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Resumo 

 

 

A doença de Alzheimer é uma das formas mais comuns de demência, que afeta milhões de pessoas 

em todo o mundo. Esta doença embora incurável, carece de uma forma fácil e eficaz de diagnóstico. 

Esta dissertação tem, por isso, como objetivo desenvolver um biossensor eletroquímico para a dete-
ção precoce da doença de Alzheimer, através do reconhecimento de um biomarcador associado a dife-

renças visíveis no tecido cerebral e responsável pela criação de placas, o peptídeo Aβ-42. 

Os sensores criados foram construídos com uma abordagem bottom-up, usando papel como subs-
trato, uma vez que este material é um dos mais promissores na indústria da eletrónica flexível, por ser 

ecológico, barato, abundante, oferecer processos de construção biocompatíveis, fáceis e rápidos. 

Os biossensores baseiam-se em elétrodos de carbono impressos, aliados a técnicas de laser. O circuito 
elétrico é composto por uma tinta condutora de carbono ou lápis 9B, impressa ou pintada num substrato 

de papel. O reconhecimento é feito por um polímero de impressão molecular que foi criado na superfície 

do elétrodo por eletropolimerização. Para este efeito, usou-se uma mistura de biomarcador alvo (Aβ-42) 

e monómero (O-Fenilenodiamina) e aplicou-se uma gama de potencial adequada para formação de um 
polímero condutor com zonas de reconhecimento por afinidade para o biomarcador escolhido. Vários 

parâmetros de eletropolimerização foram otimizados antes da construção dos dispositivos finais através 

da impressão do péptido, crescendo o polímero em volta do péptido Aβ-42 e removendo-o mais tarde, 

usando incubações com uma enzima e ácido adequados. 

O desempenho do biossensor foi avaliado por técnicas eletroanalíticas. A resposta do biossensor foi 

estudada entre 0,1 ng/mL e 1 µg/mL de Aβ-42, em PBS buffer e Cormay serum. A reposta obtida indicou 
uma resposta analítica controlada dentro dos parâmetros fisiológicos desejados, considerando que um 

indivíduo saudável apresenta valores próximos a 23,3 pg/mL. 

O biossensor apresentado oferece inúmeros benefícios, como o seu baixo custo de produção, a pos-

sibilidade de reutilização, eleva reprodutibilidade e resposta rápida, características que podem ter um 

forte impacto na deteção da doença de Alzheimer. 

Palavras-chave: Biossensor; Eletroquímica, Papel; Alzheimer 
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Abstract 

 

Alzheimer’s Disease is one of the most common forms of dementia, affecting millions of people 

worldwide. Although incurable, an easy and effective form of diagnosis is still missing.  

Thus, this work aims to develop an electrochemical biosensor for the early detection of Alzheimer's 
disease, by recognizing the peptide Aβ-42, a biomarker associated with visible differences in the brain 

tissue and responsible for the formation of senile plaques. 

The intended sensing devices use a bottom-up designing approach, having paper as substrate. Paper 
is one of the most promising materials in the current flexible electronics industry, for being eco-friendly, 

cheap, abundant and offering biocompatible, easy and fast construction procedures. 

The biosensors produced herein use pencil and printed carbon electrodes, allied with laser writing 

techniques. The electrical circuits are designed either on a conductive carbon ink or a 9B pencil tracks, 

printed or draw directly on the substrate.  

The recognition is done by a molecularly imprinted polymer, created on the electrode’s surface by 

electropolymerizing a mixture of the analyte (Aβ-42) and a monomer (O-Phenylenediamine). This pro-
cess forms a conductive polymer with recognition sites displaying affinity for the selected biomarker. 

The parameters involved in the electropolymerization were optimized, by imprinting the peptide on the 

sensing layer, growing the polymer around the Aβ-42 peptide and removing it later by incubating in 

suitable enzyme and acid solutions. The performance of the biosensor was evaluated by electroanalytical 

techniques.  

The analytical features of the biosensor were further evaluated by electroanalytical techniques. For 

this purpose, the analytical response was tested with standard solutions ranging from 0.1 ng/mL to 

1µg/mL of Aβ-42 in PBS buffer and Cormay Serum. The response was found of analytical interest, 

considering that healthy individuals show normal values of ~23.3 pg/mL. 

Overall, the developed biosensor offered numerous benefits, such as being a low cost, having reusa-

bility features, with a reproducible and fast response, which may have a strong impact in the early de-

tection of Alzheimer disease.   

Keywords: Biosensor; Electrochemical, Paper; Alzheimer 
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Motivation and objectives 

The aim of this master thesis is to develop a new form of early diagnosis and monitoring, in a simple, 

low-cost and reliable way, of Alzheimer Disease. 

A crucial factor for the prevention and treatment of diseases is their correct diagnosis, and with Alz-

heimer’s an easy and affordable method of diagnosis is still non-existent. Alzheimer’s disease affects 
over 45 million people worldwide and this number is estimated to double every 20 years in aging pop-

ulations, thus reaching a value of 115.4 million in 2050. Early detection of this disease, as well as the 

capability to distinguish it from other forms of dementia, is key to plan timely caring actions and help 

families intervene before the disease becomes too serious. 

This project presents a new form of early diagnosis and monitoring, using a simple paper-based 

biosensor. This biosensor has carbon-based electrodes combined with plastic antibodies, which use the 

principles underlying the immune system, to detect the presence of biomarkers associated with the dis-
ease, without requiring invasive procedures. It seeks to measure the levels of Aβ-42, a peptide associated 

with the formation of plaques in the brain tissue, and that will work as the biomarker in this project. 

Thus, the main goal is to create a device that can be cheap and eco-friendly, but still effective. For 
this purpose, two types of carbon-based materials are tested: pencil and a commercial carbon-ink. Alt-

hough both materials are conductive, this project also focused on improving their conductive proprieties 

by laser technology.  

In terms of structure, the thesis is divided in two main parts:  

(a) the production/optimization of paper-based sensors with pencil and carbon ink electrodes; 

(b) the functionalization of these sensors, with plastic antibodies capable to detect selectively Aβ-42. 
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1) Introduction 

1.1) Alzheimer Disease 

Dementia involves a decline in cognitive skills used to perform every-day activities. The Alzheimer 

Disease (AD) is the most common form of dementia, with 60-80% cases of dementia being attributed 
to AD and affecting over 45 million people worldwide [1], [2]. Although symptoms can vary widely, the 

first problem many patients notice is forgetfulness, severe enough to affect their ability to function at 

home or work. However, the changes take place in the brain long before the signs of memory loss. 

AD pathogenesis is complex, involving abnormal amyloid-β (Aβ) metabolism, Tau hyperphosphor-
ylation, oxidative stress, reactive glial and microglial changes, and other pathological events [3]. In a 

patient with this disease, the brain has visible differences in its tissue, in the form of misfolded proteins 

called plaques and neurofibrillary tangles that are responsible for breaking down the brain’s structure. 
Plaques are deposits of protein fragment (Aβ) that build up in the spaces between nerve cells, while 

tangles are twisted fibers of Tau proteins that build up inside cells [3]. Though autopsy studies show that 

most people develop some plaques and tangles as they age, those with AD tend to develop far more and 
in a predictable pattern, beginning in the important areas of memory, before spreading into other regions. 

The diagnosis of AD is done typically via extensive clinical examinations based on specific clinical 

diagnostic criteria. This process involves several exams that aren’t always reliable [4]. The identification 

of relevant biomolecules that could act as AD biomarkers, and therefore allow rapid and effective diag-
nosis of this disease, is highly pertinent. The amyloid precursor protein (APP), which is composed by 

amyloid β peptide (Aβ), is therefore the chosen biomarker for this project’s device. The commencement 

of neurodegenerative disorders is known to be directly linked to high levels of Aβ-42/ Aβ-40 ratio, 
where Aβ-42 is the long form of the Aβ peptide and Aβ-40 is the shorter chain [5]. 

Although there is no cure, an early diagnosis is still one of the most important tools to fight the 

progression of this disease. There are already forms of detection of this biomarker such as ELISA [6], [7] 

and biosensors utilizing surface plasma resonance [8], [9], field effect transistor [10] and others[11] that have 
been reported to demonstrate the detection of Aβ. Most of these forms of detection only take in consid-

eration the detection in cerebrospinal fluid (CSF), which makes them invasive and some don’t allow a 

point-of-care (POC) analysis [12]. A biosensor that could detect this biomarker in blood samples could 
allow a reduction of cost, portability, and an overall easier way to diagnose the disease. 

 

1.2) Biosensors 

Biosensors are analytical devices that incorporate a biological/biochemical sensing element and a 

transducer, to deliver a quantifiable response. The interaction between the analyte and the recognition 

element should be selective and capable of generating chemical/physical changes that are monitored by 

a transducer [13]. 

The type of components of a biosensor, as well as its construction, depends on its application, in 
addition to the sensitivity, sample characteristics, cost and lifetime. Generally, the most important ele-

ment of the device is the recognition element, as it determines its selectivity. The range of analyte con-

centrations for which the device is sensitive is often associated with the transduction system, so the 
proper choice of these elements is critical [13], [14]. 

The analytical signal can be measured using optical (colorimetric, fluorescence, luminescence and 

interferometric, calorimetric) [15] and electrochemical methods (potentiometry, amperometry, conduc-

timetry/capacitive and impedimetric) [11], [16]–[18], calorimetric differential mass (piezoelectric/acoustic 

waves) [18] or magnetic methods [19]. In the health field, the most commonly used biosensors are electro-

chemical, from which the most well-known are the glucose measuring devices [20], [21]. 
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1.2.1) Electrochemical Biosensor 

Electrochemical biosensors are the most common type of biosensors used today due to their porta-
bility, cost effectiveness, small size, and easy use. All these features makes these perfect for POC de-

vices [22]. 

The principle behind an electrochemical biosensor is that the electrons flow between the electroactive 
species and the electrode surface, producing a chemical reaction and changing in the electrical properties 

of the solution. These changes can be sensed and used both for qualitative and quantitative analysis [23]. 

Typically, electrochemical biosensors consist of an analyte, receptors, measurable signals, transducer 

and a data analysis system. Each of these has a different role within the biosensor. The analyte is a 
biological/chemical element that works as the target; it can vary from virus, bacteria, peptides, and oth-

ers. The receptors are biological or chemical elements that have identical properties to the analyte; these 

must be compatible with each other in order to bind and interfere with current flowing (that generate the 
signal). A transducer is the element used to transfer and convert the signal into the data analysis system. 

Overall, this biosensor works in the form of an electrochemical cell, where the presence of electrodes 

and electrolyte become necessary [13]. These electrodes can be made from different kinds of materials, 
which leads to variations in terms of sensitivity and in the length of the detection time of the sensor. 

Ideal electrodes are highly sensitive and show a fast response time; examples of the best materials are 

gold, silver and carbon. 

When building an electrochemical biosensor, the most common combination for the electrodes is a 
3-electrodes system, with a reference electrode (RE), a counter electrode (CE) and a working electrode 

(WE). The RE is used to maintain a known and stable potential, so it must be kept at a distance from the 

reaction site. The WE acts as the transduction element in the (bio)chemical reaction, while the CE es-
tablishes a connection to the electrolytic solution so that a current can be applied to the WE. All of these 

should be both conductive and chemically stable.  

Voltammetry is the analytical technique that monitors electrochemical biosensors, consisting of a 

potential sweep application and subsequent reading of the electrical current so generated. Depending on 
the waveform applied on the 3-electrodes system, various electro-analytical methods can be employed, 

such as Cyclic Voltammetry (CV), Chronoamperometry (CA), Square Wave Voltammetry (SWV) and 

Electrochemical Impedance Spectroscopy (EIS) [19].  

In CV the potential is applied as a sweep/linear function of time. This method explores the behaviour 

of electroactive compounds and the mechanism of oxidation and reduction and it allows to verify the 

reversibility of systems, to determine the presence of chemical events associated to the transfer of charge 

and to verify the occurrence of adsorption of products in the electrode [19], [24]. 

SWV is a pulsed-voltammetry, in which the potential is applied by pulsing one potential to another, 

rather than sweeping. It allows the analysis through the shape of the current-potential curve, resulting 

from the application of a given potential that changes according to the pulse amplitude and duration. 
The obtained signal is the resulting current from both pulses. It exhibits excellent sensitivity and high 

rejection to capacitive currents. This measurement requires an initial time where the working electrode 

is polarized to a potential, where the redox reaction does not occur. The current-potential curves have a 
well-defined profile and are generally symmetric, since the currents are measured only at the end of 

each half-period and the variations in the height and width of the potential pulse are always constant, 

for a given range of potentials. The height of the peak produced is proportional to the concentration of 

the electroactive species [19]. 

Chronoamperometry is a time-dependent technique, used to study the kinetics of chemical reactions, 

diffusion processes and adsorption. In this technique, a potential step is applied to the electrode and the 

resulting current vs. time is observed [25]. Since the current is integrated over relatively longer time in-
tervals, chronoamperometry gives a better signal to noise ratio in comparison to other amperometric 

techniques [19]. 

EIS is one of the best tools for monitoring changes occurring at the surface of the biosensor. In this 
technique, a small sinusoidal excitation signal is applied to the WE and the subsequent response is 
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measured. This assay allows quantifying the resistance or capacitance of the electrolyte at the WE sur-

face. The Impedance is the proportionality factor between the phase potential and the phase current over 

time, measured in Ohm [19], [24]. 

1.3) Molecularly Imprinted Polymer 

In conventional assays, natural antibodies are used to interact in a selective way with a given target 

analyte. But these natural materials show several limitations, like high production costs and low chem-

ical stability. In the presence of organic solvents or in other non-physiological conditions, such as high 
temperature, pH and high salt concentration, natural antibodies lose their functionality. An alternative 

approach is to substitute these materials of natural origin by synthetic materials that display similar 

properties (biomimetic materials) [26]. 

Plastic antibodies mimic the response of natural antibodies while being of synthetic origin. These are 
obtained mostly by molecularly-imprinted polymer (MIP) technology, where a polymer is grown around 

the target molecule as can be seen in Figure 1.1. The exclusion of the target from the polymerized matrix 

generates imprinted sites that match the size and shape of the target [26]. 

 

Figure 1.1 - MIP production steps . oPDA is the monomer used herein and AB42 the target biomarker.  

These imprinted sites are expected to act similarly to natural antibodies, rebinding to the target with 
great affinity and selectivity [26], [27]. The use MIP and plastic antibodies allows the achievement of the 

artificial moulding of the analyte much faster than with a naturally occurring recognition and response 

[28] [29]. When creating MIPs for proteins or peptides, in order for the molecular imprinting to be success-

ful, it is essential to use molecules with high affinity to the target.  

Since the MIP will be part of an electrochemical sensor, the polymer may be produced by electro-

polymerization. This method allows to adjust several parameters that regulate the rate of polymer nu-

cleation and growth and to control the film thickness and morphology [30]. The template particles and the 
monomers are mixed in the same solution and create the polymeric matrix directly on the sensor surface 

when the required electrical conditions are applied. 

 

1.4) Paper Electronics and Carbon Electrodes 

Paper is the cheapest and most widely used flexible substrate in day-to-day life. It has a significantly 

lower price than plastic substrates and it also presents the advantage of being recyclable and made from 

reusable raw materials [31]. 

The idea of “printing” electronics on flexible substrates, such as paper or polymeric materials, is not 

new but only recently there have been promising reports of electronic devices fabricated directly onto 
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paper substrates [32], [33]. Paper has a porous structure and a large surface roughness. It can show fibres 

with different sizes and shapes, depending on their origin and treatments [34]. 

The lack of medical care in poor-resource countries and the constant need for renewable/reusable 
materials has opened doors for paper as a substrate for biosensing. Paper is easy to fabricate, mass-

producible and disposable, so it makes sense to develop an easy-to-use, rapid and inexpensive POC 

device with this substrate [35], [36]. However, its hydrophilic nature makes it unsuitable for electrochem-
istry, at least in its natural form. In order to create a biosensor capable of sustaining electrochemical 

procedures, the substrate was hydrophobized using a wax coat as in microfluidic devices  [35]. Wax print-

ing is a method that requires only two steps, the printing patterns of wax on the paper surface and the 
melting of the wax into the paper to form a hydrophobic barrier. This technique is adapted to fabricate 

large numbers of paper devices in a single batch, due to its rapidity and low cost [37], [34]. 

There are thousands of conductive materials that can work as electrodes, but the most abundant is 

carbon. Carbon comes in numerous varieties of forms and has an extensive application in electrochem-
ical studies [38],[39],[40]. When compared with metal electrodes, carbon has many advantages due to its low 

cost, wide range of potential windows and high chemical stability. This element exists in many allotropic 

forms such as graphite, graphene and diamond [41]. The most common form is based on the graphite 
structure, which can be modified or enhanced by surface treatments and modifications. These ap-

proaches can increase surface roughness, surface area or oxygenate functional groups on the electrode 

surface. 

Graphite has both metallic and non-metallic properties, being very useful as an electrode material. 

The pencil graphite leads are composite materials containing graphite (~65%), clay (~30%), and a binder 

(wax, resins, or high polymer) [42]. According to the European Letter Scale, graphite pencils are marked 

with numbers, indicating the degree of hardness or blackness from 9H (the hardest) to 8B (the softest), 
and letters H (hardness) and B (blackness). The B-type leads contain more graphite and are softer, and 

the harder H-type leads have more clay, whereas HB type pencil leads contain equal portions of graphite 

and clay. Worldwide, 4% of graphite is used to produce pencils consisting of a fine powder in an inor-

ganic (resin) or organic matrix (clay or a high polymer). 

1.5) Laser Direct Writing 

Carbon based materials are very commonly used as electrodes for electrochemical assays for their 
intrinsic properties, attributed to the structural properties of carbon itself [43]. From all these, graphene 

and graphene derivatives have emerged as the most promising materials, due to their outstanding elec-

trochemical properties, such as high conductivity, large surface area and mechanical robustness [44].  

These materials can be produced by numerous deposition techniques, such as RF sputtering, screen-

printing, inkjet printing, spin-coating, among others. All these methods offer numerous advantages, 

however they are rather expensive and have prolonged processes with several fabrication steps. Thus, 
during the past decades, alternative techniques have been studied and Laser Direct Writing (LDW) 

showed great potential [45]. 

LDW consists in an easy and simple method of obtaining patterns on the surface of diverse materials 

ranging from common precursors, like paper and cloth to polymers and metals, always under ambient 
conditions [45]. This procedure is done by a laser, a highly amplified and focused beam of radiation, 

which enables high accuracy and resolution printing, freedom of design, fast fabrication with very lim-

ited steps, complex micro and nanofabrication. It even excludes the necessity of lithography masks and 
clean-room equipment. All these characteristics make LDW a very cheap and fast alternative [46]. When 

carbon-based materials are printed by laser direct writing one more advantage is presented, since the 

laser beam can promote structural or chemical changes in the substrate, instead of ablation: the formation 

of graphene films. This has been demonstrated in several studies with multiple carbon precursors, like 
paper, Kevlar or Kapton [45]. The ease of obtaining high quality porous graphene films on the surface of 

substrates will surely allow many new electronic applications and electrochemical sensors [47], [48], [49].
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2) Materials and Methods 

This work is divided in two main parts. The first one consists in the production and optimization of 

carbon-based electrodes, using a CO2 infrared laser cutting system as a tool for fabrication and improve-

ment of conductive proprieties of the materials. In the second part, an electrochemical biosensor is pro-

duced by integrating a MIP material as biorecognition element. 

This chapter begins with a brief description of the materials and equipment used, followed by a 

description of the experimental procedures involved in this work. 

2.1.1) Pencil electrodes 

For the fabrication and study of this type of electrode support, two types of paper were used: What-

man no. 1 chromatography paper (GE Healthcare, 87 g/m², 570x460 mm sheets) and office paper (OP) 

(Navigator, 80 g/m2, 210x297 mm sheets). The pencils tested were from DERWENT Graphic and 

ranged from 3H to 9B (hardest to softest).  

Before using a regular sensor design, tests were made to the pencil and paper, using a simple matrix 

where the different types of pencil had one to four layers (C), as can be seen in Figure 2.1a. Using a 
Universal Laser System CO2 VLS 3.5, a pulsed cutting laser (wavelength of 10.6 µm), associated with 

a plano-convex lens (focal length of 50.8 mm, spot size of 0.127 mm) a change in the graphite structure 

can be made. The laser interface allows the definition of all laser parameters such as the laser power, 
the speed and the number of pulses per inches (PPI) in the form of a Red, Green, and Blue (RGB) color 

code. 

 

Figure 2.1- (a) Study of pencils and type of paper,  effects of laser in different layers.  (b) Adobe 
Il lustrator Design 

The results were monitored by four-point probe measurements and a multimeter.  

When the laser parameters were optimized, and a conclusion could be made about which pencil and 

paper substrate were better, the next step consisted in applying these to a classical 3-electrodes design, 

for the construction of the electrochemical biosensor. Due to this application, the paper needed to show 

a hydrophobic behavior, for which a wax treatment was made on the substrate.  

Adobe Illustrator was used to create the computerized design shown in Figure 2.1b. A Xerox Col-

orQube 8570 wax printer was used to apply the hydrophobic layer on the substrates. After printing, the 

wax needs to diffuse throughout the fibers of the paper; for this purpose, a hot plate annealing stage was 

done in a SCHOTT ROBAX equipment, for 2 minutes, at 120 ºC.  

An acetate mold was created using the ULS and the Adobe Illustrator software, to produce identical 

electrodes. With the paper substrate glued to the mold, pencil electrodes were created by applying 4 
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layers of pencil 9B. After that, the mold was detached and the chips were displayed and organized in 

the laser table using the alignment marks as can be seen in Figure 2.1b; the best condition for this type 

of electrodes (also named as chips) was 4W Power, with a 0.2286m/s speed with the table at -0.2’’. 

To keep the chips protected and to create a distinguished area between the electrodes and the con-

tacts, the chips were laminated according to Figure 2.1b. Silver ink from Conductive Compounds was 

used to coat the contacts in order to improve the readings of the chips. A hot plate annealing stage was 
then done for 20 min, at 120 ºC, to evaporate the solvents. The samples considered for this study were 

Pencil Homemade Electrodes (P-HME). 

2.1.2) Carbon Ink electrodes 

For the fabrication of these electrodes, carbon ink from Conductive Compounds was used. The paper 

substrate had the same treatment as the previous chips, but instead of using moulds, the substrate was 

laminated and then coated with two layers of commercial carbon ink, followed by hot plate annealing, 
for 20 min, at 120ºC. The samples considered for this study were Carbon Ink Homemade Electrodes 

(CI-HME). 

2.1.3) Characterization of the home-made electrodes 

Both electrodes were characterized by SEM-FIB using a Carl Zeiss AURIGA CrossBeam work-

station instrument SEM images were captured in in-lens mode, with an acceleration voltage of 2 kV and 

an aperture size of 30 µm. Samples were glued onto aluminum substrates using a double-sided carbon 

tape and were coated with a thin carbon layer (<20 nm) using a Q300T D Quorum sputter coater. 

EDS analysis was performed in a Hitachi TM 3030Plus Tabletop SEM, in low vacuum conditions 

for the identification of clay and graphite proportions in the composition of the different used pencil 

leads, as well as any other existent components.  

The external layers of the electrodes surface were chemically and electronically analysed by X-ray 

photoelectron spectroscopy (XPS) to unfold the effects of laser ablation. The used equipment was an 

AXIS Supra XPS from Kratos Analytical and the used parameters were monochromated Al Kα radiation 
and pass energies ranging from 5 to 40 eV. The deconvolutions were done with CasaXPS. The asym-

metric line shape was A(0.4,0.38,20)GL(30), whereas the symmetric ones were all GL(30). The full 

widths at half maximum (sp2: 0.5, π to π*: 2.7, sp3 and carbon-oxygen bonds: 1.2-1.3) and the relative 

peak positions were held constant for all samples. 

The crystallinity and structure of the samples were obtained by X-Ray Diffraction (XRD), PANalyt-

ical, model X’Pert Pro, in Bragg-Brentano geometry with Cu Kα line radiation (λ=1.5406 Å). The dif-

fractograms were acquired in a range of 2θ ranging from 10 to 70 ° with a range of 0.03 °. 

Raman spectroscopy data was generated by a Renishaw Qontor Raman microscope, equipped with 

532 and 633 nm lasers, spectral resolution of 0.3 cm-1 (FWHM), mapping capability with 100 nm of 

lateral resolution and real time dynamic AUTO FOCUS. 

Atomic force microscopy (AFM) measurements were performed in an Asylum Research MFP-3D 

Standalone operated in alternate contact mode in air (commonly known as tapping mode), using com-

mercially available silicon AFM probes (Olympus AC160TS; k = 26 N/m, f0=300 kHz). The resulting 
topographies were plane fitted in Igor Pro software (Wavemetrics) and the final images generated using 

Gwyddion software. 

2.2) Electrochemical sensor 

2.2.1) Apparatus 

The electrochemical measurements were conducted with a potentiostat/galvanostat from Metrohm 

Autolab, PGSTAT302N, equipped with a FRA2 module and controlled by Nova 10.1 software. 
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The interface between the electrodes and the Autolab was made through a homemade interface devic, 

specially designed by CENIMAT for this purpose. The fabrication protocol and pictures of the interface 

are shown in Annex A (Figure A.0.1). 

2.2.2) Materials and Reagents 

The materials and reagents used are listed in Table 2.1. All chemicals were of analytical grade and 

de-ionized water (conductivity <0.1 µS/cm) was employed. 

Table 2.1– Materials and Reagents used and their origin 

Materials/Reagents Origin 

O-Phenylenediamine (oPDA) Sigma-Aldrich 

Trypsin solution 10x Sigma-Aldrich 

Potassium hexacyanoferrate III (K3[Fe(CN)6]) Riedel-De Haën 

Potassium hexacyanoferrate II (K4[Fe(CN)6]) trihydrate Riedel-De Haën 

Potassium chloride (KCl) Merck 

β-Amyloid (1-42), human, ≥ 95% GenScript 

Serum Cormay human PZ CORMAY S.A. 

Phosphate buffer saline (PBS) Amresco 

Absolute Ethanol (99.5%) Pancreac 

3,4-Ethylenedioxythiophene,97% (EDOT) Alfa Aesar 

4-Aminothiophenol, 96% (ATP) Acros Organics 

Oxalic acid dihydrate Merck 
 

2.2.3) Solutions 

The electrical features of the sensing surface were followed by checking the electrical features of a 

standard redox probe composed of 5.0×10-3 mol/L K3[Fe(CN)6] and K4[Fe(CN)6], prepared in PBS 

1.0×10-2 mol/L, pH 7.36. 

A KCl solution of 0.1 mol/L was prepared in deionized water. This solution was used as solvent of 

an EDOT solution of 0.01 mol/L. A 5.0×10-3 mol/L solution of aminothiophenol was prepared with a 

30% ethanol aqueous solution acting as solvent. The oPDA standard solutions of 5.0x10-5 mol/L were 

prepared in PBS buffer, pH 7.36. 

To prepare a control sensing layer (non-imprinted polymer, NIP), the polymer was formed in the 

absence of the target protein. For this purpose, an oPDA solution of 50 µmol/L was electropolymerized. 
The MIP sensing layer was prepared similarly, by added 10µL of a solution of Aβ-42 (10 µg/mL con-

centration, prepared in PBS buffer, pH 7.36) to 990µL of the previous solution. 

Calibrating solutions required the preparation of stock solutions of Aβ-42 oligomer. This was pre-

pared in a concentration of 0.5 mg/mL, in PBS buffer, pH 7.4. The Aβ-42 oligomer was prepared ac-
cording to Marco Gobbi et al [50], where the monomeric peptide solutions were diluted to 100x10-6 mol/L 

in 50 x10 -3 mol/L phosphate buffer, 150x10-3 mol/L NaCl, pH 7.4, and incubated for 24 hours at 4ºC. 

Less concentrated standards were obtained by accurate dilution of the previous solution in PBS buffer 

or in Cormay Serum. 

For template removal two solutions were used: (a) Trypsin diluted 100x in PBS buffer, pH 7.36 and 

(b) Oxalic acid 0.05 mol/L prepared in deionized water. 
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2.2.4) Analytical Procedures 

All assays were conducted in triplicate to ensure reproducibility. The first procedure in each chip 
was related to the reading of a blank signal (only buffer). This was necessary to ensure an analytical 

correlation within assays of chips from the same batch. The implemented procedures depended on the 

assembly of the chip, described next. The pencil (P) or carbon ink (CI) homemade electrodes (HME) 

were assigned as P-HME or CI-HME, respectively. 

2.2.4.1) Carbon Ink Chips 

CV and SWV measurements were conducted in the standard iron redox probe. For CV assays, the 
potential was scanned from -0.7 to +0.7 V, at 50 mV/s. For SWV studies, potentials ranged from -0.4 

to +0.3 V, at a frequency of 10Hz, with a step height of 250 mV.  

EIS assays were performed with the same redox couple solution [Fe(CN)6]3-/4- with open potential 
circuit (OCP), using a sinusoidal potential perturbation with an amplitude of 0.01 V and a number of 

frequencies equal to 50, logarithmically distributed over a frequency range of 0.1-100 kHz. The imped-

ance data was fitted with commercial software Nova. 

After the first readings, a pre-treatment was conducted by CA, applying +1V for 10 seconds in the 
EDOT solution. Another reading was made to ensure that the layer of PEDOT was well-formed on the 

WE. Then, the chip was incubated in ATP for 1h. After this incubation stage, the electropolymerization 

was made by CV with either MIP or NIP preparing solutions. The potentials were scanned from -0.45 
to +0.8 V, at 100 mV/s, in 5 consecutive cycles. The template removal procedure was made (in both, 

MIP and NIP sensing layers), by incubating the chip in Trypsin solution for 90 min at 36ºC, followed 

by another incubation in oxalic acid for 2 hours at room temperature. 

The calibration curve was performed by SWV and EIS measurements. Readings were made for MIP 

and for NIP materials, with each assay performed at least 3 times. Each calibration curve was achieved 

after a 20 minutes incubation period for each Aβ-42 standard solution, and for increasing concentrations. 

Each Aβ-42 incubation was followed by an iron redox probe reading, extracting the electrical features 
of the surface for each standard concentration. The Aβ-42 concentrations ranged from 0.1ng/mL to 1.0 

µg/mL, prepare in buffer. 

Calibration assays were also conducted by incubating Aβ-42 standard solutions prepared in serum 
and followed by SWV measurements. For this purpose, Aβ-42 was prepared in Cormay serum solution, 

diluted 100 times, and in the same concentration range as before. 

The chemical/physical data of the synthetic materials was obtained by surface analysis using Raman 

spectroscopy, SEM and AFM. The samples considered for this study were: PEDOT/CI-HME, MIP/PE-

DOT/CI-HME, trypsin/ MIP/PEDOT/CI-HME and NIP/PEDOT/CI-HME. 

2.2.4.2) Pencil Chips 

With this type of electrodes, a study was conducted to understand the best type of pre-treatment to 

be applied. The best pre-treatment ended up being the same as described in 2.2.4.1). The pencil home-

made electrodes (P-HME) weren’t electrochemically stable so no further procedures were applied. The 

samples considered for this study were: P-HME, P-HME/KCl, P-HME/NaCl, PEDOT/P-HME. 
 

2.2.5) Characterization of the Sensors 

Raman spectroscopy data was generated by a Thermo Scientific DXR Raman spectroscope, equipped 
with a confocal microscope and a 532 nm laser. A 5mW laser power at sample was allowed for 25 μm 

slit aperture. 

Scan-electron microscopy (SEM) studies were performed on an FE-CryoSEM/EDS, from JEOL JSM 
6301F, Oxford INCA Energy 350, Gatan Alto 2500 microscope, operating at 15 kV and 9.9 mm working 

distance.  
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Atomic force microscopy (AFM) measurements were performed in an Asylum Research MFP-3D 

Standalone operated in alternate contact mode in air (commonly known as tapping mode), using com-

mercially available silicon AFM probes (Olympus AC160TS; k = 26 N/m, f0=300 kHz). The resulting 
topographies were plane fitted in Igor Pro software (Wavemetrics) and the final images generated using 

Gwyddion software. 
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3) Results and discussion 

In this chapter, all the work regarding the biosensor fabrication and functionalization is presented 

and discussed. First, section 3.1) presents the substrate characterization, comparing the two types of 

paper studied. Secondly, section 3.2) shows the optimization results of laser parameters used to increase 
conductivity of P-HME, as well as a comparison between the two types of carbon-based materials used 

to serve as electrodes in this work (P-HME and CI-HME). Finally, section 3.3 presents the electrochem-

ical characterizations of both types of sensor, with respectively studies and analysis.  

 

3.1) Paper Characterization 

Two types of paper were used in the construction of the sensor: OP and Whatman nº 1. These papers 

are used herein as a support for casting the CI or P-carbon materials, making it important to know the 

morphological and crystallographic features of these supports. 

SEM analysis of OP is shown in Figure 3.1a, where the surface displays a matrix of randomly dis-

persed long cellulose fibers of about 5 to 15 μm width. In addition, these fibers also seem flattened, 

probably due to the compression step during the manufacturing process. 

 

 

Figure 3.1- SEM images top view of (a) OP and (b) Whatman nº1. 

 

In comparison, SEM images of Whatman paper (Figure 3.1b) demonstrate much larger fibers, rang-
ing from 15 μm to 20 μm. Its surface, however, is less uniform due to the fact that Whatman paper is 

more porous and has lower fiber density than OP. Even though fibers are scarcer, they show a more 

cylindrical geometry that contributes to the bigger thickness of Whatman paper. 
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The structural analysis of the paper was made by X-Ray Diffraction, as can be seen in Figure 3.2.

 

Figure 3.2 – Structural Characteriza tion of Whatman nº1 (red) and OP (black) by XRD. Type I cellulose 
marked as ●  and calcite marked as ◊ . 

By diffractogram analysis, it is possible to observe the characteristic peaks of type I cellulose (ICDD 

file: 00-056-1718719), marked as ●. In Whatman paper two peaks can be identified at 14.88º and 16.63º, 
which does not happen in the OP, where there is only a large peak 15.9º. This can be justified by the 

presence of more residual amorphous materials in its cellulose fibers, which create a fusion of the peaks. 

Type I cellulose has a monoclinic geometry, with unit cell constants a = 8.3, b = 10.3, c = 7.9 Å and 

angles α = 90, β = 84 and γ = 90 °. 

When analyzing the OP diffractogram it is possible to identify another crystalline structure, marked 

as ◊ that is not present in Whatman paper. This structure is Calcite (CaCO3) (IDD file: 01-072-1937); it 
has a rhombohedral geometry and unit cell constants a = b = 4,99 and c = 17,08 Å with angles α= 90, β 

= 90 e γ = 120 °. Calcite is the principal additive to this type of paper fabrication; it is also used to alter 

the optical properties of the paper forming porous agglomerates, is responsible for the opacity and gloss 

of this kind of paper and improves the ink reception capacity, so it is more used in substrates for writing 

and printing. 

 

3.2) Carbon-based electrodes characterization 

3.2.1) Pencil Characterization 

Commercial pencil leads are made using graphite and clay and each one has a certain mixing ratio, 

which differs according to its hardness. While clay gives the hardness and works as a binder (H charac-

teristics), graphite gives the B characteristics to a pencil which can be described as the blackness and 
softness.  Higher hardness is directly related to an higher percentage of clay and lower percentage of 

carbon [44], [51], [52].  

According to Y. Kim et al [51] clay’s main contents are SiO2, Al2O3 and Fe2O3, but it can vary ac-

cording to the manufacturer. Since both percentage and actual composition are two unknown factors an 
EDS analysis was performed to the used pencils, ranging from 3H to 9B. Results can be seen in Figure 

3.3.  
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Figure 3.3 - Grade of lead pencil . H (for hardness) to B (for blackness).  Results were normalized based 
on the carbon percentage.  Clay composition comprises the percentages for aluminum, sil i con, oxygen 

and residual calcium. 

The obtained data was very similar to both Satoru Kaneko papers [33], [44], as the pencils became softer, 

they showed a visible increase in carbon proportion in its composition and 9B was highlighted has hav-
ing the biggest carbon percentage of them all. On the other hand, pencils 2H and 3H showed the highest 

composition of clay and also had the highest percentage of aluminum.  

The samples existing components were identified as carbon, silicon, aluminum, oxygen and had 

some residual calcium, all accordingly to R.N. Bhowmik paper [52]. The only missing element that was 
expected to be found through this EDS analysis was iron. Its absence can be justified by either the 

existence of such trivial amounts that the software did not consider it relevant or the manufacturer just 

does not apply iron(III) oxide in its clay. 

The electrical conductivity of a pencil trace depends on the quality of the contact between graphite 

particles in the percolating network. Expansion and contraction of this network, induced by either me-

chanical stress or chemical interactions, should greatly affect the quality of inter-particle contacts and 
thus the overall electrical conductivity. Samples with the highest percentage of carbon are expected to 

work better as electrodes, since they should be more conductive. 

3.2.2) Identification of laser parameters 

The first studies were conducted with samples of different grades of pencil with different layers. 

Before any laser treatment, their sheet resistance (Rs) was measured with a four-point probe. In Annex 

B (Table B.0.1) are represented the values of Rs according to the type of pencil and layers used for 

pencils 9B to 2B since the others showed no resistance.  

Sheet resistance was calculated using equation 1. 

𝑅𝑠 = 𝑘
𝑉 (𝑚𝑉)

𝐼 (µ𝐴)
 

(1) 

Since the spacing between the probe points was constant and the sample was considered a thin film, 

the average resistance of the substance can be given by equation 1, with k being the constant for the 

average resistivity that is equal to 4.532, I the current and V the voltage. 
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Pencils 8B and 9B revealed the best sheet resistances (488.10 Ω/□ and 619.98 Ω/□, respectively) 

with no treatment as expected, since they had the lowest concentration of clay and higher concentration 

of graphite (carbon) [44], thus these were the chosen to proceed with the study. Since no studies about 
the effect of laser in pencil were found, a wide range of conditions was tested, which revealed better 

results for pencil 9B, as can be seen in Annex C (Figure C.0.2). 

When analyzing the graph on Figure C.0.2, the strong influence of the substrate can be noticed. Four 

different regions were created:  

- A region where the laser treatment did not make any impact on the sample’s surface (grey area); 

- A region where there was an improvement on Rs values (green area); 

- A region where although there was an improvement on Rs the substrate was affected and created 

a sort of mesh (yellow area); 

- And finally, a region where the sample was destroyed (red area). 

OP showed a smaller area where laser treatment improved the samples Rs, so more conditions were 

tested. Even with a smaller area of improvement, better results were achieved with this type of substrate.  

The samples were hand-made in a squared shape as mentioned in 2.1.1), so “human-error” had to be 

kept in mind. 

 

With laser treatment, the best results achieved for each substrate are presented in Table 3.1. 

Table 3.1 - Ideal Conditions for Pencil 9B samples in Office paper and Whatman nº1  

Substrate Laser Condition Sheet Resistance (Ω/) 

Office Paper Power: 3.5 W 

Speed: 0.138 m/s 

29.911 

Whatman nº1 Power: 2.5 W 

Speed: 0.127 m/s 

37.162 

 

OP is less expensive and easier to find than Whatman and, as the main goal was to produce a low-

cost biosensor, it turned out to be the best choice as substrate. A hydrophobization step was required, 
considering that the hydrophilic nature of paper is not compatible with electrochemical biosensing ap-

plications, since any solution would be soaked by the substrate itself, provoking short-circuits between 

the electrodes. 

The application of the wax layer to hydrophobize the paper, plus the change of pattern (Figure 3.4b) 

lead to variations in the laser conditions. Measurements of resistance started to be made with a multi-

meter due to the small area of the electrodes. To ensure similarity between measurements, resistance 

values were always taken in the WE with the multimeter probes separated by 0.3 cm. New conditions 

and respective resistances obtained can be seen in the color map on Figure 3.4a. 
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Figure 3.4 – (a) Resistance values with different speed and power conditions in hydrophobized OP with 
Pencil  9B samples . (b) Example of pencil  9B samples. (c) Final P-HME. 

After analyzing the obtained results, it can be concluded that slower speeds and lower power lead 
mostly to better electrical properties. Although there is a significant area where resistance values are 

around 150 Ω, some lacked integrity and/or were inconsistent. The best condition consisted on 4 W of 

power and 0.229 m/s of speed, which presented a resistance of about 5% of its original value, making 

these the chosen parameters to produce the electrodes used in the stages ahead. 

With the laser parameters established, the final step of production of P-HME was to encapsulate 

these using laminating sheets to prevent any damage and coat the contacts with silver ink to improve 

the electrical contact for the electrochemical readings (Figure 3.4c). 

CI showed no need to have laser treatment, as it had 25.69 Ω/ by itself and the laser only decreased 

its conductivity proprieties. An image of the final CI-HME can be consulted in Annex D (Figure D.0.3). 

In order to understand and justify the effect of laser in pencil-based samples, morphological and 

crystallographic analysis were conducted, as can be seen in sections ahead. 

3.2.3) SEM Characterization 

Morphological characterization of pencil samples with and without laser irradiation and of CI-HME 

were made using SEM, as can be seen in Figure 3.5 and Figure 3.6 respectively. 

 

Figure 3.5 - SEM images top view: (a) Pencil in OP, (b) Pencil in OP after l aser incidence. 
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Figure 3.6 - SEM top view of CI-HME. 

Since the chosen paper was OP and SEM images were taken in top view, Whatman samples were 

not taken in consideration. As can be seen in Figure 3.5, there are no visible significant surface changes 

with the laser incidence, at this magnification. Increased magnification images could show surface dif-

ferences, but higher resolution could not be achieved due to technical limitations of the equipment at 

the time. 

The CI-HME sample revealed a “grainy texture” despite resembling a continuous film. Some gaps 

and fissures can be observed, due to the production or annealing process. This morphology is similar to 

commercial chips, so it works as a good method of comparison.  

3.2.4) EDS Characterization 

In addition to the EDS analysis made in 3.1), another analysis was made to a 9B pencil sample with 
laser treatment, in order to understand if any modification occurred. Results can be seen in Figure 3.7 

and Annex E ( Figure E.0.4 and Figure E.0.5 ). 

 

Figure 3.7 - EDS analysis of 9B pencil sample with and without laser treatment.  EDS mapping of car-
bon in sample without (a) and with laser treatment (b). 

EDS quantitative analysis showed that the area irradiated by the laser had a significant decrease in 

carbon content (from 85.11% to 79.89%), which could be due to the removal of some material from its 

surface. Although when comparing the mapping, the carbon appears to be more predominant in Figure 
3.7b. This can be justified by the fact that the analysis is performed within a very small area of the 

sample, that may not be a good representative of its entirety or because the quantitative analysis is rela-

tive. Elemental percentages are calculated in function of the most abundant element, which can change 

from sample to sample.  
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The analysis found evident that the laser treatment leads to a change in atomic mass percentage of 

the components, since the same elements as the previous sample exist in less quantities: carbon, silica, 

oxygen, aluminium and residual calcium.  The thermal effect of the laser treatment might have induced 
the formation of molten grains and micro cracks in the outer layers of the graphite surface, which would 

result in extreme physical stress and possible structural re-arrangement [53].  

3.2.5) Raman Spectroscopy 

To have a better understand of what the role of laser in the improvement of pencil’s conductivity 

proprieties was, Raman Spectroscopy was used. The results can be seen in Figure 3.8. 

 

 

Figure 3.8 – Raman Spectra of OP with pencil  9B with and without laser treatment  

The Raman spectra of all carbon systems showed only a few prominent features, no matter the final 

structure. These evidenced two intense bands (G and D) around 1500 cm-1, corresponding respectively 

to natural graphite (1575 cm-1) and the type of graphite material (1355 cm-1), and few other second order 
modulations around 2700 cm-1. The peaks shape, intensity and positions allowed distinguishing several 

forms of carbon from a metallic nanotube to amorphous carbon [54]. 

In general, the intensity ratio (ID/IG) is characteristic of the extent of disorder present within the ma-
terial: the higher the ratio, the lower the disorder. The G band is the first-order Raman band of all sp2 

hybridized carbon materials. The D band is a defect activated band in sp2 hybridized carbon materials. 

The intensity of the 1575 cm-1 line rises with the laser treatment, which is associated with an increase in 
the amount of sp2 carbon [55], making a higher ID/IG ratio and justifying the increased conductivity of the 

sample. 

3.2.6) XRD Characterization  

X-ray diffraction was an essential tool to identify the crystalline phases of the graphite and compare 

with the other characterization methods, the results can be seen in Figure 3.9. 

This technique helped to understand what the cause of the improvement of pencil conductivity was, 

whether a change of material occurred or only a crystallographic reorganization. 
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Figure 3.9 – XRD diffractogram of OP, 9B Pencil with and without Laser and Carbon Ink.  Type I Cellu-
lose marked as ● and Calcite marked as ◊ 

By analyzing the XRD diffractogram the presence of the spectrum corresponding to the paper sub-

strate is clear, showing the characteristic cellulose and calcite peaks (marked as ● and ◊ respectively) as 

mentioned before in 3.1). 

Apart from the presence of the substrate, another peak is visible at 26.6 º corresponding to graphite 

(IDD file: 01-072-0961). This peak is present in both pencil samples but is more intense with laser 
treatment. The sample with no laser had a full width at half maximum (FWHM) of 0.3022 º that de-

creased to 0.1877 º with laser treatment. The increased intensity of the peak and decrease FWHM proved 

that there was a crystallographic organization of graphite, by induction of oxygen-containing groups by 

means of a physico-chemical reaction [52]. 

 

3.2.7) XPS Characterization 

XPS can measure the elemental composition, empirical formula, chemical state and electronic state 

of the elements within a material. This technique helps to gather further information about the existing 

phases and oxidation states at the sample’s surface that could not, otherwise, be obtained with XRD. 

Figure 3.10 presents the spectra obtained for 9B pencil samples with and without laser treatment. XPS 

elemental composition can be consulted in Annex F (Table F.0.2). 
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Figure 3.10 – C 1s region of XPS spectra of 9B pencil sample without (a) and with laser treatment (b) . 

The energies and intensities of the photoelectron peaks enable identification and quantification of 
surface elements, based on the unique binding energy each element has. The shift in binding energies 

of one element is due to different bonding situations (which is referred to as chemical shift). 

The bond of carbon atoms can hybridize, to form σ and π bonds, in three different ways: sp3 hybrid-

ization, which is a typical structure of diamond and silicon (C-C); sp2 hybridization, which is a two-
dimensional graphite layered structure (C=C) and sp1 hybridization, that is a one-dimensional structure. 

Structure depends strongly on sp2 and sp3 bonds [56]. π bonds form only between sp2 hybrids, are weaker 

than σ bonds and they are responsible for the electronic properties of the carbon films, namely their 
conductivity and optical bandgap. As for σ bonds, they define the mechanical properties of carbon films, 

such as their hardness, which is therefore linked with sp3 hybrids [57]. So, an accurate measurement of 

the sp2 and sp3 hybrids concentration is desirable for understanding the properties of the carbon films.  

Graphite and graphitic-like compounds have an asymmetric C 1s peak-shape (as they are conductive) 

centred at 284.5 eV. Also present, is the structure related to the π to π* transition (shake-up) at around 

286.4 eV [58], [59]. Deconvolutions of carbon C 1s peaks provide quantitative information regarding the 

binding modes of carbon. It is revealed that 9B pencil samples without laser treatment contain a signif-
icantly higher amount of sp3

 carbon (C-C) when compared to laser treated samples (15.99% compared 

to 2.99%). As the laser treatment lowers the amount of sp3 carbon bonds, the sp2 portion is increased 

from 76.61% to 90.16%. 

The laser treated samples, due to their increased amount of sp2 bonds, shown by the stronger inten-

sity, have a higher electrical conductivity.  

3.3) Electrochemical Characterization 

3.3.1) Pencil 

The first approach was to verify the behaviour of the WE after its preparation. This was done by 

monitoring the electrical features of the oxidation/reduction peaks of the standard redox probe, by dif-

ferent electrochemical techniques. These readings identify the typical values of this iron probe, enabling 

a comparative study of the modifications made in the following steps to be carried out. These readings 

also helped to guarantee homogeneity within chips prepared throughout this work.  

When the iron redox probe is followed by CV, the scan towards the positive potentials promotes the 

oxidation of iron, converting Fe2+ into Fe3+ and yielding a current flow from the solution species to the 
electrode surface. The reserve scan yields the opposite effect and the behaviour can be explained in an 

identical manner. For a purely reversible electrochemical reaction, which is the case of the current iron 

probe used herein, the recorded CV data show typically well-defined characteristics. From a current 
point of view, the ratio of the peak currents must be equal to one (meaning that the extent of the oxidation 
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reaction equals the extent of the reduction reaction), and the voltage separation between the current 

peaks must be 59 mV for a reversible process.  

With this type of electrodes, the oxidation and reduction peaks of the iron probe were too far apart, 
indicating that the surface did not display enough conductivity properties for the intended application. 

To solve this, a pre-treatment or a cleaning step became necessary and were implemented. This is a 

common procedure used among electrochemical biosensing development, also used in commercial 3-

electrodes devices. 

3.3.1.1) Electrochemical study 

The main purpose of the first study was to select a suitable pre-treatment or cleaning process that 
could improve the conductivity proprieties of the P-HME. In the literature, there are several papers using 

pencil-based electrodes, but never with laser treatment as this work was the first attempt to carry out 

such preparation of 3-electrodes systems. Yet, as the main target was to improve the carbon surface in 
terms of electrical output, the chosen parameters were based on Jayant I. Gowda et al [60] and Golnaz 

Parvizi-Fard et al [61] papers, relying mostly in electrochemical approaches in specific solutions. Herein, 

four solutions were tested: KCl 0.5 M and 0.1 M, NaCl 0.1 M and EDOT. NaCl studies can be consulted 

in Annex G (Figure G.0.6). 

KCl Studies 

To identify the best cleaning condition for this type of electrodes, the first study was made using a 

KCl solution 0.1M, as it had been used in several papers regarding graphite and other carbon-based 

electrodes [60], [62]. 

With a pre-treatment of the KCl solution by CV, several conditions were tested, the best conditions 

are shown in Figure 3.11a. With a potential range of [-2; +2] V, 40 cycles and 100 mV/s (CV1), CV 
analysis shows oxidation and reduction peaks of -0.35 V and 0.35 V, which indicated a quasi-reversible 

behaviour. Although the voltage separation indicated a quasi-reversible behaviour, the peaks were too 

separated and this pre-treatment was still not ideal for the purposes of this work. 

Adding more cycles could make the electrode degrade and fewer cycles made little to no difference 
on the original reading. Changing the concentration of the KCl solution to 0.5 M (CV2) and keeping the 

same parameters made the peaks much closer, with a voltage separation of 105 mV.  

 

Figure 3.11 - Pre-treatment of P-HME with KCl, (a) compar ison between P-HME and two pre-treat-
ments with CV; (b) compar ison between P-HME and two pre-treatments with CA. Assessed in 5.0 mM 

[Fe(CN)6]3−  and 5.0 mM [Fe(CN) 6]4− ,  in PBS buffer, pH 7.2. 

In an attempt to reduce the time spent on CV assays and to try to obtain better results, a CA pre-
treatment was studied and the results are shown in Figure 3.11b. With the 0.1 M KCl solution, the time 

(a) 

 

(b) 
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was fixed at 100 s and the extremes of the CV were studied 2 V (CA1), -2V (CA2). The obtained results 

did not lead to any improvements, so no further attempts were made. 

With this solution, the best conditions found were CV2, but with EIS analysis the results showed 
irregular consecutive readings with an increased RCT tendency (RCT is the charged-transfer resistance, 

which corresponds to the diameter of the semi-circle observed in the Nyquits plots procedure by EIS 

readings). This can be justified by a constant removal of nanostructures from the WE external surface, 

promoted by the cleaning processes between reads. 

 

EDOT Studies 

The studies presented above were meant to clean the carbon surface but did not reach enough repro-

ducibility. From the analysis of the EIS of several readings of the same chip, with the same treatment, 

the results tended to change, evidencing that the WE was changing. So, instead of cleaning, a thin layer 

of a conductive film was created on top of it, by using an EDOT solution. The poly(EDOT) is meant to 
improve the electrical properties, while stabilizing the particles at the surface by trapping them in the 

polymeric network. The two best results of each pre-treatment can be seen in Figure 3.12. 

 

Figure 3.12 - Pre-treatment of P-HME with EDOT, (a) comparison between P-HME and two pre-treat-

ments with CV; (b) comparison between P-HME and two pre-treatments with CA. Assessed in 5.0 mM 
[Fe(CN)6]3−  and 5.0 mM [Fe(CN) 6]4− ,  in PBS buffer, pH 7.2 

The CV fixed parameters were the number of cycles (3) and the scan rate (100 mV/s). CV1 as a range 

[-0.3; +1] V and CV2 [-0.3; +1.2] V. As can be seen, a bigger range, forms smaller and closer peaks. 

To reduce the time spent on the CV, a CA pre-treatment was made setting voltage at 1 V and chang-

ing the time. With 10 s (CA 1), the peaks showed a better behaviour, but the increase of time to 30 s 

(CA2) led to a bigger layer of poly(EDOT) and the peaks were disposed to get further apart. 

As can be seen in Annex H (Figure H.0.7), even with the chosen PEDOT treatment, the results after 

consecutive readings were not similar. This had to be justified by a constant change of material on the 
WE, that may have been generated by the lixiviation of material from the WE to the solution or by the 

entrance of external species, that could diffuse back (e.g. the reaction of EDOT monomers remaining 

within the polymeric layer). 

Due to the existence of other type of electrodes that showed better results and considering this type 

was not electrochemically stable, no further studies were made. 

(a) 

 

(b) 
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3.3.2) Carbon Ink 

3.3.2.1) Pre-treatment 

Analogous to previous studies, these also started by readings in blank conditions to ensure similarity 

between several samples. These readings showed that even the CI-HME presented variances, which can 

be seen in Figure 3.13 by comparison of CV and EIS data.  

 

Figure 3.13- Comparison of two chips (a) CV reading of CI-HME1 and CI-HME2, (b) EIS reading of CI-
HME1 and CI-HME2. Assessed in 5.0 mM [Fe(CN) 6]3−  and 5.0 mM [Fe(CN) 6]4− ,  in PBS buffer,  pH 7.2. 

Nonetheless, similar CI-HMEs were chosen and a procedure that could work for all of these was 

implemented. By analysing the CV graph, the oxidation and reduction peaks are seen widely separated, 
with peaks centred at approximately -0.3 V and +0.4 V for the HME-1 and -0.35 V and +0.37 V for the 

HME-2. Thus, we have a quasi-reversible behaviour in both HMEs, considering the current ratio is 

different from one and the voltage separation is higher than 59 mV.  

The Nyquist plot in EIS showed a semicircle portion at high frequencies and a narrow linear portion 

at low frequencies. The semicircle at higher frequencies corresponds to the electron-transfer-limited 

process, and the linear portion at lower frequencies represents the diffusion-limited process. Overall, the 

RCT values so obtained are too high. 

In order to get better conditions for an electrochemical sensor and considering that EDOT modifica-

tion was selected as the pre-treating stage of the P-HME, these CI-HMEs were also pre-treated similarly. 

For this purpose, the electrodes were treated by CA, with an EDOT solution for 10s, at 1V, to create a 
layer of polymer on top of the WE. The results can be seen in Figure 3.14. CV shows oxidation and 

reduction peaks of -0.1 V and 0.1 V, which indicate a quasi-reversible behaviour. The voltage separation 

is approximately 102 mV, which also indicated a quasi-reversible behaviour. Yet, these electrical fea-

tures are by far the best conditions obtained with the HMEs and are also similar to the electrical features 

displayed by commercial screen-printed electrodes. 

 

Figure 3.14- Pre-treatment of CI-HME: CV (a), EIS (b). Assessed in 5.0 mM [Fe(CN) 6]3−  and 5.0 mM 
[Fe(CN)6]4− ,  in PBS buffer,  pH 7.2 

(a) 

 

(b) 

 

(a) 

 

(b) 
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The electrochemical readings in EIS showed very little impedance values and no RCT could be ex-

tracted from it, evidencing the high conductivity features of the system. The results also pointed out that 

the applied pre-treatment enabled higher homogeneity at the surface, by allowing similar results between 

different batches and a better electrochemical sensor response.  

3.3.2.1) MIP/NIP Fabrication 

After pre-treatment, the HMEs were incubated in ATP for one hour. The ATP solution was an inter-

mediate layer between PEDOT and the subsequent oPDA layer, working as a linker. The thiol group is 

expected to interact with EDOT, while the amine-aromatic ring is expected to establish a covalent bond 

to the MIP/NIP film, thereby ensuring that the imprinted polymeric layer is securely bond to the WE. 

After the ATP incubation, the next step was the electropolymerization of oPDA, as shown in Figure 

3.15. The technique selected for this process was CV, as there were several papers in literature using it, 

even with other monomers [30]. The formation of the oPDA film introduced additional barriers to the 
electron transfer properties of the redox probe. This resulted in an extra increase in the electron transfer 

resistance, reflected by further substantial increase in the charge transfer resistance (RCT) compared to 

both HMEs in the previous state. The presence of Aβ-42 on the surface of the WE, after its adsorption, 
was confirmed by a RCT increase, compared to the NIP HME-1 (Figure 3.15b). This increase was much 

more evident in the MIP, reflecting the presence of an insulating film plus the peptide. 

For the removal process, the HMEs were incubated in a trypsin solution at 36 ºC for one hour. The 

main goal of this step was to remove the peptide from its imprinted site leaving the remaining polymeric 
network for the artificial antibody. Trypsin is highly active and stable with low cutting specificity and 

exhibits wide cleavage specificity. 

 

Figure 3.15 – Electrochemical readings of the sensing surfaces (MIP or NIP layers ),  by CV (a) and EIS 
(b) before the template removal.  Zoomed section of the sensing surface before  electropolymerization 

(PEDOT layer). 

(a) 

 

(b) 
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In some HMEs, a stable electrical response after consecutive readings could not be achieved. This 

could be due to the adsorption of trypsin into the matrix, so an extra step was added. Another incubation 

was made using oxalic acid for two hours, to ensure a proper protein removal. 

With the protein removed, the resistance decreased substantially, suggesting that the peptide was 

successfully removed from the polymer. This decrease was abundantly perceptible in the MIP due to 

the existence of protein in it. In the NIP, these incubations did little to no difference, showing only a 
slight decrease in the RCT after the incubations (Figure 3.16c). This decrease was probably related to the 

washout of small oligomer fragments from the surface or some adsorption in the matrix. 

CV assays are consistent with the EIS results, as can be seen in Figure 3.16. The redox probe showed 
typical peak-to-peak potential separation values on both the chips with EDOT. The subsequent adsorp-

tion of the peptide promoted a peak decrease and a shift potential to higher values, confirming the pres-

ence of an additional element on the WE. After the polymerization, the peak currents dropped to lower 

levels, confirming the formation of an insulating layer on top of the HME surface. After template re-
moval, the peak currents recovered, confirming the exit of the peptide from the electrode’s surface. The 

NIP values showed a similar behaviour, except after polymerization, where the redox peaks of the probe 

remained evident. 

 

Figure 3.16- Electrochemical follow-up of the several  modification steps of the CI-HME to produce NIP 
(a and c) and MIP (b and d) fi lms,  by EIS (c and d, Nyquist plots) and CV (a and b, cyclic voltammo-

grams).  Results from a solution of 5.0 mM [Fe(CN) 6]3−  and 5.0 mM [Fe(CN) 6]4− ,  in PBS buffer,  pH 7.2.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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3.3.2.2) Analytical Performance of the Biosensor 

In order to test the analytical performance of the biosensor under close-to-real conditions, it is im-
portant to establish a range for which the biomarker should be present, in a background medium that is 

close to a real analysis. In AD, there is still controversy on the amounts of Aβ-42 present in healthy and 

sick patients, thus this work considered that a healthy individual shows values close to 23.3 pg/mL [63]. 
In terms of background medium, the occurrence of Aβ-42 in cerebrospinal fluid and its relation to AD 

has been established so far, but its presence in serum emerges now as a possible less-invasive approach, 

thereby contributing to the early screening of the disease. Thus, the analytical response is first tested in 

PBS buffer (similar to serum) and in commercial serum (with a very complex composition, similar to 
real serum). Testing the HMEs in commercial serum shall also produce valuable data regarding the 

selectivity of the biosensor under conditions of real sample analysis. In addition, a calibration under 

“blank samples” led to a better tuning between samples and standard solutions, since the background 
composition in these solutions can be considered the same (or very similar). 

PBS Buffer 

The HME was calibrated by incubating standard solutions of Aβ-42 samples of increasing concen-
trations, prepared in PBS buffer. The obtained calibrations are shown in Figure 3.17a and Figure 3.17b, 

expressed in log concentration against the relative values to the signal in blank. The data were obtained 

after several 20 min incubations in PBS buffer. 

 

Figure 3.17- SWV (a) measurements of MIP/CI-HME based biosensor and the corresponding calibration 
curve (b) , also compared to the NIP sensing layer .  Different concentrations of Aβ42 (ng/mL) in PBS 

buffer.  All  assays were performed in 5.0 mM [Fe(CN) 6]3−  and 5.0 mM [Fe(CN) 6]4− ,  in PBS buffer,  pH 
7.2. 

The SWV current responses were measured by varying the Aβ-42 concentration, as shown in Figure 

3.17a. In MIP readings, the oxidation/reduction current responses were inversely proportional to the Aβ-
42 concentration. The corresponding calibration was plotted with the current responses against the log-

arithm of Aβ-42 concentrations, shown in Figure 3.17b. In general, the peak current at 0 V decreased 

for higher concentrations of Aβ-42 diluted in PBS. The first incubation dropped the current values sig-

nificantly, and the last three exhibited a little variation of the current, pointing out a tendency for satu-
ration. Under optimized conditions, the MIP exhibited a dynamic response range between 0.1 ng/mL 

and 1 µg/mL. In contrast, the NIP showed a lower binding capacity in the same range of peptide con-

centration, as expected. 
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Overall, these results demonstrated that within the concentration range observed, the response of the 

MIP was dominated by the interaction of Aβ-42 with the rebinding sites, with negligible non-specific 

response observed. 

Cormay Serum 

To ensure the affinity with the peptide, calibration assays were conducted then in Cormay Serum. 

By performing the same process and using a complex matrix, similar behaviour to real samples can be 
ensured. The results obtained can be seen in Figure 3.18. The MIP was incubated first in serum and later 

in increasing concentrations of the peptide prepared in serum.  

 

Figure 3.18 - SWV (a) measurements of MIP/CI-HME based biosensor in different concentrations of 
Aβ42 (ng/mL) in Cormay Serum, and the corresponding calibration curve (b , in blue),  also comparing to 
the NIP (b, orange).  All  assays were performed in 5.0 mM [Fe(CN) 6]3−  and 5.0 mM [Fe(CN) 6]4− ,  in PBS 

buffer,  pH 7.2. 

Considering the blank incubations, an increase in peak current happened for the lowest concentration 
of Aβ-42 compared to the initial reading, which was not considered. Then the signal slowly decreased, 

showing little difference in the 0.1 ng/mL and 1 ng/mL concentrations, but dropping to significant values 

in the last two.  

The NIP’s response to serum is also shown in Figure 3.18b and can be compared to the response of 
the corresponding MIP, which is also consistent with the calibrations in PBS buffer. The NIP biosensor 

showed no response to the peptide after its blank was established, as it was expected. 

Overall, a good agreement was found between added and found amounts of Aβ-42 and these results 

seemed promising for direct applications in POC context. 

 

3.3.2.3) Qualitative Analysis 

The morphological and chemical characterization of the materials were made through SEM, Raman, 

and AFM analysis by direct analysis of the several materials. These results are displayed and discussed 

next. 
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Raman Spectroscopy 

Raman spectra were recorded for CI-HME, PEDOT/CI-HME, MIP/Aβ-42/PEDOT/CI-HME (MIP 

film with Aβ-42), NIP/EDOT/CI-HME and MIP/-/PEDOT/CI-HME (after Aβ-42 removal). Results can 

be seen in Figure 3.19. 

 

Figure 3.19- Raman Spectra of CI-HME, PEDOT/CI-HME, MIP/  Aβ-42/ PEDOT/CI-HME, NIP/PE-
DOT/CI-HME and MIP/-/PEDOT/CI-HME 

In general, all Raman spectra revealed the presence of a carbon-based matrix by showing two prom-

inent visible peaks (G and D) at 1350 cm-1 and 1580 cm-1, because all the materials relied on a carbon 

background. The G peak represented the bond-stretching vibrations of sp2 hybridization carbon atoms, 
expressing the C=C stretching; the D peak expressed the vibrations of the carbon atoms of dangling 

bonds or sp3 hybridized of carbon atoms, indicating the presence of disordered and/or defected in the 

carbon. The 2D peak represented the second order of the D band, involving a two-phonons lattice vi-

brational process, without the presence of any kind of disorder or defects [54]. 

In general, the intensity ratio (ID/IG) is characteristic of the extent of disorder present within the ma-

terial: the higher the ratio, the lower the disorder [64]. The CI-HME was the starting material, with a ratio 

of 0.92. When EDOT was electropolymerized on top, two additional peaks appeared at this stage: one 
at 1442.5 cm-1, the strongest one, and at 1506.2 cm-1 assigned to the C=C stretching. Overall, the changes 

occurring at the Raman spectra upon EDOT electropolymerization confirmed the presence of PEDOT 

on top of the carbon electrode [29], [65]. 

The addition of a polymeric imprinted layer on the PEDOT is expected to contribute to disorder the 

sp2 carbon system, leading to a higher ratio as seen in MIP/Aβ-42/PEDOT/CI-HME. The increase of 

the ID/IG ratio from 0.8 to 0.86 was promoted by the removal of the peptide and indicates a higher pres-

ence of defects in the structure, which are consistent with the template sites present in the MIP structure. 
The NIP showed the lowest ratio due to the absence of imprinted sites and therefore lowest defects in 

the structure. 

Overall, the Raman spectra confirmed the surface modifications and the presence of the imprinting 

sites of the sensor.  
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SEM 

SEM images were collected for all CI-HME, PEDOT/CI-HME, MIP/PEDOT/CI-HME, re-

moval/NIP/PEDOT/CI-HME, removal/MIP/PEDOT/CI-HME materials, as shown in Figure 3.20 and 

Figure 3.21.  

 

Figure 3.20 - SEM top view images (a) CI-HME (b) PEDOT/CI-HME 

 

 

Figure 3.21 - SEM top view images (a) removal/NIP/PEDOT/CI-HME, (b) MIP/PEDOT/CI-HME and (c) 

removal/MIP/PEDOT/CI-HME 

When doing the pre-treatment with EDOT, a noticeable film is created in the surface of the WE 

(Figure 3.20); this not only increased the conductivity, as created an even layer for the electrochemical 

steps further.  

After electropolymerization the NIP (Figure 3.21a) and MIP (Figure 3.21b) images look quite simi-
lar, with the MIP showing less empty spaces, probably associated with the presence of the peptide. With 

the template removal process is possible to identify several empty spaces in the surface of the WE, as 

can be seen in Figure 3.21c. 

 

AFM 

Samples were also analyzed by AFM, morphologic changes can be seen in Figure 3.22 and Figure 

3.23. 
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Figure 3.22 - AFM (a) CI-HME (b) CI-HME/PEDOT 

 

Figure 3.23 - AFM (a) MIP/PEDOT-CI-HME (b) removal/MIP/PEDOT-CI-HME, and (c) Aβ-42/MIP/PE-
DOT-CI-HME 

The morphological features resulting from each modification stage were studied on CI-HME surface, 
this surface revealed to be too rough as can be seen in Figure 3.22a. The ink was deposited by printing 

approaches and therefore its surface was too rough to allow the detection of any morphological changes 

promoted by a single monolayer modification, so an extra layer had to be added. With the PEDOT film 
its roughness was low enough to allow detecting changes related to the subsequent chemical modifica-

tion. 

The electropolymerization and subsequent formation of the MIP (Figure 3.23a) rendered significant 
changes in surface roughness (71.43 nm). The observed surface showed more roughness compared with 

the CI-HME/PEDOT (1.42 nm), which was consistent with the addition of a monolayer onto the WE 

surface. 

After the treatment with trypsin and acid, surface roughness increased to 98.04 nm, thereby confirm-
ing the exit of the peptide and the presence of template sites (Figure 3.23b). With the addition of Aβ-42 

these sites were no longer empty and surface roughness decreased to 58.48 nm (Figure 3.23c). 

In general, the roughness of the MIP/PEDOT/CI-HME was about (71.43 nm), which was a higher 

value than the NIP material (68.29 nm), accounting the presence of the rebinding cavities. 

Overall, the AFM data obtained along the different stages of electrode modification was consistent 

with the previous data, of electrochemical and chemical nature. 

 

Finally, it was performed a cost analysis of the developed CI-HME. Table 3.2 shows the used mate-

rials, which present a cost of 0.02 € per sensor. It was not considered the cost related to the equipment 

used (laser machine and thermal plate). 
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Table 3.2 - Cost analysis of CI-HME 

Material Amount Cost Cost per unit 

Office Paper 10 x 25 mm  1.9 x 10-3 €/m2  4.75 x 10-7 € 

Wax 2 x 10 x 25 mm 0,28 €/m2  1.4 x 10-5 € 

Lamination Pouch 10 x 25 mm 10.26 €/m2 2.56 x 10-3 € 

Carbon Ink 0.32 mg  65.2 €/kg 2.1 x 10-2 € 

Total: 0.024 €  

To have a better idea of the regular sensor cost, used for the same purpose as CI-HME, in Table 3.3 
is presented a comparison between the most used sensors for electrochemical biosensing (Gold and 

Carbon screen-printed electrodes) and CI-HME. 

Table 3.3 - Cost comparison between CI-HME and the two more common types of electrodes used for 
electrochemical biosensing (Gold and Carbon)  

Electrodes Cost per units 

Carbon 1.87 € 

Gold 2.87 € 

CI-HME 0.02 € 
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4) Conclusion & Future Perspective 

During this work, a paper-based electrochemical biosensor was developed with integration of a mo-

lecular imprinted polymer. Within the production of this biosensor, two types of material were used to 

create the electrodes: pencil and carbon ink. A study was conducted to determinate the effect of laser 
irradiation on both materials, and it revealed to have a strong impact on improving pencil’s conductivity 

(from 619.98 Ω/□ to 29.91 Ω/□). Though this type of sensor did not work for electrochemical purposes, 

it opened a door for another applications, where laser treatment can be used to enhance inherent prop-

erties of materials. The project proceeded using carbon-based ink electrodes. 

The main motivation of this work was the early diagnosis of Alzheimer's disease, as it is one of the 

main forms of dementia that affects millions of people worldwide. The studied analyte was a biomarker 
associated with AD, the peptide Aβ-42. The electrochemical sensor was incorporated with a MIP, since 

it is an alternative approach to natural antibodies. This MIP offers many advantages when compared to 

natural antibodies since it has high chemical stability, overall easy fabrication and low production costs. 

CI-HMEs, were coated with a layer of EDOT to improve their stability in further electrochemical 
assays. For the electropolymerization, a mixture of oPDA (a monomer) and Aβ-42 was used and gener-

ated bulk polymerization. Herein, bulk polymerization was selected, because the presence of rebinding 

sites at the surface is always ensured, regardless the thickness of the polymeric layer. The best parame-

ters for electropolymerization were a potential of [-0.45; +0.8] V for 10 cycles, at 100 mV/s. 

The process of Aβ-42 removal from the biosensing film was optimized by using a solvent that could 

not induce a modification on the MIP’s surface. Trypsin was used first for its proteolytic action, capable 
of cleaving the peptide bonds in Aβ-42 and leading to the formation of smaller peptide fragments, which 

are easily extracted in buffer. Next, oxalic acid were used to remove adsorbed peptide materials on the 

surface (fragments of Aβ-42 and also trypsin itself). After the template removal visible sites were seen 

in both SEM and AFM analysis, which proved an effective removal. 

Overall, the sensor showed good operational characteristics, in a range of 0.1 ng/mL to 1 µg/mL. It 

showed reproducibility, good response time and selectivity. As for analytical performance, the biosensor 

showed adsorption of the peptide within the desired physiologic parameters, considering that a healthy 

individual shows values close to 23.3 pg/mL. 

In general, the presented biosensor showed simplicity in design, short measurement time, was reus-

able, and displayed good selectivity. In addition, taking into account its production, it is eco-friendly 

and an overall cheap but reproducible sensor. This promising new approach opens the horizons for the 

rapid diagnosis of biomarkers associated with AD or other diseases in care settings. 

Thus, considering a future perspective, it would be important to perform tests on real samples and to 

have an established Aβ-42 level on healthy and sick individuals. For this work, it would be important to 

re-evaluate the biosensors that are MIP-based and repeat the assays in Cormay serum. 
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Supporting information 

Annex A – Experimental Setup 

 

Figure A.0.1- Experimental Setup 
 

Annex B – Sheet Resistance according to type of pencil and amount of layers  

Table B.0.1- Sheet Resistance according to type of pencil  and amount of layers  

Pencil Layers Ω/□ Pencil Layers Ω/□ 

  

9B 

1 1592.998  

5B 

1 9983.996 

2 762.2824 2 3853.5596 

3 816.6664 3 4237.42 

4 619.9776 4 4754.068 

 

8B 

1 1642.3968  

4B 

1 11833.052 

2 541.574 2 6720.956 

3 593.692 3 4631.704 

4 488.0964 4 3108.952 

 

7B 

1 32730.104  

3B 

1 0 

2 16491.948 2 0 

3 3248.5376 3 0 

4 4303.5872 4 0 

 

6B 

1 3118.9224  

2B 

1 0 

2 2172.1876 2 0 

3 2074.2964 3 0 

4 1449.7868 4 0 
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Annex C – Laser effect on pencil 9B with different paper substrates 

 

Figure C.0.2 - Laser effect on pencil  9B with different paper substrates,  (a) OP and (b) Whatman nº1.  
Plot of the 4 different Laser power and Speed regions that cause different after effect in the pencil/sub-
strate.  (c) Sample of OP with an example of lost  integrity ( market as red), mesh (marked as yellow) and 

improved conductivity (marked as green).  

 

Annex D – CI-HME 

 

Figure D.0.3 - Final CI-HME 
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Annex E – EDS Mappings 

 

Figure E.0.4- EDS analysis of a 9B pencil  sample without laser treatment. (a) Cumulative spectrum of 

the EDS analysis ,  where the presence of iridium and phosphorous are due to the sample's coating .  (b) 
EDS mappings of carbon, oxygen, aluminium, sil icon and calcium. 

 

Figure E.0.5 - EDS analysis of a 9B pencil sample with laser treatment.  (a) Cumulative spectrum of the 
EDS analysis , where the presence of iridium and phosphorous are due to the  sample's coating.  (b) EDS 

mappings of carbon, oxygen, aluminium, silicon and calcium.  
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Annex F – XPS 

Table F.0.2 – XPS elemental composition (atomic %)  of 9B pencil  samples. 

Sample: 9B pencil Bond % Concentration 

 

Without laser treatment 

C=C (sp2) 76.61 

Pi-Pi* 5.28 

C-C (sp3) 15.99 

C-OH, C-O-C 2.13 

 

With laser treatment 

C=C (sp2) 90.16 

Pi-Pi* 6.21 

C-C (sp3) 2.08 

C-OH, C-O-C 1.55 

 

Annex G – NaCl Studies 

In [61], a NaCl pre-treatment was performed in pencil-based chips, by CV using a range of [-2;+2]V 
for 10 cycles. Two scan-rate speeds were analysed 100 mV/s (CV1) and 50 mV/s (CV2) for this purpose. 

The wide potential range increased the time spent in this cleaning procedure and therefore CA was also 

tested. The best result with this technique was obtained using -0.5 V for 300 s, the results can be seen 

in Figure G.0.6. 

 

Figure G.0.6 - Pre-treatment of P-HME with NaCl,  comparation between P -HME, a pre-treatment with 
CA and two pre-treatments with CV. Assessed in 5.0 mM [Fe(CN) 6]3−  and 5.0 mM [Fe(CN) 6]4− ,  in PBS 

buffer,  pH 7.2 

CV analysis showed better results for CV2 (slower scan rate), the oxidation and reduction peaks were 

of -0.17 V and +0.18 V, which indicated a quasi-reversible behaviour. The scan of the sample with CA 

pre-treatment displays worse electrical properties, therefore it is concluded that is a skippable step, at 

least for the NaCl solution. 

For NaCl, the best conditions found were CV2, but as described in the KCl study, with EIS analysis 

the results continued to show inconstant readings with an increased RCT tendency. 
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Annex H – EIS analysis of PEDOT layer on P-HME 

 

Figure H.0.7 - EIS of PEDOT layer on P-HME, in consecutive readings.  

 


