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Abstract

Human activity recognition algorithms have been increasingly sought due to their broad

application, in areas such as healthcare, safety and sports. Current works focusing on

human activity recognition are based majorly on Supervised Learning algorithms and

have achieved promising results. However, high performance is achieved at the cost of a

large amount of labelled data required to train and learn the model parameters, where a

high volume of data will increase the algorithm’s performance and the classifier’s ability

to generalise correctly into new, and previously unseen data. Commonly, the labelling

process of ground truth data, which is required for supervised algorithms, must be done

manually by the user, being tedious, time-consuming and difficult.

On this account, we propose a Semi-Supervised Active Learning technique able to

partly automate the labelling process and reduce considerably the labelling cost and the

labelled data volume required to obtain a highly performing classifier. This is achieved

through the selection of the most relevant samples for annotation and propagation of

their label to similar samples. In order to accomplish this task, several sample selection

strategies were tested in order to find the most valuable sample for labelling to be in-

cluded in the classifier’s training set and create a representative set of the entire dataset.

Followed by a semi-supervised stage, labelling with high confidence unlabelled samples,

and augmenting the training set without any extra labelling effort from the user. Lastly,

five stopping criteria were tested, optimising the trade-off between the classifier’s perfor-

mance and the percentage of labelled data in its training set.

Experimental results were performed on two different datasets with real data, allow-

ing to validate the proposed method and compare it to literature methods, which were

replicated. The developed model was able to reach similar accuracy values as supervised

learning, with a reduction in the required labelled data of more than 89% for the two

datasets, respectively.

Keywords: Human Activity Recognition, Machine Learning, Feature Selection, Active

Learning, Semi-Supervised Learning, Time Series.
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Resumo

Os algoritmos de reconhecimento de atividade humana têm sido cada vez mais procu-

rados devido à sua grande aplicabilidade, em áreas como a saúde, segurança e desporto.

As soluções existentes são baseadas, principalmente, em algoritmos de Aprendizagem

Supervisionada atingindo resultados promissores. Porém, requerendo uma grande quan-

tidade de dados anotados, necessários para treinar e aprender os parâmetros do modelo.

Esta anotação, dado que deve ser realizada manualmente pelo utilizador, é um processo

fastidioso, demorado e difícil.

Assim, esta tese propõe uma técnica envolvendo métodos de Aprendizagem Ativa

Semi-Supervisionada, capaz de automatizar parcialmente o processo de anotação através

da seleção da amostra considerada como mais relevante para a classificação e propa-

gando a sua etiqueta a amostras semelhantes. Deste modo, reduzindo significativamente

o esforço manual por parte do utilizador na anotação. Para isto, foram testadas várias

estratégias para a seleção da amostra para anotar e incorporar no conjunto de treino do

classificador. Adicionalmente, foi introduzido um estado Semi-Supervisionado, permi-

tindo uma anotação automática de amostras não anotadas e, assim, aumentar o conjunto

de treino do classificador sem qualquer esforço por parte do utilizador. Por último, cinco

critérios de paragem para o algoritmo realizado foram testados, tendo como objetivo oti-

mizar o balanço entre o desempenho do classificador e a percentagem de dados anotados

existentes no seu conjunto de treino.

Testes experimentais foram realizados em dois conjuntos de dados reais, permitindo

validar o método proposto e compará-lo a métodos já existentes, que foram replicados.

Nos resultados obtidos foi obtida uma precisão semelhante a alcançada pela técnica

supervisionada, com uma redução na quantidade de dados anotados de 89%, para ambos

os conjuntos de dados.

Palavras-chave: Reconhecimento de Atividade Humana, Aprendizagem Automática, Se-

leção de Características, Aprendizagem Ativa, Aprendizagem Semi-Supervisionada, Sé-

ries Temporais.
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1
Introduction

1.1 Motivation

Over the last years, the technological advances on ubiquitous sensing mechanisms allow

the proliferation of available data, which often is unlabelled. Modern machine learning

approaches require large amounts of labelled data to achieve adequate performance. This

duality raises a relevant question: How can we simultaneously optimise the process of

data annotation and still learn an accurate machine learning model?

Particularly, the HAR field has been a source of large quantity of available data, mostly

due to its myriad of applications on real-life scenarios such as healthcare, indoor location,

user-adaptive recommendations and transportation [1, 2]. According to the World Health

Organisation [3], insufficient physical activity has been identified as the fourth leading

risk factor for global mortality. Indeed, physical inactivity is one of the main causes of

several health diseases, being correlated with overweight and obesity. On the other hand,

the practice of physical exercise is correlated to an increase of cardio-respiratory and

muscular fitness, functional health, cognitive functions and improvement of bones and

joint health. As a result, human physical activities recognition has been increasingly

sought in a personal fitness tracking context, giving the necessary motivation to physical

activities practice.

Alongside with healthcare, the monitoring of the human movement can be paramount

as a preventive and diagnosis tool, contributing to its user safety by the identification

of psychiatric disorders signs, and warnings of unusual activity, such as falls, movement

degeneration or cardiac abnormalities.

Likewise, in a physiotherapy or sports setting, monitoring the body movements can

make it possible to gather long-term data, oversee detailed movements and obtain a

statistical analysis of the body movements’ range evolution. Thus, becoming a source of

1



CHAPTER 1. INTRODUCTION

data information and motivation for improvement.

Besides these concerns, Human Activity Recognition (HAR) can be a powerful tool in

smart homes, allowing to interpret the current user state so the house system can better

reply to the user’s needs. As well for indoor location systems, where the GPS is often

not available. Moreover, since many activities are location dependent, the recognition of

human movement activities can be helpful to infer the user’s position.

For this reason, human physical activity monitoring has been increasingly sought by

physicians, athletes, physiotherapists, researchers and even healthy individuals, wanting

to maintain and improve their healthy, active lifestyle [4].

Under those circumstances, HAR has been the subject for numerous studies, with

the major part based on Supervised Learning (SL) machine learning techniques [4–6].

These have achieved great results, however, at the cost of involving the collection of large

amounts of labelled data. Where a high volume of data will increase the algorithm’s

performance and the classifier’s ability to generalise correctly into new, unseen data.

Moreover, data does not get labelled automatically but through a labelling process,

also referred to as annotation, where each unlabelled sample is mapped into a label. Thus,

becoming what is denoted as labelled data. Furthermore, most of the times, the annota-

tion must be performed manually by the user, being time-consuming, difficult, or even

impossible to obtain, as it there can be no means to know the samples’ labels. Therefore,

this fact highly limits a real-life application of today’s approaches and their scalability.

In fact, generally, behind every classifier training set, there are timeless, arduous hours of

annotation usually performed manually by a human worker. Per example, ImageNet, an

image database, had for 9 years, contributors manually annotating more than 14 million

images [7]. A process that will be the core of any classifier using the database, where

any mistake, per example, annotating a cat as a dog, will affect greatly the classifier’s

quality and its results. Therefore, most of the time, the developer’s time is not spent on

building the classifier, but on acquiring data and annotating it, in order to be able to

create a highly confident classifier. Indeed, annotating a dataset is not only time costly

and difficult, but also extremely expensive for a company. For instance, annotating the

Cityscapes dataset 1, containing stereo video sequences with a total of 5000 high-quality

pixel level annotated frames and, considering that annotating a single image can take

around at least 1.5h. Annotating the entire dataset would require a total of 5000 * 1.5 =

7500h. Thus, taking into account that 1 hour approximately costs 4e (approximately the

minimum wage by the hour in Portugal [8]) that would make a total cost of 30 000e.

Table 1.1 enumerates some of the most common sources for training data. As it can be

observed, there is not one to stand out as ideal [7]. Therefore, under those circumstances,

the development of a new method able to partly automate the annotation process, and

reduce considerably its expensive cost is challenging and particularly interesting.

1https://www.cityscapes-dataset.com

2



1.1. MOTIVATION

Table 1.1: Sources of labelled data with a brief description, main advantages and disad-
vantages.

Approach Description Advantages Disadvantages

Internal
Labelling

Hand on labelling by
the in-house team

High quality, control
over the process

Time consuming,
expensive, highly

depends on the team
diversity and

scalability

Outsourcing

Recruitment of
temporary employees
or an external service

provider

Speed, scalability
diversity

Expensive

Crowdsourcing
Annotation by

freelancers
Speed, diversity, costs

Inconsistent quality,
need for annotation

interface

Synthetic
Labelling

Fake labelled data is
synthetically

generated

No privacy constrains,
time and cost effective

High computational
power, inconsistent

quality

Data
Programming

Automatic annotation
via a programming

script
Automatic, fast

Low quality, low
diversity

In datasets with significant size, not all samples are equally informative to the clas-

sification process and an arbitrary unlabelled example may even be redundant. Active

Learning (AL) provides methods to automatically identify the most relevant samples,

which are posteriorly queued for expert annotation, that we denote as Oracle, without

compromising the model performance. Figure 1.1a, illustrates the behaviour of AL where

samples near the decision boundary are denoted as more informative, therefore, are se-

lected for annotation. Additionally, Figure 1.1b displays the Semi-Supervised Active

Learning automatic annotation behaviour where after the most informative sample se-

lected by AL (in yellow) is annotated by the oracle, its nearest samples are automatically

annotated (as shown by the × in black).

In this dissertation, we apply a SSAL algorithm for HAR, where we establish criteria

to select the most relevant samples for annotation and propagate their label to similar

samples. Moreover, the model is created with a minimal initial training set and a com-

prehensive study regarding state of art AL Query Strategies (QSs), Stopping Criteria

(SCs) and distance functions was performed. The SSAL method based on Self-Training

(ST) applied to HAR data, starting with near zero annotated data, achieved high results

on algorithm’s performance while reducing considerably the annotation effort and au-

tomatically annotation a substantial amount of the data. Thus, within an exploratory

Machine Learning context, the automatic labelling of a large amount of unlabelled data,

eliminating most of HAR existent SL methods’ disadvantages, it is the main goal of this

dissertation.

3
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(b) Semi-Supervised Active Learning.

Figure 1.1: A dataset of 3000 samples illustrating the working principles of AL and Semi-
Supervised Active Learning (SSAL). The samples are illustrated with colours identifying
their respective class. The samples selected by the AL for expert annotation are depicted
by the ×’s. The grey vertical line denotes the decision boundary between the two classes.

1.2 Objectives

This dissertation was developed in collaboration with Fraunhofer Assistive Information

and Communication Solutions (AICOS) Portugal. This research centre focuses on creating

’Remarkable Technology, Easy to Use’, developing tomorrow’s technologies contributing

to economic growth, social well-being and an improved quality of life of its end users [9].

Moreover, this thesis focuses on the development of a framework for HAR with mi-

nor annotation cost for the user, using the smartphone and wearable devices’ sensors.

Furthermore, this dissertation proposes to infer how much labelled data it is required to

train and create a model able to reach a highly confident classification performance as

the obtained by SL techniques.

In order to perform this task, two major approaches will be followed: the first based

on AL, exploring several Query Strategy allowing to select highly informative samples to

annotate and integrate into the classifier’s training set. Followed by a second framework,

combining both AL and a Semi-Supervised Learning step, aiming to, through the later,

to automatically label additional unlabelled data with no annotation effort for the user.

Thus, to develop the above-mentioned frameworks, the following steps, describing the

core components of any HAR system, must be implemented:

1. Signal Acquisition and Extraction: acquisition and extraction of the smartphone

and the wearable devices sensors signals. Analysis of the required number of de-

vices, their position and orientation, and the number and type of sensors to use.

2. Signal Processing: signal segmentation and filtering. Analysis of the type of sliding

window, dimension, type of filters, and cutoff frequencies.

3. Feature Engineering: feature extraction and selection on statistical, temporal and

spectral domains. Features’ normalisation.
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4. Active Learning and Semi-Supervised Active Learning Framework: development

of a framework to recognise human motion activities requiring minimal annotation

cost.

5. Frameworks’ Optimisation: study of the selective sampling QSs and the AL stop-

ping criteria.

6. Performance Evaluation: evaluation of the developed algorithms.

1.3 State of the Art

In the literature, the discrimination of human activities is often covered by external or

wearable sensors. The former include intelligent homes, where sensors are placed in

critical devices and cameras. However, these raise numerous issues, such as privacy,

pervasiveness and complexity concerns [2, 6]. Thus, motivating the use of wearable

sensors, since their small size, low cost and non-obtrusiveness allow to integrate them

easily into the users’ daily living activities.

On this account, many wearable sensor-based Machine Learning classification tech-

niques have surged, namely, SL techniques. As in the work of Silva [4], where the author

used the smartphone accelerometer data, obtained using the acquisition device located

on the user’s waist, to train and classify a decision tree algorithm. Moreover, feature

extraction and selection methods were applied to the signal, reducing significantly the

algorithm time and computational complexity. In the final result, the classifier obtained

a total accuracy of 86%. Thus, it was possible to conclude that, with a smartphone, it is

possible to retrieve the users’ activity data with good results and great comfort for the

user.

Additionally, in order to overcome the implications of a pre-defined fixed device

position, Figueira [5] developed a framework to perform HAR independently of the user

and the device position in relation to the user’s body. To perform this task a decision

tree algorithm was implemented and obtained an accuracy of 94.6% using accelerometer

and barometer data. The addition of the barometer data, measuring the ambient air

pressure, shown to be especially important in the recognition of vertical movements,

such as climbing and descending stairs.

However, these works used SL techniques, and therefore, require the entire classifier’s

training set to be previously annotated: a costly, difficult and time-consuming task as

described in Section 1.1. On this account, in order to minimise the classifier’s training

set high annotation cost, we propose the use of an AL based methodology to recognise

simple daily living activities. Furthermore, an AL System is composed by two main parts:

the Query System that selects the relevant samples to be annotated and incorporated

into the classifier’s training set, and the Oracle, that labels the selected samples.
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In the literature, several techniques for the query system have been proposed. How-

ever, regarding HAR, they majorly follow a Query by Committee or Pool Sampling strategy

[10, 11].

Henceforth, in a Query by Committee Sampling, a committee of classifiers is created

as a voting system for the label of each sample, so that in every iteration, the sample with

the highest label disagreement between the different classifiers is selected as the most

informative for the oracle to annotate.

On the other hand, in Pool-based Sampling, the unlabelled samples create a pool

from which the learner selects the most informative sample for the oracle to annotate

according to a pre-defined score [11–14].

With this in mind, Shahmohammadi et al. [10] applied both the Query by Committee
and the Pool-based Sampling query systems in a smartwatch-based approach dedicated

to HAR. The two approaches surpassed Random Sampling (where a sample is randomly

selected from the unlabelled samples dataset), with Pool-based Sampling obtaining the

best results. Moreover, generally speaking, the proposed method was able to achieve an

accuracy of 92%, with a reduction of 46% in the amount of annotated data in comparison

to SL. Therefore, proving the application of AL in the context of HAR and its ability to

significantly reduce the required amount of labelled data.

Similarly, Rong Liu et al. [11] applied an AL novel method in the context of HAR

using body-worn accelerometer sensor data. In the developed algorithm two QSs were

implemented and in both the accuracy was higher than in Random Sampling. The first,

entitled a Pool-based Sampling Query Strategy (QS) based on the classifier’s prediction

confidence. While the second followed a Query by Committee Sampling QS using two

classifiers trained on the hip and wrist devices’ data, respectively. The proposed method

was evaluated with initial train sets of approximately 20% and 30% labelled data. As

expected, with an initial higher quantity of labelled data, and therefore, a larger initial

train set, both the AL and the SL technique achieve higher performance results. Overall,

the best performance was obtained by the Least Confident Sampling QS, obtaining an

accuracy of 75.96% for 50% of labelled data with an initial data set of 30% labelled data,

using data from the hip and wrist sensors. For last, the presented method was able to

outperform the SL technique (C4.5 Decision tree) when trained on the same amount of

randomly labelled data. Thus, it was possible to conclude that the samples selected by

both of the AL query systems were more informative than random selection.

Furthermore, one of the core points in the development of a highly confident AL

system is the applied QS, which determines the sample selected for the oracle to annotate

and to be integrated into the classifier’s training set.

In the work of Hande Alemdar et al. [14], a HAR system was developed using Hidden

Markov Models. Three functions were created to measure the classifier’s prediction confi-

dence (i.e uncertainty) namely: Least Confident, Margin and Entropy-based Sampling. The

proposed QSs outperformed Random Sampling and allowed a reduction of the required

amount of labelled data in the classifier training set from 80% to 66%.
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Notwithstanding, uncertainty-based QSs usually choose samples near the decision

boundaries. Thus, yielding good results for specific classifiers such as the Support Vector

Machine (SVM), whose goal is to maximise the hyperplane margin between the decision

boundaries. However, for other classifiers, Uncertainty Sampling can result in the neglect

of the prior feature distribution space and the introduction of sampling bias to the QS

system. On this account, the authors in [15] developed a cluster-based AL framework,

that in order to select samples across the entire space distribution, created clusters of

unlabelled data from which the most informative sample was selected through a function

conjugating both entropy and similarity coefficients.

Additionally, experimental results show that, in some cases, uncertainty-based QSs

may tend to select outliers rather than boundary samples [16]. Outliers are often noisy

samples, which do not constitute representative data. Thus, introduce bias to the clas-

sifier. In order to overcome this issue, in [17–19], the authors used a sampling strategy

combining the samples’ uncertainty and the local data density. This strategy allowed to

select a sample informative both in terms of uncertainty and representativeness, since it

was inserted in a region of notable local density, hence, avoiding the selection of outliers.

The previously-mentioned works were applied to text classification and multivariate time

series classification, having yet, to the knowledge of this work author, have been applied

to HAR using time series data.

Furthermore, in order to automatically label more data and additionally expand the

classifier’s training set, in [19] the authors incorporated a Semi-Supervised Learning step

to the AL framework. This task was performed using 1-Nearest Neighbour (NN) and a

1-Reverse-Nearest Neighbour (rNN) Semi-Supervised Learning technique, automatically la-

belling close neighbours of the newly annotated sample. In the end, for the same amount

of initially labelled data, 1-rNN method outperformed the 1-NN method, obtaining a

higher accuracy, F1-Score and percentage of automatically annotated samples.

Regarding Semi-Supervised Learning techniques applied in the context of HAR, Maja

Stikic et al. [13] explored two different frameworks. The first based on Co-Training
and ST, and the second based on AL. Both used the accelerometer and the infra-red

data and were able to significantly decrease the required amount of labelled data to

create a model obtaining similar performance results as SL. Moreover, regarding the first

framework, using only the accelerometer data, Co-training outperformed ST, however not

the SL technique when using the entire training set. Regarding the AL framework, two

QSs functions were used, one based on the classifier’s uncertainty in the sample’s label

prediction, and the other based on prediction conflicts between different classifiers. The

first obtained the best results using only 12.5% of the dataset data and outperforming the

SL technique when trained on the same amount of annotated data.

Thereupon, in order to obtain a HAR system obtaining competitive results to SL,

but with a significant decrease in its classifier’s training set annotation cost, in this dis-

sertation, it is developed two frameworks based on a Pool-based AL system. The first

consisting of an AL system, testing several of the QS found in literature, which the results

7
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are compared to Random Sampling. Along with a SSAL approach, complementing the AL

process with a Semi-Supervised Learning step, introduced with the goal of partly automate

the annotation process and increase the available amount of labelled data.

Lastly, in order to verify the veracity of the algorithms proposed in this dissertation,

aforementioned techniques such as such SL, Unsupervised Learning (UL) and Passive

Learning (PL) are replicated, and its results compared.

1.4 Thesis Overview

This dissertation is divided into five chapters, organised as follows:

The present chapter, Chapter 1, starts by providing the major motivation leading to

the development of this thesis and its major goals. Then, it is provided a brief literature

survey on previous works focused on HAR, based on SL, AL and Semi-Supervised Learning
techniques.

In the following chapter, Chapter 2, it is clarified the theoretical concepts needed to

contextualise the reader with essential principles applied in this work. Then, in Chapter 3,

it is described the methodology of the proposed framework for HAR, namely the different

developed approaches based on AL and Semi-Supervised Learning techniques.

In Chapter 4, it is introduced the two real-world datasets used to validate and evaluate

the proposed framework. Final experimental results are presented, with highlight in the

obtained paramount results, reported with a brief discussion.

Lastly, in Chapter 5, the main conclusions and contributions from this dissertation

are described, along with recommendations for a further work.

Introduction

1. Introduction

Method

2. Theoretical Back-
ground

Results

3. Framework for
HAR annotation
based on AL

4. Experimental Re-
sults

5. Conclusion

Figure 1.2: Thesis overview structure.
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Theoretical Background

This chapter is divided into two main sections. In the first section, Section 2.1, the

accelerometer, gyroscope and barometer sensors integrated into the smartphone and

wearable devices used for the acquisition of motion data are introduced. Then, in Section

2.2, it is provided essential theoretical background for the concepts applied throughout

the framework developed in this dissertation.

2.1 Wearable and Smartphone Sensors

Smartphones and wearable devices are now, more than ever, present in everyone lives.

Moreover, they are equipped with Micro-Electro-Mechanical-Systems (MEMS) chips com-

posed by many sensors such as the accelerometer, barometer, gyroscope and others which

are constantly acquiring data that can be used to improve the quality of life of many peo-

ple, non-obtrusively, quickly and easily [20]. Effectively, MEMS technology has allowed

the creation of small, practical, non-intrusive and high computational power sensors with

low energy consumption. Thus, making them suitable devices to acquire human motion

data in a daily living context with comfort for the user [21–23].

2.1.1 Accelerometer

The accelerometer is the most predominant sensor used for HAR [5, 22–24], highly due to

its stable reliable results, especially for simple daily living activities, as the ones explored

in this dissertation.

Theoretically, the acceleration is obtained by the application of Newton’s second law,

being F the force applied to the device and m the device mass. In addiction, the sensor can

be represented as a mass-spring system, which by the application of F it is displaced a dis-

tance x, enabling the application of Hooke’s law. Thus, knowing the system mass, m, and

9



CHAPTER 2. THEORETICAL BACKGROUND

the string constant, k, the acceleration can be obtained by the respective displacement:

F =ma = kx⇔ a =
kx
m

(2.1)

Therefore, the accelerometer is a motion sensor measuring the acceleration force applied

to the device from the user’s movement, the gravitational force and its physical environ-

ment status, i.e in static or in movement [20].

a = −g − (
1
m

)
∑

F (2.2)

In order to understand the signal from the accelerometer sensor and its coordinate

system, in Figure 2.1, it is shown in 2.1a the standard Android coordinate system and in

2.1b, the associated axis signal output with the device placed in different positions.

(a) Standard Android coordi-
nate system.

(b) Sensor’s signal response to the smartphone movement.

Figure 2.1: Smartphone’s sensors standard coordinate system in Figure 2.1a, and ac-
celerometer’s output signal with the device positioned into different orientations in Figure
2.1b.

As expected, when the sensor is laid horizontally up on a platform, as in the first

5s, the accelerometer’s signal on the y and x axis reads a magnitude of approximately

0m/s2 since the device is at rest, while the z axis signal reads approximately 9.81m/s2,

corresponding to the device having a null acceleration minus the force of gravity, which

is approximately 9.81m/s2. Likewise, with the smartphone upright, the accelerometer’s

signal on the y axis reads a magnitude of approximately 9.81m/s2 due to the force of

gravity, while the x and z signal axis read a value close to 0. Leading to the conclusion,

that, through the comparison of the accelerometer’s signal values on the different axis, it is

possible to infer the device orientation, and thus, the subject’s posture. Thereupon, in the

development of the dataset acquisition protocol, a fixed device position and orientation

in relation to the user’s body must be predefined and chosen according to the studied

activity. Thus, ensuring the user’s comfort, the reduction of motion artefacts and the

obtainment of comparable results through equal acquisition conditions.
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2.1.2 Gyroscope

The gyroscope is a motion sensor that measures the rate of rotation, i.e. the angular

velocity of the device in radians per second (rad/s) around three axis: yaw, pitch and roll,

shown in Figure 2.2a [25].

Furthermore, the angular position is obtained through the integration of the device’s

changes around the orientation axis over time, according to Equation 2.3 [5]:

θp(t) =
∫ t

t0
θ̇p(t)dt +θp0 (2.3)

Where p = {Yaw, pitch, roll} and θp0 is the initial angle compared to the earth’s axis

coordinates in radians [5].

Regarding HAR, the gyroscope is majorly used to detect transitional postural activities,

such as laying to standing and, along with the accelerometer sensor, the device’s position

and orientation.

Similarly as for the accelerometer sensor, a study was performed in order to under-

stand the gyroscope’s output signal and its coordinate system. Hence, in Figure 2.2, it is

shown the sensor’s signal while the device is placed in different positions. As expected,

Roll

Pitch

Yaw

(a) Standard Android coordi-
nate system.

(b) Sensor’s signal response to the smartphone movement.

Figure 2.2: Smartphone’s sensors standard Gyroscope coordinate system in Figure 2.2a,
and gyroscope’s output signal with the device positioned into different orientations in
Figure 2.2b.

in contrast to the accelerometer, the gyroscope’s signal maintains stable values while

in the different positions, exchanging its output value during the positions’ transitions.

Thus, confirming its utility in the recognition of the transitional stages between direction

changes.
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2.1.3 Barometer

The barometer is an environmental sensor that measures the ambient air pressure. At-

mospheric pressure can be defined as the force per unit area exerted by the overhead

atmosphere molecules, varying exponentially roughly by 1 hPa (1mbar) for every 10m

increase in altitude, according to Equation 2.4 [26].

P = P0e
−mghkT (2.4)

Where p0 is the pressure at the referential point, g the gravitational field strength,

h the height above the referential point, m the average mass of an air molecule, k the

Boltzmann constant (1.38065031023)J/K and T the temperature in K [26].

Hence, air pressure will show significant variations across a building height, allowing

the discrimination of vertical movements with alterations in altitude, such as climbing

up or down the stairs, as seen in Figure 2.3.
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Figure 2.3: Barometer’s output signal from a user climbing up and downstairs.

Indeed, as observed, as the user goes up a few flairs of stairs in the first approximately

45s, the air pressure significantly decreases. Followed by the user going downstairs,

where an increase in air pressure is observed. Thus, in contrast to the prior sensors, the

barometer is independent of the smartphone’s position and orientation in relation to the

user’s body [27].

Additionally, it is important to notice that atmospheric pressure is relative since it can

change even for a constant altitude in function of the user’s location and the local weather.

Indeed, depending on the building infrastructure, the air pressure can reach higher values

in wide rooms or lower values, otherwise, while clouds or stormy conditions due to rising

air masses may result in low air pressure, and cloud-free weather the opposite.
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2.2 Machine Learning

In 1959, during the primordial times of Machine Learning, Arthur Samuel defined Ma-

chine Learning as “the field of study that gives computers the ability to learn without

being explicitly programmed” [28]. In other words, Machine Learning has the ability to

make predictions from patterns and, in a changing environment, the ability to learn, i.e

continuously increasing its performance with experience.

2.2.1 Signal Processing

The accelerometer signal is composed by the body’s movement acceleration, the gravi-

tational acceleration, intrinsic noise arising from the electronic system and movement

artefacts [22]. Therefore, after the sensor’s data is extracted, the raw signal must be pro-

cessed so redundancies and noise are removed. Thus, minimising the algorithm’s error,

time and computational complexity. To accomplish this task, a low-pass filter is often

applied to the signal. Additionally, in some cases, it may be of interest to separate the

gravitational and the body acceleration component, performed by the application of a

high-pass filter to the signal. Figure 2.4 displays the total body acceleration magnitude

and the body movement acceleration magnitude in green and blue, respectively.
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Figure 2.4: Accelerometer signal magnitude of the total acceleration in green and the
body acceleration in blue.

However, not always it is recommended to remove the gravitational acceleration since

it can provide information about the orientation of the sensor regarding the gravitational

axis. Hence, in this dissertation, both the total acceleration and the body acceleration

signals are kept and used to extract the features described in the next subsection.
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Moreover, since one data sample does not correspond to one activity, in order to

retrieve information from a time series, it is necessary to segment the signal into several

windows. Only then, from each window, metrics are obtained and used as input to

Machine Learning techniques.

There are two main types of window segmentation: static and sliding windows. In

both, the signal is divided into equally sized windows [23], however, in the first, windows

are consecutive with no gaps in between, while in the latter, a percentage of samples

are overlapped between consecutive windows so one sample can belong to two different

windows. Thus, sliding windows can be important to prevent the cut of the signal in

inconvenient samples, such as during ongoing continuous cycles or transitional activities

[25].

For last, in the segmentation process specifications must be predefined, such as the

number of samples per windows, and, in the case of a sliding window, its overlapping

samples percentage. Furthermore, the values of those parameters require a trade-off
between the studied activity, the classifier’s final performance, its resolution, and its

computational complexity. Since for simple activities a smaller window will increase the

algorithm’s temporal resolution, the size of its training set and its performance, at the cost

of higher computational complexity due to the higher number of windows [5]. However,

for complex activities, each window may lack informative samples. Thus, requiring larger

windows, where the total number of windows decreases and consequently, so does the

algorithm’s computational time [5, 25, 29].

2.2.2 Feature Engineering

As stated above, from each window, the signal is not evaluated sample by sample but

rather by the properties extracted from the signal in each window. These properties can be

classified according to their domain as time, frequency and statistical domain features

and enable the characterisation of the signal in a compact way [23, 25], enhancing its

characteristics. Therefore, the chosen set of features can strongly influence the outcome

of a Machine Learning algorithm.

To characterise the signal, high dimensional data is translated into a feature vector,

whose size equals the number of windows and contains all the information needed to

infer each window corresponding activity. However, different features derived from

different activities may have a very different range of values. Thus, causing smaller

values to be ignored by a Machine Learning classifier while higher values are given more

importance to. This tends to happen especially when the classifier involves distance

measures. Therefore, it is important to normalise the feature vector values so that each

feature contributes proportionately to the classifier. With this intention, in this work,

each feature was scaled between 0 and 1 according to Equation 2.5 [30]:

Xscalled =
X −Xmin
Xmax −Xmin

(2.5)
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Where X is the feature’s value, and Xmin and Xmax represent the minimum and maxi-

mum values of the feature vector values range, respectively.

In addition, to optimise the algorithm’s computational and time complexity, highly

correlated features with redundant information can be removed without any loss of in-

formation. Only then, through feature selection methods, the best set of features are

selected, reducing the feature vector to a lower dimension and once again, the algorithm’s

computational and time complexity.

Table 2.1, summarises the set of features considered in this work.

2.2.3 Classification

There are essentially three major types of Machine Learning algorithms: SL, UL and

SSAL:

• In Supervised Learning (SL) is given a training set of L samples mapped to their

respective labels, {(xi , yi)}, i = {1, ..., L}, xi ∈ Rm. Where xi denotes the input feature

vector of dimension m, and yi its class. Moreover, the goal is to create a hypothesis

function h : X –> Y , so that h, given a new unlabelled sample (x) is able to predict

its class (y), as depicted in Figure 2.5 [31, 32].

When y takes the form of discrete values, this process is entitled a classification

problem, as in the case of HAR, where, for each sample corresponding to an activity,

for example walking, it will be attributed a class label value y.

h

Learning Algorithm

Training Set

x y

Figure 2.5: Pipeline description of Supervised Learning, where a function h given a new
unlabelled sample (x) is able to predict its class (y) [31].

Moreover, the process of mapping each sample to their labels in the ground truth

data is denominated labelling or annotation. A process that, in most of the cases
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Table 2.1: Statistical, Temporal and Spectral Domain Features extracted from the sensors’
signals to use in the present work.

Statistical Skewness measures the asymmetry of the signal distribution
Kurtosis measures the distribution shape around a normal distribution
Histogram plots the number of members for each bin against a total given number
of bins
Mean measures the signal arithmetic mean
Variance measures the dispersion of the signal value
Standard Deviation measures the dispersion of the signal values
Interquartile Range computes the difference between the upper and lower quartile

Temporal Max computes the signal maximum value
Min computes the signal minimum value
Centroid computes the arithmetic mean position of all the signal points
Root Mean Square computes the square root of the arithmetic mean of the square
of the signal values
Median Absolute Deviation computes the median distance between each data
value and the signal median value
Zero Crossing Rate computes the rate at which the signal sign changes
Autocorrelation computes the correlation of a signal with a lagged version of itself
Linear Regression computes the linear regression of the signal

Spectral Max Frequency computes where the FFT reaches its 95% of distribution
Median Frequency computes where the FFT reaches its 50% of distribution
Fundamental Frequency computes the frequency corresponding to the greatest
common divisor of all the frequency components in the signal
Max Power Spectrum computes the maximum value of the power spectrum density
along a given axis.
Total Energy computes the total energy of the signal given by the squared sum of
the spectral coefficients normalised by the length of the sample windows
Spectral Centroid computes the weighted mean position of the signal frequencies
distribution and their probability
Spectral Spread measures the variance of the signal frequencies asymmetry distri-
bution
Spectral Skewness measures the asymmetry of the signal frequencies distribution
Spectral Kurtosis measures the signal frequencies distribution shape around a nor-
mal distribution
Spectral Slope measures how quickly the spectrum decreases towards the high
frequencies
Spectral Decrease measures the decrease on the spectral amplitude though its lin-
ear regression computation
Spectral Roll On computes the frequency so that 5% of the signal energy is con-
tained below of this value
Spectral Roll Off computes the frequency so that 95% of the signal energy is con-
tained below of this value
Curve Distance computes the euclidean distance of the signal’s cumulative sum of
the FFT elements to the linear regression
Spectral Variation computes the spectral variance from the cross-correlation of two
consecutive amplitude spectra
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must be performed manually by the user, being a difficult, time-consuming, error-

prone activity and sometimes impossible, as the ground truth information may be

impossible to infer.

Additionally, the collection of a large amount of labelled data, necessary to increase

the algorithm’s performance and its ability to generalise correctly into new, and

previously unseen data, involves a high volume of data that consequently increases

the algorithm’s computational and time complexity.

On this account, this dissertation focuses on the development of a framework with

reduced manual annotation cost for the user and labelled data scalability. More-

over, we introduce next some of the most common SL techniques applied in HAR,

replicated in this thesis in order to incorporate the best performing model into the

proposed framework and compare its results:

– k-NN classifies each sample according to the most frequent class among its

nearest k, k ∈N, neighbours. Moreover, generally speaking, larger values for k

result in a more robust classifier, less susceptible to noise. However, at the cost

of a less fitted decision boundary to the training samples [5, 29]. Furthermore,

the overall performance of the classifier is highly influenced by the applied

distance metric, which must be defined to better fit the dataset [33]. In the

table 2.2 it is exhibited some of the most commonly used distance metrics and

their respective math formula.

Table 2.2: Commonly used distance metrics to obtain the distance between two samples
(x and y) and their respective math formula.

Distance Metric Formula

Euclidean D(x,y) =
√∑m

i=1(xi − yi)2

Manhattan D(x,y) =
∑m
i=1 |xi − yi |

Chebyshev D(x,y) = maxmi=1|xi − yi |

Minkowskiorder r D(x,y) = (
∑m
i=1 |xi − yi |r)1/r

– Decision Tree creates a three like sets of if-then-else rules at each node, from

which a sample is carried on following the branches yielding the more infor-

mation until it reaches a terminal node indicating its predicted output [5, 29,

33]. Moreover, the maximum depth of the tree must be defined in order to

avoid overfitting to the training set [29].

– Random Forest generates multiple Decision Trees from different subsets of

the dataset. Then, at each node, a different subset of features contributes
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to the split into different branches. Each tree outputs a different prediction,

contributing as a vote for the final averaged output [33].

– SVM finds the hyperplane that maximises the distance between two different

classes in the feature space. The samples having the closest distance to the

hyperplane, define the classes decision boundary and are named support vec-

tors. In this sense, SVM is a binary classifier, that in order to be extended

to a multi-class problem, a set of multiple binary classifiers must be created,

consequently augmenting the time and complexity cost of the algorithm [5,

33].

– AdaBoost creates an ensemble of classifiers to test on weighted randomly se-

lected samples from its training set. Moreover, each consecutive classifier is

fitted with the adjusted weights enhancing the incorrectly predicted samples

so each consecutive learner is trained in error-prone instances [30].

– Gaussian Naive Bayes is based on the application of the Bayes theorem to

create the decision boundary function [33]:

P (y|x1,x2, ...,xm) =
P (y)P (x1,x2, ...,xm|y)
P (x1,x2, ...,xm)

(2.6)

Where y is the predicted output class and (x1, x2, ..., xm) a dependent sample

feature vector with m features.

Moreover, under the assumption that every pair of features are independent,

the Gaussian Naive Bayes classifier assigns each sample xi to a class y according

to the following equation [30]:

ŷ = argmax
y

P (y)
m∏
i=1

P (xi |y) (2.7)

Where p(y) is estimated using Maximum A Posteriori estimation and the likeli-

hood of the features is assumed to be Gaussian so:

P (xi |y) =
1√

2πσ2
y

exp

− (xi −µy)2

2σ2
y

 (2.8)

Where σy and µy are estimated using maximum likelihood.

– Quadratic Discriminant Analysis (QDA) fits a Gaussian density to each class

generated by by fitting class conditional densities to the data and using Bayes’

rule to return a quadratic decision boundary. Assumes the covariance matrix

to be different for each class, hence, it will estimate the covariance matrix

separately for each class, fitting the data better than LDA, however, at the cost

of more parameters [30].
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2.2. MACHINE LEARNING

• Unsupervised Learning (UL) includes Clustering, Dimensionality Reduction, Anomaly

Detection and Quantile Estimation. This work will focus on the former.

In a clustering problem, we are given a training set of U samples XU = {x1, x2, ...,

xU }, i = {1, ..., U }. Where xi ∈ Rm denotes the input feature vector of dimension m,

however, in contrast to SL, in UL it is not given any labels yi [32].

In essence, a clustering algorithm finds structure on the feature space where no prior

information is given and divides it into different clusters. Moreover, an effective

clustering algorithm should maximise intra-cluster similarities and minimise inter-

cluster similarities so homogeneous and well-separated groups are created [22].

Likewise as for SL, we introduce next some of the most common clustering tech-

niques applied in HAR, replicated in this thesis in order to compare its results to

the obtained by the algorithms developed in this dissertation:

– In K-Means the unlabelled dataset is divided into k clusters. Initially, k points

are chosen randomly as cluster centres, named centroids. Then, each sample

is assigned to the closest centroid cluster, re-calculating the cluster’s centroid

as the centre of all samples in each cluster. This process is repeated as the

samples are assigned to a different cluster and the centroids adjusted. Some of

this algorithm’s main characteristics are its low time complexity, the fact that it

changes significantly with the initial cluster partition, the creation of spherical

and equally sized clusters, and the requirement of the number of clusters as

an input parameter [22].

– Mini Batch K-Means is very similar to K-Means, distinguishing from K-Means
by the use of subsets of the dataset with a fixed size, mini-batches, instead of

using the entire dataset. Thus, minimising the algorithm’s time and computa-

tional complexity, however, at the cost of a loss in the classifier’s performance

[22].

– Spectral Clustering applies K-Means clustering to the projection of normalised

eigenvectors obtained from the Laplacian of the samples’ similarity graph.

This method is especially useful to create clusters with non-convex bound-

aries.

– In Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

high-density samples, named core data points, are grouped together into a

cluster whose size keeps growing until lower-density regions are reached. The

density is calculated through the number of data points in a fixed radius. More-

over, this method is used, especially, to create clusters with similar density and

in contrast to the previous clustering algorithms, DBSCAN does not require

the number of clusters as an input parameter [22].

19



CHAPTER 2. THEORETICAL BACKGROUND

– Gaussian Mixture consists of a probabilistic model generating clusters from

a mixture of Gaussians distributions with unknown mean and covariance, fit-

ted to the feature space data through the implementation of the expectation-

maximisation algorithm. Moreover, this method allows to easily describe un-

usual distributions and, along with DBSCAN, does not require the number of

clusters as an input parameter.

In the final analysis, UL techniques’ biggest advantage is having no annotation cost,

as they do not require the input samples to be labelled. However, this fact comes

at the cost of not knowing the samples’ ground truth labels, necessary to ascertain

the classifier’s results. Thus, since HAR models should return a label indicating the

performed activity, the HAR systems tend to be supervised or semi-supervised [6].

Therefore, this thesis focuses on a hybrid setting between SL and UL, Semi-Supervised
Learning, with the goal of enhancing the positive aspects of both. That is, to obtain

the SL good results and obtain the respective samples’ class labels, with UL small

scalability and annotation cost.

• In Semi-Supervised Learning (SSL) in addition to the labelled data, the classifier

incorporates additional information incorporated in new unlabelled samples (easily

available at a large scale) to enhance the its performance and reach a more accurate

prediction. Thus, the dataset X is partitioned into the labelled samples XL = {x1, x2,

..., xL} mapped to the labels YL = {y1, y2, ..., yL} and the unlabelled samples XU =

{xL+1, xL+2, ..., xL+U } for which the labels are unknown [32].

Hence, Semi-Supervised Learning allows to achieve similar results as implementing

SL, but with smaller annotation cost, as there is a significantly less amount of la-

belled data. With this in mind, since the goal of this dissertation is to decrease the

annotation cost of the SL techniques, Semi-Supervised Learning was the Machine

Learning type of learning methodology chosen to be implemented in this disserta-

tion.

Moreover, this work will implement three types of Semi-Supervised Learning: ST, AL

and PL.

– In Active Learning (AL) a selective sampling function selects from the large

unlabelled dataset (also referred as pool set) the samples which are more infor-

mative to be labelled and added to the classifier’s labelled training set. Further-

more, the samples considered more informative, are usually the samples with

the highest gain for the classification process, so that, with a lower amount of

labelled data and therefore, lower data volume and manual annotation effort

from the user, it is possible to reach a classification performance similar to SL.

Thus, as presented in Figure 2.6, firstly, in order to learn the model’s param-

eters (θ), a model is initialised with the labelled train set (L). Next, from the
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Model

Input Data

Labelled
Data (L)

Oracle
Annotation

Unlabelled
Data (U)

Figure 2.6: Pool-based AL cycle. Where in every iteration the oracle annotates a new
sample that is integrated into the model’s training set. Followed by an update of the
model with its new, augmented training set.

large unlabelled dataset (U ), through a QS (Q), it is selected for the oracle

to annotate, the most informative sample (x∗). This process is then repeated

iteratively until a Stopping Criterion (SC) is met. Hence, initially L << U , how-

ever in every iteration, the newly annotated sample x∗ is removed from U and

added to L. Incrementing the labelled train set and consequently, reducing U

[14, 34].

Figure 2.7 shows through a two-dimensional Principal Component Analysis

(PCA), the growth of the labelled training set throughout the iterations as the

oracle annotates one sample per iteration. Moreover, one dot represents one

sample whose colour indicates the class that it belongs to so that samples with

the same colour belong to the same class.

Figure 2.8 shows the classifier’s prediction on the test set samples through

a two-dimensional PCA, where each dot embodies a test data sample whose

colour represents its predicted class.

Thus, through the comparison of Figures 2.7 and 2.8, it is possible to note the

impact of the learner’s training set size on the classifier’s prediction perfor-

mance. As it can be observed, initially, in iteration 0, where the classifier’s

training set is small, it is possible to infer that the classifier’s performance is

poor since all the samples are predicted as belonging to the same class. How-

ever, as its training set grows in every iteration, becoming more representative

of the entire dataset, its performance improves. As it is verified, in iterations

150 and 300, where the classifier’s prediction start to match more and more

the ground truth data, shown in the right lower plot in Figure 2.8.
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Figure 2.7: Growth of the AL training set from iteration 0 till iteration 300 and the
remaining unlabelled samples on the pool set, on a two-dimensional PCA. Each dot
embodies a data sample whose colour represents its class. Example performed using the
University of California, Irvine (UCI) dataset [35].
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Figure 2.8: UCI test set samples through a two-dimensional PCA. Each dot embodies
a data sample whose colour represents the class predicted by the AL classifier, so that,
samples having the same colour are predicted by the classifier as belonging to the same
class.
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– Passive Learning (PL) follows the same methodology as AL, but there is no

selective sampling function. Instead, the sample is randomly selected from

the unlabelled dataset.

– In Self-Training (ST) a classifier is trained on the available labelled dataset

and posteriorly tested on the unlabelled dataset. Then, test samples having

the higher prediction confidence score are added to the classifier’s training set

and removed from the unlabelled dataset. This process is repeated iteratively

as the classifier is re-trained on an increasingly larger and larger training set,

increasing its performance.

Therefore, under the assumption that highly confident predicted labels are

correct, the learner uses its own predictions to iteratively teach himself, con-

sequently improving its performance till the unlabelled data set is exhausted,

and all the samples become labelled [36], as shown in Figures 2.9 and 2.10.

Moreover, comparing both figures similarly as performed for the AL process,

the learner starts at iteration 0 with a very poor prediction due to its small non-

representative training set, verified by the fact that all samples are predicted as

belonging to the same class (since they present the same colour). Nevertheless,

as the classifier’s training set grows (from iteration 0 to iteration 300), through

the addition of highly confident predicted samples to the learner’s training set,

its performance increases until its predictions match the ground truth data, as

observed in the plot in the lower right corner in Figure 2.10.

Additionally, due to the ST ability to grow and teach himself with the available

unlabelled data, the learner’s training set size in the iterations 150 and 300

in Figure 2.10 present a significant growth of the train set data volume in

comparison to the obtained in the AL process shown in Figure 2.8, iterations

150 and 300. This fact was expected since the later only increments its training

set 1 sample per iteration (the sample that the user annotated) while ST adds

to its training set all the samples that it is able to predict with high confidence.

To conclude, as has been noted, both Semi-Supervised Learning, ST and AL

address the issue that labelled data is scarce and difficult to obtain. Therefore,

they focus on the information that can be derived from the unlabelled data

while preserving a reduced annotation cost and volume data scalability.

Moreover, while AL explores the unknown (choosing unlabelled data to be

annotated), Semi-Supervised Learning, uses what has known to exploit the un-

known (unlabelled data to add to its training set and self-improve reaching

a higher performance [34]), increasing further the classifier’s training set to-

wards a more representative training set. Henceforth, it is only natural to

combine both to perform the recognition of human motion activities, as it is

employed in this dissertation.
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Figure 2.9: Growth of the ST training set from iteration 0 till iteration 300 and the
remaining unlabelled samples on the pool set, on a two-dimensional space PCA. Each
dot embodies a data sample whose colour represents its class. Example performed using
the UCI dataset.

−0.5 0.0 0.5
−0.5

0.0

0.5

1.0

Co
m
po

ne
nt
 2

Iteration 0

−0.5 0.0 0.5
−0.5

0.0

0.5

1.0 Iteration 150

−0.5 0.0 0.5
Component 1

−0.5

0.0

0.5

1.0

Co
m
po

ne
nt
 2

Iteration 300

−0.5 0.0 0.5
Component 1

−0.5

0.0

0.5

1.0 Ground Truth

Figure 2.10: UCI dataset test set samples through a two-dimensional PCA. Each dot
embodies a data sample whose colour represents the class predicted by the ST classifier,
so that, samples having the same colour are predicted by the classifier as belonging to the
same class.

24



2.2. MACHINE LEARNING

2.2.4 Validation

One of the key characteristics of a Machine Learning model is its ability to generalise to

new unseen data and avoid overfitting in its training set samples. Therefore, in order

to achieve this, the total dataset must be divided into a train set, to train the model and

an independent test set, to test the model. In addition, in some cases, the dataset can be

partitioned into three subsets: train set, validation set and test set. The validation set

allows to adjust and improve the model on further unseen data before the final results

are obtained with the test set. Moreover, in order to yield statistically meaningful results,

the test set should take a considerable size, should be representative of the entire dataset

and, for last, should not be repeated in order to avoid overfitting [37].

On this account, in this work, we perform K-fold Cross Validation (CV), where the

dataset is partitioned into equally sized K-folds. Thus, k iterations are performed where

in each iteration, k − 1 folds are used for training and the remaining for testing, so a fold

is used for testing only once. The results of the k iterations are averaged and its standard

deviation calculated to produce a final overall performance output.

Moreover, to visualise the relation between the classifier’s prediction and the ground

truth labels, it is commonly used a Confusing Matrix (Figure 2.3). Where, considering

that there are n classes, the confusion matrix will be a n×nmatrix with a row and column

for every class label. Each cell Cij is filled with the total number of predicted samples

belonging to the class label i and predicted with the label j. Thus, correctly predicted

class labels will occupy the diagonal cells while misclassifications occupy the remaining

cells.

Furthermore, from the confusion matrix values, it is possible to obtain statistical

metrics, presented in Figure 2.4 for a binary classification. These metrics allow doing an

empirical evaluation of the classifier’s overall performance and efficiency, through which,

it is possible to withdrawn meaningful conclusions.

However, the present work consists in a multiclass classification problem. Therefore,

the accuracy metric shown in Equation 2.9 [37] is used instead, to evaluate the model’s

classification performance:

Accuracy =
∑n
i=1T Pi

#Samples
(2.9)

Where n is the total number of classes.

On the other hand, regarding UL, even though they do not require labelled data to

perform a classification. They still need to have available the ground truth data in order

to asses the model’s performance and verify the predicted results.

In the present work, the evaluation of the clustering algorithms is performed using

the Adjusted Rand Index (ARI) score. Moreover, the ARI score is a corrected-for-chance

version of the Rand Index given by Equation 2.10. The Rand Index obtains the similarity

between clusters through the count of the samples assigned to the same or different

clusters in the predicted and ground truth clusters [30]. In addition, since that, by random
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change some samples can be assigned to the ground truth cluster, the Rand Index is re-

scaled into the ARI score, given by Equation 2.11, where the expected RI of random

labellings (E[RI]) is removed. Therefore, the ARI ensures a value of 1 for equal clusters

(allowing permutation) and 0 for random labelling. Thus, ARI ∈ [−1,1], being a symmetric

measure and ignoring permutations so ARI(a,b) == ARI(b,a) where a and b are considered

equal clusters [30].

RI =
a+ b

C
#Samples
2

(2.10)

ARI =
RI −E[RI]

max(RI)−E[RI]
(2.11)

Where a is the total number of pairs of elements in the same cluster in the classifier’s

prediction and the groundtruth clusters, and b the total number of pairs assigned to dif-

ferent clusters in both the ground truth and the classifier’s prediction. Lastly, C#Samples
2

represents the total number of possible pairs combinations (order is not taken into con-

sideration) in the dataset.

Table 2.3: Illustration of a Confusion Matrix.

Predicted

Positive Negative

Positive TP FN
Real

Negative FP TN

Table 2.4: Evaluation metrics for a binary
classification.

Metrics Formula

Accuracy T P+TN
T P+TN+FP+FN

Precision (P) T P
T P+FP

Recall (R)

Sensitivity

TPR

T P
T P+FN

Specificity

TNR
TN

TN+FP

F-Score 2×(P×R)
P+R
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Framework for Human Activity annotation

based on Active Learning

The following section describes the methodology of the main steps applied in the devel-

opment of the framework introduced in this dissertation. Moreover, Figure 3.1 illustrates

the framework’s overall system architecture, developed in Python, using an adaption of

modAL, a modular active learning framework for Python 3 1.

3.1 Signal Acquisition and Processing

Hence, the first step in the development of the proposed framework consisted of the

acquisition of the sensors’ data. Namely, from the accelerometer, gyroscope and barom-

eter sensors, selected to be used in this thesis based on the literature review presented in

Section 1.3. The accelerometer and gyroscope sensors since they are the most commonly

applied sensors in HAR due to their good classification performance, reliability and cost.

Together with the barometer sensor, included in order to improve the discrimination

between vertical activities, such as climbing up and downstairs.

Moreover, the embedded device’s tri-axis accelerometer and gyroscope sensors, obtain

the signal from the respective three axis: x, y and z. From which the magnitude of the

1https://cosmic-cortex.github.io/modAL/index

Signal
Acquisition

Signal
Processing

Feature
Extraction

and
Selection

Classification
Algorithm

Performance
Evaluation

Figure 3.1: Schematic representation of the framework developed for HAR in this thesis.
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signal can be computed, measuring the instantaneous intensity of the user’s movement

at time t, according to Equation 3.1.

mag(t) =
√
acc2

x(t) + acc2
y (t) + acc2

z (t) (3.1)

Furthermore, the signal from each axis is a linear sum of the body acceleration compo-

nent, the gravitational acceleration component and noise from the measurement system

(Equation 3.2).

acc(t) = accbody(t) + accgravity(t) +noise(t) (3.2)

According to literature, the body acceleration is contained mostly below 15Hz, while

the gravitational component goes up to 3Hz [22, 24]. Thus, in order to retrieve the noise

from the signal, a band-pass filter 2, with cutoff frequencies of 0.3Hz and 15Hz was ap-

plied to the signal. Consequently, retrieving high-frequency noise and the acceleration

gravitational component. However, since as stated in Subsection 2.2.1, the gravitational

acceleration component can provide additional information, namely, regarding the orien-

tation of the sensor’s device, the filtered acceleration signal was kept as well. As presented

in Algorithm 1, where the original accelerometer’s signal, the filters cut-off frequencies

(lower fL, and upper fU ) and the order of the filter are given as input and the filtered total

acceleration signal and the filtered body component signal are returned as output.

Algorithm 1 Filtering
Inputs: totalacc signal, lower cutoff frequency fL, upper cutoff frequency fU , order
Output: filtered bodyacc, filtered totalacc

1: f s← len(t)/t[−1] . Obtains the signal’s frequency sampling
2: totalacc← lowpass(totalacc, fU , order, f s) . Attenuates the frequencies higher than fU
3: bodyacc← bandpass(totalacc, fL, fU , order, f s) . Attenuates the frequencies outside fL

and fU
4: Return totalacc, bodyacc

Figure 3.2 illustrates the accelerometer’s signal where a zoom in was performed before

(middle plot) and after the application of the band-pass filter (lower plot), where the

signal’s noise and gravitational acceleration component were removed.

3.2 Feature Engineering

In order to map the processed data into a suitable Machine Learning input: time, sta-

tistical and frequency domain features (described in Subsection 2.2.2) were extracted

from the sensors’ data, obtaining a high dimensional feature vector (Algorithm 2, adapted

from the Feature Extraction Library and Classification library [5]). Moreover, in the

present work two datasets were used: UCI public dataset [35], and a dataset obtained at

2https://github.com/hgamboa/novainstrumentation
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Figure 3.2: Accelerometer’s signal during the UCI protocol activities (upper plot) where
a zoom in was performed before (middle plot), and after (lower plot), a band-pass filter
was applied, removing the signal’s noise and gravitational acceleration component.

Fraunhofer, Portugal. Regarding the former, for the application of Algorithm 2, a sliding

windows of 2.5s with 50% overlap was applied, while a 5s windows was stipulated for

the Fraunhofer dataset.

Algorithm 2 Feature Extraction
Input: path, ACC file name, BAR file name, GYR file name, windows size.
Output: features file, features names file, labels file, subjects names file, directories file

Furthermore, from the feature vector obtained by Algorithm 2, it is necessary to clean

the data and select the most relevant features. Thus, removing redundant information,

reducing the algorithm’s time and computational complexity and incrementing its classi-

fication performance. This task was performed, first, through the Python Data Analysis

Library profiling method 3. Where features having more than 90% of correlation with

each other are identified and removed. Along with sklearn’s Recursive Feature Elimina-

tion with CV [30], which selects the optimal features over a 10-fold CV, by iteratively

considering smaller and smaller sets of features, where, at every iteration, the least im-

portant are removed until the classifier’s accuracy decreases.

However, due to the high amount of features remaining after a backwards feature

elimination, there was a need for a different method. Thus, a Forward Feature Selection
method was implemented, following Algorithm 3. In the Forward Feature Selection

method, a set composed by the best features is obtained by the iterative selection and

incorporation into the best features set, of to the feature achieving the highest accuracy

3https://github.com/pandas-profiling/pandas-profiling
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score. Hence, the set with the best features is augmented iteratively one feature per itera-

tion until the addition of a new feature no longer results in an increase of the classifier’s

accuracy. Moreover, in Algorithm 3, BSf denotes the set with the optimal features, k its

length, and clf.accuracy_score, the 10-fold CV classifier’s accuracy score function.

Algorithm 3 Forward Feature Selection
Input: all features
Output: best set of features

1: BSf ← [] . Initialises variables
2: k← 0
3: acck← 0
4: Selects feature f ∗ achieving the highest accuracy score
5: BSf ← BSf ∪ f ∗ . Adds f ∗ to best features set
6: k← k + 1 . Updates current number of optimal features
7: acck← clf .accuracy_score(BSf ) . Sets best accuracy constant to the classifier’s score

with f ∗

8: while clf .accuracy_score(BSf + f ∗) < acck do
9: BSf ← BSf ∪ f ∗ . Augments the best feature set with f ∗

10: k← k + 1 . Updates current number of optimal features
11: acck← clf .accuracy_score(BSf ) . Updates best accuracy constant
12: end while
13: Returns BSf . Return set with best features

To finish, for the reasons presented in Subsection 2.2.2, each feature of the feature

vector was scaled to a range between 0 and 1, according to Equation 2.5.

3.3 General Active Learning Strategy

As mentioned in the literature review in Section 1.3, the discrimination of human motion

activities is often covered by sensor-based Machine Learning classification techniques.

Furthermore, according to the motivation provided in Section 1.1, in the present work

two main frameworks are implemented, allowing to perform the recognition of human

activities with minor annotation cost for the user. The first focusing on AL and the second,

incorporating into the AL process a semi-supervised step. The current section focuses on

the former and 3.4 on the latter.

Hence, in the AL process, previously described in more detail in Subsection 2.2.3

and in short in Algorithm 4, after a learner is initialised on the initial training set, a

QS (Q) selects the most informative sample (x∗) from the unlabelled data (U ) for the

oracle to annotate and add to the learner’s training set. This process is then repeated

iteratively until a stopping criterion is met, with, in every iteration the learner’s training

set expanding with informative data and its performance improving.

Moreover, the AL process is independent of the classifier used. Therefore, in Section

4.3, a study was performed in which several of the most commonly applied SL and UL

classifiers were tested, where Random Forest obtained the best results. On this account,
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Algorithm 4 General Active Learning
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: θ← clf .f it(L) . Learns model on initial training set
2: while SC not met do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments the model’s training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples U
7: Θ← clf .f it(L) . Updates model
8: Return clf .predict(T) . Returns predicted labels for the test set
9: end while

Random Forest was the classifier used in the AL process and the classifier implied when

the learner, model or classifier is referred to from this point forward.

Given this points, in order to obtain a highly confident AL system, there are three

main issues that will be addressed in the forthcoming subsections: the initial train set L,

the QS Q and the SC.

3.3.1 Initial Train Set

Being the major goal of this dissertation to develop a framework requiring the minimum

annotation effort from the user. The initial train set (L) was created with merely one

sample per class. Thus, resulting in an initial train set with six randomly chosen samples

for the UCI dataset, and seven samples for the Fraunhofer dataset. Therefore, it is made

the assumption that through randomly selecting one sample per class, it is possible to

initialise an AL learner capable of achieving a labelled train set representative of the

entire feature space.

3.3.2 Sample Selection Strategy

The second core element of an AL system is the development of a QS (Q), able to select

from the unlabelled dataset the sample considered as the most informative that will

cause an improvement of the classification performance when added to its training set.

Thus, through the augmentation of the classifier’s training set with the samples most

contributing to a good performance, the AL system optimises the trade-off between the

classifier’s performance and the number of labelled samples. Since a smaller amount of

labelled data will be able to achieve a better performance and the cost in annotating each

sample is compensated by its high value for the classification.

Henceforth, the ability of the AL system to create a representative labelled training set,

reaching a highly accurate classification with less labelled data is denoted as Selective

Sampling. In contrast to PL, where the samples are chosen randomly from the entire
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Probabilities

x1 : [0.3,0.2,0.5]
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x3 : [0.0,0.9,0.1]
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Figure 3.3: Computation of the uncertainty score according to Least Confident Sampling
QS. In this figure, it is presented the predicted class probabilities for the samples x1, x2
and x3 on the left, and the respective uncertainty scores on the right. The most informa-
tive sample is shown in bold.

dataset. Possibly, leading to a classifier requiring extra annotation effort that may not

generalise well due to its poor non-representative training data.

A common metric to evaluate the sample’s usefulness for the classification is to access

the classifier’s prediction confidence in that sample’s label [11, 13, 14], which is given

by the classifier’s uncertainty in the prediction of the sample’s label. Moreover, in the

present work, it is studied three metrics to evaluate the classifier uncertainty in the labels’

prediction, corresponding to three different selective sampling functions.

Hence, considering a probabilistic model, such as Random Forest, the classifier pre-

diction output is a U ×n matrix, where U represents the total number of the unlabelled

validation set samples (XU = {x1, x2, ..., xU }, xi ∈Rm, i = {1, ..., U }), and n the total number

of classes existent in the validation set. Where each row is a 1×n vector with the sample’s

predicted class probabilities with each cell value given by the prediction posterior proba-

bility (Pθ(yk |xi), k ∈ {0, ..., n}). With this in mind, it is presented next the developed QSs

used in this dissertation:

• Least Confident Sampling: selects the sample whose the label the classifier is least

certain about, according to Equation 3.3 [12, 34, 38].

x∗LC = argmax
x

(1− Pθ(ŷ|x))

ŷ = argmax
y

(Pθ(y|x))
(3.3)

Where ŷ is the class label which the predictor considers most probable for the

sample x.

Figure 3.3 demonstrates the computation of the uncertainty score according to Least
Confident Sampling, in a dataset composed by three samples (x1, x2, x3) and three

classes (0, 1, 2). Thus, per example, for the first sample (x1), with the classification

posterior probabilities of (0.3, 0.2, 0.5) for the three labels, respectively. The most

likely class label for x1 according to the classifier, with a confidence of 0.5 and uncer-

tainty of 0.5, is the class label 2, since it is the label with the highest prediction class
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Predicted Class
Probabilities

x1 : [0.3,0.2,0.5]
x2 : [0.8,0.1,0.1]
x3 : [0.0,0.9,0.1]

Margin Sampling

[0.2]
[0.7]
[0.8]

Figure 3.4: Computation of the uncertainty score according to Margin Sampling QS. In
this figure, it is presented the predicted class probabilities for the samples x1, x2 and
x3 on the left, and the respective uncertainty scores on the right. The most informative
sample is shown in bold.

probability and least uncertainty. Performing the same thought for the remaining

samples (x2 and x3), the sample considered as most informative, hence, the sample

selected by the Least Confident Sampling QS is the sample x1, since it has the highest

uncertainty score, 0.5, in comparison to the remaining samples, with uncertainty

score values of 0.2 and 0.1 respectively.

• Margin Sampling: selects the sample with the minimum difference (margin) be-

tween the classification probabilities of the first and second most likely class, ac-

cording to Equation 3.4.

x∗M = argmin
x

(Pθ(ŷ1|x)− Pθ(ŷ2|x))) (3.4)

Where ŷ1 and ŷ2 represent the first and second class labels which the classifier

considers as most probable for the sample x. Thus, the Margin Sampling QS allows

to incorporate into the uncertainty calculation score, the classification’s probability

distribution of one more class label in comparison to Least Confident sampling.

The Margin Sampling strategy yields good results especially with SVM classifiers (de-

scribed in Section 1.3), whose goal is to maximise the hyperplane margin between

the decision boundaries. Moreover, a sample with a small margin in its classification

probabilities is a sample in which the classifier is torn and unsure in its prediction.

Since these samples are usually located near decision boundaries, through their

selection, Margin Sampling contributes to a better discrimination between classes

and the redefinition of the classifier’s decision boundaries [12, 34, 38].

Figure 3.4 demonstrates the computation of the uncertainty score according to

Margin Sampling, in a dataset composed by three samples (x1, x2, x3) and three

classes (0, 1, 2). Thus, per example, for the first sample (x1), with the prediction class

probabilities of (0.3, 0.2, 0.5) for the three labels, respectively. The first and second

most likely classes for x1 according to the classifier’s prediction are the classes 2 and

3 with a confidence of 0.5 and 0.3 and uncertainty values of 0.5 and 0.7, respectively.

Therefore, the sample x1 will present a Margin score of 0.2. Performing the same
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Predicted Class
Probabilities

x1 : [0.3,0.2,0.5]
x2 : [0.8,0.1,0.1]
x3 : [0.0,0.9,0.1]

Entropy Sampling

[1.03]
[0.64]
[0.33]

Figure 3.5: Computation of the uncertainty score according to Entropy Sampling QS. In
this figure, it is presented the predicted class probabilities for the samples x1, x2 and
x3 on the left, and the respective uncertainty scores on the right. The most informative
sample is shown in bold.

thought for the remaining samples (x2 and x3), the sample considered as most

informative, hence, the sample selected by the Margin Sampling QS is the sample

x1, since it has the minimum margin score, 0.2, in comparison to the remaining

samples, with margin score values of 0.7 and 0.8, respectively.

• Entropy Sampling: selects the sample with the greatest entropy value, according

to Equation 3.5.

x∗E = argmax
x

(
−

n∑
k

(Pθ(ŷk |xi)) logPθ(ŷk |xi)
)

(3.5)

Where ŷi represents the posteriori probability for the sample xi (xi ∈ {x1, x2, ..., xU },

i = {1, ..., U }), belonging to the class yk , k ∈ {0, ..., n}. Thus, this function has the

advantage of considering the classification’s prediction probability for all the class

labels, in contrast to the previously-mentioned QSs [12, 34, 38].

Figure 3.5 demonstrates the computation of the uncertainty score according to

Entropy Sampling, in a dataset composed by three samples (x1, x2, x3) and three

classes (0, 1, 2). Thus, per example, for the first sample (x1), with the prediction class

probabilities of (0.3, 0.2, 0.5) for the three labels, respectively. Applying Equation

3.5, the sample x1 will present an entropy value of -(0.3log(0.3) + 0.2log(0.2) +

0.5log(0.5)) = 1.03. Performing the same calculation for the remaining samples, the

sample x2 will shown an entropy value of 0.64 and the sample x3 an entropy value

of 0.33. Therefore, the sample considered as most informative, hence, the sample

selected by the Entropy Sampling QS is the sample x1, since it has the highest entropy

score (1.03) in comparison to the remaining samples.

Furthermore, in order to create an homogeneous initial training set, a weight W =

(1 − pl) was introduced to the QS while the training set was less than 1% of the

validation set, according to the following equation [39].

x∗ = (1− pl) ∗ f (3.6)
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Where f = {Least Confident Sampling, Entropy Sampling, Margin Sampling} and

pl constitutes the percentage of each label in the training set.

Additionally, according to the literature presented in Section 1.3, a sample with

high uncertainty will most likely be an outlier. Thus, to overcome this issue, we

introduce the Local Density Sampling.

• Local Density Sampling: adapted from [39], selects the sample with higher repre-

sentation on the feature space, i.e located in a high-density region, which is mea-

sured by the amount of NNs surrounding the sample, according to Equation 3.7.

x∗LD = argmax
x

 U∑
i

( k∑
j

1
1 + dist(NN (xi ,xj ))

) (3.7)

Where xi and xj are two samples belonging to the unlabelled samples’ dataset and

dist was obtained using the Euclidean Distance. For last, NN represents the 5-NNs of

every sample in the unlabelled dataset U.
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Figure 3.6: UCI dataset samples information density on a two-dimensional space obtained
through a PCA. Samples in high-density regions are represented in darker colours, while
low-density region samples exhibit lighter colours.

Figure 3.6 shows the UCI dataset samples information density on a two-dimensional

space obtained through a PCA. Moreover, each sample is displayed as a point

where, according to the vertical colour bar shown on the right, samples in high-

density regions are represented in darker colours, while low-density region samples

exhibit lighter colours. Therefore, Local Density Sampling would select and regard

the greener samples as having the higher utility to be annotated. Thus, tending to

select samples in the centre of the displayed clusters.

• Uncertainty and Local Density Sampling: obtained through the linear combina-

tion between the previously mentioned QSs, according to Equation 3.8. Where f1=

{Least Confident Sampling, Margin Sampling, Entropy Sampling}, f2={Local Density
Sampling} and α was empirically set to 0.5.
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x∗UD = argmax
x

(αf1 + (1−α)f2) (3.8)

Uncertainty and Density Sampling is introduced with the goal of selecting a sample

with both high uncertainty and density on the feature space.

To conclude, according to literature, there is not an optimal QS, depending rather,

on the application context [34]. However, Margin and Least Confident Sampling tend

to select samples that redefine the decision boundaries of the classifier, reducing its

error rate, while Entropy Sampling tends to select samples that minimise its log-loss

[38]. Apart from these, Local Density Sampling selects samples with prominent rep-

resentation localised in high-density regions, and for last but not least, Uncertainty
and Density Sampling selects samples whose label the classifier is highly uncertain

about, however, avoiding the selection of outliers, due to the introduction of the

density weight.

3.3.3 Stopping Criterion

The last core point to be defined on an AL process is its SC. Since, as it is shown in Figure

3.7, there is an instant during the AL cycle, in which the classification’s performance

stabilises and annotating more samples will not improve the classifier’s performance, but

rather add additional samples, which result in an unnecessary annotation effort. Hence,

in this instant, the AL process should be ended, optimising the trade-off between the

classifier’s performance and the oracle annotation effort.

Moreover, the AL system must not stop too early, at the cost of resulting in a limited

labelled training set and underperforming classification. As well as it must not stop too

late either, at the cost of exceeding annotation work.

Therefore, ideally, we would like to stop when the accuracy of the learner stabilises

around its maximum value. However, in a real-life application, we expect to work with

unlabelled data, so its ground truth is not available and the accuracy of the classification

cannot be obtained.

On this account, in this dissertation with the goal of obtaining a SC general enough

to be applicable to all developed SSAL methods, QSs and datasets, it is presented the

following stopping criteria:

• Max-Confidence (Max-Conf) SC [40]: in which, as described above in Subsection

3.3.2, in the Least Confident Sampling, from the unlabelled data, it is selected for

the oracle to annotate the sample with the highest uncertainty, i.e the sample that

the classifier is least confident in its classification. Moreover, if the selected sample

has a low uncertainty score, it is possible to presume that the classifier is able to

confidently classify that sample, as well as the remaining samples. Hence, the AL

process can be stopped.
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Figure 3.7: AL performance, starting at iteration 0 till iteration 300, in which the classifier
increases its accuracy score since in every iteration one more sample is annotated and
integrated into its training set. The horizontal red and blue lines denote the accuracy
average score of SL and UL, respectively.

• Overall Uncertainty (Over-Unc) SC [40]: similar to be above-mentioned SC but

instead of stopping the AL system if the least confident score is low, it is used the

average of the least confident score computed on the remaining unlabelled samples.

That is, if this value, denominated overall uncertainty score, shows insignificant

low values, we can assume that the classifier has sufficient confidence in the classi-

fication of the remaining unlabelled samples and therefore, the AL cycle can stop.
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(a) Least Confidence Uncertainty Score.
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(b) Overall Uncertainty Score.

Figure 3.8: Classifier Least Confidence score and Classifier Overall Uncertainty score
throughout 300 iterations.
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Furthermore, comparing Figure 3.8 and Figure 3.7, it is possible to verify that the

stabilisation of the AL performance, overlaps the stabilisation of both the least

confident score and the overall uncertainty score. Hence, in the developed stopping

criteria, the AL process is terminated once the above-mentioned uncertainty scores

stabilise. To perform this task, windows of 5 iterations were created and from

each, the mean (µ) and standard deviation (σ ) of the least confident score and overall

uncertainty score were extracted. Hence, the AL process stops when both the two

following conditions are verified: |µk − µk−s| ≤ δ µSC and |σk − σk−s| ≤ δ σSC ; k ∈
{0,2S, ...,N }, S = 5 and N = number of iterations.

The pipelines of the aforesaid algorithms are shown in Algorithm 7 and Algorithm

8, respectively, in Appendix B. Where A and B are two consecutive windows of 10

iterations each.

• Classification-Change (CC) SC [40, 41]: As stated in the literature review in Sec-

tion 1.3, uncertainty-based QSs tend to select as the most informative samples, the

ones located near decision boundaries. Thus, dictating the class to which each sam-

ple is allocated to, and therefore, significantly changing the classifier’s performance

and its prediction output. With this in mind we introduce the CC SC, where the AL

is stopped once decision boundaries samples have been annotated and added to the

classifier’s training set. Moreover, this SC works under the assumption that the Least
Confident Sampling tends to select samples near decision boundaries and that those

significantly change the classifier’s prediction output. Under these circumstances,

alterations in the classifier’s prediction of the unlabelled data labels can be used

to infer if the decision boundaries have been changed. Thus, if in two consecutive

iterations the classifier’s labels prediction has been constant, then, we can assume

that the newly annotated samples are not near a decision boundary but rather inside

it. Assuming then that main boundary samples have been annotated, and therefore,

that the annotation of a new sample will not introduce any new information to the

classification process.

Moreover, to infer the similarity of the classifier’s labels prediction over two consec-

utive iterations, it was used the F1-score metric. Where the classifier’s prediction

output is a vector with dimensionU ×1 whereU is the size of the unlabelled dataset

and each element takes the form of the most likely class label for that sample. Algo-

rithm 9, in Appendix B, presents the integration of Classification-Change SC in the

general AL system.

• Combination Strategy SC: a multi-createria-based strategy that combines the prior

stopping criteria, namely Overall Uncertainty SC and Classification-Change SC as the

Overall-CC SC and Max-Confidence Uncertainty SC and Classification-Change SC as

the Max-CC SC.
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This method is justified in the cases where the uncertainty score quickly drops

to insignificant low values, however, there are still some inconsistencies in the

classifier’s predictions. Thus, the annotation of new samples may result in changes

on the decisions boundaries and therefore, on an improvement of the classifier’s

performance. Algorithm 10, in Appendix B, presents the algorithm pipeline of

the Combination Strategy SC where f1 = {Overall Uncertainty SC, Max-Confidence
Uncertainty SC} and f2 = {Classification-Change SC}.

3.4 Semi-Supervised Active Learning Framework

As stated in Section 1.1, there is a soaring need for a new annotation technique, able

to partly automate the annotation process and reduce considerably the annotation cost

of constructing a representative labelled dataset. Thus, with the goal of augmenting

notably the amount of available labelled data, in this section, it is introduced the SSAL

framework, whose algorithm pipeline is presented in Algorithm 5. The SSAL model is

equal to the standard AL framework presented above in Section 3.3, except the lines

presented in bold, where the system performs an automatic annotation of the available

unlabelled data, without any human involvement. Those samples are then added to the

classifier’s training set and removed from the unlabelled data. Therefore, this method

allows optimising the trade-off between the classifier’s training set oracle annotation

effort and the number of labelled samples in its training set.

Algorithm 5 General Semi-Supervised Active Learning
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: Θ← clf .f it(L) . Learns model on initial training set
2: while SC not met do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments the model’s training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples
7: Θ← clf .f it(L) . Updates model
8: Automatically label confident samples C in U
9: L← L∪C . Augments the model’s training set with C

10: U ←U \C . Removes C from unlabelled samples
11: Θ← clf .f it(L) . Updates model
12: Return clf .predict(T ) . Returns predicted labels for the test set
13: end while

With this in mind, to complete this task with great confidence, three semi-supervised

techniques are presented:

• Self-Training (ST-SSAL): ST was described in more detail in Subsection 2.2.3, in

which samples which the classifier has a 100% certainty in their class label, are
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labelled and added to the classifier’s training set. Algorithm 11, in Appendix B,

presents the ST-SSAL algorithm pipeline. Where C is the set of confidently anno-

tated samples and Pθ(y|x) the classifier’s prediction posterior probability. Hence, a

sample will get annotated if Pθ(ŷ|x) >= δST with ŷ. δST will influence the amount

of propagation and its accuracy. A larger δST will increase the automatic annota-

tion but decrease its accuracy, since the model is less certain in the annotated label.

On the other hand, a smaller δST will decrease the amount of annotation but the

increase its accuracy, as the few annotations are performed with high certainty. In

the present work, δST was empirically set to 0.98 in order to obtain a significant

automatic annotation while maintaining a good certainty in the annotation.

• k-Nearest Neighbour label propagation (k-NN-SSAL): whose algorithm pipeline

is described in Algorithm 12, in appendix B. Where, as observed in bold, after the

AL process, the sample selected by the QS (x∗) propagates its label to its k-NNs,

creating the set of confidently annotated samples C.

Figure 3.9 depicts the k-NN label propagation step for k = 1. Where each circle

represents a sample whose colours (green and red) represent two different classes,

while samples in grey denote unlabelled samples. Thus, in this example, the sample

x∗ propagates its label to its 1-NN, the sample B.

x∗

C

BA

FE

G

(a) Step 0.

x∗

C

BA

FE

G

(b) Step 1.

Figure 3.9: Example of 1-NN label propagation, in which the sample x∗ propagates its
label (in this example represented by the colour green) to its 1-NN, the sample B. Thus,
each circle represents a sample whose colours, green and red, represent two different
classes, while samples in grey denote unlabelled samples.

Defining k, the number of NNs to propagate x∗’s label to, requires a trade-off be-

tween the amount of automatic annotation and the addition of error to the system.

Since, with a small k, few samples are automatically annotated, but, the ones anno-

tated are done so with a good confidence, as they are close in the feature space. On

the other hand, with a higher k, more samples are annotated, however, at the cost of

possibly adding error to the classifier, as x∗ is giving its label to samples at a further

distance and therefore, may be wrongly annotated.
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Under these circumstances, in the present work, k was set to 5, in order to obtain a

significant amount of automatically labelled data while maintaining the confidence

in the label propagation.

• rNN label propagation (k-rNN-SSAL): whose algorithm pipeline is described in

Algorithm 13, in appendix B. Where, as observed in bold, after the AL process,

the sample selected by the QS (x∗) propagates its label to all the samples to which,

regarding the labelled samples, it is their NN, creating the set of confidently anno-

tated samples C. For the rNN method, k was empirically set to 1 to enhance the

propagation performance.

Figure 3.10 illustrates the rNN label propagation step. Where each circle repre-

sents a sample whose colours (green and red) represent two different classes, while

samples in grey denote unlabelled samples. Thus, in this example, the sample x∗

propagates its label to the samples A, B and C.

x∗

C

BA

FE

G

(a) Step 0.

x∗

C

BA

FE

G

(b) Step 1.

Figure 3.10: Example of 1-rNN label propagation, in which the sample x∗ propagates its
label (in this example represented by the colour green) to the samples to which, regarding
the labelled samples, it is their NN, the samples A, B and C. Thus, each circle represents
a sample whose colours (green and red) represent two different classes, while samples in
grey denote unlabelled samples.

Moreover, comparing the above-named k-NN and rNN label propagation methods, namely

the Figure 3.9 and Figure 3.10. As observed, the latter generally allows to significantly

increase the number of automatically annotated samples. Thus, resulting in a larger

labelled set.

3.4.1 Similarity Measures

When performing the label propagation step in the NN-SSAL and rNN-SSAL methods,

there is a need for a measurement function able to obtain the distance between the differ-

ent instances, so each sample’s NN can be obtained.
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Henceforth, in this section, it is provided four distance measurements. The first two,

measuring the distance between the feature vector samples, and the latter between the

sensors’ data time series:

• Euclidean Distance: measures the length of the straight line distance between two

samples, x1, x2, of m dimensions. Where m is the number of features describing

each sample in the feature vector.

ED(x1,x2) =

√√
m∑
i=1

(x1 − x2)2 (3.9)

Furthermore, as previously mentioned, in order to use the Euclidean distance to

obtain the samples’ NNs, it is important to first normalise the vectors, as performed

in Section 3.2, so both samples equally contribute to the distance value.

Moreover, considering d: X ×X –> R, being x1, x2 and x3, three samples in X. For d

to be considered a distance metric, some conditions must be hold:

– Non negativity: d(x1, x2) ≥ 0;

– Identity of indiscernibles: d(x1, x2) = 0, if and only if, x1 = x2;

– Symmetry: d(x1, x2) = d(x2, x1);

– Triangle inequality: d(x1, x2) ≤ d(x1, x3) + d(x3, x2).

Euclidean distance satisfies all the above properties, thus, it is the most commonly

applied distance metric for similarity search [42].

Euclidean Distance

φ

Figure 3.11: Two-dimensional illustration of the Euclidean distance and the Cosine simi-
larity between two samples. The former is represented by the straight line uniting both
samples, while the latter is given by the cosine of the angle φ.
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• Cosine Similarity: measures the cosine of the angle between two samples, x1, x2.

CSD(x1,x2) = 1−Cos Sim(x1,x2)

CSD(x1,x2) = cos(φ) =
x1 · x2

||x1|| · ||x2||
=

∑m
i=1AiBi√∑m

i=1A
2
i

√∑m
i=1B

2
i

(3.10)

Furthermore, cos(φ) ∈ [−1 : 1], where −1 denotes opposite samples and +1 coinci-

dent samples. Thus, considering that the distance is given by 1 − Cosine similarity,

the distance value will become larger as the samples become less similar.

Figure 3.11 displays a two-dimensional illustration of the Euclidean distance and the

Cosine similarity between two samples. The former is represented by the straight

line uniting both samples, while the latter is given by the cosine of the angle between

both samples (φ). As observed, although the samples are at a significant distance

between each other, the angleφ is small. Thus, resulting in a large Euclidean distance
and high Cosine similarity (small distance, according to 1 − cos(φ)).

Moreover, since in Cosine similarity the compared samples are normalised to unit

length, this metric is usually used in the context of patterns with different or variable

sizes, when the magnitude of the vectors do not matter and we are looking for

directional similarity, rather than magnitude differences [43].

Lastly, so far the precedent similarity metrics do not take into account the sensor’s

signal, but rather, the features derived from it. On this account, we introduce the

Dynamic Time Warping (DTW) and Time Alignment Metric (TAM) metrics, using

the sensor’s data signal to obtain the sample’s NNs.

• Dynamic Time Warping (DTW): measures the similarity between two time-dependent

sequences through a non-linear alignment minimising the distance between both

[43]. Moreover, the minimal distance is obtained through the computation of a local

cost measure C(S1,S2), where S1 := {s11, s12, ..., s1N }, S2 := {s21, s22, ..., s2M } are

two time series of length N and M; N, M ∈N, respectively, producing a N ×M cost

matrix. Where each element corresponds to the euclidean distance, between each

pair of elements in the both sequences. Thus, C(S1, S2), will hold a small value (low

cost) if S1 and S2 are similar, or a larger value (high cost) otherwise [42]. Hence,

the DTW finds the warping path, W , yielding the minimum total cost amount all

possible warping paths, by going through the low cost values in the local cost ma-

trix. Lastly, the optimal alignment path, W := {w1, w2, ..., wK } with Wk = {nk , mk} ∈
[1 :N ]× [1 :M] for k ∈ [1 : K] must preserve the following conditions [42]:

1. Boundary condition: w1 = C(1,1) and wk = C(n,m);

2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nK and m1 ≤ m2 ≤ ... ≤ mK ;

3. Step size condition: Wk+1 - WK ∈ (1,0), (0,1), (1,1) for k ∈ [1 : K − 1].
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Figure 3.12 presents visually, the difference between calculating the distance be-

tween two signals using the Euclidean distance and DTW. As observed in Figure

3.12a, in the Euclidean distance metric the signal points are assumed to be aligned

in time. Thus, for similar signals but delayed in time, as in the case of Figure 3.12b,

the Euclidean distance will fail to see the similarity between the signals, outputting

higher distance values in comparison to DTW. Additionally, signals can be very
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(b) Dynamic Time Warping.

Figure 3.12: Comparison between the Euclidean Distance and DTW between two signals.

similar in amplitude but show significant differences in the temporal domain. In

those cases, the DTW will fail to output a proper distance measure. Hence, we

present the TAM distance metric.

• Time Alignment Metric (TAM) [42]: uses the optimal time alignment obtained

by the DTW to infer the intervals when two time series are in phase, advance or

in delay in relation to each other. Thus, returning a distance metric benefiting

series in phase, and penalising when signals are in advance or delay with each other.

Therefore, the TAM output value will increase as the dissimilarity between the two

signals increases and decrease otherwise.

Considering again, two time sequences S1 := {s11, s12, ..., s1N } and S2 := {s21, s22,

..., s2M } of lengthN andM;N ,M ∈N. Moreover, assuming S2 is delayed in relation

to S1, by a total time
←−
θ , advanced a total time

−→
θ and in time by a time

←→
θ . The

TAM (Γ ) of both time series is given by:

Γ = ψadvance +ψdelay + (1−ψphase), Γ ∈ {R+
0 |Γ ∈ [0 : 3]} (3.11)

Where, ψadvance, ψdelay and ψphase are given by:

ψadvance =
−→
θ
N
, ψdelay =

←−
θ
M
, ψphase =

←→
θ

min(N,M)
(3.12)

Hence, if both signals are constantly in phase, TAM will hold its minimum value of

Γ = 0, with
←→
θ = 1,

−→
θ = ψadvance = 0 and

←−
θ = ψdelay = 0.
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On the other hand, if both signals are completely out of phase, TAM will yield a

value of Γ = 3, with
←→
θ = 0,

−→
θ = N =⇒ψadvance = 1 and

←−
θ = M =⇒ψdelay = 1.

3.5 Evaluation

For last, in order to validate the proposed frameworks, it was used a k-fold CV, with k

set to 10. This value was chosen so the application of a CV allowed to ensure a user

independent classifier, avoid overfitting into the training data users, and obtain a diverse

test set, large enough to yield meaningful results.

Thus, the entire dataset was divided into the train and test set. Furthermore, from the

train set, one sample per class was chosen to integrate the classifier’s initial training. The

rest of the train set was used to create the validation set, used to improve the learner in

the AL process.

Algorithm 6 describes in more detail the developed CV algorithm, in which k itera-

tions were performed, so each user was used exactly once in the test set and k − 1 times

on the validation set. After each iteration, the accuracy score was obtained using the test

set and the last 5 iteration’s score values were averaged and appended to the iterations’

accuracy list. Where all the accuracy values were kept so a final average and standard

deviation of the k accuracy values could be computed.

Algorithm 6 K-fold Cross Validation
Input: features by subject, labels by users . Features and labels divided by users
Output: accuracy average, accuracy standard deviation

1: for fold in k do
2: Divide data into train and test sets
3: accuracy_value←mean(clf .accuracy([−5 :])) . Obtains the average accuracy of

the framework’s last 5 iterations
4: accuracy_list← append(accuracy_value)) . Appends accuracy value to accuracy

list
5: end for
6: accuracyavg ←mean(accuracy_list) . Calculate average of the k-fold accuracies
7: accuracystd ← std(accuracy_list) . Calculate standard deviation of the k-fold

accuracies
8: Return accuracyavg , accuracystd
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Results

In this chapter, we start by introducing the datasets used during this dissertation. Fol-

lowed by an analysis of the performances of the aforementioned methods over several

evaluation criteria.

4.1 Datasets

The performances of the proposed frameworks were evaluated using two real-world

datasets: the public Human Activity Recognition Using Smartphones Dataset (UCI)

[35] and the Continuous Activities of Daily Living (CADL) dataset, obtained in the

context of this dissertation, whose information is summarised in Table 4.1. Moreover, in

Appendix A, it is shown the acquisition devices used in the construction of the CADL

dataset, along with a brief description of the dataset activities. Thereupon, according to

[35] the data from the UCI dataset was previously pre-processed through the application

of a low-pass filter and then segmented using sliding windows of 2.56s and 50% overlap,

resulting in 128 readings per window. Additionally, a signal having only the body accel-

eration component was obtained through the application of a Butterworth low-pass filter

with a 0.3Hz cutoff frequency.

On the other hand, the data from the CADL dataset was submitted to the signal

processing steps denoted in Section 3.2.

As observed in Table 4.1, the UCI dataset is significantly larger than the CADL dataset,

with a total of 10 299 samples against 2 047 samples, respectively. This fact is reflected in

the annotation cost of each dataset, here presented in an estimation of the time required

for the samples’ manual annotation. Moreover, the UCI dataset was video recorded so

it could be later manually annotated. Hence, considering as an empirical value that

every minute of video requires 2mins of annotation and that the dataset has a total of
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Table 4.1: UCI and CADL dataset information on: number of users, activities performed,
sensors, acquisition device position, dataset size and estimated annotation effort.

Datasets

UCI HAR Using Smartphones Continuous Activities of Daily
Living

Number Of Users 30 12

Activities
Laying, sitting, standing,

walking, walking upstairs and
walking downstairs

Laying, sitting, standing,
running, walking, walking

upstairs and walking
downstairs

Sensors Accelerometer (50Hz),
gyroscope (50Hz)

Accelerometer (100Hz),
gyroscope (100Hz), barometer

(30Hz)

Acquisition Device Samsung Galaxy S II
Samsung S5, IoTip (wearable

sensor)

Device Positions Waist
Right hand, left wrist, right

ankle and right side of the waist

Number Of Samples 10 299 2 047

Annotation Effort ∼14h ∼3h

10 299 windows of 2.56s each, the dataset is estimated to demand an annotation effort

of approximately 14h. On the other hand, the CADL dataset was annotated in real

time by the user performing the activities. Thus, taking into account that the dataset

is composed of 12 volunteers that performed an activity protocol for 14mins each, the

dataset annotation cost was approximated to 3h.

4.2 Feature Extraction and Selection

From the previously-mentioned datasets, a set with the best features was obtained through

the implementation of the feature extraction and selection methods described in Section

3.2. As depicted in Figure 4.1, the accuracy of the classifier increases with the addition

into the best features set, of every feature selected by the Forward Feature Selection method

until it reaches stabilisation. Henceforth, the algorithm’s final feature vector was com-

posed by a total of 15 features for the UCI dataset, and 8 for the CADL dataset, shown in

the Horizon plot in Figure C.1 and Figure C.2, respectively, in Appendix C. Furthermore,

in the displayed Horizon plots it is possible to visualise the behaviour of the features’

values composing the best features sets along the respective protocol activities.

To conclude, it should be noted that, with the developed Forward Feature Selection
method, it was possible to increase the classifier’s performance with a significant de-

crease in the number of features. Thus, relieving the algorithm’s time and computational

complexity with minimal information loss.
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Figure 4.1: Illustration in green, for both datasets, of the classifier’s accuracy score in-
creasing, as each feature f ∗ of the best feature set is added to the learner’s training set. In
red, it is shown the total accuracy score obtained for the initial total set of features before
Forward Feature Selection.

4.3 Model Selection

The proposed method is independent of the applied SL or UL methods. Therefore, an

analysis with some of the most common SL and UL techniques, described in Subsection

2.2.3, was performed with the purpose of finding the optimal technique to incorporate

as the learner into the AL process. The respective performance results are shown in

Table 4.2, for the SL and UL methods, respectively. Where each value corresponds to the

10-CV percentage average and standard deviation, the latter between parenthesis. As

observed, Random Forest achieved the highest accuracy in both datasets, 91.4 (2.4)% and

89.1 (4.0)%, for the UCI and CADL dataset, respectively. For the UL methods, Spectral

Clustering attained the highest ARI values for both datasets with a score of 57.8 (3.5)%

and 61.9 (8.9)%, respectively. It was compared the performance results, for the public UCI

dataset, to state of art researches [44], namely, [23, 35, 45] who have achieved accuracies

of 86%, 96% and 96%, respectively. When training and evaluating the SL method on the

same train and test set, it obtained an average accuracy of 89.1 (0.6)%.

4.4 Query Strategy Analysis

In the current section, the developed QSs are analysed using the AL framework described

in Section 3.3. This is performed in order to find the optimal QS, able to obtain the most

representative labelled set and consequently attain the highest performance so it could

be incorporated into the SSAL frameworks.

On this account, in Table 4.4, the developed QSs are presented against PL (in which

the sample is selected randomly from the unlabelled dataset), SL and UL. Moreover,

the following results were obtained averaging the last five values of 250 iterations. Fur-

thermore, for the first iteration, a Random Forest model was initialised using an initial

training set of one sample per class, consisting of six samples in total (0.06 (0.00)% of the
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Table 4.2: SL and UL methods classification’s performance shown in accuracy and ARI
score, respectively. For all listed values it is shown its 10-CV average and standard
deviation, the latter between parenthesis. All listed values are in percentage. The highest
performance is shown in bold for each dataset.

(a) Supervised Learning

Dataset

Supervised Learning

Method
UCI CADL

Nearest Neighbours 91.0 (1.9) 83.6 (3.4)

Decision Tree 87.4 (3.5) 83.6 (4.3)

Random Forest 91.4 (2.4) 89.1 (4.0)

SVM 90.7 (2.6) 77.6 (3.3)

AdaBoost 40.8 (6.8) 54.1 (4.6)

Naive Bayes 88.9 (2.9) 75.9 (3.1)

QDA 90.8 (2.7) 79.0 (3.7)

(b) Unsupervised Learning

Dataset

Unsupervised Learning

Method
UCI CADL

K-Means 52.1 (4.3) 50.9 (6.1)

Mini Batch K-Means 50.7 (5.5) 50.5 (5.3)

Spectral Clustering 57.8 (3.5) 61.9 (8.9)

Gaussian Mixture 49.8 (2.7) 58.9 (6.6)

DBSCAN 16.4 (7.2) 13.9 (6.5)

Table 4.3: Experimental results for the QSs in terms of: classifier’s accuracy and the QS
algorithm’s computational expense. For all listed values it is shown its 10-CV average
and standard deviation, the latter between parenthesis. The best performing algorithm is
shown in bold for each dataset.

UCI Dataset CADL Dataset

Query Strategy
Accuracy

in %

QS Time

in s

Accuracy

in %

QS Time

in s

Local Density * Least Confident 87.6 (4.0) 27.2 (5.1) 83.5 (6.7) 0.9 (0.1)

Least Confident 87.9 (3.7) 0.1 (0.1) 72.0 (5.0) 0.1 (0.1)

Local Density * Entropy 85.7 (3.7) 22.5 (0.4) 80.3 (7.9) 0.9 (0.1)

Entropy 87.1 (2.5) 0.1 (0.1) 70.9 (6.0) 0.1 (0.1)

Local Density * Margin 52.5 (8.6) 22.6 (0.5) 32.8 (8.0) 0.9 (0.1)

Margin 88.4 (2.8) 0.1 (0.1) 84.8 (7.0) 0.1 (0.1)

Local Density 63.6 (5.9) 22.5 (0.4) 68.9 (8.5) 0.9 (0.1)

Passive Learning 88.0 (2.8) 0.1 (0.1) 82.8 (6.7) 0.1 (0.1)

Supervised Learning 91.4 (2.4) 89.1 (4.0)

Unsupervised Learning 57.8 (3.5) 61.9 (8.9)
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Table 4.4: Experimental results for the developed QSs in terms of: classifier’s accuracy
and the QS algorithm’s time expense. For all listed values it is shown its 10-fold average
and standard deviation, the latter between parenthesis. The best performing algorithm is
shown in bold for each dataset.

UCI Dataset CADL Dataset

Query Strategy
Accuracy

in %

QS Time

in s

Accuracy

in %

QS Time

in s

Local Density * Least Confident 89 (3.1) 29 (7.2) 83 (7.2) 2.0 (0.2)

Least Confident 87 (4.5) 0.059 (0.001) 80 (9.2) 0.0254 (0.0004)

Local Density * Entropy 87 (3.6) 26 (4.3) 80 (10.5) 1.3 (0.2)

Entropy 86 (3.8) 0.059 (0.002) 77 (7.4) 0.0260 (0.0004)

Local Density * Margin 33 (9.4) 25 (3.2) 24 (5.7) 1.3 (0.3)

Margin 90 (3.2) 0.0582 (0.0006) 86 (7.2) 0.0254 (0.0002)

Local Density 64 (5.5) 24 (2.3) 60 (7.4) 2 (0.2)

Passive Learning 86 (2.7) 0.0482 (0.0006) 80 (6.1) 0.0172 (0.0005)

Supervised Learning 92 (2.4) 89 (5.0)

Unsupervised Learning 58 (3.5) 62 (8.9)

validation dataset) for the UCI dataset, and seven samples (0.38 (0.01)% of the validation

dataset) for the CADL dataset. The initial dataset was created through a random selection

of samples from the validation set, being removed afterwards.

The comparison between the different QSs techniques is performed based on the

following criteria:

1. Accuracy: generally speaking, the obtained accuracy values from the QSs are very

similar and tend to the value obtained by the SL algorithm. This fact is supported

by Figure 4.2, where it is presented the increase of the classifier’s average accuracy

for the developed QSs throughout the AL iterations. Moreover, the horizontal lines

denote the 10-CV average accuracy for SL (in red), and UL (in blue). As expected,

the learner becomes more reliable as its training set size increases. Thus, explaining

the continuous increase in the classifier’s accuracy value throughout the iterations.

Furthermore, Margin Sampling and Local Density * Least Confident Sampling achieve

the highest classification’s performances, outperforming PL. In contrast to Local
Density and Local Density * Margin Sampling, attaining the lowest score values, not

achieving a seasonable performance and being outperformed by UL. These QSs’ low

performances are explained by the biased training set, non-representative of the

entire dataset distribution under which the classifier operates. Since, as supported

by Figure 4.3, the density weight in both QSs causes the preferential selection of

activities located in high-density regions, for the deterioration of the remaining as

they become unknown for the classifier. Under these circumstances, the classifier

does not have a homogeneous training set with sufficient amount of samples from
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(b) CADL dataset.

Figure 4.2: Average increase of the AL classifier’s accuracy for the developed QSs through-
out the cycle iterations. The horizontal lines denote the average accuracy for SL (in red),
and UL (in blue). LD denotes the Local Density Sampling, LC the Least Confident Sampling.
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(a) Local Density * Margin Sampling.
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Figure 4.3: PCA of the AL training set and Local Density* Margin Sampling uncertainty
score heatmap. Both figures were obtained using the CADL dataset and 200 queries.
In Figure 4.3a, the learner’s training set samples are depicted by the ×’s, whose colours
identify their respective label. The darker grey dots represent the unselected samples
existent in the validation set. Figure 4.3b was obtained using 2 users from the CADL
dataset whose performed activities are shown by the initial letters and colours according
with Figure 4.3a. The users’ samples are separated by the red vertical line so user 0
samples are located before the red line and user 1 samples after the red line.
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all the class labels from which it can learn to be able to correctly predict all the

samples’ labels. Figure 4.3a, shows a two-dimensional PCA illustration of the AL

training set using the Local Density * Margin Sampling QS. Moreover, the classifier’s

training set samples are depicted by the ×’s, whose colours identify their respective

label. While the darker grey dots represent the unselected samples existent in the

validation set.

Figure 4.3b, presents a heatmap of the Local Density * Margin Sampling uncertainty

score throughout 200 queries for a training set formed by two users, whose samples

are separated by the red vertical line. Furthermore, in the heatmap darker colours

denote samples with high Local Density * Margin score values, while lighter colours,

denote otherwise.

Comparing both figures, it is possible to observe that the preferential annotation of

the high-density region’s activities, such as Standing and Sitting, results in the re-

duction of the classifier’s uncertainty for those activities’ samples. While unselected

activities’ samples, such as Upstairs and Downstairs, maintain high uncertainty val-

ues across both users since the classifier does not have enough information in its

training set to correctly predict those samples’ labels. Therefore, it is possible to con-

clude that not always a large training set is equivalent to the creation of a classifier

achieving a good performance. Still, regarding the uncertainty density weighted
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(a) Least Confident Sampling.
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(b) Local Density * Least Confident Sampling.

Figure 4.4: PCA of the classifier’s training set performing AL using the Least Confident
Sampling QS and the Local Density * Least Confident Sampling QS. Both figures were
obtained using the CADL dataset and 200 queries. The learner’s training set samples are
depicted by the ×’s, whose colours identify their respective label. The darker grey dots
represent the unselected samples existent in the validation set.

QSs, with the exception of Local Density * Margin Sampling, the remaining obtained

results that are in accordance with the literature review [17, 19]. Where the intro-

duction of a density weight to the uncertainty sampling functions resulted in an

increase of the classifier’s performance.

Moreover, as observed in Figure 4.4, the introduction of the density weight to the

Least Confident Sampling QS allowed to avoid the selection of outliers through the
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Figure 4.5: Local Density * Least Confident Sampling and Margin Sampling uncertainty score
heatmaps. Both figures were obtained using 2 users from the CADL dataset whose per-
formed activities are shown by the initial letters and colours according to the antecedent
figures, (Figure 4.3 and Figure 4.4). The users’ samples are separated by the red vertical
line. Figure 4.5b shows a zoom on the heatmap for the first dozens iterations.

selection of samples of high uncertainty in high-density regions across all the fea-

ture space. Reinforced by Figure 4.5a, displaying the selection of samples belonging

to all activities and how it impacts the uncertainty score across the entire feature

space. Furthermore, the arising white vertical lines denote the oracle annotation

of the respective sample, resulting in the null uncertainty score value. Moreover,

as the samples across the entire feature space are annotated, the uncertainty score

decreases homogeneously, thus, presenting the samples in latter iterations lighter

colours, correlated to lower uncertainty score values. Hence, in the Least Confident
Sampling a classifier able to generalise well into new unseen samples with high

confidence is obtained since it has a representative training set, featuring samples

covering the entire data space.

For last, all things considered, the presented QSs were able to surpass PL, but not

very significantly as observed in Figure 4.2. This fact can be explained by the initial

deficient classifier’s training set (composed by one sample per class), that creates an

initial poor probabilistic model, incapable of properly calculating the uncertainty of

the unlabelled samples’ predictions during the first iterations. Which is verified in

Figure 4.5b where the uncertainty score value is constant for the entire validation’s

set samples during the first iterations. Therefore, as a result, the initial eleven

samples selected by the QSs were sequential and consequently, all belonging to the

same class, thus, introducing bias to the classifier.
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2. QS Time: with the exception of the Density weighted QSs, on the whole, the se-

lective sampling functions hold a small execution time. However, the execution

time value increases significantly for the aforementioned Density weighted QSs.

Especially emphasised for the UCI dataset, due to its larger size. This increase is

explained by the calculation of the density weight, that, as shown in subsection

3.3.2, requires the calculation of each sample’s NNs. Thus, augmenting notably the

algorithm’s time and computational complexity. The execution times were obtained

using a E3-1285 v6 @ 4.10GHz CPU and 16 GiB of RAM.

Due to the coherent high accuracy performance, surpassing PL, and its low time and

computational complexity, Margin Sampling was selected as the most suitable QS to be in-

cluded in both the AL and SSAL frameworks. Hence, forthcoming result presentations on

this section were achieved using Margin Sampling. Besides the algorithm’s performance

analysis, it is also worth to mention a comparison between the amount of labelled data for

SL and AL. From 100% of the validation set annotated in SL, to, approximately 2.8 (0.1)%

and 13.9 (0.5)%, for the UCI and CADL dataset, corresponding to the annotation of 250

samples and a reduction of 97.2 (0.1)% and 86.0 (0.5)% in the validation set annotation

cost, respectively. These results confirm the applicability of AL in the context of HAR and

its efficiency in reducing the annotation effort required to construct a highly confident

classifier.

4.5 Active Learning Semi-Supervised Analysis

The current section, applies Margin Sampling in the proposed SSAL frameworks, de-

scribed in Section 3.4. This strategy aims to compare and select the optimal automatic

annotation method.

Table 4.5 presents the developed frameworks compared against techniques previously

applied in the context of HAR, described in the literature review in Section 1.3, such as

AL, SL and UL, replicated in order to verify the model competitiveness.

Henceforth, the following results were obtained averaging the last five values for 250

iterations using the UCI and CADL datasets, respectively, using an initial training set of

one sample per class. With the comparison between the different techniques performed

based on the following criteria:

1. Accuracy: Experimental results demonstrated that with the exception of the SSAL

methods using the DTW or TAM distance, the accuracy of the proposed methods

converge to the results of the SL technique. Figure 4.6 presents the classifier’s

accuracy for the developed SSAL methods throughout the AL iterations. For each

method, in every iteration the model training set grows, resulting in the increase of

the classification’s accuracy.
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(a) UCI dataset.
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(b) CADL dataset.

Figure 4.6: Classifier’s accuracy for the developed SSAL methods throughout the AL
iterations. The horizontal lines denote the 10-CV average accuracy for SL (in red), and
UL ARI score (in blue). Following the underscore in the NN and rNN methods: Euc, Cos,
DTW and TAM, denote the distances used.

2. Automated Annotation Percentage (Aut Ann): Consists of the percentage of sam-

ples automatically annotated in relation to the total validation set size. Figure 4.7

displays the evolution on the percentage of the validation set unlabelled samples for

the developed SSAL methods throughout the AL cycle iterations. In the AL and PL,

the oracle annotates one sample per iteration, therefore, in Figure 4.7, both present

an overlapping linear decline in the amount of unlabelled samples. The NN-SSAL

methods annotate six samples per iteration, one by the oracle and five by the auto-

matic annotator, therefore, these show in Figure 4.7 an overlapping linear decline

with higher slope than AL and PL. On the other hand, rNN-SSAL presents a curved

decline in the amount of unlabelled samples, outperforming the remaining during

the first iterations. ST-SSAL displays during the initial iterations an amount of

annotation similar to AL and PL, with only the expert annotator labelling new sam-

ples. ST-SSAL increase in the automatic annotation on latter iterations is explained

by a 0.98 prediction confidence threshold required to automatically annotate un-

labelled samples, only reached after the classifier’s training set is significant and

representative. On the whole, ST-SSAL attains the highest performance for the UCI

dataset, and NN-SSAL for the CADL dataset, the latter closely followed by rNN-

SSAL. Leading to the conclusion that, in larger datasets, such as the UCI, NN-SSAL

automatic annotation becomes negligible in comparison to ST.
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(b) CADL dataset.

Figure 4.7: Evolution on the percentage of the validation set unlabelled samples for the
developed SSAL methods throughout the AL cycle iterations. Following the underscore
in the NN and rNN methods: Euc, Cos, DTW and TAM, denote the similarity distances
used in the respective method. Both the AL and PL, and the NN_euc, NN_cos, NN_dtw
and NN_tam appear overlapping since one and five samples are removed, respectively,
in every iteration from their classifier’s training set.
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(b) CADL dataset.

Figure 4.8: Percentage of correctly automatically annotated samples by the semi-
supervised step throughout the AL iterations, for the developed SSAL methods, using the
UCI and the CADL datasets. Following the underscore in the NN and rNN methods: Euc,
Cos, DTW and TAM, denote the similarity distances used in the respective method. Both
the AL and PL appear overlapping at the constant value of 0 throughout the iterations
since they do not posses the semi-supervised step to perform the automatic annotation
of unlabelled samples.
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3. Automated Annotation Accuracy (Ann Acc): Consists of the percentage of cor-

rectly automatically annotated samples. Moreover, Figure 4.8 presents the evolution

throughout the AL process of the automated annotation accuracy for the developed

SSAL methods. As observed, ST-SSAL outperforms the remaining, attaining high

results, specially for the latter iterations. ST-SSAL high annotation accuracy on the

latter iterations results from the δST threshold required for automatic annotation to

be performed. This threshold is only reached during the latter iterations when the

model training set becomes representative of the dataset, and predictions can be

performed with high certainty. In contrast to the remaining methods, where higher

results are obtained during the first iterations. For the NN-SSAL methods, this is

justified by the queried sample propagating its label to closer samples during the

first iterations. Whereas in the latter iterations, its closest neighbours start to be

already annotated so the sample’s label is given to further away samples. The same

is applied to rNN-SSAL, with the stabilisation of the propagation accuracy being ac-

companied by the stabilisation of the amount of automatic propagation (Figure 4.7).

Additionally, this metric allows to better discriminate between the performance of

the different similarity measures. As can been seen, the Euclidean distance and Co-
sine similarity obtained competitive, similar results. In contrast to DTW and TAM,

presenting a poor percentage of correctly annotated samples, explaining their low

classification performance.

4. Execution time: AL shows the fastest execution time. The algorithm execution

time, allows to favour between the different similarity measures, since the DTW

and TAM expensive time and computational complexity, render those algorithms

non-applicable to a viable solution. Furthermore, comparing the presented four

distance metrics, Euclidean distance presents the lowest time expense and, therefore,

was chosen as the most suitable distance metric.

As noted, generally speaking, ST-SSAL outperformed the remaining SSAL methods

reaching an higher classification accuracy due to its good performance in the automatic

annotation, as well in the amount of automatic annotation. rNN-SSAL, although anno-

tating a substantial percentage of the dataset, its lower automatic annotation accuracy

performance resulted in the decay of its classification accuracy.

For last, an analysis of the introduction of the density weight to an uncertainty-based

sampling function was performed to observe if it would result in an increase of the

amount of automatically labelled samples im the rNN method. Thus, for the Local Density
* Least Confident Sampling (one of the best performing QSs in the previously-mentioned

Section 4.4) and 50 iterations (the sufficient to attain stabilisation in both accuracy and

the amount of automatically annotated samples according to Figure 4.6 and Figure 4.7).

The former QS attained for the UCI and CADL dataset an amount of automatically anno-

tated samples of 40 (5.4)% and 51 (3.3)%, respectively, against 30 (5.8)% and 48 (2.0)%

obtained for the Margin Sampling QS. Thus, confirming the augment of the amount of

58



4.6. STOPPING CRITERION ANALYSIS

automatically annotated samples with the introduction of the density weight of approxi-

mately 10% and 3%, for both the above-mentioned datasets, respectively.

4.6 Stopping Criterion Analysis

In this section, it is analysed the introduction of a SC to the SSAL process. Previously, the

presented results were based on a pre-defined number of queries (250 queries). The in-

troduction of a SC allows to terminate the AL system early, optimising the computational

demands of the pipeline.

As depicted in Figure 4.6, methods such as the rNN-SSAL and NN-SSAL using the

Euclidean distance, after a reduced value of iterations, quickly reach their highest accuracy

score, stabilising around that value for the forthcoming iterations. In contrast, methods

such as AL, PL and ST-SSAL which require a larger labelled training set in order to reach

a stable performance. Thus, as explained in Subsection 3.3.3, in order to optimise the

trade-off between the classifier’s performance and the expensive training set annotation

cost, the number of iterations should be minimised according to the respective algorithm

and dataset.

Hence, Table 4.6 presents for both datasets the experimental results for the developed

SSAL methods using the proposed SCs methods in terms of: accuracy and total number

of iterations. Moreover, in the columns SP, for both datasets it is shown the accuracy

score for each method in stabilisation and below, the considered optimal stopping point.

These values were selected in order to achieve a stable accuracy performance with the

minimal annotation effort and higher coherency between different folds from the 10-CV

(i.e. minimal standard deviation).

The most suitable SC is overall coherent between the different datasets and highly

changes according to the SSAL algorithm. In Table 4.6, the number of iterations and, con-

sequently, the required annotation cost was notably reduced. For the ST-SSAL, using the

Over-CC SC, an accuracy of 84.5 (4.1)% and 84.7 (7.2)% was attained, with the annotation

cost of 214.0 (46.5) and 182.0 (53.9) queries, for the UCI and CADL datasets, respectively,

consisting of 2.4 (0.5)% and 10.2 (2.8)% of the validation set. Moreover, the automated

annotation along with the manually annotated samples enabled to label 55.8 (11.8)% and

19.1 (13.4)% of the validation set with an accuracy on the automated annotation of 90.5

(4.6)% and 56.7 (46.3)%. Thereupon, the ST-SSAL method allowed to reduce the manual

annotation cost on 97.6 (0.6)% and 89.8 (2.8)% for both datasets.

Additionally, it should be noticed that the obtained results are strongly influenced by

the choice of the threshold in the formulation of the SC, which were selected in excess

according to the 5 iterations windows, in order to allow the average of the last 5 values for

evaluation purposes. Moreover, this value can be easily adapted according to the user’s

objectives.

For last, a confusion matrix for the ST-SSAL method using the Over-CC SC is pre-

sented in Figure 4.10, where it is possible to establish conclusions regarding the activities
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correctly and incorrectly predicted by the classifier. For both datasets, the misclassifi-

cation was higher between downstairs/upstairs and sitting/standing. The barometer’s

linear regression feature, as seen in Figure 4.9, presents high distinction between Down-

stairs/Upstairs, thus, allowed to improve the discrimination between these activities in

the CADL dataset. Dynamic activities, due to its distinct motion characteristics and cyclic

behaviour presented an overall clear discrimination against static activities.

TotalAcc_x: max
Standing Sitting Downstairs Upstairs

TotalAcc_x: spectral decrease

TotalAcc_y: mean

TotalAcc_z: median freq

TotalAcc_z: skewness

BodyAcc_mag: max powerSpect

Gyr_x: max

Gyr_x: mean

Gyr_x: median freq

Gyr_x: skewness

Gyr_x: spectral rollOn

Gyr_z: 0 crosssing Rate

Gyr_y: linear reg

Gyr_x: 0 crosssing rate

Gyr_mag: hist 9

(a) UCI dataset.

TotalAcc_lWrist_x: autocorrelation Standing Sitting Downstairs Upstairs

TotalAcc_lWrist_mag: max PowerSpect

TotalAcc_rAnkle_x: rootMeanAqr

TotalAcc_rHand_z: mean

Bar_rHand: linear Reg

Body_rWaist_z: Temp centroid

Gyr_rWaist_x: autocorrelation

rWaist_Gyr_z: hist 9

(b) CADL dataset.

Figure 4.9: Horizon Plot showing the features’ behaviour for the misclassified activities.
In the y axis it is presented the information about the sensor (Acc: Accelerometer, Gyr:
Gyroscope and Bar: Barometer), its signal axis (x, y, z and mag:vector magnitude) and
the feature name. The green and red colours denote the signal’s positive and negative
values, respectively, with its intensity increasing with the feature’s normalised absolute
value and decreasing otherwise.

Lastly, comparing the performance results of the best performing method ST-SSAL

method using the Over-CC SC, for the public UCI dataset, to state of art researches,

namely, [23, 35, 45] who have achieved accuracies of 86%, 96% and 96%, respectively.

When evaluating on the same test set, ST-SSAL obtained an accuracy of 83.2 (4.5)%,

after 230.5 (21.9) queries. Therefore, although it did not outperform the aforementioned

researches, satisfactory results were achieved, annotating 48.5 (18.1)% of the validation

set with an accuracy of 88.0 (5.4)%, and a notable reduction of 96.8 (0.3)% in the training

set annotation cost.
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Figure 4.10: Confusion matrix for the ST-SSAL method using the Overall Uncertainty SC.
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Table 4.5: Experimental results for the SSAL methods: accuracy, automated annotation percentage, automated annotation accuracy and
the algorithm’s execution time. For all listed values it is shown its 10-CV average and standard deviation, the latter between parenthesis.
Following the underscore in the NN and rNN methods: Euc, Cos, DTW and TAM, denote the similarity distances used in the respective
method. The best performing algorithm is shown in bold for each dataset.

UCI Dataset CADL Dataset

Method
Accuracy

in %

Aut Ann

in %

Ann Acc

in %

Time

in s

Accuracy

in %

Aut Ann

in %

Ann Acc

in %

Time

in s

NN_Euc 88.1 (2.7) 13.5 (0.1) 76.8 (1.0) 92.3 (9.4) 82.5 (5.7) 68.2 (2.7) 68.2 (1.0) 44.3 (4.8)

NN_Cos 89.4 (3.0) 13.5 (0.1) 75.3 (1.4) 860.9 (7.4) 82.8 (8.2) 68.2 (2.7) 64.6 (1.7) 79.1 (4.2)

NN_DTW 70.3 (6.0) 13.5 (0.1) 39.7 (1.7) 6772.0 (4.5) 68.4 (5.4) 68.2 (2.7) 30.3 (3.1) 6735.4 (1.3)

NN_TAM 75.2 (4.8) 13.5 (0.1) 44.1 (4.0) 6771.4 (5.4) 68.8 (7.3) 68.2 (2.7) 31.6 (1.2) 6735.4 (1.9)

rNN_Euc 85.4 (2.7) 33.3 (2.0) 77.3 (3.8) 437.9 (61.9) 74.9 (7.8) 56.6 (1.3) 66.5 (2.7) 60.0 (10.8)

rNN_Cos 82.5 (3.6) 37.7 (4.0) 74.7 (5.2) 1165.3 (86.4) 71.3 (8.1) 61.7 (2.5) 59.5 (5.6) 89.7 (11.2)

rNN_DTW 65.1 (4.9) 13.7 (1.6) 41.8 (2.9) 6995.4 (74.9) 77.3 (7.1) 20.8 (0.8) 39.9 (1.9) 6739.2 (7.6)

rNN_TAM 64.5 (8.4) 11.9 (3.9) 45.7 (4.9) 6968.3 (81.2) 81.8 (8.4) 11.2 (2.0) 41.3 (4.6) 6733.8 (7.3)

ST 84.0 (6.3) 56.7 (11.6) 86.1 (10.5) 99.3 (17.5) 84.8 (7.0) 20.9 (6.9) 92.5 (2.7) 11.3 (1.0)

AL 88.4 (2.8) 23.6 (5.0) 84.8 (7.0) 12.0 (1.0)

PL 88.0 (2.8) 23.2 (1.4) 82.8 (6.7) 10.3 (1.0)

SL 91.4 (2.4) 0.7 (0.1) 89.1 (4.0) 0.1 (0.1)

UL 57.8 (3.5) 0.3 (0.2) 61.9 (8.9) 0.1 (0.1)
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Table 4.6: SC methods accuracy average, standard deviation, acc (std) in %, and average iterations over a 10-CV on the UCI and CADL
datasets. Moreover, under the SP column, it is shown the accuracy results in stabilisation and below, the considered optimal stopping point.
Most suitable method is shown in bold for each dataset.

UCI CADL

Method SP Max-Conf Over-Unc CC Max-CC Over-CC SP Max-Conf Over-Unc CC Max-CC Over-CC

NN_Euc
Acc

N.it

85.5 (3.3)

68.5 (26.1)

69.2 (12.5)

20.0 (11.4)

78.7 (8.7)

37.5 (9.5)

73.6 (11.9)

28.9 (12.4)

82.2 (8.2)

68.0 (39.3)

81.5 (9.2)

82.5 (44.1)

81.6 (5.1)

69.6 (38.4)

68.2 (8.9)

44.5 (23.4)

76.7 (6.3)

64.5 (14.3)

57.3 (14.1)

21.2 (8.2)

77.9 (6.0)

123.0 (97.5)

80.2 (6.4)

103.0 (73.8)

NN_Cos
Acc

N.it

79.6 (7.3)

61.1 (29.7)

70.3 (11.3)

22.0 (13.2)

79.0 (9.6)

41.5 (11.9)

68.8 (13.3)

16.8 (7.6)

81.5 (10.4)

76.5 (47.5)

82.7 (10.8)

67.5 (27.0)

74.6 (15.6)

80.5 (31.4)

62.8 (16.9)

28.0 (10.0)

69.8 (9.9)

52.5 (15.8)

44.2 (20.5)

13.5 (6.8)

74.9 (11.0)

88.5 (65.1)

78.4 (10.5)

88.5 (56.9)

NN_DTW
Acc

N.it

67.0 (4.3)

250.0 (0.0)

54.3 (6.0)

26.0 (7.4)

47.8 (12.4)

16.0 (2.2)

57.6 (244.7)

244.7 (155.0)

67.4 (7.4)

297.7 (105.9)

58.1 (17.5)

220.4 (158.8)

58.7 (12.5)

117.0 (95.1)

43.9 (7.6)

22.5 (4.5)

33.8 (7.3)

16.0 (5.5)

52.0 (17.0)

215.1 (134.5)

62.8 (4.0)

278.3 (79.9)

64.5 (7.3)

305.3 (11.2)

NN_TAM
Acc

N.it

77.0 (4.9)

313.2 (78.3)

59.5 (9.0)

37.5 (17.0)

68.0 (7.9)

53.5 (10.8)

63.8 (20.0)

244.6 (153.2)

73.1 (7.0)

318.1 (95.7)

67.3 (12.4)

260.8 (136.7)

62.0 (6.0)

153.0 (86.3)

49.5 (8.0)

47.5 (23.9)

50.2 (8.4)

47.5 (14.8)

60.9 (12.7)

274.9 (90.0)

63.9 (5.2)

305.3 (11.2)

65.8 (5.4)

305.3 (11.2)

rNN_Euc
Acc

N.it

84.2 (2.3)

92.5 (23.0)

72.6 (12.4)

37.5 (17.6)

83.7 (3.9)

97.0 (37.6)

61.9 (13.4)

15.9 (8.7)

72.6 (13.9)

45.5 (27.4)

84.9 (2.7)

129.4 (52.1)

77.2 (5.9)

198.3 (133.3)

59.9 (14.5)

32.5 (11.8)

76.9 (9.0)

174.3 (97.2)

45.0 (10.8)

14.0 (2.6)

74.9 (7.0)

209.6 (125.4)

78.1 (5.4)

319.1 (92.7)

rNN_Cos
Acc

N.it

65.5 (9.9)

37.0 (10.4)

60.6 (11.6)

31.0 (19.8)

66.0 (8.2)

37.5 (15.2)

52.7 (10.4)

9.7 (3.5)

65.9 (13.3)

63.5 (71.9)

72.0 (12.1)

66.5 (37.6)

52.7 (16.1)

43.0 (21.5)

53.4 (14.7)

32.0 (11.6)

60.6 (11.6)

72.5 (34.2)

34.2 (17.5)

12.3 (5.6)

53.7 (9.4)

87.4 (101.3)

60.5 (14.4)

165.7 (136.7)

rNN_DTW
Acc

N.it

38.7 (15.4)

39.0 (27.2)

44.6 (8.9)

21.0 (5.9)

43.0 (6.8)

31.5 (13.2)

29.2 (9.7)

7.4 (0.9)

56.4 (13.9)

156.6 (158.0)

56.1 (14.6)

133.2 (142.5)

41.2 (14.8)

51.0 (32.9)

35.4 (6.9)

25.0 (7.3)

35.9 (6.3)

30.0 (13.0)

23.4 (5.8)

9.3 (4.3)

56.9 (20.9)

97.0 (94.2)

61.2 (18.2)

132.0 (87.2)

rNN_TAM
Acc

N.it

68.6 (9.4)

290.7 (118.6)

43.1 (10.1)

17.0 (3.7)

48.2 (7.0)

21.0 (5.5)

40.5 (10.2)

12.2 (7.9)

59.7 (16.7)

124.3 (137.2)

50.1 (15.8)

128.2 (146.3)

56.9 (19.6)

77.0 (34.4)

29.8 (7.8)

18.0 (4.6)

27.7 (7.4)

14.5 (5.5)

33.1 (22.6)

22.0 (24.7)

53.2 (19.0)

54.0 (29.6)

47.9 (20.3)

128.2 (146.2)

ST
Acc

N.it

85.2 (3.5)

201.5 (83.8)

48.8 (15.3)

22.5 (9.5)

66.3 (9.9)

61.0 (29.2)

49.1 (18.9)

66.4 (107.1)

75.3 (10.7)

81.0 (41.6)

84.5 (4.1)

214.0 (46.5)

82.8 (6.6)

164.0 (70.1)

33.0 (13.0)

25.0 (10.2)

61.9 (12.1)

67.0 (21.1)

15.0 (0.6)

12.0 (0.0)

76.2 (12.7)

120.0 (28.4)

84.7 (7.2)

182.0 (53.9)

AL
Acc

N.it

86.1 (2.6)

109.5 (24.4)

60.3 (11.7)

28.5 (10.1)

65.7 (10.5)

38.0 (16.4)

37.4 (11.1)

10.9 (3.9)

84.0 (4.7)

98.0 (26.1)

86.0 (5.6)

97.0 (40.8)

84.6 (7.4)

193.0 (51.0)

51.2 (15.5)

58.0 (17.9)

64.0 (15.0)

118.0 (59.5)

15.0 (0.6)

12.0 (0.0)

76.8 (9.7)

116.0 (42.0)

76.6 (16.5)

139.0 (43.1)

SL 91.4 (2.4) 89.1 (4.0)

UL 57.8 (3.5) 61.9 (8.9)
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Conclusion

The section starts by summarising the main achievements of this dissertation, presenting

an overview of the proposed techniques and a summary of its most predominant results.

Followed by the presentation of the next research steps for future work in Section 5.2.

5.1 Overall Achievements

Over the last years, the advances on smartphone and wearable technology allowed the

proliferation of their use as unobstructive and pervasive sensors. The volume of the

recorded data by these equipment’s is significant and poses challenges on the develop-

ment of traditional machine learning approaches that rely on annotated data. The process

of annotating a large dataset requires a great effort by the manual annotation of an expert.

Traditional HAR approaches rely on SL models which require a large amount of labelled

data to guarantee accurate model performance. Based on the aforementioned challenges

in the HAR context, this dissertation addressed a semi-automatic data annotation ap-

proach. Our method relies on two steps: (1) a QS criterion to select the most relevant

samples to be labelled by an expert; (2) an automatic method to propagate the annotated

sample’s label over similar samples on the entire dataset.

Our main contribution consists of a comprehensive study of this approach in two

HAR datasets using state-of-the-art QSs and SCs. These methods were evaluated over

several SSAL strategies based on different distance functions to build an optimal SSAL

system with applications for human movement.

In order to accomplish this task, two datasets were used and allowed to verify the

feasibility of the proposed framework: the UCI HAR public dataset and a new dataset

obtained in the context of this dissertation composed by 12 subjects.
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Regarding the developed framework: a Forward Feature Selection method was imple-

mented, able to search for the optimal features set that best distinguishes the different

activities, to be given as input to the classifier. The developed algorithm was able to

reduce the number of features from the UCI dataset from 480 to 15, and from 1960 to 8

in the Fraunhofer dataset. Thus, improving both accuracy and the algorithm’s time and

computational performance.

The resulting feature vector was used as input for the classification process. Where

two frameworks were developed in which a learner is firstly initialised with a minimal

labelled training set, consisting of one sample per label:

• Active Learning framework: that attained an accuracy of 84.0 (4.7)% and 76.8

(9.7)% for the UCI and Fraunhofer datasets, respectively. Thus, having into account

that SL attained an accuracy of 91.4 (2.4)% and 89.1 (5.0)% for the aforementioned

datasets, respectively, with the annotation of 100% of the validation set. It is pos-

sible to conclude that, the AL process was able to reach competitive performance

results to SL with a decrease in the amount of labelled data of 98.8 (0.6)% and 92.7

(2.5)%. Thus, presenting a notable decrease in the annotation effort required to

obtain a stable classifier performing HAR.

• Semi-Supervised Active Learning framework: appending a semi-supervised step

to the aforementioned AL process in order to automate the annotation process,

through an automatic annotation of unlabelled data. Thus, creating a larger labelled

set, more representative of the entire dataset with no additional annotation effort

from the user.

For this step, three semi-supervised methods were implemented: NN-SSAL, RNN-

SSAL and Self-Training. Moreover, regarding the first two, four different similarity

measures were used to infer the distance between different samples: Euclidean dis-
tance, Cosine similarity, DTW and TAM.

If we compare ST-SSAL and AL, both methods achieve similar classification per-

formance. However, ST-SSAL was able to annotate a higher volume of data with

similar annotation effort, without compromising the classification accuracy. This

study extends the work conducted by [13] on HAR, since it applies ST on the la-

bels previously selected by AL. The ST-SSAL using the Overall Uncertainty and

Classification-Change (Over-CC) SC obtained an accuracy of 84.5 (4.1)% and 84.7

(7.2)% for the UCI and CADL datsets, respectively, with a reduction in the Oracle

annotation effort on 97.6 (0.6)% and 89.8 (2.8)% of total number of samples for both

datasets.
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5.1. OVERALL ACHIEVEMENTS

Moreover, in the construction of the AL process, two core considerations were anal-

ysed:

• Query Strategy: where eight QSs were tested: Least Confident Sampling, Margin
Sampling, Entropy Sampling, Local Density Sampling, Uncertainty and Local Density
Sampling, Margin and Local Density Sampling, Entropy and Local Density Sampling
and Random Sampling. All things considered, Margin Sampling was selected as the

most suitable QS, due to its low time, computational complexity, and accuracy

results, surpassing PL (Random Sampling). Additionally, overall, the introduction

of the density weight resulted in a slight increase in the classifier’s accuracy and

percentage of automatically annotated samples. However, at the cost of considerable

time and computational cost, required for the calculation of each sample’s density.

• Stopping Criterion: where four stropping criteria were presented: Max-Confidence
SC, Overall Uncertainty SC, Classification-Change SC and two SC combining the

precedent strategies.

Globally, the most suitable SC was coherent between the different datasets and

highly changed accordingly with the SSAL method. Notwithstanding, undoubtedly,

with the introduction of the SC to the AL process, the number of iterations the AL

performed, and consequently, the manual annotation effort required from the user

was significantly reduced.

To conclude, comparing the performance results of the best performing method ST-

SSAL method using the , for the public UCI dataset, to state of art researches, namely,

[23, 35, 45] who have achieved accuracies of 86%, 96% and 96%, respectively. When

evaluating on the same test set, ST-SSAL obtained an accuracy of 83.2 (4.5)%, after 230.5

(21.9) queries. Therefore, although it did not outperform the aforementioned researches,

satisfactory results were achieved, annotating 48.5 (18.1)% of the validation set with

an accuracy of 88.0 (5.4)%, and a notable reduction of 96.8 (0.3)% in the training set

annotation cost, completing with success the main objective of this dissertation.
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CHAPTER 5. CONCLUSION

5.2 Future Work

The following paragraphs describe some topics that could be explored in a future re-

search:

• Utilisation of a multi-oracle system with non-expert users and evaluation of the

system response to the possible integration of bias in the AL annotation process.

• Development of the annotation cost estimation for different samples. Since, differ-

ent samples may present different annotation costs according to the sample charac-

teristics, the oracle expertise on the dataset and the mode of annotation.

• Enlargement of the Fraunhofer dataset, with more volunteers performing the activ-

ities for a greater timespan. Acquisition of a broader range of activities, with the

incorporation of complex activities, allowing the recognition of a complete detailed

daily monitoring. Where a larger dataset is linked to a more versatile classifier, able

to generalise into different users and achieve more reliable results.

• Integration of a device position independent algorithm into the proposed method,

enabling the user to fix the acquisition device in any desired location.

• Development of an annotation interface, with the adaptation of the proposed algo-

rithm to an Android environment.

• Computational optimisation of DTW and TAM distance metrics, and density com-

putation so both distance metrics and QSs integrating the local density can become

competitive.
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Acquisition Devices

In this appendix are presented the acquisition devices used in the construction of the

CADL dataset. Namely, in Figure A.1b, the IoTiop wearable device, developed by Fraun-

hofer, which the user wore on the left wrist, right ankle and right side of the waist and in

Figure A.1a, the smartphone, a Samsung S5, showing the acquisition application (IoTip
Recorder) which the user kept on the right hand to annotate its current activity.

(a) Fraunhofer Iotip device (b) Smartphone Samsung S5 showing the IoTip
Recorder application

Figure A.1: IoTip device in Figure A.1a and the Smartphone Samsung S5 with IoTip
Recorder app in Figure A.1b.
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Moreover, the activities were performed in a controlled environment, with the volun-

teers performing the following acquisition protocol.

1. Laying: the subject should lay down up, still, without any interruption for a period

of 2mins in any direction at his preferred speed.

2. Standing: the subject should stand still without any interruption for a period of

2mins.

3. Sitting: the subject should sit still without any interruption for a period of 2mins.

4. Running: the subject should run without any interruption for a period of 2mins in

any direction at his preferred speed.

5. Walking: the subject should walk without any interruption for a period of 2mins in

any direction at his preferred speed.

6. Walking Upstairs: the subject should walk upstairs without stopping between

floors for a period of 2mins in any direction at his preferred speed.

7. Walking Downstairs: the subject should walk downstairs without stopping be-

tween floors for a period of 2mins in any direction at his preferred speed.

Each activity was set to be performed for 2mins since it was important to obtain a

homogeneous dataset so the classifier would not be biased towards a certain activity. This

fact is verified by the pie charts below, showing the percentage of samples in each activity

in relation to the entire dataset.

Walking 17%

Upstairs

15%

Downstairs

14% Sitting
17%

Standing

19%

Laying

19%

(a) UCI dataset

Walking
14%

Upstairs
14%

Downstairs

15% Sitting

14%

Standing14%

Laying

14%

Running

14%

(b) CADL dataset

Figure A.2: Percentage of samples belonging to each performed activity in relation to the
entire dataset for the UCI dataset in Figure A.2a and for the CADL dataset in Figure A.2b.
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Algorithms

In this appendix is presented additional algorithm’s pipelines referred throughout the

current dissertation. Starting by the algorithm’s pipelines focusing in bold on the four

developed stopping criteria, described in more detail in Subsection 3.3.3: Max-Confidence
SC, Overall Uncertainty SC, Classification-Change SC and Combination Strategy SC. To-

gether with the algorithm’s pipelines for the SSAL framework, described in Section 3.4:

Self-Training, NN-SSAL and rNN-SSAL.

Algorithm 7 Active Learning Applying The Max-Confidence SC
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: θ← clf .f it(L) . Learns model on initial training set
2: while µLC(A) - µLC(B) > δµMC and σLC(A) - σLC(B) > δσMC do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments model training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples
7: Θ← clf .f it(L) . Updates model
8: Return clf .predict(T ) . Returns predicted labels for the test set
9: end while
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Algorithm 8 Active Learning Applying The Overall Uncertainty SC
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: θ← clf .f it(L) . Learns model on initial training set
2: while µOU (A) - µOU (B) > δµOU and σOU (A) - σOU (B) > δσOU do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments model training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples
7: Θ← clf .f it(L) . Updates model
8: Return clf .predict(T ) . Returns predicted labels for the test set
9: end while

Algorithm 9 Active Learning Applying The Classification-Change SC
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: θ← clf .f it(L) . Learns model on initial training set
2: while accuracy_score(clf .predictk , clf .predictk+1) < δF1 score do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments model training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples
7: Θ← clf .f it(L) . Updates model
8: Return clf .predict(T ) . Returns predicted labels for the test set
9: end while

Algorithm 10 Active Learning Applying The Combination Strategy SC
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: θ← clf .f it(L) . Learns model on initial training set
2: while f1 not True and f2 not True do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments model training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples
7: Θ← clf .f it(L) . Updates model
8: Return clf .predict(T ) . Returns predicted labels for the test set
9: end while
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Algorithm 11 Self-Training
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: Θ← clf .f it(L) . Learns model on initial training set
2: while SC not met do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments classifier training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples
7: Θ← clf .f it(L) . Updates model
8: for x in U do
9: if Pθ(ŷ|x)) >= 0.98 then . Finds confidently predicted samples C in U

10: C← C ∪ x
11: end if
12: end for
13: L← L∪C . Augments model training set with C
14: U ←U \C . Removes C from unlabelled samples
15: Θ← clf .f it(L) . Updates model
16: Return clf .predict(T ) . Returns predicted labels for the test set
17: end while

Algorithm 12 5-Nearest Neighbour Semi-Supervised Active Learning
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: Θ← clf .f it(L) . Learns model on initial training set
2: while SC not met do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments classifier training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples
7: Θ← clf .f it(L) . Updates model
8: for x in x∗’ 5-NN do . Adds x∗’ 5-NN to C
9: C← C ∪ x

10: end for
11: L← L∪C . Augments model training set with C
12: U ←U \C . Removes C from unlabelled samples
13: Θ← clf .f it(L) . Updates model
14: Return clf .predict(T ) . Returns predicted labels for the test set
15: end while
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Algorithm 13 1-reverse-Nearest Neighbour Semi-Supervised Active Learning
Input: initial train set L, unlabelled validation set U , independent test set T
Output: predicted labels for the test set

1: Θ← clf .f it(L) . Learns model on initial training set
2: while SC not met do
3: Selection by Q, of most informative sample: x∗

4: Ask Oracle for x∗’s label
5: L← L∪ x∗ . Augments classifier training set with x∗

6: U ←U \ x∗ . Removes x∗ from unlabelled samples
7: Θ← clf .f it(L) . Updates model
8: for x in U do . Iterate over unlabelled samples
9: if x∗ is x’s labelled 1-NN then . Adds samples to which x∗ is its NN

10: C← C ∪ x
11: end if
12: end for
13: L← L∪C . Augments model training set with C
14: U ←U \C . Removes C from unlabelled samples
15: Θ← clf .f it(L) . Updates model
16: Return clf .predict(T ) . Returns predicted labels for the test set
17: end while
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C
Horizon Plot

This appendix shows the obtained Horizon Plots for the UCI and CADL dataset, respec-

tively.

Furthermore, the Horizon Plots allow to visualise the behaviour of the best features

sets along the protocol activities, obtained for one of the dataset users.

Moreover, on top, the name of the activities are shown, while on the left, the name of

each feature is shown per row. Thus, each row depicts the performance of each feature

along every activity. The x, y, z and mag in each feature name, denotes the axis to which

it corresponds to: the x axis, y axis, z axis or to the signal magnitude.

The green and red values, denote positive and negative values, respectively, with

the colour becoming darker with an increase of the feature’s absolute value and lighter

otherwise.

On this account, the following Horizon Plots confirm the utility of the presented

features, as they change significantly along each activity, thus, allowing a confident dis-

crimination between activities.
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Figure C.1: Horizon Plot for the UCI dataset, allowing to visualise the behaviour of the best features set, shown in the y axis, along the
protocol activities, on top. The x, y, z and mag in each feature name, denote the axis to which it corresponds to: the x axis, y axis, z axis or to
the signal magnitude. The green and red values, denote positive and negative values, respectively, with the colour becoming darker with an
increase of the feature’s absolute value and lighter otherwise.
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Figure C.2: Horizon Plot for the CADL dataset, allowing to visualise the behaviour of the best features set, shown in the y axis, along the
protocol activities, on top. The x, y, z and mag in each feature name, denote the axis to which it corresponds to: the x axis, y axis, z axis or to
the signal magnitude. The green and red values, denote positive and negative values, respectively, with the colour becoming darker with an
increase of the feature’s absolute value and lighter otherwise.
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