microbiology and Immunology.  

The work presented in this thesis describes a study on Host-

Bacteria interactions. As an overall, the work aimed to understand how a 

certain type of PRRs – the Peptidoglycan Recognition Proteins (PGRPs) – 

recognise a ubiquitous bacterial component, the peptidoglycan, and how 

Bacteria can prevent this recognition. The study of the bacterial factors 

that evade the IS was focused in the bacteria Staphylococcus aureus and 

Bacillus subtilis and the in vivo studies of the PGRPs recognition were 

conducted in the fruit fly Drosophila melanogaster. In this chapter, I 

address the current knowledge on the structure and biology of the 

bacterial surface, particularly the peptidoglycan, and a brief state of the art 

of the Drosophila immune responses. Finally, I present the goal of my PhD 

project and an overview of the contents of each chapter of the thesis. 
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The Bacterial Cell Wall 

 

 Bacteria present several molecules that “coat” and cover the 

outer surface of the cytoplasmic membrane. The arrangement of these 

“coating” molecules forms the cell wall or cell envelope. The cell wall (CW) 

is a complex and dynamic structure that protects the cell and helps in the 

adaptation to different environmental conditions. In broad and simple 

terms, the CW components can be divided in three types: 1) a ubiquitous 

bacterial component, the peptidoglycan; 2) components that are 

characteristic of either Gram-positives, Gram-negatives or of Gram-

positive Corynebacteria; 3) components that may be present in both Gram-

types but are often species- or strain-specific (capsular polysaccharides 

and S-layers).  

 The CW comprises many bacterial components that are in 

contact with the external environment which are determinant for 

infection. It comprises PAMP, virulence factors and components that 

function in immune evasion strategies. Indeed, most current models of 

bacterial recognition are based on how certain CW factors confer 

resistance to Host responses. Thus, the knowledge of the CW composition 

is crucial to understand how bacteria interact with the Host. In addition, 

peptidoglycan is a major PAMP and PRRs that specifically recognise it can 

be found from Plants to Humans. Moreover, along with PRR, the Host also 

produces lytic enzymes capable of degrading the peptidoglycan such as 

Lysozymes and produces antimicrobial peptides3 (AMPs). The PRR, the 

lysozyme proteins and the AMPs are the most conserved immune 

strategies found in almost all Animals.   

                                                           
3 Innate Immunity cationic peptides. They are expressed in response to pathogen detection and 
control the microbial growth by participating in killing and clearance. 
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  Most cell biology studies on bacteria rely on microscopy 

techniques that use specific staining methods. Any staining method is 

inherently dependent in either or both chemical and physical properties of 

the bacterial CW. The most widely used staining is the Gram stain, which 

was first described by Carl Friedlander in 1883 for detecting Streptococcus 

pneumoniae in autopsy of lung tissues [8]4. It was his colleague, Christian 

Gram, who published it in 1884 and soon it started being gradually 

stablished as a routine stain in Hospital settings (Roux 1886) [8]5. The 

original procedure was subsequently improved and published as we know 

it today by Hucker in 1921 [9], [10].  It has been known for years that this 

differential stain which discriminates Gram-positive from Gram-negative 

bacteria, is a function of cell surface characteristics. However, only in the 

past decades have we achieved some understanding behind its mechanism 

[11], [12].  

 The first step of the Gram-stain is with the crystal violet, a basic 

positively charged dye that stains all bacterial surfaces (i.e. it stains 

negatively charged cells). The next step is an iodine-iodide mixture which 

serves as a mordant, so it forms a complex with the primary dye thereby 

fixing the dye to the cells. Through the use of a solvent, usually ethanol, 

some cell types lose the dye-mordant complex and the purple colour given 

by the crystal violet. Hence, any cell that retains the dye is designated 

Gram-positive and any cell that loses it is designated Gram-negative. For 

practical visualization, the final step includes a counterstaining with 

safranin that stains Gram-negative bacteria in red. It was long presumed 

that the CW of Gram-positive bacteria has physical properties regarding 

thickness and porosity that are able to retard the efflux of the dye-mordant 

complex and confer higher resistance to the solvents. Indeed, it is known 

                                                           
4 Original reference: C. Friedlander, “Die Mikrokokken der Pneumonie,” Fortschr. Med., vol. 1, 

pp. 715-733, 1883. 
5 Original reference: G. Roux, “Sur un procede technique de diagnose des gonococci,” Arch. Gen. 
Med. Vol. 2, 1886. 
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today that these bacteria, in contrast to the Gram-negatives, possess a thick 

peptidoglycan layer, a macromolecule that covers the entire cell surface 

nearby the cytoplasmic membrane and that it accounts for most of the 

physical properties of the cells. 

 In this thesis, the description of the Gram-negative CW and 

peptidoglycan takes as a reference Escherichia coli, because it is the main 

bacterial model organism thus the most well studied, including in vivo Host 

responses. Regarding the Gram-positives, two model organisms are here 

referred which were used for the work presented in this thesis: Bacillus 

subtilis and Staphylococcus aureus. B. subtilis is the major Gram-positive 

model organism and the S. aureus` CW has been extensively studied 

because its pathogenicity is highly associated with the surface 

components.  

 The structure of the Gram-negative CW is relatively uniform 

among the bacterial species, whereas the Gram-positive bacteria show two 

types: the typical and what is commonly referred to as “Gram-positive CW” 

and the CWs of Corynebacterineae, that although also capable to retain the 

Gram dye, they have a distinct wall structure from the classical Gram-

positive bacteria. 

 

Cell Wall architecture – layered vs. mesh-like structure 

 

 The Gram-negative CW is structurally well defined by three 

distinct layers (Fig. 1): the external layer called the outer membrane (OM), 

the middle layer harbouring the peptidoglycan (PGN) and finally the 

cytoplasmic or inner membrane (IM). The thin PGN layer is enclosed by 

the OM and IM, such that it forms an outside cellular compartment, the 

periplasm. The OM and the periplasm are not found in the Gram-positive 

CW. 
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 In contrast, the Gram-positive CW presents itself as a 3D mesh-

like structure (Fig. 1). A very thick layer of PGN is decorated by wall 

components that apart from proteins, they are characteristic and exclusive 

to Gram-positives, such as the teichoic acids – wall teichoic acids (WTA) 

and Lipoteichoic acids (LTA). Since these walls do not possess an external 

membrane covering the PGN, there is no cellular compartment like a 

periplasm. It is presumed that the thickness of the PGN compensates for 

the lack of a protective OM [13]. Indeed, in Gram-positives the PGN 

accounts for 30-70% of total CW whereas it accounts for only 10% in 

Gram-negative bacteria [14]. In the same line of thought, it can also be 

presumed a protective role for the teichoic acids as they can represent over 

60% of CW mass, they extend beyond the PGN layer thus concealing it and 

are great contributors for the wall structure and function in various 

processes [15].  

 

Peptidoglycan – the common feature of every cell wall 

 

 The word “peptidoglycan” describes the chemical composition of 

the molecule. Historically, it has received many names and nowadays it is 

also commonly referred to as “murein”, that derives from the Latin murus 

meaning “wall” and was introduced in analogy to “protein” by Weidel and 

Petzer [16].  The PGN may be understood as somewhat equivalent to the 

Insects exoskeleton, since it is a rigid structure responsible for cell shape 

and integrity. However, it is simultaneously a flexible and dynamic 

structure as it is involved in growth and cell division, can reversibly 

expand in response to pressure changes and serves as a scaffold for 

anchoring CW components [17], [18].  
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Figure 1. Schematic representation of the Gram-negative and Gram-positive 
bacterial CWs. OM – Outer Membrane. CM – Cytoplasmic membrane / IM – Inner 
Membrane. LPS – Lipopolysaccharide. OMP – Outer Membrane Protein. PGN – 
Peptidoglycan – composed of GlcNAc (N-acetylglucosamine) and MurNAc (N-
acetylmuramic acid) that form linear glycan strands linked through the stem peptides. 
WTA – Wall Teichoic Acids. LTA – Lipoteichoic Acids. ManNAc – N-acetylmannosamine. 
Glycerol-P – (two) Glycerol-Phosphates. The WTA repeating units are one of two 
types: glycerol or ribitol. 
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 The PGN is exclusive and ubiquitous to Bacteria, albeit there are 

exceptions. PGN and its biosynthetic genes have not been detected in some 

bacteria: Mycoplasma spp., and Orientia tsutsugamushi [19]. The PGN has 

been detected in non-bacterial organisms, the glaucophytes algae, as a 

component of the photosynthetic organelles [20] and, its biosynthetic 

genes (but not PGN) have been found in two Plants and are presumed to 

participate in chloroplast division – Arabidopsis thaliana and 

Physcomitrella patens [21].  

 The PGN macromolecule is formed by linear glycan strands of 

repeating disaccharide units of N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc), linked to a peptide chain, the stem peptides, 

which cross-link one linear strand to another (Fig. 1).  Hence, it is a large 

polymer that forms layers around the entire cell surface. The chemical 

structure of the PGN, described in the “Peptidoglycan composition and 

Host recognition” section, is quite similar in both Gram-positives and 

Gram-negatives. However, regarding the architecture there are two main 

differences between the CW types: the thickness of the layers and the 

presence/absence of certain wall-covalently linked polymers. The Gram-

negative PGN is only a few nanometres thick, which can comprise only one 

to a few layers and the Gram-positive PGN is 30–100 nm thick because it 

is composed of many layers (Fig. 1) [22]. In addition, Gram-positives 

typically present surface polymers covalently attached to the PGN, such as 

the wall teichoic acids (WTA), that are absent in the Gram-negatives (Fig. 

1). Although the thickness varies among these two bacterial types, the 

pores have similar average sizes [23]. It is estimated that globular, 

uncharged proteins with molecular weights of 22–24 kDa can penetrate 

the isolated, relaxed PGN [24]. Interestingly, the length of the strands does 

not correlate with the thickness. S. aureus that presents a very thick layer 

has short strands with an average length of about 18 disaccharide units 

[25], [26]. Both in Bacilli and E. coli, the average length varies within 
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strains and growth conditions [27] but it is estimated to be 50-250 

disaccharide units in Bacilli [26], [28], [29] and up to 30 disaccharide units 

in E. coli [30]. 

 

Components of the Gram-negative cell wall 

 

The Outer Membrane – LPS and OMPs 

 The OM is essential for the survival of E. coli and its only known 

function is to serve as a protective barrier. Like other biological 

membranes, the OM is a lipid bilayer but in contrast, it is asymmetrical: the 

inner leaflet is composed by phospholipids and the outer leaflet is 

composed by proteins, glycolipids and mainly of lipopolysaccharide (LPS) 

[31]. Both LPS and proteins participate in the selective permeability of the 

OM [32]. LPS forms an effective barrier for hydrophobic molecules, the 

protein porins limit diffusion of hydrophilic molecules >700 Daltons [32] 

whilst other type of proteins – the outer membrane proteins (OMPs) – 

allow the passive diffusion of small molecules such as disaccharides and 

amino acids. The OM is linked to the PGN as if it was stapled, through a 

lipoprotein called Lpp, or murein lipoprotein, or Braun’s lipoprotein, and 

it is the most abundant protein in E. coli [33]. 

 LPS is the molecule responsible for the endotoxic shock 

associated with septicemia by Gram-negative bacteria thus it is also known 

as “endotoxin” [34].  It is composed of a lipid portion, the lipid A, which is 

anchored at the outer leaflet of the OM. The lipid A is linked to a 

polysaccharide core that connects to the outer surface polysaccharide 

chain, the O-polysaccharide or O-antigen, which carries the antigenic 

specificity and its composition varies among bacteria (Fig. 1) [34].  

 OM proteins can be divided into lipoproteins and β-barrel 

proteins. Whereas the latter are transmembrane proteins, lipoproteins are 
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not and seem to be embed in the inner leaflet by the lipid moiety. There 

are about 100 OM lipoproteins in E. coli, still the functions of most of them 

are unknown [35]. Nearly all of the integral transmembrane proteins 

assume a β-barrel conformation and are designated Outer Membrane 

Proteins (OMPs). Some OMPs, such as OmpA from E. coli, can be non-

covalently linked to the PGN. 

 

The Periplasm 

 The periplasm can sequester potentially harmful compounds 

thus it has been proposed as an evolutionary precursor of the lysosomes 

in eukaryotic cells [36]. It is densely packed with proteins such as enzymes 

involved in CW biosynthesis and periplasmic binding proteins that 

function in chemotaxis and transport of sugars and amino acids [37]. 

 

Components of the Gram-positive cell wall 

 

The teichoic acids – WTA and LTA 

 The teichoic acids (TA) are long anionic polymers that are 

divided into Wall Teichoic Acids (WTA) and Lipoteichoic Acids (LTA). 

Although neither of them are essential, it is not possible to delete genes 

from both pathways because they are synthetic lethal and their presence 

appears to be crucial for proper CW architecture and integrity [38], [39].  

 The major distinguishing feature between LTA and WTA,  is that 

the WTA are covalently attached to the PGN, whereas the LTA are 

anchored to the cytoplasmic membrane (Fig. 1 and Fig. 3) [18]. The WTA 

are attached via a phosphodiester linkage to the hydroxyl group at position 

6 of MurNAc and they have been propose to extend perpendicularly 

through the PGN mesh  [40], [41], into what has been characterized as a 

“fluffy” layer [18], [42], [43]. Generally, WTA are composed of a conserved 
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linkage unit to which is appended a chain of either polyribitol phosphates 

(polyRboP) like in S. aureus and some B. subtilis strains, or polyglycerol 

phosphates (polyGroP) as in most B. subtilis spp.. The RboP or GroP repeats 

are in turn commonly tailored with D-alanyl esters and glycosyl moieties. 

The nature and extent of these tailoring significantly affect the properties 

and functions of WTA as they introduce positive charges along the polymer 

backbone [18]. Accordingly, S. aureus strains lacking D-alanine esters are 

more susceptible to the cationic AMPs and to Host lytic enzymes [44]–[46]. 

 The TA present several functions, some of which may be species-

specific. They have been described as a “continuum of anionic charge” 

which seems to be of vital for the cell [18]. Because they are anionic they 

play major roles in cation homeostasis which in turn influence the rigidity 

and porosity of the CW. Indeed, the presence of covalently attached 

glycopolymers is a hallmark of the Gram-positive CW. Gram-positives 

lacking WTA like Micrococcus luteus present other polymers such as 

teichuronic acids (repeating units of the disaccharide N-

acetylgalactosamine - D-glucuronic acid). Similarly, when unable to 

produce WTA, bacteria can compensate by producing other polymers 

instead. For instance, under phosphate limiting conditions Bacillus spp. 

can produce teichuronic acids [47].  

 

Surface Proteins 

 The surface of the Gram-positive bacteria is decorated with a 

variety of proteins, some of which are analogous to proteins found in the 

periplasm [17]. They can be inserted in the CM, covalently attached or 

tightly associated with the PGN, or even bound to the TA [48]. Most of these 

proteins play major roles as virulence factors. In S. aureus the presence of 

surface proteins is highly dependent on environmental changes and 

growth conditions [49] and they have great impact in pathogenicity. 

Furthermore, S. aureus relies both in TA and in surface proteins, generally 
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called adhesins, to successfully stablish colonization on Host tissues [50]–

[52]. In addition, many proteins have been implicated in iron acquisition, 

which is necessary for pathogenesis since it is a requisite for the function 

of many bacterial enzymes [53]–[55]. 

 

The Gram-positive cell wall of Corynebacterineae 

 

The Family Corynebacterineae includes the major pathogens 

Mycobacterium tuberculosis and Mycobacterium leprae and the complexity 

of their walls substantially contributes to virulence. Similar to the typical 

Gram-positive wall, the PGN is composed of several layers and contains 

covalently attached glycopolymers, the arabinogalactan, which is 

covalently attached to mycolic acids [22]6. Both components are unique to 

these bacteria and the mycolic acids are responsible for their acid-fast 

resistance. Similar to the Gram-negative bacteria, they possess an OM, but 

in contrast it appears to be symmetrical. Moreover, the porin proteins 

seem to be structurally different from the typical OM porins of the Gram-

negatives. In sum, these walls comprise features of both Gram-positive and 

Gram-negative bacteria. Accordingly, a genome-based phylogeny places 

them in between the two types [56]. 

 

 

 

 

                                                           
6 Original reference: D. E. Minnikin. Lipids: Complex lipids, their chemistry, biosynthesis and 

roles, p. 95–184. In Ratledge C., Stanford J. (ed.). The biology of the mycobacteria, vol 1. 
Physiology, identification and classification. Academic Press, Inc., New York, NY. 1982. 
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Peptidoglycan composition and Host recognition 

 

As the name intuitively suggests, PGN is a macromolecule 

composed of sugars and peptides where linear glycan strands are 

connected to one another, i.e. they are cross-linked by short peptide 

bridges, the stem peptides [57] (Fig. 2 and Fig. 3). The glycan strands are 

composed of repeating units of disaccharides made of GlcNAc residue 

linked to MurNAc residue through β-(1,4) glycosidic bonds. The MurNAc 

sugar is exclusively found in the Bacteria Domain (apart from the 

glaucophytes algae), whereas GlcNAc composes the chitin present in the 

Fungi CW and in the exoskeleton of Insects and Crustaceans. Regarding the 

stem peptides, they are pentapeptide chains that are covalently linked 

through the N-terminus to the lactyl group in the position 3 of the MurNAc 

residues (Fig. 2 and Fig. 3). The pentapeptide chain contains alternating L- 

and D- amino acids, being the latter a typical feature of PGN. Whereas the 

glycan backbone is highly conserved among bacteria, the peptide moiety 

shows a great degree of variability in composition [14]. Apart from the 

third position, the amino acids in all other positions of the pentapeptide 

are quite conserved among Gram-positive and Gram-negative bacteria. 

The amino acid at the third position is most commonly either L-Lysine 

(Lys) or meso-diaminopimelic acid (DAP) [14]. Generally, the Gram-

negative bacteria like E. coli and the rod shape Gram-positives like Bacilli 

and Listeria spp. and the Gram-positive mycobacteria present a DAP-type 

PGN. In contrast, most of the other Gram-positive bacteria present a Lys-

type PGN (Fig. 2). As for the stem peptides, typically, Gram-positive 

bacteria present several types of peptide bridges that link one stem 

peptide to another, in contrast to the Gram-negatives which have a direct 

cross-link. Thus, the composition and structure of PGN is quite uniform 

among Gram-negatives, but shows great variability among the Gram-

positives [14]. Accordingly to being the most conserved PGN moiety, 
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Gram-positives and Gram-negatives present the same type of sugar 

modifications after the PGN biosynthesis. The differences rely on 

modifications in the Gram-positives due to the attachment of 

glycopolymers and the typical presence of an anhydrous form of the 

MurNAc in the Gram-negatives (Fig. 3). 

The differences in the PGN composition at the pentapeptide bridge 

between the Gram- positives and –negatives have been accounted for 

determining different innate immune responses. In addition, bacteria 

present modifications of the PGN backbone that render them resistant to 

Host immune strategies. Therefore, understanding the impact of the PGN 

composition on the interaction with the Host is crucial to unravel bacterial 

immune evasion mechanisms and how PRR perceive and recognise the 

PGN. The triggering of immune responses by PGN-derived compounds was 

discovered more than 30 years ago and the muramyl-dipeptide (MDP) was 

the first minimal inflammatory PGN fragment to be identified (Fig. 2) [58]. 

However, the study of the PGN molecular structure has been a challenging 

topic, particularly when it comes to the Gram-positive CW due to the multi-

layered PGN decorated with wall polymers coupled with inter-species 

variabilities, such as the ones found in the Bacillus Genus. 
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Figure 2. Schematic representation of PGN monomeric species and polymeric PGN. 
The basic unit of the PGN is the disaccharide-pentapeptide. The Gram-positive 
bacteria typically present at the third position of the pentapeptide a Lys vs. a DAP 
residue present in Gram-negatives and some Gram-positives. TCT – tracheal cytotoxin 
– is a muropeptide produced by Gram-negative bacteria. Some bacteria such as 
Bordetella pertussis do not retain it at the CW upon growth and division, thus they 
release it to the medium and trigger potent immune responses. MDP – muramyl 
dipeptide – is the minimal PGN-component to be identified as immunostimulatory. 
Regarding the polymeric composition of PGN, S. aureus presents an indirect cross-
linking, connecting the glycan strands through peptide side chains, typical of Gram-
positives. In contrast, Gram-negative bacteria and some DAP-type Gram-positives, 
show a direct cross-linking between the pentapeptides. 
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The modifications in the glycan strands 

 

 To date, there are no bacterial species known that in their 

mature PGN possess unmodified sugar chains [59]. As a matter of fact, the 

attachment of components to the PGN happens mostly via the sugars. The 

sugar backbone is structurally modified during synthesis or after insertion 

into the CW. These secondary modifications happen either by enzymes 

that directly modify the sugar residues or by the attachment of polymers. 

There are two types of sugar modifications found both in Gram-positives 

and Gram-negatives: N-deacetylation and O-acetylation (Fig. 3). 

Deacetylation happens in both sugars, whereas O-acetylation has only 

been identified in MurNAc residues. A third type of sugar modification is 

N-glycolylation where there is a glycolyl group instead of the acetyl group 

at the amino group on the second position of MurNAc (Fig. 3). This is a 

hallmark of most bacteria containing mycolic acids. Regarding Gram-

negative bacteria, they present a 1,6-anhydro ring at the terminal MurNAc 

residue of the strand that is the result of the cleavage by specific bacterial 

PGN hydrolases during the processes of turnover and cell division (Fig. 3). 

As for Gram-positive bacteria, specific modifications happen through 

linkage of WTA (Fig. 3), capsular polysaccharides (and arabinogalactans) 

that bind via phosphodiester bonds either to MurNAc or GlcNAc. Although 

these PGN alterations have been known for a long time, their role in 

bacterial biology remains to be fully understood. It is thought that they 

control cell division, PGN turnover and, as it will be here briefly discussed, 

they are also involved in the pathogenicity of the bacteria.  
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Figure 3.  Modifications in the PGN glycan strands. The top panel shows modifications 
at the sugar level in the different bacterial types. The bottom panel shows the 
modifications of the Gram-positive PGN by the attachment of the WTA. S. aureus has 
RboP WTA similar to some B. subtilis strains. Most B. subtilis strains and 
Staphylococcus epidermidis possess GroP WTA. Note the difference between the 
terminal MurNAc residue on the PGN chain represented at the top with the PGN chain 
at the bottom. Gram-negative bacteria possess a number of lytic transglycosylases 
that cleave between the MurNAc and GlcNAc residues (same bond as the 
muramidases) and originate 1,6 – anhydroMurNAc (see Chapter II). In contrast, these 
termini are rarely found in the Gram-positive PGN, thus the MurNAc terminal residues 
present a reducing end. N-deacetylation can also occur in the MurNAc residue in both 
Gram-positive and Gram-negative bacteria (not depicted).  
 

 The deacetylation introduces positive charges into the CW, thus 

it potentially affects the binding of proteins and other components to the 

PGN. An increase in the positive charge is more likely to increase the 

resistance of the bacteria to the activity of the cationic AMPs. In addition, 

the deacetylation affects bacterial clearance through the activity of 
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Lysozymes and through phagocytosis. Lysozyme is a muramidase, i.e. it 

cleaves the β-(1,4) glycosidic bond between MurNAc and GlcNAc and it is 

ubiquitous in Bacteriophages, Bacteria, Fungi and Mammals.  

Deacetylation of GlcNAc or MurNAc strongly decreases the activity of 

lysozymes [60]–[64] and a Listeria monocytogenes mutant lacking 

deacetylated residues was very sensitive and rapidly killed by 

macrophages [65]. 

 O-Acetylation of the PGN is more frequent than N-deacetylation 

and occurs in many important pathogens. In fact, most of the known 

muramidases have decreased or no activity against O-acetylated PGN, 

particularly the Host Lysozymes [59]. To date only the N,O-

diacetylmuramidase of Chalaropsis [66] and mutanolysin from 

Streptomyces globisporus [67] are known to cleave O-acetylated PGN. 

There is a strong correlation between pathogenicity, lysozyme resistance 

and the occurrence of O-linked acetate in the PGN of staphylococcal species 

[68]. Immune strategies are generally keen in killing and lysing the 

bacteria, followed by clearance of bacterial debris. However, even when 

there is efficient killing, it has been observed the persistence of PGN with 

a high degree of O-acetylation [69]–[71]. 

 In Gram-positive bacteria, WTA contribute to virulence in 

several ways. At a first level, as they protrude through the PGN layers to 

the outer surface they impair the direct recognition by Host receptors. 

Work from the Host Labs7, has shown that they exert stereo-hindrance in 

Gram-positive pathogens, including S. aureus, from a PGRP (PGRP-SA) in 

D. melanogaster [72]. Moreover, it is known that the WTA affect O-

acetylation which in turn confers resistance to Lysozymes [73]. Also, the 

tailoring of the WTA, for instance with D-Ala as in S. aureus [45] together 

                                                           
7 Filipe Lab, Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia 

Química e Biológica António Xavier, Universidade Nova de Lisboa. 
Lygoxygakis Lab, Laboratory of Cell Biology, Development and Genetics, Department of 
Biochemistry, University of Oxford. 
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with the deacetylation of the PGN, are two ways of introducing positive 

charges that can protect the bacteria against the activity of the AMPs. 

 Additionally, the Host Labs identified another CW factor that can 

dampen the recognition and compromise efficient immune responses. We 

identified the activity of the major autolysin protein Atl8 in S. aureus [74]. 

The loss of virulence is attributed to the recognition by PGRP-SA of PGN 

fragments exposed at the surface of the cells. We observed a similar effect 

for the Streptococcus pneumoniae major autolysin LytA. Autolytic PGN 

hydrolases are ubiquitous in Bacteria, thus it can be inferred that perhaps 

other autolysins from other bacterial species may impair detection of PGN 

by other PGRPs or by other PGN receptors. 

 In Gram-negative, the glycan strands do not terminate with a 

reducing MurNAc residue but with a non-reducing 1,6-anhydroMurNAc 

(Fig. 3) [30], [75], [76]. This is due to the activity of the lytic 

transglycosylases (Fig. 4). They are PGN hydrolases that cleave at the same 

site as muramidases but form a 1,6-anhydro ring at the MurNAc and are 

particularly abundant in Gram- negative species. Interestingly, the lytic 

transglycosylases cannot cleave the glycan strands at O-acetylated 

MurNAc residues, thus it has been proposed that O-acetylation and de-O-

acetylation regulate the activities of the lytic transglycosylases [77]–[79]. 

 In sum, the activity of PGN hydrolases/autolysins, the presence 

of WTA and the N- and O- dea-/acetylations, modify the glycan backbones 

and contribute to bacterial virulence [61]–[64], [72], [73], [80]–[84]. 

Similar to Lysozymes, PGRPs are found in almost all animals, possess 

affinity to PGN and their recognition is affected by modifications like the 

WTA and autolysins. However, the effect of N-deacetylation, N-

                                                           
8 Autolysins are enzymes that degrade a component belonging to the cell or tissue where they 

are produced. Autolysins or PGN hydrolases cleave the PGN in order to sustain cell growth – 
PGN present at the cell surface –  and to split the daughter cells – PGN present at the septum – 
prior to separation of the daughter cells. These enzymes are the topic of study of Chapter II. 
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glycolylation and O-acetylation on the PGRPs recognition has not yet been 

addressed. 

 

Variability in the peptide moiety 

 

 The peptide moiety of the PGN is highly variable among Bacteria. 

However, unlike the modifications of the glycans, the impact of the natural 

variability and modifications of the amino acids on the Host recognition is 

not so well understood. Paradoxically, current models of Host-bacterial 

recognition are almost exclusively based in the amino acid composition of 

the PGN. 

 

Variability in the stem peptides 

 The variations of the stem peptides can be divided into two 

categories: those due to the specificity of the Mur ligases, the enzymes 

responsible for their biosynthesis and incorporation into the nascent PGN 

chain, and those occurring afterwards upon insertion of the amino acids 

[85], [86]. The first amino acid is usually L-Alanine and in rare cases, 

Glycine or L-Serine (Fig. 2). At the second position there is always the 

incorporation of D-Glutamic acid and any modification that may happen 

occurs at a later step (Fig. 2). The greatest variations regarding both 

incorporation and post-modifications happen at the position 3 where it is 

generally found a diamino acid (Fig. 2). The most prevalent is DAP which 

is present in probably all Gram-negatives and many Gram-positives 

(Bacilli, Clostridia, Lactobacilli, Corynebacteriales, Rickettsiae) and in the 

glaucophytes algae [14]. The diamino acid Lys is the second most common 

and it is found in most all other species of Gram-positive bacteria [14]. Less 

commonly, it can be found other diamino acids, such as L-Ornithine or 

meso-lanthionine and also monoamino acids (L-Homoserine, L-Alanine or 
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L-Glutamic acid) [13]. The two last amino acids of positions 4 and 5 are 

added as a dipeptide, in most cases D-Alanine-D-Alanine, and the last D-

Alanine residue is lost in the mature PGN (Fig. 2). 

 Variations of the incorporated amino acids, mainly at the second 

and third positions, can happen by amidation, hydroxylation, acetylation, 

attachment of amino acids or other groups, and attachment of proteins. In 

fact, the stem peptide is an anchoring point for proteins in both bacterial 

types [17]. In E. coli, Lpp is the only known protein covalently attached to 

PGN (at the DAP residue) [87], [88], whereas the Gram-positive bacteria 

contain many surface proteins that are involved in pathogenicity. One of 

the most common post-modifications at the third position is the amidation 

of DAP (Fig. 4). This modification happens in B. subtilis and Bacillus 

licheniformis and not in E. coli or Bacillus megaterium – all of which are 

bacteria commonly used in the Drosophila literature as bacterial 

organisms to study Host immune responses. 

 Current models of PGN recognition by Innate Immune receptors 

are based on their discriminatory ability between DAP- vs. Lys- PGN. As 

evolutionary conserved receptors, it is intuitive to consider that PGRPs 

recognition may rely to great extent on the binding to the conserved sugar 

moiety, still they have been reported to possess such discriminatory ability 

at the peptide level. It is postulated, particularly in Drosophila immunity, 

that PGRPs can discriminate Gram-positives vs. Gram-negatives and Bacilli 

through the residue at the third position [89], [90] and therefore they 

differentially activate distinctive immune pathways [91]. Indeed, B. subtilis 

and E. coli present a similar PGN composition, albeit they mainly differ in 

the percentage of muropeptide species and the amidated DAP in B. subtilis 

[92]. Importantly, the amidation of DAP has been pointed out as the reason 

for literature reports detecting Drosophila PGRP-SA binding to PGN of E. 

coli and B. megaterium but not to B. subtilis [89][90]. 
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Figure 4. Differences between the amino acids L-Lys, DAP and amiDAP. It is 
presented the basic structural PGN units with Lys, DAP and amiDAP. The difference 
between the Lys and the DAP amino acids is the presence of a carboxyl group in the 
latter (depicted in pink). Unlike E. coli, B. subtilis suffers a post-incorporation 
modification of the DAP residue, whereby the extra carboxyl group not present in Lys, 
that is not engaged in the peptide bond with D-Ala, is amidated (depicted in blue). 

 

Variability in the peptide cross-linking bridges 

 The bond between two stem peptides from different glycan 

chains is designated by cross-linking. The nature and the degree of cross-

linking show the highest variations in the types of PGNs. It is the 

differences at the level of the peptides that allow the taxonomic 

distinctions sometimes to the species level. As such, although there are 

many differences among Gram-positive organisms, the most notable 

differences are found at the level of the cross-linking [13], [59].  

 Most commonly, the cross-linking happens between the amino 

acid at position 3 of one stem peptide and the D-Ala at position 4 in another 

stem peptide from another glycan strand (Fig. 2). The link between these 

amino acids can either be direct or indirect when the linkage happens 

through an interpeptide bridge (Fig. 2). Most Gram-negative bacteria show 

direct cross-linking like E. coli, although B. subtilis also shows direct cross-

linking (Fig. 2). In the indirect cross-linking the peptide bond between Lys 
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and D-Ala occurs via a peptide chain, thus these are called “branched stem 

peptides”. The composition of the peptides in the branch shows substantial 

variation and these branched stem peptides serve as attachment sites for 

covalently-associated proteins, such as protein A from S. aureus which 

plays different roles in the pathogenicity of the bacterium [93].   

 There is also considerable variation in the degree of cross-

linkage, i.e. the number of cross-links between the strands in one PGN 

macromolecule. In terms of muropeptide content, the soluble fragments 

released upon muramidase digestion, it translates into a low cross-linking 

like in E. coli, where the PGN units appear mostly as monomers or dimers, 

accounting for 20% of total cross-linking [57]. In contrast, in S. aureus most 

PGN units are present as oligomers with a degree of cross-linking over 

93% [94]. The degree of cross-linking is also associated with the 

susceptibility of PGN to lytic enzymes. In S. aureus the high cross-linking 

aids to the O-acetylated MurNAc and the presence of WTA on the 

resistance to Lysozyme [73].  However, we did not observe a correlation 

between the cross-linking and the binding of Drosophila PGRPs (data 

shown in Chapter III). 
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The Drosophila melanogaster Immune System 

 

 In order to study Human-pathogen interactions, several animal 

models have been developed. Due to logistical, ethical and financial 

reasons, the use of mammals is difficult and time consuming. Therefore, 

non-mammalian models of infection for Human pathogens have been 

developed. The conservation of signalling pathways for the activation of 

antimicrobial responses suggests that some innate immune components 

share an ancient origin in metazoan evolution, making non-vertebrate 

animal models suitable for infection studies [95]. Moreover, virulence 

factors for disease in one host, also contribute to disease in non-natural 

hosts [96]. 

 The fruit fly Drosophila melanogaster has shown to be a highly 

adequate invertebrate model to understand mammalian biology [95], [97], 

[98]: the organs systems are analogous to that of Vertebrates and the 

signalling pathways and transcriptional regulators that control 

development, metabolism and immunity share evolutionarily conserved 

components [99]. In addition, there is a wide array of genetic tools coupled 

with the sequenced genome [100], [101]. Regarding Host-pathogens 

interactions and fundamental innate immune mechanisms, flies have 

proven to be one of the most suitable organisms to date. They are naturally 

infected by bacteria, fungi and viruses and can be experimentally infected 

with human pathogens [72], [74], [102]–[104]. Moreover, the mechanism 

of bacterial recognition and one of the outcomes of it which is the 

expression of AMPs, is similar and probably common to all animals 

including Humans [95]. The discovery of the AMPs induction upon 

infection [105] helped to put D. melanogaster as a model organism for the 

study of conserved innate immune mechanisms. Besides the genes 

encoding for the AMPs being conserved sequences both in insects and 

mammals, their regulation is under the control of the conserved nuclear 
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factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling 

cascades. The D. melanogaster conserved NF-κB pathways are the TOLL 

and IMD (Immune Deficiency) pathways (Late Immune Responses section 

and Fig. 6) [106].  

Early-Constitutive and Late-Induced Responses 

 

D. melanogaster possesses multiple innate defence mechanisms, 

many of which similar to mammals [107]–[110]. The systemic responses  

are divided into constitutive responses and induced responses [111]. Upon 

an infection, these responses can be temporally classified as 

immediate/early responses and late responses, respectively. The 

constitutive early responses are always present and rely on cellular 

responses through the haemocytes, the insect blood cells [112]. These 

responses are paramount for clearance of the pathogens and they are 

followed by the induced late responses which are protective responses 

that rely mainly on the antimicrobial activity of the AMPs [113].  

Early Immune Responses 

 The boundaries of an organism are vital for its integrity and 

survival. The epithelia are the first barrier in an organism against invading 

pathogens. A breach on the cuticle initiates a series of reactions against 

infection – production of Reactive Oxygen Species, coagulation, 

melanization and local inducible AMPs by the IMD pathway. In addition, 

there is constitutive expression of AMPs in specific tissues.  

 The cellular responses play major roles in phagocytosis and 

encapsulation of microorganisms and are crucial for clearance of the 

pathogen [114]. These responses act immediately upon injury and are 

maintained for as long as it is necessary until clearance of the pathogen.  

 



CHAPTER I. The Bacteria and the Host 

 

41 
 

Local expression of AMPs 

 This synthesis of AMPs is referred to as the local immune 

response as opposed to the systemic response. They can either be 

constitutive or inducible. The AMPs constitutively expressed in a defined 

tissue are not upregulated during microbial infection, i.e. they are not 

regulated by the NF-kB pathways. However, the inducible local AMPs` gene 

expression is triggered upon natural infection with DAP-type bacteria, 

mediated through PGRPs and regulated by the IMD pathway. To date, no 

implication of the TOLL pathway in the local immune response has been 

demonstrated and there is no evidence that AMPs are induced in the 

epithelia in response to neither Lys-type bacteria or fungi [95]. 

 

Production of Reactive Oxygen Species  

 Both in Mammals and Drosophila, natural infections with 

bacteria induce rapid synthesis of Reactive Oxygen Species (ROS). Similar 

to the IMD pathway, ROS responses are crucial in gut immunity.  

 

Coagulation 

 Upon breach of the cuticle there is a rapid reaction to control the 

bleeding and initiate wound healing called coagulation. In this process 

there is immobilization of the bacteria at the local wound, thus preventing 

the spreading into the haemolymph [95], the Drosophila equivalent to the 

Vertebrate blood. Since Insects possess an open circulatory system, the 

trapping of the bacteria is crucial against septic infections and it also helps 

in the killing by ROS and phagocytosis.  

 

Melanization 

 Melanization is observed at the site of injury and also at the surface 

of the pathogen. It is the de novo synthesis and deposition of melanin, seen 
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by blackening of the wound site and it is regulated by the 

prophenoloxidase cascade [115]. Particularly, melanization helps in the 

encapsulation of pathogens that are too large to be phagocytosed [116]. It 

is thought to play important roles in arthropod defence reactions such as 

wound healing, encapsulation, sequestration of microorganisms and 

production of toxic intermediates that are toxic to the microorganisms 

[117], [118].  

 

Cellular responses 

 Phagocytosis is paramount to eliminate apoptotic bodies, bacteria 

and fungal spores. The Drosophila haemocytes are the functional 

equivalents of the human blood cells. There are three types of functional 

haemocytes – plasmatocytes, crystal cells and lamellocytes. Plasmatocytes 

are monocyte-like cells involved in phagocytosis of apoptotic bodies and 

pathogens. Crystal cells are required for melanization and thus participate 

in the engulfment of parasites whose size is too large to follow a canonical 

phagocytosis route. These two types of haemocytes circulate in the 

haemolymph and/or can be found sessile. Lamellocytes participate in the 

encapsulation of foreign bodies that are too large to be phagocytosed and 

are only differentiated in response to specific immune challenges, such as 

wasp parasitism.  

 

Late Immune Responses 

 The late responses are systemic humoral responses via humoral 

molecules, including the AMPs. These systemic responses happen through 

production of AMPs by the fat body, a functional equivalent to the 

mammalian liver. These inducible AMPs are controlled by the immune 

pathways TOLL and IMD and are activated by the recognition of pathogens 

by the PRRs, in particular by PGRPs. In contrast, the local constitutively 
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expressed AMPs in specific tissues are controlled by transcription factors 

independent of these pathways.  

 The AMP responses are a hallmark of Insect Immunity [95]. The 

nature of the AMP immune responses and its temporal expression upon 

infection, has been well characterised in Tenebrio molitor and Bombus 

terrestris [114], [119]–[122]. In Tenebrio molitor, the late induced AMPs 

start to increase after 99.5% clearance of the bacteria [114]. It is estimated 

that induced AMPs take at least 1-3h to originate and 12-48h to reach peak 

levels [119]. This induced response can persist for weeks [119], [121]. The 

induced systemic AMPs are late responses because their primary role is to 

protect against the bacteria that persist within their body, rather than to 

clear the infection [114]. This expression is prolonged in order to prevent 

the enrichment of resistant bacteria, as it has been shown that bacteria 

which survived the early/constitutive responses were more resistant to 

AMPs [114]. As a consequence, the induced AMPs are also believed to 

protect against reincidence [120], [122]. It is presumed that the role of 

AMPs is conserved among Insects. However, in D. melanogaster it seems 

that haemocytes rather than the AMPs are responsible for protection 

against secondary infection [123]. Priming of adult flies with heat-killed 

Streptococcus pneumoniae cells, conferred resistance to infection in an 

AMP-independent manner [123]. Furthermore, the resistance remained 

for the life-time of the Fly and it was specific for S. pneumoniae infection.  

 

The Drosophila immune cascades – TOLL and IMD 

In Drosophila, there are two main immune pathways that control 

the inducible expression of the AMPs, which are evolutionarily conserved 

NF-κB signalling pathways– the TOLL and the Immune Deficiency (IMD) 

pathways (Fig. 5). The TOLL signalling is similar to the MYD889-dependent 

                                                           
9 Myeloid differentiation primary response protein 88. 
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Toll-like receptor (TLR) pathway in mammals and share conserved 

membrane receptors with a TIR domain10 (Fig. 5) [124], [125]. The IMD 

signalling is similar to both the tumour necrosis factor (TNF) pathway and 

the TRIF11-dependent TLR pathways (Fig. 5).  

The NF-κB family of transcription factors (TFs) is found in the 

cytoplasm of virtually all cell types in most Animals. Proteins of this family 

share a 300 amino acid Rel homology domain (RHD) at the N-terminus, 

which mediate dimerization, binding to DNA and interaction with a 

regulatory family of inhibitor proteins, IkB. The NF-κB TFs regulate the 

expression of hundreds of genes that are associated with diverse cellular 

processes including innate (and adaptive) immune responses. The NF-κB 

signalling cascade is probably the most frequently targeted intracellular 

pathway by anti-immune modulators that are encoded by a wide spectrum 

of pathogens. This is an indication of the relevance of this pathway in 

immunity and evolutionary conservation mechanisms.  

The NF-kB signalling pathways happen through three main steps 

that take place in different subcellular localisations (Fig. 5). First there is 

the activation of a transmembrane receptor upon recognition (directly or 

indirectly) of the PAMP on the extracellular environment. Second, the 

activation of the transmembrane receptor triggers the formation of 

cytoplasmic signalling complexes through conserved adaptor molecules 

[126]. These adaptor proteins contain death domains (DD) that are 

homotypic protein interaction modules, thus they stablish protein-protein 

interactions. In non-stimulated conditions, the NF-κB dimers are 

sequestered in the cytoplasm by the IkBs through their ankyrin repeats12 

that mask the nuclear localization signals of NF-κB. Upon activation of the 

                                                           
10 Toll/interleukin-1 receptor (TIR) homology domain. 
11 TIR domain-containing adaptor protein inducing IFNβ. 
12 Ankyrin repeats are tandemly repeated modules of ca. 33 amino acids and represent one of 
the most common protein-protein interaction motifs found in nature.  

https://en.wikipedia.org/wiki/N-terminus
https://en.wikipedia.org/wiki/Cytoplasm
https://en.wikipedia.org/wiki/Nuclear_localization_signal
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signalling cascades, IkB is phosphorylated by the IκB kinase (IKK) thus it 

is degraded and the NF-κB dimers are activated to translocate into the 

nucleus. Finally at the nucleus, the TFs bind to the promoter regions of the 

responsive genes containing the NF-κB sequences.  

 

 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/I%CE%BAB_kinase
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Figure 5. Summary of the similarities across the NF-κB signalling pathways. The 
pathways share a conserved molecular mechanism whereby a set of adaptor 
molecules transduce the signal upon activation of the transmembrane receptors and 
trigger the downstream signalling events. The TOLL and TLR pathways share a 
conserved membrane receptor containing cytoplasmic TIR domains. In the TOLL 
pathway, an IKK complex has not been yet identified as in IMD, however it is known 
that the IkB Cactus undergoes phosphorylation and degradation similarly to the other 
cascades. Drosophila has three NF- B TFs: Dorsal and Dif that regulate TOLL-responses 
and Relish that regulates IMD-responses. 
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Final remarks and thesis overview 

 

My PhD project aimed to understand Host-Bacteria interactions 

through the recognition of PGN. For that I followed two different 

approaches – one from the side of the Host and another from the side of 

the Bacteria. Through the Host side, I aimed to study how PGRPs can 

distinguish different types of PGN. Through the Bacteria side, whether the 

presence of WTA could impair recognition from different PGRPs and 

whether the activity of different autolysins can prevent the recognition of 

cell surface exposed PGN fragments. The rationale behind this dual 

strategy was that data collected from both sides would be complementary 

and thus help to achieve a wider understanding of these complex 

interactions. 

I aimed to study the role of autolysins in the S. aureus virulence. I 

enquired whether the dramatic impact of the absence of the major 

autolysin Atl [74], would extend to the other autolysins from S. aureus. I 

studied the binding of PGRP-SA to different autolysins mutants and their 

virulence in D. melanogaster. 

To understand the PGRPs-PGN interactions, I started by studying 

the reason behind the reported PGRP-SA specificity to Lys-type PGN, using 

Staphylococcus aureus as a model pathogen [89], [90]. Because I aimed to 

study in vitro the biological relevance of the binding of PGRP-SA to the PGN, 

I tried that my in vitro assays would be as close as possible to in vivo 

conditions. This made me start the work by optimizing experimental 

procedures. As I was finishing my optimizations and testing several 

controls, I made a striking discovery that shaped the following steps of my 

PhD work. I detected binding of PGRP-SA to the B. subtilis amiDAP PGN. 

This binding had never been previously detected [89], [90]. This 

observation suggested that PGRP-SA is promiscuous towards the amino 

acid of the third position of the stem peptide, which if true, it should 
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possess a biological role in the Host upon infection. Furthermore, if PGRP-

SA proved to be important for a response towards different bacterial PGN 

types, then PGRP-LC as also a major immune receptor, should also be 

promiscuous for the PGN-types. Consequently, I aimed to ascertain the 

binding specificities of PGRP-SA and PGRP-LC towards the Lys and DAP 

amino acids. In parallel, I aimed to understand whether the WTA in the 

Gram-positive CW could impair recognition of different PGN types by both 

PGRPs. Thus, I contacted Eric Brown and asked for the Bacillus subtilis Δ 

tagO mutant (unable to produce WTA) with the respective wild-type strain 

and I used them as model organisms of DAP-type Gram-positive bacteria. 

In parallel, as the work evolved, the data suggested that PGRP-SA was 

likely to be involved in cellular responses. The final goal of my PhD project, 

was to study the role of PGRP-SA in phagocytosis by both Lys- and DAP- 

type PGN bacteria. 

After describing the variability in PGN composition, I aimed in this 

introduction to demonstrate how variable the peptide moiety is and open 

the readers` mind to the fact that conserved immune receptors may 

perhaps target more conserved regions of the PGN. Accordingly, I also 

called the attention that although being the most conserved regions among 

PGNs, the glycans present modifications that effectively protect the 

bacteria against Host strategies. Moreover, I intended to be clear for the 

reader that independently of the CW type, PGN is the common 

denominator of bacteria. Hence it is logical that it is a target for Host 

receptors and intuitive to realise that Bacteria may present common 

strategies to avoid its recognition, such as the WTA and the autolysins. 

Briefly, in Chapter II, I present novel data regarding the recognition 

of PGN by PGRP-SA and how autolysins play simultaneously a role in cell 

division and evasion to the Host responses. In Chapter III, I present data 

that invalidate the specificity of PGRPs towards the PGN peptide moiety as 

the reason to the reported differential activation between the TOLL and 
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the IMD pathways [125]. Moreover, I show that the WTA can impair PGN 

recognition by both PGRP-SA and PGRP-LC and that these two PGRPs are 

important for an efficient response upon infection of Lys- and DAP- type 

PGN bacteria. Chapter IV presents work which shows that both PGRP-SA 

and PGRP-LC engage in cellular responses through phagocytosis and 

clearance of the bacteria. Finally, Chapter V – conclusion of the thesis – 

presents an integration of all of these data on the comprehension of the 

interaction between the Bacteria and the Host. 
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Summary 

 

 The work presented in this Chapter is a follow-up upon the 

discovery of the role of the major autolysin Atl in the Staphylococcus aureus 

virulence [1]. Atl impairs the accumulation of cell surface exposed 

peptidoglycan (PGN) which can be recognised by the Drosophila 

melanogaster PGRP-SA. The recognition of this PGN results in a drastic loss 

of virulence and survival of the Fly. I aimed to ascertain whether the role 

of Atl was exclusive or if the absence of other autolysins can also result in 

the accumulation of PGN that can be detected by PGRP-SA. 

 I present data that show that during bacterial cell division, PGN 

present at the septum is accessible to PGRP-SA. In the absence of Sle1 there 

is accumulation of newly synthesised PGN at the septum that cannot be 

incorporated into the PGN mesh. This is due to the stiffness of the septal 

PGN which is not resolved by the specific activity of Sle1. PGRP-SA can 

recognise these fresh PGN fragments, however the levels of PGN 

accumulation are not sufficient to aid in an efficient immune response. I 

propose that PGRP-SA recognition plays with the probability of finding a 

dividing cell at a certain moment that presents exposed accumulated PGN 

in a particular subcellular region – the septum. In turn, the interplay 

between the activity of the autolysins and the incorporation of new PGN 

material into the polymer mesh, determines the level of PGN that is 

accumulated at the septum. Concomitantly, the amount of PGN that can be 

detected is determinant for the triggering of efficient immune responses. 

 Overall, the results show that detection of PGN is paramount for 

the triggering of efficient immune responses. Recognition of a certain 

amount of PGN at the cell surface, can efficiently combat an infection from 

a major pathogen such as S. aureus. This in turn suggests that the virulence 

factors can only effectively play their roles for as long as the bacteria can 

protect their PGN recognition.  
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Introduction 

 

 As unicellular organisms, bacteria depend exclusively on 

themselves to survive and propagate. A single tiny cell has to manage by 

its own to get nutrients, to keep its internal homeostasis, to protect itself 

from environmental conditions and replicate. A key factor for bacterial 

survival and replication is the maintenance of the cell wall (CW) and 

peptidoglycan (PGN) integrity. When a bacterial cell divides, there is the 

coordination of several processes which involve the duplication of the 

bacterial components and culminates with the separation of the two 

daughter cells. For cell growth and separation to occur, old PGN needs to 

be degraded. This is mediated by the activity of PGN hydrolases, commonly 

referred to as autolysins [2]. Maintenance of the cellular integrity is 

achieved through a coordinated process of synthesis and degradation of 

PGN in order to avoid cell lysis.  The last stage of PGN synthesis is catalysed 

by the Penicillin Binding Proteins (PBPs) and the cleavage of old PGN by 

the autolysins opens up space for the insertion of new material. Thus, 

regulation of the autolytic activity is of uttermost importance, in which 

autolysins act in a temporal and spatial well-orchestrated manner.  

 The PGN hydrolases compose a vast and diverse group of 

enzymes that cleave the PGN sacculi or PGN soluble fragments. They are 

classified into two main types– the glycosidases and the amidases (Fig. 1) 

[3]. To the bacterial PGN hydrolases involved in the bacterial cell division, 

I will refer to them as autolysins, to distinguish from PGN hydrolases 

produced by other organisms which can cleave another organism` PGN, 

e.g. mutanolysin from Streptomyces globisporus and lysostaphin from 

Staphylococcus simulans that can cleave Staphylococcus aureus PGN, and 

they do not participate in cell growth and division.  
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Figure 1. Representation of the PGN hydrolytic activities in an S. aureus PGN model. 
The glycosidases cleave the glycan backbone and there are three types: lytic 
transglycosylases (A), glucosaminidases (B) and muramidases (C). Lytic 
transglycosylases (A) and muramidases (C) are also collectively known as N-acetyl-β-
D-muramidases and they cleave between the MurNAc and GlcNAc residues. They are 
differentiated by their reaction products. Muramidases (C) generate terminal 
reducing MurNAc residues and lytic transglycosylases (A) generate a 1,6-anhydro ring 
(Fig. 3, Chapter I). The N-acetylglucosaminidases (B) hydrolyse GlcNAc residues from 
adjacent sugar residues. The amidases cleave the peptide moiety and are divided into 
N-acetylmuramyl-L-alanine amidases (D and F) and endopeptidases (E). N-
acetylmuramyl-L-alanine amidases hydrolyse the amide bond between MurNAc and 
L-alanine separating the glycan strands from the peptides. Endopeptidases cleave the 
bonds in the stem peptides and peptide bridges. In particular, carboxypeptidases 
cleave the C-terminal amino acid (D-alanine) of the peptide chain (not depicted in the 
figure). 

 For every type of bond present in the PGN, there is a PGN 

hydrolase able to cleave it [2]. However, a bacterium may not possess all 

autolysins` types. Autolysins comprise different PGN hydrolytic domains 

which confer a certain lytic activity, which is often specific or optimal for 

the PGN of the bacteria that produce it [1], [4]. However, it is often difficult 

to assign a distinct specific function to an autolysin, mainly because many 

bacteria possess a high number of autolysins which appear to have 

redundant roles [5].  

 As autolysins are responsible for PGN cleavage, which in turn is 

associated with several physiological processes, these enzymes present 

numerous roles. They are central for CW/PGN growth, PGN turnover and 

recycling, separation of the daughter cells, autolysis, remodelling of the 

sacculus to determine cell shape, assembly of cell surface organelles, 

sporulation and germination, resuscitation of dormant cells, biofilm 

formation and bacterial lysis in species competition [6]–[14].  In addition, 

autolytic activity can result in the release of PGN turnover fragments into 

the surrounding medium [8]. These turnover products can act as signalling 

molecules [10] and/or be detected by PGN Host receptors, such as the 

detection of muramyl-dipeptide (MDP) by Nod2 [15] and tracheal 

cytotoxin (TCT) by PGRP-LC [16]. 
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Autolysins in Staphylococcus aureus 

 

 The Host Labs have discovered that when the major autolysin Atl 

of Staphylococcus aureus is absent, PGRP-SA from Drosophila melanogaster 

can recognise the accumulated PGN fragments at the cell surface [1]. This 

recognition renders the atl mutant significantly less virulent and highly 

susceptible to the Host responses. After participating in this study, I aimed 

to understand if other S. aureus autolysins could also contribute to impair 

bacterial detection and dampen the immune responses by accumulation of 

high amounts of PGN fragments that are accessible to PGRP-SA.  

 I searched the genome of NCTC 8325 S. aureus strain for genes 

encoding for proteins containing a PGN-Binding/Lytic Domain (PGN-BLD) 

which is associated with an autolytic activity. I excluded the 

bacteriophages genes and identified 19 bacterial genes which codify for 

proteins that are or might be autolysins (Fig. 2). These 19 proteins fall into 

five hydrolytic activities (Fig. 3). 
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Figure 2. Chromosomal distribution of the bacterial PGN-BLD proteins associated 
with autolytic activity in NCTC 8325. 19 bacterial genes were identified and found to 
be distributed throughout the staphylococcal genome. The genes encoding proteins 
which have not been named in previous reports are designated by their locus number. 
The names depicted in green are the genes that I deleted from the NCTC 8325-4 
background (expect the atl mutant). 
 

 

Figure 3. Cleavage sites of the S. aureus autolysins. The S. aureus PGN is degraded at 
the glycan backbone by N-acetylglucosaminidases and lytic transglycosylases. The 
peptide moiety suffers cleavage from the glycans through the N-acetylmuramyl-L-
alanine amidases and the peptides are cleaved by endopeptidases at the cross-bridge 
either between two glycine residues or between the glycine and the D-alanine.  
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 The presence of a great number of PGN-BLD proteins with a 

possible function in hydrolysis, led us to enquire whether a certain activity 

given by a specific domain could have an effect in the virulence of the 

bacteria. Thus, I constructed six single null mutants of the genes depicted 

in green in Fig. 2 in the NCTC 8325-4 background (reference strain from R. 

Novick).   

 The domains associated with glycosidase activity are3: LYZ24 – 

mannosyl-glycoprotein endo-β-N-acetylglucosaminidase-like domain 

(IPR002901), SLT – transglycosylases SLT domain 1 (IPR008258) and TGL 

– transglycosylases-like domain (IPR010618). The domains associated 

with amidase/endopeptidase activity are: CHAP – cysteine, histidine 

dependent amidohydrolase/peptidase domain (IPR007921), PGRP – 

peptidoglycan recognition protein family domain, metazoa/bacteria 

(IPR006619), M23 – peptidase M23 domain (IPR016047) and MurNAcLAA 

– N-acetylmuramoyl-L-alanine amidase, catalytic domain (IPR002508). 

The LysM (Lysin motif) domain (IPR018392) and the SH3b (SH3 (Src 

homology 3) -like domain, bacterial type) domain (IPR003646) are usually 

present in autolysins with other domains and their main function appears 

to serve as binding and adherence domain [2], [17], [18]. The distribution 

of these domains in the 19 S. aureus autolysins is represented in Fig. 4.  

 

                                                           
3 EMBL-EBI interpro database. 
4 Lysozyme subfamily 2, SMART accession number: SM00047. 
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Figure 4. Representation of the PGN-BLD domains from each of the 19 proteins 
identified. The genes to be deleted were selected based on the proteins` proposed 
function according to the activity domain. At least one protein of the more prevalent 
domains – LYZ2, CHAP and M23 – was selected to enquire if one specific domain could 
be more associated with the impairment of PGN detection. The proteins represented 
on the top panel are the ones of which the genes were deleted to construct single null 
mutants. 

  

Overview of the deleted gene products. 

The major autolysin Atl. 

Atl is a 137 kDa enzyme with a PGRP and LYZ2 domains which renders the 

protein with both activities of N-acetylmuramyl-L-alanine amidase and N-

acetylglucosaminidase, respectively (Fig. 3 and 4) [9], [19].  The protein 

undergoes proteolytic processing and generates two extracellular forms: a 

62 kDa amidase (AM) and a 51 kDa glucosaminidase (GL) [20]. Both 

enzymes participate in the splitting of the daughter cells. Each processed 

form presents binding repeats – R1, R2 (AM) and R3 (GL) – which seem to 

be involved in targeting to the septum region [21]. It has been proposed 
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that the presence of WTA mediate the binding of AM and GL through an 

exclusion strategy mechanism [22]. Atl seems to be involved in different 

processes that aid in the establishment of infection. Atl can mediate 

bacterial internalization by non-professional phagocytes [23] and AM can  

bind to host matrix proteins such as vitronectin [9]. In addition, in the 

absence of Atl, accumulated cell surface PGN is recognised by PGRP-SA, 

resulting in a dramatic loss of virulence in a D. melanogaster model [1].  

 

The amidases. 

 The CHAP domain can be found in phages, bacteria and 

eukaryotes and is associated with two types of PGN cleavage: N-

acetylmuramyl-L-alanine amidase and D-alanyl-glycyl endopeptidase (Fig. 

3) [24]–[27]. Bacterial cell surface binding domains frequently 

encountered in the CHAP superfamily of proteins are LysM, CW- binding 1 

for choline binding (ChBD) and SH3 [26]. The LysM domain is one of the 

most common attachment modules in bacterial cell surface proteins [17], 

[26]. The ChBD (choline-binding domain) is responsible for the 

noncovalent anchoring of the choline binding proteins to the choline 

moieties of both teichoic and lipoteichoic acids, such as Streptococcus 

pneumoniae hydrolases LytA, LytB and LytC [28]–[32]. The SH3 domain 

was first identified in eukaryotes [18]. The bacterial SH3 domain, SH3b, is 

thought be involved not only in PGN binding but also in the binding to Host 

receptors [18].  

 LytN is a ~42kDa protein presenting an YSIRK/GS-type signal 

peptide, a LysM domain and a CHAP domain (Fig. 4). LytN possesses N-

acetylmuramol-L-alanine amidase and D-alanyl-glycine endopeptidase 

activities (Fig. 3). The CHAP domain contributes to both lytic activities 

[33]. The LysM domain is responsible for binding to the PGN [34]. The 

YSIRK/GS-type signal peptides direct the deposition of secreted proteins 
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into the cell division site [34]–[36].  LytN appears to be distributed all over 

the cell surface, including the cell division site [33].  

The autolysin Sle1 or Aaa is an ~32 kDa N-acetylmuramyl-L-

alanine amidase composed of 3 LysM domains which have binding 

properties to the PGN and a CHAP domain that confers the lytic activity 

(Fig. 3 and 4) [34], [37]. This autolysin is found at the cell surface and it 

participates, together with Atl in cell splitting [37]. Similar to Atl, it appears 

to have a role in pathogenesis as both domains mediate the adherence to 

the extracellular matrix proteins fibrinogen, fibronectin, and vitronectin 

[38], [39].   

02855 is a ~17 kDa uncharacterized protein with a CHAP domain, 

thus it is predicted to be an autolysin with amidase activity. 

LytM is an ~34.4 kDa glycylglycine endopeptidase with significant 

homology to lysostaphin (Fig. 3) [40], [41]. It has been found both at the 

CW and in the extracellular medium [42], [43]. At the CW, LytM is 

distributed over the cell surface, and thus it has been proposed be involved 

in CW plasticity rather than cell division [41], corroborating recent 

findings by Monteiro and colleagues [44] (see Discussion). Nevertheless, 

the levels of lytM are highest during the early exponential phase and 

almost undetectable in the stationary phase [45], which indicates that this 

enzyme participates in cell growth processes. It possesses an M23 domain, 

belonging to the lysostaphin-type metallopeptidases [46], [47] (Fig. 4). 

However, unlike lysostaphin from S. simulans, LytM does not lyse S. aureus 

cells, rather it cleaves the pentaglycine bridges altering CW thickness 

without compromising its integrity [41], [44], [47]–[49].  

 

The glycosidases. 

02580 is a 24.4 kDa uncharacterized protein which possesses a 

LYZ2 domain like Atl, hence it is expected to have an N-

acetylglucosaminidase activity.  
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The immunodominant secretory antigen A (IsaA) is a 29 kDa 

extracellular protein first identified as an immunodominant protein 

candidate for the development of antibody based vaccines [49] and its 

immunogenicity was corroborated later on [50]. IsaA is a soluble lytic 

transglycosylase present both at the cell surface and in the supernatant of 

medium cultures [51]. The SLT domain belongs to a superfamily of 

glycosidases ubiquitous in phages, bacteria and eukaryotes [52]–[54]. In 

bacteria, the lytic transglycosylase activity is commonly found in 

autolysins of Gram-negative bacteria. The IsaA SLT motif shows a high 

similarity to the soluble lytic transglycosylase Slt70 of Escherichia coli 

[55]–[57]. The lytic activity was detected by a Zymography assay and it is 

non-covalently bound to the CW [58].  In particular, it was found to locate 

at the septum region and it is presumed to be involved in the cell splitting 

[51]. In accordance, IsaA was detected in the supernatant of exponentially 

growing cells and its concentration increased until the early stationary 

phase [59]. As for the cell surface, IsaA was predominantly found in 

growing bacteria and the levels decreased proportionately with cell 

proliferation, i.e. the reach of stationary phase [59].  
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Results 

 

Muramidase treatment only allowed detection of processed 

forms of Atl. 

Zymogram assays of SDS crude CW extracts showed five major lytic 

bands (Fig. 5), typical for the major autolysin Atl [60]. Atl activity can be 

detected both in Micrococcus luteus cells and in S. aureus cells, which 

indicates that the AM and GL activities are not specific for the S. aureus 

PGN. On the other hand, the lytic activity of Sle1 could only be detected 

when I used S. aureus cells as substrate. As an overall, it can be concluded 

that some Atl forms and Sle1 are present in the CW through a non-covalent 

manner.  

 

 

Figure 5. Zymography analysis of SDS crude autolytic enzyme extracts of S. aureus 
strains. The autolytic enzymatic extracts were ran both in M. luteus and S. aureus 
substrates. Five different forms of the major autolysin Atl were seen with either 
substrates. However, only the S. aureus substrate cells allowed detection of Sle1 
activity.  

In order to detect the activity of other autolysins, the CWs of 

exponentially growing bacteria were treated with the muramidase 

mutanolysin (M1). The autolytic extract was analysed by zymogram assays 
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with S. aureus cells as substrate (Fig. 6). Only Atl forms could be detected, 

as these are not present in the atl mutant. The molecular weight of the 

bands suggests that AM and GL can be detected. However, there are a 

subset of bands between the predicted AM and GL forms, that are not 

detected with SDS extraction. Furthermore, it can visualised bands with 

lower molecular weights (< 37 kDa), which although it is suggestive that 

one of them might be Sle1, both bands can be detected in the NCTC Δ sle1 

extract. It is possible that one of the bands is M1 which has a molecular 

weight of 23 kDa. In addition, when both SDS and M1 extracts were run in 

NCTC Δ atl substrate cells, it was not observed differences in the lytic 

bands (right bottom gel with M1 extracts of NCTC 8325-4 and NCTC Δ 

isaA). 

 

Figure 6. Zymography analysis of M1 crude autolytic enzyme extracts of S. aureus 
strains. Autolytic M1 extraction only allows the detection of Atl processed forms 
which cannot be detected with SDS extraction. The extracts were run in NCTC 8325-4 
substrate cells, except the right bottom M1 extract gel, which was ran in NCTC Δ atl 
cells. 
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NCTC Δ sle1 shows binding of mCherry_PGRP-SA at the 

septum/cell-splitting region.  

 To determine whether the absence of each autolysin would result 

in the accumulation of cell surface exposed PGN recognised by PGRP-SA, I 

performed co-precipitation assays of live cells with an mCherry 

fluorescent tagged-rPGRP-SA [61]. Cells in early exponential phase were 

harvested, washed and incubated with mCherry_PGRP-SA. The amount of 

mCherry_PGRP-SA that bound to the cells was visualised by fluorescent 

microscopy (Fig. 8). These data are qualitative, since the clustering of the 

mutants impairs the precise quantification of the fluorescence signal. 

 NCTC Δ atl is the mutant that shows better binding by 

mCherry_PGRP-SA . In the absence of Sle1, mCherry_PGRP-SA bound 

exclusively at the splitting septum. Although in the other mutants (and in 

the wild-type strain), it was observable binding in spots near the cell 

septum, only in NCTC Δ sle1 was it possible to visualise the entire division 

septum through binding of mCherry_PGRP-SA. This pattern of binding is 

different from the NCTC Δ atl cells, to which the whole surface is 

recognised by mCherry_PGRP-SA [1]. The absence of other CHAP domain 

containing proteins, 02855 and LytN, did not show the same effect on the 

recognition of mCherry_PGRP-SA, nor did the absence of the 02580 

autolysin (possessing the LYZ2 domain like Atl) and the lytic 

transglycosylase IsaA.  
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A.

 

Figure 7. Co-precipitation of live cells with mCherry_PGRP-SA. Cultures in early 
exponential phase of the parental and mutant strains were incubated with 
mCherry_PGRP-SA. The protein bound to the cells was pulled down with them and the 
binding was visualised by fluorescence microscopy. Scale intensities were adjusted to 
equalise NCTC  Δ atl – mCherry_PGRP-SA. Pannel A. NCTC 8325-4, NCTC Δ atl, NCTC Δ 
lytM and NCTC Δ 02580. Pannel B. NCTC Δ isaA, NCTC Δ sle1, NCTC Δ lytN and NCTC Δ 
02855. 
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B.

 

Figure 7. Co-precipitation of live cells with mCherry_PGRP-SA. Phase images show 
that NCTC Δ atl and NCTC Δ sle1 are the mutants that show a more dramatic 
phenotype of impaired cell division. Because of the clustering of cells, it was not 
possible to properly quantify the signals. 
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mCherry_PGRP-SA binding is lower in cells at the stationary 

growth phase. 

In the wild-type cells, the binding of mCherry_PGRP-SA is very low 

(Fig. 7). Nevertheless, in some cells mCherry_PGRP-SA binds close to or at 

the septum/cell division site. In the mutants with a low binding by 

mCherry_PGRP-SA, it seems that they are also recognised mainly at this 

region. This suggests that dividing cells are more easily recognised than 

non-dividing cells. Accordingly, the binding seems to be associated with 

cell division and the activity of the autolysins, since the recognition of cells 

in the stationary growth phase is greatly reduced (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Co-precipitation of live cells in exponential and stationary growth phase 
with mCherry_PGRP-SA. Cultures in stationary phase of the parental, atl and sle1 
strains were incubated with mCherry_PGRP-SA. Scale intensities were adjusted to 
equalise mCherry_PGRP-SA binding to NCTC Δ atl in stationary phase. The binding is 
lower when the cells are in stationary growth phase. 
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Figure 8. Co-precipitation of live cells in exponential and stationary growth phase 
with mCherry_PGRP-SA. (Legend on page 81). 
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Atl is the main autolysin associated with bacterial virulence. 

 In order to study the virulence of the autolysin mutants, in vivo 

assays were conducted in Drosophila melanogaster.  The y,w flies – immune 

wild-type flies – were infected with each bacterial strain (Fig. 9). The null 

mutants atl, lytM, isaA and 02855 showed to be less virulent than the 

parental strain. Nevertheless, NCTC Δ atl is the mutant that shows less 

virulence (Fig. 9 and 10A).  The mutant NCTC Δ sle1showed to be as 

virulent as the wild-type strain (Fig. 9 and Fig. 10B), together with NCTC Δ 

02580 and NCTC Δ lytN. 

 

 

 

Figure 9. Survival curves of y,w flies infected with the parental strain and the 
autolysins mutants. NCTC Δ atl is the mutant that shows the most significant loss of 
virulence compared to NCTC 8325-4. NCTC Δ atl is followed by both NCTC Δ lytM and 
NCTC Δ isaA which are followed by NCTC Δ 02855. Whilst y,w flies infected with NCTC 
8325-4 succumb after 24h p.i. (post infection), the time of highest probability of death 
is delayed to 36h p.i. with either NCTC Δ lytM, NCTC Δ isaA and NCTC Δ 02855. 
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A. 

 

B.

Figure 10. Survival curves for y,w flies. The survival graphs show the wild-type strain 
NCTC 8325-4 and the NCTC Δ atl as references for virulent and non-virulent bacteria, 
respectively. A. Survival curves of the mutants that are significantly less virulent than 
the wild-type strain. When compared to NCTC Δ atl, infection with either NCTC Δ lytM, 
NCTC Δ isaA or NCTC Δ 02855, these mutants are more virulent. The survival curves of 
these three mutants are in turn indistinguishable between them. B. Survival curves of 
the mutants that are not less virulent than the wild-type strain. The survival curves of 
these mutants are indistinguishable between them. 
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The null mutants lytM, isaA and 02855 are equally virulent 

in a y,w and a semmelweis background. 

The response to Lys-type PGN bacteria, particularly S. aureus 

bacteria, is highly dependent on PGRP-SA [1], [61]–[63]. Thus, we infected 

semmelweis flies of the y,w background [62], which are unable to produce 

a functional PGRP-SA, with the bacterial mutants that showed reduced 

virulence (Fig. 9 and 10A). 

When semmelweis flies were infected with each of the strains, 

interestingly NCTC Δ atl was the most virulent mutant in this background 

(Fig. 11). The wild-type strain NCTC 8325-4 was so virulent that it is not 

possible to distinguish the survivals of y,w and semmelweis flies (Fig. 12). 

However, the semmelweis flies are highly susceptible to the non-virulent 

atl mutant (Fig. 13). Regarding NCTC Δ lytM, NCTC Δ isaA and NCTC Δ 

02855, the survival curves of y,w and semmelweis are not distinguishable 

(Fig. 14-16).  

 

 

Figure 11. Survival curves of semmelweis flies infected with the parental strain and 
the less virulent mutants. The wild-type strain NCTC 8325-4 is the more virulent 
bacteria, opposite to NCTC Δ lytM.  
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Figure 12. Survival curves upon infection with NCTC 8325-4. The survival curves of 
y,w and semmelweis flies are indistinguishable (P = 0.1394). 
 

 

Figure 13. Survival curves upon infection with NCTC Δ atl. semmelweis flies are 
significantly more susceptible than y,w flies (P<0.0001). 
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Figure 14. Survival curves upon infection with NCTC Δ lytM. The survival curves of 
y,w and semmelweis flies are indistinguishable (P = 0.0691). 

 

 

 

Figure 15. Survival curves upon infection with NCTC Δ isaA. The survival curves of y,w 
and semmelweis flies are indistinguishable (P = 0.1394). 
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Figure 16. Survival curves upon infection with NCTC Δ 02855. The survival curves of 
y,w and semmelweis flies are statistically indistinguishable (P=0.6089). 

 

Sle1 does not significantly contribute to virulence, albeit 

binding of PGRP-SA to the NCTC Δ sle1 splitting septum. 

 Since NCTC Δ sle1 showed increased binding of mCherry_PGRP-SA 

(Fig. 7) but failed to show less virulence in y,w flies (Fig. 9 and 10A), we 

enquired about the susceptibility of the semmelweis flies. The survival 

curves of y,w and semmelweis were not distinguishable (Fig. 17). The 

observed in vitro binding of mCherry_PGRP-SA to the septum and cell 

division site (Fig. 7) seems to not be sufficient to promote an efficient 

immune response by the Fly. 
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Figure 17. Survival curves upon infection with NCTC Δ sle1. The survival curves of y,w 
and semmelweis flies are indistinguishable (P = 0.7087). 

 

Subsequently, in order to evaluate whether Sle1 contributed for 

virulence in the Fly, I constructed a double mutant background NCTC Δ atl 

Δ sle1. The double mutant shows a more dramatic impairment in cell 

division than both single mutants (Fig. 18) in accordance to previous 

reports [37]. In addition, mCherry_PGRP-SA could bind to the whole 

surface of the bacteria, similar to NCTC Δ atl, and not exclusively to the 

splitting septum as NCTC Δ sle1 (Fig. 18).  

The double mutant NCTC Δ atl Δ sle1 showed to be as virulent as 

the single mutant NCTC Δ atl (Fig. 19A) and to equally dependent on PGRP-

SA recognition (Fig. 19B). Consequently, the loss of virulence of the double 

mutant is attributed to the lack of the major autolysin Atl and the absence 

of Sle1 does not significantly contribute for virulence upon septical 

infection. 
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Figure 18. Co-precipitation of live cells with mCherry_PGRP-SA. mCherry_PGRP-SA is 
able to bind to the whole bacterial surface of the double mutant NCTC Δ atl Δ sle1, 
albeit it shows some accumulation of binding close at cell division sites. Scale 
intensities were adjusted to equalise NCTC Δ atl – mCherry_PGRP-SA. 
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A.

 

 

B.

 

 

Figure 19. Survival curves of y,w and semmelweis flies by NCTC Δ atl Δ sle1 and its 
parental strains. A. Survival curves of y,w flies. B. Survival curves of semmelweis flies. 
The survival curves of NCTC Δ atl and NCTC Δ atl Δ sle1 were overlapping in both fly 
backgrounds and statistically less virulent than the parental strains. 
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Induced AMPs seem to have a secondary role upon infection 

with NCTC Δ atl and NCTC Δ atl Δ sle1. 

 Upon bacterial infection, recognition of Lys-type PGN by PGRP-SA 

and DAP-type PGN by PGRP-LC triggers either the TOLL or IMD pathways, 

respectively, which induce the expression of antimicrobial peptides 

(AMPs) [62], [64]–[67]. In order to address the role of TOLL-dependent 

AMPs against infection of NCTC Δ sle1, we determined the drosomycin 

transcript levels at 16h p.i. (Fig. 20). Infection with NCTC Δ sle1, did not 

show higher levels of drosomycin transcription. On the other hand, 

infection with both non-virulent mutants NCTC Δ atl and NCTC Δ atl Δ sle1, 

showed decreased levels of drosomycin. This may suggest that less virulent 

bacteria require less induction of AMPs probably due to an efficient 

clearance by the early immune responses of the Fly.  

 

Figure 20. Induction of drosomycin at 16h p.i. in y,w flies.  y,w flies were infected in 
the same manner as for the determination of the survival curves. NCTC Δ sle1 show a 
slight less induction of drosomycin than NCTC 8325-4, albeit not significant. Likewise, 
infection with the double mutant showed non-significant decreased levels compared 
to NCTC Δ atl. Clearly, the non-virulent mutants induce drosomycin to much lower 
levels than the virulent strains.  
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NCTC Δ lytM and NCTC Δ atl Δ sle1 are impaired in 

haemolytic activity. 

 S. aureus is a major opportunistic pathogen that presents several 

virulence factors. I aimed to study whether haemolysins could affect the 

Host responses, in order to determine bacterial factors unrelated with PGN 

recognition that could help to explain the reduced virulence of NCTC Δ 

lytM, NCTC Δ isaA and NCTC Δ 02855. In addition, the low levels of 

drosomycin in non-virulent mutants compared to virulent strains, allowed 

to surmise that bacterial factors impairing early immune responses could 

be important for virulence. Since the early immune responses rely on the 

role of haemocytes in phagocytosis and clearance, I enquired whether the 

S. aureus autolysins could be subverting the cellular responses. 

 Haemolytic assays in sheep blood, showed that NCTC Δ atl, albeit 

showing the same type of haemolytic activities, presents a different 

pattern of distribution with an extra external halo (Fig. 21A). As the 

response to NCTC Δ atl mutant is highly dependent on PGRP-SA (Fig. 13 

and 19B) [1], it can be inferred that the haemolysins are not significantly 

contributing for loss of virulence.  

The double mutant NCTC Δ atl Δ sle1 presents β-haemolysin 

activity (Fig. 21A) but is compromised in the other haemolysins, similar to 

RN 4220 (Fig. 21C). This could in part account for the less activation of 

drosomycin compared to the single mutant NCTC Δ atl (Fig. 20). Likewise, 

NCTC Δ lytM solely presents β-haemolyses (Fig. 21B) which may 

contribute for a more reduced virulence than NCTC Δ isaA and NCTC Δ 

02855 which show a wild-type haemolytic phenotype (Fig. 21B).  On the 

other hand, the virulence of the sle1 mutant (Fig. 9 and 10B), albeit binding 

of PGRP-SA (Fig. 7B), may reside in the fact that coupled with an 

insufficient PGN recognition to trigger a potent immune response, it 

retains the haemolytic ability identical to NCTC 8325-4 (Fig. 21A).  
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A.

 

Figure 21. Haemolytic activity in sheep blood. It is presented the haemolytic profile 
of the strains used in this study. On the left column is it shown an image of the 
haemolytic activity and on the right column it is shown a 3D surface plot to help in the 
visualisation of the haemolytic halos. Briefly, overnight cultures were adjusted to the 
same optical density and inoculated in solid media supplemented with 5% (v/v) sheep 
blood. 
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B.

 

Figure 21. Haemolytic activity in sheep blood. The plates were incubated at 37ºC for 
16h followed by incubation at 4ºC for 24h to better visualise and detect the activity of 
the β-haemolysin.  
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C.

 

Figure 21. Haemolytic activity in sheep blood. RN 4220 is a laboratory strain impaired 
in the expression α and δ haemolysins, thus it can only be detected β-haemolyses [68]. 
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Discussion 

The structural and chemical properties of the PGN may 

affect and regulate the activity of autolysins. 

 The CW treatment with SDS releases components that are non-

covalently linked to the CW, whilst it also denatures the proteins. 

Therefore, the treatment with SDS, which is commonly used to extract CW 

bound protein, may come with limitations on the detection of the activity 

of the enzymes. Nevertheless, this procedure successfully allowed the 

detection of different Atl forms (Fig. 5). We then enquired whether 

treatment with a muramidase, which would release bound proteins by 

PGN solubilisation, would allow the detection of different autolytic bands 

(Fig. 6).  

The improved lytic activity of GL with M. luteus cells rather than 

with S. aureus cells (Fig. 5), has been proposed to be due to a pre-requisite 

of AM digestion prior to GL digestion [22]. However, it also could be the 

case that the GL activity is controlled by modifications in the glycan strands 

that are not present in the M. luteus PGN [69]. This could be a mechanism 

similar to the O-acetylation of MurNAc which regulates the activity of the 

lytic transglycosylases in Gram-negative bacteria [70]–[72]. In addition, it 

may also be due to the different PGN structures of the S. aureus and M. 

luteus PGN, such as the degree of cross-linking, length of the glycan chains, 

differences on the peptide moiety and/or the different CW compositions, 

such as the wall teichoic acids and the teichuronic acids [69]. 

As the lytic activity of Sle1 could only be detected with S. aureus 

cells as substrate (Fig. 5), either the Sle1 activity is specific for this PGN or 

it has a substantial optimal activity in this substrate. This suggests that Sle1 

may require different PGN chemical properties than AM in order to be 

active. Indeed, the amidase activity of these proteins is attributed by 

different domains – AM possesses a PGRP domain and Sle1 a CHAP domain. 
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Overall, the results suggest that different autolysins are optimal to 

PGNs with specific characteristics/modifications. This may be a 

mechanism to control and regulate the lytic activity. 

Treatment of the CWs with mutanolysin (M1), only revealed 

processed forms of Atl in an S. aureus substrate (Fig. 6). This may be an 

indication that high molecular weight forms of Atl do not covalently bind 

to the PGN and/or that the activity of the smaller forms is susceptible to 

SDS extraction. On the other hand, it is possible that M1 does not penetrate 

well through the CW and has limited access to the PGN. In this scenario, it 

would be observed the release of Atl forms bound to only certain PGN 

chains or fragments. Interestingly, some of these Atl forms are not detected 

by SDS extraction. Overall, the results suggest that Atl may present more 

processed forms than the ones that have already been identified.  

Sle1 was not detected upon M1 treatment, in contrast to the AM 

form of Atl. It can be inferred that perhaps AM and Sle1 may localise 

temporally in different places of the cell or that Sle1 requires full 

denaturation-renaturation process in order to be active in a zymogram. If 

the SDS present in the loading buffer is not sufficient to fully denature the 

protein, it might be the case that Sle1 is not able to restore the activity. If 

the protein folds in a way that incorporates PGN molecules, the recovered 

Sle1 present in the M1 extracts could be too “close” to be able to interact 

with new PGN fragments, hence it would require a full denaturation-

renaturation cycle. To address this hypothesis, I performed an SDS 

treatment to the M1 extracts prior performing the zymograms, and still did 

not detect Sle1 activity and the activity of the Atl enzymes was greatly 

reduced (data not shown). 
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PGRP-SA accesses surface exposed septal PGN fragments 

temporarily generated during cell division. 

Cell division culminates with the splitting of the daughter cells. For 

cell splitting to occur, old PGN at the septum needs to be degraded. 

Autolysins have been shown to localise at the septum where PBPs also 

localise [73]. Atl, Sle1, LytM, LytN and IsaA have been shown to localise at 

the septum, albeit Atl, LytM and LytN are also found distributed over the 

whole cell surface [21], [33], [37], [41]. 

In order to prevent autolysis upon cell splitting, the process of 

degradation and insertion of new PGN material must be regulated in a 

spatial and temporal manner. Thus, the degradation and synthesis are 

coupled processes, which it is intuitively logical to assume that 

degradation happens (very shortly) before the insertion of new material. 

This implies that for a very short period of time it is possible the 

occurrence of some accumulation of PGN fragments both from old and new 

synthesised PGN fragments.  

In the wild-type strain NCTC 8325-4, mCherry_PGRP-SA showed a 

very low binding to exponentially growing cells (Fig. 7). However, when it 

is detected, binding by mCherry_PGRP-SA is found at or close to the septum 

region. Therefore, it appears that PGRP-SA is able to recognise PGN at the 

septum prior to the recycling and generation of the old and new PGN 

chains. Accordingly, all the autolysins mutants present in this study 

showed binding at the septum. NCTC Δ sle1 showed a higher defined 

binding of the septum than NCTC 8325-4  and the other mutants and NCTC 

Δ atl showed binding all over the cell surface, i.e. not exclusively at the 

septum region (Fig. 7, 8 and 18). Indeed, PGRP-SA only binds all over the 

cell surface when the PGN is surface exposed (e.g. the tagO mutant [61] 

and Fig. 4, Chapter III) or it is homogeneously accumulated at the cell 

surface (atl mutant [1] and Fig. 7, 8, 18).  
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The binding of PGRP-SA at the septum and cell splitting region can 

be an indirect evidence of the role of these proteins in cell growth and 

division. To a certain extent, it allows the inference of their cellular 

location. Atl is found to localise all around the cell surface and PGRP-SA 

binds all over the surface in an atl mutant. The stronger binding at the 

septum in the sle1 mutant compared to the wild-type strain, is an 

indication of the Sle1 localisation at the cell division site, where it may 

assume a specific role for an efficient cell splitting.  

Interestingly, the mutants that showed a more accentuated 

phenotype in impairment of cell division were NCTC Δ atl and NCTC Δ sle1 

which in turn are the mutants that presented either a better recognition 

by PGRP-SA or a more defined pattern of binding at the septum. This 

indicates that these are the mutants that present higher level of cell 

surfaced exposed PGN. In contrast to previous reports, NCTC Δ lytN mutant 

did not show visible compromised cell defects [33].  In accordance with 

previous reports, NCTC Δ isaA and NCTC Δ lytM also did not exhibited 

impairment in cell division or increased cell clustering [48], [58].  

 

The activity of the autolysins influence the detection of PGN 

by PGRP-SA. 

 If PGRP-SA, in a wild-type bacterium, can almost exclusively only 

detect the PGN that is temporarily generated/exposed during cell division, 

then cells in a non-dividing stage or a population in a stage of a slower 

growth rate, should be more difficult to be recognised. According to the 

hypothesis presented above, recognition by PGRP-SA plays with the 

probability to access PGN fragments that slightly accumulate for very short 

periods of time in a specific sub-cellular region. Hence, if the growth rate 

of a population is lower, the probability of finding a dividing cell that 

presents a certain level of PGN accumulation is greatly reduced.  
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 In liquid culture, bacteria show an exponential growth phase 

which is followed by a stationary growth phase. In this stage, the number 

of bacterial cells no longer increases [74]. During my experimental 

optimizations, I observed that the binding of mCherry_PGRP-SA is higher 

at early exponential phase, than at mid or late exponential phase (data not 

shown). When I incubated mCherry_PGRP-SA with cells in stationary 

growth phase, I observed a decrease in the binding of the protein (Fig. 8). 

This may substantially be due to the fact that the cells are not in a constant 

high rate of division, thus there is less PGN that is exposed (at the septum). 

In the case of the atl mutant cells in a stationary growth phase, although 

there is still a substantial accumulation of PGN fragments resultant from 

each cell division cycle, it is likely that these fragments are 1) present in 

less amounts and 2) old accumulated fragments from past division cycles 

have had time to be gradually cleaved by other autolysins. In accordance, 

at this growth stage, the mutants` cells show a less impaired cell division 

phenotype.   

 

In the absence of Sle1, PGRP-SA binds to newly synthesised 

PGN fragments, accumulated at the septum, that are not 

incorporated into the PGN mesh. 

There is a “predisposition” for the binding of PGRP-SA to occur at 

the septum region. However, the binding at the septum of NCTC Δ sle1 cells 

is more evident than the binding to other mutants which have also been 

reported to be active at the septum, such as IsaA [51]. 

Filipe and colleagues have identified that the terminal MurNAc 

residue influences immunostimulation in D. melanogaster [75]. In an isaA 

mutant, it has been detected the overexpression of the other lytic 

transglycosylase, SceD [58]. Hence, it is likely that in NCTC Δ isaA, the 
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number of MurNAc residues in a form that is not easily recognised by 

PGRP-SA is maintained.  

In collaboration, Filipe Lab and Pinho Lab5 have shown that both 

Sle1 and LytM engage in the reshaping of the flat septum into a curved 

hemisphere upon cell division [44]. The sle1 and lytM mutants show 

impairment in septum reshape which may be associated with a higher 

stiffness of the PGN in the absence of these autolysins [44]. If both mutants 

present a similar cell defect at the septum, but PGRP-SA is only able to bind 

better to NCTC Δ sle1 (Fig. 7), it is an indication that the activity of Sle1 at 

the septum is impairing the recognition by PGRP-SA. In addition, it is also 

an indirect indication that Sle1 and LytM possess different roles in the 

process of septum re-shaping.  

Sle1 and LytM can lead to the separation of two glycan strands 

from one another, albeit generating different PGN fragments (Fig. 1 and 3). 

Whereas the Sle1 amidase separates the glycans from the stem peptides, 

the LytM glycylglycine endopeptidase separates the link between the stem 

peptides of two glycan chains. This implies that septum reshape is 

dependent on the separation of the glycan strands, perhaps to 1) open up 

space for incorporation of new material and 2) to link old glycan strands 

with new synthesized PGN forms. The region where the meeting between 

the old and new CW with the join of new and old PGN occurs, may be a 

reason for the typical scars observed upon cell division [69]. This goes in 

accordance with the preferential localization of PBPs at the septum region, 

together with the localisation of the autolysins. 

Sle1 possesses amidase activity which seems to be specific for a 

PGN with certain characteristics (Fig. 5 and first section of the Discussion).  

In addition, the phenotype of cell division defects cannot be 

rescued/compensated as efficiently as the removal of other autolysins can 

                                                           
5 Pinho Lab, Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica 
António Xavier, Universidade Nova de Lisboa. 
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be (Fig. 7). This suggests that Sle1 may have a specific crucial role in the 

cell splitting. Accordingly, the phenotype of an atl mutant, the major 

autolysin, also cannot be compensated to wild-type levels (Fig. 7, 8 and 18). 

Since the sle1 mutant has problems in reshaping of the septum, it means 

that it is a problem of PGN stiffness [44]. Therefore, it is likely that in the 

absence of Sle1, there is a certain moment in the splitting process that the 

cell is not able to introduce the new material due to lack of physical space. 

Hence, Sle1 has a fundamental role in opening up space for septum 

reshaping by allowing the insertion of new PGN material. Then, NCTC Δ 

sle1 accumulates, specifically at the septum, fragments of newly 

synthesised PGN. PGRP-SA is able to recognise these PGN species that are 

not being incorporated within the polymer mesh.  The crucial role of Sle1 

in the aid of the insertion of new material, may be the reason for: 1) the 

impaired re-shaping of the septum in its absence; 2) its amidase activity 

which in turn is sensitive to certain PGN modifications and CW 

composition (Fig. 5 and 6, and first section of the Discussion).   

LytN possesses both N-acetylmuramyl-L-alanine amidase and D-

alanyl-glycyl endopeptidase activities (Fig. 3) [33]. It has been suggested 

that the latter activity of LytN may be equivalent to that of LytM, since the 

end result of hydrolysing either the D-alanine-glycine bond or the glycine-

glycine bond, will lead to crosslinking relaxation with a polyglycine 

extremity [33]. Then, the absence of the LytM may be compensated by 

LytN and the other two putative glycylclycines (Fig. 4). Consequently, the 

level of PGN accumulation at the septum compared with the wild-type 

strain, is not sufficient to render a higher binding by PGRP-SA. Likewise, 

the absence of LytN may be to some extent compensated by the other 

amidases and glycylglycine endopeptidases, similar to the absence of the 

putative amidase 02855. The absence of 02580, a LYZ2 domain containing 

protein, is likely to be compensated by the GL activity of Atl.  
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In sum, PGRP-SA binds to newly synthesised PGN fragments 

accumulated at the septal cell surface, due to the non-incorporation of new 

material into the PGN mesh caused by the stiffness of the septal PGN that 

was not cleaved by the specific activity of Sle1. 

 

Recognition of PGN is paramount for efficient antibacterial 

responses. 

Infection of y,w flies identified NCTC Δ atl, NCTC Δ lytM, NCTC Δ 

isaA and NCTC Δ 02855 to be less virulent than the parental strain (Fig. 9). 

However, NCTC Δ atl is significantly less virulent than either NCTC Δ lytM, 

NCTC Δ isaA or NCTC Δ 02855 (Fig. 10). Whilst upon infection with NCTC 

8325-4 the y,w flies succumb at 24h p.i., with either NCTC Δ lytM, NCTC Δ 

isaA or NCTC Δ 02855 there is a delay of 12h in the death of the flies. At 36h 

p.i. the probability of the Fly survival upon infection with these mutants 

and the wild-type strain is similar, ~20%. An isaA mutant had already been 

reported to be slightly less virulent in a mouse septic arthritis model, albeit 

not statistically significant [58]. In contrast, infection with NCTC Δ atl 

renders the flies a probability of survival of ~75% after 72h p.i. (Fig. 10). 

The reason for such reduced virulence of the atl mutant compared to the 

other less virulent mutants, is due to a better recognition by PGRP-SA. 

Accordingly, in a semmelweis background, the atl mutant is the most 

virulent mutant, close to the virulence levels of the parental strain (Fig. 11 

and 13).  On the other hand, no significant differences in the probability of 

survival of either y,w or semmelweis flies where detected for NCTC Δ lytM, 

NCTC Δ isaA and NCTC Δ 02855 (Fig. 11 and 14-16), similar to NCTC 8325-

4 (Fig. 11 and 12).  These results show that NCTC 8325-4 possesses 

pathogenicity levels that when the PGN is not recognised to a certain 

minimum levels, the Drosophila immune responses are unable to control 

the infection. Only when a certain amount of PGN is accessible to 
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recognition, can the Host counterattack the virulence of the bacteria. 

Hence, NCTC Δ lytM, NCTC Δ isaA and NCTC Δ 02855 are more virulent than 

NCTC Δ atl and the role of PGRP-SA cannot be detected. Likewise, NCTC Δ 

sle1 is as virulent as the parental strain, albeit a better recognition of the 

septal PGN by PGRP-SA (Fig. 7, 9, 11, 17 and 19). The fact that the response 

to the atl mutant is highly dependent on PGRP-SA, proves that the reduced 

virulence has to do with a better PGN recognition and not due to the 

impairment on biofilm and adherence ability or susceptibility to other 

Host components.  

The results suggest that 1) impairment of PGN detection by PGRP-

SA is paramount since a bacterium that still retains virulence factors is not 

able to stablish an infection due to the recognition of its PGN (Fig. 21); 2) 

infection with bacteria that possess high levels of pathogenicity may mask 

the detection of the fundamental role of Host PGN receptors in the immune 

response; 3) impairment of PGN recognition, i.e. immune evasion 

mechanisms, may be the first line  to protect the bacteria against the Host 

immune components, followed by the virulence factors, such as 

haemolysins, that help the bacteria to survive inside the Host (Fig. 21). The 

virulence factors may only be able to assume its role for as long as the 

bacteria remain undetectable by the Host. Furthermore, it may be that 

virulence factors might be able to compensate each other in their role on 

the subversion of the responses, but once the barriers that impair PGN 

recognition are compromised, the bacteria struggle to survive inside the 

Host.  

 

PGN recognition by PGRP-SA may aid in the clearance by 

early immune responses. 

The binding of PGRP-SA to the septum of NCTC Δ sle1 cells (Fig. 7) 

is not sufficient to promote an efficient immune response (Fig. 9, 11 and 
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17). Nevertheless, we enquired whether the absence of Sle1 in an atl 

mutant background would contribute for loss of virulence. Regarding cell 

division, the double mutant NCTC Δ atl Δ sle1 showed high impairment in 

the cell splitting corroborating previous reports [37] (Fig. 18). NCTC Δ atl 

Δ sle1 is as virulent as the single NCTC Δ atl mutant (Fig. 19). Hence, the 

loss of virulence of the double mutant is almost exclusively due to the 

absence of Atl. Accordingly, the binding of mCherry_PGRP-SA to the double 

mutant cells did not seem to be higher than to the single atl mutant cells 

(Fig. 18). 

We next wondered whether albeit not detected by monitoring the 

Host survival, the NCTC Δ sle1 would induce higher levels of AMPs. We 

verified that the levels of drosomycin were similar between NCTC 8325-4 

and NCTC Δ sle1, although the mutant showed slight lower levels of 

induction (Fig. 20). In contrast, the drosomycin levels were greatly reduced 

upon infection with either NCTC Δ atl or NCTC Δ atl Δ sle1 (Fig. 20).  

Induced late AMPs start to be generated once most of the bacteria 

has been cleared, as they assume protective roles and act to destroy the 

bacteria that escaped the immediate cellular responses [76]. 

Consequently, the high susceptibility of NCTC Δ atl and NCTC Δ atl Δ sle1 

to the Host responses (Fig. 19) coupled with the low levels of drosomycin 

(Fig. 20), is an indication that the majority of the bacteria were efficiently 

removed by cellular responses. Thus, there was little bacteria still present 

in circulation, translating into a low induction of the TOLL pathway (Fig. 1, 

Chapter III). Accordingly, the high levels of drosomycin upon infection with 

NCTC 8325-4 and NCTC Δ sle1, may be the result of a higher bacterial load 

in the haemolymph due to the failure of the cellular responses in 

controlling the bacterial load. In this scenario and accordingly to previous 

reports [76],  the induced AMPs have major roles as clearing agents to mop 

up the bacteria in order to counterbalance the inability of haemocytes to 

clear the pathogens. This is an indirect indication that immediate early 
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responses are crucial against an S. aureus infection. In addition, since 

PGRP-SA is paramount against NCTC Δ atl infection, these early responses 

may be associated with the role of PGRP-SA recognition. It follows that, if 

PGRP-SA recognition is vital against infection and the immediate 

responses are involved against an S. aureus infection, then we are 

indirectly observing that the atl mutant is highly susceptible to cellular 

responses, which in turn are dependent on PGRP-SA. Therefore, the level 

of PGN recognised at the NCTC Δ sle1 surface is not sufficient to promote a 

better clearance by haemocytes. Indeed, the Host Labs have previously 

reported that efficient responses against an S. aureus mutant without wall 

teichoic acids rely more on PGRP-SA rather than on induced AMPs [61]. 

This observation may seem contradictory, unless one realises that 

immediate responses are paramount for clearance of the bacteria and 

assume a TOLL-independent role of PGRP-SA (see Discussion of Chapter 

III and the contents of Chapter IV). 

 

S. aureus haemolysins may compromise the clearance 

responses by haemocytes. 

Since S. aureus is a major pathogen whose virulence factors seem 

to aid in the infection of the flies, we sought to determine what factors 

could be vital for the establishment of the infection when detection of PGN 

is not significantly compromised. As the data suggests that early immune 

responses are important for bacterial clearance, we surmise that these 

virulence factors are acting upstream of the late induced responses. 

Subsequently, it should be factors that might impact the role of 

haemocytes.  

Haemolytic assays showed that NCTC Δ lytM and NCTC Δ atl Δ sle1 

are compromised in the haemolytic activity (Fig. 21). Whereas the slight 

reduced virulence of NCTC Δ isaA and NCTC Δ 02855 may to some extent 
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be due to a slight better binding of PGRP-SA at the septum (Fig. 7, 9 and 

10), for NCTC Δ lytM it may be mostly due to the impairment in haemolysin 

activity. Accordingly, in the lytM mutant it was not observed such levels of 

mCherry_PGRP-SA recognition as for NCTC Δ isaA and NCTC Δ 02855 (Fig. 

7). The reason for impairment of haemolytic activity may be due to the fact 

that the pentaglycines bridges are involved in the exposure of cell surface 

proteins [77]. In addition, the impairment of haemolytic activity of NCTC Δ 

atl Δ sle1, may account for the slight reduced drosomycin levels compared 

to NCTC Δ atl (Fig. 21). This suggests that the double mutant is being 

slightly better cleared than the single atl mutant. Nevertheless, it is evident 

that a better PGN recognition by PGRP-SA greatly aids in the clearance 

responses. 
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Conclusions 

 

 The role of autolysins appears to go beyond the maintenance of 

bacterial physiology. On one hand they are crucial for cell growth and 

proliferation which are essential for survival. On the other hand, their 

activity renders the bacteria more susceptible to Host recognition, since 

PGRP-SA (and perhaps other Host PGN receptors) are able to detect the 

PGN fragments generated during cell division.  

The recognition of PGN is paramount against a bacterial infection 

in D. melanogaster. An S. aureus atl mutant is non-virulent in immune wild-

type background flies, showing reduced levels of bacterial load in the 

course of infection [1]. Overall, the results presented in this chapter 

indicate that upon infection with pathogenic bacteria, the detection of a 

certain amount of PGN is sufficient to guarantee Host survival whilst 

clearing the bacteria, i.e. avoid an asymptomatic infection through 

establishment of the bacteria in a hidden ecological niche inside the Host. 

It is then logical that the bacteria respond through evasion 

mechanisms that impair PGN recognition. Accordingly, the data presented 

in this chapter together with the stereo-hindrance of PGN by wall teichoic 

acids [61], show that as long as the bacteria can avoid PGN recognition, 

they successfully establish an infection. This suggests that the mechanisms 

of virulence are primordially dependent on the evasion of PGN detection, 

i.e. on the survival of the bacteria.  PGN detection through binding of Host 

receptors is likely to impair proper growth and division. When impairment 

of PGN recognition is compromised, the Host successfully controls the 

infection and thus the virulence factors assume a secondary role. They are 

mostly efficient for as long as the PGN is protected from recognition. 

 In the absence of the major autolysin Atl, there is accumulation of 

PGN fragments around the cell surface which are exposed and hence 

accessible for PGRP-SA recognition [1]. The results here presented suggest 
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that the PGN recognition is aiding in the clearance of the bacteria. Early 

immune responses are the first line against infection. They rely mainly on 

the function of haemocytes as macrophages, which internalise and clear 

the bacterial cells. The late immune responses follow the cellular 

responses. They rely mainly on the induced AMPs that are triggered upon 

PGN recognition. Since infection with the non-virulent atl mutant induces 

lower levels of drosomycin than the parental virulent strain, the AMPs 

appear to play a secondary role in this infection. As their primary function 

is to clear bacteria that escaped the early immune responses, this suggests 

that the atl mutant is being better cleared through the recognition of PGN 

by PGRP-SA. In sum, the data suggests that upon an S. aureus infection the 

early responses are determinant for bacterial clearance and that PGRP-SA 

may be involved in these early responses. In addition, as pathogenic 

bacteria, S. aureus presents virulence factors that act early on the infection 

course, most likely to subvert the early immune responses. Again, if 

detection of PGN is enough to promote bacterial clearance, then the PGN 

recognition is of uttermost importance for Host survival and thus bacteria 

present mechanisms to protect it from recognition. The importance of the 

protection of PGN detection may be a primordial survival instinct of the 

cell. A PGN with Host receptors bound to it compromises the growth and 

cell division, thus survival. This in part explains why the recognition of PGN 

from the Host side is so important and it seems to trigger both cellular 

(clearance) and humoral (induced AMPs) responses.   

Regarding the activity of the autolysins in the bacterial physiology, 

there seems to be an interplay between the PGN chemical and/or 

structural composition and autolytic activity. For instance Sle1, a major 

enzyme for efficient cell splitting, appears to be specific for a PGN that 

possesses certain (unknown) characteristics. In the absence of Sle1, there 

is accumulation of newly synthesised PGN that does not have space to be 

incorporated into the PGN mesh. Although PGRP-SA is able to recognise 
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these PGN fragments, the amount of detected PGN is not sufficient for the 

Host to trigger efficient responses against the pathogen. Thus, although 

Sle1 plays a specific crucial role in cell splitting, the other autolysins can 

control the accumulation of PGN at the septum in this mutant to a certain 

extent. Perhaps the autolysins can cleave the new PGN fragments that 

cannot be inserted to give time for other autolysins to act on the PGN 

stiffness, thus allowing a delayed septum reshaping. In addition, it can be 

assumed that because the new PGN is exposed, it is a PGN that has not been 

modified by post-incorporation modifications. This “naked” PGN that has 

not been found in the polymeric PGN [78] may be also a better substrate 

than a PGN that has suffered modifications. For instance, as revised in the 

previous Chapter, some Lysozymes are sensitive to modifications of the 

glycan chains. Lastly, it is likely that upon cell division, the amount of 

cleaved PGN is equivalent to the amount of new incorporated PGN. Since 

Sle1 seems optimal for a particular sub-type of PGN, this is an indication 

that septal PGN has characteristics that may not be found in other 

subcellular regions. Also, it is possible that an accurate quantification of 

PGRP-SA binding, allows to extrapolate the amount of new and old PGN 

that is inserted or removed during a cell division cycle. 

 It is likely that the coordination of the temporal and spatial activity 

of the autolysins is a transversal bacterial mechanism to guarantee the 

survival of the cell to avoid both lysis and the detection of PGN by Host 

components. One of the biological reasons for the observed extremely fast 

splitting of the daughter cells and septum re-shaping [44] may be to avoid 

the accumulation of certain levels of PGN at the septum that are accessible 

to Host recognition and thus endanger the survival of the bacteria. I 

propose that the sum of the activity of all autolysins is key to impair the 

detection of PGN during cell division, although the major autolysin Atl 

presents a more relevant role. 
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Material and Methods 

 

Bacterial strains and growth conditions. 

Table 1 presents the S. aureus strains used in this study. S. aureus 

strains were grown either in Tryptic Soy broth (TSB; Difco) or in Tryptic 

Soy agar (TSA; Difco), supplemented when appropriate: Erythromycin 

(Sigma-Aldrich, Germany) at 10 µg/ml, 5-bromo-4-chloro-3-indolyl β-D-

galactopyranoside (X-Gal; Apollo Scientific, UK) at final concentration at 

100 µg/ml. E. coli strains DC10B and BL21(DE3) were grown either in 

Luria–Bertani broth (LB; Difco, France) or in Luria–Bertani agar (LA; 

Difco), supplemented with 100 g/mL of Ampicillin (Sigma-Aldrich). All 

cultures were grown at 37ºC with aeration, except when stated otherwise. 

Table 1. List of strains used in this study, plasmids and primers for cloning. 

 

 

Fly Strains. 

All flies stocks were grown on standard cornmeal-agar medium at 

25ºC. Isogenic Drosophila Bloomington #6599 (y,w) flies were used as 
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wild-type flies. semmelweis flies were used as a PGRP-SA mutant 

background [62]. 

 

Construction of the bacterial mutants. 

Table 1 presents the constructed S. aureus null mutants strains, 

plasmids and primers used.  The upstream and downstream regions of the 

genes to be deleted were amplified using pair of primers denominated as 

P1/P2 and P3/P4, respectively.  The resulting PCR fragments containing 

the upstream and downstream regions of each gene were joined by 

overlap PCR using the pairs of primers P1/P4. The PCR product was 

digested with NcoI (sequence in P1 primers) and BglII (sequence in P4 

primers) (Fermentas) and cloned into the pMAD vector [79] which was 

propagated in E. coli DC10B and the inserts were sequenced. The plasmids 

were then electroporated into S. aureus RN4220 strain at 30ºC, using 

Erythromycin and X-gal selection, and transduced into NCTC8325-4 using 

phage 80a [80]. The integration of the plasmids into the chromosome and 

their excision was done as previously described [81]. Gene deletions were 

confirmed by sequencing of the amplified fragments with P1/P4 pair of 

primers. 

 

Zymography assay.  

The zymograms were performed as described in Vaz and Filipe, 

2015 [69]. For crude autolytic extract with mutanolysin, the same 

procedure was followed except that instead of incubation with 4% (w/v) 

SDS, the cells were incubated with 0.2 mg/mL of mutanolysin. 

 

Purification of mCherry_PGRP-SA. 

The recombinant protein mCherry_PGRP-SA was purified using a 

protocol adapted from previous reports [1], [61]. E. coli BL21(DE3) 
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competent cells were transformed with pET21a derivatives carrying 

mCherry_PGRP-SA. Briefly, different batch cultures in LB supplemented 

with 100 g/mL of Ampicillin (Sigma-Aldrich) were grown at 25ºC, 120 

rpm. When the cultures reached an OD600nm ~0.5, they were induced with 

addition of IPTG (Apollo Scientific, UK) at 1 mM final concentration in the 

same growth conditions for 16-18 h. The cells were harvested and washed 

once in Equilibration Buffer (50 mM Na2PO4 pH 7.4; 300 mM NaCl). The 

pellets were resuspended again in Equilibration Buffer and lysis was 

carried out by French Press at 1000 psi. The lysate was centrifuged at 

20070 x g for 20 min at 4ºC. Interestingly, the cytoplasmic proteins, i.e. the 

proteins that are left on the supernatant after lysate centrifugation, proved 

to not be functional (could not bind neither to live cells nor to PGN) and 

they did not bind avidly to the resin, thus the yield of the cytoplasmic 

fractions were very low. Only the protein in inclusions bodies (the pellets 

of the lysates), after denaturation-renaturation steps, revealed to be 

functional. Perhaps the protein that is free in the cytoplasm binds to the E. 

coli PGN upon lysis of the cells and cannot be subsequently renatured into 

its proper structure. Therefore, the supernatants were discarded and the 

pellets were kept suspended in 20 mL of Resuspension Buffer (20 mM 

Na2PO4 pH 7.4; 500 mM NaCl; 8 M urea) and left shaking on a rocker in a 

cold room for ~60 hours until they appeared homogeneous. The 

solubilised pellets were diluted down to 4 M Urea by the addition of 

Dilution Buffer  (20 mM Na2PO4 pH 7.4; 500 mM NaCl) and left again 

homogenising at 4ºC for a further 24h. The homogenates were centrifuged 

and the supernatant was mixed with TALON® Metal Affinity Resin 

(Clontech Laboratories, USA) (previously washed with Wash Solution) and 

incubated for 1 h on the rocker at 4ºC. The Protein-Talon resin complexes 

were recovered by centrifugation (supernatants kept on a falcon tube on 

ice) and washed 4 times with Wash Solution (50 mM Na2PO4 pH 7.4; 300 

mM NaCl; 4 M Urea), once with 5mM Imidazole Wash solution and once 
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with 10mM Imidazole Wash Solution. Proteins were eluted with Elution 

Buffer (50 mM Na2PO4 pH 7.4; 300 mM NaCl; 150 mM Imidazole) for 1 hr 

at 4ºC on rocker. The free-protein Talon resin was spun down by 

centrifugation and the supernatants (the pure proteins) were collected 

into a fresh falcon tube and kept on ice. The collected supernatants of the 

first Protein-resin spun down, were incubated again with the free-protein 

Talon resins (previously re-washed with Wash Solution) and the 

procedure was repeated. The supernatants from the two elution batches 

were combined and dialysed overnight in a 10K MWCO SnakeSkinTM 

Dialysis Tubing (ThermoFisher Scientific, USA) at 4ºC against 5 L PBS 1X 

pH 6.0, then 6-8h against 2 L PBS 1X pH 6.0 made fresh and finally 

overnight in 2 L PBS 1X pH 6.0 also made fresh. The proteins were 

recovered from the dialysis` bags and centrifuged to remove any residues 

of the resin. The proteins were quantified using a Nano-drop ND-1000 

spectrophotometer (Thermo Scientific, Wilmington, NC). The purity was 

accessed by SDS-PAGE [82] and visualised with Coomassie Blue followed 

by Silver Staining (both home-made solutions). Aliquots of the proteins 

were kept at 4ºC for immediate and/or constant use or they were snap 

frozen in liquid nitrogen and stored at -80ºC.  

 

Co-precipitation assays of live cells with mCherry_PGRP-SA. 

The bacterial binding assays are qualitative and were performed 

with the fluorescent recombinant protein mCherry_PGRP-SA for 

microscopy visualisation.  

Bacteria were grown to OD600nm ~0.5 or an O/N culture for 

stationary phase experiments. 1 mL aliquot was centrifuged for 5 min at 

RT, 16.1 x1000 g. The cells were washed with 500 µL of PBS 1x pH 6.0 and 

centrifuged again. They were resuspended in 0.3 mg/mL final 

concentration of mCherry_PGRP-SA in a 200 µL reaction volume, filling up 

the volume with PBS 1x pH 6.0 and incubated at RT for 5 min without 
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shaking. The “cells-mCherry_PGRP-SA” complexes were harvested for 5 

min at RT, 7.5 x1000 g. The pellets were washed twice with 200 µL of PBS 

1x pH 6.0. Finally, the pellets were resuspended in the left over volume of 

the washings and 2 µL was loaded on 1.2% (w/v) Agarose- PBS 1x pH 6.0 

slides. Images were acquired in a Zeiss Axio ObserverZ1 microscope 

equipped with a Photometrics CoolSNAP HQ2 camera (Roper Scientific 

using Metamorph software, Meta Imaging series 7.5) and analysed using 

the ImageJ software. 

 

Survival curves. 

Survival assays were performed as previously described [1]. 

Bacterial cultures were grown overnight, washed and resuspended in PBS 

(Phosphate-Saline Buffer). The OD600nm was adjusted to ~0.350 with PBS 

using. 32.2 nL of bacterial suspension was injected in thorax of 3-5 day old 

flies using a nanoinjector (Nanoject II; Drummond Scientific, Broomall, 

PA). The infected flies were kept at 30ºC and monitored for 72h every 12h. 

Estimated survival curves were analysed using the Log-rank (Mantel-Cox) 

test to determine statistical significance between the curves. The number 

of flies infected were as follows (in the order y,w and semmelweis flies, 

when applicable): NCTC 8325-4 – 187, 166; NCTC Δ atl – 129, 134; NCTC Δ 

sle1 – 70, 76; NCTC Δ lytN – 38; NCTC Δ 02855 – 38, 58; NCTC Δ 02580 – 59; 

NCTC Δ lytM – 37, 40; NCTC Δ isaA – 100, 79; NCTC Δ atl Δ sle1 – 76, 52.   All 

data were plotted and analysed using GraphPad Prism 5 (GraphPad 

Software, Inc.). 

 

Quantification of drosomycin levels. 

Female y,w flies were infected as conducted for the survival assays. 

For quantification of drosomycin transcript levels, flies were collected at 

0h p.i. and at 16h p.i.. PBS was used as a control for the induction of 
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drosomycin upon injection. The procedure was conducted as previously 

described [1]. Briefly, the flies (n = 6/sample) were homogenised and the 

total RNA was extracted using the “Total RNA Purification Plus Kit” 

(Norgen, Canada) according to the manufacturers’ instructions. The RNAs 

were quantified using a Nano-drop ND-1000 spectrophotometer (Thermo 

Scientific). 500 ng of total RNA was used to produce cDNA using “Maxima 

First Strand cDNA Synthesis Kit” (Thermo Scientific) in a T100 Thermal 

Cycler (Bio-Rad) and stored at −20°C. The housekeeping gene tbp (TATA-

box-binding protein) [83] was used as a control to normalize the transcript 

levels of drosomycin both at 0h and 16h p.i.. drosomycin and tbp levels were 

measured using the pair primers Drs(+)/Drs(−) and Tbp(+)/Tbp(−) [1]. 

qPCR reactions were performed using the SensiFast SYBR No-ROX Kit 

(Bioline, UK) according to the manufacturer’s instructions, in a Rotor-Gene 

Q real-time PCR cycler with a 72-well rotor (Qiagen). Three biological 

repeats were performed per time point. Gene expression was calculated 

on the basis of the comparative threshold cycle (CT) value [84]. The 

drosomycin CT values at 16h p.i. were normalised against tbp/PBS 

injection/0h p.i.. 

 

Haemolytic assays.  

 O/N bacterial cultures were adjusted to the same OD600nm ~2.0. 3 

µL of culture was put onto TSA supplemented with 5% (v/v) sheep blood 

(Difco, France). The plates were incubated with the lid facing upwards at 

37ºC for 16h followed by incubation at 4ºC for 24h before image 

acquisition using a Gel DocTM EZ Gel (Bio-Rad, USA). 3D surface plots were 

performed using ImageJ software. 
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Summary 

 

 In this Chapter I present data that whilst contradicting the current 

model of bacterial recognition in Drosophila melanogaster, it also helps to 

clarify some literature reports. Some reports were not entirely in 

accordance and others although not conflicting, were not in total 

communion with the model. 

 According to Janeway, as pattern recognition receptors, PGRPs 

should present affinity to several types of peptidoglycan (PGN). Instead, 

the current model is based on the specificity of PGRP-SA and PGRP-LC 

towards Lys- vs. DAP- type PGN, respectively. Why would two major 

immune receptors be limited in the detection of PGN due to the 

discrimination of a single molecule? I performed in vitro studies of PGRP-

SA and PGRP-LC binding to two Gram-positive bacteria that present a Lys 

– Staphylococcus aureus – and a DAP – Bacillus subtilis – residue in their 

PGN. Subsequently, I addressed the biological role of the observed in vitro 

bindings through survival assays by infection of flies mutated in PGRP-SA, 

PGRP-LC and both PGRP-SA/PGRP-LC. In addition, I enquired whether an 

exposed PGN at the cell surface, would turn the bacteria more susceptible 

to recognition by these PGRPs. 

 I propose that the wall teichoic acids (WTA) and the outer 

membrane of Gram-positive and Gram-negative bacteria, respectively, are 

conserved bacterial immune evasion strategies towards the recognition by 

host PGN receptors. In particular, WTA impair recognition of Lys- and 

DAP- type PGN by both PGRP-SA and PGRP-LC, which do not discriminate 

between these two residues. It is the access to the PGN through the cell 

wall and not the specificity of the PGRPs that dictates the recognition and 

downstream triggering of the immune responses. 
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Introduction 

 

In Drosophila, according to the current model of bacterial 

recognition and Host response, the Peptidoglycan Recognition Proteins 

(PGRPs) possess discriminatory ability between DAP- and Lys- type 

peptidoglycan (PGN). It is thought that PGRP-SA, the main receptor of the 

TOLL pathway, in vivo binds exclusively to Lys-type Gram-positive 

bacteria, such as Staphylococcus aureus (Fig. 1) [1], [2]. Likewise, it is 

thought that PGRP-LC, the main receptor of the IMD pathway, specifically 

binds to DAP-type bacteria – Gram-negative and Gram-positive rod shape 

bacteria, such as Escherichia coli and Bacillus subtilis, respectively (Fig. 2) 

[3]–[5]. The observed binding specificity of these two PGRPs, have been 

presented as the reason for the in vivo observation of the differential 

activation of the pathways [6].   

 

PGRPs – the conserved innate immune receptors in Animals 

 

 In 1996, Yoshida and colleagues identified in Bombyx mori that 

the recognition of PGN and fungi β-1,3 glucan happened through 

distinctive specific receptors that converge to activate the 

prophenoloxidase cascade (PPO) cascade [7]. A haemolymph protein with 

high affinity for PGN, devoid of lytic activity thus excluded to be a lysozyme 

protein, was identified as the bacterial receptor. Therefore, they named it 

Peptidoglycan Recognition Protein (PGRP) and soon after proteins with 

such features started to be identified in other animals. Similar to the PPO 

activation in B. mori, 4 years later it was clear that in D. melanogaster both 

Fungi and Bacteria activate the same cascade, the TOLL pathway, albeit 

through different receptors [1]. This happens through the recognition of 

PGN of Gram-positive bacteria by PGRP-SA. It is now known that PGRPs 
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are a family of conserved innate immune receptors present in almost all 

animals from Invertebrates (mollusks, echinoderms and insects) to 

Vertebrates (mammals including Humans) [8]. They have not been 

identified in Plants and lower metazoa, including nematodes such as 

Caenorhabditis elegans. 

 The PGRPs contain a C-terminal conserved homologous domain, 

the PGRP domain. It is responsible for the PGN-binding ability, it is about 

165 amino acids long, it shares ~30% sequence similarity with the 

bacteriophage T7 lysozyme [9] and structural homology to the 

peptidoglycan-binding type 2 amidase domain [8], [10]–[13]. In fact, some 

PGRPs can only be structurally differentiated from type 2 amidases by the 

presence of an N-terminal fragment, absent in the amidases [14]. This 30-

50 amino acids terminus is known as “PGRP-specific fragment” and it is the 

region with highest sequence and conformational variability among all 

PGRPs. The function remains unknown but as it forms a hydrophobic 

groove opposite to the PGN-binding pocket, it is presumed to serve as a 

docking site for effector and signalling molecules [14], such as in the case 

of PGRP-SA – GNBP1 (Fig. 6) [15]–[17]. Almost all PGRPs have two closely 

spaced conserved cysteines in the middle of the domain that form a 

disulphide bond, which is needed for the integrity and activity of PGRPs 

[1]. 

 PGRPs are classified according to function, cellular localization 

and transcript length. Regarding transcript length there are three groups: 

short (S), intermediate (I) (exclusive to mammals) and long (L). It is the 

classification of the transcript length that was used as a nomenclature for 

PGRPs. Hence, PGRP-S, PGRP-I and PGRP-L. For Invertebrate PGRPs this 

nomenclature still stands, but the designation of the Vertebrate PGRPs was 

replaced to PGLYRP by the Human Genome Organization Gene 

Nomenclature Committee: PGLYRP-1, PGLYRP-2, PGLYRP-3 and PGLYRP-

4, equivalent to the PGRP-S, PGRP-L, PGRP-Iα and PGRP-Iβ, respectively. 
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The short PGRPs, PGRP-S and PGLYRP-1, are about 200 amino acids long 

and 18-20 kDa size, have a signal peptide and only one PGRP domain. In 

contrast, most PGRPs –L and –I, are at least twice as large and may have 

more than one PGRP domain and undergo alternative splicing generating 

different isoforms. 

  Functionally, phylogenetic studies divide PGRPs into two 

categories: the ones that retained the amidase activity – the catalytic 

PGRPs – and the ones that lost this activity. Non-amidase Insect PGRPs are 

involved in the trigger of signal transduction pathways and proteolytic 

cascades. Non-amidase Mammalian PGRPs are bactericidal and signalling 

capabilities are not known. They are sub-categorize into two branches 

regarding tissue expression: PGLYRP-1, present in phagocytic granules 

[18] and PGLYRP-3 and PGLYRP-4 that are present on skin and mucous 

membranes [19].  

 Regarding the sub-cellular compartment, PGRPs can be secreted, 

transmembrane or cytoplasmic. Nevertheless, the same PGRP protein can 

show variant forms in all of these compartments. For example, PGRP-LE 

lacks a signal peptide but possesses intracellular and extracellular variants 

(Fig. 2). All mammalian PGLYRPs are both intracellular and secreted.  

 

The TOLL pathway in Drosophila Immunity 

The components of the TOLL pathway were initially identified as 

being involved in early embryonic development in D. melanogaster, 

particularly in the Dorso-Ventral axis [20]. The findings of the genetic 

control during the early developmental stage, rendered C. Nusslein-

Volhard, E. F. Wieschaus and E. B. Lewis the Nobel Prize in Medicine in 

1995. With the unravelling of these genes, it became known the Drosophila 

NF-kB homolog, Dorsal [21] (Fig. 1 and Fig. 5 of Chapter I). Although 

mammalian TLRs seem to have no role in development [22][21]–[23], in 
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Drosophila they are involved both in immunity [24] and developmental 

processes [21]–[23]. The discovery of the Toll receptor (Toll-1) [25] and 

subsequently the function of the TOLL pathway in antifungal response in 

Drosophila [24] was again vital to stablish the similarities and 

conservation of innate immune mechanisms in invertebrates and 

mammals.  The discovery of the toll in innate immunity and the 

mammalian TLRs, earned J. Hoffmann and B. Beutler the Nobel Prize in 

Physiology or Medicine in 2011.  

There are three extracellular cascades that trigger the TOLL 

pathway: Persephone (PSH) which is directly activated by virulence 

factors of Fungi and Gram-positive bacteria [26], [27]; the Gram-

negative binding protein-3 (GNBP3) that recognizes β-glucans 

present in the Fungal cell wall and the PGRP-SA that recognises PGN. 

Next it is described the triggering of the TOLL pathway by bacteria 

through recognition of PGN (Fig. 1).  

Extracellular medium – recognition of the pathogens: 

1. Recognition of PGN by PGRP-SA. 

 Lys-type PGN is mainly recognized by PGRP-SA which stablishes 

a complex with GNBP1. Also, PGRP-SD is a receptor with partial 

redundancy to the PGRP-SA–GNBP1 complex [28], [29]. It appears that 

PGRP-SD can also recognize DAP-type PGN from Gram-negative bacteria 

[30]. GNBP1 showed endomuramidase activity and in low cross-linked 

Lys-type PGN, it was proposed to produce new glycan reducing ends that 

are presented to PGRP-SA [29], [31]. In contrast, it has been suggested that 

full-length GNBP1 has no enzymatic activity [32], but the functionality of 

the recombinant GNBP1 was not determined. 
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Figure 1. Schematic summary of the activation of the TOLL pathway by PGN 
recognition. Unlike its mammalian counterpart, the Drosophila Toll receptor does not 
interact directly with the PAMP, rather the PAMP is recognised by secreted receptors. 
PGRP-SA is the main receptor for bacterial recognition of the TOLL pathway. In 
contrast to IMD, the intracellular steps of the TOLL cascade are yet to be better 
understood.  
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2. Activation of the modular serine protease ModSP. 

 The complex PGN – PGRP-SA – GNBP1 activates ModSP, a 

modular Serine protease conserved in insect immune reactions. ModSP is 

the first non-receptor of the cascade. It integrates the signals both from the 

PGN recognition by PGRP-SA and from GNBP3 sensing of Fungi [32]. 

3. Activation of Grass and serine proteases. 

The ModSP serine protease activity acts upon Grass which 

activates a set of 4 serine proteases: Sphinx1, Sphinx2, Spirit and Spheroid 

[26], [32], [33]. 

4. Activation of the Spatzle processing enzyme (SPE). 

 The activity of the serine proteases activates SPE so that it will 

cleave its substrate, the full length Spatzle [34], which in turn will interact 

with the Toll (Toll-1) receptor. SPE is the point where pathogen 

recognition information is integrated via the three different recognition 

pathways that can activate the TOLL cascade: PSH cascade together with 

the Fungal and Bacterial recognition that already converged in the 

upstream step at ModSP.  

5. Activation of Spatzle. 

 Spatzle (Spz) is synthesized and secreted as an inactive 

precursor consisting of a pro-domain and a C-terminal region (C-106). In 

non-signalling conditions, the pro-domain masks the hydrophobic C-106 

region. SPE cleavage of the pro-domain of Spz, induces conformational 

changes and exposes the C-106 regions that are critical for binding to Toll 

[35]. Still, the pro-domain remains associated with the C-terminus until 

binding to Toll [36]. 

 

Extracellular-membrane interface – activation of the Toll receptor: 

6. Binding of Spz to a dimeric Toll receptor. 

 The binding of 2 Spz dimers via C-106 to the extracellular N-

terminus of 2 Toll receptors, triggers a conformational change in the Tolls 
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that activate intracellular downstream signalling. Unlike mammalian 

TLRs, Toll receptor does not interact directly with PAMPs [37].  

 

Intracellular-cytoplasmic medium – activation of the non-active TFs: 

7. Formation of heterotrimeric complexes Toll-adaptor proteins. 

 Endocytosis is paramount for efficient Toll signalling [38]. Upon 

activation of the Toll, there is recruitment of the adaptor proteins: Myd88, 

Tube and the kinase Pelle. Thus, it is formed a heterotrimeric complex 

between the TIR intracellular domains of Toll and the death domains (DD) 

of the adaptor proteins, where Tube is flanked by Myd88 and Pelle [39]–

[41] [41]–[43]. As such, MyD88 and Pelle do not come into contact with 

each other. Instead, two distinct DD of Tube separately bind MyD88 and 

Pelle [41].  

8. Activation of Cactus. 

 From the oligomeric Toll-MyD88-Tube-Pelle complex, the signal 

proceeds to the phosphorylation and degradation of the IkB Cactus. The 

nuclear translocation of both Dorsal and Dif (Dorsal-related immunity 

factor) requires Cactus degradation [44] which is thought to happen 

through phosphorylation by Pelle [45]. 

9. Activation of Dorsal and Dif. 

 After Cactus degradation, it is thought that Dorsal (and/or Dif) 

interacts with Pelle, Tube, and Cactus [46]–[48] and upon activation 

translocate to the nucleus. 

 

Intracellular-nucleus compartment – expression of the AMPs: 

10. Induction of the expression of AMPs. 

 Dorsal and Dif bind to the NF-kB sequences present in the 

promoter region of the Toll-dependent antimicrobial peptides (AMPs), 

thus inducing their transcription [49]. The antifungal peptide Drosomycin 

seems to be the major AMP of the Toll humoral response. Dif was identified 
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in Drosophila as a dorsal-related immune responsive gene that does not 

participate in Dorso-Ventral patterning. Dif mediates TOLL-dependent 

AMPs expression both in larvae and adults [50], [51] whereas Dorsal 

seems be active only in larvae [69].  

 

The IMD pathway in systemic responses 

 

The IMD pathway has major roles in gut immunity. In contrast to 

TOLL, IMD is exclusively triggered by PGN via both extracellular and 

intracellular sensing, particularly by the DAP-type PGN of Gram-negative 

bacteria and Gram-positive Bacilli (Fig. 8) [113]. 

 

Extracellular-membrane interface – recognition of DAP-type bacteria: 

1. PGRP-LC and PGRP-LE recognize DAP-type PGN. 

 DAP-type PGN is mainly recognised by the isoforms of the 

transmembrane type II receptor PGRP-LC through their extracellular 

PGRP domains [5]. This recognition can happen with the aid of 

extracellular PGRP-LE composed only by the PGRP domain [52]. In 

addition, PGRP-LE is also involved in intracellular recognition of DAP-type 

PGN. More recently, it has been shown that PGRP-SD activates the IMD 

pathway and it presents PGN to PGRP-LC [53]. 
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Figure 2. Schematic summary of the activation of the IMD pathway. PGRP-LC is the 
main receptor of the IMD pathway, which unlike PGRP-SA is a transmembrane protein. 
PGRP-LE functions as an extracellular receptor and interacts with PGRP-LC to trigger 
the cascade.  
 
 
 
 
 
 
 
 
 
 



CHAPTER III. PGRP-SA and PGRP-LC recognise both Lys and DAP residues of the peptidoglycan in vivo 

 

139 
 

Intracellular-cytoplasmic medium – activation of the non-active TFs: 

2. Recruitment of the cytoplasmic protein Imd. 

 Intracellular signalling happens through the RHIM-like motifs3 

found both in PGRP-LC and -LE [52], [54] that mediate binding to the 

receptor Death domain containing protein Imd, homologous to 

mammalian RIP1 (Fig. 5, Chapter I) [55]. Subsequently, Imd associates 

with Drosophila FADD4 via a homotypic death-domain interaction [56]. 

FADD then recruits and interacts via the DD with the homologue of 

mammalian caspase-8, DREDD5 [57]–[59].  

3. Activation of Imd. 

 DREDD is present in the cytoplasm in its non-active form. 

Activation of DREDD happens through ubiquitination by the dIAP-26. 

Ubiquitinated DREDD cleaves and removes a fragment of 30 amino acids 

at the N`-terminal of Imd. This cleavage exposes a binding site in Imd for 

dIAP-2 [60]. Subsequently, the cleaved form of Imd is the substrate for 

dIAP-2 ubiquitination through its RING domain7. The 30 amino acid free 

ubiquitinated Imd is the scaffold for the recruitment of the next 

downstream components [61]. 

4. Activation of Relish. 

 In the last steps of the cytoplasmic cascade, upon activation of 

Imd, there is the recruitment of TAK18 and its adaptor TAB29 [62]. It is 

thought that TAK1 triggers activation of the IKK complex (Kenny and Ird5). 

Activated IKK will then phosphorylate the NF-kB transcription factors 

Relish [63]. Phosphorylation of Relish is key to enhance/activate its role as 

                                                           
3 Receptor-interacting protein (RIP) homotypic interaction domain. 
4 The Drosophila homologue of FAS-associated death-domain protein. 
5 Apical caspase death-related Ced-3/Nedd2-like protein. 
6 Drosophila Inhibitor of apoptosis-2. 
7 Zinc finger domain involved in mediating protein-protein interactions. 
8 Transforming growth factor -β (TGFβ)- activated kinase 1. 
9 TAK1-associated binding protein 2. 
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a transcription factors [63]. However, the full-length Relish does not 

translocate to the nucleus. Independently of IKK phosphorylation, Relish 

must be cleaved into two forms by DREDD. Thus, DREDD cleaves Relish at 

multiple N-terminal sites splitting into Rel-49 ankyrin repeat fragment 

that remains cytoplasmic and Rel-68 where the NF-kB part resides 

[63][64].  

 

Intracellular-nucleus compartment – expression of the AMPs: 

5. Induction the expression of AMPs by Rel-68. 

 Phosphorylated Rel-68 translocate into the nucleus, binds to the 

DNA NF-kB sequences and induces the expression of the AMPs. Diptericin 

is the main AMP that is expressed through the IMD pathway. 

 

The bacterial recognition model 

 

In 1997, Lemaitre and colleagues [6] published a study regarding 

the induction of AMPs upon infection of adult flies with live cells of both 

Gram-positive and Gram-negative bacteria. They observed a preferential 

induction of the IMD-dependent AMPs with Gram-negative bacteria and 

DAP-type PGN Gram-positive Bacilli. The Toll-dependent AMPs showed a 

higher expression with Lys-type PGN Gram-positive bacteria.  

In 2001, Michel and colleagues [1] showed that the activation of 

the TOLL pathway by bacteria and fungi happens through distinct 

recognition processes, whereby bacterial recognition is dependent on the 

haemolymph circulating protein PGRP-SA. PGRP-SA semmelweis mutant 

flies showed to be highly susceptible to infection by Gram-positive bacteria 

DAP-type PGN Bacillus megaterium and Lys-type PGN Streptococcus 

faecalis. In contrast, upon infection by Gram-negative bacteria, these 

mutants were not susceptible to E. coli and only a small percent of the 

population succumbed with Erwinia carotovora carotovora.  
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A year later in 2002, three publications reported the role of PGRP-

LC as a pattern recognition receptor of the IMD pathway that recognises 

Gram-negative bacteria. Ramet and colleagues [3] identified PGRP-LC as a 

cell surface receptor specifically involved in Gram-negative bacteria 

phagocytosis and induction of AMP synthesis. Gottar and colleagues [4], 

identified PGRP-LC as a component of the IMD pathway acting upstream 

of Imd, whose mutant flies showed reduced survival to Gram-negative 

infections but not to Gram-positive or fungal infections. Choe et al. 2002 

[5], identified PGRP-LC (PGRP-LCx) as an absolutely required receptor for 

the induction of AMPs mediated by Relish. However, conflicting to some 

extent with the previous reports, TOLL-dependent AMPs also failed to be 

expressed to normal levels in the PGRP-LCx mutants when infected with E. 

coli. In addition, these mutants, in contrast to the wild-type flies, 6h post-

infection (p.i.), showed no detectable induction of Diptericin with the 

Gram-positives Micrococcus luteus and Bacillus subtilis and the Gram-

negative Enterobacter cloacae. 

In 2003, Leulier and colleagues [65] reported that DAP-type PGN 

is the most potent inducer of IMD and Lys-type PGN of the TOLL pathway. 

Consequently, the authors proposed that the ability of Drosophila to 

discriminate between Gram-positive and Gram-negative bacteria relies in 

the recognition of specific forms of PGN regarding the residue at the third 

position of the stem peptide.   

Finally in 2004, four publications helped to finally shape and support 

the current model of DAP- vs. Lys- type PGN discrimination by PGRP-LC 

and PGRP-SA and that this discriminatory ability is the reason behind the 

observed preferential activation of IMD vs. TOLL pathways for Gram-

negative and Gram-positive DAP-type PGN bacteria vs. Gram-positive Lys-

type PGN bacteria, respectively. Stenbak and colleagues [66], reported that 

the two structural features of Gram-negative PGN – the presence of DAP 

and the 1,6 - anhydro form of the terminal N-acetylmuramic acid (MurNAc) 
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residue of the glycan chain – allow PGN discrimination between Gram-

negative and Gram-positive bacteria. Moreover, they concluded that the 

IMD pathway is activated by Gram-negative PGN but not by Lys-type PGN. 

Kaneko et al. 2004 [67] corroborated these results as they concluded that 

the stem peptide of the Gram-negative PGN is sufficient to activate the IMD 

pathway. Moreover, they also observed that the recognition of monomeric 

PGN requires different PGRP-LC isoforms, as they showed that upon 

recognition of tracheal cytotoxin (TCT), PGRP-LCx interacts with PGRP-

LCa. Finally, two crystal structures of PGRP-SA were published. Chang and 

colleagues [2] showed PGN co-precipitation assays using 20 mM Tris-HCl 

pH 7.8; 300 mM NaCl buffer with recombinant PGRP-SA expressed in 

insect cell lines. They observed that the rPGRP-SA bound to the DAP-type 

PGN of the Gram-negative bacteria E. coli and Pseudomonas aeruginosa. 

These results suggest that Michel and colleagues observation of a PGRP-

SA-independent response upon infection with whole live E. coli cells is not 

related to the inability of PGRP-SA to bind to DAP-type PGN [4]. In addition, 

they observed that rPGRP-SA bound to Lys-type PGN bacteria M. luteus and 

S. faecalis but binding to the Gram-positive amidated DAP-type PGN B. 

subtilis and non-amidated DAP-type PGN B. megaterium was undetectable. 

Overall, these results corroborate Leulier et al. 2003 [65]. As for the 

presented rPGRP-SA crystal structure, it was analysed by superimposition 

with the PGRP-LB structure [14]. They concluded that PGRP-SA possesses 

a weak hydrolytic activity towards DAP-type PGN of E. coli characterised 

as an L,D-carboxypeptidase. Reiser and colleagues [68] also proposed a 

PGRP-SA crystal structure. They did not predict an L,D-carboxypeptidase 

activity, however they suggest that PGRP-SA might possess a lytic activity 

belonging to the serine proteases family. 

In 2005, Filipe and colleagues [31] identified that the minimal 

structure needed to activate the TOLL pathway is a muropeptide dimer 

with a free reducing end of the MurNAc residue. Similar to Leulier et al. 
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2003 [65] for the induction of the IMD pathway by DAP-type PGN, 

muramidase treated PGN from M. luteus and S. aureus did not induce the 

TOLL pathway. 

Interestingly, Mellroth et al. 2005 [69] provided very conflicting 

results from in vitro PGN-PGRP co-precipitation assays. They showed that 

PGRP-LCx and also PGRP-SA to some extent, were promiscuous to DAP-, 

Ornithine- and Lys-type PGNs. Nevertheless, in 2006, more support to the 

model of PGN discrimination by PGRPs was added by Chang et al. 2006 

[70] and Swaminathan et al. 2006 [71]. Chang and colleagues [70] 

published the crystal structure of the complex TCT-PGRP-LCx-PGRP-LCa. 

This report was again vital to corroborate the current model of bacterial 

recognition by PGRPs as it reported again the specificity of PGRP-LC for the 

DAP residues. Swaminathan et al. 2006 [71], by using PGN analogues and 

TCT determined the binding constants of Human and Drosophila PGRPs. 

They concluded that PGRPs use dual strategies to discriminate PGN: 1) by 

the composition of PGN stem peptide and 2) by the composition of peptide 

cross-bridge. 

Finally, in 2008 Leone and colleagues [30] published the crystal 

structure of rPGRP-SD and again favoured the model of DAP- vs. Lys- type 

PGN discrimination by PGRPs. The pull down assays failed to detect 

binding of PGRP-SA to DAP-type PGN of B. subtilis corroborating Chang et 

al. 2004 [2]. 

 

A “small step” towards a new bacterial recognition model 

 

Although the model of bacterial recognition is well stablished, 

there are still some conflicting results in the literature. As a PRR, a major 

PGRP should, theoretically, be able to identify a specific bacterial 

component in a broad range of different bacteria. Thus, the model of PGRPs 

specificity and discrimination of the stem peptide, the most variable region 
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of the PGN molecule, conflicts with this idea. 

In order to understand the specificities of PGRP-SA and PGRP-LC 

to the PGN, I worked with S. aureus and B. subtilis as bacterial models.  As 

Gram-positive bacteria they present a similar cell wall (CW) composition 

whilst harbouring distinct PGN types regarding the peptide moiety, Lys- 

and amiDAP (amidated DAP)- type PGN, respectively.  

Bacteria present numerous strategies that allow them to survive 

inside the host, to stablish an infection and cause disease. The microbial 

cell surface is the interface between the Host and the pathogen, thus it is 

where we find major virulence components and factors of immune 

evasion. The virulence factors are compounds produced by the bacteria 

that aid directly to their pathogenicity and generally cause damage or 

alteration of the normal physiology and function of the host cells. The 

microbial factors of immune evasion involve strategies that subvert the 

role of immune components. As such, these are generally components that 

hide the pathogen from immune receptors, harvest the function of an 

immune cell or signalling cascade and/or also cause destruction of the 

immune cells. These strategies are commonly shared by bacteria and the 

effect is transversal to different Hosts. Accordingly, the Host groups have 

identified two different bacterial CW factors that are immune evasion 

mechanisms: the Wall Teichoic Acids (WTA) [72] and the major autolysin 

Atl [73]. Both through different mechanisms, impair the recognition of 

PGN by PGRP-SA. The absence of these components translates into loss of 

virulence by the bacteria. Genetic knock-out mutants of WTA in S. aureus 

and B. subtilis [74], [75], have the PGN exposed at the cell surface (Fig. 3).  
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Figure 3. Schematic representation of the cell wall of a Gram-positive wild-type vs. 
a WTA mutant bacteria. The tagO gene encodes the first enzyme of the biosynthetic 
pathway of the WTA. Thus, in the genetic knock-down mutant strains S. aureus Δ tagO 
(NCTC 8325-4 Δ tagO) [74] and B. subtilis Δ tagO (EB6 Δ tagO) [75], the PGN is 
substantially more exposed and directly accessible/vulnerable to the Host immune 
receptors. 

Using these bacterial mutants, I studied the recognition of PGRP-

SA and PGRP-LC and the effect of these polymers in shielding the different 

PGNs from both PGRPs. To study the binding abilities of the PGRPs, 

recombinant non- and fluorescently- tagged PGRP-SA and the PGRP 

ectodomain of PGRP-LCx were used in co-precipitation assays. These 

assays were performed using either live bacterial cells or purified PGN, 

which was quantified and adjusted to the same number of moles of 

MurNAc. Moreover, the assays were conducted in the Haemolymph buffer 

(Hemo buffer, Materials and Methods section), a buffer with a composition 

is closer to the haemolymph than the buffers regularly used in in vitro 

experiments. To address the biological significance of the in vitro data, I 

constructed PGRP-SA, PGRP-LC and PGRP-SA/PGRP-LC mutant flies in a 

similar genetic background and followed their survival upon septic 

infection. 
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Results 

 

PGRP -SA and -LC bind to live cells of both WTA mutants. 

As previously reported, mCherry_PGRP-SA binding to S. aureus 

cells is only detected when WTA are absent (Fig. 4A) [72]. Unexpectedly, it 

was observed that mCherry_PGRP-SA can bind to the B. subtilis Δ tagO 

mutant cells.  Also contradicting most of the literature, mCherry_PGRP-LC 

is able to bind to S. aureus Δ tagO cells (Fig 4B).  

When carefully looked at, although the PGRPs bind to the whole 

surface of the Δ tagO mutants, it appears that some regions present more 

bound PGRP than others. This may be due to a higher concentration of PGN 

in those regions and/or the presence of forms of PGN that are more easily 

bound by the PGRPs.  

Figure 5 shows the expression of a fluorescently tagged version of 

the native form of PGRP-LCx [76] expressed in haemocytes infected with 

bacteria. These results corroborate the results of the in vitro assay with 

mCherry_PGRP-LC. In addition, GFP-PGRP-LCx can bind to both wild-type 

and mutant cells of both S. aureus and B. subtilis. 

The data suggest that PGRP-SA and PGRP-LC are promiscuous 

towards the third residue of the PGN peptide moiety. Although the binding 

of PGRP-SA to the DAP-type PGN has been reported, it has not been 

detected for the B. subtilis PGN. Thus, although the current model does 

reckon some promiscuity of PGRP-SA, it imposes that this binding is not 

important in vivo for the host survival and that the modification of the DAP 

residue into amiDAP, affects the stability of the binding of the protein to 

the PGN [2], [30], [68]. Regarding PGRP-LC, it is not considerate to be as 

promiscuous as PGRP-SA, although in vitro assays have shown such 

promiscuity [69].  
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A.

 

 
Figure 4. Co-precipitation of live cells with mCherry_PGRP-SA and mCherry_PGRP-
LC. Cultures in early exponential phase of the parental and Δ tagO mutants of both S. 
aureus and B. subtilis were incubated in Hemo Buffer with equal concentrations of 
either mCherry_PGRP-SA (Panel A) or mCherry_PGRP-LC (Panel B).  
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B.

 
 
Figure 4. Co-precipitation of live cells with mCherry_PGRP-SA and mCherry_PGRP-
LC. The protein bound to the cells was pulled down with them and the binding was 
visualised by microscopy. Because of the clustering of the Δ tagO mutants, it was not 
possible to properly quantify the signals. Scale intensities were adjusted to equalise S. 
aureus Δ tagO – mCherry_PGRP-SA. 
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Figure 5. GFP-PGRP-LCx binding to live bacterial cells. Haemocytes expressing GFP-
PGRP-LCx were extracted from third-instar larvae and kept in Schneider media 
supplemented with Fetal Calf Serum. After adherence to the glass slide, they were 
infected with the bacteria. It is presented snapshots of the interaction of the 
haemocytes and the bacteria, that was monitored for 12h every 15min acquisition. 
GFP-PGRP-LCx can be found at the lamellipodia, at the cytoplasm and in the outside 
environment.  
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PGRP-SA and PGRP-LC bind to both Lys- and DAP- type PGN.    

The PGN from the wild-type and mutant Δ tagO cells of both S. 

aureus and B. subtilis was purified and quantified to conduct co-

precipitation assays with non-fluorescent forms of the rPGRPs. The assays 

using the very non-physiological Tris-NaCl buffer showed no detection of 

rPGRP-SA binding to B. subtilis PGN, as previously reported [2], [30] (Fig. 

6A). As the buffer compositions got more similar to the physiological 

conditions – PBS 1X pH 6.0 and Hemo Buffer – not only did the PGRPs show 

a higher affinity for the substrate but only then it was detected binding of 

rPGRP-SA to the amiDAP-PGN of B. subtilis. Under conditions similar to the 

haemolymph, rPGRP-SA and rPGRP-LC showed similar binding to the S. 

aureus Lys-type PGN (Fig. 6B). Regarding the binding to the B. subtilis DAP-

type PGN, co-precipitation of rPGRP-SA-PGN occurs at ca. 4x106 while 

rPGRP-LC-PGN at 6x106. This higher binding of PGRP-LC might not be due 

to a preference to the DAP-residue towards Lys. Instead, it may have to do 

with the inherent differences of the glycan chains as it has been shown that 

the MurNAc residue seems to be paramount for PGRPs recognition and 

trigger of the immune cascades [65], [66]. Accordingly to what the Host 

groups had previously observed [72], a decreased cross-linking in S. 

aureus Δ tagO did not affect the binding affinity to rPGRP-SA (nor to rPGRP-

LC) (Fig. 6B). In fact, the S. aureus Δ tagO PGN appears to have different 

physical-chemical characteristics: this PGN presents itself as a suspension 

of several insoluble small PGN clusters that do not compact as tightly as 

the other PGN suspensions.  Thus it is harder to settle down, it forms a not 

so well compact pellet and as a consequence it is easier to be (accidently) 

aspirated with the supernatant throughout the procedure.  
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A. 
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B. 

 

Figure 6. Co-precipitation of PGN with rPGRP-SA and rPGRP-LC. PGN suspensions 
previously adjusted to the same number of moles of MurNAc were incubated with 
equal concentrations of either rPGRP-SA or rPGRP-LC. PGN is insoluble in an aqueous 
solution hence the amount of protein that binds is pulled down with it. Each assay was 
repeated in two different days and the bars represent the mean with standard 
deviation. Panel A. shows the rPGRPs binding to the wild-type S. aureus and B. subtilis 
PGNs, using different buffers. The results from the Tris-NaCl buffer corroborate the 
previously reported non-binding affinity of PGRP-SA to B. subtilis PGN [2], [30]. 
However, when approaching more biological conditions the binding affinity for the 
PGNs increased and it was detected the binding of PGRP-SA to B. subtilis. Panel B. 
shows pull down assays of the rPGRPs in Hemo Buffer with PGNs from the parental 
and the Δ tagO strains. There seems to be no preference for a Δ tagO-PGN compared 
to the respective wild-type PGN.  
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PGRP -SA and -LC are important against infection by Lys- and 

DAP- type PGN bacteria in the Host. 

In order to address the importance of PGRP-SA and PGRP-LC 

against infection by S. aureus and B. subtilis, I constructed a double mutant 

deficient in both proteins. The semmelweis flies express a non-functional 

form of PGRP-SA and are highly susceptible to infection by Gram-positive 

bacteria [1].  PGRP-SAseml possesses a single substitution of the cysteine 

(Cys) at the position 54 (of the protein without the signal peptide) by a 

tyrosine. As a consequence, there is disruption of the disulphide bridge 

occurring between Cys48 and Cys54 [1], [2]. PGRP-LCΔE12 are flies that do 

not express PGRP-LC due to a deletion of the entire coding region and are 

compromised against infection by Gram-negative bacteria [4]. The 

semmelweis flies and the PGRP-LCΔE12 flies were used to construct a double 

mutant semmelweis/PGRP-LCΔE12 and the correspondent single 

semmelweis and PGRP-LCΔE12 mutants. To further assess the importance of 

these receptors, the heterozygous flies of each mutant were also used for 

in vivo studies as controls, since they share a more similar genetic 

background than any wild-type Fly.  

Cultures in the stationary growth phase were injected in the flies 

that were kept at 25ºC and monitored for 72h, every 12h. Infection with S. 

aureus and B. subtilis wild-type bacteria indeed confirm the importance of 

PGRP-SA and PGRP-LC, respectively (Fig. 7 and Fig. 9). However, 

contradicting the previous studies, it was observed that PGRP-SA and 

PGRP-LC are both important upon infection by both bacteria. For any of 

the four bacteria injected, the homozygous double mutant 

semmelweis/PGRP-LCΔE12 was more susceptible than all the other mutant 

backgrounds tested (Fig. 7-11).  

Figure 7 presents the survival data and CFUs/Fly upon infection 

with B. subtilis wild-type cells. The heterozygous double mutant was more 



CHAPTER III. PGRP-SA and PGRP-LC recognise both Lys and DAP residues of the peptidoglycan in vivo 

 

154 
 

susceptible than the heterozygous single mutants (Fig. 7A). Similarly, the 

homozygous double mutant was more susceptible than the single mutants 

(Fig. 7B) and the double heterozygote (Fig. 7C). The B. subtilis Δ tagO 

mutant showed drastic loss of virulence since only the homozygote double 

mutant was susceptible to infection (Fig. 8). Figures 9 and 10 show the 

survival curves for S. aureus and S. aureus Δ tagO, respectively. Again, the 

double mutant is more susceptible to infection than any of the other 

mutant flies. 

Regarding the importance of PGRP-LC, upon infection with both B. 

subtilis and S. aureus, it was not observed significant differences between 

the heterozygous and homozygous PGRP-LCΔE12 flies (Fig. 7C and 9C). 

However, when the WTA are absent the role of PGRP-LC was evident. The 

PGRP-LCΔE12 homozygous flies were more susceptible to S. aureus Δ tagO 

than the correspondent heterozygous flies (Fig. 10C).  

The role of PGRP-SA is evident upon infection with either B. subtilis 

and S. aureus parental strains, since the lack of the two copies of the PGRP-

SAWT gene proved to be more susceptible than the presence of only one 

copy (Fig. 7C and 9C). 
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C.

 

D.

 

Figure 7. Survival data for B. subtilis. Panel A. Survival curves of the heterozygotes. 
The heterozygous double mutant was more susceptible than the heterozygotes 

semmelweis and PGRP-LCΔE12 that were indistinguishable.  Panel B. Survival curves of 

the homozygotes. The double mutant homozygous was more susceptible than 

semmelweis and PGRP-LCΔE12, however semmelweis was more susceptible than PGRP-

LCΔE12. Panel C. Survival curves of the heterozygotes and homozygotes. The double 
homozygote was more susceptible than any of the heterozygotes and single 
homozygotes, hence both PGRPs are important against infection. Panel D. 
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Log10CFUS/Fly at 0h, 24h and 36h p.i.. In accordance to the survival probability data, 
B. subtilis bacteria were able to grow inside the flies regardless of the genotype, 
without detectable differences in the bacterial load between each genotype. 

A.

 

B.
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C.

 

D.

 

Figure 8. Survival curves for B. subtilis Δ tagO infections. Panel A. Survival curves of 
the heterozygotes. Panel B. Survival curves of the homozygotes. Panel C. Survival 
curves of the heterozygotes and homozygotes. Only the homozygous double mutant 
semmelweis/PGRP-LCΔE12 was susceptible to infection. Panel D. Log10CFUS/Fly at 0h, 
24h and 36h p.i.. The heterozygous flies semmelweis and semmelweis/PGRP-LCΔE12 

showed a reduction of CFUs in contrast to the homozygotes whilst PGRP-LCΔE12 
homozygotes were able to control the CFUs levels, similar to the heterozygote. 
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C.

 

D.

 

Figure 9. Survival curves for S. aureus infections. Panel A. Survival curves of the 
heterozygotes. Panel B. Survival curves of the homozygotes. Panel C. Survival curves 
of the heterozygotes and homozygotes. Panel D. Log10CFUs/Fly at 0h, 24h and 36h p.i.. 
PGRP-LCΔE12 heterozygous flies were more resistant to infection than both 
semmelweis and semmelweis/PGRP-LCΔE12 heterozygous, which were 
indistinguishable. However, the double heterozygote succumbed earlier than 
semmelweis heterozygotes, hence it suggests the importance of PGRP-LC. 
Accordingly, the double homozygous mutant is more susceptible than both single 
mutants, although PGRP-LCΔE12 is more resistant than semmelweis. S. aureus is able to 
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grow in the flies regardless of the genotype, without detectable differences in the 
bacterial load. 

A. 

 

B.
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C.

 

D.

  

Figure 10. Survival curves for S. aureus Δ tagO infections. Panel A. Survival curves of 
the heterozygotes. PGRP-LCΔE12 heterozygous was more resistant than semmelweis 
and semmelweis/PGRP-LCΔE12 heterozygous that were equally susceptible. Panel B. 
Survival curves of the homozygotes. To reveal the importance of PGRP-LC both copies 
of the gene must be removed. The double homozygous mutant was more susceptible 
than the single mutants. Panel C. Survival curves of the heterozygotes and 
homozygotes. Panel D. Log10CFUs/Fly at 0h, 24h and 36h p.i.. S. aureus Δ tagO was 
able to grow inside the Hosts and although the bacterial load was higher in the 
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homozygotes than the respective heterozygotes, significant differences were only 
seen at 36h for semmelweis heterozygous vs. semmelweis homozygous. 

 

Figure 11 presents the survival curves in the double mutant 

semmelweis/PGRP-LCΔE12 background for the B. subtilis and S. aureus wild-

type and Δ tagO strains. The WTA mutants were less virulent than the 

parental strains and it corroborates the previous findings on the stereo-

hindrance effect of the WTA in concealing the S. aureus PGN from PGRP-SA 

[72].  

When injected with PBS, the flies did not succumb and remained 

healthy (Fig. 12), similar to the injection of the mutant B. subtilis Δ tagO, 

(apart from infection the homozygous semmelweis/PGRP-LCΔE12 mutant). 

Finally, Table 1 presents a summary of the results regarding the 

statistical analysis between the survivals of the infected flies. 
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Figure 11.  Survival curves of semmelweis/PGRP-LCΔE12 flies. The graphic at the top 
shows the plot of the survival curves for the B. subtilis strains and bellow for the S. 
aureus strains. The WTA mutants were less virulent than the parental strains, 
P<0.0001 for B. subtilis vs B. subtilis Δ tagO and P=0.0086 for S. aureus vs S. aureus Δ 
tagO. 
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Figure 12.  Survival curves upon PBS injection. The PBS injected/infection came from 
the same solution batch used to prepare the bacterial cells for infections. Thus, the 
survivals show that not only were the flies healthy but also that the PBS solution used 
was sterile and the volume injected did not affect the survival of the flies.  

 

Table 1. Summary of the statistical analysis of the survival data. 
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Discussion 

 

 The data here presented shows that both PGRP-SA and PGRP-LC 

are promiscuous for Lys- and DAP- type PGN and that both PGRPs detect 

the bacteria and contribute to survival of the host. Thus, this implies that 

it is not the peptide moiety of the PGN that determines PGRPs recognition. 

Rather, it is the accessibility through the WTA layer in the CW. This data is 

conflicting with the current model of bacterial PGN detection in the Fly. 

Leulier and colleagues [65] were the firsts to study the in vivo effect of 

the injection of PGN on the expression of the AMPs in Drosophila. However, 

due to the procedure used for PGN purification, one can conclude that the 

activation of the IMD pathway by DAP-type PGN has been well 

characterized but the same might not be the case for the Lys-type PGN. The 

procedure to obtain pure PGN from Gram-negative and Gram-positive 

bacteria is dependent on the different CW compositions [77]. The first step 

of PGN purification is the boiling of the cells in an SDS solution. This step 

is common to both Gram-negative and Gram-positive bacteria. In Gram-

negative bacteria, the SDS removes the outer membrane (OM), hence what 

is harvested is the PGN with (little) proteins attached. Thus, after 

treatment with Trypsin, DNase and RNase it is obtained pure PGN polymer. 

For purification of the Gram-positive PGN, three more steps need to be 

added to this procedure: 1) mechanical break of the cells so that the trypsin 

and the nucleases can pass through the PGN layer; 2) treatment with 

different solvents to remove non-covalently material attached to the PGN 

and 3) incubation with Hydrofluoric acid that specifically cuts the 

phosphodiester bonds between the WTA and the muramic acid. According 

to the materials and methods section of Leulier et al. 2003, it is not referred 

the incubation of the Gram-positive CW neither with acid or alkaline 

conditions. Therefore, it seems that it was injected Gram-negative PGN and 

Gram-positive CW. In addition, the amount of PGN injected from Gram–
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negatives and the Gram-positive CW is then expected be very different 

since the WTA contribute substantially for the CW weight. Thus, when the 

authors speculated why the B. subtilis PGN is a less potent inducer of the 

IMD than the Gram-negative PGN by arguing the presence of amiDAP, it 

could be due also or instead to both the presence of WTA and the amount 

of B. subtilis PGN injected compared to the Gram-negative PGN injected. 

Nevertheless, the authors commented on the presence of the OM and the 

surprising recognition of PGN by PGRP-LC. They pointed out that the OM 

is a shield to PGN detection which it is implied in the data I present. 

Furthermore, assuming that the OM protects PGRP-LC from accessing the 

PGN, they speculated that PGRP-LC may recognise PGN fragments released 

by the turnover and growth of the bacteria. Indeed, it was later  shown that 

PGRP-LCx recognises monomeric forms of PGN [70]. Interestingly, they 

observed that both the Gram-negative and Gram-positive PGN after 

muramidase treatment failed to activate an immune response in the Fly. 

Hence, they hypothesised that the size of the polymer chain and the 3D 

dimensional organization of the macromolecule is crucial for bacterial 

sensing. 

Stenbak et al. 2004 [66] also studied the effect of PGN and PGN 

derivatives on the induction of AMPs expression. The authors concluded 

that the Fly discriminates between Gram-negative and Gram-positive 

bacteria by differentiating between DAP and Lys residues. Regarding the 

B. subtilis DAP-type PGN, they corroborate Leulier et al. 2003 as they also 

observed that it induces the IMD in a lower extent than the Gram-

negatives. Since they used a similar protocol for PGN purification as Leulier 

and colleagues, it seems that the study was on Gram-positive CW and not 

pure PGN. Nevertheless, the authors propose that this less activation has 

to do with the amiDAP residue and the absence of the anhydrous-MurNAc 

form at the end of the glycan chains. In addition, they also propose that 

since the terminal anhydrous residue locks the MurNAc in a fixed 
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configuration, beta configuration, this is important for PGRP recognition. 

They argue that this might be the reason why only polymeric Gram-

negative PGN and the anhydrous form but not the fragments generated by 

muramidase treatment have the capacity to strongly activate the IMD 

pathway. Thus, the absence of the anhydrous form in the muropeptides of 

the Gram-positive PGN, would result in the fact that only polymeric PGN 

but not muropeptides from Lys-type PGN could be recognised by PGRP. 

Again, they corroborate Leulier et al. 2003 [65] regarding the muramidase 

treatment after which Lys-type PGN does not induce the Toll target 

Drosomycin, similar to what Filipe et al. 2005 observed [31]. They 

concluded that perhaps a fixed MurNAc configuration is important for 

efficient recognition of both PGRP-LC and PGRP-SA and thus influence the 

recognition of PGN. 

Studies with pure PGN however always come with limitations that may 

not be possible to completely remove. Regarding the Gram-negative PGN, 

the full length intact polymer can be injected, whereas for the Gram-

positive PGN, due to the mechanical break of the cells, the polymer has 

inherently suffered some breakage. This may or may not influence to a 

certain level the in vivo detection by PGRPs or induction of AMPs 

expression. Moreover, as the PGN polymer is insoluble and the needles 

used to inject the fruit flies have a very small width, the amount of PGN that 

is injected will most likely have considerable variations that only with a 

wide number of biological repeats can be accurately assessed the systemic 

infection by pure PGN. Therefore, the use of live bacteria with exposed PGN 

at the surface presents itself as a way to overcome these constraints. In 

addition, another limitation of biochemical studies regarding host 

receptors, are the in vitro conditions used, which are usually far from the 

physiological conditions.  

In this study, I used a buffer closer to the haemolymph composition 

than any other used so far and Gram-positive bacteria that do not possess 
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WTA but share an almost identical PGN composition as the parental strains 

(Fig. 13). Moreover, I confirmed that the CWs of both WTA mutants are 

totally devoid of polymers and furthermore they present a similar sugar 

composition (Fig. 14). 

 

 

 

Figure 13. Muropeptide profiles of pure PGNs. Pure PGN was digested with the 
muramidase Mutanolysin and the resultant muropeptides were separated by HPLC. It 
can be observed that the Δ tagO mutants present a muropeptide composition similar 
to the parental strains. It is also observed the much reduced cross-linking of the S. 
aureus Δ tagO [74], which is not observed for the B. subtilis Δ tagO compared to the 
parental strain. 
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Figure 14. Sugar composition of pure CWs pre-incubated with HCl. Purified CW was 
incubated with HCl and the sugar species were separated by HPAEC-PAD. It can be 
concluded that both Δ tagO mutants present the same sugar composition, albeit 
different muropeptide specie, and are completely devoid of WTA or other type of CW 
polymers. The hydrolysis of the parental CWs was incomplete as it is still detected 
MurNAc residues, most likely due to the presence of the WTA that may affect the 
efficiency of the hydrolysis. 
 

PGRP-SA and PGRP-LC bind to Lys- and DAP- type PGN. 

As expected, when the WTA of S. aureus are absent it was detected the 

binding by mCherry_PGRP-SA and when the WTA of B. subtilis are absent 

it was detected the binding by mCherry_PGRP-LC (Fig. 4). However, 

contradicting what was expected according to the current model, it was 
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also detected binding of mCherry_PGRP-SA to B. subtilis Δ tagO and binding 

of mCherry_PGRP-LC to S. aureus Δ tagO (Fig. 4). These results suggest that 

PGRP-SA is able to recognise amiDAP-type PGN, PGRP-LCx is promiscuous 

for the third residue of the PGN and WTA can shield different PGN types 

from the recognition of different PGRPs, and not specifically from PGRP-

SA.  

Since PGRP-LCx is a transmembrane protein, although it has been 

reported that it can be found in the haemolymph the protein bearing the 

PGRP ectodomain [76]. Hence, the recombinant protein construct could 

possess a different level of affinity than the native protein, thus raising the 

possibility that in in vivo conditions, the transmembrane form could not be 

able to bind to the cells. To address this question, haemocytes expressing 

GFP-PGRP-LCx [76] were infected with the different bacterial types (Fig. 5). 

Similar results were obtained, i.e. the native protein bound to the surface 

of the WTA mutant bacteria of both S. aureus and B. subtilis. Moreover, GFP-

PGRP-LCx could bind to the parental bacteria as well. 

On one hand, the binding of the rPGRPs could be not so specific to the 

PGN since components of the CW could be promoting some non-specificity 

due to protein-protein interactions mediated by charge. On the other hand, 

if the PGRPs can indeed bind to both types of PGN when WTA are absent 

in live bacteria, then the same should be observed when using pure PGN of 

the parental strains. To address these questions, co-precipitation assays 

with pure quantified PGN were performed. Binding of the rPGRPs to the 

PGN of the parental strains showed that they are indeed able to bind to the 

pure substrate (Fig. 6A and 6B). Moreover, it is shown that under more 

physiological conditions such as the Hemo Buffer, PGRP-SA can bind to 

amiDAP. Thus, the reason why Chang et al. 2004 [2] and Leone et al. 2008 

[30] failed to detect binding of PGRP-SA to amiDAP-type PGN was the use 

a non-physiological buffer. Regarding the binding of PGRP-LC, Mellroth et 

al. 2005 [69] had also detected that this PGRP was able to bind in vitro to 
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different types of PGN, in accordance with these results. However, the 

biological importance of these results were considered to be none. The 

work from Chang et al. 2006 [70] helped to define the current model 

whereby there is a structural discrimination between DAP- vs. Lys- type 

PGN by PGRP-LC and PGRP-SA, respectively. On the analysis of their data 

regarding the crystal structure of the complex TCT-PGRP-LCx-PGRP-LCa, 

the authors ascertain the stability of the PGRP-LC binding to the DAP 

residue in monomeric PGN. However, they refer that in the case of a 

polymeric PGN, a Lys residue would not destabilise the binding interaction 

as if it was present in a monomeric form similar to TCT. This interpretation 

corroborates my results and Mellroth`s regarding the non-specificity of 

PGRP-LCx to Lys-, Ornithine- or DAP- type PGN. In addition, Mellroth et al. 

2005 also showed that PGRP-SA, like PGRP-LCx, possesses promiscuity 

towards the third residue of the stem peptide, although not addressing an 

amiDAP PGN. The binding of PGRP-LCx to the PGNs tested seemed to be 

similar to all, whereas the binding of PGRP-SA showed stronger and 

weaker affinities. This led the authors to conclude that PGRP-SA presents 

preferences for certain PGN substrates. However, this preferences might 

not be correlated to the third residue of the peptide chain, but rather to 

different PGN structures and the nature of the glycan chains. When 

Swaminathan et al. 2006 [71] concluded that PGRPs discriminate PGN 

through the stem peptide and the peptide cross-bridge, the authors refer 

that the binding of PGRPs to the PGN derivatives, although highly selective, 

was of low affinity. This low affinity could help to explain why they failed 

to observe binding to different PGN forms. 

The rPGRPs showed similar bindings to the PGN of the parental 

and mutant strains (Fig. 6C). Therefore, the binding of the PGRPs to the 

mutant cells (Fig. 4 and 5) was indeed because of a more exposed PGN at 

the cell surface, corroborating the use of such mutant strains to study PGN 

recognition by host receptors. In addition, the binding of PGRP-LC to B. 



CHAPTER III. PGRP-SA and PGRP-LC recognise both Lys and DAP residues of the peptidoglycan in vivo 

 

173 
 

subtilis PGN showed to be higher than the binding to the S. aureus PGN (Fig. 

6C), in accordance with the binding to the live cells of the tagO mutants 

(Fig. 4B). Interestingly, the binding of PGRP-SA to the B. subtilis PGN is also 

higher than to the S. aureus PGN (Fig. 6C). This result may appear 

contradictory to the binding to the cells of the S. aureus Δ tagO mutant, 

where PGRP-SA shows better binding than to the B. subtilis Δ tagO cells. 

However, due to the characteristics of the physical-chemical properties of 

the S. aureus Δ tagO PGN, the comparison of the binding to this particular 

PGN with the B. subtilis Δ tagO PGN may come with limitations. Further 

studies would be needed to address this question. 

PGRP-SA and PGRP-LC are important against infection by 

bacteria with either Lys- or DAP- type PGN. 

To address the biological importance of the binding assays in vivo, 

I infected semmelweis, PGRP-LCΔE12 and semmelweis/PGRP-LCΔE12 mutant 

flies, both homozygotes and heterozygotes (Fig. 7-11 and Table 1). Upon 

B. subtilis and S. aureus infections, the heterozygotes semmelweis and 

PGRP-LCΔE12 were equally susceptible (Fig. 7A and 9A). However, for both 

bacterial infections, the homozygotes showed different susceptibilities, 

being semmelweis more susceptible than PGRP-LCΔE12 (Fig. 7B and 9B). In 

addition, the heterozygote vs. homozygote semmelweis show that the lack 

of two copies of the PGRP-SAwt gene is more detrimental for the host than 

still having one wild-type copy (Fig. 7C and 9C). The same is not observed 

between one and two copies of the PGRP-LC gene. This suggests that 

although the rPGRP-LC binds better to both PGNs than rPGRP-SA (Fig. 6C), 

in vivo PGRP-SA may be more important for host survival against both 

bacterial types than PGRP-LC. Whereas S. aureus is a major opportunistic 

pathogen bearing an arsenal of virulence factors, B. subtilis is an innocuous 

soil bacteria. Then, it is not surprising to find that the Fly is much more 

susceptible to S. aureus. Consequently, the late humoral responses like the 
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AMPs, may not be crucial as a first step to fight infection. Hence, it is likely 

that the Fly is strongly relying on immediate immune responses against 

this infection. If indeed the immediate responses are paramount against an 

S. aureus infection and the semmelweis mutants are highly susceptible, 

more than PGRP-LC, this indicates that PGRP-SA has a role independent of 

the TOLL pathway whereby it participates in early immune responses. 

Accordingly, although B. subtilis is non-virulent, the number of bacteria 

injected is high. Thus, perhaps in the case of a high bacterial load, 

independently of the pathogenicity of the bacteria, the flies need to rely 

more on immediate responses, than on late responses. This rationale 

justifies the fact that, similar to S. aureus, upon B. subtilis infection the 

semmelweis flies were more susceptible than PGRP-LCΔE12 flies (Fig. 7 and 

9). 

Both WTA mutants of B. subtilis and S. aureus showed reduced 

virulence compared to the parental strains (Fig. 11). The B. subtilis Δ tagO 

mutant has a drastic loss of virulence since only the homozygote double 

mutant is susceptible to infection (Fig. 8 and 11). Nevertheless, after 24h 

p.i. the CFUs inside the Fly increased in the homozygote strains but 

decreased or stabilised in the heterozygotes (Fig. 8D). This could be due to 

the fact that when one of the receptors is missing, as the bacteria are not 

being so efficiently destroyed, it gives time for the bacteria to 

activate/access mechanisms of survival. It may be through suppressor 

mutations, and/or the finding of an ecological niche inside the host that 

allows them to hide from the defences, and/or induction from the 

environmental stimuli of the PhoP/PhoR system that induces the 

expression of teichuronic acids [78]–[80]. These hypothesis are not 

mutually exclusive. Upon infection with S. aureus Δ tagO, contrary to the 

parental infection, the homozygotes PGRP-LCΔE12 flies were more 

susceptible than the heterozygotes (Fig. 10C).  Thus, only when the WTA 

are absent, can the role of PGRP-LC be detected. This indicates that indeed 
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the WTA are shielding the S. aureus PGN from PGRP-LC. Furthermore, the 

results indicate that a more exposed PGN is not turning the bacteria more 

susceptible to other host components such as lysozymes. If a more exposed 

PGN would render the bacteria more susceptible to lysozymes, then it 

should be observed an equal susceptibility between the heterozygotes and 

homozygotes for both semmelweis and PGRP-LCΔE12 backgrounds.  

 

 

WTA impair recognition of Lys- and DAP- type PGN by both 

PGRP-SA and PGRP-LC, compromising the host survival. 

In conclusion, the double homozygous mutant semmelweis/PGRP-

LCΔE12 showed to be more susceptible to infection by any of the bacterial 

types than the correspondent heterozygote and the single hetero and 

homozygous mutants (Fig. 7-11 and Table 1). Therefore, both PGRP-SA 

and PGRP-LC are important for host survival whether by a Lys- or a 

(ami)DAP- type PGN bacteria. Furthermore, the WTA have a dramatic 

effect on the virulence of the bacteria. In the case of a bacteria devoid of 

pathogenicity factors like B. subtilis, WTA revealed to be essential for 

survival in the host. The absence of WTA in B. subtilis presents a dramatic 

impact on the growth and on the shape of the bacteria, which was a main 

issue during the construction of the mutant strain (Tomasz Czarny, 

personal communication). The extent to which these factors can influence 

the virulence of the bacteria upon a septic infection cannot be fully 

addressed with the work undertaken. Nevertheless, the data here 

presented shows that the WTA can impair the recognition of different 

types of PGN by both PGRPs and not specifically from PGRP-SA to Lys-type 

PGN bacteria [72], [73]. In the same way that the WTA impair accessibility 

of the PGRPs to the PGN, perhaps the OM exerts the same effect in the 

Gram-negative bacteria. This hypothesis is in accordance with Leulier and 
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colleagues [65] when they speculated that the OM could shield PGN from 

PGRP-LC. Hence, the studies from Michel et al. 2001 [1], Ramet et al. 2002 

[3], Gottar et al. 2002 [4] and Choe et al. 2002 [5], were possibly the first 

reports on the effect of the CW composition in impairing PGN recognition. 

When Michel et al. 2001 [1] observed the differential susceptibility 

between Gram-positive and Gram-negative bacteria in semmelweis flies, 

they were perhaps the firsts to observe the impairment of CW factors on 

PGRP-SA accessibility to the PGN. They observed that semmelweis where 

more susceptible to a Bacilli specie that presents WTA and non-amiDAP-

type PGN as they were to a Lys-type PGN bacteria. Thus, in the beginning 

of the study of PGRPs, there was no indication that the DAP and Lys 

residues where determinant for bacterial recognition. Accordingly, Chang 

and colleagues detected binding of rPGRP-SA to purified DAP-type PGN [2]. 

Choe et al. 2002 [5] clearly showed that PGRP-LCx is paramount for the 

expression of the AMPs induced by IMD pathway, but they did not show 

evidence for a preference of this receptor to a particular PGN type. In fact 

they showed that TOLL-dependent AMPs also failed to be expressed to 

normal levels in the PGRP-LCx mutants. In addition, these mutants, in 

contrast to the wild-type flies, 6h p.i. showed no detectable levels of 

Diptericin upon infection with the Gram-positive bacteria M. luteus and B. 

subtilis and the Gram-negative Enterobacter cloacae. These reports 

corroborate the data here presented and even suggest that there may be a 

cross-talk between IMD and TOLL that can be mediated by PGRP-LC. 

Corroborating a cross-talk between IMD and TOLL, Gottar et al. 2002 [4] 

also observed that PGRP-LC mutants did not express Drosomycin to the 

wild-type levels upon an M. luteus infection and, in addition, they also 

showed that albeit the PGRP-LC mutants showed a more dramatic 

phenotype, the semmelweis mutant presented, to some extent, decreased 

levels of IMD-dependent AMPs upon E. coli infection.  
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Conclusions 

 

The results I present in this chapter are conflicting with the current 

model of bacterial recognition by PGRPs in Drosophila melanogaster. 

Regarding the recognition of PGN, I show that PGRP-SA and PGRP-LC are 

promiscuous for the peptide moiety of the PGN since they do not 

discriminate the Lys from the DAP residue and that PGRP-SA is able to bind 

to amidated DAP residues in polymeric PGN. This recognition by PGRPs is 

paramount against infection. PGRP-SA and PGRP-LC not only play roles 

against infection by both bacterial types but also seem to have redundant 

roles and to be able to compensate the absence of one another to some 

extent. When flies are deficient in both receptors, they are highly 

susceptible to infection, even when the bacteria have exposed PGN at the 

cell surface like the WTA mutant strains. Accordingly, it appears that CW 

composition and not the PGN composition determines the efficient 

detection of bacteria by PGRPs.  

Since immune strategies are commonly shared by major bacterial 

pathogens, it is also intuitive to realise that the evasion mechanism 

provided by the WTA is transversal to Gram-positive bacteria and to 

different PGRPs. I propose a model whereby the OM of the Gram-negative 

bacteria and the WTA of Gram-positive bacteria shield PGN from the 

recognition by host receptors. Therefore, this model points towards a 

major role of the WTA, and its functional homologous OM, as conserved 

bacterial mechanisms of immune evasion. Ultimately, this suggests that 

classical virulence factors such as toxins might play a secondary role in 

comparison to the strategies of immune evasion, since whether it is a 

major pathogen or an innocuous soil bacteria, all of them present a 

protective barrier at their surface that covers their PGN layer. This 

corroborates the conclusions of Chapter II, since the data strongly suggests 

that impairment of PGN recognition is vital for bacterial survival in the 
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Host and that the virulence factors can promote the success of an infection, 

for as long as the bacteria can avoid PGN detection. 

According to Janeway [81], the evolution of Pattern-recognition 

receptors (PRR) reaches a tie with the Pathogen Associated Molecular 

Patterns (PAMP). The PRR detect the conserved and exclusive components 

of the pathogens whose probabilities of change are greatly reduced. Hence, 

as the pathogen cannot change these PAMP, it has responded with an array 

of virulence factors and evasion strategies.  It is then quite interesting why 

would Lys- and DAP- type PGNs be discriminated by PGRP-SA and PGRP-

LC: 1) the third residue is the most variable position of the stem peptide 

and 2) PGRP-SA and PGRP-LC are main receptors of evolutionary 

conserved immune cascades that if so true, they would have limited 

capacities in detecting bacteria due to a discrimination of a single 

molecule. While being promiscuous for the PGN composition, particularly 

to the variable part of the macromolecule, it implies that the PGRPs are 

mainly recognizing the most conserved region, i.e. the glycans. Therefore, 

it is likely that these PGRPs might show different susceptibilities to 

secondary modifications of the macromolecule. In addition, chemically the 

DAP residue is a derivative of the Lys residue by the addition of a carboxyl 

group (Fig. 5, Chapter I), and the amiDAP is a modification of the DAP 

residue. Thus, the evolution of an Immune System bearing two principal 

PRR, PGRP-SA and PGRP-LC, that would discriminate Lys from DAP, and 

that one itself, PGRP-SA, would discriminate amiDAP from DAP, appears to 

be highly unlikely. 
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Materials and Methods 

 

Bacterial strains and culture. 

The plasmid IP15793 (Drosophila Genomics Resource Center) 

containing the PGRP-LCx isoform, was used to amplify the PGRP domain 

(region 966 bp to1500 bp of the CDS) with the pair of primers forward and 

reverse, respectively: “GGGAAGGGAATTCAACCAAACGGACTTGGATG” ; 

“TGCGGCCGCAAGCTTTTAGTGATGGTGATGGTGATGGATTTCGTGTGACCA

GTGCGG” (sequences from 5` to 3`). Subsequently, the fragment was 

cloned into the EcoRI and EagI restriction sites of the pET21a backbones 

of the mCherry_PGRP-SA and rPGRP-SA vectors [72]. A 6x His-tag was 

added to the last coding triplet, before the stop codon, similar to the PGRP-

SA constructs. 

E. coli strains DH5α and BL21(DE3) (both for construction and 

expression of the recombinant proteins), B. subtilis EB6 and EB6 Δ tagO 

(EB1451) [75] strains were grown either in Luria–Bertani broth (LB; Difco, 

France)10 or in Luria–Bertani agar (LA; Difco). S. aureus strains NCTC 

8325-4 (reference strain from R. Novick) and NCTC Δ tagO [72] were 

grown either in Tryptic Soy broth (TSB; Difco) or in Tryptic Soy agar (TSA; 

Difco). All cultures were grown at 30ºC with aeration, except when 

infected flies were crushed and plated for CFUs, the LA and TSA plates 

were incubated at 25ºC.  

 

 

 

 

 

                                                           
10 All reagents were purchased from Sigma-Aldrich (Germany), except when stated otherwise. 
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Fly Strains. 

All flies, stocks and crosses, were grown on standard cornmeal-

agar medium at 25ºC. 

 For construction of the double mutant semmelweis/PGRP-LCΔE12, 

the I and III chromosome of semmelweis flies [1] and PGRP-LCΔE12 flies [4] 

were balanced through cross with Bl#27336 flies (FBst0027336 from 

Bloomington Drosophila Stock Center, FlyBase, Genotype 

TI{TI}Pis1/FM7a; P{hs-Pis.MYC}3/TM2). For each F1 of these two 

independent crosses, flies with both balancers were selected and the cross 

between female virgins seml/FM7 and TM2/+ with males FM7/y and 

TM2/PGRP-LCΔE12 was set. Of this progeny, it was selected female virgin 

flies that phenotypically presented both balancers and male flies that were 

not FM7 (hence were seml genotype) but presented TM2 phenotype. 

Several single crosses between such females and males were set. After the 

laid of the eggs and confirming the viability to larvae, the parents were 

killed and checked for the PGRP-LCΔE12 gene. Briefly, gDNA was extracted 

and the PGRP-LCΔE12 was amplified by PCR using the primers 

“CACACGCTGCCATATCAGAC” and “TATCGGTTTTCCTGGGTGAG” [82]. The 

PCR fragment of the PGRP-LC gene would be 9344 bp but it was not 

amplified since it was not allowed enough extension time. The PGRP-LCΔE12 

gene showed a 212 pb fragment. Only the single crosses of which both 

female and male showed amplification were kept.  The PGRP-LCΔE12 PCR 

products along with the PCR products of the semmelweis/PGRP-SA gene 

(primers in 5` to 3` sequence “TTAGATCTTAGCACATCAACATC” and 

“GACTACTGCAATTACTTGTAGTTG”) were sent to sequencing to confirm 

the genotypes. The progeny of females and males that did not present 

balancers, i.e. homozygous for both semmelweis and PGRP-LCΔE12 genes 

were collected. Finally, single crosses between these females and males 

were set to obtain a homogeneous population of homozygous flies for seml 

and PGRP-LCΔE12. Three different lines were obtained, of which both the 

http://flybase.org/reports/FBti0168774.html
http://flybase.org/reports/FBba0000007.html
http://flybase.org/reports/FBti0115745.html
http://flybase.org/reports/FBba0000062.html
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parents and progeny genotype was confirmed by PCR and sequencing.  For 

construction of the single mutants, the respective mutant flies balanced 

with the Bl#27336 flies were used and it was followed a similar approach 

as for the double mutant. Thus, the semmelweis, the PGRP-LCΔE12 and the 

double mutant are in a similar genetic background. 

 For microscopy of the GFP::PGRP-LCx binding to live bacterial 

cells, w UAS-GFP::PGRP-LCx [76] female virgins were crossed with 

HmlΔGal4. 

Purification of recombinant PGRP-SA and PGRP-LC proteins. 

The recombinant proteins PGRP-SA and PGRP-LC with and without 

the mCherry fluorescent tag were purified as described in Chapter II. 

 

Purification of Peptidoglycan. 

The CWs and PGNs of S. aureus and B. subtilis parental and mutant 

strains were purified and analysed as previously described [31] and the 

procedure is here briefly described. 

 

Cell wall purification.  

 Cultures were grown at 30ºC, 180 rpm in TSB or LB, accordingly, 

and when they reached an OD600nm ~1.0 they were placed in an ice/ethanol 

bath. This quick chilling of the cultures avoids further activity of lytic 

enzymes that may modify the CW and PGN and serves in further removing 

some surface proteins. The cells were harvested and boiled in 4% (w/v) 

SDS for 30 min. The SDS was washed out using warm ddH2O by 

centrifugation. Since the Gram-positive cell wall is resistant to breakage by 

SDS, the cell walls were mechanically broken (to maintain the 

peptidoglycan mesh intact from modifications by lytic enzymes).  Broken 

cell walls were resuspended in 50 mM Tris-HCl pH 7.0 with MgSO4 20 mM 

final concentration, DNase to 10 μg/mL and RNase to 50  μg/mL and 
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incubated at 37ºC for 2 h with shaking. Trypsin at 100 μg/mL 

(Worthington Biochemical Corp., USA) and CaCl2 at 10 mM final 

concentrations were added and incubated at 37ºC overnight (O/N). 

Trypsin degrades the enzymes added before and the cellular proteins. 

CaCl2 prevents auto-degradation of trypsin, thus guarantees that the 

enzyme remains active cleaving all proteins/enzymes present in the 

suspensions. SDS to 1% (w/v) final concentration was added and the 

mixes were boiled for 15 min. After harvest of the suspensions, pellets 

were treated with 8 M LiCl, 100 mM EDTA pH 7.0 and pure Acetone-

ultrasound water bath. These treatments remove any non-covalently 

linked compounds that may be bound to the cell walls. After washing with 

ddH2O, the final resuspension is made in MilliQ H2O and transferred into 

pre-weighted tubes and lyophilised O/N (without heat) in a Speed Vac 

apparatus. The pure cell wall dry-weight is calculated and they are 

adjusted to a final concentration of 20 mg/mL with MilliQ H2O. They can 

be stored for long periods of time at -20ºC. 

 

PGN purification. 

 PGN was purified by incubation the CWs with 46% Hydrofluoric 

Acid (HF) in a ratio of 2 mL of HF per 10 mg of CW, at 4ºC for 48 h, stirring. 

Under these conditions, HF cleaves the phosphodiester bonds between the 

wall teichoic acids and the MurNAc residues. As a non-controlled 

secondary reaction, it is likely that the acetate is lost from O-acetylated 

MurNAc of the S. aureus PGN, because the ester bond of O-linked acetate is 

significantly weaker than the amide bond of N-linked acetate, even in mild 

alkaline or acidic conditions [83]. After HF treatment, the pure PGN was 

washed with 100 mM Tris-HCl pH 7.0 until complete removal of the acid 

and the pH values of the supernatants were neutral. Finally, the purified 

PGNs were resuspended in MilliQ H2O and transferred into pre-weighted 

tubes and lyophilised O/N (without heat) in a Speed Vac apparatus. The 
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dry-weight was determined and the PGNs were suspended in MilliQ H2O 

to a final concentration of 10 mg/mL. They can be stored for long periods 

of time at -20ºC. 

 

Separation and analysis of the muropeptides. 

50 μL of PGN (10 mg/mL) was incubated in 50 μL of 25 mM 

NaHPO4 pH 5.5 and 2 μL of Mutanolysin at 10 mg/mL, O/N at 37ºC, 1200 

rpm. Mutanolysin is a muramidase more robust than most Lysozymes to 

glycan modifications. 100 μL of MilliQ H2O was added to the samples 

followed by 5 min boiling to denature the mutanolysin. The suspensions 

were centrifuged to remove the denatured mutanolysin and any polymeric 

PGN that was still insoluble. The supernatants were collected into a fresh 

tube to which it was added 200 μL of 0.5 M Borate Buffer pH 9.0 with 25 

μL of fresh 50 mg/mL NaBH4 and incubated at room temperature (RT) for 

2 h. The reduction of the muropeptides ensures that the PGN species will 

be latter on separated regarding the size without charge interferences. The 

reaction is stopped by lowering the pH to 2.0 with 85% ortho-phosphoric 

acid. Finally the samples were centrifuged and the supernatants were 

collected into a fresh tube and stored at -20ºC until further use. The 

muropeptides were separated in an HPLC system using a Reverse Phase C-

18 Hypersil column (ODS-Hypersyl, 5 μm, 4.6×250 mm Thermo Scientific) 

at a flow rate of 0.5 mL/min for 160 min with a Methanol gradient from 

5% to 30% (v/v) in 100 mM NaH2PO4 pH 2.0. The eluted muropeptides 

were detected by UV absorption at 206 nm. 

 

Quantification of Peptidoglycan using HPAEC-PAD. 

Sugar components of the purified PGNs were analysed using 

HPAEC-PAD (High Performance Anion Exchange Chromatography coupled 

with Pulsed Amperometric Detection). After quantification of the 
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Glucosamine and Muramic acid in each PGN sample, the final PGN 

suspensions were adjusted to the same amount of Muramic acid for further 

studies.  

 

Hydrolysis of PGN into its basic constituents. 

Three repeats for each PGN sample and three different batches of 

quantification were performed because as PGN is insoluble in aqueous 

solution, these repeats minimise potential errors in the quantification. The 

pure PGN suspension was left O/N stirring at RT for maximum 

homogenization. 20 μL of the suspensions were hydrolysed in 3 M HCl at 

95ºC for 2 h (150 μL reaction volume). The hydrolysed suspension was 

lyophilized until it was completely dried and resuspended in 500 μL of 

MilliQ H2O and lyophilized O/N. Finally, the acid-free hydrolysed material 

was resuspended in 150 μL MilliQ H2O. 

 

Separation of the monosaccharides. 

10 μL of the samples were injected in a Thermo Scientific™ Dionex™ 

ICS-5000 system, in 18 mM NaOH constant and a gradient of 1 M 

NaCH3COO and MilliQ H2O. The MilliQ H2O as all the eluents were in MilliQ 

H2O of resistivity ≥ 18 M𝛀, filtered with 0.2 μm ϕ pore filter and degassed 

for 15 min in an ultrasonic bath. Between the eluents pump and the 

injection valve it was used a BorateTrapTM column to remove borate 

contamination from eluents. An AminoTrapTM (Thermo 

Scientific™ Dionex™ AminoTrap™) was used as a pre-treatment column to 

remove the amino acids from the samples, thus only the sugars passed to 

the CarboPac PA10 column (Thermo Scientific™ CarboPac™ PA10) where 

they were separated. Each injection was done in triplicates. 
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Control samples. 

Controls for the HCl hydrolysis. 

To access if the hydrolysis had been complete, it was injected non-

HCl treated Glucosamine, Muramic acid, N-acetylglucosamine and N-

acetylmuramic acid. If the hydrolysis was complete, only 

Glucosamine and Muramic acid should be detected because the N-acetyl 

groups were removed by the acid treatment. Also these same samples HCl 

treated were injected, to determine if the hydrolysis had not destroyed the 

sugar molecules. After HCl treatment, only Glucosamine and Muramic acid 

should be detected and the areas of the peaks should be similar to the areas 

of the non-hydrolysed Glucosamine and Muramic acid standards because, 

theoretically, it was injected the same concentration for all of them. 

 

Controls to confirm the purity of the PGN. 

Injection of 1 mM of Ribitol, Glycerol and Mannosamine (HCL and 

non-HCL treated) to determine whether the PGN was indeed pure or still 

had WTAs attached. 

 

Controls for quantification of Glucosamine and Muramic acid. 

Injection of fresh solutions of Glucosamine and Muramic acid, at 

different concentrations - 1 mM followed by 1/2 dilutions until 31.25 µM. 

The area of these peaks in the chromatogram were used to plot the 

calibration curve that if r2~1, the equation was used for the quantification 

of Glucosamine and Muramic acid in each PGN sample. It is then assumed 

that all the molecules of N-acetylglucosamine and N-acetylmuramic acid 

were converted into Glucosamine and Muramic acid, respectively. 
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Quantification of Glucosamine and Muramic acid. 

 The area of each peak corresponding to either Glucosamine or 

Muramic acid was quantified using the Thermo Scientific™ Dionex™ 

Chromeleon™ Chromatography Data System software and thus the 

correspondent number of moles was calculated. PGN suspensions to be 

used in the co-precipitation assays were made in MilliQ H2O and they were 

diluted to the same number of moles of Muramic acid of the PGN that was 

more diluted.  

 

Co-precipitation assays. 

The co-precipitation or pull down assays intended to determine 

the binding affinity of the PGRPs to both pure PGN and to live cells, i.e. 

whole bacteria. The PGN pull down assays are quantitative assays 

performed with the non-fluorescent tagged rPGRPs and analysed by SDS-

PAGE [84]. Due to the non-solubility of the PGN in aqueous solutions, the 

amount of protein that binds is harvested with it. The bacterial binding 

assays are qualitative and were performed with the mCherry_PGRPs for 

microscopy visualisation.  

 

PGN co-precipitation assays. 

PGN suspensions at 2.89x10-1 nmol of Muramic acid/µL of PGN 

were thoroughly mixed and 20 µL were taken and spun down for 3 min at 

RT, 16.1 x1000 g. The supernatants were carefully removed, in particular 

the NCTC Δ tagO who’s PGN does not pellet well like the others and hence 

it is easily aspirated. To the pellets it was added 0.3 mg/mL final 

concentration of either PGRP-SA or PGRP-LC in a 200 µL reaction volume, 

filling up the volume with the reaction buffer (20 mM Tris-HCl pH 8.0; 300 

mM NaCl or PBS 1X pH 6.0 or Hemo Buffer – 7.3 mM Na2SO4.10H2O; 34 mM 

NaH2PO4.H2O; 5 mM Na2HPO4.7H2O; 25 mM KCl; 2 mM CaCl2; 14.4 mM 



CHAPTER III. PGRP-SA and PGRP-LC recognise both Lys and DAP residues of the peptidoglycan in vivo 

 

187 
 

MgCl2.6H2O; pH 6.0-6.2 adjusted with NaOH). The mixes were incubated at 

25ºC for 30 min, without shaking and then centrifuged for 5 min at RT 0.8 

x 1000 g. The pellets were washed with 200 µL of reaction buffer and 

centrifuged for 5 min at RT, 3.2 x 1000 g. The pellets were finally 

resuspended in 20 µL of 2X SDS Loading Buffer and boiled for 5 min. The 

samples were centrifuged for 3 min at RT, 16.1 x 1000 g. The supernatants 

were recovered (20 µL) into a fresh tube. This collection step allows the 

loading on the gel to be quick, clean and guarantee that only the 

supernatant and not bits of PGN were loaded, which is important for 

comparing and quantifying the binding affinities. The full supernatant 

volume was loaded on a 12% SDS-PAGE gel. The bands were visualized by 

Coomassie Blue Staining and both imaging and quantification were 

performed using a Gel DocTM EZ Gel (Bio-Rad, USA). For quantification 

purposes of the bindings, each experiment was repeated in two different 

days, with two different batches of buffers (made fresh). The error bars 

represent the mean with standard deviation. The data was plotted and 

analysed using GraphPad Prism 5 (GraphPad Software, Inc.). 

 

Live bacteria co-precipitation assays. 

The binding assays of mCherry_PGRP-SA and mCherry_PGRP-LC 

with live cells were conducted as before, expect that it was used Hemo 

Buffer instead of PBS 1X pH 6.0. The agarose slides were performed as 

before because it does not dissolve in Hemo buffer. Images were acquired 

with a GE Healthcare DeltaVision Elite integrated imaging system, in the 

conventional mode at 25ºC using an Olympus 150x 1.45 NA TIRF Objective 

(Olympus, USA). 
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Survival curves and CFUs. 

Bacterial cultures were grown overnight and the OD600nm was 

adjusted with the appropriate medium culture as follows: B. subtilis 5.0, B. 

subtilis Δ tagO 7.0, S. aureus 0.5 and S. aureus Δ tagO 0.7. 500µL of these 

cultures was centrifuged at RT for 10min, 3380 x g. The cells were washed 

once with 1mL of PBS and resuspended in 500µL of PBS. The suspensions 

of the S. aureus strains were further diluted 1/100 in PBS. 32.2 nL of 

bacterial suspension was injected in thorax of 3-5 day old flies using a 

nanoinjector (Nanoject II; Drummond Scientific, Broomall, PA). The 

infected flies were kept at 25ºC and monitored for 72h every 12h. 

Estimated survival curves were analysed using the Log-rank (Mantel-Cox) 

test to determine statistical significance between the curves. For 

determination of the CFUs, infected flies were collected at different time-

points, homogenized and plated in the appropriate media and incubated at 

25ºC for 24h-48h. The number of flies infected for survival curves 

following the order semmelweis, PGRP-LCΔE12, semmelweis/PGRP-LCΔE12, 

semmelweis heterozygote, PGRP-LCΔE12 heterozygote, semmelweis/PGRP-

LCΔE12 heterozygote were: B. subtilis – 181, 92, 182, 98, 63, 93; B. subtilis Δ 

tagO – 181, 91, 180, 91, 92, 90; S. aureus – 127, 93, 125, 93, 93, 94; S. aureus 

Δ tagO – 97, 126, 97, 95, 94, 96. CFUs were determined for at least 2 

independent infections and the statistical analysis was performed by 

Unpaired Student´s-t test.  The error bars represent the mean with 

standard deviation. All data was plotted and analysed using GraphPad 

Prism 5 (GraphPad Software, Inc.). 

 

Time-lapse microscopy. 

Macrophage preparation. 

Three third instar larvae were washed in 1 mL of ddH2O followed 

by 50% (v/v) bleaching and vortex. The larvae were quickly washed three 
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times with autoclaved MilliQ H2O and left swimming whilst the slides were 

prepared. Into previously washed metal slides (100% (v/v) Ethanol) with 

a 1.0 mm coverslip it was put Schneider medium supplemented with 5% 

(v/v) Fetal Calf Serum. The larvae were bled into the medium and the 

macrophages were let settle for 1h at RT in a humid chamber. 

 

Preparation of the bacteria. 

200 µL of an O/N culture were harvested at RT and washed with 

Schneider medium. The cells were resuspended in 200 µL of Schneider 

with 0.5 µL of a DAPI solution (at 1 mg/mL in MilliQ H2O) and incubated 

for 5 min at RT, without shaking. The cells were washed with 200 µL of 

Schneider and resuspended in 100 µL of Schneider. Finally, they were 

dilute 1/10 in Schneider in a 200 µL final volume. 

 

Imaging of the macrophages with the bacteria. 

To the macrophages slide, 200 µL of the bacterial suspension was 

added and an YSI 5775 Standard Membrane (YSI Incorporated, Japan) was 

glued on top. Acquisition was done at 25ºC in a humid chamber for 12 h 

every 15 min in a GE Healthcare DeltaVision Elite integrated imaging 

system, using an Olympus MPLAPON-Oil immersion objective (100X 

1.40A). 
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Summary 

 

 The data presented in Chapters II and III suggest that PGRP-SA 

plays a TOLL-independent role in early immune responses. Results from 

Chapter II allow to infer that recognition of PGN by PGRP-SA can aid in the 

clearance in an AMP-independent manner. Survival data from both 

Chapters II and III, show that the flies succumb early in infection, 

particularly before or coincident with the reach of the AMPs synthesis. 

Thus, an efficient response appears to be dependent in immediate 

constitutive responses of clearance. Furthermore, flies lacking a functional 

PGRP-SA showed reduced survival compared to flies lacking PGRP-LC, 

which suggests that PGRP-SA has a particular role associated with these 

immediate responses. Thus, I aimed to understand whether PGRP-SA is 

involved in phagocytosis. Here, I show that PGRP-SA participates in 

phagocytosis and clearance of both Lys- and DAP- type PGN bacteria, 

together with PGRP-LC. I show that PGRP-SA has optimal binding and lytic 

activity at low pH, suggesting that it is active inside the phagolysosomes. 

Moreover, I show that the WTA impair the phagocytosis-clearance process 

by shielding the PGN from these PGRPs. 

 In addition, I demonstrate that the macrophages present two ways 

of clearance upon phagocytosis. One is the already established canonical 

route of phagocytosis-exocytosis. The other is the induction of apoptosis 

upon phagocytosis. This later strategy appears to be employed when the 

macrophages find hard to control and destroy the bacteria, whether due to 

pathogenicity factors whether due to a high bacterial load which 

unbalances the rate of phagocytosis and clearance. Finally, the process of 

apoptosis to promote clearance is impaired when the macrophages are 

compromised both in PGRP-SA and PGRP-LC. Thus, this apoptotic process 

is triggered by factors associated with the clearance of the bacteria. 
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Introduction 

 

Phagocytosis and Drosophila immunity 

 

 Etymologically, phagocytosis is a Greek word that comes from 

“phagein” – to eat – , “kytos” – a big animal – and “-osis” that means process.  

Thus, phagocytosis is the process by which a cell engulfs large particles, 

usually over 0.5 µm in diameter. This primordial and fundamental process 

present from unicellular to multicellular organisms was first described by 

Élie Metchnikoff in 1882. This discovery rendered him and Paul Elrich the 

Nobel Prize in 1908.  Phagocytosis is paramount for homeostasis, because 

it is the first step of clearance. In development and tissue remodelling, 

phagocytosis is the final step of the apoptotic process [1], [2] and in 

immune responses, clearance occurs upon phagocytosis of the 

microorganism. Metazoans present cells that specifically perform 

phagocytosis, the professional phagocytes, such as the macrophages, 

which patrol the host to promote clearance of dying cells and 

microorganisms. Therefore one can assume that macrophages are 

primordial components of the Innate Immune System as they or their 

homologues are found in all Metazoans. The Drosophila melanogaster 

blood cells, haemocytes, are responsible for phagocytosis. 

Phagocytosis is initiated upon the interaction of opsonins3 at the 

surface of the particle with receptors at the surface of the macrophage. 

Upon phagocytosis, the internalized particle will be destroyed through a 

sequential process of engulfment, destruction and excretion (Fig. 1). The 

macrophages are composed by lamellipodia and filopodia. The 

lamellipodia are extensions of the actin cytoskeleton to the outer of the cell 

                                                           
3 Any component that binds to a cell and turns it more susceptible to be phagocytosed. 
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surface. They propel the macrophage or anchor them onto a surface. The 

filopodia are cytoplasmic projections that extend beyond the lamellipodia. 

They participate in the sensing of chemicals and other stimuli from the 

surrounding environment, in macrophage movement and migration and in 

the engulfment of pathogens. Thus, all phagocytic signalling pathways 

activate cytoskeleton-remodelling molecules and the dynamics of the 

cytoskeleton is exploited in order to achieve particle internalisation. For 

instance, the Drosophila TM9SF4 is important for bacterial phagocytosis 

due to its function in the morphology of cell adhesion and actin 

cytoskeleton [3]. Different phagocytic systems show different cytoskeleton 

requirements and are composed of a series of ligands, receptors and 

signalling pathways. 

The history of phagocytosis is intimately associated with 

Immunology and the understanding of host resistance to infection. 

Conversely, pathogens developed different mechanisms to evade or 

subvert the phagocytosis or the clearance. Many microorganisms have 

conceived strategies of evasion whether by remaining extracellular or 

invading other type of host cells. Others have found ways to not only 

survive but even to replicate within macrophages. While it may be 

advantageous for an intracellular pathogen to preserve the function of the 

host cell for its replication, most intracellular pathogens can actively 

induce programmed cell death, such as apoptosis.   

Phagocytosis participates in host defences through the uptake and 

clearance of infectious agents and contributes to inflammation. It is a type 

of cellular response that in Insect Immunity it belongs to the constitutive 

and early immune responses. Phagocytosis is conducted by the Drosophila 

blood cells, haemocytes, which have been successfully used as a model of 

‘professional’ mammalian phagocytosis [4]. 
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Figure 1. Steps of the phagocytosis-exocytosis process. 1. Phagocytosis, i.e. 
internalization of the particle through engulfment; 2. Formation of the phagosome by 
the fusion of the cell membrane around the particle; 3. Fusion of the phagosome with 
a lysosome that contains hydrolytic enzymes resulting in the phagolysosome 
containing the particle to be digested and the enzymes at a low pH. It is within this 
vesicle that the particle is destroyed, i.e. the clearance occurs; 4. Upon clearance, the 
residual body contains the debris and undigested material; 5. Exocytosis with release 
of the residual body contents to the outside of the cell. 

 

There are three types of functional haemocytes that have different 

roles throughout the developmental stages and respond to environmental 

stimuli: plasmatocytes, crystal cells and lamellocytes. Plasmatocytes 

represent ca. 90% of the total circulating haemocytes in all developmental 

stages. They are involved in phagocytosis of apoptotic bodies and of 

pathogens. They are the Drosophila professional macrophages and in this 

Chapter, I will address them as macrophages. Crystal cells participate in 
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the melanization process and engulfment of parasites whose size is too 

large to follow a canonical phagocytosis route. These two types of 

haemocytes circulate in the haemolymph and/or can be found sessile. 

Lamellocytes participate in the encapsulation of foreign bodies that are too 

large to be phagocytosed and are exclusively differentiated in response to 

specific immune challenges, such as wasp parasitism.  

Several genes involved in phagocytosis, both receptors and 

components involved in actin-cytoskeleton and cell-cell contact have been 

identified in Drosophila. Regarding the phagocytic receptors, some of the 

ligands are yet to be identified. Up to date, ca. 12 phagocytic receptors have 

been identified: Croquemort [5], [6], Draper [7], and Nimrod C4/Six-

microns-under (NimC4/SIMU) [8], Eater [9], Nimrod C1 [10], Down 

syndrome cell adhesion molecule (Dscam) [11], Peste [12], Drosophila 

scavenger receptor class C, type I (dSR-CI), Integrin βυ [13], [14] , Integrin 

αPS3/βυ [15], PGRP-LC [16] and PGRP-SC1 [17].  

 

Phagocytosis and Programmed Cell Death 

  

It is thought that macrophages were primordially involved in 

removal of apoptotic bodies and their role in pathogen uptake is an 

adaptive function [5]. In accordance to this line of thought, it has recently 

been shown that macrophages require priming through phagocytosis of 

apoptotic corpses to function in response to foreign bodies [18]. Indeed, 

programmed cell death (PCD) is vital in multicellular organisms for 

development and homeostasis and thus the clearance of such dying cells is 

essential (Table 1). The concept of PCD was defined in 1964 by Lockshin 

and Williams, as a process that occurs in predictable places at predictable 

times during embryogenesis, implying that cells are programmed to die 

during the development of the organism [19]. Later, Kerr et al. 1972 

described the morphological changes of cell death during development 
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and proposed the term apoptosis. Three morphologically distinct types of 

physiological cell death were identified in tissues of mouse and rat 

embryos [20]: type I (apoptotic cell death), type II (autophagic cell death), 

and type III (necroptotic cell death).  

Table 1. Types of Programmed Cell Death. 

 

Apoptosis is an active mode of cell death in the sense that it is a 

death process that is initiated by the cell in a well-orchestrated and 

controlled manner. Paradoxically, it is a passive and peaceful mode of 

death because it evokes minimal inflammation and avoids disturbance to 

the neighbouring cells and onto the surrounding medium. It is the type of 

PCD that cells undergo during development, tissue remodelling and wound 

healing. As such, the apoptotic cell death (type I cell death) is characterized 

by a sequence of specific morphological changes. There is condensation of 

the organelles and cytoplasm, thus the cell volume decreases and the cell 

density increases [21]. The cell membrane starts to form buds, the budding 

process, and it is accompanied with shrinkage of the entire nucleus and 

DNA fragmentation or karyorrhexis, which is a hallmark of apoptosis. It is 

commonly observed sharply delineated chromatin masses lying against 

the nuclear membrane and persistence of the nucleolar structure until 
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very late stages [22]. Also, there is loss of specialized surface structures 

such as microvilli and cell–cell contacts. Subsequently, there is the 

formation of membrane-confined apoptotic bodies containing a variety of 

compacted but well-preserved cytoplasmic organelles and nuclear 

fragments [23].  Phagocytic ingestion is the ultimate fate of cells 

undergoing apoptosis. Ingestion of apoptotic cells occurs very rapidly to 

prevent the exposure of surrounding cells and tissues to any potentially 

harmful contents [20]. In the absence of phagocytosis, apoptotic cells 

proceed to a stage called secondary necrosis. Secondary necroptotic cells 

resemble necrotic cells, but differ in having gone through an apoptotic 

stage, thus their nuclei are fragmented or condensed.  

Necrosis is often considered a passive process since it lacks the 

signalling events of controlled cell death and it is a rapid and sudden type 

of death. In opposite to apoptosis, the cells burst and release in an 

uncontrolled manner all of the content to the surrounding medium. Thus, 

it induces strong inflammation and stress to the neighbouring cells. It 

typically occurs under extreme physicochemical conditions. However, 

there is growing evidence that there are types of programmed necrosis, 

designated necroptotic cell death. It appears it may be as well controlled 

and programmed as apoptotic cell death and that it results from extensive 

cross talk between several biochemical and molecular events at different 

cellular levels [24]. A particular type of necroptosis is pyroptosis, which is 

a death by necrosis that is highly inflammatory and generally occurs after 

infection of intracellular pathogens. Necrosis (type III cell death) is 

characterized by swelling of the organelles and the cytoplasm, followed by 

collapse of the plasma membrane and lysis of the cells [20]. The cytoplasm 

becomes increasingly translucent and, finally, the plasma membrane is 

disrupted, and cell contents start to leak out, hence causing inflammation. 

As a consequence of the prominent swelling of the cytoplasm, this type of 

cell death is also designated as oncosis [25].  



CHAPTER IV. PGRP-SA is involved in bacterial clearance  

210 
 

Autophagy (type II cell death) is characterized by the presence of 

double membrane autophagic vacuoles [20], [26]. It is most prominently a 

survival mechanism activated in cells undergoing different forms of 

cellular stress. When the cellular stress continues, cell death may continue 

by autophagy alone, or may develop apoptotic or necroptotic features [27].  

  

Is PGRP-SA involved in phagocytosis? 

 

  Taking into account the data presented in the previous Chapters, 

Staphylococcus aureus kills the flies very rapidly. Its pathogenicity is 

probably attributed to its arsenal of virulence factors. Nevertheless, upon 

an S. aureus infection one must consider that perhaps what is paramount 

for Host survival are processes involved in the immediate immune 

responses. The data presented in Chapter II, shows that the reason for the 

reduced virulence of the atl mutant is due to a better recognition of PGN 

by PGRP-SA which may be promoting clearance in an AMP-independent 

manner. Furthermore, as observed in Chapter III, the mutant flies 

semmelweis and semmelweis/PGRP-LCΔE12 succumb earlier than the 

heterozygotes flies upon infection (Fig. 7 of Chapter II) and in a manner 

much more dependent on PGRP-SA than PGRP-LC (Fig. 7 and [28], [29]). 

Therefore, if immediate immune responses are key against S. aureus 

infection and PGRP-SA is particularly important for host survival, then the 

results suggest that PGRP-SA is involved in immediate early responses. 

Accordingly, it has been reported by the Host groups, that the semmelweis 

flies are more susceptible to an S. aureus Δ tagO infection than Dif-Key flies, 

which are flies impaired in AMP expression [28]. So far, this topic has been 

overlooked in Drosophila immunity and the focus on the late AMPs 

expression and induction of the immune cascades has been extensively 

studied using several different bacterial types. In addition, PGN has been 
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shown to be required for phagocytosis of S. aureus [14] and two PGRPs 

have been identified as phagocytic receptors [16], [17]. 

In sum, the data points towards the importance of immediate 

responses that are dependent on PGRP-SA. I aimed to understand the 

impact of cellular immunity and particularly whether PGRP-SA plays a role 

in such responses. Therefore, I studied whether this PGRP is involved in 

phagocytosis, since PGRP-LC has already been identified as a phagocytic 

receptor [16]. In addition, PGRP-LC was identified as being exclusively 

involved in phagocytosis of Escherichia coli due to its specificity to DAP-

type PGN. As in the previous Chapter, I demonstrated that such specificity 

does not exist (for both receptors), I also aimed to understand if in the 

absence of WTA, i.e. with a more exposed PGN at the cell surface, both 

PGRP-SA and PGRP-LC could play roles in phagocytosis, similar to the 

recognition and activation of the immune cascades.  

I performed ex vivo time-lapse microscopy studies using D. 

melanogaster macrophages. Moesin belongs to the conserved family of 

ERM (ezrin-radixin-moesin) proteins. They function as molecular linkers 

between the actin cytoskeleton and the transmembrane receptors, but also 

localise at the nucleus [30]. Therefore, tracking Moesin localisation allows 

to follow the dynamics of the phagocytic processes at the cell membrane. 

Flies expressing a GFP-Moesin fusion have been used to study changes in 

cell shape during developmental stages [31]. Hence, I used GFP-Moesin 

larvae as a reference for a wild-type background. 

To study the effect of both PGRP-SA and PGRP-LC, I used larvae 

from the crosses of female semmelweis or semmelweis/PGRP-LCΔE12 virgin 

flies with GFP-Moesin male flies. The larvae collected for these experiments 

regarding the role of the PGRPs were male larvae. Thus, the macrophages 

extracted were homozygous for PGRP-SAseml, since the gene is present in 

chromosome I and heterozygous for PGRP-LC (chromosome III).   
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To address whether both PGRPs could also be promiscuous in 

phagocytic processes for the Lys- vs. DAP- type PGN, I used the same 

mutant bacterial strains of S. aureus and Bacillus subtilis. Lastly, if indeed 

cellular responses are vital against infection from the parental strains, then 

perhaps the WTA may also be involved as immune evasion mechanisms 

against phagocytosis and bacterial clearance. 

Briefly, third instar larvae were bled and the haemolymph was 

collected. The macrophages were allowed to settle and attach to the 

microscope slide (Video 1A). Afterwards, they were infected with the 

bacteria and imaged for 18h every 3min acquisition (Video 1B). The 

macrophages were visualised under the FITC channel for imaging of the 

GFP-Moesin which allowed to follow the phagocytic processes and the 

outcome upon infection (shown in green). The bacteria were previously 

stained with DAPI (shown in purple-pink) and when complementation 

experiments were conducted, it was added the TRITC channel for 

visualization of the mCherry_PGRP-SA protein (shown in blue). 

Unfortunately, mCherry_PGRP-LC showed to be toxic to the macrophages, 

thus it was not possible to perform complementation studies of this 

receptor in the semmelweis/PGRP-LCΔE12 macrophages (data not shown).  

  A.                                                     B. 

Macrophage.mov
                        

Macrophage with bacteria.mov
 

Video 1. Macrophages attached to the microscope slide in Schneider media or 
infected with bacteria. Video A. shows fixed macrophages attached to the slide 
through their lamellipodia. Filopodia are typically observed upon movement of the 
macrophages or during the engulfment of particles when they extend as “arms” to 
grab the material to be internalised, as it can be seen in Video B. when they are in the 
presence of bacteria. 
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Results 

 

Wild-type bacteria induce a fast mode of death in 

macrophages. 

Upon infection with S. aureus, the macrophages quickly show signs 

of high levels of cellular stress. They appear to enter a route of apoptotic 

death (Video 2 and Fig. 2). As described in Table 1, this type of cellular 

death is characterized by shrinking of the cell volume and karyorrhexis. On 

the other hand, B. subtilis are innocuous bacteria devoid of such virulence 

factors. Although it does not induce such a fast death of the macrophages 

like S. aureus, it was still observed the beginning of an apoptotic death, 

suggested by the shrinking of the cells (Video 4 and Fig. 2). In contrast, in 

the absence of bacteria, the macrophages did not enter a route of cellular 

death (Video 6).  When macrophages were infected with heat-killed S. 

aureus cells, there were no signs of induction of cellular death of the 

macrophages. The macrophages appeared healthy and able to control the 

infection through a canonical route of clearance phagocytosis-exocytosis 

after 18h post infection (p.i) (Video 7). When death of the macrophages 

happened, it appeared to be due to other factors than the presence of 

bacteria.  

 

WTA mutant bacteria are less virulent to the macrophages. 

The absence of WTA rendered the bacteria more susceptible for 

phagocytic-clearance processes. In the case of S. aureus Δ tagO, the 

macrophages survived for a longer period and initiated later a cellular 

death (Video 3 and Fig. 2). With the parental bacterial strain, the 

macrophages death started shortly after infection, ca. 1h15 p.i., whereas 

with the S. aureus Δ tagO mutant it was detected beginning of death  ca. 

~4h30 p.i.. As for B. subtilis Δ tagO, the macrophages did not die nor 
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presented any indication of cellular stress, in contrast to an infection with 

the parental strain (Video 5 and Fig. 2).  

 

GFPMoe_Saureus.mov  

Video 2. GFP-Moesin macrophages infected with S. aureus bacteria. 

GFPMoe_Saureus_tagO.mov  

Video 3. GFP-Moesin macrophages infected with S. aureus Δ tagO bacteria. 

GFPMoe_Bsubtilis.mov  

Video 4. GFP-Moesin macrophages infected with B. subtilis bacteria. 

GFPMoe_Bsubtilis_tagO.mov  

Video 5. GFP-Moesin macrophages infected with B. subtilis Δ tagO bacteria. 

GFPMoe_Schneider.mov  

Video 6. GFP-Moesin macrophages in Schneider media. 

GFPMoe_HeatKilled_Saureus.mov
 

Video 7. GFP-Moesin macrophages infected with heat-killed S. aureus cells. 
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Figure 2. Snapshots of GFP-Moesin macrophages infected with bacteria. It is shown 
snapshots of every 15min acquisition of the macrophages infected with bacteria from 
the videos 2-5, from time points 0-1h45 p.i.. It is clear that infection with S. aureus is 
very virulent to the macrophages when compared to any other bacteria. After 1h15 
they cease the dynamics of the filopodia and actin cytoskeleton. On the contrary, the 
B. subtilis Δ tagO mutant is devoid of virulence since the macrophages remain healthy 
and start spreading to engage in the phagocytic processes.  

PGRP-SA appears to be involved in bacterial clearance. 

 When semmelweis-GFP-Moesin macrophages were infected with 

each of the bacteria, I observed the same outcome of the macrophages, 

albeit the mutant macrophages appeared less healthy and succumbed to 

infection earlier than the GFP-Moesin macrophages (Videos 8-11 and Fig. 

3). Upon infection with S. aureus and S. aureus Δ tagO, the macrophages 

seem less dynamic in their movements of the filopodia and actin 

cytoskeleton (Videos 8 and 9). This may be an indication that perhaps 

there is some impairment in the canonical route of phagocytosis of these 

bacteria and there is an early triggering of an apoptotic death. An infection 

with B. subtilis strongly triggered death of the macrophages,  when 

compared to the wild-type background GFP-Moesin, and some 

macrophages do not survive the 18h of the time-lapse experiment (Video 

10). Regarding infection with B. subtilis Δ tagO, although I could not 

observe  cellular death, some macrophages presented signs of cellular 

stress: they ceased to be as dynamic as normal, over-expressed GFP-Moesin 

and the cells started to shrink (Video 11). 

Common to all infections, is the presence of bacteria inside the 

macrophages that seem to retain their shape. Thus, it appears that the 

bacteria are phagocytosed but accumulate in the cytoplasm because they 

are not being cleared and destroyed. This observation suggests that PGRP-

SA may have a role in bacterial clearance (see discussion).  

The addition of mCherry_PGRP-SA to the media followed by 

infection, restored the phenotypes to levels similar to the GFP-Moesin 

macrophages (Videos 13-16 and Fig. 4). The macrophages survive longer 
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and initiated later an apoptotic cell death when compared to the control 

mutant macrophages in non-rescue conditions (absence of 

mCherry_PGRP-SA).  

Regarding cellular localisation, whether in the absence of bacteria 

(Video 17), whether upon infection (Videos 13-16), mCherry_PGRP-SA 

was found mainly inside the macrophages. It was detected co-localised 

with the DAPI signal of the bacteria, extracellularly and intracellularly. 

Intracellularly, it was also found both at the cytoplasm and at the cell 

surface, most likely at the cell membrane. 

 

GFPMoe_seml_Saureus.mov
 

Video 8. Semmelweis-GFP-Moesin macrophages infected with S. aureus bacteria. 

GFPMoe_seml_Saureus_tagO.mov
 

Video 9. Semmelweis-GFP-Moesin macrophages infected with S. aureus Δ tagO 

bacteria. 

GFPMoe_seml_Bsubtilis.mov
 

Video 10. Semmelweis-GFP-Moesin macrophages infected with B. subtilis bacteria. 

GFPMoe_seml_Bsubtilis_tagO.mov  

Video 11. Semmelweis-GFP-Moesin macrophages infected with B. subtilis Δ tagO 

bacteria. 

GFPMoe_seml_Schneider.mov
 

Video 12. Semmelweis-GFP-Moesin macrophages in Schneider media. 
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Figure 3. Snapshots of Semmelweis-GFP-Moesin macrophages infected with 
bacteria. It is shown snapshots of every 15min acquisition of the macrophages 
infected with bacteria from the videos 8-11, from time points 0-1h45 p.i.. It is visible 
the presence of bacteria that retain almost their natural shape, particularly for S. 
aureus Δ tagO and B. subtilis, accumulating inside the macrophages. 

 

GFPMoe_seml_Saureus_mChPGRPSA.mov  

Video 13. Semmelweis-GFP-Moesin macrophages infected with S. aureus bacteria 

rescued with mCherry_PGRP-SA. 

GFPMoe_seml_Saureus_tagO_mChPGRPSA.mov  

Video 14. Semmelweis-GFP-Moesin macrophages infected with S. aureus Δ tagO 

bacteria rescued with mCherry_PGRP-SA. 

GFPMoe_seml_Bsubtilis_mChPGRPSA.mov   

Video 15. Semmelweis-GFP-Moesin macrophages infected with B. subtilis bacteria 

rescued with mCherry_PGRP-SA. 

GFPMoe_seml_Bsubtilis_tagO_mChPGRPSA.mov  

Video 16. Semmelweis-GFP-Moesin macrophages infected with B. subtilis Δ tagO 

bacteria rescued with mCherry_PGRP-SA. 

GFPMoe_seml_mChPGRPSA.mov  

Video 17. Semmelweis-GFP-Moesin macrophages in Schneider media rescued with 

mCherry_PGRP-SA. 
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Figure 4. Snapshots of Semmelweis-GFP-Moesin macrophages complemented with 
mCherry_PGRP-SA infected with bacteria. It is shown snapshots of every 15min 
acquisition of the macrophages infected with bacteria from the videos 13-16, from 
time points 0-1h45 p.i.. Interestingly, mCherry_PGRP-SA seems to mainly localise 
inside the cell, rather on the outside and it co-localises with the DAPI signal, hence it 
is bound to the bacteria. 

Both PGRPs seem to contribute to bacterial clearance. 

 When semmelweis/PGRP-LCΔE12-GFP-Moesin macrophages were 

infected with S. aureus, there was still death by apoptosis (Video 17 and 

Fig. 5). However, in contrast to what had been observed before, when these 

mutant macrophages were infected with S. aureus Δ tagO and B. subtilis 

bacteria, the macrophages died through necroptosis (Video 18-19 and Fig. 

5). In addition, these double mutant macrophages were also more 

susceptible to the non-virulent B. subtilis Δ tagO mutant (Video 20 and Fig. 

5).  

Similar to the single mutant background semmelweis-GFP-Moesin 

macrophages, these double mutant macrophages appear to be less 

dynamic regarding the filopodia movements with both S. aureus strains 

(Video 18). Moreover, it is also seen that the phagocytosed bacteria 

accumulate in the cytoplasm retaining almost their shape. This suggests 

that they were not being efficiently destroyed and so both PGRP-SA and 

PGRP-LC are involved in the clearance processes and the absence of both 

is more severe than the absence of a functional PGRP-SA.  

When these mutant macrophages were rescued with 

mCherry_PGRP-SA, the phenotypes upon infections were almost restored 

to the GFP-Moesin phenotypes (Videos 22-25 and Fig. 6) and I could no 

longer observe accumulation of bacteria inside the macrophages. 
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GFPMoe_semlLC_Saureus.mov  

Video 18. Seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with S. aureus 

bacteria. 

GFPMoe_semlLC_Saureus_tagO.mov
 

Video 19. Seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with S. aureus Δ 

tagO bacteria. 

GFPMoe_semlLC_Bsubtilis.mov  

Video 20. Seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with B. subtilis 

bacteria. 

GFPMoe_semlLC_Bsubtilis_tagO.mov  

Video 21. Seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with B. subtilis Δ 

tagO bacteria. 

GFPMoe_semlLC_Schneider.mov  

Video 22. Seml/PGRP-LCΔE12-GFP-Moesin macrophages in Schneider media. 
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Figure 5. Snapshots of seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with 
bacteria. It is shown snapshots of every 15min acquisition of the macrophages 
infected with bacteria from the videos 18-21, from time points 0-1h45 
p.i..Comparatively to the other macrophages, the macrophages infected with S. 
aureus appear very unhealthy and initiate an apoptotic death shortly after infection 
(the lamellipodia is retracted and the cells are shrinking). 

 

GFPMoe_semlLC_Saureus_mChPGRPSA.mov
 

Video 23. Seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with S. aureus 

bacteria rescued with mCherry_PGRP-SA. 

GFPMoe_semlLC_Saureus_tagO_mChPGRPSA.mov
 

Video 24. Seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with S. aureus Δ 

tagO bacteria rescued with mCherry_PGRP-SA. 

GFPMoe_semlLC_Bsubtilis_mChPGRPSA.mov
 

Video 25. Seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with B. subtilis 

bacteria rescued with mCherry_PGRP-SA. 

GFPMoe_semlLC_Bsubtilis_tagO_mChPGRPSA.mov
 

Video 26. Seml/PGRP-LCΔE12-GFP-Moesin macrophages infected with B. subtilis Δ 

tagO bacteria rescued with mCherry_PGRP-SA. 

GFPMoe_semlLC_Schneider.mov
 

Video 27. Seml/PGRP-LCΔE12-GFP-Moesin macrophages in Schneider media rescued 

with mCherry_PGRP-SA. 
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Figure 6. Snapshots of seml/PGRP-LCΔE12-GFP-Moesin macrophages complemented 
with mCherry_PGRP-SA infected with bacteria. It is shown snapshots of every 15min 
acquisition of the macrophages infected with bacteria from the videos 23-26, from 
time points 0-1h45 p.i.. In the S. aureus Δ tagO video, it is observed an example of 
death by necrosis from a macrophage that had not up taken mCherry_PGRP-SA.  

PGRP-SA shows binding and lytic activity at low pH. 

In the absence of a functional PGRP-SA, the macrophages 

accumulated bacteria in the cytoplasm and seemed to be impaired in 

clearance (Videos 7-10 and 17-20). This suggested that PGRP-SA is 

involved both in bacterial recognition and clearance processes. Upon 

phagocytosis, the phagosome containing the bacteria fuses with the 

lysosomes containing hydrolytic enzymes (Fig. 1). It is inside this 

phagolysosome that the bacteria will be destroyed, hence where it occurs 

the process of clearance. Typically, phagolysosomes present a very low pH 

that aids in the clearance process and enzyme activity. Hence, if indeed 

PGRP-SA is involved in the clearance process, it should be found with the 

bacteria enclosed in the phagolysosomes. Consequently, it should be able 

to bind to the bacteria and exert lytic activity at low pH.  

Accordingly, when wild-type bacteria S. aureus and B. subtilis were 

incubated with mCherry_PGRP-SA at pH 3, the protein showed a very high 

binding ability to these cells (Fig. 7). In contrast, when the pH approached 

the physiological pH of the haemolymph (pH 6), this binding was no longer 

detected (Fig. 8 and Fig. 2 of Chapter II). 
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Figure 7. Co-precipitation of live bacterial cells with mCherry_PGRP-SA at pH 3. 
Cultures in early exponential phase of the parental strains of B. subtilis and S. aureus 
were incubated with mCherry_PGRP-SA in 25 mM Glycine Buffer pH 3. The cells were 
imaged with a Texas Red filter at a very low exposition time of 30 ms. When using the 
same microscope and setting conditions the analysis of the these bindings are 
normally performed using an exposition time of 500 ms [28], [29]. 

In order to analyse a potential lytic activity of PGRP-SA, I 

performed Zymogram assays. Briefly, these assays consist of an SDS-PAGE 

gel where it is incorporated a substrate. The proteins to be studied are ran 

on the gel using standard protocol conditions. After the run, instead of 

staining the proteins, the gel is incubated in a buffer that will allow the 

proteins to renaturate. Finally, instead of staining the proteins as in a 

standard SDS-PAGE, it is stained the gel, i.e. the substrate. If the protein has 

lytic activity the substrate is degraded, therefore in the region where the 

proteins lies in the gel there is no substrate present. Therefore,  it is 

visualised a clear band at the place of the protein in the gel. 
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Figure 8. Co-precipitation of live S. aureus cells with mCherry_PGRP-SA at different 
pH. The left panel shows the binding of mCherry_PGRP-SA at pH 3 to S. aureus cells 
using optimal exposition time of 100 ms for visualisation of the binding. The right 
panel presents the binding of mCherry_PGRP-SA at different pH. The scale intensities 
were adjusted to the binding at pH 3. It was used a higher exposure time of the Texas 
Red as it would be possible to not detect binding at other pH due to using very low 
exposition times.  

Autoclaved cells of Micrococcus luteus, Microbacterium 

nematophilum and S. aureus were used as a substrates. When both 

mCherry_PGRP-SA and rPGRP-SA were analysed through the zymogram 

assay, I detected lytic acitvity of the protein, particularly at pH 3 (Fig. 9 and 

Fig. 10). M. nematophilum is a natural pathogen of C. elegans [32]. It is a 

Gram-positive bacterium that appears to have a very particular and 

intricate PGN composition resistant to the muramidase Mutanolysin from 

Streptomyces globisporus (personal communication from Hodgkin and 

Filipe Lab). In sum, it can be concluded that PGRP-SA possesses lytic 

activity, being able to cleave different types of PGN substrates while not 

inhibited by major PGN modification like most of the Lysozymes and 
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Muramidases (such as M. nematophilum) and to the O-acetylation of the 

muramic acid residue (such as S. aureus).  

 

Figure 9. Zymography assay of the lytic activity of mCherry_PGRP-SA at pH 3. The 
gels were incubated O/N at 37ºC in a Renaturing Buffer Tris-Glycine at pH 3. LytA is 
the major autolysin of Streptococcus pneumoniae with amidase activity and it was 
used as a negative control of the assay. The different colours of blue in the gels are 
associated with the different properties of these cells to be stained by the Methylene 
Blue. 
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Figure 10. Zymography assay of the lytic activity of rPGRP-SA at pH 6. To ascertain 
that the observed activity was related with the PGRP-SA protein and not by a non-
specific activity of the mCherry_PGRP-SA, an assay with the rPGRP-SA was performed 
using S. aureus cells. In this zymogram it was used a buffer at pH 6 and a higher 
concentration of rPGRP-SA than the one used for mCherry_PGRP-SA. Lysozyme was 
used as a negative control. 

 

 

 

 

 

 



CHAPTER IV. PGRP-SA is involved in bacterial clearance  

231 
 

Discussion 

 

The process of bacterial clearance is believed to be highly 

dependent on the cellular responses of the Innate Immune System. 

Professional phagocytes, i.e. macrophages, uptake the pathogen through 

phagocytosis. Phagocytosis is inherently linked to the process of 

destruction and clearance. Up to date, the canonical route of clearance is 

the phagocytosis-exocytosis unidirectional flow (Fig. 1). However, it has 

been recently reported that this elegant and simple mechanism of 

pathogen destruction does not occur most of the times. Instead, the 

macrophages activate an apoptotic death upon phagocytosis [33].  Non-

pathogenic bacteria and bacteria that are easily killed by the macrophages 

have been reported to induce apoptosis after phagocytosis [33].  Evidence 

suggests that phagocytosis-induced apoptosis may be a natural response 

of the macrophages to different bacteria. In addition, an efficient clearance 

process is inherently dependent of an efficient recognition of the bacteria 

by the host receptors, as the phagocytosis process begins with the action 

of the opsonins that promote the uptake of the bacteria by the 

macrophages. 

There are three main modes of PCD which morphologically present 

characteristic distinctive features: apoptosis, necrosis and autophagy [20]. 

Nevertheless, the discrimination between cell death processes should rely 

on the observation of the morphology of the dying cells, on the detection 

of biochemical parameters of cell death and ultimately on the interaction 

of the macrophages that will phagocyte the dying cells [34]. In the present 

study, only morphological data was acquired regarding the death of the 

macrophages. Therefore, the analysis of the mode of death of the 

macrophages may be subject to re-adjustments upon future experiments. 

Hence, the interpretation of the results that I present next should be taken 
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as working hypothesis which will guide me to plan future experiments and 

conclude the work I present in this chapter.  

 

Bacterial-induced apoptosis. 

Pathogenic bacteria present numerous ways to subvert the host 

immune responses. S. aureus is a major Gram-positive pathogen that 

presents a number of virulence factors which compromise cellular 

responses, such as the expression of haemolysins and toxins (Fig. 11). 

Although it has been identified several mechanisms by which S. aureus 

subverts the phagocytosis and clearance, there is still not clarity in the field 

regarding the interaction with the macrophages. Nevertheless, it has been 

shown that it is able to replicate within human macrophages [35], [36] and 

that once inside the macrophages it upregulates antiapoptotic factors [37].  

Upon infection with S. aureus, the macrophages very early show 

signs of stress that culminated in cellular death (Video 2). It was observed 

ruffling of the membrane, retraction of the lamellipodia and ceasing of the 

filopodia movement. Moreover, it was evident the shrinkage of the cell size 

accompanied with the condensation of the DNA. Ultimately, the DNA 

presented signs of karyorrhexis. These observations strongly suggest that 

S. aureus infection induced apoptotic death of the macrophages. Therefore, 

the following data interpretation is based on the hypothesis that S. aureus 

triggered an apoptotic death in the macrophages. 

 In contrast, infection with heat-killed S. aureus cells did not trigger 

death and the dead bacteria were easily up taken and cleared (Video 7). 

These results suggest that the macrophages trigger apoptosis as a 

response towards the activity of the bacterial virulence factors, although 

to some extent the process of heat-killing might compromise at some level 

the integrity of the cell wall and render these cells more easily recognised 

and killed. This helps to explain the previous observed upregulation of 

antiapoptotic factors by S. aureus [37]. In addition, the need that the 
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bacteria have to impair macrophages apoptosis is an indirect evidence that 

induction of apoptosis upon phagocytosis is a natural immune response to 

promote the clearance. Moreover, this also helps to understand that the 

reported activation of caspases by the α–haemolysin [38], is not due to the 

haemolysin itself but rather it is a response of the cell towards the effect of 

the toxin. Before the cell is destroyed by the activity of the haemolysin, it 

induces apoptosis. 

When the macrophages were infected with the S. aureus Δ tagO 

mutant, the cellular death by a presumed apoptosis, happened later on in 

the infection course (Video 3). There was still induction of death 

(apoptosis), because the mutant bacteria bears the virulence factors of the 

parental strain, considering that the absence of WTA is not significantly 

impairing the activity of virulence factors (Fig. 11). Hence, the delay in the 

induction of apoptosis is due to a faster clearance of these bacteria (see last 

topic of the Discussion). As they are destroyed faster, it also takes longer 

for the activity of the virulence factors to achieve the wild-type levels 

required for the triggering of the apoptosis. 

To this type of apoptosis induced by bacterial factors, I will 

onwards refer to as “bacterial-induced apoptosis” (Fig. 12). This type of 

apoptotic death is a response of the macrophages against harm caused by 

the bacteria and it is different from the reported phagocytosis-induced 

apoptosis [33]: 1) the bacterial-induced apoptosis is dependent on the 

pathogenicity of the bacteria; 2) the apoptotic death is a slow process of 

death, in contrast to this apoptotic death which is unusually fast because it 

was triggered by a high sudden stress; 3) when the bacteria preserve their 

pathogenicity, the induction of apoptosis is delayed only when they are 

more easily destroyed, albeit the process of death is still faster than a death 

that is not caused by harmful virulence factors.  
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Figure 11. Haemolytic expression pattern in sheep blood. S. aureus presents 
haemolysins that are able to degrade red blood cells. The S. aureus Δ tagO mutant 
seems to retain the ability to express the same type of haemolysins to which the red 
blood cells of sheep are sensitive to. In contrast, B. subtilis is devoid of such lysins.  
 

Phagocytosis-induced apoptosis. 

 Infection with the innocuous soil bacteria B. subtilis also showed 

signs that can be interpreted as an apoptotic mode of death in the 

macrophages, although in a less potent manner than S. aureus. After 18h of 

infection, the macrophages had not yet finished the process of (apoptotic) 

death (Video 4). In contrast, the B. subtilis Δ tagO mutant did not induce 

any visible stress to the macrophages and appears to be easily 

phagocytosed and killed, through the canonical way of phagocytosis-
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exocytosis (Video 5). As B. subtilis is devoid of virulence and both wild-type 

and mutant strains present the same PGN muropeptide composition (Fig. 

13, Chapter II), it can be concluded that a more exposed PGN is rendering 

the cells more vulnerable to clearance and thus the macrophages are able 

to easily contain the infection. This implies that due to a more exposed 

PGN, the macrophages are able to efficiently and rapidly destroy the 

mutant cells. Hence, there is no cellular stress conditions that would 

require/induce an apoptotic death in order to control the infection. 

Therefore, the presence of the WTA is a bacterial cell wall factor that 

prevents an efficient killing after phagocytosis (see last section of the 

Discussion).  

In sum, upon infection with non-virulent bacteria, when the 

bacterial load is high and the rate of phagocytosis is higher than the rate 

by which the bacteria can be destroyed, the macrophages may trigger an 

apoptotic death – the phagocytosis-induced apoptosis (Fig. 12) [33]. This 

phagocytosis-induced apoptosis (Fig. 12) [33], may be a strategic 

mechanism of clearance by which the macrophages cope with the 

saturation of bacteria attached to their lamellipodia and inside the cell 

coupled with accumulation of bacteria in phagosomes/phagolysosomes. 

 

Apoptosis may be a Host mechanism of bacterial clearance. 

The fact that when bacteria are more easily cleared, the apoptosis 

upon phagocytosis becomes delayed or unnecessary, is an indication that 

apoptosis is a mechanism to promote bacterial clearance.  

Apoptosis presents itself as a type of PCD that helps the 

macrophages to continue/finish the process of clearance as it culminates 

in phagocytosis. The macrophages promote the clearance by forming the 

apoptotic bodies containing the bacteria and cellular fragments that will 

be phagocytosed (Fig. 12). This may be an advantage to the Host, rather 

than a death by necroptosis. The death by necroptosis results in the burst 
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of the cell with release of its contents, it induces inflammation and it would 

release the still viable bacteria and incomplete digested bacterial products 

into the blood stream. In table 2 it is presented the three types of proposed 

pathways of phagocytosis-clearance. 

 

Table 2. Phagocytosis-clearance pathways. 

 

 

A new look into the phagocytic ligand-receptors. 

There has been growing evidence of a dual role of phagocytic 

receptors both in phagocytosis of apoptotic cells and of bacteria. The 

Drosophila phagocytic receptors present in haemocytes that are involved 

in phagocytosis of apoptotic bodies are: Croquemort [5], [6], Draper [7], 

and NimC4/SIMU [8]. As for bacterial phagocytosis, the haemocyte 

phagocytic receptors are: Eater [9], Nimrod C1 [10], Dscam [11] and Peste 

[12]. Other bacterial phagocytic receptors expressed in other tissues than 

haemocytes are the PGRP-LC [16] and PGRP-SC1 [17]. 

The dSR-CI is thought to be involved in phagocytosis of both 

apoptotic bodies and microorganisms due to its broad polyanionic binding 

ability [39]. Integrin βυ [13], [14] and Integrin αPS3/βυ [15] have also 

been identified as phagocytic receptors of both apoptotic bodies and 

bacteria. Interestingly, later on Draper was reported to also be involved in 

phagocytosis of S. aureus [40].  

Integrin βυ was reported to bind to the S. aureus PGN and that this 
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binding was required for phagocytosis [23]  and Draper was shown to bind 

to LTA of S. aureus [40]. According to a line of thought in which apoptosis 

may be a mechanism of bacterial clearance, it is then possible that the 

apoptotic bodies can present bacterial products at the surface to promote 

their engulfment. Hence, perhaps the authors have observed the 

phagocytosis of apoptotic bodies formed upon bacterial phagocytosis. . 

The binding of Draper to LTA is an indirect evidence of this, since it has 

been shown that these wall polymers are not exposed at the surface and 

access to them requires the degradation of PGN [41]. 
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Figure 12. Phagocytosis-apoptosis process. The macrophages induce apoptosis whilst 
containing bacteria enclosed in phagosomes and phagolysosomes. These will be 
incorporated by the apoptotic bodies. The bacteria will be phagocytosed again and a 
new cycle of phagocytosis-clearance is initiated. This process is likely to be repeated 
for as long as it is necessary to completely destroy the bacteria. 
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PGRP-SA and PGRP-LC participate in clearance of both Lys- 

and DAP- type PGN bacteria. 

When functional PGRP-SA is absent, it appears that the phagocytic 

ability is not compromised, i.e. the internalisation of the bacteria is not 

affected (Videos 7-10). In semmelweis-GFP-Moesin macrophages, it was 

observed bacteria inside the macrophages that seem to retain their shape, 

and thus are likely to be alive, in contrast to what was observed in the wild-

type GFP-Moesin macrophages. In the absence of bacteria, when the 

semmelweis macrophages were complemented with mCherry_PGRP-SA, 

although predicted to be extracellular and circulating in the haemolymph, 

the protein was found localised inside the cell (Video 12-16). When these 

macrophages were infected with bacteria, then the protein co-localised 

with the bacteria thus being found both outside, inside at the cytoplasm 

overlapping with the bacterial DAPI staining or even at the cell surface of 

the macrophage. Moreover, it was no longer detectable so many intact 

bacteria inside the macrophage. These results show that these mutant 

macrophages are compromised in the clearance and thus PGRP-SA plays a 

role in this process for both Lys- and DAP- type PGN bacteria.  

 Similar to the single mutant macrophages, the semmelweis/PGRP-

LCΔE12-GFP-Moesin macrophages also showed accumulation of 

phagocytosed bacteria in their cytoplasm which retained almost their 

shape, again suggesting that the bacteria are not been being efficiently 

destroyed (Videos 18-21). Since these macrophages showed to be much 

more compromised in the response upon infection than the semmelweis 

macrophages (see next section of the Discussion), PGRP-LC is also involved 

in the clearance whether by a Lys- or DAP- type PGN bacteria.  
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PGRP-SA and PGRP-LC are opsonins of both Lys- and DAP- 

type PGN bacteria. 

So far it has been shown that apoptosis is triggered upon 

phagocytosis when the process of clearance is compromised. Moreover, it 

was observed that both PGRP-SA and PGRP-LC engage in the process of 

clearance. As such, the observation of an impaired clearance resulting in 

the uncontrolled death of the double mutant macrophages, corroborates 

the above findings (Videos 18-21 and Fig. 4). 

Regarding the S. aureus infection, the macrophages in a very early 

stage of infection show signs of apoptotic death, suggesting that the 

infection is very acute (Video 16 and Fig. 5). Hence, from a very initial stage 

of interaction, the double mutant macrophages sense the virulence of S. 

aureus as the wild-type macrophages do, responding quickly against 

infection through a fast triggering of apoptosis.  

When semmelweis/PGRP-LCΔE12–GFP-Moesin macrophages were 

infected with S. aureus Δ tagO and B. subtilis bacteria, the macrophages 

died by necroptosis (Videos 19-20 and Fig. 5).   

Perhaps, due to a high number of bacterial cells and/or difficulty in 

the clearance by the presence of WTA, B. subtilis infection triggers 

phagocytosis-induced apoptosis under most circumstances. Upon absence 

of both PGRPs, the clearance of the bacteria is more compromised than in 

the absence of PGRP-SA. Therefore, the growth of B. subtilis is not so well 

contained and the macrophages cannot manage an apoptotic death and 

succumb by necroptosis.  

Similarly for S. aureus Δ tagO, even with a more exposed PGN, 

because these PGRPs are needed for clearance and not just recognition, the 

macrophages are highly impaired in controlling the bacterial growth. 

As for the infection with B. subtilis Δ tagO, the macrophages die 

through apoptosis. Perhaps because this mutant strain is highly 

compromised in growth and cell division, on one hand it takes longer to 
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induce signalling dangers and on the other hand it is this feature that 

allows the macrophage to detect lack of clearance and still have time to 

begin an apoptotic death.  

When these double mutant macrophages are rescued with 

mCherry_PGRP-SA, the phenotypes upon infections are almost restored to 

the GFP-Moesin phenotypes (Videos 21-24 and Fig. 6). Then, that the 

presence of PGRP-SA can compensate to some extent the absence of one 

copy of PGRP-LC.  

As an overall, the data so far allow to infer that PGRP-SA and PGRP-

LC participate in the processes of phagocytosis-clearance and that the 

presence of WTA impair this clearance. Thus, both receptors can act as 

opsonins, participate in the clearance and may help to retain the bacteria 

and their non-totally digested products enclosed in a subcellular space 

until the apoptotic body is formed and phagocytosed. Through this 

mechanism, PGRP-SA and PGRP-LC limit the infection by helping to 

prevent the spreading of the bacteria that would occur if the cell did not 

induce its apoptotic pathway or rather would succumb by a necroptotic 

death. Finally, as it was not observed impaired uptake of the bacteria by 

any of the mutant macrophages tested, but it was observed earlier/later 

phagocytosis-induction apoptosis associated with impairment of the 

clearance, then this natural mechanism of apoptotic death is triggered not 

by the uptake/engulfment, but rather upon the formation of the 

phagolysosome and possibly the balance between the rate of uptake and 

the rate of clearance. 

 

PGRP-SA is a lytic enzyme that aids in bacterial clearance 

upon phagocytosis. 

PGRP-SA is a secreted protein that circulates in the haemolymph of 

the Fly. As such, it came as a surprise to find that the protein localised 

mostly in the macrophages, either at the cytoplasm or at the cell surface, 
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rather than almost exclusively in the extracellular medium (Videos 12-16 

and 21-24). Since the phenotype upon infection of the mutant 

macrophages was restored with the addition of mCherry_PGRP-SA and the 

fluorescent signal of the mCherry co-localised with the DAPI signal of the 

bacteria, what was observed was the localisation of the fusion protein and 

not of a cleaved form separating the mCherry from the PGRP-SA protein. 

Hence, how come a secreted protein seems to be mostly found inside the 

cell? Since it was not observable differences in the uptake of the bacteria, 

but it seemed that they accumulated in the cytoplasm whilst not being 

cleared, then when inside the cell, PGRP-SA is participating in clearance. 

Moreover, as it was observed that the binding of mCherry_PGRP-SA to the 

bacteria seemed to be higher when the bacteria were inside the cell which 

suggests that PGRP-SA binds better when inside rather than outside the 

cell.  Consequently, if indeed PGRP-SA participates in bacterial clearance, 

it should be present with the bacteria inside the phagolysosomes. Thus, the 

protein ought to bind and possess hydrolytic activity at a low pH. 

 Accordingly, when live cells of either parental strains from S. 

aureus and B. subtilis were incubated with mCherry_PGRP-SA at pH 3, the 

protein showed optimal ability to bind to these cell walls (Fig. 6), in 

contrast to what had been observed when the assays were performed in 

the haemolymph physiological pH (Fig. 2, Chapter II). As the pH rises, the 

binding decreases, thus there is an inverse proportionality between the pH 

and the binding ability of PGRP-SA (Fig. 7). In addition, at pH 3 

mCherry_PGRP-SA showed to be able to cleave the PGN from different 

bacterial types (Fig. 8). The reason for an optimal binding of the protein of 

the bacterial cell surface, might be related to a partial breakdown of the 

WTA polymers upon acidic conditions [42], coupled with the denaturation 

of the cell wall proteins. The optimal activity of the protein at low pH for 

both binding and lytic activity favours the hypothesis of it being involved 

in bacterial clearance and present inside the phagolysosomes. Perhaps, the 
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reason for PGRP-SA having such strong activity at low pH is so that the 

destruction happens in a confined compartment in order that the 

fragments of destroyed bacteria are not spread and circulate in the 

haemolymph as it could provoke toxicity, inflammation and/or an 

anaphylactic shock. 

 

WTA impair phagocytosis and clearance because 

degradation of the PGN is vital for bacterial destruction. 

 Both S. aureus Δ tagO and B. subtilis Δ tagO mutants showed 

decreased virulence towards the macrophages than the correspondent 

parental strains. Since the only difference between these mutants and the 

wild-type strains is a more exposed PGN at their cell wall due to the lack of 

WTA, it implies that WTA are impairing phagocytosis and clearance.  

The results also suggest that for efficient killing, the degradation of 

PGN is paramount for bacterial destruction inside the phagolysosomes. As 

a consequence, one may assume that WTA impair the effect of the 

hydrolytic PGN enzymes present inside the phagosome, perhaps in a 

similar fashion as they prevent PGRP recognition. Thus, WTA are 

impairing the binding of PGRP-SA and PGRP-LC as receptors and their 

activity in the clearance upon phagocytosis. 
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Conclusions 

 

In this Chapter I present novel data regarding phagocytosis and 

bacterial clearance by the macrophages of Drosophila melanogaster.  

I show evidence that possibly the macrophages present two 

different canonical ways of phagocytosis-clearance processes: 1) 

phagocytosis-exocytosis and 2) phagocytosis-apoptosis. The occurrence of 

one process or the other seems to be highly dependent on the type of 

bacteria – virulent/non-virulent, easily killed or not – and also on the 

bacterial load. Apoptosis is triggered by the cell to promote clearance as a 

response towards: 1) high levels of pathogenicity that harm the 

macrophages and 2) high numbers of bacteria to be phagocytosed which 

is in turn dependent on how efficient the process of PGN degradation is 

inside the phagolysosomes. The formed apoptotic bodies will then be 

phagocytosed and this process of phagocytosis-induced apoptosis may 

happen several times until the bacteria are completely cleared. It is 

possible that the apoptotic macrophages use bacterial components as 

ligands to promote/improve their phagocytosis. The non-phagocytosed 

bacteria are again recognised by PGRP-SA and PGRP-LC, which will play 

their roles as receptors that trigger the late-induced AMPs by the TOLL and 

IMD pathways. The secreted systemic AMPs target the bacteria that were 

not contained by the cellular responses.  

I present data that suggests that both PGRP-SA and PGRP-LC 

engage in cellular responses and both participate in the clearance of the 

bacteria. Moreover, also at the level of clearance, the WTA impair the 

activity of these PGRPs.  

Lastly, I showed that PGRP-SA possesses lytic activity. Since it 

showed promiscuity towards the binding and cleavage of different types 

of PGN, it is probable that the protein cleaves at the glycan chains. This 

proposed activity is different from the L,D-carboxypeptidase activity 
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proposed by Chang et al. 2004 [43] and from the serine proteases activity 

proposed by Reiser at al. 2004 [44]. Furthermore, since the glycans are the 

most conserved moiety of the PGN, it is intuitive to think that a protein 

involved in pathogen degradation (as well as recognition) would target the 

most conserved region of the molecule. To compensate for the existence of 

lysozymes in the host, it is possible that PGRP-SA may possess a 

glucosaminidase activity. 

I propose a model whereby PGRP-SA and PGRP-LC detect bacteria 

through recognition of their PGN and act as opsonins promoting 

phagocytosis. Upon phagocytosis, these PGRPs are also involved in 

bacterial clearance. PGRP-SA is likely to localise at the phagolysosome 

where it exerts a strong lytic activity towards the PGN at very low pH.  

In order to ascertain the interpretations that I presented, further 

work needs to be done which will continue to make the most of the 

microscopy techniques. The use of microscopy, in particularly time-lapse 

microscopy, is still the first method of choice to study cell death, since it 

allows to follow the morphological changes and the kinetics of the 

processes. Nevertheless, it is important to correlate these observable 

morphological changes with the kinetic of the different biochemical 

parameters that distinguish apoptosis from necroptosis. A simple and 

common method consists in the detection of propidium iodide and 

phosphatidylserine. The propidium iodide is a fluorescent membrane-

impermeable dye (it stains the nuclei). The phosphatidylserine is actively 

localized on the inner leaflet of the plasma membrane in healthy cells. 

Thus, they allow to determine loss of cell membrane integrity. In most 

cases, phosphatidylserine positivity precedes the propidium iodide 

positivity in apoptotic cells, whilst the two events coincide in necrotic cells 

[34]. Subsequently, to further characterise the apoptotic process, it is 

possible to perform caspase activity assays. Regarding the co-localisation 

of PGRP-SA in the phagolysosome, experiments of tracking of 
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lysosomes/phagolysosomes, should show the presence of mCherry_PGRP-

SA and the bacteria inside these acidic compartments. Finally, to properly 

characterise a lytic activity of PGRP-SA, not only should other controls be 

included, such as the mCherry protein alone, but it should also be 

identified the cleavage site at the PGN molecule. 
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Materials and Methods 

 

Bacterial Strains and culture, Flies and Protein purification. 

The bacterial parental and mutant strains of S. aureus and B. 

subtilis and the fly strains semmelweis and semmelweis/PGRP-LCΔE12 used 

were the same and were grown as described in Chapter III. For the 

zymogram assays it was used M. luteus DMS20030 [45], M. nematophilum 

CBX102 (provided by M. J. Gravato-Nobre, Hodgkin Lab), S. aureus NCTC 

8325-4 and NCTC 8325-4 Δ oat Δ tagO [28]. GFP-Moesin flies [31] were 

used as a wild-type background for the ex vivo assays of the macrophages. 

The proteins rPGRP-SA and mCherry_PGRP-SA were purified as 

described previously. LytA was also purified from BL21 cells, using a DEAE 

cellulose resin and Lysozyme was purchased from Sigma-Aldrich 

(Germany).  

 Haemolytic assays were performed as described in Chapter II.  

 

Time-lapses microscopy experiments. 

Macrophage preparation. 

When the role of PGRP-SA was accessed, only male larvae from a 

cross of semmelweis or semmelweis/PGRP-LCΔE12 female virgins with GFP-

Moesin were collected for the experiments.  Three third instar larvae were 

washed in 1 mL of ddH2O followed by 50% (v/v) bleaching and vortex. The 

larvae were quickly washed three times with autoclaved MilliQ H2O and 

left swimming whilst the slides were prepared. Into previously washed 

metal slides (100% (v/v) Ethanol) with a 1.0 mm coverslip it was put 

Schneider medium supplemented with 5% (v/v) Fetal Calf Serum. The 

larvae were bled into the medium and the macrophages were let settle for 

1h at RT in a humid chamber. 
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Preparation of the bacteria. 

200 µL of an O/N culture were harvested at RT and washed with of 

Schneider. The cells were resuspended in 200 µL of Schneider with 0.5 µL 

of a DAPI solution (at 1 mg/mL in MilliQ H2O) and incubated for 5 min at 

RT, without shaking. The cells were washed with 200 µL of Schneider and 

resuspended in 100 µL of Schneider. Finally, they were dilute 1/10 in 

Schneider in a 200 µL final volume. 

 

Imaging of the macrophages with the bacteria. 

To the macrophages slide, 200 µL of the bacterial suspension was 

added and a YSI 5775 Standard Membrane (YSI Incorporated, Japan) was 

glued on top. For rescue of the PGRP-SA phenotype, it was added 180 μL of 

mCherry_PGRP-SA at 0.3 µg/µL in Schneider (fresh solution) and 20 μL of 

non-diluted cells. Acquisition was done at 25ºC in a humid chamber for 

18h every 3min in a GE Healthcare DeltaVision Elite integrated imaging 

system, using an Olympus MPLAPON-Oil immersion objective (100X 

1.40A). The Photometrics Evolve-512 EMCCD camera for high-sensitivity 

imaging was used to allow lower intensities of excitation light. For 

denoising, it was used Denoise Prism with default parameters except: no. 

of iterations 3, adaptability 10 and patch radius 3. Analysis of the data was 

performed using softWoRx® (AppliedPrecision®, USA), which permitted 

the conversion of the time-lapse images into a “.mov” file at 5 frames/sec. 

 

Live bacteria co-precipitation assays. 

The binding assays of mCherry_PGRP-SA with live cells were 

conducted as before, expect that it was used a 25 mM Glycine pH 3. Images 

were acquired with a Zeiss Axio ObserverZ1 microscope equipped with a 

Photometrics CoolSNAP HQ2 camera (Roper Scientific using Metamorph 

software, Meta Imaging series 7.5) and analysed using the ImageJ software. 
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Zymography assay.  

The zymogram presented in Figure 9 was performed as described 

in Vaz and Filipe, 2015 [46], except that the renaturing buffer was replaced 

by 250 mM Tris; 20 mM Glycine pH 3 and 5 µg of mCherry_PGRP-SA and 

LytA were loaded on the gels.  The protocol of  Figure 10 was performed 

with some differences, since it was the original protocol for Zymography, 

from which it was optimized into what is now the protocol described by 

Vaz and Filipe, 2015 [46]. 
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CHAPTER V 
Bacteria present mechanisms to evade cellular and 

humoral responses mediated through 

peptidoglycan recognition by PGRP-SA and PGRP-LC 

 

 In this thesis I present novel data regarding the interaction of the 

Host and the Bacteria, particularly in the Fruit Fly. I believe that these 

results will help to further understand the intricate and complex 

interactions that happen when the Host meets the pathogen. 

 I started by unravelling how PGRP-SA can detect a bacteria 

through recognition of its peptidoglycan (PGN). The recognition relies on 

the access to PGN that is surface exposed at the septum during cell division. 

The binding of PGRP-SA is dependent on the probability of meeting a 

bacteria that is in a certain stage of cell division that temporarily presents 

newly synthesised PGN at the septum which has not yet been incorporated 

into the polymer mesh. Thus, the coordination of the synthesis of new PGN, 

degradation of old chains and the joining of the new material with the old, 

is crucial for the bacteria not only to survive but also to escape from PGRP-

SA recognition. It is likely that other PGN receptors may target the same 

region. I identified that Sle1 has a vital role for cell splitting and re-shaping 

of the septum by giving physical space through cleavage of old PGN that 

permit the incorporation of the new material. I propose a model in which 

efficient evasion of PGN detection during cell division is determined by the 

activity of the autolysins in coordination with the incorporation of new 

PGN. In addition, I showed that less virulent bacteria, induce lower levels 

of antimicrobial peptides (AMPs). Therefore, I inferred that it was because 

of a lower bacterial load in circulation which in turn is due to a better 

cellular early response. As these responses proved to be highly dependent 

on PGRP-SA recognition, I hypothesised that PGRP-SA could be involved in 
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cellular responses of clearance. However, what was evident from the data 

gathered at that moment, was that recognition of PGN is key for a potent 

and efficient immune response. Since the virulence by haemolysins, which 

target the haemocytes, was not affected in the non-virulent atl mutant, 

recognition of PGN, up to certain levels, is sufficient for survival of the Host. 

Subsequently, for as long as the PGN is not accessible by PGRP-SA (and 

probably other PGRPs), the bacteria can efficiently employ its virulence 

factors. Thus, protection of PGN from Host receptors is paramount for 

bacteria to establish an infection. Accordingly, the subsequent findings 

corroborated these interpretations and conclusions. 

 I next addressed how the Host discriminates (or not) different PGN 

types. I showed that PGRP-SA and PGRP-LC can recognise both Lys- and 

DAP- type PGN and act as bacterial receptors of both phagocytosis and late 

induced AMPs responses. Upon recognition of PGN by PGRP-SA and PGRP-

LC, there is the triggering of phagocytosis. It is likely that bacteria that 

survive the phagocytosis-clearance processes, are again recognised by 

both PGRPs which trigger the TOLL and IMD cascades. This results in the 

expression of the AMPs, whose primary function is to kill the remaining 

bacteria and protect the Host from reincidence of infection.  

Regarding the phagocytic processes, these proteins appear to not 

only act as receptors but also to be involved in the clearance of the bacteria. 

The results suggest that upon phagocytosis, the bacteria-PGRPs complex 

are internalised into the phagosome and seems to continue to the stage of 

the phagolysosome. At this structure, with a low and optimal pH for PGRP-

SA binding and lytic activity, the protein helps in the cleavage of the PGN. 

The biological reason for this lytic activity to be best at low pH may have 

to do with the fact that it helps to eliminate the bacteria in a controlled 

manner. When inside a vesicle, the products released from PGRP-SA 

cleavage are contained in an enclosed environment. If PGRP-SA would 

possess a high activity at the haemolymph`s pH, it could be detrimental for 
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the Host as it would perhaps accumulate bacterial debris and provoke 

toxicity and acute inflammation.  As PGRP-SA is promiscuous for different 

PGN types and since the glycans are the most conserved region of the 

macromolecule, PGRP-SA probably cleaves the glycan backbone.  

Moreover, the data points towards two phagocytosis-clearance 

pathways employed by macrophages: 1) phagocytosis-exocytosis and 2) 

phagocytosis-apoptosis. The phagocytosis-exocytosis is the canonical 

route and it occurs only when the bacteria is not pathogenic and when it is 

a bacteria that can be easily destroyed in the phagolysosomes. Under 

certain cases, it is likely that the phagocytosis-exocytosis might end up in 

the phagocytosis-apoptosis route. For instance, under stress conditions 

that the macrophages may feel compromise in the clearance processes, or 

if it is the case that even a very susceptible bacteria may be present in very 

high numbers. The phagocytosis-apoptosis seems to be triggered under 

two different situations. One is in response to the pathogenicity of the 

bacteria. It is a protective mechanism to avoid a death caused by the 

bacterial factors which would result in an uncontrolled death and 

therefore, the inability to control the infection. Through apoptosis, the 

macrophages aim to contain the already internalized bacteria and drive 

them into a new process of phagocytosis. The other situation occurs when 

non-pathogenic bacteria are present in high number. In this scenario, the 

macrophages are saturated with bacteria at their surface ready to be 

phagocytosed whilst accumulating the phagosomes/phagolysosomes to 

clear the bacteria. As the rate of clearance does not level up with the 

amount of bacteria to be internalised, the macrophages trigger apoptosis.  

As a result of apoptosis, the bacteria are contained inside the 

apoptotic bodies. These bodies may present at their surface bacterial 

components originated from the initial bacterial degradation. These would 

serve as ligands for the phagocytic receptors, thus promoting the 

phagocytosis and hence the clearance process by other macrophages. It is 



CHAPTER V. Bacteria present mechanisms to evade cellular and humoral responses mediated through 

peptidoglycan recognition by PGRP-SA and PGRP-LC 

260 
 

likely that this process of phagocytosis-apoptosis repeats itself, until 

complete clearance of the bacteria.   

In addition, efficient early and late immune responses are 

dependent on the access of PGRP-SA and PGRP-LC to the PGN. Bacteria that 

have a more exposed PGN are easier to be detected thus, in terms of the 

time course of infection, as the responses can be triggered more quickly, 

the resolution of the infection is quicker for the Host. Also, a more exposed 

PGN renders the bacteria more susceptible both to the destruction by the 

Host lytic enzymes, via the phagocytosis-clearance route and to the activity 

of the late induced AMPs.   

I propose a model whereby from the side of the bacteria, the WTA 

and the OM are conserved immune evasion mechanisms that are 

transversal to bacteria. They compose a protective barrier that shields the 

PGN from the outer environment.  It is the access of the PGRPs through the 

cell wall that dictates the recognition of the PGN. From the side of the Host, 

I propose a model whereby it possesses two major receptors, PGRP-SA and 

PGRP-LC. They are promiscuous to different types of PGN composition and 

they participate in both cellular-early and humoral-late responses.  

I believe that the work presented in this thesis helps to re-shape 

the current model of bacterial detection in the Fly and perhaps, at some 

level, it may be possible to extrapolate for other Hosts. I hope that it opens 

up new questions that will bring answers regarding how we perceive 

bacteria, how do they hide and subvert our protective responses and what 

can we do to achieve a balance when this interaction is detrimental to us, 

Humans, as Hosts.  
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