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Abstract: 
 

This work aimed to improve aqueous drug solubility by amorphization upon loading in 

silica porous matrixes and stabilize it in the amorphous form. Naproxen was chosen as 

the target material, a practically insoluble pharmaceutical drug, with anti-pyretic and anti-

inflammatory properties. To evaluate the influence of guest-host interactions in the drug 

delivery, two silica matrixes were synthesized differing in their surface composition: 

unmodified MCM-41 mainly with surface silanol groups and MCM-41_Func caped with 

methyl groups. The surface area modification with methyl groups was confirmed by 

attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), 

thermogravimetric analysis (TGA) and nuclear magnetic resonance (NMR). Textural 

analysis showed narrow pore diameter distributions centered at 3.0 and 2.9 nm, 

respectively. 

 

To evaluate the guest’s physical state, different techniques were used as: differential 

scanning calorimetry (DSC), dielectric relaxation spectroscopy (DRS) and attenuated 

total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. These analyses 

showed that naproxen was successful incorporated in the both silica. The naproxen’s 

amorphization was confirmed by the DSC detection of the glass transition, located in 

between ~0ºC and 22ºC. However, crystallization and melting are always observed, 

nonetheless in low extent (~6 % of crystallization degree).  

 

The mobility of the amorphous pharmaceutical drug incorporated inside these silica 

pores, was probed by DRS, allowing estimating a dielectric glass transition temperature 

in good agreement with the calorimetric one and revealing a higher mobility for the 

hydrated unmodified composite. It was shown that this mobility enhancement controls 

the drug delivery, monitored by ultraviolet spectroscopy, which revealed to be faster in 

the unmodified matrix.  

 

The studied composites show promising behavior as controlled drug delivery systems. 

 

 

Keywords: Naproxen, Inorganic Silica, Amorphous, Glass Transition, Control Release.  
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Resumo:  
 

Este trabalho teve como objetivo melhorar a solubilidade aquosa de um fármaco, por 

amorfização através de incorporação em matrizes porosas de sílica, e estabilizá-lo na 

forma amorfa. O naproxeno foi escolhido como material alvo, sendo um fármaco 

praticamente insolúvel, exibindo propriedades ant-ipiréticas e anti-inflamatórias. Para 

avaliar a influência das interações hóspede-hospedeiro na libertação do fármaco, foram 

sintetizadas duas matrizes de sílica diferindo na sua composição superficial: uma não 

modificada, MCM-41, tento sobretudo  grupos superficiais to tipo silanol, e uma 

modificada, por metilação MCM-41_Func. A modificação da área superficial com grupos 

metilo foi confirmada por espectroscopia de infravermelho com refletância total 

atenuada por transformada de Fourier (ATR-FTIR), análise termogravimétrica e 

ressonância magnética nuclear. A análise textural mostrou distribuições de diâmetro de 

poro estreitas centradas em 3,0 e 2,9 nm, respectivamente. 

 

Para avaliar o estado físico do naproxeno incorporado, foram utilizadas diferentes 

técnicas tais como: calorimetria diferencial de varrimento (DSC), espectroscopia de 

relaxação dielétrica (DRS) e ATR-FTIR. Estas análises mostraram que o naproxeno foi 

incorporado com sucesso em ambas as sílicas. A amorfização do naproxeno foi 

confirmada por  DSC através da  detecção da transição vítrea, localizada entre ~ 0ºC e 

22ºC. No entanto, observa-se sempre cristalização e fusão, ainda que em baixa 

extensão (~ 6% de grau de cristalização). 

 

A mobilidade do fármaco amorfo incorporado dentro destes poros de sílica, foi sondada 

por DRS, permitindo estimar uma temperatura dielétrica de transição vítrea em boa 

concordância com a temperatura calorimétrica, e revelando uma maior mobilidade para 

o compósito hidratado não modificado. Demonstrou-se que este aumento de mobilidade 

controla a libertação do fármaco que se mostrou mais rápida na matriz não modificada; 

a libertação do naproxeno foi monitorizada por espectroscopia de ultravioleta,. 

 

Os compósitos estudados apresentam comportamento promissor para aplicação como 

sistemas controlados de liberação de fármacos. 

 

Palavras-Chave: Naproxeno, Sílica Inorgânica, Amorfo, Transição Vítrea, Libertação 

Controlada.   
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1 Introduction 

1.1 Motivation 

For a long time now, drug solubility has been a topic of interest for research and 

development in the pharmaceutical industry. Low water solubility is a common 

characteristic of many pharmaceutical drugs, therefore requiring an intake of higher 

dosage, so the essential levels for treatment are reached in the blood.1 with a consequent 

negative impact in the environment2 and on the cost of marketed drugs. 

 

The process of drug development is complex and requires many phases and steps. 

World researches to have success in their investigation must make a highly specific drug, 

with high affinity to its biological targets to reduce the probability of undesired side 

effects. This is the stage where attempts are made to improve drug solubility, not 

compromising pharmacokinetics and pharmacodynamics. There are many approaches 

been taken in consideration to improve drug’s solubility, some examples are: 

amorphization, micronization, crystal modification, etc.3 

 

This assignment focus in the amorphization of a poor water soluble crystalline drug 

(naproxen). The strategy is, by incorporating it in two silica (MCM-41and functionalized 

MCM-41), its dissolution rate and bioavailability will improve. 

 

1.2 Naproxen 

(S)-(+)-6-Methoxy--methyl-2-naphthaleneacetic acid, more commonly known as 

naproxen is a pharmaceutical drug that acts as an anti-inflammatory nonsteroidal with 

analgesic and antipyretic properties.4,5  

 

Naproxen is an enantiomeric drug, being the enantiomer S, the one used for health 

treatments and the enantiomer R is toxic. The structure of the drug is formed by two 

aromatic rings and a carboxylic acid having a pKa of 4.15.5 Naproxen is most commonly 

used for the treatment of rheumatic diseases and acute painful procedures. Due to some 

of its characteristics, as low solubility and high permeability naproxen belongs to the 

second class of the biopharmaceutical classification system. 
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1.3 Bioavailability and Biopharmaceutics Classification System (BCS) 

 

Bioavailability quantifies the rate in which the drug is absorbed and the fraction of the 

unchanged drug that was taken in that will reach the systemic circulation.6 

Characteristics as permeability and solubility are extremely important in the 

determination of drug’s oral bioavailability. For many pharmaceutical drugs, solubility is 

a challenge, as it is so difficult to develop proper formulation for oral administration.7 

 

Dissolution is extremely important when it comes to the rate-determining step in the 

pharmaceutical drug absorption. Bioavailability in this case is contrariwise related to the 

distribution of particle size when pharmaceutical drugs present properties like, low 

solubility, and dissolution rate.8 It is intended that by increasing solubility, bioavailability 

will increase too.9 So, many tactics are being developed with the drive to enhance the 

solubility, dissolution rate and oral bioavailability of poorly water drugs.10  

 

The purpose of the Biopharmaceutics Classification System was to gather information 

on in-vitro dissolution and in-vivo absorption, by associating this information different 

drugs could be classified.11 

 

The BCS is a mathematical model that measures solubility and permeability under exact 

conditions.11 Characteristics as aqueous solubility relating do dose and intestinal 

permeability in combination with dissolution properties are the base of classification of 

drugs into four classes.11 The classes are the following: class I contains all the drugs that 

have high solubility and permeability due to strategy. In classes III and IV the drug´s 

bioavailability is conditioned by its permeability.  Drugs in class II, the case of naproxen 

(under study), are poorly soluble. Naproxen’s solubility is 1.26 g/L (25 ºC)4, which is very 

low, so, the aim is to improve its solubility in the aqueous medium.  

 

  

Figure 1. Representation of naproxen molecular structure. * indication of the chiral 

centre. 
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Table 1. Representation of the Biopharmaceutics Classification System. 11 

 

 

 

The system can classify the drug in its early stages, which is an important factor, as it 

can influence the decision to continue studying the drug or not. The system has gained 

more and more importance nowadays.11 

 

1.4 Crystals and Amorphous Materials 
 

 

Solid matter can be classified as crystalline, amorphous or a mixture of the two. In 

crystalline solids, atoms are arranged in a long-range order in a three-dimensional space. 

On the other hand, amorphous solids show no organization, it only exists local order of 

atoms, due to the interactions between them. Amorphous materials are defined as non-

crystalline, because atoms do not show an organized pattern12 (figure 2). 

 

  

Class Solubility Permeability 

I High High 

II Low High 

III High Low 

IV Low Low 

Figure 2. Amorphous solids vs Crystalline solids. 
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Such characteristics, as disorder, give amorphous properties as a higher Gibbs free 

energy, a faster solubility and dissolution rate, resulting in an increase in therapeutic 

activity, by comparing these two types of solids. However, a higher entropy, enthalpy 

and Gibbs free energy make amorphous solids less stable and act as a driving force to 

the occurrence of crystallization.13  

 

Crystallization is a known first-order transition (it has latent heat associated), so the 

temperature will not change until the transition is completed.14 As an exothermic reaction, 

passing to a more stable state, crystallization is a combination of two steps. Nucleation 

and crystal growth.15 For this transition to happen, a nucleus is required for the crystal to 

grow, if nucleus is present than the material during cooling becomes a glass. The nucleus 

is either homogeneous or heterogeneous. If the nucleus is homogeneous, the crystal will 

form spontaneously during melting, if it is heterogeneous forms a pre-existing surface of 

an impurity.15  

 

 

 
 
 
 
 
 
 
 
  

Figure 3. Demonstration of nucleation rate, Jnucleation, and rate of crystal growth, Jgrowth, 

in respect to temperature. Tg is the glass-transition temperature, Tm is the melting 

temperature, units are arbitrary for rate. The area where the curves overlap, in grey, is 

the temperature range where nucleation and growth happen.15 
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1.5 Phase Transitions 

Phase transitions happen when a material changes from a state (ex. solid, liquid or gas) 

to a different state. This happens at a combination of certain conditions, temperature and 

pressure. Examples of very familiar transitions are: condensation, vaporization… 

However there are those less known as: solid-solid, etc. As it can be seen, there are 

many different types of phase transitions, each with their own specific characteristics and 

they can be classified agreeing to their thermodynamic properties.16  

 

In first-order phase transitions, the energy that is supplied, turns into latent heat, this 

occurs at a stationary temperature, until the transition is concluded. The difference in 

enthalpy, volume, entropy is finite at this fixed, specific temperature. The first derivative 

of these measures with respect to temperature is discontinuous. Examples of first-order 

transitions are melting, boiling and crystallization.16   

 

In second-order transitions regarding temperature, the first derivative is continuous and 

the second is discontinuous. The same properties as given above, enthalpy, entropy and 

volume do not change.16 

 

 

  

Figure 4. Thermodynamic properties changes in a) first order phase transitions and 

b) second order phase transitions16 
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1.5.1 Melting  

 

 

Melting is a first order transition, and when it occurs, the substance becomes more 

disorder, in a liquid-like form.14 Many things are happening to a material while its melting, 

as: disorder increases (endothermic process having a melting enthalpy Hm associated 

with it)14. The volume and heat capacity always changes. The heat capacity is defined 

as the quantity of heat that is required to raise the temperature of an identified system 

by one degree.17 

 

The process of melting can only take place if the substance is crystalline. The theory 

says that melting occurs by an instability created as temperature increase, in the crystal 

lattice structure. 14 

 

1.5.2 Glass Transitions 

Having a continuous first derivative and a discontinuous second derivative, glass 

transition is classified as a pseudo-second-order transition as it does not happen 

between two states of thermodynamic equilibrium18, so it’s not considered a true phase 

transition because there aren’t discontinuous changes in the physical properties.19 This 

so-called transition, can only happen in amorphous material, as it has no latent heat 

associated and where enthalpy, volume and entropy change continuously.19  

 

The glass transition takes place, when a liquid is being cooled below the melting point, 

fast enough that it can dodge crystallization to enter in a supercooled state. As the 

system gets cooler and cooler, undergoes solidification due to the increase of viscosity 

it’s molecular mobility slows down19 to turn into a glassy substance. This transition has a 

Cp (heat capacity) associated, and it occurs over a range of temperatures, (Tg,onset, 

Tg,midpoint and Tg,endset) see figure 5. This characteristic behavior of the glassy material 

preserves the liquid-like characteristics from its originating liquid.19,20  
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The characteristics of the glass are dependent on the rate at which is formed. So, it 

doesn’t fall out of the liquid-like equilibrium, a slower cooling treatment is applied, giving 

enough time for configurational arrangement at each temperature, consequently 

originating a glass transition at lower temperatures.19 (See figure 6)  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This state (glassy), is out of equilibrium, therefore it has a spontaneous tendency to 

convert into a more thermodynamically stable form, consequently recrystallization can 

occur, above or below Tg, making it interesting and fundamental to study strategies to 

avoid this trend.19 

 
  

Figure 5. Representation of Tg from a DSC scan, idientification of onset, midpoint 

and offset or endset. 

Figure 6. Representation of temperature dependence on enthalpy and volume. Tga is 

the glass transition temperature formed from a slow cooling rate and Tgb from a faster. 

Tm is the melting temperature.19 
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1.6 Silica MCM-41 

The MCM-41 (Mobil Composition of Matter No. 41) is a favourable member of the 

mesoporous silicate family and of the aluminosilicate materials.21,22 The MCM-41 has a 

regular pore system, consisting of hexagonal display and shaped pores, as well their 

highly specific pore volume (up to 1.3 ml g-1)21 and surface are (up to 1500 m2 g-1)21, 

make them so promising for many uses, as drug carriers. 23 When silica is used in such 

a way, the drug is loaded and then locally released in a controlled way, providing a 

precise delivery to the target site. 22 

 

Modifying (functionalizing) the silica pore inner walls, can have a crucial role, as by 

changing the surface it can alter the binding strength, consequently having an impact on 

the release rate.24–26 These aspects keep increasing the interest of researchers and 

industry in these materials.  

 

The term known as controlled release is given to an experiment that studies the 

performance or delivery of a compound in response to time or stimuli.8 These 

experiments are normally tested under conditions that will try to simulate body features, 

so, that they can mimic the period of release and how it is released in the bloodstream.8 

 

  

1.7 Techniques  

 

1.7.1 Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

(ATR-FTIR) 

 

Infrared (IR) spectroscopy is a very well-known and extremely reliable fingerprinting 

technique, as it can identify, characterize and quantify many substances; solids, liquids 

and gases. The spectrometers, use infrared radiation to analyse the samples by the 

transmitting directly through them, no matter the type. The determination of the spectral 

features intensity depends on the thickness of the sample, so, therefore, a precautious 

sample preparation is mandatory to acquire good readings.27 
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The technique of attenuated total reflectance (ATR), is a modernization of analyses for 

liquid and solid samples. In the traditional IR, solid samples preparation involves crushing 

the substance to a fine powder and dispersing it into a matrix. The compound being 

analysed is either mixed with a liquid or a solid, potassium bromine (KBr) is probably the 

most widely used. The mixture is then pressed, turning into a clear glassy disk, ready to 

be analysed in the spectrometers. Liquid samples are more commonly analysed as thin 

films in cells, the cell consists of two infrared transparent disks. Sample preparations are 

easier for liquid samples than solid ones, however both type of samples cannot be used 

again.27 

 

The attenuated total reflection accessory works by measuring the variations that happen 

when the beam encounters the sample. This beam is directed onto an optically dense 

crystal with a high refractive index for a specific angle, this internal reflectance will create 

an evanescent wave that will reach beyond the surface of the crystal into the sample, 

and it will seat on the surface of the crystal. This wave projects only a few microns beyond 

the crystal wall into the sample, therefore there must be good contact between both.  The 

evanescent wave will suffer changes (altered or attenuated) in the regions of the 

spectrum where the sample absorbs energy. This attenuated or altered energy return to 

the beam, in the opposite end of the crystal, passing through the detector, where the 

system generates an infrared spectrum.27 

 

 

So, to have good results with this accessory, there are two important aspects to take in 

account. The sample being analysed must be in direct contact with the crystal while the 

evanescent wave only reaches a very small distance of 0.5  - 5 27 past the crystal. The 

second aspect is that the refractive index of the crystal must be greater than the one 

from the sample, otherwise internal reflectance does not happen, so instead of being 

transmitted the light is reflected in the crystal. Usually the ATR crystals have a refractive 

index between 2.38 and 4.01 at 2000 cm-1. 27 

 

 
  



10 

 

 

1.7.2 Thermogravimetric Analysis (TGA) 

 

The technique of thermogravimetric analysis consists in the examining of a mass sample 

over time or temperature, the substance is exposed to a controlled atmosphere and 

temperature program. This means, the TGA controls the weight of the sample being 

analysed as it is cooled or heated. Thermogravimetric analysis is very used to 

characterize a variety of materials in various sectors as environment, pharmaceutical, 

petrochemical and food industries.28 

 

The sample goes into a pan supported by a precision balance. The pan will stay in a 

furnace and depending on the type of experiment it will be cooled or heated. The weight 

of the pan (sample) is being monitored all the time. The control of the atmosphere is 

done by using sample purge gas.28 

 

Through this technique, it is possible to quantify the amount of mass that remained and 

the amount of mass that degraded. The loading percentage of the matrix is calculated 

with the given equation:  

 

% 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑁𝑎𝑝𝑟𝑜𝑥𝑒𝑛

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑁𝑎𝑝𝑟𝑜𝑥𝑒𝑛+𝑀𝑎𝑠𝑠 𝑜𝑓 𝑆𝑖𝑙𝑖𝑐𝑎 
𝑋 100    Eq.1 

 

 

  

Figure 7. Scheme of a multiple reflection in ATR-FTIR.27 
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1.7.3 Scanning Electron Microscopy (SEM) 

 

 

A scanning electron microscope is uses a beam of high-energy electrons, that will emit 

a variety of signals when encountering the surface of the solid material being analysed. 

The interactions that are created between the electrons and the surface reveal 

information about the solid sample like: the texture, the orientation about the materials 

and its crystalline structure. When the data is being gathered, most of the time, is 

obtained over a chosen area to generate a 2-dimentional image that displays the 

properties all the characteristics mentioned above.29,30 

 

1.7.4 Transmission Electron Microscopy (TEM) 

TEM is a technique where a beam of electrons is transmitted through an extremely thin 

sample, the thickness of the sample is about 100 nm. The interactions between the 

sample and beam create an image. This image will then be magnified onto a fluorescent 

screen or others.  This type of microscope can capture extremely small detail as a single 

column of atoms. TEM is an extremely useful analytical method in chemistry, biology and 

physics. An example it has some applications in cancer studies.31 

 

1.7.5 Differential Scanning Calorimetry (DSC) 

 

Differential Scanning Calorimetry is a technique which studies thermal transitions, as 

solid-solid, solid-liquid transitions, among others. It measures a chemical or physical 

change, when energy is transferred as heat to or from the sample being studied. During 

these analyses, it is possible to understand what is happening to the material, even if 

there are no visual changes. This is done, by comparing the behaviour of the sample 

with a reference material, which does not undergo any physical changes during the time 

of the analysis. 14 

 

In the apparatus, there are two pans that are isolated from the surroundings. One of the 

pans is the reference pan, that is empty, and the other contains the sample being 

analysed. There is one heater underneath each pan, to regulate the temperature and a 

sensor that will indicate it. So, the heating or cooling rate is constant for both pans, the 

apparatus adjusts both heaters. The heaters are programed to heat or cool both pans at 

a constant rate (T/t), and at the same rate as each other, so the rate in temperature 
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change is the same for the reference pan and the sample pan. The heat flow, that is the 

rate of thermal energy (Q/t) being supplied to both pans does differ, because the heat 

capacity is different since one pan is empty (reference) and the other pan contains the 

sample being examined. This difference in the heat flow between both pans is plotted 

against temperature.17,32  

 

 

 

 

 

 

 

 

 

As it was previously mentioned, the heating rate (T/t) is set, and the heat flow (Q/t) 

is measured as endothermic (melting) or exothermic (crystallization) peak (see figure 9). 

The values of enthalpies associated with melting and crystallization are calculated by 

integrating the area of respective peaks. Glass transition, on the other hand, is identified 

as a step in the thermogram. Through the slope of the glass transition step, the change 

in the heat capacity (Cp) can also be calculated by dividing the heat flow by the heating 

rate (see equation 2).17,33  

  

(Q t)⁄

(T t)⁄
=

Q

T
= Cp (J ºC-1)      Eq. 2 

 

The calorimetric apparatus divides the heat capacity by the mass of the sample, 

providing the specific heat capacity.  

 

 

Cp

𝑚
= Cp (J ºC-1 g-1)       Eq. 3 

  

Figure 8. Diagram representation of the heat-flux of differential scanning 

calorimetry.32 
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1.7.6 Nuclear Magnetic Resonance (NMR) 

 

SS-NMR, or solid-state nuclear magnetic resonance is a technique that delivers 

information about the structure of molecules to an atomic level, and nowadays it is 

applicable in almost all scientific fields. To obtain in a detailed information as solution-

nuclear magnetic resonance, additional techniques are required for ss-NMR as magic-

angle spinning (MAS) and cross-polarization (CP), between others.34 

 

The MAS involves the rotation of the sample 54.74 º with respect to the magnetic field, 

so that anisotropic dipolar interactions are diminished. For this technique to be effective, 

the spinning must happen at the same or higher rate than the dipolar linewidth. The CP, 

cross-polarization technique implicates the displacement of polarization from some more 

abundant nuclei (as proton) to some lesser common ones (as carbon), with the purpose 

of enhancing the reason signal/noise.35 

 

29Si ss-NMR coupled with cross-polarization and magic-angle spinning is a very 

consistent technique to quantify the nature of solid silica matrixes, specially of 

amorphous silica.36 Through this type of spectrum, it is possible to distinguish different 

silanol groups; geminal (Q2) with a peak at -92 ppm, vicinal or isolated (Q3) at -101 ppm 

and surface siloxanes (Q4) at -110 ppm.36–38  

 

  

 

 

 

 

 

Figure 9. Differential Scanning Calorimetry profile with exothermic and endothermic 

heat flow plotted versus temperature.33 
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In the silicas being studied, the expected results from the analyses of the modified 

one, a reduction in Q2 and Q3 peaks and an increase in Q4 intensity.  

The 13C NMR aids by giving supplementary information on the alkyl groups bonded on 

the surface of the modified matrix, indicating a successful functionalization.34 

 

1.7.7 Dielectric Relaxation Spectroscopy (DRS) 

 

From the dielectric relaxation technique, it can be studied the dipole relaxation caused 

by the reorientation motions of molecular dipoles and the originating electrical conduction 

due to the translational motion of electrons and ions, in a range of frequencies of 10-6 to 

1012 Hz.39 

 

When a non-conductor sample, that must contain permanent dipoles, is under an 

oscillating electric field a net polarization is caused.39,40 Atoms combine by sharing one 

or more electrons to form a molecule. As this combination is being formed, the 

rearrangement may origin an unequal dispersion of electrons, forming a so called dipolar 

moment. This dipolar moments are not organized in precise order, instead they have a 

random distribution, but when they are submitted to an electric field, a re-orientation of 

the dipoles occurs so they align with the field, therefore causing polarization.39,40 By 

reversing the electric field, once more the dipole rearranges itself to stand the alignment, 

while reorientation happens, energy is lost.39,40 

 

 

 

 

 

 

Figure 10. Attributed Qn nomenclature to the different silanol groups on the silica 

surface.36 
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Permittivity (*) is the measure of the quantity of charge needed to generate an electric 

field at a specific medium. The amount of energy that is gathered in the dielectric material 

from the external electric field is known as the real part of permittivity (’).40 The energy 

being lost from the dielectric substance is the imaginary part of the permittivity (’’). The 

’’ is always greater than zero40 and the greater it is, the more energy is being dissipated 

(lost), therefore leaving less energy available to the dipole re-orientate. This is linked to 

the intrinsic loss of the system, and it is recognized as the dielectric loss. 39 

 

The complex dielectric permittivity function is given by: 

 

   *() = ’()- i’’()    Eq.4 

 

Where: 

•  is the angular frequency of the applied electric flied 

• ’ (): is the real part of complex permittivity, quantifying the polarization stored 

by the system, given by the ratio between the sample capacitance C, and the 

capacitance when the measuring cell is vacuum filled, C0, so ´ = C/C0 

• ’’ (): is the imaginary part, or dielectric loss being the dissipated energy, and is 

quantified by the resistance, R, reciprocal as ´´= 1/(RCo) 

Figure 11. Frequency response of the dielectric mechanisms.38 
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When the frequency of the applied field is low, dipoles have time to align with the electric 

field. However, as frequency increases, dipoles become unable to follow the oscillating 

filed. Increasing the frequency, increases the imaginary part, and a maximum value will 

be achieved at fmax. This maximum peak of ’’ is related to the characteristic relaxation 

time. The relaxation time (), is the time needed for the displaced system aligned with 

the electric field to restore its random distribution of equilibrium by an amount of 1/e 

(where e is the Neper number), after the electric field is removed.39,41 

 

The higher the temperature at which each spectrum is collected, the more mobile dipoles 

are and therefore, higher fmax. This maximum ’’-peak frequency is related to the 

characteristic molecular relaxation time, ,  measuring dipoles mobility in a material.40,41 

Therefore, the relaxation time is estimated from the frequency location of the maximum 

dielectric loss peak through the following equation39: 

 

    max= 
1

2
(2 ∗  ∗ 𝑓max)   Eq. 5 

 

In conventional glass, former systems, i.e., materials that avoid crystallization, entering 

in the supercooled state and vitrifying upon further cooling, the molecular mobility can be 

probed by dielectric spectroscopy near above and below the glass transition. In this 

dynamical range, the characteristic relaxation times fit within the frequency range of 

routine dielectric spectroscopy (10-2 to 106 Hz).  Since amorphous materials are 

dynamically heterogeneous, even when only one dipole type is present, regions from 

high mobile and low ordered to low mobile and highly ordered and combinations in 

between coexist, a distribution of relaxation times instead of a single , is needed to 

adequately describe the system. Experimentally, spectra are collected over a frequency 

window and covering a temperature range, but each one is acquired at a constant 

temperature, at which different molecular motions associated with distinct relaxation 

processes can be active. Therefore, to proper simulate each spectrum, a sum of 

relaxation processes may be needed. The most popular, although empirical, model 

function used to analyse the isothermal dielectric spectrum is the Havriliak-Negami 

(HN)39. When there are several relaxation processes, a sum of HN functions is applied. 
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 ∗=  + ∑
𝑗

(1+/(𝑖0)𝑗)𝑗
𝑛
𝑗=0

    Eq.6  

  

 Where: 

•   : optical dielectric constant (real permittivity at infinite frequency) 

•  : dielectric strength  

•  0: characteristic relaxation time 

•  : angular frequency 

•   and : describe the symmetry and asymmetry broadening the spectrum, 

within a range 0    1 and 0  .  1.42 

The different relaxation processes active simultaneous at a definite temperature can 

exhibit distinct temperature dependencies. While very localized mobility is temperature 

activated – Arrenhian (linear) temperature dependence, some cooperative processes, 

as the glass transition, have a non-linear dependence on temperature, following a non-

Arrhenius law. This nonlinear dependence is described by the Vogel-Fulcher-Tamman-

Hesse (VFTH) equation, that is shown below39: 

 

    (T) =  ∗ 𝑒
(

𝐵

𝑇−𝑇𝑂
)
      Eq.7 

where: 

• : relaxation time at a high temperature limit 

• B: parameter specific to each material 

• To: Vogel temperature  

To obtain the glass transition temperature, and since is not a true transition in the usual 

thermodynamic sense, it is required some criteria to identified it, as the temperature at 

which the relaxation time, becomes 100 s. The reason for this value, derives from the 

Maxwell relation.39  

 

    (𝑃𝑎𝑠−1) = 𝑚𝑎𝑥  (𝑠) ∗ 𝐺(𝑃𝑎)    Eq. 8   

Where: 

• max: relaxation time to 100 s 

• : viscosity of a solid 

• G: the shear stress 

A  (viscosity) of 1012 Pa and a G (shear stress) of 1010 Pa characterises a solid and, 

therefore, from Eq. 8, a relaxation time of 100 s is obtained.  
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The substitution of =100 s it in the VFTH equation, allows to estimate the so-called  

dielectric Tg. 39 

 

1.7.8 Ultraviolet Spectroscopy (UV-Vis) 

 

When electrons are excited from a lower level into a higher level, visible and ultraviolet 

radiation are absorbed or transmitted. In both, visible and ultraviolet radiation the electron 

is excited from a full orbital (low energy) to an empty, anti-bonding orbital (high energy), 

becoming excited. Each wavelength has an energy coupled with it, so if the precise 

amount of energy is supplied to make the electronic transition, then the wavelength will 

be absorbed. The bigger the difference between the energy levels, more energy is 

required to move the electron. So, the higher the energy, the higher frequency and the 

shorter the wavelength will be.43 

 

This type of spectroscopy allows the determination of sample’s concentration and rate 

equations, dissolution rates and the study of reaction rates, as many others. UV-

spectroscopy is widely used in quantitative analyses for all the molecules that absorb in 

ultraviolet and visible electromagnetic radiation. 43,44 

 

 

 

 

 

 

 

 

 

 

  

Figure 12. Representation of electronic transitions that results from light absortion.42 
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2 Methods and Materials 

2.1 Synthesis of Mesoporous MCM-41  

2.41 g of n-hexadecyltrimethylammonium bromide (C16 TMABr) was weigh and dissolved 

in 10.46 ml of aqueous ammonia (25 wt. %, 0.14 mol) and in 120 ml of deionized water, 

to obtain a concentration of 0.055 mol L-1. The solution was under stirring for about one 

hour, until there was no foam left. 10 g of TEOS (tetraethoxysilane, 0.05 mol) drop by 

drop was added to the surfactant solution, still under stirring, it stayed like that for one 

hour. The white precipitate formed was washed with 100 mL of deionized water and 

removed by filtration under vacuum. The sample was left to dry at 90 ºC for nineteen 

hours. It was then heated to 550 ºC at 1 ºC/min for nine hours, to remove the template. 

21 

 

 

Figure 13. Representation scheme of the MCM-41 synthesis.22 
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2.2  Functionalization of the Mesoporous Silica MCM-41 

0.504 g of the MCM-41 were weigh in to a small flask and left in an incubator oven at 

100 ºC all night. 150 ml of dry toluene were previously prepared by using molecular 

sieves (activated by being heated up to 300 ºC for one hour) and sodium lumps, which 

create bubbles when there is still water present. The sample of MCM-41 was removed 

from the incubator oven to a three-neck round bottom flask. 2.5 ml of 

methyltrimethoxysilane and 150 ml of dried toluene were added in to the three-neck 

round bottom flask. One of the necks of the three three-neck round bottom flask was 

connected to a nitrogen hose, the second one was connected to a condenser and the 

third neck was closed with a glass stopper. The solution was left under stirring in an oil 

bath at the temperature of 80 ºC for a period of five hours. The solution was then filtered 

and washed with 50 ml of dry toluene and ethanol. Finally, it was left to dry overnight in 

an oven at the temperature of 100 ºC.24,45  

 

2.3 Textural analyses of MCM-41 and MCM-41 Functionalized by Nitrogen 

Absorption Analysis 

Both matrixes were characterized and analyzed by nitrogen porosometry in the 

Laboratório de Análises/Requimte of the Chemistry Department of NOVA 

University of Lisbon. Nitrogen absorption isotherms were measured at -196 ºC. 

Before the analyses the sample was outgassed at 200 ºC under vacuum for 1 

hour. The following textural properties were obtained: 

  

Figure 14. Representation of MCM-41 functionalization. Adapted43 
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Table 2. Textural properties of MCM-41 and MCM-41 functionalized. 

 

 

a) The specific surface area (S) was determined from linear portion of the Brunauer-

Emmett-Teller (BET) plots 

b) The specific total pore volume (Vp) by density Functional Theory (DFT) method 

c) Pore size distribution (Dp) was determined by the Barret-Joyner-Halenda (BJH 

desorption) 

 

2.4 Drug Loading 

 

To incorporate naproxen in the silica, it was first necessary to remove water and 

impurities that could exist in both silica. 159 mg of MCM-41 and 152 mg of MCM-41-

Func were weighted into glass cells and were submitted to vacuum, 5 mbar and emerged 

in a paraffin bath to be heated for seven hours (temperatures between 140 ºC up to 170 

ºC). The samples were then left to cool down for 30 minutes before inclusion. 

 

 

 

 

 

 

 

 

 

 

 

Sample SBET
a/ m2 g-1 Vpb/ cm3 g-1 Dpc/nm 

MCM 41  986.1685 0.74117 3.0 

MCM 41_Func 944.7177 0.70630 2.9 

Figure 15. Assembly line for drug loading process. 
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To estimate the amount of naproxen for inclusion, the filling percentage was calculated 

by using silica’s pore volume and naproxen’s density in the following equation: 

 

% 𝐹𝑖𝑙𝑙𝑖𝑛𝑔 =  

𝑛𝑎𝑝𝑟𝑜𝑥𝑒𝑛 (𝑔)

𝑛𝑎𝑝𝑟𝑜𝑥𝑒𝑛 (
𝑔

𝑐𝑚3)

𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (
𝑐𝑚3

𝑔
) ∗ 𝑠𝑖𝑙𝑖𝑐𝑎 (𝑔)

∗ 100   Eq. 9 

 

The mass was calculated to a filling of 80 and 75 % for MCM-41 and MCM-41_Func 

respectively, so, there wouldn’t be any naproxen outside pores. The masses of naproxen 

were dissolved in 1 ml of chloroform, and with the glass cells still under vacuum, they 

were added to each sample of silica. The resulting composite was left to dry for forty-

eight hours at 50 ºC, under stirring with two magnetic bars, until all the chloroform had 

evaporated. After the two days, the mixtures were removed from the glass cells, and 

stored in eppendorfs. 

 

2.5 Scanning Electron Microscopy (SEM) 

The samples were analysed by Microlab, Electron Microscopy Laboratory in Instituto 

Superior Técnico de Lisboa. The morphology of the sample was observed by using a 

high-resolution scanning electron microscope Hitachi-S-2400/Bruker. 

 

2.6 Transmittance Electron Microscopy (TEM) 

The samples were analysed by Microlab, Electron Microscopy Laboratory in Instituto 

Superior Técnico de Lisboa. The morphology was observed by using a high-resolution 

electron microscope Hitachi H8100/ThermoNoran System SIX. 

 

2.7 Thermogravimetric Analyses (TGA) 

The TGA analyses was used to evaluate the percentage of loading of naproxen in each 

silica. These analyses were realized by Centro de Investigação de Materiais (CENIMAT). 

About ~5 mg from each sample were placed in an open aluminium pan. The 

thermogravimetric measurements were carried out from room temperature to 550 ºC in 

the device Simultaneous Thermal Analyser (TGA-DSC – STA 449 F3 Jupiter) from 

Netzsch, the heating rate was of 50 ºC.min-1.  The sample was under pure nitrogen 

atmosphere; the sample purge flow rate was of 60 ml.min-1. The temperature readings 
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were calibrated using Curie points of nickel standard, while the mass reading was 

calibrated using a balance tare weights from TA.  

 

2.8 Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

(ATR-FTIR) 

The device used was a PerkinElmer Two IR Spectrometer. A small quantity of the 

samples, each at a time was placed onto the diamond crystal area and the pressure arm 

of the device was positioned over the sample. Pressure was applied pushing the sample 

onto the diamond surface to achieve the best resolution possible. The spectra were 

obtained by Spectrum 10 software, also from PerkinElmer. The samples were analyzed 

in the 400 to 4000 cm-1 spectrum range with 16 scans of resolution.  

 

2.9 Nuclear Magnetic Resonance (NMR)  

Solid state 13C MAS and 29Si MAS NMR spectra were acquired in a 7 T (300 MHz) 

AVANCE III Bruker spectrometer operating respectively at 75 MHz (13C) 

and 60 MHz (29Si), equipped with a BBO probehead. The samples were spun at the 

magic angle at a frequency of 10 kHz in 4 mm-diameter rotors at room 

temperature. The 13C MAS NMR experiments were acquired with proton cross 

polarization (CPMAS) with a contact time of 1.2 ms, and a recycle delay of 2.0 s.  

 

The 29Si MAS NMR spectra were obtained using a single pulse sequence with a 90° 

pulse of 4.5 μs at a power of 40 W, and a relaxation delay of 10.0 s. 

2.10 Different Scanning Calorimetry (DSC) 

All the samples were analysed by DSC: native naproxen, both empty matrixes, MCM-41 

and MCM-41_Func and the respective composites. In a precision balance (Sartorius 

Research M-power), an aluminium pan and lid (TA Tzero Hermertic Lid and Tzero Pan) 

were weighed for each sample. The average of the mass samples should be about 2-5 

mg. All pans are sealed before the analysis. The masses of pans, and samples were 

noted for future calculus.  

 

Before the analysis in the DSC, the pans are perforated with a pin to ease water/ solvent 

evaporation during heating processes, so bursting due to over pressure is avoided. The 

pan is then placed inside the DSC Q2000, with a RCS 90, on top of a temperature sensor, 

next to empty closed pan, that is used as reference. The temperature variation ramps 



24 

 

(thermal procedure) and the respective masses (pan, reference pan and sample) era 

introduced in the software that controls the equipment. Data is analysed using the 

Universal Analysis 2000 software provided by TA Instruments Inc. The software 

calculates the values of enthalpy change and respective temperatures, heat capacity 

change and glass transition temperatures (all of this are collected in triplicate to decrease 

operator’s error). An example of how the glass transition temperatures are collected, is 

shown in figure 16. 

 

 

Figure 16. Illustration of how the temperatures are extracted at onset, midpoint 

and endset of glass transition. 

Thermal treatments applied to the samples being studied are shown below:  
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Figure 17. Thermal treatment applied to a) native naproxen and b) both silicas, in red 

heating cycles and in blue cooling cycles. 
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2.11 Dielectric Relaxation Spectroscopy (DRS) 

A sample of both composites, MCM-41 and MCM-41_Functionalized, loaded with 

naproxen was placed between two gold-plated electrodes of parallel plate capacitors, 

BDS 1200 with two silica spacers (50 m of thickness). The sample cell was placed on 

a cryostat, BDS 1100. The enclosed sample was submitted to a gas stream that came 

from the evaporation of liquid nitrogen, causing it to change temperature. Temperature 

control was ensured by Quarto Cryosystem and performed with 0.5 K. The software 

NovoControl Technologies GmbH supplied all the modules.  
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Figure 18. First Thermal treatment applied to both loaded composites in red 

heating cycles, in blue cooling cycles and in green annealing cycle. 

Figure 19. Thermal treatment applied to a) MCM-41 loaded with naproxen, b) 

MCM-41_Func loaded with naproxen, in red heating cycles, in blue cooling cycles 

and in green annealing cycles. 
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The measurements of dielectric relaxation were carried out using the Alpha-N 

independence analyzer from NovoControl technologies GmbH, covering a frequency 

range from 10-1 to 106 Hz. 

 

Both samples were submitted to a range of temperatures between -95 ºC to 170 ºC. To 

remove water/solvent evaporation from the sample, the last temperature for each first 

cycle was collected five times, ensuring that in the second heating the sample was 

completely dry. 

 

 

 

Table 3. Temperature steps and range of dielectric measurements at which 

isothermal spectra were collected for both composites. 

 

 

 

 

Data was analyzed and treated using WinFit and OriginPro Software using VFTH 

equation (see equation 7). 

 

2.12 Control Release Experiments 

Before all dissolution and control release trials were realized, a calibration curve is 

needed to quantify naproxen’s concentration. Ten different naproxen’s concentrations 

(0.1, 0.25, 0.5, 1, 2, 4, 5, 6, 8 and 10 mg L-1) in buffer solution were prepared and 

measured over a wavelength range from 190 to 400 nm. Calibration curves were 

constructed by choosing 6 different wavelengths: 262, 272, 282, 330, 331 and 333 nm 

(see calibration curves in annex). The obtained linearity (r2 > 0.99 for all the 6 chosen 

wavelengths) confirms the applicability of the Beer’s law in the studied concentration 

range.  

 

To simulate naproxen’s dissolution rate, trials were realized by placing 1.0 mg of 

naproxen in 200 mL of phosphate buffer solution (concentration of 5 mg L-1) at a pH= 6.8 

Sample Temperature Range (oC) Temperature Steps (oC) 

MCM-41_naproxen 

25 to -110 

-95 to 170 

-90 to 170 

10 

5 

5 

MCM-41_Func_naproxen 
25 to -90 

-95 to 170 

10 

5 
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(this is to simulate intestinal fluid, where naproxen is absorbed). The assays were 

performed in glass flasks in an Optic Ivymen System constant temperature incubator 

shaker (Comecta SA) regulated to 37 ºC (human body temperature) and 100 rpm. 

 

In naproxen release experiments, calculi were done, to assure that the quantity of 

composite had the same amount of naproxen as the dissolution trials. Therefore, 1.0 mg 

of naproxen plus the mass of silica was placed in the phosphate buffer solution (200 ml). 

For every sample being analyzed (native naproxen, MCM-41_Naproxen and MCM-

41_Func_Naproxen), the experiment was repeated three times, to decrease operators 

error. 

 

An average of the concentration values obtained from the 6 calibration curves were used 

to estimate the concentration in the dissolution process.  

 

 

 

2.13 Ultraviolet-Visible Spectroscopy (UV-VIS Spectroscopy) 

The sample absorptions were measured by UV-Vis at the wavelength range between 

400 and 190 nm in quartz cells. The spectrometer was a Thermo Scientif Evolution. 

  

  

150 200 250 300 350 400

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

A
b

so
rv

a
n

ce

Wavelength(nm)

Figure 20. Naproxen UV-Vis spectrum 
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3 Results and Discussion 

3.1 Scanning Electron Microscopy (SEM) 

From scanning electron microscopy, information about MCM-41, unloaded and loaded 

samples morphology was obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. SEM Images of unloaded  MCM-41. On the left, the image with an 

amplification of 200x and on right with 10.000x. 

Figure 22. SEM images of loaded MCM-41. Top left 200x, top right 2.000x, bottom left 

5.000x and bottom right 10.000x amplification. 
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As expected, the morphology of the MCM-41 silica is nearly spherical shaped, as is 

observed in the figures above (20 and 21). The aggregates formed from the silica 

particles are composed from regular particles and irregular ones.22 

 

3.2 Transmission Electron Microscopy (TEM) 

TEM images with textural characteristics of MCM-41 unloaded and loaded with naproxen are 

shown below: 

 

 

Figure 23. TEM micrographs of unloaded MCM-41. 

 

Figure 24.TEM micrographs of loaded MCM-41 with naproxen. 

In the micrographs exposed above (figures 23 and 24), the order of mesoporous material 

is apparent. Also, it is perceptible the hexagonal shaped mesoporous with alternating 

channels and siliceous framework. 25 
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3.3 Thermogravimetric Analysis (TGA) 

TGA analysis for both matrixes, unloaded and loaded and for native naproxen is 

presented below figure 25.  

 

The unloaded matrixes MCM-41 and functionalized MCM-41 are thermally stable in the 

range of temperatures set in the apparatus; the small variances in both masses are due 

to water/solvent evaporation. In the modified silica, a small decomposition is observed 

~350 ºC, due to the degradation of the organic functional groups.46 The values for water 

content in both silica and respective composites, were obtained by subtracting the mass 

percentage at 150 ºC from the initial mass percentage.46 For the organic functional 

groups in MCM-41_Func determination, the mass percentage loss was obtained in the 

range of 150 ºC and 550 ºC.46 To calculate the loading percentages, equation 9 was 

used. These values are shown in table 4.    

As the matrixes are stable in the programmed temperature, the only mass variation 

observed for the composite belongs to naproxen. Native naproxen is stable up to ~165 

ºC (orange solid line 24), after starts do degrade in a single step, ending before ~275 ºC. 

From the thermogram of loaded matrices, naproxen becomes more thermal resistant 

when incorporated in the silica. The mass loss occurs in a multiple-step profile for the 

non-functionalized composite, not so evidently, the same is observed in the functionalized 
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Figure 25. TGA plots for native naproxen (orange), both unloaded MCM-41(dark blue) 

and MCM-41_Func (light green) and the respective composites (light blue and dark 

green). 
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one. The derivative plot shown in figure 25, demonstrates this multiple-step profile, 

giving evidence that the decomposition of naproxen is not linear.4 This behaviour is 

attributed to bulk-like molecules (lower temperatures), and naproxen molecules which 

interact with pore walls (higher temperatures).4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the equation 1 already mentioned before, the loading percentages of naproxen in 

the composite for MCM-41 and functionalized MCM-41, are 38.32 % and 27.09 % 

respectively. The percentage of naproxen in the silica for MCM-41 is 62.13 % and for 

functionalized MCM-41 is 37.16 %. The loadings for the MCM-41 are more compatible 

with the initial mass weight (80 %) used for loading, while the results for the functionalized 

MCM-41 are lower. This is probably due to a lower vacuum applied during the loading 

experiments for the latter.  

 

  

Figure 26. Derivative plot of native naproxen (orange), both loaded MCM-41 (bluw) 

and MCM-41_Func (green). 
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Table 4. Water content, organic functional groups and loading percentages for 

both silica and composites. 

 

 

 

3.4 Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

(ATR-FTIR) 

To analyze in more detail the functionalization on the MCM-41 matrix, cuts of ATR-FTIR 

spectra were done, so bands could be more easily identified. There are three ranges of 

wavelength where evidence of functionalization is supposed to be clearer: one between 

4000-3500 cm-1 due to surface silanol types. The second from 3200-1200 cm-1 related 

to the presence of -CH3 groups and the last being from 1400-400 cm-1 showing the 

different types of Si-O-Si and Si-OH vibrations. 

 

Concerning the region between 4000 and 3500 cm-1, the bands of interest are: i) the one 

located at 3742 cm-1 corresponding either to free isolated (Si-OH) or geminal silanol 

groups (HO-Si-OH)36,47,48 and ii) at 3662 cm-1, where the vicinal silanols (HO-Si-Si-OH) 

absorb48, (see 27). The broader and relative weak band from 3925 to 3800 cm-1 is 

attributed to a combination of the stretching () and torsional () modes. In this close-up, 

the matrixes show no great differences.  

 

 

 

 

 MCM-41 MCM-
41_Func 

MCM-
41_Naproxen 

MCM-
41_Func_Naproxen 

Water (% 
w/w) 

0.51 1.71 5.12 2.14 

Organic 
functional 
groups (% 

w/w) 

- 1.26 - 1.26 

Naproxen 
in the 

Composite 
(% w/w) 

- - 38.32 27.09 

Naproxen 
in the 

composite 
(% v/v) 

- - 56.66 41.73 

Naproxen 
in 100 g 
silica (% 

w/w) 

- - 62.13 37.16 
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The next wavenumber window to be analyzed is in the range 3600 to 1200 cm-1. 

Evidence of stretching vibrations of hydrogen bonded water molecules and Si-OH 

groups47 in the range of 3600 to 3200 cm-1 are identified and it is a bit more pronounced 

in the functionalized silica; also for the later matrix, the peak at 1625 cm-1 due to water 

deformations is more intense.47 These results agree with TGA water content that is 

higher for the functionalized silica (see Table 4). The bands at 2988 cm-1 and 2900 cm-1 

results from asymmetric and symmetric stretching vibrations of C-H bonds, which are 

sharper in the MCM-41 C16 functionalized matrix; additionally, at 1399 cm-1 a weak band 

emerges due to Si-CH3 bond vibrations.   
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Figure 27. Region of the spectrum between 4000 and 3500 cm-1 for both matrixes, in 

blue the unmodified and in green the modified one. All the curves were vertically 

displaced for a better visualization. The dashed lines included to aid band visualization. 

Figure 28. Region of the spectrum between 3600 and 1200 cm-1 for both silica, in blue 

the unmodified and in green the modified one. All the curves were vertically displaced 

for a better visualization. The dashed lines to aid band visualization. 
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The cut of the spectrum from 1400-400 cm-1, several bands are identified due to Si-O-Si 

and O-Si-O, in general more intense in the functionalized matrix. From this, we can 

conclude that functionalization worked to some extent, as in all the zoomed areas of the 

spectrum, the Si-OH bands are always present in the MCM-41_Func, indicating that not 

all silanol groups in the surface were substituted by the functionalizing agent.47 
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Figure 29. Region of the spectrum between 1400 and 400 cm-1 for the two matrixes, in 

green the unmodified and in blue the modified one. All the curves were vertically 

displaced for a better visualization. The dashed lines to aid band visualization. 
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ATR-FTIR spectra were collected between the following frequency regions 1800 and 

1300 cm-1. The comparison between the unloaded matrixes, composites and native 

naproxen confirm successful loading. The loaded silica show response in the same areas 

as native naproxen. In the spectrum, there are two major regions that proof inclusion: 

the band near 1700 cm-1 due to C=O stretch and the band between 1300 and 1400 cm-

1, that is assigned to the coupling of aromatic rings, carbon-carbon stretching and C-H 

deformation modes in naproxen.4 These absorption bands are not present in the 

unloaded silica.23 When naproxen is in the crystalline state, the molecules interact with 

two adjacent molecules by hydrogen bonding and aromatic-aromatic interactions.49,50 

Hydrogen bonding interactions through the carboxylic groups occur due to the O-H or 

C=O bonds, leaving some free C=O groups because of their chain like structure.51 So a 

significant region of the spectrum is the C=O stretching that is characterized by the bands 

at 1725 cm-1 representative of non-hydrogen-bonded C=O and 1684 cm-1 typical of the 

hydrogen-bonded C=O stretching.51,52 In the spectrum of the composites, the band of 

free C=O of native naproxen is greatly suppressed and a broad band is registered at 
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Figure 30. ATR-FTIR spectrum in the C-H, C=C and C=O regions for a comparison 

of native naproxen with the loaded and unloaded Matrixes of MCM-41 at room 

temperature. All the curves were displaced vertically for a better comprehension 

and visualization. 
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1710-1705 cm-1, this is caused by the hydrogen bonded C=O, that undergoes a shift to 

higher wave numbers as it is observed in quench cooled amorphous naproxen.51 This 

can be taken as a first indication of amorphization, at least to some extent, because of 

the rearrangement from the chain like structure in crystal naproxen forming a dimer in 

the amorphous form.51 The other appearing bands due to condensed polycyclic aromatic 

structure of naproxen in the range between 1600 cm-1 and 1440 cm-1 are less affected 

in the composites comparing to native naproxen, indicating that the arrangement of the 

aromatic parts do not undergo significant change and that it doesn’t take part in the 

guest-host interaction, so it occurs via hydrogen bonds.4 The spectra of the loaded matrix 

and unloaded matrix show a broad band at ~3400 cm-1, which is due to physical 

absorption water.23 

 

 

 

3.5 Nuclear Magnetic Resonance (NMR) 

The solid-state NMR spectra probing Si chemical shift (29Si -NMR) were deconvoluted in 

the individual Q3 (isolated and vicinal silanol groups) and Q4 (siloxanes) contributions 

(see figure 10). While in the untreated silica both Q3 and Q4 bands are present in the 

overall spectrum, in the treated silica only Q4 was identified. The enhancement of 

siloxanes groups agrees with what was observed by ATR-FTIR (figure 29), being 

interpreted as a consequence of functionalization. See figure 31 and table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. 29Si MAS NMR spectra of the unloaded silica matrixes (see 

legend). 
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Table 5. Percentage and Chemical shifts of deconvoluted 29Si MAS NMR spectra of 

MCM-41 and MCM-41_Func.25 

 

 

 

To aid the confirmation of successful incorporation of methyl groups in silica surface, a 

13C NMR spectra is shown (figure 32). 

 

 
Figure 32. 13C NMR spectra of MCM-41 and MCM-41_Func. 

The emerging of the peak located near 57.6 ppm in the functionalized silica, absent in 

the unmodified one, evidences the presence of methoxy groups bonded to silicon (Si-O-

CH3)25. This can be taken as a sign of successful capping by methyl groups.  However, 

the peak with the chemical shift at 13.5 ppm is identified as (Si-O-CH2-CH3)25, due 

ethanol residues used to wash the functionalized silica. 

  

 Q2 Q3 Q4 

MCM-41 - -105 ppm 

31 % 

-111 ppm 

69 % 

MCM-41_Func - - -111 ppm 

100 % 
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3.6 Different Scanning Calorimetry (DSC) 

The analysis by the DSC started with the study of the thermal behavior of the native 

naproxen.  The thermogram below (figure 33) indicates two processes; in pink (1st 

heating) corresponds to melting, an endothermic event demonstrating an enthalpy 

variation of, ∆Hm= 130.86 J/g, the corresponding temperature is Tm= 156.73 oC. These 

results agree with those reported in literature.4 Upon cooling (in blue) crystallization is 

detected with a positive loop, the corresponding temperature being Tc= 127.24 oC. 

Crystallization is an exothermic process, the variation in enthalpy is ∆Hc = -118 J/g. As 

the heat flow returns to base line before the equilibrium between the sample’s 

temperature and the sensor’s temperature is regenerated a hysteresis loop is formed.4  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Unloaded MCM-41 and MCM-41_Func were also calorimetrically characterized. In the 

first heating, an intense and broad endothermic peak centered at ~60/65 oC due to 

water/solvent evaporation is registered, which is absent in the second heating (lighter 

pink) showing that all the water has evaporated, for both matrixes. Moreover, in the latter 

thermogram (figure 34) neither melting/crystallization or glass transition are detected, 

meaning the silica does not respond to any thermal treatment. 
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Figure 33. Thermogram of native naproxen, main cycles represented. In pink the first 

heating cycle followed by de second cooling cycle in blue. 
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Figure 34. Thermogram of unloaded a) MCM-41 and b) MCM-41_Func, main 

cycles represented. In dark pink the first heating, second cooling cycle in blue 

followed by the second heating cycle in lighter pink. 

 

The thermogram of MCM-41, loaded with naproxen is presented below. In the first 

heating cycle (dark pink) the characteristic behavior of naproxen is detected, a 

melting peak emerging at the same location of native naproxen Tm= 156 oC, 

indicating there is a small fraction of the drug outside the silica’s pores.4 However, 

the melting peak is only present in the first heating cycle and the process of 

crystallization is never shown, demonstration that all naproxen stayed amorphous 

after the thermal treatment. To assure there is some drug inside the pores, an 

annealing treatment was carried out by keeping the sample for two hours at the 

temperature of -6 oC (following the adopted procedure4). In the subsequent run (at 

a superior heating rate, 30 oC/min), a step emerges in the heat-flux signal ~0 ºC, 

which is the signature of the glass transition (light pink, after annealing), 

demonstrating amorphous naproxen. 
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Table 6. Table showing values of enthalpy variation and melting temperature for 

MCM-41 incorporated with naproxen with no framework, the following values are 

an average from three collections. 

 

This same sample was analyzed two months later, demonstrating all the naproxen was 

stabilized in the amorphous form. 

 

 

  

Melting Temperature (oC) Hmelting (J/g) 

156.27 8.866 

Figure 35. Thermogram of loaded MCM-41, main cycles represented. In dark pink the 

first heating cycle and native naproxen heating cycle, the second cooling cycle in blue, 

second heating cycle in lighter pink followed by the cycle after annealing in purple. 

Native naproxen curve in orange was displaced vertically for a better comprehension 

and visualization.  
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Since the glass transition was only characterized after melting of the outsider crystalline 

fraction, it is influenced by the amorphization of bulk-like naproxen. To have a better 

insight of amorphous portion inside the pores, that resulted directly from incorporation, a 

new sample was analyzed, using a different procedure: 1) water removal at a 

temperature (100 ºC) so there was no interference with any process of naproxen (Tm = 

156 ºC); 2) annealing at -6 ºC prior to melting; 3) annealing at -6 ºC after melting. (see 

scheme 19a) in experimental section).  
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Figure 36. Thermogram of loaded MCM-41_Naproxen two months after the first 

reading, main cycles represented. In dark pink the first heating cycle, the second 

cooling cycle in blue, second heating cycle in purple. 
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Figure 37. Thermogram of loaded MCM-41, main cycles represented. In dark pink the first 

heating cycle, in orange native naproxen heating cycle, the second cooling cycle in blue, 

heating cycle after annealing in dark blue, heating cycle after second annealing in purple, 

seventh cooling cycle in green.  Native naproxen curve was displaced vertically for a better 

comprehension and visualization.  
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After water removal and annealing cycle, the glass transition becomes more evident 

(Figure 37); the onset, midpoint and endset values are presented in table 7. The latter 

are higher, by comparison with Tg values for incorporated naproxen in similar silica 

hosts4, indication a strong constraining inside pores. Additionally, melting occurs at the 

same temperature as the native, which is evidence of naproxen outside the pores 

meaning not all naproxen was amorphous after the incorporation. Also, a fraction of 

naproxen recrystallizes as there is a crystallization peak in the cooling ramp after (7th 

cooling cycle). After the second annealing (violet cycle), the glass transition shows a 

slight shift to lower temperatures (better seen in the derivative plot figure 38), probably 

resulting from a superposition of already incorporated naproxen and a new amorphous 

bulk-like fraction.  

 

Table 7. Values of thermal transitions collected from DSC for unmodified loaded 

composite, MCM-41_Naproxen. The data result from an average of three 

collections. 

 MCM-41_Naproxen 

Tg (onset) ºC 9.33 

Tg (midpoint) ºC 17.49 

Tg (endset) ºC 20.24 

Cp (after first annealing cycle) (J/g ºC) 0.12 

Hmelting (after first annealing cycle) J/g 8.63 

Tmelting (after first annealing cycle) (ºC) 159.18 

Hmelting (after second annealing cycle) J/g 2.40 

Tmelting (after second annealing cycle) (ºC) 155. 94 

 

Tg is shown in figure 38, the derivative was also plotted, demonstrating the shift from 

between populations. 
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The results obtained from the first reading of functionalized MCM-41 incorporated are 

represented in the thermogram below. Once more in the first heating cycle (dark pink) 

the distinctive behavior of naproxen is shown with the melting peak at the temperature 

Tm= 156 oC, indicating that naproxen was not completely amorphous by incorporation, 

only after thermal treatment.4 

 

 

  

Figure 38. Thermogram of loaded MCM-41, derivative plot evidencing one populations, 

smoothing was applied (x15). 

Figure 39. Thermogram of loaded functionalized MCM-4, main cycles represented. In 

dark pink the first heating cycle and native naproxen heating cycle, the second cooling 

cycle in blue, second heating cycle in lighter pink followed by the cycle after annealing 

in purple. Native naproxen curve in orange was displaced vertically for a better 

comprehension and visualization. 
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Table 8. Table showing values of enthalpy variation and melting temperature for 

functionalized MCM-41 incorporated with naproxen.  The values result from an 

average of three collections. 

 
 

As for the unmodified silica loaded with naproxen, the functionalized one was submitted 

to the same water removing treatment, but only one a three-hour annealing. The 

following thermogram figure 40 was obtained. 

 

 

 

 

 

 

 

 

 

 

 

The three-hour annealing cycle, eased the gathering of the glass transition data. The 

thermogram shows melting once more, due to excess naproxen. Naproxen was not 

completely amorphous after incorporation after inclusion procedure, and after annealing 

cycles some recrystallizes as a crystallization peak is present in the cooling cycle after.  

The data obtained from the thermogram (figure 40) is shown in the table 9 below. 

 

Melting Temperature (oC) Enthalpy Variation (J/g) 

 157.09  11.04 

Figure 40. Thermogram of loaded functionalized MCM-41, main cycles represented. In 

dark pink the first heating cycle, in orange native naproxen heating cycle, the second 

cooling cycle in blue, heating cycle after annealing in dark blue, second heating cycle 

after annealing in purple, seventh cooling cycle in green.  Native naproxen curve was 

displaced vertically for a better comprehension and visualization. 
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Table 9. Values of thermal transitions collected from DSC for modified loaded 

composite, MCM-41_Naproxen. The data resulted from an average of three 

collections. 

 

 

Tg and derivative plot for the MCM-41_Func_Nap is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCM-41 C16_Naproxen 

Tg (onset) ºC 8.79 

Tg (midpoint) ºC 11.04 

Cp (J/g ºC) 0.10 

Hmelting (1st heating after annealing cycle) (J/g) 9.139 

Tmelting (after first annealing cycle) (ºC) 158.02 

Hmelting (2nd heating after annealing) (J/g) 1.27 

Tmelting (2nd heating after annealing) (ºC) 155.97 

Figure 41. Thermogram of loaded MCM-41_Func_Nap, derivative plot evidencing 

one populations, smoothing was applied (x15). 
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The crystalline percentage was calculated for both composites. Using enthalpy values 

from DSC, corrections were made taking in account the water content and loading 

(obtained by TGA) to obtain crystalline percentage.  

 

Table 10. Crystalline Percentage calculi for both loaded matrixes. 

 MCM-41_Naproxen 
MCM-

41_FUNC_Naproxen 

DSC sample weigh (mg) 4.30 3.95 

Hmelting (1st heating after 

annealing cycle) (J/g) 
25.08 35.51 

% Crystallinity (1st heating 

after annealing cycle) 
6.59 6.98 

Hmelting  (2nd heating after 

annealing) (J/g) 
- 5.073 

Hmelting  (after 2nd 

annealing) (J/g) 
6.98 - 

% Crystallinity (2nd heating 

after annealing) 
1.83 0.97 

 

 

A comparison between the two dehydrated composites was realized, after the annealing 

before melting, to evaluate if the behavior differed. Figure 42 compares the glass 

transition region; a) conventional heat-flux plot and b) derivative plot. While in a) no major 

differences are noted, their distinction becomes clear in the derivative representation b). 

Two populations are distinguished for the modified silica, one more mobile at lower 

temperatures and a more hindered one at higher temperatures, whereas a broader and 

less resolved is found for the unmodified one. These results are backed-up while 

analyzing dielectric relaxation data.   
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Figure 42. Comparison of both composites, after annealing (dried); a) Tg plot and b) 

derivative plot of Tg. In blue unmodified composite and in green functionalized composite. 

  

-20 -10 0 10 20 30 40 50

-1,7

-1,6

-1,5

-1,4

-1,3

-1,2

-1,1

-1,0
a)

MCM-41_Naproxen

MCM-41_Func_Naproxen 

H
e
a
t 

F
lo

w
 (

m
W

)

Temperature (ºC)

-20 -10 0 10 20 30 40

-0,025

-0,020

-0,015

-0,010

-0,005

0,000

b)

Temperature (ºC)

D
e
ri

v
a
ti

v
e
 H

e
a
t 

F
lo

w
 (

m
W

)

16.45 ºC

MCM-41_Naproxen

MCM-41 _Func_Naproxen 

6.04 ºC

16.06 ºC



49 

 

 

3.7 Dielectric Relaxation Spectroscopy (DRS) 

 

To evaluate the molecular mobility of incorporated naproxen, dielectric studies were 

carried, probing reorientation motions through the response of dipolar units (mainly the 

carboxylic moieties) to an oscillating external electric field.  

 

 

In figure 43, the composites dielectric response is expressed in terms of the imaginary 

component (dielectric loss) of the complex dielectric permittivity (see introduction). The 

dielectric loss spectra were taken isothermally, for the as prepared composites 

(hydrated-blue curves) and after water removal (dried-red). In general, with the 

temperature increase, the maximum of the ´´-peaks show a shift towards higher 

frequencies. This is an expected effect, since rising the temperature enables molecular 

mobility. This is due to the inverse relationship between time and frequency: higher 

frequency means a lower relaxation time, i.e., faster relaxation rate. Moreover, for the 

hydrated composites (figure 43 a) and b)) the maximum intensity of the peaks, shows a 
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Figure 43. Dielectric loss spectra taken isothermally at the temperatures indicated for 

a) and b) hydrated (1st heating) and c) and d) dried (2nd heating) composites; see 

legend inside figure.  
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decrease with increasing temperature due to continuous water depletion. This occurs in 

such a way, that the response for the dried composites comes out highly suppressed. 

The remaining dielectric loss which is owing to incorporated naproxen under dry 

conditions is even weaker in the functionalized MCM-41 due lower filling degree, as given 

in table 4. 

 

An alternative representation to ease the dielectric analysis is to plot data in function of 

temperature at a fixed frequency, this is fixed time (isochronous), being called isochronal 

plot. This is shown in figure 44 for both composites, a) unmodified and b) modified, for 

the frequency of 1x104 Hz.   

 

As mentioned before, the decrease in magnitude of the dielectric response is clearly 

shown in both composites for the first heating comparing to the second one. This is due 

to the high dipolar moment of the water molecule as the thermal treatment removes water 

during the first heating. Furthermore, in the unmodified matrix, two relaxation processes 

are shown in blue (first heating cycle) at low temperatures that disappear in the second 

run (red) and therefore these are attributed to the relaxation of water molecules. This is 

not so evident in the functionalized MCM-41, most probably because, as discussed in 

the results of NMR and ATR-FTIR, the reduction of surface OH groups decreases the 

number of adsorption sites for water molecules. 

 

To facilitate a comparative discussion between both composites in the two conditions, 

hydrated and dry, the following isochronal and isothermal plots will be analyzed. 
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Figure 44. Isochronal plots at the frequency 1x104 Hz for composites, a) unmodified 

matrix and b) modified matrix. In blue hydrated cycle (1st heating) and in red, dried 

cycle (2nd heating). 
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In isochronal curve a), even if small, there is a shift to lower temperatures of the 

maximum peak of the unmodified composite to the maximum peak of the modified 

composite (small vertical bars aid visualization). This means naproxen’s molecules have 

higher mobility in the MCM-41 than in the functionalized MCM-4. Also, the two water 

processes are more obvious, so probably the water molecules exert a plasticizing effect 

over naproxen enhancing its mobility. On the other hand, in the second heating 

(isochronal plot b) the two maximum peaks invert their position. Having the naproxen’s 

molecules a higher mobility in the functionalized MCM-41, as at a frequency of 1x104 Hz 

the maximum peak is located at lower temperatures. One of the hypotheses is, as the 

functionalized silica has -CH3 instead of -OH groups at the pore walls, a decrease in the 
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guest-host interaction occurs, rendering the molecules more mobile. These outcomes 

are even more explicit while comparing the isothermal spectra.  

 

A more detailed analysis was carried out with the loaded MCM-41 in the dried state 

(second heating). Since multiple relaxation processes are felt by the multimodal 

isothermal profile of the dielectric loss spectra, it was deconvoluted by using software 

Winfit from NovoControl. An example is shown in the figure 46 for the spectrum collected 

at 8 ºC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The deconvolution illustrated in figure 46, shows that to obtain a proper simulation of the 

’’ data, three HN-functions (equation 6) were used. The most relevant parameter that 

allows extracting dynamical information is the frequency of the maximum of each peak, 

from which the relaxation time is derived. Although three individual relaxation processes 

are felt, from now on, the analysis will only proceed with the process located at the lowest 

frequencies, the one to be believed associated with the glass transition, therefore 

designated alpha process, as mentioned in literature. The additional processes located 

at higher frequencies are related to more local mobility out of the scope of this project.      

 

A plot of the relaxation times obtained for the alpha process for the loaded MCM-41 in 

function of the temperature reciprocal (open-pink circles) is shown in figure 47. This type 

of representation is known as relaxation map, which provides the dynamical fingerprint 

Figure 46. Representation of a fitting process. 
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of the system.39 The plot also includes the data estimated from the isochronal 

representation (open-blue circles) from which the temperature of ’’ maximum at a fixed 

frequency is extracted. The relaxation time for each temperature is calculated from the 

frequency through the relationship =2f. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 47 it is obvious how the two sets of data follow the same tendency. Furthermore, 

the temperature dependence exhibits curvature, which is taken as an indication of 

cooperativity. Indeed, for localized process with short length scale an Arrhenius 

dependence is found due to a single activation energy. On the other hand, in cooperative 

processes the activation energy, Ea, is temperature dependent, increasing with 

temperature decrease, becoming more accentuated while approaching the glass 

transition temperature.  The variation of Ea is interpreted as a consequence of increasing 

length scale of the molecular regions that rearranges in a cooperative manner with the 

temperature decrease.39 

Figure 47. Relaxation time, , versus 1/T for the alpha process of the composite MCM-

41, pink circles, isothermal loss data, blue circles,  obtained from isochronal plots for 

some frequencies (=1/(2f), 1/Tmax). The solid line is the VFTH fit to the data (see 

equation 7, and parameters in table 11). Arrows indicating dielectric Tg,DRS (=100 s) 

and calorimetric Tg,DSC(onset) glass transition temperatures. 
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Table 11. Estimated parameters of the VFTH Fit to the relaxation times of the α-

process for MCM-41 loaded with naproxen. 

 

 

 

 

 

 

 

 

 

 

 

To take in account the curvature of the temperature dependence, a VFTH law was used 

(See equation 7) to obtain the respective parameters, which are provided in table 11.  

 

According to the Maxwell relation, that correlates viscosity and the shear modulus G, 

though =G, a relaxation time of 100 s is obtained by assuming, for a solid material, a 

viscosity of ~1012 Pa s and G ~1010 Pa.39 This gives an estimate of the glass transition 

temperature. The thus estimated Tg is 3.8 ºC is in reasonable accordance to the value 

estimated by calorimetry from the onset of the transition (9.33 ºC) corroborating the 

assignment of this process to the one driving the naproxen glass transition inside pores. 

  

Parameters -relaxation 

Tg(DSC) / ºC 9.33  

0 / s 7.76x10-16  

B / K 2765.9  

T0 / K 206.8 

Tg, DRS (=100 s) / K 277 

Tg, DRS (=100 s) / ºC 3.8 

Ea (Tg) / kJ mol-1 358 
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3.8 Control Release Experiments 

 

The results were normalized by the measurement at 24 hours. Native naproxen reaches 

about 100 % release in the first few minutes. In the first 20 minutes, the MCM-41 

composite reaches about 90 % release, attaining a sort of plateau, which is only achieved 

above 45 minutes for the functionalized one. Therefore, a slower release rate occurs for 

the functionalized composite. This was not expected, as the drug should have fewer 

interactions with the silanol groups on the silica surface. However, these results are in 

good agreement with results from DRS, as the composite MCM-41 shows a higher 

mobility in the hydrated cycle than the functionalized one. One hypothesis is the higher 

water content in MCM-41_Naproxen exerting a stronger plasticizing effect in the 

incorporated drug and, therefore, promoting its release. 

 

 

Figure 48. Normalized drug release and dissolution profiles in a pH= 6.8 media. 
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4 Conclusion 

 

The pharmaceutical drug naproxen was investigated and its phase transformations were 

probed by calorimetry, showing that it is a highly crystallizeble drug. Under several 

thermal treatments amorphization was never reached for the native drug.  

 

Aiming to obtain naproxen in the amorphous sate, incorporation in a solid host was used 

as a strategy. With this purpose, two different nanoporous silica matrixes were 

synthesized differing in their chemical surface composition: one unmodified MCM-41 and 

another MCM-41 with methyl capped groups (MCM-41_Func). This surface modification 

was confirmed by ATR-FTIR (enhancement of Si-O-Si and O-Si-O bands), TGA (mass 

loss above 350 ºC due to functional groups decomposition) and NMR (increase of 

siloxanes and emerging of Si-O-CH3 groups). For morphological and textural 

characterization, SEM, TEM and nitrogen porosometry were used; a narrow pore size 

distribution centered in 3.0 and 2.9 nm was determined for, MCM-41 and MCM-41_Func, 

respectively. 

 

Naproxen loading in the prepared matrixes was confirmed by a set of analytical methods 

such as ATR-FTIR, TGA, DSC, DRS and UV-Vis spectroscopy, which also allowed 

accessing its physical state.  

 

Concerning thermal analysis, TGA evidenced an increase of thermal resistance for 

loaded naproxen. A wide glass transition was calorimetrically observed for both 

composites with onset at 9.33 ºC and midpoint at 17.49 ºC for MCM-41_Nap, and onset 

at 8.79 ºC and midpoint at 11.04 ºC for MCM-41_Func_Nap. The respective derivative 

was plotted, evidencing the existence of two populations, more distinguished, for MCM-

41_Func_Naproxen, the one located at a higher temperature being the dominant one. 

The detection of a glass transition, confirms amorphization as indented. However, 

melting were always observed in both composites, the latter at a temperature close to 

the native drug and therefore, assigned to excess of naproxen outside pores. From the 

melting enthalpy, the crystallization degree was estimated as 6.59 % and 6.98 %, for the 

as prepared MCM-41_Nap and MCM-41_Func_Nap, respectively.  

 

Moreover, a thermogram of MCM-41_Nap that didn’t show recrystallization, was 

collected two months later exhibiting only the glass transition, meaning that not just 

amorphization was achieved, but also it was possible to stabilize the amorphous form of 



58 

 

the highly crystallizable naproxen for at least this period.  

 

By DRS, a technique to which the silica framework is insensitive, naproxen mobility was 

investigated in both composites in the frequency range from 10-1 to 106 Hz and between 

-100 to 120 ºC. It was observed, by the shift to higher frequencies/lower temperatures, 

that the loaded drug becomes more mobile in the unmodified composite when hydrated. 

However, this is inverted in the dried samples, where incorporated naproxen shows a 

higher mobility for the functionalized composite, interpreted as weaker guest-host 

interactions. The study of loaded naproxen’s mobility was taken more profoundly for the 

dried MCM-41_Naproxen composite, where isothermal spectra were analyzed to extract 

relaxation times.  By extrapolation of the characteristic relaxation times to  = 100 s, a 

dielectric glass transition was estimated, at 3.8ºC, revealing a good agreement with the 

Tg calorimetric value, confirming that the probed relaxation process is the one associated 

with the glass transition.  

 

The drug release experiments demonstrate that 90% of the drug is released before forty-

five minutes for any of the composites. Nonetheless, naproxen’s release is faster in the 

hydrated unmodified composite, in good agreement with the mobility enhancement 

observed by dielectric spectroscopy. This complementary analysis provided a rational 

basis to understand and explain the observed drug release behavior.   

 

These results, allowed concluding that naproxen/inorganic-silica show promising 

behavior as controlled drug delivery systems. 
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6 Anexes 

Calibration curves for dissolution/control release trials: 
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