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Resumo 
 

Um dos objetivos centrais da Neurociência é entender como é que o cérebro processa estímulos 

sensoriais e gera respostas comportamentais. Para atingir este objetivo é crucial monitorizar e 

manipular a atividade neuronal em tempo real, bem como estudar os circuitos neuronais e as 

suas conexões ao longo de todo o cérebro. Para facilitar esta tarefa é importante usar um 

organismo modelo geneticamente manipulável e com um sistema nervoso relativamente simples, 

mas com comportamento robusto. O peixe-zebra tem-se tornado um promissor organismo 

modelo no estudo do sistema nervoso. A acessibilidade e a transparência ótica dos embriões e 

larvas tornam possível a expressão e a visualização de repórteres fluorescentes geneticamente 

codificados, através de técnicas transgénicas. Neste trabalho foi usado um conjunto recente de 

repórteres fluorescentes geneticamente codificados (LSSmOrange, mScarlet e GCaMP6fEF05) 

para estabelecer novas linhas transgénicas, através do sistema de transposão Tol2. Estas linhas 

serão usadas para estudar a comunicação entre diferentes populações de neurónios e registar 

a atividade neuronal durante respostas comportamentais. A geração de novas ferramentas 

genéticas aliadas ao desenvolvimento de técnicas sofisticadas de imagem tem aberto a 

possibilidade de mapear todo o cérebro do peixe-zebra com elevada resolução e precisão 

temporal. Nos próximos anos, o desafio será combinar as metodologias desenvolvidas e 

correntemente usadas em peixe-zebra para entender os comportamentos gerados em 

vertebrados mais complexos. 

 

 

Palavras-Chave: peixe-zebra; LSSmOrange; mScarlet; indicadores de cálcio geneticamente 

codificados; circuitos neuronais; neurobiologia. 
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Abstract 
 

A central goal of Neuroscience is to understand how the brain processes sensory stimuli and 

generates behavioral responses. To achieve this goal, it is crucial to monitor and manipulate the 

neuronal activity of single cells in real time, as well as to study the neuronal circuits and their 

connections throughout the whole-brain in a behaving animal. Thus, it is important to use 

a genetically tractable model organism with a relatively simple nervous system but with robust 

behavior. Zebrafish has become a promising model organism in the study of nervous system. The 

accessibility and optical transparency of embryos and larvae make possible the expression and 

visualization of genetically encoded fluorescent reporters, through transgenic techniques. In this 

work, recent genetically encoded fluorescent reporters (LSSmOrange, mScarlet 

and GCaMP6fEF05) were used for establishing new transgenic zebrafish lines, through 

the Tol2 transposon system. These lines will be used to study the communication between 

different populations of neurons and to record neural activity during behavioral responses. 

The generation of new genetic tools allied to the development of sophisticated imaging 

techniques has opened up the possibility of whole-brain imaging with single-cell resolution and 

high temporal precision. In the coming years, the challenge will be to combine the approaches 

developed and currently used in zebrafish to understand how behaviors are generated in higher 

vertebrates.  

 

 

 

Keywords: zebrafish; LSSmOrange; mScarlet; genetically encoded calcium ion indicators; 

neuronal circuits; neurobiology. 
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I. Introduction 
 

 

1. The challenge of Neuroscience 

The central goal of Neuroscience is understanding how neuronal networks process sensory 

information in the brain and generate appropriate behaviors. However, this goal is particularly 

challenging, since it requires an understanding of neuronal networks from the biophysical 

properties of neurons to their interactions (Feierstein et al. 2015; Friedrich et al. 2013; Orger 

2016). To accomplish this goal, it is essential to use a multidisciplinary approach involving several 

scientific fields, such as: genetics, molecular biology, optics, neurobiology and mathematical 

modelling, and the study of a model organism with a relatively simple nervous system but with 

robust behavior. Zebrafish is a promising model organism to address this challenge, as it allows 

to visualize and manipulate activity in neuronal circuits throughout the brain (Sumbre & de 

Polavieja 2014). 

 

2. Zebrafish as a model organism 

Zebrafish, Danio rerio, is a small shoaling tropical water fish native to rivers of south Asia, which 

belongs to teleostei infraclass (Orger 2016; Sumbre & de Polavieja 2014). Traditionally, zebrafish 

is used as model organism in genetic studies of embryonic development and organogenesis 

(Langheinrich 2003). However, it has become a popular model organism in biomedical research 

and neuroscience (Kalueff et al. 2014; Stewart et al. 2014). Although phylogenetically distant from 

humans, zebrafish has a nervous system organized like all vertebrates and shares a high genetic 

similarity to humans. Its genome has approximately 70% of homology with the human genome 

(Figure I.1) (Stewart et al. 2014) and 82% of orthologous human disease-related genes 

(Gutiérrez-Lovera et al. 2017; Santoriello & Zon 2012). 

 

Figure I.1 – Phylogenetic tree of major model species. Adapted from Stewart et al. 2014. 

 

Comparing with other in vivo models, zebrafish offers many advantages. Zebrafish has high 

fecundity and produces 200-300 embryos per mating pair and week. The embryos develop 

outside the mother’s body and are transparent during the development stage, which enables a 
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non-invasive assessment of their internal structures, morphogenetic tissue movements, 

organogenesis, cellular interaction and subcellular dynamics in real time (Giannaccini et al. 2014; 

Gutiérrez-Lovera et al. 2017; Santoriello & Zon 2012). Furthermore, the optical clarity of zebrafish 

embryos is also an advantage for in vivo neuronal network analysis and neuronal activity 

monitoring (Stewart et al. 2014).  

Zebrafish as a powerful model organism is also very cost-efficient, easy to raise and maintain and 

can be housed in large numbers in a minimal facility space (Ablain & Zon 2014; Kalueff et al. 

2014). Moreover, it exhibits a very rapid embryonic development and a short generation time (two 

to three months). The major organs systems are formed 24 hours post fertilization (hpf) and the 

first behavioral responses appear at 3 days post fertilization (dpf). At 5 dpf, the larvae are able to 

swim, hunt for food, avoid predators and stabilize their position in moving water, which proves the 

existence of well-developed neuronal circuits (Feierstein et al. 2015; Giannaccini et al. 2014; 

Gutiérrez-Lovera et al. 2017; Renninger et al. 2011; Santoriello & Zon 2012). 

Another strength of this model organism is that it is genetically tractable. The genetic approaches 

validated and currently used include generation of random mutations and subsequent gene or 

enhancer-trap screens (Patton & Zon 2011), morpholino knock-down (Bill et al. 2009; Lan et al. 

2011), transcription activator-like effector nuclease (TALENs) system (Cermak et al. 2011; Joung 

& Sander 2012), targeting induced local lesions in genomes (TILLING) system (Moens et al. 

2008), clustered regularly interspaced short palindromic repeats (CRISPR) technology (Chang et 

al. 2013; Hwang et al. 2013) and transgenesis using the Tol2 transposon system (Kikuta & 

Kawakami 2009). The use of all these genetic approaches has allowed the generation of several 

transgenic and mutant zebrafish lines, which are particularly important in identifying human neural 

diseases (Stewart et al. 2014) and studying the development and function of the nervous system 

(Higashijima 2008; Sumbre & de Polavieja 2014). 

 

3. Neuronal circuits underlying behaviors 

In order to determine the organization and function of neuronal circuits underlying behavioral 

responses, sophisticated imaging techniques have been developed. These techniques have 

opened up the possibility to identify and label specific neurons, as well as to monitor and 

manipulate neuronal activity of single cells and entire circuits with high resolution (Friedrich et al. 

2013; Renninger & Orger 2013; Sumbre & de Polavieja 2014). The combination of these imaging 

techniques, optogenetic tools and the larvae’s small size and transparent skin enables the 

imaging of the whole-brain neuronal activity in larvae completely or partially restrained in low-

melting agarose. When partially restrained, the eyes and tail are free to move, allowing the 

correlation between the neuronal activity to the behavioral responses (Renninger & Orger 2013; 

Sumbre & de Polavieja 2014). 



 

 
3 

One of the most studied behaviors is zebrafish is the visuomotor behavior (Portugues & Engert 

2009). In early stages, vision is crucial for survival, since it allows larvae to hunt for food, avoid 

predators and navigate. Therefore, this strong evolutionary pressure leads to a rapid development 

of the visual system and a repertoire of visuomotor behaviors: startle response, optomotor 

response (Figure I.2A), optokinetic response (Figure I.2B) and prey capture. These behaviors can 

be elicited through visual stimuli in an artificial environment with larvae swimming freely or larvae 

partially restrained in low-melting agarose (Fleisch & Neuhauss 2006; Orger 2016; Renninger et 

al. 2011; Sumbre & de Polavieja 2014).  

 

Figure I.2 – Visuomotor behaviors: optomotor response (A) and optokinetic response (B). (A) The 
optomotor response (OMR) is the ability of the larva to swim in the direction of a perceived motion evoked 
by a translational whole-field motion. The OMR divides in orienting turns, which serve to bring motion into a 
tail to head direction (right), and forward swims when the fish position is according to motion (left). (B) The 
optokinetic response (OKR) is a reflexive eye movement evoked by a whole-field rotational motion. During 
a rotational motion, fish adjust the direction of their eyes, alternating between slow eye movements to rapid 
saccades (pink traces, bottom box). Sinusoidal rotating stimulus (pink arrows) results in a consistent slow 
tracking movement (top box). The direction of motion is indicated by blue arrows. Adapted from Orger 2016.   

 

Thus, to understand how neuronal circuits generate robust and complex behaviors, it is crucial to 

identify and characterize the neuronal populations involved in specific circuits and to delineate 

different areas involved in sensory processing and motor generation (Feierstein et al. 2015; Orger 

2016). Moreover, it is also important to develop neuronal activity maps and put that activity in a 

context of neuroanatomy.  

In the last years, a Z-Brain atlas, an open-source atlas that contains molecular labels and 

definitions of anatomical regions, was built. Using the Z-Brain atlas as a reference brain, it is 

possible to perform direct comparisons between experiments, describe regions of activity directly 

and reveal brain-wide functional connectivity patterns. These analyses become even more 

powerful as more labels and activity maps are accumulated in the Z-brain (Randlett et al. 2015). 

In order to increase the molecular labels and target specificity of identified cell types, several 

transgenic zebrafish lines have been generated (Renninger et al. 2011). 
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4. Transgenesis 

Transgenesis is a powerful methodology for studying the function of genes and genomes in model 

plants and animals, and consisting of the introduction of an engineered DNA fragment into the 

genome of an organism (Kikuta & Kawakami 2009; Mosimann & Zon 2011). In zebrafish, the 

transgenesis is mainly achieved by integration of the gene of interest in its genome, through 

plasmid DNA microinjection in one-cell stage embryos. Traditionally, the non-Tol2-DNA 

microinjection method (Stuart et al. 1998) and the I-SceI-mediated method (Thermes et al. 2002) 

were used, but their limitations led to the development of other methodologies with high transgene 

integration efficiency. These methodologies include the Sleeping Beauty transposon system (Ivics 

et al. 1997) and Tol2 transposon system (Kawakami et al. 2004). Taking advantage of the Tol2 

transposon system, the Gal4-UAS transactivation system, which will be explained later on, has 

been widely used to generate a large number of transgenic zebrafish lines. 

 

4.1.  Tol2 transposon system 

The Tol2 transposable element was identified from the genome of the Japanese medaka fish 

(Oryzias latipes) and belongs to the hAT family of transposons (Koga et al. 1996). Although the 

vertebrate genome contains a large number of transposons, the Tol2 element is the only 

autonomous transposable element identified in a vertebrate genome (Kawakami et al. 2000; 

Urasaki et al. 2006). 

The Tol2 transposable element is about of 4.7 kilobases (kb) in length and encodes a fully 

functional transposase protein capable of catalyzing transposition (Kawakami et al. 1998; 

Kawakami & Shima 1999). For that, the presence of minimal Tol2 cis-sequences (Tol2 arms), that 

are recognized by the transposase (Figure I.3), is necessary. Theoretically, any DNA fragment 

can be cloned between Tol2 cis-sequences. It has been described that a Tol2 construct can carry 

11 kb DNA without reducing the transposition activity (Kawakami 2007; Urasaki et al. 2006). 

  

 
Figure I.3 – Structure of the Tol2 transposable element. Tol2 transposable element encodes a mRNA 
for the transposase protein. Lines and dotted lines indicate the exons and introns, respectively. Black boxes 
represent coding regions and grey boxes represent untranslated regions. The terminals (L and R) 
correspond to the minimal Tol2 cis-sequences necessary for transposition. The minimal Tol2 cis-sequences 
are DNA sequences with 200 base pairs (bp) from the left end (L) and 150 bp from the right end (R) of the 
Tol2 transposable element. Adapted from Kawakami 2007. 
 

To facilitate transgenic studies in zebrafish, transgenic methods using the Tol2 transposable 

element have been developed. The most popular approach is the Tol2 transposon system. It 
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consists of two components: plasmid DNA carrying a non-autonomous Tol2 construct and 

transposase mRNA synthesized in vitro by using the transposase cDNA as a template.  

In zebrafish, stable transposition is achieved when a plasmid DNA and the transposase mRNA 

are co-injected into one-cell stage zebrafish embryos. The transposase protein is translated from 

the mRNA and catalyzes the excision of the non-autonomous Tol2 construct from the plasmid, 

which is randomly integrated into the genome during early stages of embryonic development. 

Some Tol2 constructs will be integrated in germ cells and transmitted to the offspring (Figure I.4). 

When the mRNA and transposase protein are degraded, the transposase activity ends, and the 

insertions become stable (Abe et al. 2011; Kawakami 2004; Kawakami 2007). The Tol2 constructs 

are integrated in the genome through the cut-and-paste mechanism and the only modification 

observed is an 8 bp duplication at the integration site (Kawakami 2007; Kawakami et al. 2000). 

 

 
 

Figure I.4 – Scheme of transposition of a Tol2 construct in zebrafish. The synthetic transposase mRNA 

and a plasmid DNA containing a Tol2 construct are co-injected into one-cell stage zebrafish embryos. The 
Tol2 construct is excised from the plasmid DNA and integrated into the zebrafish genome. The injected 
embryos are raised into adulthood and posteriorly mated with noninjected fish. The integrated Tol2 
constructs in germ cells are transmitted to the next generation. Adapted from Kawakami 2007. 
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4.2. Gal4-UAS transactivation system 

Although the Gal4-UAS transactivation system has been extensively used in genetic studies in 

Drosophila melanogaster, it was not applied to genetic studies in vertebrates for a long period of 

time, mainly due to the lack of an efficient transposon system. However, this situation was 

revolutionized when the Tol2 transposon system was developed in zebrafish (Asakawa & 

Kawakami 2008).  

The Gal4-UAS transactivation system is a powerful genetic method that includes two 

components: the Gal4 protein and an Upstream Activating Sequence (UAS). The Gal4 protein is 

a yeast transcriptional activator that contains two domains: the DNA-binding domain and the 

transcription activation domain. The Gal4 protein binds to specific sites of the upstream activating 

sequence and activates the transcription of a target gene (Figure I.5) through the transcription 

activation domain (Asakawa & Kawakami 2008; Giniger & Ptashne 1987; Keegan et al. 1986; Ma 

& Ptashne 1987), which recruits the general transcriptional machinery to the promoter region 

(Traven et al. 2006).  

To induce a strong expression of a target gene, the Gal4 protein can be modified. The Gal4-VP16 

protein contains the DNA-binding domain from Gal4 and the transcriptional activation domain 

from the herpes simplex virus VP16 protein (Asakawa & Kawakami 2008; Sadowski et al. 1988). 

The Gal4FF (or GFF) protein contains the DNA-binding domain from Gal4 and two short 

transcriptional activation motifs from VP16 (Asakawa & Kawakami 2008; Seipel et al. 1992). 

Although Gal4FF shows a weaker transcriptional activity than Gal4-VP16, it is better tolerated in 

vertebrate cells, since high levels of expression of Gal4-VP16 inhibit the transcription of the target 

gene (Asakawa & Kawakami 2008). 

The Gal4-UAS transactivation system is based on two types of transgenic lines: driver lines and 

reporter lines. While in driver lines the gene encoding Gal4 protein is placed under the control of 

a specific promotor; in reporter lines the gene of interest (e.g. genetically encoded fluorescent 

reporter gene) is linked to the UAS. This enables any gene of interest placed downstream of the 

UAS can be ectopically expressed in cells where the gal4 gene is express. The expression of the 

gene of interest will reflect the expression pattern of Gal4, which is controlled by a promoter 

(Figure I.5) (Halpern et al. 2008; Scheer & Campos-Ortega 1999; Scott 2009). Promoters, such 

as elavl3 (HuC) (Higashijima et al. 2003) and alpha-1-Tubulin (Hieber et al. 1998) are usually 

used to drive expression to most neurons throughout the nervous system (pan-neuronal 

expression pattern). Other promotors, such as islet3 (isl3) and ath5, are commonly used to drive 

expression to specific regions. The Isl3 expression pattern is characterized by expression in 

retinal ganglion cells (RGCs), hindbrain, trigeminal nerve, spinal cord and optic tectum (Thisse & 

Thisse 2004; Renninger & Orger 2013). The Ath5 expression pattern is characterized by 

expression in RGCs (Renninger & Orger 2013). 
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The binary nature of the Gal4-UAS transactivation system enables the creation of several driver 

and reporter lines that can be combined in different ways, in order to generate a large number of 

transgenic zebrafish lines. These transgenic lines can be used to study the anatomy and 

connectivity of the nervous system and to identify neuronal circuits that regulate specific 

behavioral responses (Halpern et al. 2008; Scheer & Campos-Ortega 1999; Scott 2009). 

 
Figure I.5 – Gal4-UAS transactivation system in zebrafish. When a driver line with a specific promoter 
upstream of the gal4 gene is crossed with a reporter line that carries a gene of interest (GOI) under the 
control of the UAS, the result is a double transgenic progeny. The gene of interest is expressed in Gal4-
expressing cells. Adapted from Asakawa & Kawakami 2008. 
 
 
 

5. Genetically encoded fluorescent reporters and subcellular localization 

tags 

Transgenic techniques and optical transparency of zebrafish embryos and larvae make the 

zebrafish an ideal organism for studying neuronal connectivity, tracking neurons and monitoring 

neuronal activity in real time, through genetically encoded fluorescent reporters (Halpern et al. 

2008; Renninger et al. 2011). After the discovery of green fluorescent protein (GFP) (Prasher et 

al. 1992), multiple genetically encoded fluorescent reporters have been developed to expand the 

color palette and improve the fluorophores characteristics, such as: folding speed, brightness, 

maturation, photostability, sensitivity and Stokes shift, i.e. the spectral distance between 

absorption and emission peaks of a fluorophore (Chudakov et al. 2010; Weber & Koster 2013). 

Furthermore, in order to visualize and study specific events, genetically encoded fluorescent 

reporters can be fused to subcellular localization tags (Weber & Koster 2013). 

 

5.1. Genetically encoded calcium ion indicators 

Genetically encoded calcium ion indicators (GECIs) are powerful approaches for monitoring the 

neuronal activity in vivo. GECIs not only allow the labeling of single neurons and neuronal 

populations, but they also have a long-term expression (Akerboom et al. 2013; Ni et al. 2017).  
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Neuronal activity can be recorded by changes in intracellular calcium concentration. Calcium ions 

(Ca2+) are transported into neurons during action potential firing and synaptic input and, therefore, 

changes in intracellular calcium concentration are a good readout of ongoing neuronal activity 

(Akerboom et al. 2012; Akerboom et al. 2013; Ni et al. 2017; Renninger & Orger 2013). 

The most optimized GECIs are single-wavelength green indicators based on the original 

genetically encoded calcium sensor, GCaMP. In the GCaMP sensor, GFP is fused to Calmodulin 

(CaM) and M13 peptide from the myosin light chain kinase. When Ca2+ is present, calmodulin 

binds to the M13 peptide, producing a conformational change in CaM-M13 interaction, which 

causes an increase of fluorescence intensity. GCaMP exhibits an excitation and emission maxima 

of ~484 nm and ~507 nm, respectively (Figure I.6) (Chudakov et al. 2005; Nagai et al. 2001; Ni 

et al. 2017; Renninger & Orger 2013).  

Figure I.6 – Genetically encoded calcium ion indicator GCaMP. In the presence of Ca2+, calmodulin 
(CaM) binds to the M13 peptide, causing a conformational change in CaM-M13 interaction, which leads to 
an increase of brightness. Adapted from Ni et al. 2017. 

 

The high levels of fluorescence and the high sensitivity of GCaMPs, in terms of signal-to-noise 

ratio and kinetics response, are the most important parameters to a successful detection of 

neuronal activity. The first version of GCaMP was not sensitive enough to reliably detect the fast 

calcium dynamics associated with neuronal activity in vivo, thus a high number of GCaMP variants 

have been produced, in order to increase its brightness and sensitivity. The GCaMPs that exhibit 

the best performance belong to the GCaMP6 family (Chen et al. 2013; Ni et al. 2017; Renninger 

& Orger 2013). This family is able to detect single action potential and includes three ultrasensitive 

GCaMP6 sensors: GCaMP6s, GCaMP6m and GCaMP6f, that show slow, medium and fast 

kinetics, respectively (Chen et al. 2013). 

Recently, new variants of GCaMP6s and GCaMP6f have been developed by Michael Orger’s 

Laboratory (Champalimaud Centre for the Unknown), through an extensive mutagenesis study. 

Visually evoked activity was characterized under the two-photon microscope for the different 

GCaMP mutation combinations in zebrafish larvae and mouse hippocampal slice cultures. This 

study offered several GCaMP6 variants to select from, with overall brightness, rise/decay kinetics 

and calcium affinity tuned for diverse applications (Tomás et al. unpublished data). 
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Another favorable feature of GCaMPs is the possibility to modulate the color of the fluorescent 

protein. Direct mutations in the GFP chromophore result in fluorescent proteins with different 

excitation/emission properties (BFP, CFP, YFP, RFP – blue, cyan, yellow, red fluorescent 

proteins). These proteins can be fused with biosensors to obtain GECIs. For imaging, red-shifted 

indicators are preferable, since longer wavelengths reduce the tissue scattering, 

autofluorescence and phototoxicity. Moreover, non-green sensors offer the possibility to use 

animals that express GFP (Akerboom et al. 2013). 

 

5.2. LSSmOrange 

Multicolor imaging based on genetically encoded fluorescent proteins is a powerful tool to study 

dynamic processes in living cells. One of the most recently developed genetically encoded 

fluorescent proteins is LSSmOrange (Shcherbakova et al. 2012).  

LSSmOrange is a monomeric orange fluorescent protein (mOrange) with a large energy gap 

between the excitation and emission peaks, currently designed by Light-induced Spectral Shift 

(LSS) (Fron et al. 2015). LSSmOrange exhibits an excitation and emission maxima of 437 nm 

and 572 nm, respectively (Figure I.7), and a highest brightness than red LSS fluorescent proteins 

(Shcherbakova et al. 2012). Moreover, it also exhibits a photoconvertible process, which can be 

characterized by a shift of the excitation maximum from 437 to 553 nm without changing the 

emission spectrum (Bergeler et al. 2016; Fron et al. 2015). 

 
Figure I.7 – LSSmOrange fluorescence absorbance (blue) and emission (orange) spectra. 
LSSmOrange has an excitation maximum of 437 nm and an emission maximum of 572 nm. Adapted from 
FPbase (https://www.fpbase.org/, consulted on 29/08/2018). 

 

The well-separated absorption and emission spectra, typically more than 100 nm, is a great 

advantage in multicolor fluorescence microscopy with a single laser wavelength, since a laser 

can simultaneously excite various fluorescent proteins with similar excitation, but different 

emission maxima (Chudakov et al. 2010; Fron et al. 2015; Keersmaecker et al. 2015). In addition, 

LSSmOrange using a single-wavelength excitation also enable other multicolor applications in 

flow cytometry and fluorescence resonance energy transfer (FRET) (Shcherbakova et al. 2012). 
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5.3.  mScarlet 

The wide expansion of the fluorescent proteins occurred after discovery of red fluorescent 

proteins (RFPs). RPFs usually form tetramers, which interfere with function and localization of the 

RPF-fusion proteins. In order to solve this limitation, various monomeric proteins have been 

created, but the monomerization leads to a significant deterioration of brightness. One of the main 

goals of fluorescent protein engineering has been to develop bright monomeric fluorescent 

reporters with a complete maturation (Bindels et al. 2017; Rodriguez et al. 2017). mScarlet is the 

latest brighter monomeric red fluorescent protein developed (Bindels et al. 2017).  

mScarlet was generated from a synthetic template through improved screening techniques, and 

it exhibits an excitation and emission maxima of 569 nm and 594 nm, respectively (Figure I.8). 

Comparing with other RPFs, mScarlet offers many features that make it a powerful monomeric 

RFP (mRFPs). mScarlet shows the highest fluorescence lifetime (3.9 ns) and the highest quantum 

yield (0.7) recorded in the mRFPs and exhibits a record brightness (71x103 M-1cm-1) in the mRFP 

spectral class. Moreover, mScarlet shows a complete maturation and a high tolerance in acidic 

environments, since it has a low pKa (5.3) (Bindels et al. 2017). 

 
Figure I.8 – mScarlet fluorescence absorbance (orange) and emission (red) spectra. mScarlet has an 
excitation maximum of 569 nm and an emission maximum of 594 nm. Adapted from FPbase 
(https://www.fpbase.org/, consulted on 29/08/2018). 

 

The creation of mScarlet led to the development of two variants with a single amino acid 

substitution: mScarlet-I and mScarlet-H. Although these variants exhibit a lower fluorescence 

lifetime and quantum yield than mScarlet, mScarlet-I has an enhanced maturation and mScarlet-

H has an improved photostability. None of mScarlets shows problems of cytotoxicity, 

photochromicity, dimerization or incomplete maturation. Furthermore, mScarlet and their variants 

are the preferred monomeric RFPs for cellular microscopy and quantitative functional imaging, 

since they can be used as an RPF fusion tag for labeling various subcellular structures and 

organelles in live cells, or as a FRET acceptor in radiometric imaging (Bindels et al. 2017).  

 

5.4. Subcellular localization tags 

In order to visualize and study specific events, genetically encoded fluorescent reporters can be 

fused to subcellular localization tags, which allows to restrict the fluorescent reporter expression 

to a specific subcellular localization or structure (Weber & Koster 2013). 
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In zebrafish, the histone 2B sequence (H2B tag) is commonly used, since it directs the fluorescent 

reporter expression to the nucleus (Halpern et al. 2008; Weber & Koster 2013). Another example 

is the rat synaptophysin sequence (rSyp tag), that directs the fluorescent reporter expression to 

presynaptic vesicles (Meyer & Smith 2006). Thus, any cellular compartments and structure can 

be highlighted as long as there is a specific protein to direct the fluorescent reporter expression 

to those compartments and structures. 

 

6. Aims 

The central aim of this project is to generate new transgenic zebrafish expressing recent 

genetically encoded fluorescent reporters, as these fluorescent reporters offer unique advantages 

in fluorescence microscopy imaging of the whole-brain neuronal activity, quantitative analysis of 

behavior and study of neuronal circuits underlying visuomotor behaviors.  

 

The specific aims of this project are: 

 

• To clone new genetically encoded fluorescent reporter genes (LSSmOrange and mScarlet), 

into zebrafish expression vectors; 

 

• To generate stable transgenic zebrafish lines by injecting expression clones into one-cell 

stage zebrafish embryos, using the Tol2 transposon system; 

 

• To characterize the fluorescent reporter expression in the new transgenic lines, using 

confocal microscopy. 
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II. Material and Methods 
 

1. Molecular cloning 

 

1.1. Expanding plasmid DNA from Addgene 

Plasmids encoding the fluorescent reporter genes (LSSmOrange and mScarlet) were obtained 

from Addgene (https://www.addgene.org/) (Table II.1), and further cloned into a Tol2 Gateway 

destination vector (Supplement A.1), constructed by Michael Orger’s Laboratory (Champalimaud 

Centre for the Unknown). 

 

Table II.1 – Original plasmids with genetically encoded fluorescent reporter genes, antibiotic resistance and 
bacteria growth temperature.  

Fluorescent reporter 
gene  

Original Plasmid Antibiotic Resistance 
Bacteria growth 
temperature (°C) 

LSSmOrange pH2B-LSSmOrange (a) Kanamycin 37 

mScarlet pmScarlet_C1 (b) Kanamycin 37 
 

(a) pH2B-LSSmOrange was a gift from Vladislav Verkhusha (Addgene plasmid #37133). Map in supplement A.2A. 

(b) pmScarlet_C1 was a gift from Dorus Gadella (Addgene plasmid #85042). Map in supplement A.2B. 

 

In order to isolate a single colony, bacterial cultures were spread on Luria-Bertani (LB) broth agar 

plates (composition in table II.6) supplemented with kanamycin 50 µg/ml (Sigma #060615) and 

incubated overnight at 37°C.  

 

1.2.  Plasmid DNA isolation 

Single colonies were inoculated into 4 ml of LB broth (composition in table II.6) supplemented 

with appropriate antibiotic and incubated overnight at 37°C with shaking. Plasmid DNA was 

obtained using the QIAprep Spin Miniprep Kit (QIAGEN #27106), according to the manufacturer’s 

instructions. Unless otherwise specified, DNA was eluted in 5 mM of Tris HCl, pH 8.0. Antibiotics 

were used at the following concentrations: 100 µg/ml ampicillin (Sigma #A9518) and 50 µg/ml 

kanamycin (Sigma #060615). 

Plasmid DNA was preserved in glycerol stocks. Under aseptic conditions, 800 µL of the bacterial 

culture were added to 800 µL of 100% (v/v) glycerol (Sigma #G2015). Glycerol stock tube was 

stored at - 80°C. 

 

1.3. DNA quantification 

DNA was quantified by ultraviolet spectrophotometry using a Nanodrop (ND-2000) 

spectrophotometer.  

 

https://www.addgene.org/
http://www.addgene.org/browse/pi/1030/
http://www.addgene.org/browse/pi/659/
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1.4. Polymerase Chain Reaction (PCR) 

DNA fragments used in the cloning procedures were amplified by PCR. For each DNA fragment, 

sequence-specific primers were designed (Table II.2). PCR reactions were performed according 

to the recommended protocol for each DNA polymerase: Phusion High-Fidelity DNA Polymerase 

(NEB #M0530S) and Platinum SuperFi DNA Polymerase (Invitrogen #12351-010), using a C1000 

Touch Thermal Cycler (BioRad).  

For Phusion High-Fidelity DNA Polymerase, reaction mixes were prepared in volumes that ranged 

between 50 to 200 µL, depending on the application, using < 250 ng of template DNA, 10 mM of 

deoxynucleotide (dNTP) mix, 0.5 µM of each primer, 5X Phusion HF Buffer (1x) and 1U of Phusion 

DNA polymerase per 50 µL of reaction. DNA was amplified under the following thermocycling 

conditions: an initial melting step of 98°C for 3 minutes followed by 34 cycles of amplification, 

composed of denaturation at 98°C for 10 seconds, annealing at the appropriate temperature for 

20 seconds and extension at 72°C for 30 seconds/kb. A final extension step was performed at 

72°C for 10 minutes.  

For the Platinum SuperFi DNA Polymerase, reaction mixes were prepared in volumes that ranged 

between 50 to 200 µL, depending on the application, using 100 ng of template DNA per 50 µL of 

reaction, 0.2 mM of dNTP mix, 0.5 µM of each primer, 5X SuperFi Buffer (1x) and 0.02 U/µL of 

Platinum SuperFi DNA Polymerase. DNA was amplified under the following thermocycling 

conditions: an initial melting step of 98°C for 30 seconds followed by 34 cycles of amplification, 

composed of denaturation at 98°C for 10 seconds, annealing at the appropriate temperature for 

10 seconds and extension at 72°C for 30 seconds/kb. A final extension step was performed at 

72°C for 5 minutes. 

 
Table II.2 - Primers used for the amplification of DNA fragments, corresponding sequences and melting 
temperature (Tm). 

(a) Restriction sites are underlined in primers’ sequence. Kozak sequence (kz) and stop sequence are in bold. Extra 
nucleotides to ensure the cleavage by restriction endonucleases are in italic.  

(b) Overlap sequences for Gibson Assembly are in blue.  

Primer Sequence Tm (°C) 

SpeI-kz-LSSmOrange_Fw 5’CGACTAGTGCCACCATGGTGAGCAAGG 3’ (a) 63.1 

PacI-Stop-LSSmOrange_Rv 5’GGTTAATTAATTACTTGTACAGCTCGTCCATGCC 3’ (a) 64.2 

SpeI-kz-mScarlet_Fw 5’GGACTAGTGCCACCATGGTG AGCAAGG 3’ (a) 63.1 

PacI-Stop-mScarlet_Rv 5’CGTTAATTAATTACTTGTACA GCTCGTCCATGCC 3’ (a) 62.7 

EcoRI-α1Tubpromoter_Fw 
5’CGGAATTCCTGTAAGGTATATGAAAGCATTATTATTCTA
AACATGTC 3’ 

70.8 

α1TubuIntron1-
LSSmOrange/mScarlet_Rv  

5’GCCCTTGCTCACCTGTGAAGAAAAAGGCAAAAGTTAAA
AGTCAAAC 3’ (b) 

70.4 

α1Tubpromoter-(No ATG)-
LSSmOrange_Fw 

5’GCCTTTTTCTTCACAGGTGAGCAAGGGCGAGGAGAAT
AAC 3’ (b) 

69.9 

α1Tubpromoter-(No ATG)-
mScarlet_Fw 

5’GCCTTTTTCTTCACAGGTGAGCAAGGGCGAGGCAG 3’ 
(b) 

71.0 
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1.5. Agarose gel electrophoresis 

PCR products or DNA fragments were separated according to size and visualized on agarose 

gels stained with GreenSafe Premium (nzytech #18011), according to the manufacturer’s 

instructions. Gels were prepared using 1% (w/v) agarose (Fisher BioReagents #BP160-500) in 

1x Tris-acetate-EDTA (TAE) (composition in table II.6) and the DNA samples were mixed with the 

Gel Loading Dye Purple (6x) (NEB #B7024S), prior to loading on wells. Fragment size was 

estimated by comparison with linear DNA standards of known molecular weight (GeneRuler 1 Kb 

DNA ladder, Thermo Scientific #SM0311, Supplement A.3). Electrophoresis was performed at 

80-100V in 1x TAE buffer.  

  

1.6. DNA extraction from agarose gel  

DNA fragments were carefully excised from the gel and recovered with QIAquick Gel Extraction 

Kit (QIAGEN #28706), according to the manufacturer’s instructions. Unless otherwise specified, 

DNA was eluted in 5 mM of Tris HCl, pH 8.0.  

 

1.7. Restriction digestion 

Restriction digestions of plasmids DNA or PCR products were prepared in a total volume of 20 

μL, using the appropriate restriction endonucleases (NEB) and corresponding buffers (NEB) 

(Table II.3), according to the manufacturer’s instructions. In the case of double digestion with 

different buffers, the buffer that provided the maximal activity for both enzymes was selected. 

Restriction digestions were incubated for 1 to 2 hours at 37°C.  

Table II.3 – Restriction endonucleases used in restriction digestions and corresponding buffers. 
 

Restriction endonuclease Buffer 

BstXI NEBuffer 3.1 

EcoRI-HF CutSmart 

HindIII NEBuffer 2.1 

NotI-HF CutSmart 

SacI-HF CutSmart 

SpeI-HF CutSmart 

PacI CutSmart 

PstI NEBuffer 3.1 

 
 

1.8. DNA purification 

DNA fragments were purified with QIAquick PCR Purification Kit (QIAGEN #28106), according to 

the manufacturer’s instructions. Unless otherwise specified, DNA was eluted in 5 mM of Tris HCl, 

pH 8.0. 
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1.9. DNA ligation  

Digested DNA fragments (inserts) and vectors were ligated using T4 DNA ligase (NEB #M0202S). 

Approximately 50 ng of vector DNA was ligated with 3-fold excess of insert in a 20 µL reaction 

(made up in sterile Milli-Q water), containing 1x T4 ligase reaction buffer (NEB #B0202S) with 10 

mM ATP (NEB #B0202S) and 1U of T4 DNA ligase. Ligation was performed from 30 minutes at 

room temperature to overnight at 4°C. 

The amount of DNA insert (in ng) used in each reaction was calculated with the following formula: 

 

ng insert =  
50 ng vector × kb insert

kb vector
 × 3  

 

1.10. Transformation of competent cells 

Escherichia coli chemically competent cells were transformed by heat shock method, according 

to Froger & Hall 2007. All competent cells used were stored at - 80°C. The thawing process was 

performed on ice for 5 minutes. Then, the aliquots were incubated on ice for 30 minutes with 3 to 

10 µL of ligation mix. The DNA-cells mix was then heat shocked for 30 seconds at 37°C, followed 

by 2 minutes on ice. Under aseptic conditions, 500 µL of LB medium were added to the mix and 

incubated for 1 hour at 37°C with shaking. Cells were plated on LB broth agar plates containing 

the appropriate antibiotic and incubated overnight at 37°C. Ampicillin was used at 100 µg/ml and 

kanamycin at 50 µg/ml. In this work, TOP10 chemically competent E.coli and ccdB Survival 2 

competent cells were used, whenever appropriate. 

 

1.11. DNA sequencing 

Plasmid DNA integrity was confirmed by sequencing. DNA was sequenced at STAB VIDA 

according to the Sanger method, using specific or general primers (Table II.4). DNA sequences 

were analyzed and compared with the desired DNA sequences using SnapGene (sequence 

analysis software that allows for planning, visualization and documentation of molecular biology 

procedures) (http://www.snapgene.com/). Sequencing samples were prepared in a total volume 

of 10 µL (made up in sterile Milli-Q water), containing 100 ng of plasmid DNA and 3 µL at 10 µM 

of sequencing primer. 

Table II.4 – Primers used for the DNA sequencing, corresponding sequence and melting temperature (Tm). 

Primer Sequence Tm (°C) 

SV40_Rv 5’ACTGCATTCTAGTTGTGGTTTGTCC 3’ 63.0 

M13_Fw 5’GTAAAACGACGGCCAGT 3’ 56.3 

M13_Rv 5’CAGGAAACAGCTATGAC 3’ 50.7 

α1Tub225_Fw 5’GTTGGGCCTGCTCCTCATTC 3’ 62.7 

α1Tub450_Fw 5’GATGCGACTGGATGTTGAGG 3’ 60.1 

α1Tub-intron87_Fw 5’GTAGTCACGGTTGTGCTTATAACC 3’ 60.7 

α1Tub271_Rv 5’GGAGATGAATAATGGTGTTGCTTGG 3’ 61.6 

http://www.snapgene.com/
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1.12. Gateway cloning technology - LR recombination reaction 

The LR recombination reaction was performed using the Gateway LR Clonase II Enzyme Mix Kit 

(Invitrogen #11791-020), according to the manufacturer's instructions. The reaction containing 

150 ng of destination vector, 150 ng of entry clone and 2 µL of Gateway LR Clonase II Enzyme 

Mix was prepared in a total volume of 10 μL (made up in Tris-EDTA (TE) buffer, composition in 

table II.6) and incubated for 3 hours at 25°C. Then, 1 µL of Proteinase K was added and the LR 

reaction was incubated for 10 minutes at 37°C. The 10xUAS Entry Clone (Supplement A.4) was 

constructed by Michael Orger’s Laboratory (Champalimaud Centre for the Unknown). 

 

1.13. Gibson Assembly 

Gibson Assembly was performed using the Gibson Assembly Master Mix Kit (NEB #E2611L), 

according to the manufacturer's instructions. The reaction containing 10 μL of 2x Gibson 

Assembly Master Mix was incubated with 2 fragments (0.5 pmol each) in a total volume of 20 μL 

for 1 hour at 50°C. The alpha-1-Tubulin fragment was obtained from a pT-alpha1Tubulin-GCaMP 

vector (Supplement A.5), constructed by Michael Orger’s Laboratory (Champalimaud Centre for 

the Unknown). This fragment contains the promoter, first exon and first intron of the alpha-1-

Tubulin gene. 

 

1.14. Adding 3’-A overhangs 

PCR product was incubated with 100mM of ATP (Thermo Scientific #R1441) and 1U of Taq 

Polymerase (NEB #M0273S) in Standard Buffer Taq Polymerase (1x) for 10 minutes at 72°C to 

add 3’ deoxyadenosine (A) overhangs. 

 

1.15. TA Cloning 

PCR product was cloned into a pCR2.1-TOPO vector (Supplement A.6) using the TOPO TA 

Cloning Kit (Invitrogen #45-0641), according to the manufacturer's instructions. Then, 4 µL of 

PCR product with 3’-A overhangs was added to 1 µL of the pCR2.1-TOPO vector along with 1 µL 

of high salt solution. Ligation was performed from 30 minutes at room temperature to overnight 

at 4°C. 

 

2. Transgenesis 

 

2.1.  Animal handling and welfare 

All in vivo experiments were performed using zebrafish (Danio rerio) from the Fish Platform at the 

Champalimaud Centre for the Unknown. Zebrafish were handled according to European animal 

welfare regulations and standard protocols, following the Champalimaud Fish Platform program 

(Martins et al. 2016). 
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Adult zebrafish were maintained at 28ºC in a holding room with 14 hours light/10 hours dark cycle, 

using 200-300 lux ambient light intensity. They were kept in 3.5L tanks with running water and a 

maximum population of 10 fish per Iiter. Moreover, adult zebrafish were fed twice a day, in the 

morning they were fed living aquatic crustaceans Artemia nauplii and in the afternoon they were 

fed a nutritive dry powder, Zebrafeed 400-600 (sparos). Physical and chemical parameters of the 

fish water - temperature, pH, conductivity, dissolved gases, nitrates, nitrites and ammonia - were 

kept within physiological values (Martins et al. 2016). 

 

2.2.   Zebrafish strains 

In this work, three different zebrafish strains were used: Tuebingen (TU), nacre-/- and Tg 

(Isl3:Gal4+/+). TU is a popular wild-type strain. nacre -/- is a recessive mutant strain, where the 

homozygous mutants have a complete lack of melanophores throughout all life stages due to a 

single-base mutation in the microphthalmia-associated transcription factor a (mitfa) gene, which 

is required for melanophores’ development. Nevertheless, these fish have a normal development 

of the pigmented epithelium of the retina (Lister et al. 1999). Last, but not least, Tg (Isl3:Gal4+/+) 

is a driver line that activates Gal4 expression under the control of the Isl3 promoter. This Tg 

(Isl3:Gal4+/+) line has a heart-specific GFP marker (Huang et al. 2003). 

  

2.3.  Microinjection in one-cell stage zebrafish embryos 

Microinjection is a method used for generating transgenic fish through the introduction of genetic 

material into fertilized zebrafish embryos. Microinjection was performed into one-cell stage 

embryos, according to Kikuta & Kawakami 2009. 

 

2.3.1. Crossing adult zebrafish  

Zebrafish embryos used in the microinjection experiments were obtained by crossing adult 

zebrafish in breeding tanks. Breeding tanks have a grid that allows the eggs to fall and protects 

the embryos from being eaten by adults. The night prior to the microinjection, zebrafish were 

transferred into breeding tanks with a plastic barrier to separate males and females. The ratio 

used was three males to five females. In the following morning, the plastic barriers were removed 

to enable mating. Approximately 20 minutes after the mating time, fertilized eggs were harvested 

and transferred into petri dishes with 1x embryo medium (E3) (composition in table II.6). In the 

end, the zebrafish adults were transferred back to the fish facility’s main system. 

Isl3:Gal4+/+ transgenic embryos were used in case of the UAS constructs (Table II.5) and nacre+/- 

embryos were used in case of the alpha-1-Tubulin construct (Table II.5). The nacre+/- embryos 

resulted from the crossing between TU and nacre-/- adult zebrafish. 
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Table II.5 – Zebrafish strains used for the microinjection of the expression vectors. 

Expression vector Zebrafish strain 

pTol2-10xUAS:rSyp-mCherry (a) (b) Tg (Isl3:Gal4+/+) 

pTol2-10xUAS:rSyp-GCaMP6fEF05 (a) (c) Tg (Isl3:Gal4+/+) 

pTol2-10xUAS-mScarlet Tg (Isl3:Gal4+/+) 

pTol2-alpha1Tubulin-mScarlet nacre +/- 

(a) Expression vector constructed by Michael Orger’s Laboratory (Champalimaud Centre for the Unknown). 
(b) Map in supplement A.7A. 
(c) Map in supplement A.7B. 

 
 

2.3.2. Preparation of the injection mixture and needles 

Prior to microinjection, an injection mixture with a total volume of 10 µL (made up in E3-Phenol 

Red, composition in table II.6), containing 18 ng/µL of expression vector (Table II.5) and 100 

ng/µL of Tol2 transposase mRNA, was prepared on ice. The injection mixture remained on ice 

until it was loaded into the microinjection needle. Microinjection needles were previously made 

from glass capillaries (World Precision Instruments Inc.), using a Laser-Based Micropipette Puller 

(Sutter Instrument P-2000) with the following settings: heat = 400, filament = 4, velocity = 45, 

delay = 200 and pull = 100. 

 

2.3.3. Injection 

Zebrafish embryos were aligned in the trenches of the injection plate (1% (w/v) agarose in 1x E3) 

(Figure II.1A) and the surplus water was removed. A needle was loaded with 3 µL of injection 

mixture and attached to the Pneumatic PicoPump PV 820 (World Precision Instruments Inc.). The 

tip of the needle was broken using forceps. 

Under a stereoscope (Zeiss SteREO Discovery.V8), the injection mixture was microinjected into 

the cell of each zebrafish embryo (Figure II.B). When all embryos were injected, they were 

carefully harvested into a petri dish with 1x E3 and incubated at 28°C. In the following day, they 

were bleached, according to Martins et al. 2016 and raised in the fish facility’s main holding room. 

 

Figure II.1 – Microinjection in one-cell stage zebrafish embryos. (A) Schematic representation of an 
injection plate. Adapted from Wang et al. 2013. (B) Schematic representation of the microinjection in one-
cell stage zebrafish embryo. The needle softly perforates the chorion until reaches the cell where the 
injection mixture (red spot) is microinjected, through a short air burst. Adapted from Zhang & Wiest 2016. 
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2.4.  Screening for transient expression  

Injected embryos were pre-screened for transient expression of the fluorescent reporter genes 

between 2-3 dpf, by fluorescence microscopy (Zeiss StrREO Discovery.V8 equipped with 

PentaFluar). Embryos injected with pTol2-10xUAS:rSyp-GCaMP6fEF05 were screen with a blue 

filter with a spectrum range from 400-460 nm. Embryos injected with pTol2-10xUAS:rSyp-

mCherry, pTol2-10xUAS-mScarlet or pTol2-alpha1Tubulin-mScarlet were screened with a green 

filter with a spectrum range from 545-606 nm. 

Based on fluorescence intensity and expression patterns, positive injected embryos were 

selected to be raised into adulthood. Embryos were selected for the Isl3 (isl3 promoter) and pan-

neuronal (alpha-1-Tubulin promoter) expression pattern. 

 

2.5. Screening for stable expression 

When the positive injected fish (generation F-1) reached sexual maturity (two to three months), a 

cross with the same zebrafish strains used for the microinjection was performed. The progeny 

was screened for stable expression, between 2-3 dpf, by fluorescence microscopy. Positive 

embryos (F0 generation or founders) were selected to be raised into adulthood, based on 

fluorescence intensity, expression patterns and percentage of stable transgene integration. 

Stable transgenic lines were established from selected founders. 

 

2.6. Lipophilic dye labeling 

Lipophilic dye labeling is a method that uses lipophilic dyes, such as DiI and DiO, to label the 

entire retinotectal projection in fixed zebrafish larvae. This technique was used in Isl3:Gal4 

10xUAS:rSyp-GCaMP6fEF05 and Isl3:Gal4 10xUAS:rSyp-mCherry fixed larvae. Lipophilic dye 

labeling was performed according to Hutson et al. 2004. 

 

2.6.1. Preparation 

Zebrafish larvae at 6 dpf were euthanized using 300 mg/L 3-amino benzoic acidethylester 

(tricaine) (composition in table II.6) and fixed overnight at 4°C with 4% paraformaldehyde (PFA). 

In the following day, the PFA solution was removed and the fixed larvae were washed with 1x 

Phosphate-Buffered Saline (PBS) (composition in table II.6). 

Prior to injection, lipophilic dye solutions were prepared (1% (w/v) DiI (Sigma #42364) or DiO 

(Sigma #04292) in chloroform (Sigma #77619)) and injection needles were made with the same 

settings as the microinjection needles (Material and Methods, section 2.3.2). 

 

2.6.2. Labeling 

Zebrafish larvae were aligned in an agarose plate (1% (w/v) agarose in 1x PBS) and oriented in 

the lateral position after being embedded in low-melting agarose (1.5% (w/v) low-melting agarose 
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(Invitrogen #16520-050) in 1x PBS). Then, larvae were covered with 1x PBS. An injection needle 

was loaded with 2 µL of lipophilic dye solution and attached to the Pneumatic PicoPump PV 820. 

The pipette holder was held in a micromanipulator (Narishige, MN-153). The tip was broken using 

forceps.  

Under a stereoscope, the lipophilic dye solution was injected in the gap between retina and lens 

(Figure II.2). The injected larvae were washed with 1x PBS and stored in the fridge until imaging. 

 
Figure II.2 – Schematic representation of the lipophilic dye labeling. Dorsal view of the head of a 
zebrafish larva, showing the injection of the lipophilic dye solution in the gap between retina and lens. 
Lipophilic dye labels the retinal ganglion cells which projecting in the optic tectum. TeO: optic tectum. A: 
anterior; P: posterior. Adapted from Poulain et al. 2010. 

 
 

2.7. Confocal microscopy and image analysis 

All zebrafish larvae used were firstly fixed in a PFA solution (Material and Methods, section 2.6.1). 

Fixed zebrafish larvae were mounted directly on a microscope slide (Menzel-Gläser, 76 x 26 mm), 

using 1.5% (w/v) low-melting agarose dissolved in 1x PBS. They were positioned as straight as 

possible in dorsal orientation. After the slide was surrounded by high vacuum grease (Dow 

corning) and filled with 1x PBS, a coverslip (Menzel-Gläser, 22 x 50 mm) was added. Zebrafish 

larvae injected with lipophilic dye solution were removed from the agarose plate in order to be 

mounted in the slide for imaging. 

The images were obtained with the Zeiss LSM 710 fluorescence confocal microscope. For 

imaging, a 25x multi-immersion objective (N.A. 0.8) was used, as well as two lasers: 488 nm and 

561 nm. Each slide was placed on the microscope stage and a drop of water was used as the 

immersion medium. Using the ZEN 2010 software, focal planes were selected and the acquisition 

parameters (gain, digital gain, digital offset and laser power) were optimized. The zebrafish larva 

brain was imaged in a stack format. All images were analyzed and treated in the open source 

software Fiji. For presentation purposes, Z-stack planes were selected, and maximum intensity 

projection was performed. 

 

 

 

Lens 

Retina 

TeO 
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3. Solutions 

 
Table II.6 – Summary of the composition of solutions used in this work. The solutions were prepared at Fish 
Platform or Glass Wash and Media Preparation Platform. 

 

 

 

 

 

 

 

 

 

 

Working Solutions Total volume and solvent Composition 

LB broth 
(Sterilized) 

500 mL Milli-Q water 

1.0% Bactotritone; 
0.5% Yeast extract; 

0.5% NaCl; 
pH 7.0 (adjusted with NaOH 5M) 

LB broth agar plates 
(Sterilized) 

500 mL LB broth 1.5% Bacto-agar 

50x TAE 
(Stock Solution) 

Fill to 1 L with Milli-Q water 
242 g Trizma; 

55.1 mL Acetic acid glacial 
100 mL EDTA 0.5M (pH 8.0) 

1x TAE Fill to 500 mL with Milli-Q water 
10 mL 50x TAE 

pH 8.0 

1x TE Fill to 100 mL with Milli-Q water 
1 mL 1 M Tris base (pH 8.0) 

0.2 mL EDTA 0.5M 
pH 8.0 

50x E3 
(Stock Solution) 

2 L Milli-Q water 

29.38 g NaCl; 
1.26 g KCl; 

4.86 g CaCl2.2H2O; 
8,14 g MgSO4.7H2O 

1x E3 Fill to 20 L with system water 

400 mL 50x E3; 
60 mL 0.01% Methylene Blue 

Solution (0.05 g Methylene Blue 
powder in 500 mL Milli-Q water) 

E3-PhenolRed 
(Filtered) 

15 mL 1x E3 0.0025% Phenol Red 

25x Tricaine 
(Stock solution and 

Euthanasia) 

10 mL 1 M Tris 
(1M Tris: 121.14 g Trizma base in 1 L 

reverse osmosis water; pH 9.0) 

2 g tricaine powder; 
500 mL reverse osmosis water; 

pH 7.0 

1x PBS 
 

1 L Milli-Q water 
 

1.44 g Na2HPO4; 
0.24 g KH2PO4; 

0.2 g KCl; 
8 g NaCl; 

pH 7.2 
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III. Results 
 

A key question in Neuroscience is to understand how the brain integrates sensory inputs and 

computes a behavioral output. The small size and transparency of zebrafish larvae in combination 

with the use of genetically encoded fluorescent reporters allow the non-invasive imaging of whole-

brain neuronal activity and the study of neuronal circuits and their connectivity. In order to 

generate transgenic lines expressing genetically encoded fluorescent reporters, fluorescent 

reporter genes are cloned in plasmid DNA vectors, which are posteriorly injected into one-cell 

stage zebrafish embryos. 

In this work, we constructed two types of expression clones: UAS expression clones, harboring a 

10xUAS regulatory sequence, and alpha-1-Tubulin expression clones, harboring the alpha-1-

Tubulin putative promoter. Both were generated with two different genetically encoded fluorescent 

reporter genes: LSSmOrange and mScarlet. The expression clones were then injected into one-

cell stage Isl3:Gal4+/+ transgenic or nacre+/- zebrafish embryos to create stable transgenic lines. 

 

1. Construction of UAS expression clones 

In order to generate 10xUAS expression clones, we used the Gateway cloning technology (Figure 

III.1), since it provides a rapid and highly efficient way to transfer one or more DNA fragments into 

multiple vectors, maintaining the orientation and reading frame (Hartley et al. 2000). 

Through LR recombination reaction an entry clone containing 10 repetitions of the UAS sequence 

(10xUAS) was recombined with a destination vector. Destination vectors were constructed by 

cloning of LSSmOrange and mScarlet genes into an empty Tol2 Gateway destination vector, that 

contained Tol2 arms required for transposition in zebrafish embryos, upon microinjection. 

Figure III.1 – Gateway recombinant system. The key of the gateway cloning technology is the site-specific 
attachment (att) sites, which recombine in a direction and site-specific manner, depending on the 
recombination reactions. The gateway cloning technology includes two recombination reactions: LR reaction 
and BP reaction. The LR reaction is a recombination reaction between an entry clone and a destination 
vector, to create an expression clone. This reaction occurs between attL and attR sites and is catalyzed by 
the LR Clonase enzyme mix. The BP reaction is the reverse of the LR reaction. The BP reaction transfers 
the gene in the expression clone into a donor vector, to produce a new entry clone. The recombination 
reaction is catalyzed by the BP Clonase enzyme mix and occurs between attB and attP sites. The ccdB is a 
toxic gene used in bacterial cell selection. Adapted from Gateway Technology User Guide, Invitrogen. 
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1.1. Strategy used for the construction of pDestTol2-LSSmOrange and pDestTol2-

mScarlet vectors 

In order to construct the destination vectors: pDestTol2-LSSmOrange (Supplement A.8A) and 

pDestTol2-mScarlet (Supplement A.8B), fluorescent reporter genes were isolated by PCR from 

two commercial vectors: pH2B-LSSmOrange and pmScarlet_C1. LSSmOrange and mScarlet 

genes were amplified using primers (Table II.2 and Table III.1) with specific restriction sites and 

a functional Kozak sequence upstream of the ATG of the gene of interest. PCR products were 

separated through agarose gel electrophoresis and posteriorly extracted from agarose gel. PCR 

fragments and Tol2 Gateway destination vector (backbone) were digested with appropriate 

restriction endonucleases (Table II.3), creating compatible cohesive ends for ligation of the 

backbone with PCR-digested products (Figure III.2). 

Table III.1 – Primers used for the amplification and subsequent cloning of LSSmOrange and mScarlet genes 
into a Tol2 Gateway destination vector. 

(a) Working annealing temperature (Ta): Annealing temperature – 0.5°C. 

 

 

Figure III.2 – General cloning strategy for the construction of the destination vectors. Fluorescent 
reporter genes were isolated from original plasmid by PCR with primers designed to have SpeI and PacI 
restriction sites flanking the PCR product. PCR fragments were cloned into a Tol2 Gateway destination 
vector containing the same restriction sites. Cloning strategy of pDestTol2-LSSmOrange (A) and pDestTol2-

mScarlet (B) vectors. 

Primer Template Target 
Ta (°C) 

(a) 

DNA 

Polymerase 

DNA fragment 

size (bp) 

SpeI-kz-LSSmOrange_Fw pH2B-

LSSmOrange 
LSSmOrange 68.3 

Phusion DNA 

Polymerase 
735 

PacI-Stop-LSSmOrange_Rv 

SpeI-kz-mScarlet_Fw 
pmScarlet_C1 mScarlet 67.2 

Phusion DNA 

Polymerase 
723 

PacI-Stop-mScarlet_Rv 
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To confirm successful cloning, pDestTol2-LSSmOrange and pDestTol2-mScarlet vectors were 

digested with restriction endonucleases (BstXI and NotI, respectively). Restriction profiles were 

analyzed on agarose gel (Figure III.3A-B) and correct sequence was confirmed by sequencing. 

pDestTol2-LSSmOrange vector was expected to be cut 3 times by BstXI restriction 

endonuclease, originating 3 bands in the agarose gel with 724 bp, 1455 bp and 3758 bp. As 

shown in the figure III.3A, only clone #1 has the expected size and number of fragments. 

pDestTol2-mScarlet vector was expected to be cut twice by NotI restriction endonuclease, 

originating 2 bands in the agarose gel with 2104 bp and 3821 bp. As shown in the figure III.3B, 

only the clones #1 and #4 are positive for the presence of the insert. 

Positive clones were sequenced, and the resulting sequences were compared against the 

expected ones, using SnapGene (Figure III.3C-D). Figure III.3C-D confirms the presence of the 

LSSmOrange and mScarlet genes into the Tol2 Gateway destination vector and the absence of 

mutations in these genes, potentially introduced by the DNA Polymerase in the PCR. 

 

 

Figure III.3 – Restriction profiles on agarose gel and sequencing results of the destination vectors. 
(A) Restriction profile of digested pDestTol2-LSSmOrange vector with BstXI restriction endonuclease. The 
dashed box represents the faint band of 724 bp. (B) Restriction profile of digested pDestTol2-mScarlet vector 
with NotI restriction endonuclease. Lane MW: molecular weight ladder, GeneRuler 1 Kb DNA ladder 
(Supplement A.3). (C-D) Comparison of sequencing results (top red arrows) of pDestTol2-LSSmOrange 
clone #1 (C) and pDestTol2-mScarlet clones #1 and #4 (D) against the expected sequence, using 
SnapGene. In both cases, SV40_Rv primer (Table II.4) was used for sequencing.  
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1.2. Strategy used for the construction of pTol2-10xUAS-LSSmOrange and pTol2-

10xUAS-mScarlet expression clones 

In order to generate pTol2-10xUAS-LSSmOrange (Supplement A.9A) and pTol2-10xUAS-

mScarlet (Supplement A.9B) expression clones, a LR recombination reaction was performed 

between the destination vectors constructed and a preexistent 10xUAS entry clone (Figure III.4). 

 

Figure III.4 – General cloning strategy for the construction of the 10xUAS expression clones. 

Recombination between the destination vectors previously constructed and an entry clone with the 10xUAS 

regulatory sequence, through LR recombination reaction. Cloning strategy of the pTol2-10xUAS-

LSSmOrange (A) and pTol2-10xUAS-mScarlet (B) expression clones. 

 

To confirm successful cloning, pTol2-10xUAS-LSSmOrange and pTol2-10xUAS-mScarlet 

vectors were digested with SacI-HF restriction endonuclease. Restriction profiles were analyzed 

on agarose gel (Figure III.5A-A’) and correct sequence was confirmed by sequencing.  

Both vectors were expected to have 2 sites of recognition by SacI-HF restriction endonuclease, 

originating 2 bands in agarose gel. That way, bands of 809 bp and 3838 bp were expected for 

pTol2-10xUAS-LSSmOrange and bands of 797 bp and 3838 bp for pTol2-10xUAS-mScarlet. As 

shown in figure III.5A-A’, all clones have the expected size and number of fragments.  

Only one clone of each expression clone was selected to be sequenced. The resulting sequences 

were compared against the expected ones, using SnapGene (Figure III.5B-C). The sequencing 

confirms the absence of mutations in LSSmOrange and mScarlet genes. Upon confirmation of 

the correct sequence, the expression vectors were purified for posterior injection in Isl3:Gal4+/+ 

transgenic embryos. 



 

 
27 

 

Figure III.5 – Restriction profiles on agarose gel and sequencing results of the 10xUAS expression 
clones. (A-A’) Restriction profile of the digested pTol2-10xUAS-LSSmOrange and pTol2-10xUAS-mScarlet 
expression clones with SacI-HF restriction endonuclease. The dashed box represents the low molecular 
weight faint bands. Although the molecular weight ladder is not visible, it was used GeneRuler 1 Kb DNA 
ladder (Supplement A.3). Photo of the restriction profile with low (A) and high (A’) exposure for better 
visualization of faint bands. (B-C) Comparison of sequencing results (top red arrows) of pTol2-10xUAS-
LSSmOrange clone #3 (B) and pTol2-10xUAS-mScarlet clone #3 (C) against the expected sequence, using 
SnapGene. In both cases, SV40_Rv primer (Table II.4) was used for sequencing. 

 

2. Construction of alpha-1-Tubulin expression clones  

In order to generate alpha-1-Tubulin expression clones we performed Gibson Assembly to 

seamlessly join two fragments: alpha-1-Tubulin putative promotor and fluorescent reporter gene. 

Gibson Assembly is an efficient and robust cloning procedure that allows assembling multiple 

overlapping DNA fragments (Figure III.6A), regardless of fragment length or end compatibility 

(Gibson et al. 2009).   

The assembled fragments were cloned into a pCR2.1-TOPO TA vector, by means of TA Cloning 

(Figure III.6B). After subcloning into the pCR2.1-TOPO vector, the assembled fragments were 

then cloned into a Tol2 vector, since Tol2 arms are required for transposition in zebrafish 

embryos, upon microinjection. 
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Figure III.6 – Molecular cloning methods. (A) Gibson Assembly method. The Gibson Assembly is a 
single-tube isothermal reaction, using a Gibson Assembly Master Mix, which contains three different 
enzymatic activities. First, an exonuclease cuts back the 5’ ends of the overlapping nucleotides (red and 
blue), to create single-stranded 3’ overhangs. These overhangs facilitate the annealing of complementary 
fragments (overlap region). Secondly, a DNA polymerase extends the 3’ ends to fill the gaps in annealed 
products and last a DNA ligase seals the nicks in the assembled DNA. For that, DNA fragments are added 
to the master mix and incubated at 50°C for 1 hour. The final product is a fully ligated double-stranded DNA. 
Adapted from Gibson Assembly Master Mix Instruction Manual, NEB. (B) TA cloning method. TA cloning 
is an efficient method for the cloning of PCR products. Taq polymerase adds a single 3’-A overhang to each 
end of the PCR products, by the enzyme’s terminal transferase activity. The use of a linearized TOPO TA 
vector with a single 3’-T overhang on both ends allows direct cloning of PCR products, which is facilitated 
by complementarity between the PCR product 3’-A overhangs and vector 3’-T overhangs. Ligation of the 
PCR product to the vector is carried out by the enzyme Topoisomerase I. Adapted from TOPO TA Cloning 
Kit User Guide, Invitrogen. 

 
 

2.1. Strategy used for the construction of pTol2-alpha1Tubulin-LSSmOrange and 

pTol2-alpha1Tubulin-mScarlet expression clones 

In order to construct pTol2-alpha1Tubulin-LSSmOrange (Supplement A.10A) and pTol2-

alpha1Tubulin-mScarlet vectors (Supplement A.10B), the fluorescent reporter genes and the 

alpha-1-Tubulin putative promotor were isolated by PCR from destination vectors (Results, 

section 1.1) and pT-alpha1Tubulin-GCaMP vector, respectively. Fluorescent reporter genes were 

amplified using primers with specific restriction sites and an overlapping region with 3’ end of the 

alpha-1-Tubulin fragment (Table II.2, Table III.2); alpha-1-Tubulin putative promotor was amplified 

using primers with specific restriction sites and an overlapping region with 5’ end of the fluorescent 

report fragment (Table II.2, Table III.2). The alpha-1-Tubulin fragment was fused with each 

fluorescent reporter fragment by means of Gibson Assembly.  

To increase fragment yield and ensure the presence of the full alpha-1-Tubulin-fluorescent 

reporter fragment, the assembled products were amplified by PCR, using the external primers 

(Table II.2, Table III.2). PCR products were cloned into the pCR2.1-TOPO TA vector, by means 

of TA Cloning (Figure III.7). PCR products can be inserted randomly in either orientation from 5’ 

to 3’ or from 3’ to 5’. 
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Table III.2 – Primers used for the amplification of alpha-1-Tubulin, LSSmOrange and mScarlet fragments 
and primers used for the amplification and subsequent cloning of the assembled products into the pCR2.1-
TOPO TA vector. 

 
(a) To optimize the PCR and reduce nonspecific PCR products, a temperature gradient was performed. The 

represented annealing temperature (Ta) corresponds to the temperature used for amplification. 

 

 
Figure III.7 – General cloning strategy for the construction of the intermediate vectors. Fluorescent 
reporter genes and alpha-1-Tubulin putative promotor were isolated by PCR from destination vectors and 
original plasmid, respectively. alpha-1-Tubulin fragment was fused with fluorescent reporter gene, by Gibson 
Assembly. The assembled fragments were cloned into a pCR2.1-TOPO TA vector, by TA Cloning. Cloning 
strategy of the pCR2.1-TOPO-LSSmOrange (A) and pCR2.1-TOPO-mScarlet (B) intermediate vectors.  

Primer Template Target 
Ta 

 (°C) (a) 

DNA 
Polymerase 

DNA 
fragment 
size (bp) 

EcoRI-α1Tubpromoter_Fw pT-
alpha1Tubulin-

GCaMP 
alpha-1-Tubulin 72.0 

Platinum DNA 
Polymerase 

2713 
α1TubuIntron1-

LSSmOrange/mScarlet_Rv 

α1Tubpromoter-(No ATG)-
LSSmOrange_Fw pDestTol2-

LSSmOrange 
LSSmOrange 69.6 

Phusion DNA 
Polymerase 

734 
PacI-Stop-

LSSmOrange_Rv 

α1Tubpromoter-(No ATG)-
mScarlet_Fw pDestTol2-

mScarlet 
mScarlet 68.0 

Phusion DNA 

Polymerase 
722 

PacI-Stop-mScarlet_Rv 

EcoRI-α1Tubpromoter_Fw alpha-1-Tubulin-
LSSmOrange 

Assembly 

alpha-1-Tubulin-
LSSmOrange 

Assembly 

71.5 
Phusion DNA 

Polymerase 
3419 

PacI-Stop-
LSSmOrange_Rv 

EcoRI-α1Tubpromoter_Fw alpha-1-Tubulin-
mScarlet   
Assembly 

alpha-1-Tubulin-
mScarlet    
Assembly 

71.5 
Phusion DNA 

Polymerase 
3408 

PacI-Stop-mScarlet_Rv 



 

 
30 

To confirm successful cloning, pCR2.1-TOPO-LSSmOrange and pCR2.1-TOPO-mScarlet 

intermediate vectors were digested with restriction endonucleases (SacI-HF and NotI, 

respectively). Restriction profiles were analyzed on agarose gel (Figure III.8A-B) and correct 

sequence was confirmed by sequencing.  

pCR2.1-TOPO-LSSmOrange intermediate vector was expected to be cut twice by SacI-HF 

restriction endonuclease: bands of 1800 bp and 5550 bp (if orientation of insert is 5’ to 3’) or 

bands of 1711 bp and 5639 bp (if insert orientation is 3’ to 5’) should be observed in the agarose 

gel. As shown in figure III.8A, clones #1 and #2 have the expected size and number of fragments. 

pCR2.1-TOPO-mScarlet intermediate vector was expected to be cut twice by NotI restriction 

endonuclease: bands of 230 bp and 7108 bp (if orientation of insert is 5’ to 3’) or bands of 3249 

bp and 4089 bp (if insert orientation is 3’ to 5’) should be observed in the agarose gel. As shown 

in figure III.8B, clones #1 and #2 have the expected size and number of fragments.  

Positive clones were sequenced, and the resulting sequences were compared against the 

expected ones, using SnapGene (Figure III.8C-D). Figure III.8C-D confirms the assembly 

between alpha-1-Tubulin and fluorescent reporter fragments, but also shows the presence of 

mutations in alpha-1-Tubulin fragment, that might have been introduced by the DNA Polymerase 

in PCR. 

 

Figure III.8 – Restriction profiles on agarose gel and sequencing results of the pCR2.1-TOPO 
intermediate vectors. (A) Restriction profile of the digested pCR2.1-TOPO-LSSmOrange intermediate 
vector with SacI-HF restriction endonuclease. (B) Restriction profile of digested pCR2.1-TOPO-mScarlet 
intermediate vector with NotI restriction endonuclease. The dashed box represents the faint band of 230 bp. 
Lane MW: molecular weight ladder, GeneRuler 1 Kb DNA ladder (Supplement A.3). (C-D) Comparison of 
sequencing (top red arrows) results of pCR2.1-TOPO-LSSmOrange clones #1 and #2 (C) and pCR2.1-
TOPO-mScarlet clones #1 and #2 (D) against the expected sequence, using SnapGene. In both cases, 
M13_Fw and M13_RV primers (Table II.4) were used for sequencing.  



 

 
31 

After TA cloning, the assembled fragments should have been directly cloned into the pDestTol2-

LSSmOrange vector (backbone). However, the mutations present in alpha-1-Tubulin fragment 

led to an additional step, in order to replace the mutated sequence by an alpha-1-Tubulin 

sequence that it knows beforehand to be correct – the sequence present in original plasmid (pT-

alpha1Tubulin-GCaMP). This was done by cutting vectors with the same unique enzymes, 

therefore replacing the mutated sequence with a non-mutated one (Figure III.9). 

 

Figure III.9 – Restriction digestions for the construction of pTol2-alpha1Tubulin-LSSmOrange and 
pTol2-alpha1Tubulin-mScarlet expression clones. Restriction digestion of the pCR2.1-TOPO 
intermediate vectors with HindIII and PacI restriction endonucleases to isolate the end of the alpha-1-
Tubulin-fluorescent reporter assembly fragment; restriction digestion of the alpha1Tubulin-GCaMP vector 
with HindIII and EcoRI restriction endonucleases to isolate alpha-1-Tubulin fragment; restriction digestion of 
the pDestTol2-LSSmOrange vector with EcoRI and PacI restriction endonucleases to isolate the backbone 
used in final vectors. All fragments were united by T4 DNA ligase. Restriction digestions for the construction 
of the pTol2-alpha1Tubulin-LSSmOrange (A) and pTol2-alpha1Tubulin-mScarlet (B) expression clones. 
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To confirm successful cloning, pTol2-alpha1Tubulin-LSSmOrange and pTol2-alpha1Tubulin-

mScarlet vectors were digested with SacI-HF and PstI restriction endonucleases. Restriction 

profiles were analyzed on agarose gel (Figure III.10A-B) and correct sequence was confirmed by 

sequencing. 

pTol2-alpha1Tubulin-LSSmOrange vector was expected to be cut 3 times by SacI-HF and PstI 

restriction endonucleases, creating 3 fragments seen as 3 bands in agarose gel with 1662 bp, 

1985 bp and 3212 bp. As shown in figure III.10A-A’, all clones have the expected size and number 

of fragments. pTol2-alpha1Tubulin-mScarlet vector was expected to be cut 4 times by SacI-HF 

and PstI restriction endonucleases, creating 4 fragments seen as 4 bands in the agarose gel with 

376 bp, 1298 bp, 1985 bp and 3214 bp. As shown in figure III.10B, all clones are positive.  

Only one clone of each expression clone was selected to be sequenced. The resulting sequences 

were compared against the expected ones, using SnapGene (Figure III.10C-D). Figure III.10C-D 

confirms the absence of mutations in alpha-1-Tubulin-fluorescent reporter assembly fragments. 

Upon confirmation of the correct sequences, the expression vectors were purified for posterior 

injection in nacre+/- zebrafish embryos. 

 
Figure III.10 – Restriction profiles on agarose and sequencing results of the alpha-1-Tubulin 
expression clones. (A) Restriction profile of the digested pTol2-alpha1Tubulin-LSSmOrange vector with 
SacI-HF and PstI restriction endonucleases. The dashed box represents the low molecular weight faint 
bands. Photo of the restriction profile with low (A) and high (A’) exposure for better visualization of faint 
bands. (B) Restriction profile of the digested pTol2-alpha1Tubulin-mScarlet vector with SacI-HF and PstI 
restriction endonucleases. Lane MW: molecular weight ladder, GeneRuler 1 Kb DNA ladder (Supplement 
A.3). (C-D) Comparison of sequencing results (top red arrows) of pTol2-alpha1Tubulin-LSSmOrange clone 
#2 (C) and pTol2-alpha1Tubulin-mScarlet clone #4 (D) against the expected sequence, using SnapGene. 
In both cases α1Tub225_Fw, α1Tub450_Fw, α1Tub-intron87_Fw, α1Tub271_Rv and SV40_Rv primers 
(Table II.4) were used for sequencing. 
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3. Generation and characterization of transgenic zebrafish lines 

After the construction of the expression clones, plasmid DNA vectors were prepared for 

microinjection in zebrafish embryos, in order to generate transgenic zebrafish lines. The 

expression clones were injected into one-cell stage Isl3:Gal4+/+ transgenic (10xUAS expression 

clones) and nacre+/- embryos (alpha-1-Tubulin expression clones).  

The Tg (Isl3:Gal4+/+) driver line exhibits an Isl3 expression pattern, which is characterized by 

expression in RGCs, hindbrain, optic tectum, trigeminal nerve, spinal cord and habenula (Figure 

III.11) (Thisse & Thisse 2004; Renninger et al. 2011), when a UAS-coupled genetically encoded 

fluorescent reporter gene is present, either by crossing it with a reporter line or injection of an 

UAS expression clone. 

 
Figure III.11 – Expression pattern of the Tg (Isl3:Gal4+/+) driver line. Confocal microscope image of 
dorsal view of an Isl3:Gal4+/+ zebrafish larva at 6 dpf. Tg (Isl3:Gal4+/+) driver line exhibits an Isl3 expression 
pattern driven by the isl3 promoter. Retinal ganglion cells (RGCs), hindbrain and trigeminal nerve are not 
visible. Hb: habenula; SC: spinal cord; TeO: optic tectum. A: Anterior; P: Posterior. 
 

Two other expression clones (pTol2-10xUAS:rSyp-mCherry and pTol2-10xUAS:rSyp-

GCaMP6fEF05), previously cloned by Michael Orger’s Laboratory, were also injected into one-

cell stage Isl3:Gal4+/+ transgenic embryos, in order to establish transgenic lines for the study of 

the neuronal connectivity and neuronal activity in zebrafish. 

 

3.1. Transient expression of the fluorescent reporter genes 

Following the microinjection of the expression clones (Table II.5), injected embryos at 2-3 dpf 

were pre-screened for transient expression of the respective fluorescent reporter gene (Table 

III.3), in order to examine if the promoter would be capable to drive fluorescent reporter expression 

to predictable tissues. 

The Isl3:Gal4+/+ transgenic embryos injected with 10xUAS expression clones exhibited a 

characteristic Isl3 expression pattern (Figure III.12A-C) and the nacre+/- embryos injected with 

pTol2-alpha1Tubulin-mScarlet expression clone exhibited a pan-neuronal expression pattern 

(Figure III.12D). As expected from transient expression, the Isl3 expression pattern was not 

complete (Figure III.12A-C), since it was only visible fluorescence in trigeminal nerve and spinal 

cord. Injected larvae with 10xUAS expression clones also exhibited different levels of brightness 

between them (data not shown). Thus, to establish a transgenic zebrafish line we selected to 

raise into adulthood the larvae with high fluorescence intensity and a complete trigeminal nerve 

expression pattern.  
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Injected larvae with pTol2-alpha1Tubulin-mScarlet expression clone exhibited high fluorescence 

intensity and a close to complete pan-neuronal expression pattern. Thus, the selection of larvae 

to be raise into adulthood was random within the positive larvae. 

 

Table III.3 – Screening results of each transgenic zebrafish line generated. 

 

(a) # Positive screened fish / # Injected fish screened x 100 
(b) # Positive F0 larvae / # F0 larvae screened x 100 

 

 
Figure III.12 – Transient expression of the microinjected constructs’ fluorescent reporter genes in 
one-cell stage Isl3:Gal4+/+ and nacre+/- zebrafish embryos. Injected embryos were screened at 2-3 dpf, 
using Zeiss StrREO Discovery.V8 scope. (A-C) Isl3:Gal4 10xUAS-GOI (gene of interest) representative 
zebrafish larvae with partial Isl3 expression pattern. Red arrow points to trigeminal ganglion, that projects to 
the spinal cord. Isl3:Gal4 10xUAS:rSyp-mCherry (A) Isl3:Gal4 10xUAS:rSyp-GCaMP6fEF05 (B) and 
Isl3:Gal4 10xUAS-mScarlet (C) representative transgenic zebrafish larvae. (D) alpha1Tubulin-mScarlet 
representative zebrafish larva with pan-neuronal expression pattern. A: anterior; P: posterior. 

 

3.2. Stable expression of the fluorescent reporter genes and characterization of 

zebrafish lines 

When the positive injected zebrafish reached sexual maturity, they were crossed with the same 

zebrafish lines used for the microinjection, in order to identify which of them integrated the 

transgene in germ cells and transmitted it to the progeny. For that, the progeny (F0 generation) 

was screened for stable expression of the respective fluorescent reporter gene.  

In the stable expression screen, the progeny of injected fish with 10xUAS expression clones 

showed a mosaic heterogeneous expression (data not shown), since the larvae exhibited different 

levels of fluorescent intensity and different expression patterns. Thus, to establish a stable 

Transgenic zebrafish line 

Injected 

fish 

raised 

Injected 

fish 

screened 

Positive 

screened 

fish  

% of positive 

screened 

fish (a) 

% of Δ stable 

integration (b) 

Isl3:Gal4 10xUAS:rSyp-

mCherry 
100 69 38 55% 0.60-66% 

Isl3:Gal4 10xUAS:rSyp-

GCaMP6fEF05 
36 29 22 76% 0.60-77% 

Isl3:Gal4 10xUAS-mScarlet 69 10 6 60% 0.40-74% 

alpha1Tubulin-mScarlet 23 17 9 64% 0.50-61% 
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transgenic zebrafish line, we selected the larvae with high fluorescence intensity and a complete 

trigeminal nerve expression pattern. Moreover, within the positive injected zebrafish which 

progeny show similar expression, we have chosen the ones with a high integration efficiency and 

low percentage of stable transgene integration (Table III.3), which will potentially be translated 

into a single event of integration in the genome. 

On the other hand, the positive progeny from injected fish with pTol2-alpha1Tubulin-mScarlet 

expression clone did not exhibit a mosaic heterogeneous expression. The larvae were selected 

to grow based on the same parameters that the progeny from injected fish with 10xUAS 

expression clones, but for the pan-neuronal expression pattern. 

To characterize the expression of fluorescent reporter genes and/or confirm its correct expression 

in the transgenic lines generated, a small representative number of positive embryos were 

selected and grown until 6 dpf for further imaging at the confocal microscope. To confirm Isl3:Gal4 

10xUAS:rSyp-mCherry and Isl3:Gal4 10xUAS:rSyp-GCaMPEF05 correct expression, it was 

necessary to perform a lipophilic dye labeling (Hutson et al. 2004) previous to imaging.  

 

3.2.1. Isl3:Gal4 10xUAS:rSyp-mCherry line 

From the 100 Isl3:Gal4 10xUAS:rSyp-mCherry injected fish that were selected to reach sexual 

maturity, 69 of them were screened for stable expression. It was estimated that 55% (38/69) of 

screened fish (Table III.3) contained at least a stable integration of the pTol2-10xUAS:rSyp-

mCherry vector in germ cells, since the progeny exhibited a characteristic Isl3 expression pattern 

(Figure III.13A-B’’). The percentage of stable transgene integration in the screened population 

varied between 0.60% and 66% (Table III.3). To establish a stable transgenic line, the progeny 

from zebrafish with lower percentage of stable transgene integration in germ cells was selected 

to be raised until adulthood. 

In order to characterize the fluorescent reporter expression and confirm its correct expression, a 

small number of F0 positive embryos with 6 dpf was fixed in a PFA solution and imaged at the 

confocal microscope. As shown in figure III.13A-B’’, the Isl3:Gal4 10xUAS:rSyp-mCherry 

zebrafish line displays a characteristic Isl3 expression pattern with the isl3 promoter driving 

mCherry expression to the cells of trigeminal ganglion, optic tectum and spinal cord. 

To confirm the expression of the mCherry in presynaptic vesicles of the structures labeled by the 

isl3 promoter we performed the anterograde labeling of RGCs’ axon terminals with the lipophilic 

dye, DiO (green) (Figure III.13C’’). Since the RGC axons are projected in the optic tectum, it is 

possible to visualize the synaptic connections (yellow) between their neurons (Figure III.13C’’’), 

which suggest that the expression of mCherry is being targeted to presynaptic vesicles of cells 

that correspond to the Isl3 expression pattern. 
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Figure III.13 – Isl3:Gal4 10xUAS:rSyp-mCherry transgenic zebrafish line. (A-A’) Stereoscope image of 
a founder zebrafish larva with partial Isl3 expression pattern (only visible the trigeminal nerve expression). 
Zebrafish larvae was screened for stable expression at 2-3 dpf, using Zeiss StrREO Discovery.V8 scope. 
Lateral view (A). Dorsal view (A’). (B-B’’) Confocal microscope images of dorsal view of a zebrafish larva 
brain at 6 dpf. Maximum intensity projection (B) and Z-Stack central plane (B’) of Isl3:Gal4 10xUAS:rSyp-
mCherry zebrafish brain. The dashed box is shown at higher magnification in (B’’). (C-C’’’) Confocal 
microscope images of dorsal view of a zebrafish larvae brain at 6 dpf with retinotectal projection labeled with 
DiO (green). The dashed box is shown at higher magnification in C’-C’’’. (C) Z-stack central plane of Isl3:Gal4 

10xUAS:rSyp-mCherry zebrafish brain labeled with DiO (C’) Isl3:Gal4 10xUAS:rSyp-mcherry optic tectum 
nerve terminations (red) (C’’) DiO labeling the retinal axons that project in optic tectum. (C’’’) Merge of C’ 
and C’’. The scale bar indicates 50 µm. A: anterior; P: posterior. 

 

3.2.2. Isl3:Gal4 10xUAS:rSyp-GCaMP6fEF05 line 

 

From the 36 Isl3:Gal4 10xUAS:rSyp-GCaMP6fEF05 injected fish that were selected to reach 

sexual maturity, 29 of them were screened for stable expression. It was estimated that 76% 

(22/29) of screened fish (Table III.3) contained at least a stable integration of the pTol2-

10xUAS:rSyp-GCaMP6fEF05 vector in germ cells, since the progeny exhibited a characteristic 

Isl3 expression pattern (Figure III.14A-B’’). The percentage of stable transgene integration in the 

screened population varied between 0.60% and 77% (Table III.3). To establish a stable transgenic 

line, the progeny from zebrafish with lower percentage of stable transgene integration in germ 

cells was selected to be raised until adulthood. 

In order to characterize the fluorescent reporter expression and confirm its correct expression, a 

small number of F0 positive embryos with 6 dpf was fixed in a PFA solution and imaged at the 

confocal microscope. As shown in figure III.14 A-B’’, the Isl3:Gal4 10xUAS:rSyp-GCaMP6fEF05 

zebrafish line displays a characteristic Isl3 expression pattern with the isl3 promoter driving 

GCaMP6fEF05 expression to the cells of trigeminal ganglion, optic tectum and spinal cord. 

Like the previous line, in order to confirm the expression of the GCaMP6fEF05 in presynaptic 

vesicles of the structures labeled by the isl3 promoter we performed the anterograde labeling of 

RGCs’ axon terminals with the lipophilic dye, DiI (red) (Figure III.14C’’). Since the RGC axons are 
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projected in the optic tectum, it is possible to visualize the synaptic connections (yellow) between 

their neurons (Figure III.14C’’’), which suggest that the expression of GCaMP6fEF05 is being 

targeted to presynaptic vesicles of cells that correspond to the Isl3 expression pattern.  

Figure III.14 – Isl3:Gal4 10xUAS:rSyp-GCaMP6fEF05 transgenic zebrafish line. (A) Stereoscope image 
of lateral view of a founder zebrafish larva with partial Isl3 expression pattern (only visible the trigeminal 
nerve expression). Zebrafish larvae were screened for stable expression at 2-3 dpf, using Zeiss StrREO 
Discovery.V8 scope. (B-B’’) Confocal microscope images of dorsal view of a zebrafish larva brain at 6 dpf. 
Maximum intensity projection (B) and Z-Stack central plane (B’) of Isl3:Gal4 10xUAS:rSyp-GCaMP6fEF05 
zebrafish brain. The dashed box is shown at higher magnification in (B’’). (C-C’’’) Confocal microscope 
images of dorsal view of a zebrafish larvae brain at 6 dpf with retinotectal projection labeled with DiI (red). 
The dashed box is shown at higher magnification in C’-C’’’. (C) Z-stack central plane of Isl3:Gal4 

10xUAS:rSyp-GCaMP6fEF05 zebrafish brain labeled with DiI (C’) Isl3:Gal4 10xUAS:rSyp-GCaMP6fEF05 
nerve terminations (green) (C’’) DiI labeling the retinal axons that project in optic tectum. (C’’’) Merged of C’ 
and C’’. The scale bar indicates 50 µm. A: anterior; P: posterior. 
 

 

3.2.3. Isl3:Gal4 10xUAS-mScarlet line 

 

From the 69 Isl3:Gal4 10xUAS-mScarlet injected fish that were selected to reach sexual maturity, 

only 10 of them were screened for stable expression. It was estimated that 60% (6/10) of screened 

fish (Table III.3) contained at least a stable integration of the pTol2-10xUAS-mScarlet vector in 

germ cells, since the progeny exhibited a characteristic Isl3 expression pattern (Figure III.15). The 

percentage of stable transgene integration in the screened population varied between 0.40% and 

74% (Table III.3). To establish stable transgenic line, the progeny from zebrafish with lower 

percentage of stable transgene integration in germ cells was selected to be raised until adulthood. 

In order to characterize the fluorescent reporter expression, a small number of F0 positive 

embryos with 6 dpf was fixed in a PFA solution and imaged at the confocal microscope. As shown 

in figure III.15, the Isl3:Gal4 10xUAS-mScarlet zebrafish line displays a characteristic Isl3 

expression pattern with the isl3 promoter driving mScarlet expression to the cells of trigeminal 

ganglion, optic tectum, RGCs and spinal cord (Figure III.15A-B’’).  
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We also observed that the Isl3:Gal4 10xUAS-mScarlet zebrafish line (Figure III.15A-A’) exhibited 

higher fluorescence intensity than the Isl3:Gal4 10xUAS:rSyp-mCherry zebrafish line (Figure 

III.13A-A’). 

 
Figure III.15 – Isl3:Gal4 10xUAS-mScarlet transgenic zebrafish line. (A-A’) Stereoscope image of a 
founder zebrafish larva with partial Isl3 expression pattern (only visible the trigeminal nerve expression). 
Zebrafish larvae were screened for stable expression at 2-3 dpf, using Zeiss StrREO Discovery.V8 scope. 
Lateral view (A). Dorsal view (A’). (B-B’’) Confocal microscope images of dorsal view of a zebrafish larva 
brain at 6 dpf. Maximum intensity projection (B) and Z-Stack central plane (B’) of Isl3:Gal4 10xUAS-mScarlet 
zebrafish brain. The dashed box is shown at higher magnification in (B’’). The scale bar indicates 50 µm. A: 
anterior; P: posterior.  

 

3.2.4. alpha1Tubulin-mScarlet line 

 

From the 23 alpha1Tubulin-mScarlet injected fish that were selected to reach sexual maturity,17 

of them were screened for stable expression. It was estimated that 64% (9/17) of screened fish 

(Table III.3) contained at least a stable integration of the pTol2-alpha1Tubulin-mScarlet vector in 

germ cells, since the progeny exhibited a pan-neuronal expression pattern (Figure III.16A-B). The 

percentage of stable transgene integration in the screened population varied between 0.50% and 

61% (Table III.3). To establish a stable transgenic line, the progeny from zebrafish with lower 

percentage of stable transgene integration in germ cells was selected to be raised until adulthood. 

In order to characterize the fluorescent reporter expression, a small number of F0 positive 

embryos with 6 dpf was fixed in a PFA solution and imaged at the confocal microscope. As shown 

in the figure III.16A-B, the alpha1Tubulin-mScarlet zebrafish line displays a pan-neuronal 

expression pattern with the alpha-1-Tubulin promoter driving mScarlet expression to most 

neurons throughout the nervous system. 

 
Figure III.16 – alpha1Tubulin-mScarlet transgenic zebrafish line. (A-A’) Stereoscope image of a founder 
zebrafish larva with pan-neuronal expression pattern. Zebrafish larvae were screened for stable expression 
at 2-3 dpf, using Zeiss StrREO Discovery.V8 scope. Lateral view (A). Dorsal view (A’). (B) Confocal 
microscope image of dorsal view of a zebrafish larva brain at 6 dpf. Maximum intensity projection. The scale 
bar indicates 50 µm. A: anterior; P: posterior. 
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IV. Discussion 
 

The integration of sensory stimuli and their execution in behavioral responses is a dynamic 

process that involves the communication between large populations of neurons across the whole 

brain. To understand how the brain produces specific behaviors, it is necessary to identify the 

neurons and neuronal circuits underlying those behaviors. With the development of state-of-the-

art optical techniques and genetic tools, it has been possible to perform whole-brain imaging and 

to monitor neuronal activity with single-cell resolution and high temporal precision in behaving 

animals. Thus, the production of whole-brain activity maps is crucial to characterize brain regions 

and neuronal circuits that mediate motor outputs. Given its favorable features, zebrafish has 

emerged as a promising model organism in nervous system studies. 

In this thesis, recent genetically encoded fluorescent reporters were used to establish new 

transgenic zebrafish lines, which will be used for studying different populations of neurons and 

recording neural activity during behavioral responses. 

 

Optimizing state-of-the-art genetic tools for expression in zebrafish  

Despite a high number of fluorescent proteins available, several new genetically encoded 

fluorescent reporters have been developed to improve the fluorophores’ characteristics and the 

fluorescence imaging. In order to generate transgenic zebrafish lines for studying neuronal 

circuits underlying motor behaviors, UAS and alpha-1-Tubulin expression clones were 

constructed with the most recent genetically encoded florescent reporter genes: LSSmOrange 

and mScarlet.  

In order to construct the expression clones, fluorescent reporter genes were isolated from the 

original vectors by PCR and cloned into a Tol2 vector (Figure III.2; Figure III.7; Figure III.9). This 

vector enables the random integration of constructs flanked by the Tol2 arms in the zebrafish 

genome, in the presence of transposase. Moreover, when the transgenesis is mediated by the 

Tol2 transposon system, the germline transmission frequency is significantly higher than the 

frequency achieved by any other transgenesis method. Kawakami and co-workers demonstrated 

that more than 50% of injected zebrafish transmit the transgene insertions to their progeny, when 

co-injected with transposase mRNA and plasmid DNA with a Tol2 arms (Kawakami et al. 2004). 

All transgenic lines generated in this work used the Tol2 transposon system and the results show 

that more than 50% of injected fish transmitted the transgene insertions to the next generation 

(Table III.3).  

Studies also revealed that transgenic zebrafish created by the Tol2 transposon system suffer 

fewer silencing effects after the passage through the generations than transgenic zebrafish 

created by others transgenesis systems. Transgenic fish created by the non-Tol2-DNA 

microinjection method often carry concatemers of the injected plasmid DNA in the genome, which 

may contribute to silencing of transgene expression after the passage through the generations. 
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In contrast, the integration of Tol2 elements does not cause any gross rearrangement of the 

surrounding DNA, which allows preserving the transgene expression after F5 generation 

(Kawakami et al. 2000; Kawakami et al. 2004; Urasaki et al. 2006). 

 

Although the cloning process of pTol2-10xUAS-LSSmOrange and pTol2-alpha1Tubulin-

LSSmOrange expression clones is finished, these expression clones were not injected into 

zebrafish embryos, since the imaging equipment at the Champalimaud Fish Platform did not have 

a suitable fluorescence filter for emission and excitation of LSSmOrange (excitation/emission at 

437/572 nm). Thus, without an appropriate filter it is not possible, at this point, to identify positive 

larvae after the microinjection. 

 

Generation of transgenic zebrafish lines using the Gal4-UAS transactivation system 

The accessibility and optical transparency of zebrafish embryos and larvae make zebrafish a well-

suited organism for expressing genetically encoded fluorescent reporters, through transgenic 

techniques. The transgenic expression in zebrafish is mainly achieved by Gal4-UAS 

transactivation system. The flexibility to combine several Gal4 driver lines with different UAS 

reporter lines allows creating multiple transgenic lines that express fluorescent reporters in 

interesting neuronal populations (Godinho 2011; Rinkwitz et al. 2011). In this work, through the 

use of the Tg (Isl3:Gal4+/+) driver line (Figure III.11), three transgenic zebrafish lines were 

generated: Isl3:Gal4 10xUAS:rSyp-mCherry (Figure III.13); Isl3:Gal4 10xUAS:rSyp-

GCaMP6fEF05 (Figure III.14) and Isl3:Gal4 10xUAS-mScarlet (Figure III.15). 

Furthermore, the Gal4-UAS transactivation system makes it possible to enhance gene expression 

through the number of UAS sequences, since a higher number of UAS sequences leads to an 

increase of the expression levels of fluorescent reporter genes. However, studies reveal that 

tandem repetitions of UAS sequences may also be correlated with transcriptional silencing. Each 

UAS repeat contains a 17 base pairs long CGG-N11-CCG palindromic sequence. The CpG 

dinucleotides are essential for Gal4 binding, but they are also targets of DNA methylation. When 

UAS constructs are microinjected into zebrafish embryos, the silencing effects are not present, 

but when a transgene is stably integrated into the genome, the UAS sequence is prone to CpG 

methylation, which enables an increase of transcriptional silencing through the generations 

(Akitake et al. 2011; Goll et al. 2009).  

Constructs with 14xUAS sequences generate higher levels of reporter expression but, on the 

other hand, are more susceptible to methylation than constructs with 4xUAS sequences (Akitake 

et al. 2011). Thus, in order to balance the efficient expression levels of the fluorescent reporters 

and minimize the silencing in stable transgenic lines, vectors with 10xUAS sequences were 

created. The 10xUAS regulatory sequence was available in an entry clone and was efficiently 

inserted upstream of the fluorescent reporter genes in the Tol2 destination vectors by LR 

recombination reaction (Figure III.1; Figure III.4). 
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Transgenic zebrafish lines for studying neuronal activity and neuronal circuits  

Fluorescent calcium indicators can measure neuronal activity. These indicators are capable of 

reporting sudden changes in intracellular calcium levels in response to an action potential. In the 

past, fluorescent calcium indicators were commonly applied as synthetic dyes, but their incapacity 

for targeting specific neuronal cell types led to the use of genetically encoded calcium indicators 

(GECI) (Higashijima et al. 2003; Renninger et al. 2011; Scott 2009). These GECIs allow not only 

the targeting of single neurons and neuronal populations, but also the non-invasive imaging of 

neuronal activity. 

Over the years, several efforts have allowed the optimization of GECIs and, consequently, the 

creation of improved versions of GCaMPs (Badura et al. 2014; Chen et al. 2013; Sun et al. 2013). 

The transgenic zebrafish line Isl3:Gal4 10xUAS:rSyp-GCaMP6fEF05 (Figure III.14), contains an 

improved version of the original fast GCaMP6. GCaMP6fEF05 was developed by introducing 

mutations in the EF05 loop domain of the GCaMP6f sequence, through site-directed mutagenesis 

(Tomás et al. unpublished data). The EF05 loop domain mutations were previously described in 

GCaMP3 (Sun et al. 2013). The great advantage of GCaMP6fEF05 is to present a higher signal-

to-noise ratio and dynamic range than GCaMP6f. Furthermore, it exhibits comparable kinetics 

response (Tomás et al. unpublished data). 

In neurons with higher levels of activity, indicators with fast responses, such as GCaMP6f and 

GCaMP6fEF05, allow more accurate tracking of changes in firing frequencies. However, the time 

(~1s) that the cell bodies take to clear calcium is a kinetic limitation in tracking action potential 

activity. In this situation, Fast-GCaMP’s fluorescence signals are limited by the slow time course 

of calcium changes (Badura et al. 2014). Thus, in order to overcome this limitation, 

GCaMP6fEF05 was fused with the rat synaptophysin tag, which allows directing the expression 

to presynaptic vesicles. In this case, rSyp is predominantly expressed in presynaptic terminals, 

where calcium changes are faster than at the cell body. Moreover, when a GECI is directed to 

synaptic terminals, it also provides a strategy for monitoring neuronal activity at the level of 

individual synapses. 

Synaptophysin is also crucial for studying the connectivity of the neuronal circuits, since it enables 

the axons’ identification (Scott 2009). Although synaptophysin is predominantly expressed in 

presynaptic terminals, it is also involved in synaptic vesicle exocytosis and endocytosis that 

occurs along the axons (Meyer & Smith 2006). Therefore, when synaptophysin is fused to a 

genetically encoded fluorescent reporter, it is possible to identify axons and study axonal arbor 

growth throughout the zebrafish nervous system. In order to study the connectivity of the neuronal 

circuits, a Isl3:Gal4 10xUAS:rSyp-mCherry zebrafish transgenic line was generated (Figure 

III.13). 

Upon the establishment of synaptic connections, presynaptic vesicles accumulate predominately 

in presynaptic terminals. Thus, in order to confirm that the fluorescent reporter expression is 

targeted to these vesicles in the structures labeled by the isl3 promoter, DiI and DiO lipophilic 
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dyes were injected into Isl3:Gal4 10xUAS:rSyp-mCherry and Isl3:Gal4 10xUAS:rSyp-

GCaMP6fEF05 fixed embryos, respectively. This technique enables the labeling of the entire 

retinotectal projection and consequently the visualization of the synaptic connections between the 

RGCs and optic tectum neurons. 

Lipophilic dyes dissolve easily into cell membranes. Therefore, when they are injected into the 

zebrafish eye, DiI and DiO are uptaken by the plasma membrane, labelling the entire retinal 

ganglion cell axons. Upon projecting into the optic tectum, they form an axonal arbor and establish 

synaptic connections. Synaptic connections between RGC axons and the optic tectum dendrites 

lead to the accumulation of presynaptic vesicles in presynaptic terminals of their neurons. 

Through the use of the dyes, it is possible to observe the colocalization of the RGC’s axonal arbor 

terminals with the genetically encoded rSyp-tag (Figure III.13C’’’; Figure III.14C’’’). 

A complementary characterization of lines should be made through the visualization of the optic 

nerve, since in this structure does not establish synaptic connections. At the confocal microscope, 

due to the limited depth field, it was not possible to visualize the optic nerve in the preparations. 

Thus, it would be necessary to perform imaging using a two-photon microscope, since this 

microscopy enables to obtain in-depth 3D images with high resolution and minimal photo-damage 

(Renninger & Orger 2013). 

 

Generation of alpha1Tubulin-mScarlet transgenic line for studying axonal growth during 

nervous system development   

During the development of the nervous system there is the formation and growth of axons. Axonal 

growth is required for long distance communication and establishment of connections between 

cells. One of the proteins identified during this process is the alpha-1-Tubulin (Hieber et al. 1998). 

In order to study axon growth during nervous system development and understand the 

interactions of neuronal circuits, alpha-1-Tubulin expression clones harboring the alpha-1-Tubulin 

putative promoter were generated. This putative promotor includes not only the promoter, but also 

the first exon and first intron of the alpha-1-Tubulin gene, since when it was compared the fish 

and other species’ alpha-1-Tubulin genomic region, it was showed regions of conserved DNA in 

the first exon and first intron. Furthermore, studies also revealed that clones containing the first 

intron of the alpha-1-Tubulin gene lead to higher expression in vivo than clones without the first 

intron (Hieber et al. 1998).  

In order to generate transgenic zebrafish lines harboring the alpha-1-Tubulin putative promoter, 

alpha-1-Tubulin expression clones were first constructed using Gibson Assembly (Figure III.6A; 

Figure III.7). As this method presents higher efficiency than the classical PCR approach, it was 

chosen to perform the cloning of the alpha-1-Tubulin putative promoter.  

In alpha1Tubulin-mScarlet transgenic zebrafish line, injected larvae (Figure III.12D) and their 

progeny (Figure III.16A-A’) exhibited a fluorescence intensity significantly higher than the 

fluorescent intensity exhibited by other generated lines (Figure III.12A-C; Figure III.13A-A’; Figure 
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III.14A; Figure III.15.A-A’). This can be explained by the pan-neuronal expression pattern, since 

the alpha-1-Tubulin promotor drives the expression throughout the nervous system.  In addition, 

a homogenous expression of mScarlet in transient and stable screens was also observed, which 

can be explained by direct fusion of the fragments, as a consequence of using Gibson Assembly. 

The alpha-1-Tubulin putative promoter can also direct the fluorescent reporter expression to the 

developing neurons through the use of the Gal4-UAS transactivation system. For that, the alpha-

1-Tubulin putative promoter would have to be cloned into a plasmid with a Gal4FF sequence, in 

order to create a driver line. The combination of this driver line with different UAS reporter lines, 

would allow not only the (potential) increase of the expression, but also the creation of zebrafish 

transgenic lines with different genetically encoded fluorescent reporters without more cloning 

steps.  

 

Characterization of the expression of the fluorescent reporters in transient and stable 

expression screens  

In order to generate transgenic zebrafish lines, expression clones (Table II.5) were injected in 

one-cell stage zebrafish embryos. Although all the expression vectors had been injected at the 

same concentration, 18 ng/µL, a microinjection was previously performed to establish the optimal 

concentration. This step is very important, since high concentrations lead to a high toxicity and 

lower concentrations to a lower integration efficiency. 

When the screen for transient expression of fluorescent reporter genes was performed, injected 

larvae with 10xUAS exhibited different levels of brightness and an incomplete Isl3 expression 

pattern (Figure III.12A-C), which can be explained either by unequal distribution of the 

microinjected DNA during the embryonic cell divisions (Amsterdam et al. 1995) or by the amount 

of injected DNA, since some injected embryos may have integrated more transgene insertions in 

their genome than others. 

Despite the fact that injected fish exhibit transient expression, they may not transmit the transgene 

insertions to their progeny. For that to occur, the transgene must be integrated in the germline. 

When the screen for stable expression was performed, the positive progeny from the injected fish 

with 10xUAS exhibited a mosaic expression, which suggests evidence of transcriptional silencing 

caused by the 10xUAS sequences or positional effects (Akitate et al. 2011; Roberts et al. 2014). 

Another cause for mosaic expression is the number of insertions integrated in the germline. 

Injected fish exhibited a variable percentage of stable transgene integration (Table III.3), which 

means that some zebrafish integrated more copies in germ cells than others. In order to know the 

exact number of transgene insertions integrated in an individual injected fish, it would be 

necessary to perform a Southern Blot or a PCR (Kawakami 2005).  

In the Isl3:Gal4 10xUAS-mScarlet zebrafish line it was also observed that injected larvae (Figure 

III.12C) and their progeny (Figure III.15A-A’) exhibited a higher fluorescence intensity than 

Isl3:Gal4 10xUAS-rSyp:mCherry zebrafish embryos (Figure III.12A; Figure III.13A-A’). This is not 
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surprising, since Bindels and co-workers reported that mScarlet is about 3.5 times brighter than 

mCherry. So far, mScarlet is the monomeric red fluorescent protein with the highest brightness 

(Bindels et al. 2017). Another factor that can influence the brightness in Isl3:Gal4 10xUAS-

rSyp:mCherry is the rSyp tag, since it restricts the mCherry expression to presynaptic vesicles. 
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V. Conclusion 
 

To understand how neuronal circuits in the brain generate robust and complex behaviors is crucial 

to identify and characterize specific neurons, as well as to monitor and manipulate neuronal 

activity throughout the brain. Transgenic zebrafish lines with different genetically encoded 

fluorescent reporters are constantly being generated for that purpose. The molecular biology tools 

used nowadays to create these transgenic lines don’t rely only in classical cloning techniques or 

on random DNA insertion after injection. Instead, the smart use of seamless cloning approaches 

and new cloning systems that allow for a fast pairing of driver and reporter constructs, together 

with transgenesis mediated by the Tol2 transposon system has significantly improved the efficacy 

of zebrafish transgenic generation. 

While genetically encoded calcium ion indicators, such as GCaMPs, enable the monitoring of the 

neuronal activity in vivo; fluorescent reporters, such as LSSmOrange and mScarlet, offer unique 

advantages in fluorescence microscopy imaging, since LSSmOrange enables the multicolor 

fluorescence microscopy with a single laser wavelength and the mScarlet offers a high brightness. 

The use of different genetically encoded fluorescent reporters will contribute for a better 

understanding of the neuronal circuits and their connections, in particular of circuits involved in 

visual processing during early stages of development. As zebrafish has a visual system that 

closely resembles the human eye, the study of several visually evoked behaviors in early stages 

of development enables advancements in the research of vertebrate eye development and 

disease and visual processing and function. 

The generation of new transgenic zebrafish lines and genetic tools allied with the development 

of sophisticated imaging techniques open up the possibility of whole-brain imaging with high 

resolution and precision. In the coming years, the challenge will be to combine the approaches 

developed and currently used in zebrafish to understand how behaviors are generated in higher 

vertebrates. 
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VII.  Supplements 
 

Supplement A 

 
Supplement A.1 – Map of the Tol2 Gateway destination vector.  

 

Supplement A.2 – Maps of the pH2B-LSSmOrange (A) and pmScarlet_C1 (B) vectors. 

 

 

 

 

 

 

 

 

 

 

 

Supplement A.3 – Molecular weight ladder: GeneRuler 1 Kb DNA ladder. Adapted from Thermo Scientific 
(https://www.thermofisher.com). 
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Supplement A.4 - Map of the 10xUAS Entry Clone. 

 
 
Supplement A.5 – Map of the pT-alpha1Tubulin-GCaMP vector. 

 

Supplement A.6 – Map of the pCR2.1-TOPO vector. 
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Supplement A.7 – Maps of the pTol2-10xUAS:rSyp-mCherry (A) and pTol2-10xUAS:rSyp-GCaMP6fEF05 
(B) expression clones.  

 

 

Supplement A.8 – Maps of the pDestTol2-LSSmOrange (A) and pDestTol2-mScarlet (B) vectors. 

 

 
Supplement A.9 – Maps of the pTol2-10xUAS-LSSmOrange (A) and pTol2-10xUAS-mScarlet (B) 
expression vectors. 
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Supplement A.10 – Maps of the pTol2-alpha1Tubulin-LSSmOrange (A) and pTol2-alpha1Tubulin-

mScarlet (B) expression clones. 
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Supplement B 

In parallel with the development of the main project, a pet project was initiated:  

 

Characterization of membrane voltage and the effect of 

membrane voltage-modulator drugs in human cancer cells 

 

I. Introduction 
 

1. Bioelectric signals  

Cell behavior is regulated by several intra and extracellular signals. In addition to biochemical 

gradients, physical forces and transcriptional networks, cell behavior is also regulated by 

endogenous bioelectrical signals (Levin 2014). These signals are generated and received either 

by excitable cells or by non-excitable cells. In non-excitable cells, the bioelectrical signals are 

crucial to control cell functions, such as proliferation, migration, differentiation, cell shape and 

apoptosis. Furthermore, they are also involved in the regeneration, polarity of whole-body 

anatomical axes, wound healing and cancer development (Levin 2014; Levin & Stevenson 2012; 

Yang & Brackenbury 2013). 

The bioelectric signals are generated by the movement of ions through ion channels and pumps, 

which are distributed along the cell membrane. Ions, such as Na+, K+, Ca2+ and Cl-, flow across 

the membrane depending on the selectivity and permeability of each ion channel and pump and 

the concentration and electric gradients. This leads to an unequal distribution of charges in extra 

and intracellular medium, generating an electric potential difference, designed by membrane 

potential (Vm) (Figure I.1) (Levin 2007; Levin 2014; McCaig et al. 2005; Yang & Brackenbury 

2013).  

 

Figure I.1 – Bioelectric signaling at the cell level. The membrane potential is produced by the movement 

of ions through the ion channels and pumps, that are distributed along the cell membrane. The result is a 

net negative charge on the inside of the cell relative to the outside. Adapted from Levin 2014. 

 

The cell membrane is typically polarized, since that its inside is more negative compared with its 

outside (Figure I.1). When the cell is in resting potential, the membrane potential value is 

approximately – 50 mV. However, this value can be changed by the input or output the charges. 
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When the input of positive charges or the output of negatives ones occur, the Vm value becomes 

less negative. This process is commonly known as depolarization. The opposite mechanism is 

known as hyperpolarization (Levin & Stevenson 2012; Yang & Brackenbury 2013). 

 

2. Membrane potential and cancer 

Given the roles of Vm in cell behavior, it is not surprising that the membrane potential is also 

increasingly involved in the cancer progress (Binggeli & Weinstein 1986; Chernet et al. 2016; 

Prevarskaya et al. 2010; Yang & Brackenbury 2013). Studies demonstrate through direct 

comparation between normal and cancer cells that the resting potential of tumor cells tend to be 

more depolarized than the resting potential of normal cells (Binggeli & Weinstein 1986; Chernet 

et al. 2016; Yang & Brackenbury 2013). Moreover, tumor cells also exhibit high intracellular Na+ 

concentration, which can explain the depolarized phenotype. 

In general, cells that are mature, terminally differentiated and quiescent tend to be hyperpolarized, 

whereas cells with high plasticity, such as embryonic, stem and tumor cells tend to be depolarized 

(Figure I.2) (Binggeli & Weinstein 1986; Chernet et al. 2013; Levin 2014; Levin & Stevenson 2012; 

Yang & Brackenbury 2013). Thus, the Vm is not only a key mediator of differentiation and 

proliferation, but also of carcinogenesis. 

 
Figure I.2 - Membrane potential scale. Quiescent and terminally differentiated cells tend to be highly 
polarized, while more plastic cell types: tumor, stem and embryonic cells tend to be depolarized. The 
mammalian liver has an interesting Vm value, since it is abnormally low for an adult differentiated tissue. This 
can be correlated with the remarkable regenerative potential of the liver. Adapted from Levin 2012. 
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Since ion channels and pumps can be involved in ion flux and Vm regulation in cancer cells, anti-

cancer studies have focused on Na+, K+, Ca2+ ions and ion channels as cancer targets and ion 

channels drugs as a promising class of therapies (Chernet et al. 2016; Levin 2014; Yang & 

Brackenbury 2013). 

 

3. Measuring Vm in vivo 
 

The first step to study bioelectric signals is the characterization of the spatiotemporal distributions 

of ionic parameters in vivo and the determination of how they correlate with anatomical and 

genetic patterning events (Levin & Stevenson 2012). Despite the fact that electrophysiological 

characteristics of cells can be measured using microelectrodes, several other methodologies 

have been developed.  Nowadays, it is possible to characterize the bioelectrical events through 

highly sensitive ion-selective extracellular electrode probes (Reid et al. 2007), microelectrode 

arrays (Schonecker et al. 2014), individual ion species (Tantama et al. 2011; Tseng et al. 2010) 

and voltage-reporting fluorescent dyes, such as CC2-DMPE and DiBAC4(3) (Adams & Levin 

2012a; Adams & Levin 2012b). The fluorescent dyes offer several advantages, such as 

subcellular resolution, visualization of voltage gradients continuously in situ, direct detection of 

membrane potential overlong time periods independent of cell movements and divisions and 

ability to measure moving targets (Adams & Levin 2012a; Levin 2014).   

 

4. Aims 

As cancer cells exhibit a physiological state more depolarized than differentiated cells, FDA-

approved drugs – Barium chloride, Monensin and Gabapentin – were used to study the effect of 

bioelectric modulation on tumor progression in zebrafish. The study demonstrated that for the 

same type of cancer, but different cell lines, the same drug can have different effects, which can 

be explained by different physiological states of tumor cells. Thus, it become necessary to 

characterize the membrane potential and changes in ion flux of each cell line (Negrão 2017). 

The principal aim of this project is to characterize the physiological state of cell membrane of 

tumor and non-tumor cells lines and understand the true role of the Monensin and Gabapentin in 

bioelectric modulation of those cell lines. 

 

II. Materials and Methods 

 

1. Cell culture 

In order to characterize the physiological state of cell membrane of tumor cells lines, it was used 

a SW620 cell line (donated by American Type Culture Collection (ATCC)). This is a colon cancer 

cell line derived from metastatic site, lymph node. 
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The SW620 cell line was tested for mycoplasma and the handling was performed in a laminar 

flow hood (Heal Force). The cell counting, cell labeling and light sheet fluorescence microscopy 

(LSFM) experiments (Lightsheet Z.1, Zeiss) were not performed under aseptic conditions. 

 

1.1.  Freeze and thaw of cells 

The thawing process started with the removal of the cryovials from liquid nitrogen to a water bath 

at 37°C for a period of 1-2 minutes. In the laminar flow hood the content of the cryovials was 

transferred to a falcon, where it was added pre-warmed complete growth medium: Dulbecco’s 

Modified Eagle Medium (DMEM) High Glucose (Biowest) supplemented with 10% fetal bovine 

serum (FBS) (Sigma) and 1% Penicillin-Streptomycin 10.000 Units/mL (Hyclone). After 

centrifugation (ORIGEM) of the cell suspension at 1100 rpm for 3 minutes, the cell pellet was 

resuspended in complete growth medium and transferred into a new sterilized T-flask. The cells 

were cultured adherently in a humidified atmosphere containing 5% CO2 at 37°C (inCu Safe). 

To maintain a cell line bank, it was necessary, after 2 passages, to freeze the same cell line that 

had been thawed. For that, the cell pellet was resuspended in 90% FBS with 10% dimethyl 

sulfoxide (DMSO) (Sigma) and aliquoted in cryovials, that were placed in a - 80°C overnight. In 

the following day, the cryovials were transferred to a liquid nitrogen tank. 

 

1.2. Cell passage 

The SW620 cell line was cultured adherently with complete growth medium in a humidified 

atmosphere containing 5% CO2 at 37°C. When the cells achieved a confluence of 70-80%, cell 

passage was performed. The culture medium was removed from the flask and the cells were 

washed with 1x Dulbecco's Phosphate Buffered Saline (DPBS) (Gibco, Life Technologies). 

TrypLE (Gibco, Life Technologies) was added to the flask and incubated at 37°C for 5-10 minutes 

for cell detachment. To stop the TrypLE action, fresh culture medium was added to the flask and 

the cell suspension was centrifuged at 1100 rpm for 3 minutes. The supernatant was removed, 

and the cell pellet was resuspended in complete growth medium. The volume varies with the 

required dilution factor, that it is commonly adjusted in order to obtain a confluence of 70-80% at 

the end of about 2-3 days. The cell suspension was added to a new flask with fresh culture 

medium and cells were incubated in 5% CO2 at 37°C. 

 

1.3.  Cell counting 

 

Before performing the LSFM experiments, it was necessary to obtain an ideal number of cells that 

should be the same in all experiments. Thus, before the cell labeling, it was performed cell 

counting in a hemocytometer. Since each of the 4 quadrants have a volume of 0.1mm3, cell 

concentration (cells/mL) was calculated according to the following formula: 

 

Conc (cells/mL) =  
cell count 

quadrants number
 ×  dilution × 104mm3mL−1 
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In the case of the SW620 cell line, it was shown that the ideal number of cells was 2x106 cells, 

since this number enables the visualization of either single cells or clusters in LSFM experiments. 

 

1.4.  Cell labeling  

In order to characterize the physiological state of cell membrane of SW620 cells, cell labeling was 

performed with the voltage-reporting fluorescent dyes: CC2-DMPE and DiBAC4(3), according to 

Adams and Levin protocol (Adams & Levin 2012a). Prior to cell labeling, stock solutions of CC2-

DMPE (Invitrogen) and DiBAC4(3) (Invitrogen) fluorescent dyes were prepared according to 

Adams and Levin protocol (Adams & Levin 2012a), and cells were prepared according to the 

protocol used for cell passage (Materials and Methods, section 1.2). After cell counting (Materials 

and Methods, section 1.3), the volume corresponding to the desired number of cells was 

transferred to an Eppendorf with 1 mL of complete growth medium. Cell labeling was performed 

in the dark. 

 

2. Light sheet fluorescence microscopy and image analysis  

The characterization of the cell membrane’s physiological state from the SW620 cell line was 

attempted using light sheet fluorescence microscopy. The sample was first embedded on low 

melting agarose (1% (w/v) (Invitrogen) in 1x PBS (composition in table II.1)). 

 

2.1.  Sample mounting  

After performing cell labeling, cells were resuspended in 100 µL of low melting agarose. Then, 

the cell suspension was sucked into a capillary (~1 mm) and after the polymerization of the 

agarose, the embedded sample was pushed out to perform the imaging (Figure II.1). The sample 

was positioned within a chamber containing an aqueous solution. Depending on the experiment, 

either 1x PBS or 1x PBS without potassium (composition in table II.1) was used. Since cells were 

alive, the chamber was heated at 37ºC. Experiments were performed without the control of CO2. 

 
Figure II.1 – Sample mounting.  For sample mounting, cells are embedded in 1% low melting agarose and 
subsequently sucked with a capillary. After the polymerization of the agarose, the embedded sample is 
pushed out and imaging is performed. Adapted from Flood et al. 2013. 

 

2.2. Imaging 

For imaging, a 10x illumination objective (N.A 0.2) and a 20x detection objective (N.A 1.0) were 

used, as well as two lasers: 405 nm (CC2-DMPE) and 488 nm (DiBAC4(3)). Using the ZEN 2010 
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software, the acquisition parameters (gain, digital gain, digital offset and laser power) were 

optimized. Cells were imaged in a stack format. All images were analyzed and treated in open 

source software Fiji. For presentation purposes Z-stack planes were selected. 

 

3. Solutions 
 

Table II.6 – Summary of the composition of solutions used in this work.  

 

 

III. Results and Discussion 
 

To characterize the physiological state of cell membrane in the SW620 cell line, SW620 cells 

were labeled with cell-permeable dyes: CC2-DMPE and DiBAC4(3) voltage-reporting fluorescent 

dyes. In this experiment, they were used as fluorescence resonance energy transfer (FRET) pairs, 

in which the CC2-DMPE is the donor and the DiBAC4(3) is the acceptor. In resting potential, both 

dyes bind to the outer surface of the cell membrane, which results in efficient FRET. When the 

cell suffers a membrane potential change, the CC2-DMPE donor remains on the outer surface, 

but the DiBAC4(3) mobile acceptor is translocated to closer to or further away from the donor, in 

proportion to the Vm. In a depolarized state the DiBAC4(3) acceptor is translocated to further away 

from the CC2-DMPE donor, which leads to less or no FRET. In a hyperpolarized state, it is the 

reverse process (Adams & Levin 2012b, Maher et al. 2007). 

 

1. Control of the voltage-reporting fluorescent dyes 

In order to confirm the functionality of the voltage-reporting fluorescent dyes, imaging was first 

performed with each dye alone. Since both dyes are cell-permeable, it is expected to observe 

fluorescence in the cell membrane. As shown in the figure III.1A-B, the fluorescence emitted either 

by CC2-DMPE or DiBAC4(3) is mainly present in the cell membrane. This suggests that both dyes 

are functional. 

. 

Working solutions Total volume and solvent Composition 

1x PBS 
 

1 L Milli-Q water 
 

1.45  g Na2HPO4; 
0.24 g KH2PO4; 

0.2 g KCl; 
8 g NaCl 

1x PBS without 
potassium 

500 mL Milli-Q water 
4.784 g NaCl; 

0.8258 g de NaH2PO4 
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Figure III.1 - Light sheet microscope images of SW620 cells labeled with CC2-DMPE or DiBAC4(3) 
voltage-reporting fluorescent dyes. (A) Imaging of SW620 cells labeled with the CC2-DMPE donor 
(green). (B) Imaging of SW620 cells labeled with the DiBAC4(3) mobile acceptor (magenta). Imaging was 
performed in 1x PBS. 

 

2. Imaging of SW620 cells with CC2-DMPE and DiBAC4(3) voltage-reporting 

fluorescent dyes in different conditions  

When the cell is depolarized, the CC2-DMPE remains on the outer surface, but the DiBAC4(3) is 

translocated to the inner surface of the cell membrane, which results in diminished FRET (Adams 

& Levin 2012b). Since studies reveal that cancer cells tend to be depolarized, it is expected that 

SW620 cells exhibit a diminished FRET. Thus, in this case, the fluorescence emitted by CC2-

DMPE should be significantly lower than the fluorescence emitted by DiBAC4(3). 

To characterize the membrane potential of the SW620 cell line, cells were labeled with both 

voltage-reporting fluorescent dyes and the experiment was performed in 1xPBS. Figure III.2 A-A’ 

shows that the emitted fluorescence by CC2-DMPE and DiBAC4(3) is identical, which means that 

a diminished FRET is not occurring. Therefore, two hypotheses were suggested: (1) FRET is not 

taking place or (2) SW620 cells were not depolarized. 

In order to study the membrane potential of SW620 cells, the same experiment was performed in 

1x PBS without potassium, since this condition causes a membrane polarization. In this case, the 

DiBAC4(3) is translocated closer to the CC2-DMPE, causing a FRET increase (Adams & Levin 

2012b). Thus, in this experiment, the fluorescence emitted by CC2-DMPE must be significantly 

higher than the fluorescence emitted by DiBAC4(3). Figure III.2B-B’ shows the fluorescence 

emitted by CC2-DMPE and DiBAC4(3) is identical, which means that the membrane potential 

might not have been changed. Since the effect of bioelectric changes is very fast, this hypothesis 

is unlikely. Moreover, when the fluorescence emitted by both dyes is compared between 

experiments (Figure III.2), it is shown that the fluorescence intensity is identical. Thus, this 

suggests that FRET may not be occurring. 
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Figure III.2 – Light sheet microscope images of SW620 cells simultaneously labeled with CC2-DMPE 
or DiBAC4(3) voltage-reporting fluorescent dyes. (A-A’) SW620 cells labeled with CC2-DMPE (green) 
(A) and DiBAC4(3) (magenta) (A’), when the imaging was performed with 1x PBS. (B-B’) SW620 cells 
labeled with CC2-DMPE (B) and DiBAC4(3) (B’), when the imaging was performed with 1x PBS without 
potassium (K+). 

 

The protocol established by Adams and Levin (Adams & Levin 2012a) to measure Vm was 

designed for ratio imaging. Since Champalimaud Centre for the Unknown does not have at the 

moment such an available imaging equipment, a new protocol was attempted in a light sheet 

fluorescence microscope. As in vitro cells are not usually studied using LSFM, this approach could 

also be used to develop a new imaging protocol. However, these experiments were not successful 

using the dyes as FRET pairs and this type of ratio imaging is not possible in LSFM.  

Thus, the next step in this project would be to perform the experiments at the inverted confocal 

microscope and characterize not only the physiological stage of SW620 cells, but also of other 

cancer cells and non-cancer cells. Only after studying the physiological stages of different cell 

lines, would it be possible to design experiments to understand the true effect of Monensin and 

Gabapentin in the membrane potential.  
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