
Gonçalo José Esteves Leote

Licenciado em Engenharia Informática

Field Information Web Platform for
Agricultural Applications

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Carlos Viegas Damásio, Prof. Associado,
Universidade Nova de Lisboa

Júri:

Presidente: Doutor Pedro Abílio Duarte de Medeiros

Vogais: Doutor Luís Miguel Mendonça Rato
Doutor Carlos Augusto Isaac Piló Viegas Damásio

Setembro, 2013

iii

Field Information Web Platform for Agricultural Applications

Copyright c© Gonçalo José Esteves Leote, Faculdade de Ciências e Tecnologia, Universi-
dade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

To my grandparents

vi

Acknowledgements

Since the beginning of the course, I relied on the trust and support of numerous persons
and institutions. Without those contributions, this work would not have been possible.

To Professor Carlos Viegas Damásio, supervisor of the dissertation, I appreciate the
support, the sharing of knowledge and valuable contributions to the work. Above all,
thank you for being always present and helping me when time began to shorten.

To Professor José Rafael Silva, leader of the research scholarship project PROTO-
MATE, thank you for helping me whenever I needed and allowing me the opportunity
to be part of this project.

I am grateful to all my family for the encouragement received over the years. To my
parents, my sister and my grandparents, thank you for the love, joy and attention without
reservation ...

My deep and heartfelt thanks to everyone who contributed to the completion of this
dissertation, stimulating me intellectually and emotionally.

vii

viii

Abstract

Crops are subject to numerous diseases and pests that may cause significant economic
damage. It is essential to forecast the potential occurrence of the major problems in these
crops.

The goal of this dissertation is the development of a web platform for registration and
issuance of warnings of disease’s risk. The generation of these warnings is performed
using mathematical models to predict possible occurrence of plant diseases and/or the
collection of information in the field by farmers and/or technical experts by means of
mobile devices.

This information should be geo-referenced and can be obtained with mobile devices
which could be documented with photos, videos, text, data from satellite, weather data,
web information or even with information from sensors on the ground.

This thesis describes and shows a fully working platform that is able to collect data
and compute alerts from the several sources of information available, in a scalable way.

Keywords: Information system, crop diseases, satellite data, mobile applications.

ix

x

Resumo

As culturas estão sujeitas a inúmeras doenças e pragas que provocam prejuízos eco-
nómicos muito significativos. O objetivo desta dissertação é o desenvolvimento de uma
plataforma Web de registo e emissão de alertas de risco de doenças.

A geração de alertas de risco é efetuada recorrendo a modelos matemáticos de pre-
visão de doenças das plantas e/ou pela recolha no terreno de informação por parte dos
agricultores e/ou de técnicos especialistas utilizando dispositivos móveis.

Esta informação deve ser georreferenciada e pode ser obtida por smartphones po-
dendo ser documentada com fotografias, vídeos, texto, dados satélite, dados metereoló-
gicos, informação da Web e ou mesmo com informação de sensores existentes no terreno.

Esta tese descreve e mostra uma plataforma totalmente funcional, capaz de coletar
dados e calcular alertas das várias fontes de informações disponíveis, de uma forma es-
calável.

Palavras-chave: Sistema de informação, doenças de culturas, dados de satélite, aplica-
ções móveis.

xi

xii

Contents

1 Introduction 1
1.1 Motivation and context . 1
1.2 Objectives . 2
1.3 Major contributions . 2

1.3.1 Innovation using satellite data . 2
1.3.2 Managing large volumes of information 3
1.3.3 User interaction . 3

1.4 Document organisation . 3

2 Problem 5
2.1 Agricultural domain . 5

2.1.1 Field notebooks . 5
2.2 Plant diseases . 8

2.2.1 Grape powdery mildew . 9
2.2.2 Grape downy mildew . 12
2.2.3 Tomato diseases . 15
2.2.4 Models validation . 16

2.3 Data required . 17
2.3.1 Environmental . 18
2.3.2 Calculated . 20
2.3.3 Spatial interpolation . 23

2.4 PROTOMATE project and data problems 24
2.4.1 Current issues . 25
2.4.2 Time-series segmentation . 25

2.5 Conclusions . 27

3 Approach 29
3.1 Solution presented . 29
3.2 Database . 31

xiii

xiv CONTENTS

3.2.1 Database type . 31
3.3 Web server . 31

3.3.1 Weather data acquisition . 31
3.3.2 Run plant enemy models . 32
3.3.3 Web services . 32
3.3.4 Analysis functions . 33

3.4 Mobile application . 35

4 State of the Art 37
4.1 Database . 37

4.1.1 Possible options . 38
4.1.2 Database chosen . 39

4.2 Web server . 39
4.2.1 Apache Tomcat . 39
4.2.2 JAX-RS and Jersey . 39
4.2.3 PostgreSQL JDBC . 40
4.2.4 HDF Object Package . 40

4.3 Mobile application . 40
4.3.1 Operating system . 40

4.4 Conclusions . 41

5 Database 43
5.1 Database model . 43

5.1.1 Geographical and temporal data . 43
5.1.2 User interactions . 45
5.1.3 Object-relational mapping . 49

5.2 Implementation . 51
5.2.1 Connecting to the DB . 51
5.2.2 Geographical data . 52
5.2.3 Temporal Data . 53
5.2.4 Indexes . 53

5.3 Conclusions . 54

6 Web server 55
6.1 Modelling . 55

6.1.1 REST API . 55
6.1.2 JSON response . 57
6.1.3 Enemy models . 57
6.1.4 Time-series segmentation . 60

6.2 Code samples . 61
6.2.1 Download satellite data . 61
6.2.2 Download weather station data . 64

CONTENTS xv

6.2.3 Enemy models executions . 65
6.2.4 Spatial Interpolation . 65
6.2.5 Web methods implementation . 67
6.2.6 Time-series segmentation implementation 68

6.3 Conclusions . 74

7 Mobile Application 75
7.1 Implementation . 75

7.1.1 JSON parser . 75
7.1.2 Obtaining data . 77

7.2 Usability . 78
7.2.1 Login screen . 78
7.2.2 Farms and plots . 78
7.2.3 Crops and enemies . 79

7.3 Screenshots . 79

8 Performance tests 83
8.1 System characteristics . 83
8.2 Data insertion . 84

8.2.1 Satellite . 84
8.2.2 Weather stations . 85

8.3 Data selection . 85
8.4 Models execution . 86

8.4.1 1000 models . 86
8.4.2 10000 models . 86
8.4.3 100000 models . 86

8.5 Time-series segmentation . 86
8.5.1 Interpolation . 86
8.5.2 No interpolation . 87

8.6 Conclusions . 87

9 Final conclusions 89
9.1 Future work . 90

9.1.1 Validation of models with real data 90
9.1.2 Development of new enemy models 90
9.1.3 Creation of risk maps from the platform and connection to a GIS . 90
9.1.4 Robust interpolation methods . 90
9.1.5 Improving mobile interface . 91
9.1.6 Add more data sources and enemy models 91

9.2 Work done . 91
9.2.1 Developments made . 91
9.2.2 Results obtained . 91

xvi CONTENTS

List of Figures

2.1 Aerial view of a farm, exhibiting its plots. [2] 6
2.2 Grape vine phenological states. [5] . 7
2.3 Tomato phenological states. [6] . 7
2.4 Grape plant affected with powdery mildew [9] 9
2.5 Grape plant affected with downy mildew [9] 13
2.6 Areas with mediterranean climate [20] . 16
2.7 Example of a LST satellite image . 18
2.8 Example of leaf wetness present on a leaf. [24] 21
2.9 Classification tree for prediction of leaf wetness [25] 23
2.10 Two examples of time series segmentation. The figures above display the

time series, and below its segmentation.[29] 26

3.1 Architecture of the system . 30
3.2 Example of the linear representation of time series with Sliding Windows

algorithm. 34

5.1 Database diagram of geographical and temporal data. 44
5.2 Database diagram of user interactions. 48
5.3 Java classes created for object-relational mapping in our Eclipse project. . 49

6.1 Java class diagram of enemy models implemented. 59
6.2 Class diagram of the classes created for time-series segmentation. 73

7.1 Login screen. 80
7.2 Main menu. 80
7.3 Example of a view of a farm. 80
7.4 Example of a view of a plot. 80
7.5 Example of a view of a crop. 81
7.6 Example of a view of plant enemy models results. 81
7.7 Example of a view for submitting a plant enemy observation. 81

xvii

xviii LIST OF FIGURES

List of Tables

2.1 Hours of wetting required for heavy infection in Model 1 10
2.2 Daily indexes for high and low daily temperatures in Model 3: PMI 12
2.3 Daily indexes for TOMCAST model . 16
2.4 Information provided by each weather station. 20

6.1 Users REST API . 55
6.2 Farms REST API . 56
6.3 Plots REST API . 56
6.4 Plants REST API . 56
6.5 Traps REST API . 56
6.6 Products REST API . 57

xix

xx LIST OF TABLES

1
Introduction

1.1 Motivation and context

Throughout the history of mankind, plant diseases have been responsible numerous
times for large losses in our society, such as death of populations due to starvation, ex-
tinction of natural resources and direct negative impact on national economies [1].

Nowadays, the majority of plant diseases and pests do not cause such serious danger
but still constitute substantial losses to farmers and may reduce value of their growing
areas. To reduce losses, there are ways to manage these plant diseases. According to [1],
plant disease control is focused on 2 principles:

1. Prevention

2. Curative action

Prevention is about disease management tactics that are applied before plants are
infected or ill, while curative action is about methods applied after infection or problems
occur.

Prevention products are better than curative products since they prevent the loss of
production, so it is reasonable to conclude that the best way to control diseases is by
focusing on their prevention.

Thus, this dissertation proposes a computer system that estimates plant disease infec-
tion risk and allows farmers and agronomists to verify the possibility of diseases in their
crops, and shows its practical feasibility.

While developing this dissertation, I worked for the PROTOMATE project which was
made in collaboration with "Universidade de Évora" and "Instituto Português do Mar e

1

1. INTRODUCTION 1.2. Objectives

da Atmosfera," that showed great interest in this subject, helping to better understand-
ing of some of the specific issues and also providing the necessary data and agronomic
expertise for the implementation.

1.2 Objectives

The proposed solution is an information system that helps to determine the potential
risk of occurrence of crops’ problems and allows users to get updates on this risk. By no
means it is foreseen to predict automatically the occurrence of diseases, but instead the
aim is to provide information to help the users making better decisions.

These notifications can be generated by using mathematical models to suggest when
the farmers should spray their crops in order to keep them healthy, or to determine
whether the conditions are appropriate for the occurrence of the disease or pest.

The existing mathematical models require weather information data, such as air tem-
perature, rainfall/precipitation and other obtained sensor data like leaf wetness.

Some of this data is obtained by satellite and via weather stations with the help of the
"Instituto Português do Mar e da Atmosfera", but some other (leaf wetness for example)
needs to be estimated with mathematical models.

We will restrict to grape wines and some tomato diseases but models for other dis-
eases or pests can be easily integrated. These models have been selected to show the kind
of data and computation required.

For our mobile applications we’ll allow users to get notifications about their crops
possible risk, when they decide to do it. Besides, users will be able to interact with our
system adding their own observations made like plant diseases observed, plant treat-
ments made and traps observed.

An additional objective was made due to my work for the PROTOMATE project. The
goal was to create a system that would store meteorological information and allow users
to analyze this data in order to verify relations between air temperature, land surface tem-
perature and relative humidity in any location of Portugal. This is a particular relevant
application of the developed platform.

1.3 Major contributions

1.3.1 Innovation using satellite data

There are many projects similar to this dissertation where systems calculate plants’ dis-
ease risk based on weather data from weather stations. However, weather stations re-
quire appropriate maintenance and requiring significant amounts of time which comes
with corresponding costs.

However, satellite information is becoming freely available, and increasingly subject
to research in order to increase their functionality, information that can be obtained and

2

1. INTRODUCTION 1.4. Document organisation

corresponding applications. Another advantage is the fact weather stations are specific
to a location while satellite data allows to have global perspective of large geographical
areas.

This dissertation hopes to contribute to a viewpoint with an innovative system that
obtains information via satellite with the possibility of being improved in the future,
combined with information available from weather stations.

1.3.2 Managing large volumes of information

Every 15 minutes our system can get information via satellite and every hour via weather
stations.

This, it will be necessary to know how to manage this information and ensure that no
processing takes longer than the maximum time allowed.

All this information will be maintained, allowing our system to become a large database
with the possibility of being used for future analysis, research and maybe help the tuning
of disease and pest models.

1.3.3 User interaction

Another aspect of the contribution that our system can provide is that the users (in this
case agronomists and farmers) can interact directly with the system, alerting for real cases
of infection that may exist. This way it allows the system to interact with other nearby
users, warning them, and creating an interactive social network.

1.4 Document organisation

This report is divided into 7 chapters:

1. Introduction

Summary of what is and what was done, including our goals and contributions.

2. Problem

Details the problem faced in this dissertation.

3. Approach

Explains what was implemented and what were our priorities.

4. State of the Art

Presented technologies, tools and applications considered relevant.

5. Database

Description of the database, including the database model and some code samples
of the implementation.

3

1. INTRODUCTION 1.4. Document organisation

6. Web Server

Explanation of our server, comprising its RESTfull interface and the implementa-
tion of the most important algorithms.

7. Mobile Application

Demonstration of the mobile application created by enumerating its activities and
characteristics.

8. Performance tests

Results obtained while testing our system.

9. Conclusions

Enumerated conclusions, final remarks and future work.

Each chapter has a brief introduction and some also have a brief conclusion with final
remarks.

4

2
Problem

In this chapter it is detailed the problem faced in this dissertation. The chapter starts by
briefly presenting the agricultural domain and what were the main requirements to be
addressed.

Afterwards are demonstrated several mathematical models used to calculate plants
disease risk as well as all the data required for their implementation. This data can either
be obtained or calculated, therefore it is discussed how some of the information will be
obtained and how the other will be calculated, explaining additionally some empirical
models.

2.1 Agricultural domain

In general the main places where agriculture activities take place are denominated farms,
and these farms are usually divided into plots for better organisation.

Farms and therefore plots, can have multiple individuals working on them, from the
farmers to the agronomists, all of them can be responsible for specific actions.

Usually, in each plot, some type of plant is installed. For example in a farm there can
be 2 plots, one with tomato and another with grapes. Also, in some situations farmers
might want to plant several types of plants in the same plot.

This dissertation focuses mainly on two types of important crops: grape vine and
tomato.

2.1.1 Field notebooks

We follow closely the explanation of field notebooks found in [3].

5

2. PROBLEM 2.1. Agricultural domain

Figure 2.1: Aerial view of a farm, exhibiting its plots. [2]

The agriculture production involves certain obligations and commitments that must
be registered by farmers in a field notebook.

In these field notebooks, several records should be maintained regarding:

• Phenological states of the plant

• Observations of the main plant enemies

• Dates of treatments and plant protection products used

• Additional data, such as pruning, watering, fertilising and harvesting.

These field notebooks are specific for each crop. However they all require the same
kind of information and records.

2.1.1.1 Plant phenological states

Phenology is the branch of ecology that studies the periodic phenomena of living beings
and their relationships with environmental conditions such as temperature, light and
humidity. [4]

In this case, phenological states are states regarding the growth rate of a plant. They
are usually important to monitorize treatments and plant infections since some diseases
and products allowed might be dependent of the current phenological state of a plant.

In field notebooks, farmers must record when the different phenological states occur
and what is the current state when making other observations.

2.1.1.2 Plant enemies [7]

Plant enemies are organisms that can contribute to reducing quantitative or qualitative
production of an agricultural crop, with inconvenient consequences for agriculture.

6

2. PROBLEM 2.1. Agricultural domain

Figure 2.2: Grape vine phenological states. [5]

Figure 2.3: Tomato phenological states. [6]

They are usually referred to as "organisms that interfere with human activities and
desires of human beings" or "organisms that live at the expense of agricultural plants
causing more or less important losses."

7

2. PROBLEM 2.2. Plant diseases

The concept of plant enemy is influenced by three factors: the plant, the environment,
and weather.

The importance of a plant enemy depends on the sensitivity of the crop to that organ-
ism and the economic value of the plant.

Environmental factors, including dryness or excessive humidity, wind and ultraviolet
radiation have decisive influence on the importance of a plant enemy. Also, weather is
essential in order to occur the most favourable environmental conditions and the most
appropriate stages of crop growth and its enemies.

Plant enemies can be grouped into:

• Pests: Animal organisms such as dust mites, insects, molluscs and vertebrates.

• Diseases that can be caused by fungi, bacteria, viruses and more.

• Weeds : Plants that grow in places not desired.

In the field notebooks, farmers must record observations of enemies presence and
other necessary information regarding them.

2.1.1.3 Plant treatments

There are many possible products that farmers can apply in plants. In the field notebooks,
it is required for the users to record in which plot a product was applied, what was the
plant enemy targeted, the date and the type of product.

The types of products can vary from:

• Insecticide: a pesticide used against insects.

• Acaricide: a pesticide that kills members of the Acari class, which includes ticks
and mites.

• Fungicide: biocidal chemical compound or biological organism used to kill or in-
hibit fungi or fungal spores.

• Herbicide: a pesticide used to kill unwanted plants.

Plant treatments are essential to assure prevention of plant enemies and to cure them
when infection already occured.

2.2 Plant diseases

Regarding plant enemies, this dissertation focused on five specific types of plant diseases.
Two regarding grape vine, and three common fungal diseases for tomato.

These diseases have several empirical models showing the kind of required data and
the necessary processing algorithms:

8

2. PROBLEM 2.2. Plant diseases

• Grape vine:

– Powdery mildew

– Downy mildew

• Tomato:

– Early blight

– Septoria leaf spot

– Anthracnose

2.2.1 Grape powdery mildew

We follow closely the explanation of powdery mildew disease found in [8]. Powdery
mildew is a disease that attacks all green organs of a vine. The disease is manifested by
the appearance of translucent and oily stains on the upper side of the leaves and white
areas coinciding with these stains on the underside.

Figure 2.4: Grape plant affected with powdery mildew [9]

The main losses result from the attack of this fungus to inflorescences and berries.
The fall of these leaves affect the sugar content of grapes and vitality of the strains.

Powdery mildew has been one of the major diseases in wine culture since over a
century.

2.2.1.1 Model 1: UC Davis

This powdery mildew model is due to [10, 11], and a summary of the model can be found
in [9] and in [12] from which we adapted the following description.

Environmental input variables:

9

2. PROBLEM 2.2. Plant diseases

• Daily average temperature

• Hourly leaf wetness duration

• Hourly average temperature

Stage 1

To determine disease infection risk levels, the model calculates the daily average tem-
perature and measures the hours of leaf wetness required for heavy infection.

Table 2.1: Hours of wetting required for heavy infection in Model 1

Daily Average Temperature (◦C) Hours of Leaf Wetness required
5.8 40

5.9 - 6.3 34
6.4 - 6.9 30
7 - 7.4 27.3
7.5 - 8 25.3

8.1 - 8.5 23.3
8.6 - 9.7 20

9.8 - 10.2 19.3
10.3 - 10.8 18
10.9 - 11.3 17.3
11.4 - 11.9 16.7

12 - 13 16
13.1 - 14.1 14.7
14.2 - 15.2 14
15.3 - 16.3 13.3
16.4 - 16.9 12.7
17 - 24.1 12

24.2 - 24.7 12.7
24.8 - 25.2 14

25.3 17.3

For example, according to the model, at a daily average temperature of 12.5 ◦C, 16
hours of leaf wetness are required for heavy infection. See Table 2.1.

The temperature ranges in Table 2.1 have been adapted from the original table pro-
vided in [9], whose temperatures are specified in the Fahrenheit scale.

Once infection has occurred, the model switches to the risk assessment phase and is
based entirely on the effect of temperature on the reproductive rate of the pathogen.

Stage 2

This stage starts when infection has occurred on stage one and afterwards when there
are three consecutive days with six consecutive hours of temperatures between 21.1 and
29.4 ◦C.

10

2. PROBLEM 2.2. Plant diseases

It is based on a set of rules which depending on temperature variation, an index is
incremented or decremented so that according to its value, one can verify when it is
necessary to apply proper products.

1. Index starts at 60.

2. For each subsequent day where at least six continuous hours of temperatures be-
tween 21.1 and 29.4 ◦C occur, index increases by 20.

3. If there are less than six consecutive hours of temperatures between 21.1 and 29.4 ◦C,
index decreases by 10.

4. If the temperature is 35 ◦C or higher for at least 15 minutes, index decreases by 10.

5. If on the same day with 6 continuous hours between 21.1-29.4 ◦C the temperature
exceeds 35 ◦C for 15 minutes or more, index increases by 10.

6. Index is never lower than 0 or higher than 100.

7. In one day the index can’t decrease by more than 10 or increase by more than 20.

Conclusions:

• Index of 30 or less indicates that a spray interval can be stretched to the label maxi-
mum of the product.

• Index of 40 to 50 indicates that a spray interval can be of intermediate length.

• Index of 60 to 100 indicates that there is high pressure for powdery mildew and
spray intervals should be shortened to the label minimum.

• After treatment, the index is reset to zero.

2.2.1.2 Model 2: PMI

This powdery mildew model is due to [13], and like the other model, a summary of the
model can be found in [9] from which we adapted the following description.

Environmental input variables:

• Daily high and low temperatures

• Precipitation

First dusting should occur twelve days after initial leaf appearance or 15 cm shoot
growth.

Subsequent dustings should occur when the difference between the current PMI and
the PMI on the last dusting date equals or exceeds 1.0.

When precipitation exceeds 0.25 cm, the vineyard should be re-dusted.
Like in previous models, the temperature ranges in Table 2.3 have also been adapted

from the original table provided in [9] and converted to Celsius degrees.

11

2. PROBLEM 2.2. Plant diseases

Table 2.2: Daily indexes for high and low daily temperatures in Model 3: PMI

Low Daily high temperature — ◦C
13-16 16-18 18-21 21-24 24-27 27-29 29-32 32-35 35-38 38-41 41-43

4-7 0.083 0.083 0.083 0.083 0.083 0.077 0.067 0.067 0.056 0.05 0 0.043
7-10 0.083 0.083 0.083 0.083 0.091 0.083 0.077 0.067 0.059 0.05 3 0.048
10-13 0.083 0.083 0.083 0.083 0.100 0.091 0.083 0.077 0.063 0.05 9 0.053
13-16 0.083 0.083 0.083 0.091 0.111 0.100 0.091 0.083 0.077 0.06 3 0.059
16-18 —- 0.083 0.083 0.111 0 .111 0.111 0.100 0.091 0.077 0.071 0.067
18-21 —- —- 0.100 0.143 0. 143 0.125 0.125 0.100 0.091 0.077 0.071
21-24 —- —- —- 0.143 0.1 67 0.143 0.125 0.111 0.091 0.077 0.067
24-27 —- —- —- —- 0.14 3 0.125 0.091 0.083 0.067 0.056 *
27-29 —- —- —- —- —- 0.091 0.077 0.059 * * *
29-32 —- —- —- —- —- —- 0.059 0.059 * * *
* The amount of product applied should be reduced to avoid excess leaf burn.

2.2.2 Grape downy mildew

We follow closely the explanation of downy mildew disease found in [8] and [14].
In short, downy mildew is a highly destructive disease of grapevines across all wine

regions of the world where it rains in the spring and summer with temperatures above
10◦C.

Harvest losses in single years can be up to 100% if the disease is not controlled during
favorable weather conditions.

Currently, there are no adequate sources of resistance in commercially acceptable va-
rieties, causing fungicides to be the primary means of controlling the disease.

2.2.2.1 Model 1: 3-10 rule

This downy mildew model is due to [15], from which we adapted the following descrip-
tion.

Input variables:

• Air temperature

• Current phenological state

• Rainfall of last 48 hours

This empirical model is very simple. It verifies disease occurrence if there are simul-
taneous occurrence of the 3 following conditions:

1. Air temperature equal or greater than 10◦C

2. Vine shoots higher than 10 cm. (Possible to verify on the current phenological state
of plant)

3. There is at least 10 mm of rainfall in the past 48h.

12

2. PROBLEM 2.2. Plant diseases

Figure 2.5: Grape plant affected with downy mildew [9]

2.2.2.2 Model 2: EPI

Like the other model, a summary of the model can be found in [15] from which we
adapted the following description.

Input variables:

• Climatic monthly values of: rainfall, temperature, number of rainy days, nocturnal
average of relative humidity

• Montly values of: rainfall and average temperature

• Decade (10 days) values of: rainfall and number of rainy days.

• Average diurnal relative humidity between 10:00 hours and 18:00 hours

• Average daily temperature

Climatic values are average values calculated for a relatively long and uniform pe-
riod, being of at least thirty consecutive years.

EPI is based on two different equations: one expresses potential energy and the other
kinetic energy.

13

2. PROBLEM 2.2. Plant diseases

Stage 1: Potential energy

Potential energy is calculated between 1 October and 31 March, with a time step of
10 days, based on the differences in air temperature and rainfall of the current year com-
pared to the climatic average calculated over a 30-year period, according to the following
equation:

Pe =

[
2 ∗ ct

(
√
Rm−

√
Rm ∗ 95

100

)]

+

{
0.2 ∗

[
√
Rm ∗

√
Tm−

(√
Rm ∗ 95

100
∗
√
Tm

)]}

−
[(

RDm ∗ 1.5

18

)
∗ log

Rd

RDd

]
Where,

• Pe = potential energy

• ct = 1.2 in October - November; 1 in December; 0.8 in January, February and March;

• Rm = climatic monthly rainfall;

• Tm = climatic monthly temperature;

• RDm = climatic number of rainy days per month;

• Tm = average monthly temperature;

• Rm = monthly rainfall;

• Rd = rainfall in the decade (10 days);

• RDd = number of rainy days in the decade (10 days).

Stage 2: Kinetic energy

Kinetic energy is calculated every day between 1 April and 31 August, according to
the following equation:

Ke = 0.012 ∗

(

5 ∗RHm+ 3RHi

8

)2

∗
√
Ti−RHi2 ∗

√
Tm

100

Where,

14

2. PROBLEM 2.2. Plant diseases

• Ke = kinetic energy;

• RHm =climatic monthly nocturnal average of relative humidity;

• Tm = climatic monthly temperature;

• RHi = average diurnal RH between 10.00 hours and 18.00 hours;

• Ti = average daily temperature.

Summation of equations gives the EPI index as follows:

EPI =
March∑
October

Pe+

September∑
April

Ke

This model considers that the first seasonal infection occurs when EPI > −10.

2.2.3 Tomato diseases

Early blight is perhaps the most common foliar disease of tomatoes. This disease
causes direct losses by the infection of fruits and indirect losses by reducing plant vigor [16].

Septoria leaf spot is one of the most common foliar diseases of tomato. It can be highly
destructive given the proper conditions and has been known to cause complete crop fail-
ure. Although the causal fungus will not directly infect the fruit, losses are the result
of defoliation which can lead to the failure of fruit maturation and sunscald of exposed
fruit [17].

Anthracnose is a tomato disease that produces black, sunken lesions on the ripening
fruit. Although symptoms do not appear until the fruit is ripening, the infection actually
occurs when fruits are small and green [18].

2.2.3.1 Model 1: TOMCAST

This model is due to [19] from where we adapted the following description.

TOMCAST (TOMato disease foreCASTing) is a computer model model that uses lo-
cal weather conditions to predict fungal disease development, on tomatoes, specifically
Early Blight, Septoria Leaf Spot and Anthracnose.

Input variables:

• Hourly average temperature per day

• Hours of leaf wetness per day

15

2. PROBLEM 2.2. Plant diseases

The TOMCAST model index is determined by two factors, leaf wetness and tem-
perature during the leaf wet hours. As the number of leaf wet hours and temperature
increases, the index accumulates at a faster rate, i.e., increased disease pressure. Con-
versely, when there are fewer leaf wet hours and the temperature is lower, the index
accumulate slowly if at all, i.e., decreased disease pressure. The table below shows the
interaction between those two factors:

Table 2.3: Daily indexes for TOMCAST model

Average Temperature During Leaf Wet Hours Hours of Leaf Wetness per Day
13-17 degree C 0-6 7-15 16-20 21 +
18-20 degree C 0-3 4-8 9-15 16-22 23+
21-25 degree C 0-2 3-5 6-12 13-20 21+
26-29 degree C 0-3 4-8 9-15 16-22 23+
Daily Index = 0 1 2 3 4

When the accumulated value of the index exceeds a pre-determined limit, the spray
threshold, a fungicide spray is recommended to protect the foliage and fruit from disease
development.

The spray threshold can range between 15-20. By following a 15 index spray thresh-
old, a more conservative use of the TOMCAST system, a grower will apply fungicides
more frequently than a grower who uses a 20 index spray threshold.

2.2.4 Models validation

Below, we discuss the validations made of the models previously described. However,
it is not the purpose of this dissertation to validate these models, it is only important to
know whether they can be efficiently used.

Figure 2.6: Areas with mediterranean climate [20]

16

2. PROBLEM 2.3. Data required

2.2.4.1 Grape powdery mildew

Both the powdery mildew models were validated in multiple growing regions of Califor-
nia and the first model is actually being implemented in several grape-growing counties
of the state [9].

Both Portugal and California have Mediterranean climate making their weather very
similar, the difference is the fact Portugal summer heat is tempered by the Atlantic influ-
ence instead of the Pacific [20].

In Mediterranean climates, wine regions have long growing seasons of moderate to
warm temperature and winters are usually warmer than those of maritime and continen-
tal climates. This leads to very small amounts of rain fall, requiring that farmers water
grapes more often due to the increase of drought risk [21].

The first model is also currently being validated in New York, Washington, Oregon,
Germany, Austria and Australia.

2.2.4.2 Grape downy mildew

The grape downy mildew models are already being used by a Portuguese institution
called COHTN1 (Centro operativo e tecnológico hortofrutícula Português). They also
provide results of these models in their website.

2.2.4.3 Tomate lateblight

Both TOMCAST and BLITECAST were validated in the Region of Ribatejo from 2002-
2005 [22], and shown appropriate with small changes. BLITECAST is a model adapted
from TOMCAST for the potato late blight disease.

Currently, and according to our partnership in the PROTOMATE project, it was told
to us that the TOMCAST model is currently being validated in Portugal by a major multi-
national company.

2.3 Data required

In order to be able to calculate diseases infection risk with the previous models, it is
required to obtain weather values for various locations.

There are two types of data being used:

• Environmental

• Calculated

In our approach, environmental values are provided by the "Instituto Português do
Mar e da Atmosfera", and these values can be obtained via:

• Satellite.
1http://www.cothn.pt/

17

http://www.cothn.pt/

2. PROBLEM 2.3. Data required

• Weather stations spread throughout the country.

We also have online access to historical data from SNIHR 2 (Sistema Nacional de In-
formação de Recursos Hídricos), which is the portuguese national information system for
water resources. They have meteorological information from their own weather stations
of the previous 20 years. However these stations are no longer being maintained.

Additionally there might also be environmental values from farmers which have their
own weather stations and want to use their values as input.

Calculated values are values that can’t be obtained via satellite or from a weather
station so it is necessary to estimate them using mathematical models. Currently, it is
only required to calculate one value: leaf wetness.

2.3.1 Environmental

2.3.1.1 Satellite

The satellite that collects meteorological data is the EUMETSAT3 Satellite, and this infor-
mation is provided by the LAND SAF4 , which is a system that provides analysis of land
surface temperature. LAND SAF is also maintained by the IPMA.

Satellite information is obtained by satellite images where for each pixel of the image
its possible to obtain the latitude, longitude and the corresponding value of the land
surface temperature of an area of roughly a square of 4 by 4 kilometres, at the portuguese
latitudes.

Figure 2.7: Example of a LST satellite image

In the figure 2.10, the colours represent:

• Black: Unavailable data

• Blue: Water pixels

2http://snirh.pt/
3http://www.eumetsat.int/
4http://landsaf.meteo.pt/

18

http://snirh.pt/
http://www.eumetsat.int/
http://landsaf.meteo.pt/

2. PROBLEM 2.3. Data required

• White: Pixel covered with clouds, therefore value might be not available or inaccu-
rate

• Red: Pixel with available land surface temperature value

The information is provided in files of HDF5 format, which can be easily read by
software. Is is available in a FTP server hosted by our collaborators in Universidade de
Évora.

Since we’re working with satellite data, sometimes due to cloud coverage it might be
impossible to obtain some values for a specific region. These lacks of information will be
obviated by calculating some estimative of the temperature using spatial interpolation
algorithms.

The satellite provides this information every 15 minutes, occurring 96 times per day.
As of this moment its possible to obtain via satellite the following data:

• Land surface temperature at periods of 15 minutes

In the future, if other satellites or other types of environmental data are available, they
can be easily included in our platform (e.g. precipitation).

2.3.1.2 Weather stations

There are a total of 146 weather stations from Instituto Português do Mar e da Atmosfera
located in Portugal and all of them provide hourly data with values at its current location
(See Table 2.4).

This information can be less accurate than information from satellite due to lack of
maintenance and there are few less number of weather stations than locations where
satellite data is available.

IPMA has some meteorological information from their weather stations in their web-
site, providing data from the previous 5 days for any station.

2.3.1.3 Mobile phone sensors

One of the most expected features in mobile devices in the future is the integration with
environmental sensors to detect values like temperature and relative humidity at the
exact place where the device is.

Since it is planned the development of a mobile application, it would allow our sys-
tem to have another information provider.

Android has recently introduced the new sensor API5 for humidity and temperature,
but after investigating and searching it was not possible to find any mobile devices on the
market with those built-in sensors, and therefore implementation was not performed. It
will however be considered in possible future contributions.

5http://developer.android.com/guide/topics/sensors/sensors_environment.html

19

http://developer.android.com/guide/topics/sensors/sensors_environment.html

2. PROBLEM 2.3. Data required

Table 2.4: Information provided by each weather station.

Description Unit
Year to which the information relates -
Digit of the month to which the information relates -
Day of the month to which the information relates -
Time at which the information relates -
Average air temperature at 1.5 m ◦C
Maximum air temperature at 1.5 m ◦C
Minimum air temperature at 1.5 m ◦C
Average relative humidity %
Maximum relative humidity %
Average temperature of the wet thermometer ◦C
Maximum temperature of the wet thermometer ◦C
Minimum temperature of the wet thermometer ◦C
Average dew point temperature ◦C
Maximum dew point temperature ◦C
Minimum dew point temperature ◦C
Medium vapor pressure hPa
Maximum vapor pressure hPa
Minimum vapor pressure hPa
Average wind direction
Maximum wind direction
Average wind intensity m/s
Maximum wind instant intensity m/s
Average air temperature at +0.05 m ◦C
Maximum air temperature at +0.05 m ◦C
Minimum air temperature at +0.05 m ◦C
Average soil temperature at -0.05 m ◦C
Maximum soil temperature at -0.05 m ◦C
Minimum soil temperature at -0.05 m ◦C
Precipitation mm
Total global radiation KJ/m2

2.3.2 Calculated

2.3.2.1 Leaf wetness

One of the most important input variables for the more complex mathematical models is
leaf wetness.

Leaf wetness duration is the period of time during which free water – from dew,
rainfall, fog, or irrigation - is present on the aerial surfaces of crop plants [23]. It is used for
monitoring leaf moisture for agricultural purposes, such as fungus and disease control,
for control of irrigation systems, and for detection of fog and dew conditions, and early
detection of rainfall [23].

In order to obtain the best previsions possible for our mathematical models it is im-
portant to obtain a prediction if leaf wetness is present at each location.

20

2. PROBLEM 2.3. Data required

Figure 2.8: Example of leaf wetness present on a leaf. [24]

To predict the presence of leaf wetness there are many mathematical models, however
in this case we’re limited to the weather data provided, so three usable models were
found:

• Constant threshold

• Extended threshold

• CART/SLD/Wind model

A potential advantage of these empirical models is that they may be used to estimate
leaf wetness from either on-site weather measurements, offsite or remotely estimated
data, or both [25].

Constant threshold [26]

Constant threshold model is a simple model that only has one input variable: relative
humidity (RH).

This method assumes that leaf is considered wet if RH is greater than or equal to a
constant threshold. It was developed from observations that condensation on grass cover
began before saturation in the air was reached, when relative humidity ranged from 91%
to 99%.

Different values of the threshold have subsequently been tried being the most used
RH = 90%.

21

2. PROBLEM 2.3. Data required

Extended threshold [26]

Like the constant threshold model, this model only requires air relative humidity as
an input.

The extended threshold approach considers hours in which RH is higher than 87% as
wet hours. For values of RH between 70% and 87%, an hour is considered wet if RH is
at least 3% higher than the RH of the hour before and dry if RH is at least 2% lower than
the RH of the hour before. The hours in which RH is lower than 70% are considered dry.

If these conditions are not satisfied, the hour is considered the same as the previous
one.

CART/SLD/Wind model [25]

CART/SLD/Wind is a nonparametric empirical model for estimating leaf wetness
duration using classification and regression tree (CART) analysis with stepwise linear
discriminant analysis (SLD). In order to calculate leaf wetness status it is required to
obtain initial input data:

• Dew point depression (air temperature - dew point temperature)

• Wind speed

• Relative humidity

All this data is available via weather stations located nearby.

This model uses a CART Tree and in 2 situations it has to verify an inequality to
calculate leaf wetness.

The inequalities are:

(1.6064
√
Tair+0.0036T 2

air+0.1531RH−0.4599Wind×DPD−0.0035Tair×RH) > 14.4674

(Inequality 1)

(0.7921
√
Tair+0.0046RH−2.3889Wind−0.0390Tair×Wind+1.0613Wind×DPD) > 37.0

(Inequality 2)

Where,

• Tair = Air temperature ◦C.

• RH = Relative humidity %.

• Wind = Wind speed m/s.

• DPD = Dew point depression ◦C.

22

2. PROBLEM 2.3. Data required

Figure 2.9: Classification tree for prediction of leaf wetness [25]

2.3.3 Spatial interpolation

Due to the fact information obtained is dependent on the location of weather stations and
satellite accessible points, it becomes necessary to calculate approximate values for other
locations.

Spatial interpolation is the process of using points with known values to estimate
values of other points. It concerns a set of techniques designed to create continuous
surfaces from sample points.

The techniques researched include deterministic methods of interpolation such as
Nearest Neighbour, Inverse Distance Weighting, and the Kriging stochastic method.

Deterministic models assign values to geostatistic locations based on the surrounding
measured values while stochastic methods are based on statistical models that include
autocorrelation.

2.3.3.1 IDW (Inverse distance weighting) [27]

The inverse distance weighting method is a deterministic interpolation procedure (as
opposed to a stochastic process) that uses a separate data set, typically in space.

The locations of unknown value are calculated using a weighted average of the in-
verse of the distance from that location to the location of known values.

It is commonly used in geographic information systems and geostatistics and there-
fore compared with other interpolation methods used in this area such as kriging inter-
polation or nearest neighbour.

23

2. PROBLEM 2.4. PROTOMATE project and data problems

2.3.3.2 Nearest neighbour [28]

Nearest neighbour interpolation is a deterministic method of interpolation where the
estimated value is always equal to its nearest sample.

Due to its simplicity is regularly used for quick interpolations, and in areas well sam-
pled.

2.3.3.3 Kriging [27]

Kriging is a stochastic regression method used in geostatistics to interpolate data.
It is similar to IDW in that it assumes that nearby points in space tend to have more

similar values than points farther apart.
To do so it uses a linear combination of weights at known points to estimate values

at unknown points. These weights change according to the spatial arrangement of the
samples.

2.4 PROTOMATE project and data problems

"PROTOMATE - uma ferramenta de apoio à gestão da cultura do tomate para indús-
tria" (PROTOMATE - a tool to support the management of tomato crop for industry) is
a project that aims the development of a software tool to deal with a tomato pest called
Tuta absoluta. It has the contributions of several different organizations:

• "COTHN - Centro Operativo e Tecnológico Hortofrutícola Nacional", a portuguese
center for technological operations of fruits and vegetables.

• "ESAS - Escola Superior Agrária de Santarém"

• "ISA - Instituto Superior de Agronomia"

• "UE – Universidade de Évora"

• "FNOP- Federação Nacional de Organizações de Produtores", the national federa-
tion of farmer groups.

• LUSOSEM, an agriculture products company.

• And AGROMAIS,15 other farmer organizations.

Due to the similarities between my dissertation and the project, I had a research schol-
arship for the University of Évora, under guidance of Prof. José Rafael Silva to develop
some functionalities on the platform so they could make data analysis with the data ob-
tained via satellite and from weather stations.

Besides, there are also specific problems in our approach that need to be addressed.
These will be specified in the following sections and the solution proposed for them will
be presented.

24

2. PROBLEM 2.4. PROTOMATE project and data problems

2.4.1 Current issues

2.4.1.1 Temperature

Air temperature and land surface temperature are significantly different. Air tempera-
ture is usually the temperature measured at 1.5 meters of the ground, and land surface
temperature is the temperature measured exactly at ground level.

These 1,5 meters can make a big difference when using temperature values in our em-
pirical models since all models require air temperature and not land surface temperature.

Air temperature can be obtained via weather stations and land surface via satel-
lite. However weather stations have weak maintenance and its values can’t be entirely
trusted.

For this, it is necessary to make an application in order to help create a correlation
between these two values.

2.4.1.2 Humidity

Relative humidity is essential for disease models since it is one of the most important
input variables and is required to obtain leaf wetness values.

At this moment there are several studies made which provide a way of obtaining
relative humidity from dew point temperature and air temperature. However, like in the
previous section, all these data types are only available from weather stations and so, a
solution is required.

Based on current investigations, Prof. José Rafael Silva is researching a way of de-
termining relative humidity based only on temperature. He conjectures that creating a
relative humidity index can be important in estimating relative humidity values from the
land surface temperature.

The formula is as follows:

RHIndex =
MaxV alue−MinV alue

∆t

Where MaxV alue is the maximum value of land surface temperature verified in a
day, and MinV alue is the minimum value respectively. Also, ∆t is the time between
occurrence of MaxV alue and the occurrence of MinV alue in hours.

2.4.2 Time-series segmentation

Time-series segmentation is the proposed solution by Prof. José Rafael Silva to try to
solve our data problems and allow further analysis on the data.

It is a method of time series analysis, in which time the input series are divided into a
sequence of segments, and produce a piecewise linear representation.

There are 3 possible segmentation algorithms[29]:

• Sliding Windows: A segment is grown until it exceeds some error bound. The
process repeats with the next data point.

25

2. PROBLEM 2.4. PROTOMATE project and data problems

Figure 2.10: Two examples of time series segmentation. The figures above display the
time series, and below its segmentation.[29]

• Top-Down: The time series is recursively partitioned until some stopping criteria is
met.

• Bottom-Up: Starting from the finest possible approximation, segments are merged
until some stopping criteria is met.

2.4.2.1 Solar calculations

Since we are working with time series and using temperature values, some other impor-
tant information could be useful while analyzing our data.

For that we chose to calculate the time at which sunrise, sunset and solar noon occur
at a specific day in a specific location.

We calculate these times using solar calculation formulas provided by NOAA/ESRL’s
Global Monitoring Division6. These formulas are found in [30].

Fractional year in radians:

y =
2π

365
∗ (day_of_year − 1 +

hour − 12

24
)

Equation of time in minutes:

eqtime = 229.18∗(0.000075+0.001868 cos y−0.032077 sin y−0.014615 cos 2y−0.040849 sin 2y)

Solar declination angle in radians:

decl = 0.006918− 0.399912 cos y + 0.070257 sin y − 0.006758 cos 2y + 0.000907 sin 2y −
0.002697 cos 3y + 0.00148 sin 3y

For sunrise and sunset, the zenith is set to 90.833 degrees (the approximate correction
for atmospheric refraction at sunrise and sunset).

6http://www.esrl.noaa.gov/gmd/

26

http://www.esrl.noaa.gov/gmd/

2. PROBLEM 2.5. Conclusions

The hour angle in degrees:

ha = arccos (
cos (90.833)

cos (lat) cos (decl)
− tan (lat) tan (decl))

Then, UTC for sunrise in minutes is:

sunrise = 720 + 4(longitude− ha)− eqtime

And sunset:

sunset = 720 + 4(longitude+ ha)− eqtime

Also, it is possible to obtain the solar-noon in minutes:

solar_noon = 720 + 4 ∗ longitude− eqtime

2.5 Conclusions

In conclusion, this chapter viewed the main subjects to be addressed.
In the models of disease prevention, it is observed that the most important input

values are temperature and duration of hours when leaf wetness occurred. To calculate
leaf wetness, the main input value is relative humidity, being also possible to increase the
accuracy of the results if wind speed and dew point temperature are known.

This data can be obtained from satellite and weather stations. However, at present,
it is only possible to obtain the value of surface temperature from the satellite, being
required to also obtain values from weather stations for the most complex models.

Finally it was also addressed the different types of interactions that must be recorded
for users to fill their field notebooks. These interactions can be observations made of the
current phonological stage of a plant, presence of enemies, treatments made and trap
observations. These interactions can be also important for some enemy models, since
some enemies can move from one crop to another, like Tuta absoluta.

27

2. PROBLEM 2.5. Conclusions

28

3
Approach

This chapter describes every step of the development of the constructed system. It fo-
cuses in explaining what was implemented and what were the priorities.

3.1 Solution presented

Our solution consists of a system that obtains meteorological data, calculates the possi-
bility of infection in cultures and at the same time allows interaction to users via mobile
devices, recording treatments and possible culture enemies observed.

For this, it was developed:

1. A database to store all information.

2. Algorithms to obtain data from satellite and weather stations and store them in the
database.

3. Implementation of leaf wetness and disease models, storing results in database.

4. Scripts that allow analysis of the temporal data in the system.

5. Web-services to provide results and ability to make queries to the database.

6. Mobile application for users to interact with the system.

Besides the goal of having a system that interacts with users and notifies them of
disease risks, another major objective was to develop a platform that could supply all
the requirements made and, at the same time, allow future integrations of other possible

29

3. APPROACH 3.1. Solution presented

applications. An example of such applications are the data analysis functions that were
developed.

In the Figure 3.1 the arrows represent the direction in which information flows. For
example, satellite data is only sent to the system, while in mobile applications informa-
tion can be received from the system (notifications) and can be sent from the mobile (user
interactions).

Satellite Data Weather Station Data

Spatial Database

Mobile Application

Web Services

Analysis Functions Disease Models

Figure 3.1: Architecture of the system

30

3. APPROACH 3.2. Database

3.2 Database

A database was necessary to store all the data gathered by the system. This includes
weather data, results from disease models, and observations made by the user.

Besides temporal data, our database will also store information regarding the agricul-
tural domain. It includes all necessary information by the field notebooks, such as plants,
plant enemies, users and their plots, traps, products, etc.

3.2.1 Database type

Since we are working with geographical information it was required to use a spatial
database. A spatial database is a database that is optimized to store and query data that
is related to objects in space, including points, lines and polygons.

While typical databases can understand various numeric and character types of data,
additional functionality needs to be added for databases to process spatial data types.
These are typically called geometry.

3.3 Web server

After having a database, it was required to develop an information platform that would
interact with it, collecting weather information, calculating status of possible diseases
and providing this information to the user.

For that, a server was built, which is always running and ready for incoming calls
from mobile applications. Its main requirements are:

• Weather data acquisition - It should be able to obtain data from sources and store it
in the database.

• Run plant enemy models - Should run daily models with information previously
obtained.

• Web services - In order to connect with mobile application

• Other important applications - Extra scripts with access to the database

3.3.1 Weather data acquisition

Four scripts were created to download and insert meteorological data:

• A script to download recent HDF5 files from the FTP server and store the satellite
data in the database.

• A script to download weather station data from previous 5 days in www.ipma.pt
and insert it in database if not inserted already.

• A script to read from local text files containing satellite data and store it.

31

3. APPROACH 3.3. Web server

• A script to read from local Excel files containing weather station data and store it.

Whenever possible, it is required for the web server to run these scripts since there
is new data every 15min for satellite and 1h for weather stations. However these could
usually be done daily before executing plant enemy models since that is the only time the
data is truly necessary.

Due to cloud coverage, sometimes the satellite can’t provide the temperature of cer-
tain locations. To overcome this problem we use interpolation algorithms to predict these
values in order to maintain accuracy of mathematical models.

The interpolation algorithm chosen to be implemented is the Inverse Distance Weight
since it is algorithm used by the IPMA (Instituto Português do Mar e da Atmosfera).

3.3.2 Run plant enemy models

Usually on a daily basis our server executes the enemy models in order to calculate the
risk of plant infection in all user plots.

To do so the models for disease prediction were implemented for all diseases ad-
dressed.

A generic architecture was created to allow plugging in easily other models for other
diseases and pests in future contributions. This way the system provides scalability for
every new model that is available to be inserted.

3.3.2.1 Calculating leaf wetness

While executing each model, if leaf wetness is necessary and not available, then it will be
calculated.

The three models were chosen to be implemented. Depending on the available data,
the system tries to use CART/SLD/Wind since it is the most accurate of the three.

All these calculated values are also stored in the database to help in future usages
and/or statistical analysis.

3.3.3 Web services

In our server, we provide a web service for mobile applications to interact, allowing them
to obtain information about a specific location and to manually enter data, such as specific
stage of a plant according to the opinion of the technician and updated images of a plant
with a possible disease.

The basic web methods available are:

• User login

Users are able to log in the system and have an account associated.

• Get user farms and plots information

Delivers all data regarding the user farms, plots and plants.

32

3. APPROACH 3.3. Web server

• Get model results

Present model results from the current day for a specific plot.

• Receive information about user interactions such as:

– Treatments made

– Culture enemy observed

– Insect traps observation

These reflect the actions required in the field notebooks. They are always stored in
the database.

When submitting an interaction, the user must always supply the specific plot, the
plant being analyzed, its enemy and the current phenological stage of the plant.

The user might also add some additional text to enhance the observation made.

3.3.4 Analysis functions

Since the system will have access to the database there are inumerous possible functions
that can be made.

Also, as previously stated, our collaborators in the PROTOMATE project asked us
to implement some analysis functions using our database, so they could make posterior
analysis on the results.

3.3.4.1 Time-series segmentation

In order to solve these 2 problems, two scripts were created that based on data in our
database, create an image with a linear representation of time series segments for two
different data types from satellite and weather stations. One script is for the comparison
between land surface temperature from satellite and air temperature at 1.5 meters from
weather stations, and the other between land surface temperature from satellite and air
temperature at 0.05 meters from weather station.

In the image, besides the segments, we also present some additional information of
each particular day. First we display the time at which sunrise, sunset and solar noon
occurred, displaying also vertical bars in our time series at each of these times.

Then, we present the maximum, minimum and average value of each time series. In
addition, we also show the relative humidity index calculated and the time between the
occurrence of the maximum value and the occurrence of the minimum value in hours.

The scripts also create 2 files each with values from the segments presented. These
files are in the CSV format.

The future analysis of the results will be made by our colleagues at Universidade de
Évora and based on their results, one future expected contribution will be to implement a
way to obtain approximating air temperature from land surface temperature for a specific

33

3. APPROACH 3.3. Web server

Figure 3.2: Example of the linear representation of time series with Sliding Windows
algorithm.

point at a specific time of the day. The same will be attempted to be made for relative
humidity.

34

3. APPROACH 3.4. Mobile application

Preliminary findings show a strong correlation between land surface temperature and
the air temperature at 0.05 meters, obtained via weather stations. These were possible to
obtain due to our system.

3.4 Mobile application

Our primarily user interface is trough a mobile application for Android.
The development of a mobile application was important for farmers and agronomists

to use in order for them to request the results from our disease models and allow them
to manually submit interactions such as plant treatments, disease observations and plant
phenological stages.

However, due to lack of time, the application created is only a prototype and requires
future modifications in order to be fully functional. We focused on allowing the user to
see their farms and plots, and for each plot check the model results and submit some
interactions he wishes to make.

The requirements were:

• Native application for a mobile device.

• Show user information regarding its farms and plots.

– He should be able to see its farms, plots, plants, traps and interactions made.

• Show user the models results for its plots.

• Allow the user to submit user interactions to the server. These interactions could
be:

– Add disease observation

– Add product treatment made

– Add trap observation

– Add an observation of a plant current phenological stage

Internet access is required to run this application since several connections are made
constantly in every operation made by the user.

35

3. APPROACH 3.4. Mobile application

36

4
State of the Art

In this section are presented technologies, tools and applications that were considered to
be used in the development of the proposed solution.

First, possible database management systems are reviewed, focusing on the impor-
tant features for the implementation of this work, in particular their ability to store and
process geographic information.

Then, various options for the implementation of our information systems are dis-
cussed, briefly detailing their interaction capabilities with our data.

Finally, a summary is made on possible technologies for the implementation of our
mobile application.

4.1 Database

There are several database management systems that support geographical data. How-
ever for this project is necessary to focus on open source software, noticeably:

• PostgreSQL

• MySQL

• SQLite

Another requirement is the support for geography types (lat, long) since all our infor-
mation will be related to specific coordinates of the territory.

37

4. STATE OF THE ART 4.1. Database

4.1.1 Possible options

4.1.1.1 PostgreSQL

PostgreSQL1 is an Open Source database management system able of handling large
sized databases.

Today PostgreSQL DMBS is one of the most advanced Open Source DBMS, with fea-
tures such as: complex queries, foreign keys, transactional integrity, multi-version con-
currency control and an extension to store geographical data called PostGIS.

PostGIS

PostGIS2 is an open source software library that allows PostgreSQL to be used as
a backend spatial database for geographic information systems, by adding support for
geographic objects in its object-relational database.

Some of its main features are the addition of geometry types for points, multi-points,
line strings, multi-line strings, polygons and multi-polygons.

PostGIS supports both geometry (x, y) and geography (lat, long) types and functions.

It also has very usefull functions for calculating distances between locations using
different coordinate systems.

4.1.1.2 MySQL

MySQL3 is a database management system (DBMS), which uses the SQL language (Struc-
tured Query Language) as an interface.

It is currently one of the most popular database systems, with over 10 million instal-
lations worldwide.

Some of the great advantages of using MySQL are its portability, compatibility, excel-
lent performance and stability, little demand for hardware capabilities and ease of use.

MySQL supports a multitude of geometry types, but only on a 2D plane. The geogra-
phy type systems (lat, long) are not implemented, making it an option not viable for our
system.

4.1.1.3 SQLite

SQLite4 is a C language library that implements an SQL database embedded. Programs
that use the SQLite library can have access to SQL database without running a separate
RDBMS process.

SQLite is not a client library used to connect to a big database server, but the server
itself. The SQLite library reads and writes directly to and from the database file on disk.

1http://www.postgresql.org/
2http://postgis.net/
3http://www.mysql.com/
4http://www.sqlite.org/

38

http://www.postgresql.org/
http://postgis.net/
http://www.mysql.com/
http://www.sqlite.org/

4. STATE OF THE ART 4.2. Web server

Spatialite

Spatialite5 is a variant of the SQLite database that provides GIS features. It uses the
GEOS, PROJ.4, etc... libraries that are also used in PostGIS, and hence the resulting fea-
ture set is similar.

Only geometry types (2D x,y operations) are supported, making the lack of support
for geography projections (lat, long) one major issue like MySQL.

However, since mobile operating system Android uses SQLite databases on the de-
vice, Spatialite might be useful for implementation of other functions.

4.1.2 Database chosen

The database system chosen is PostgreSQL with PostGIS.

PostGIS allow us to associate satellite information to specific points and relate the
areas of plots to polygons, or single points, making it possible to take advantage of these
point coordinates for possible data interpolations required to obtain missing values or
required values in specific locations.

4.2 Web server

In the server-side there are inumerous options. In order to ease this decision, it was
opted to develop using Java programming language and its SDK technologies since it is
the language the candidate had most experienced with and it has plugins/libraries for
implementation of all the requirements.

4.2.1 Apache Tomcat

Apache Tomcat is an open source web server and servlet container developed by the
Apache Software Foundation (ASF).

It will be used to start the system being always available for any incoming connection.

4.2.2 JAX-RS and Jersey

The web-services in our server were made in a RESTful API, using JAX-RS for it’s devel-
opment along with Jersey.

JAX-RS: Java API for RESTful Web Services is a Java programming language API
that provides support in creating web services according to the Representational State
Transfer (REST) architectural pattern.

Jersey is a reference implementation of JAX-RS, which implements support for the an-
notations defined in JSR 311, making it easy for developers to build RESTful web services
by using the Java programming language.

5http://www.gaia-gis.it/gaia-sins/

39

http://www.gaia-gis.it/gaia-sins/

4. STATE OF THE ART 4.3. Mobile application

4.2.2.1 Jackson

Also a library called Jackson was used to allow parsing of JSON objects received from the
mobile application and being sent to it.

Jackson is a multi-purpose Java library for processing JSON data format. With the
extension Jackson-JAXRS-JSON it is possible to handle JSON input/output for JAX-RS
implementations (like Jersey and RESTeasy) using standard Jackson data binding.

4.2.3 PostgreSQL JDBC

PostgreSQL JDBC allows Java programs to connect to a PostgreSQL database using stan-
dard, database independent Java code.

It provides a reasonably complete implementation of the JDBC 3 specification in ad-
dition to some PostgreSQL specific extensions.

4.2.4 HDF Object Package

The HDF Object Package is a Java package that provides an object-oriented interface to
HDF data objects. The package offers a common API to access both HDF4 and HDF5
files.

It allows the development of easy routines to read the HDF5 files with temperature
values from the satellite and store them in the database.

4.3 Mobile application

Our primarily user interface will be trough a mobile application.

4.3.1 Operating system

There are 3 main operating systems to develop mobile applications:

• Android

• iOS

• Windows Phone 8

4.3.1.1 Android

Android6 is an operating system based on Linux for mobile devices. It is developed by
the Open Handset Alliance led by Google and other companies.

According to Google, more than 1 million 300 thousand devices with this operating
system are activated every day.

6http://www.android.com/

40

http://www.android.com/

4. STATE OF THE ART 4.4. Conclusions

4.3.1.2 iOS

iOS7 (formerly iPhone OS) is a mobile operating system from Apple Inc. originally de-
veloped for the iPhone.

Interaction with the OS includes gestures such as just tapping the screen, slide your
finger, and the movement of "tweezers" used to enlarge or reduce the image.

4.3.1.3 Windows Phone 8

Windows Phone 88 is the second generation of Windows Phone mobile operating system
from Microsoft.

Nokia announced a partnership with Microsoft in February 11, 2011 becoming its
main operating system.

4.3.1.4 Operating system chosen

As far as operative systems, Android was chosen due to being the most popular oper-
ative system for mobile devices and for being the simplest operative system to develop
applications.

Android phones are cheaper than iPhones and a previous poll to an “Associação de
Produtores” led us to conclude that there is a preference for recent Android phones.

Windows Phone 8 is still new in the market so it will be dropped as third and last
option.

In addition, the candidate also had experience in developing applications for An-
droid, making it the most viable option.

4.4 Conclusions

In conclusion, several technologies were chosen to be used for the implementation of our
project.

For the database, we opted for PostgreSQL with PostGIS. In the server we chose
Apache Tomcat server and the creating of a RESTfull API with Jersey. Lastly, the mo-
bile application is made for the Android operating system.

7http://www.apple.com/ios/
8http://www.windowsphone.com/

41

http://www.apple.com/ios/
http://www.windowsphone.com/

4. STATE OF THE ART 4.4. Conclusions

42

5
Database

In this chapter a detailed explanation of the database implementation is described.
First, the database diagrams are showed and briefly explained, then we focus on spe-

cific code for database creation and interaction.

5.1 Database model

The database can be divided in 2 sections for better understanding:

• Geographical and temporal data

• User interactions

5.1.1 Geographical and temporal data

In this section, it is presented how the database was structured to store temporal data
from any kind of sources. The following is a summary of each table and its relationships:

5.1.1.1 Organizations

These are simple organizations that provide the data to be stored in the database. For
example, in our case the organization that provides both satellite data and meteorological
data is IPMA.

5.1.1.2 Source Types

Like organizations, our sources will also have source types. These can be for example
"Satellite" or "Weather Station".

43

5. DATABASE 5.1. Database model

Figure 5.1: Database diagram of geographical and temporal data.

5.1.1.3 Sources

Sources are where the data comes from. For example a source can be one weather station
like "Évora", "Santarém", etc. and can be a satellite like "LSA SAF" which is the satellite
that provides land surface temperature.

Sources can have an organization, a source type, a flag to check if the source is fixed
and one external ID to be identified externally. Weather stations from IPMA have their
own external codes and those are used to retrieve its data.

5.1.1.4 Geographical data

Geographical data are the locations in our system. Each location will have coordinates
represented by the POINT type in Postgis. The POINT type is a geometry type which
includes the latitude and longitude of the location, as well as the coordinate system. In
this project all points use the WGS84 coordinate system, which is the reference coordinate
system used by the Global Positioning System (GPS).

Each geographical data must belong to one source, and one source can have multi-
ple geographical datas. This is important since a weather station is a fixed source and
therefore will have only one location, while a satellite can provide data from multiple
locations.

5.1.1.5 Data types

Data types are the types of information that can be inserted in the database, provided by
the sources.

These can have any value like "Air Temperature" or "Wind Speed", a type unit such
as "C (Celsius)" or "m/s (Meters per second)" and an abbreviation like "Air Temp".

One important factor is in case more sources are integrated in the future with new

44

5. DATABASE 5.1. Database model

data types, all that is necessary is to add those data types into the table so the system can
store its data.

5.1.1.6 Temporal data

This is the table where all the temporal, and in particular meteorological data is stored.
These are georeferenced time series [31].

Each record has a timestamp representing the time when the source verified its value,
a geographical data so it is possible to know what is the location where the value belongs
and therefore its Source, a DataType so we know what type is that value from, and the
value itself.

This value is not necessarily a number since all kinds of data types can be stored in the
database. For instance weather stations provide data from the data type "Wind Direction"
which is represented by 1 to 2 letters such as : "N", "SW", "S", "W", "NW", etc.

5.1.1.7 Non temporal data

This table is exactly like temporal data but without a time value. This means it stores
static information regarding the geographical data.

An example can be if one wants to store the altitude of a geographical data. A data
type for "Altitude" can be created and this information can be stored in the non temporal
data table regarding the respective geographical data.

5.1.2 User interactions

This section elaborates the information regarding users, their farms and plots and the
interactions they make with the system trough the web application.

5.1.2.1 Users and farms

The users table stores the users that interact with our system. Each user has a username,
a password, an email, a phone number and an address.

Also farms will be stored in a table, containing a farm address, parish, county, district
and its regional directorate of agriculture (DRA).

The relationship between users and farms is N-to-N, since a user can work in/own
multiple farms (for example if he is the owner of multiple farms) and a farm can have
multiple users working at it (owners, agronomists, etc). This relationship is stored in the
UserFarms table.

5.1.2.2 Plots

Farm’s plots are stored in a table where each plot has its plot name and plot area size. A
plot can belong to only one farm. Also, a plot has a SourceID which means it will also
be related to the sources table previously mentioned in the geographical data section.

45

5. DATABASE 5.1. Database model

This means that a plot is a source which will also have multiple geographical data and
therefore locations. These locations represent the plot and will be used to store the results
from the disease models and other data related to each plot.

5.1.2.3 Plants and phenological stages

Plants are stored in their own table which will have the common plant name. Each plant
also has several phenological stages and these are stored in a side table.

Finally, plants and plots will be related in a N-to-N relationship, where one plot can
have multiple plants in it, and a plant may be in several plots.

5.1.2.4 Enemies and plant enemy models

The enemies table will store all kinds of enemies that can harm a plot and its plants. Each
enemy will have its name and its type which can be either a pest, a disease or a weed.

Enemies also have observations which are specific observations made by the users.
For example an enemy can have different stages of observation, and when the user inter-
acts with the server from the mobile application, he identifies the enemy and what is the
observation being made. These are stored in the table EnemyObservations.

In case an enemy is a disease it has a relationship with the plants in the PlantEnemies
table, since a plant can have several enemies and one particular enemy can be harmful to
many plants.

These plant enemies can also have models. These are the models that will be executed
to verify the infection risk of an enemy in all plots of the system.

A table was created for models, relating them to the plant enemies, storing their name
and a code. This code is used by the system to identify which model algorithms to run
and store the model results in the temporal data table.

5.1.2.5 Insect traps

There is a table which stores all kinds of traps available, which are identified by their
name.

These traps will have an N-to-N relationship with plots in the table PlotTraps. This
table will store the trap, its plot, and the trap location inside the plot. This location is of
the point type just like the locations stored in the geographical data database.

5.1.2.6 Products and active substances

Products that can be applied to plants are stored in a table on our database. These prod-
ucts are identified by their name and can have many substances active.

The product substances are also be stored in their own table. The relationship be-
tween products and substances is N-to-N in the table ProductSubstances.

46

5. DATABASE 5.1. Database model

5.1.2.7 User interactions

User interactions are the interactions made from the mobile application with the server.
Every time a user wants to make an observation of an enemy on a crop, the number of
pest occurrences on a trap or a plant treatment that has been made, an user interaction is
created.

Each record of the UserInteractions table has the time of the interaction specified by
the user, the user, the enemy, the plot, the plant and its current phenological stage and
optionally a photo which can be uploaded from the mobile device and an extra field for
possible observations.

This table is in a ISA relationship with other three tables:

• UserEnemyObservations

• UserTreatments

• UserTrapObservations

This means that every time a record is created in one of these 3 tables the respective
record must be created in the UserInteractions table.

These three tables represent more specific interactions, and require other particular
attributes.

User enemy observations
This table stores the enemy observations made and besides the data stored in the

record on user interactions table, it also stores the enemy observation, the zone where the
enemy is being observed (usually is either "central zone" or "border") and the number of
plants observed.

The field observations on user interactions table is used to specify the status of the
enemy observed.

User treatments
This table stores the product treatments made and besides the data stored in the

record on user interactions table, it stores the product used, the dosage and its security
interval.

The field observations on user interactions table is used to make additional comments
on the user treatment.

User trap observations
User trap observations stores only one field besides the required in user interactions

table: the trap observed.
The field observations on user interactions table is used to specify the status of the

trap observed.

47

5.D
ATA

B
A

S
E

5.1.D
atabase

m
odel

Figure 5.2: Database diagram of user interactions.

48

5. DATABASE 5.1. Database model

5.1.3 Object-relational mapping

In order to allow the web server and analysis functions to interact with our database, an
object-relational mapping was created in Java programming language.

Each table represented earlier has its own Java class with its own private attributes
and specific methods that create SQL statements to be executed in our database system.

Figure 5.3: Java classes created for object-relational mapping in our Eclipse project.

All classes have methods for inserting, updating and selecting from the database.
Besides these generic methods, some specific ones were also created. These are some
examples:

49

5. DATABASE 5.1. Database model

5.1.3.1 GeographicalData

• getDistance(double, double)

Returns the distance from the the current geographical data to another location.

• getDistances(List<Integer>, int)

Returns the distances from the current geographical data to a list of locations.

• getDistancesToLocation(double, double, Object[], int, double)

Returns the minimum distance from one location to a list of locations in the database.

• getNearestGeoDataBySourceType(double, double, int)

Returns the nearest geographical data of the same source type.

• getNearestGeoDataBySource(double, double, int)

Returns the nearest geographical data of the same source.

5.1.3.2 TemporalData

• insertAll(List<TemporalData>)

Inserts a list of TemporalData in the database.

• getLatestDailyTemporalData(int, int, Calendar)

Returns the latest TemporalData in a specific day of a specific geographical data
and datatype.

• getLatestTemporalData(int, int)

Returns the latest TemporalData of a specific geographical data and datatype.

• getTemporalDataInInterval(Calendar, Calendar, int, int)

Returns all TemporalData in a time interval of a specific geographical data and
datatype.

• getTemporalDataInInterval(Calendar, Calendar, int)

Returns all TemporalData in a time interval of a specific datatype.

• getTemporalDataExactTime(Calendar, int)

Returns all TemporalData in a specific time of a specific datatype.

• getTemporalDataExactTime(Calendar, int, int)

Returns all TemporalData in a specific time of a specific geographical data and
datatype.

50

5. DATABASE 5.2. Implementation

5.2 Implementation

The following sections include specific parts of our database creation. Some Java code
will be displayed as well as some SQL of some statements used.

5.2.1 Connecting to the DB

As mentioned in State of Art, we use the PostgreSQL JDBC (Java Database Connectivity)
which allows us to connect to the database and execute statements in our Java classes.

For this a main class called DB was created to ensure connectivity to the database. It
reads the database properties such as url, username and password from a file and opens
a connection.

The connection is opened with the Java code:

1 Properties props = new Properties();

2 FileInputStream in = new FileInputStream("database.properties");

3 props.load(in);

4

5 String url = props.getProperty("db.url");

6 String user = props.getProperty("db.user");

7 String passwd = props.getProperty("db.passwd");

8 Connection con = DriverManager.getConnection(url, user, passwd);

Every time we need to execute a statement, first we get the connection from the
method getConnection() in the DB class. When issued, if the connection isn’t open it
opens automatically.

In order to execute it, first the statement must be created, allocated its parameters and
in the end executed. This is an example of how such can be done:

1 Connection con = DB.getConnection();

2

3 PreparedStatement statement = con.prepareStatement("SELECT datatypeid,typename,

typeunit FROM datatypes WHERE datatypeid = ?");

4 statement.setInt(1, datatypeidvalue);

5

6 ResultSet result = statement.executeQuery();

7 if (result.next()) {

8 DataType type = new DataType();

9 type.dataTypeID = result.getInt(1);

10 type.typeName = result.getString(2);

11 type.typeUnit = result.getString(3);

12 }

13

14 DB.disconnect();

In the end it is always necessary to disconnect from the database so the JDBC releases
its resources.

51

5. DATABASE 5.2. Implementation

5.2.2 Geographical data

Like specified in the previous chapter, geographical data are created using the geometry
type POINT in Postgis.

5.2.2.1 Table creation

To create this column in a table, it is required to execute a command when the table
already exists:

1 SELECT AddGeometryColumn(’geographicaldata’,’geocoordinates’,4326,’POINT’,2);

It adds a geometry column to an existing table of attributes. In this case, ’geographi-
caldata’ is the name of the table, and ’geocoordinates’ the name of the new column. The
value 4326 is the value reference of the WGS84 coordinate system, the ’POINT’ upper-
case string corresponds to the POINT geometry type and the last value 2 means it is in 2
dimensions (lat + long).

5.2.2.2 Insert

To insert a value we used the ST_GeomFromText command:

1 INSERT INTO geographicaldata(sourceid,geocoordinates) VALUES(5,ST_GeomFromText(

’POINT(-8.5 40.8)’ , 4326));

This command constructs a PostGIS ST_Geometry object from the OGC Well-Known
text representation. The text representation for points expects first the longitude (-8.5)
and then the latitude (40.8). It is also required to specify the coordinate system reference.

5.2.2.3 Read

Just like while inserting we had to transform the text representation to the geometry
object, when reading it is necessary to do the opposite.

For this, in order to select values and read their latitude and longitudes we used 2
commands: ST_X() and ST_Y:

1 SELECT geodataid,sourceid,ST_X(geocoordinates),ST_Y(geocoordinates) FROM

geographicaldata

ST_X returns the X coordinate of the point and ST_Y returns the Y coordinate. Both
commands require the input to be a point, and they return NULL if it isn’t available. The
X coordinate represents the point’s longitude and Y the latitude.

5.2.2.4 Distances

Another very useful command in PostGis is ST_Distance which returns the distance in
meters between two points.

This is particularly used for spatial interpolation in order to obtain all the distances
from known points to the point we wish to interpolate.

52

5. DATABASE 5.2. Implementation

1 SELECT ST_Distance(ST_GeomFromText(’POINT(-8 40),4326), ST_GeomFromText(’POINT

(-7 50),4326),true)

It returns the distance between two geographies in meters. In this case both points
are created with the ST_GeomFromText command and the true value represents that the
command will return the spheroidal minimum distance instead of a 2-dimensional carte-
sian minimum distance.

5.2.3 Temporal Data

Each .HDF5 file has around 6000 locations for Portugal which means it also has 6000
values to insert in the database. In order to maximise the efficiency while inserting these
values it was preferable to insert all values at once instead of one by one. For this we
used the Postgres’ COPY statement.

COPY FROM copies data from a file to a table (appending the data to whatever is in
the table already), so in order to use COPY it is required to create a CSV file with the
values we plan to insert.

Technically, it is created a buffer that contains the data to be inserted and, instead of
saving the file to disk, we add the parameter STDIN to the statement which means the
input comes from the client application.

Then to insert it is only required to execute the statement:

1 COPY temporaldata FROM STDIN WITH CSV

Where temporaldata is the table where the data will be inserted, and WITH CSV
means the input is of the file type CSV.

5.2.4 Indexes

Since we will constantly be inserting meteorological data in our TemporalData table,
eventually we will have millions of rows. For example, every 15 minutes we will insert
around 6000 rows of data just from satellite.

In order to allow quick data access when necessary, we created indexes on several
columns.

5.2.4.1 Time and data types

The most common queries to the system will be specially related to time and data types,
such as selecting all air temperature values in one particular hour or in an interval.

So, an index was created with both columns to make data access faster:

1 CREATE INDEX timedatatype

2 ON temporaldata

3 USING btree

4 ("time" DESC NULLS LAST, datatypeid);

53

5. DATABASE 5.3. Conclusions

We sort time descending since more often we will want to obtain the results from the
previous day.

5.2.4.2 Time and geographical locations

However, in some particular cases for our analysis functions, we also make queries re-
lated to the geographical locations. Often we want to get all data from a specific location
in an interval of time.

So, another index was created, this time with the geodataid column:

1 CREATE INDEX timegeodata

2 ON temporaldata

3 USING btree

4 ("time" DESC NULLS LAST, geodataid);

Both these indexes allow faster queries to the database and minimise the time nec-
essary to run our daily enemy models. They are used automatically by the database
management system whenever it founds it is worth using them.

If these indexes weren’t created, the database management system would have to
search sequentially the entire table, often taking hours just to get all data for a specific
given time.

5.3 Conclusions

In short, we have created a database that allows all the required information to be stored
and to be easily organised. It also enables future insertion of new types of data in our
system, as long as they are geo referenced.

54

6
Web server

In this chapter we provide analysis of the web server implemented.

First, we talk about the web server, including it’s RESTfull API and the hierarchy of
the enemy models. Then we describe some specific implementation components includ-
ing the meteorological data insertion and models execution.

6.1 Modelling

In this section it is presented our REST API that was developed to connect with the mobile
application, and the structure used for the enemy models that were implemented in our
system.

6.1.1 REST API

A RESTful web API was created to receive requests from the mobile application. It is
divided in several entities, each with its own specific actions available. These are some
of the main web methods implemented:

Url Type Description
/rest/users/register POST Registers a user in the system.
/rest/users/login POST Logs in a user in the system.
/rest/users/getUserFarms GET Returns a list of the farms that belong to a user.
/rest/users/addFarm POST Adds a new farm to the list of user farms.
/rest/users/removeFarm GET Removes a farm from the list of user farms.

Table 6.1: Users REST API

55

6. WEB SERVER 6.1. Modelling

Url Type Description
/rest/farms/getFarm GET Returns the details of a farm.
/rest/farms/getFarmPlots GET Returns the list of plots that belong to a farm.
/rest/farms/addPlot POST Adds a new plot to the list of farm plots.
/rest/farms/removePlot GET Removes a plot from the list of farm plots.

Table 6.2: Farms REST API

Url Type Description
/rest/plots/getPlot GET Returns the details of a plot.
/rest/plots/getPlotPlants GET Returns the list of plants in a plot.
/rest/plots/addPlant POST Adds a new plant to the list of plot plants.
/rest/plots/removePlant GET Removes a plant from the list of plot plants.
/rest/plots/getPlotTraps GET Returns the list of traps in a plot.
/rest/plots/addTrap POST Adds a new trap to the list of plot traps.
/rest/plots/removeTrap GET Removes a trap from the list of plot traps.

Table 6.3: Plots REST API

Url Type Description
/rest/plants/getPlant GET Returns the details of a plant.
/rest/plants/getPlantEnemies GET Returns the list of enemies of a plant.
/rest/plants/
getPlantPhenologicalStages

GET Returns the list of phenological stages
of a plant.

/rest/plants/getModelResults GET Returns the results of the plant enemy
models of a plant in a specific plot.

/rest/plants/addDiseaseObservation POST Adds a disease observation of a plant.
/rest/plants/addProductTreatment POST Adds a product treatment to a plant.

Table 6.4: Plants REST API

Url Type Description
/rest/plants/getTrap GET Returns the details of a trap.
/rest/plants/addTrapObservation POST Adds a trap observation of a trap in a plot.

Table 6.5: Traps REST API

56

6. WEB SERVER 6.1. Modelling

Url Type Description
/rest/plants/getSubstances GET Returns all the substances available.
/rest/plants/getProduct GET Returns the details of a product.
/rest/plants/getSubstanceProducts GET Returns a list of products from a substance.

Table 6.6: Products REST API

6.1.2 JSON response

All the requests to the REST web methods return JSON files so our mobile application
can parse them. An example of the result from a request made is: (in this case, the url
used was "/rest/plots/getPlot?plotid=19")

1 {

2 "plotID":19,

3 "farmID":3,

4 "sourceID":548,

5 "plotName":"Parcela Uvas e Tomate",

6 "plotAreaSize":25,

7 "plants":[

8 {

9 "plantID":8,

10 "plantName":"Tomate"

11 },

12 {

13 "plantID":7,

14 "plantName":"Uva"

15 }

16],

17 "plotTraps":[

18 {

19 "plotTrapID":0,

20 "plotID":19,

21 "trapID":4,

22 "trapLatitude":39.243355,

23 "trapLongitude":8.669807

24 }

25]

26 }

6.1.3 Enemy models

As previously mentioned in the database section, our system stores the enemy models in
a table, and each model has a code. This code is used to recognise which Java method is
supposed to be executed when running our models. This is done using a process called
Reflection.

Models are organised in a way that allows easy insertion of a new model into the

57

6. WEB SERVER 6.1. Modelling

system. A model is developed in a Java class and it must implement an interface created
called EnemyModel. This interface only has one method called run() which returns a
list of Object type values. Each model receives its parameters in the constructor and is
executed using the run() method. The content of the list that it returns depends on the
model specific results. For example it could contain an index value of type Integer or a
result value of type Boolean. The reason it returns a list of Object type values is to be
able to implement any enemy model and allow it to return its values to be subsequently
interpreted.

Then, we have a main class called ExecModels which has one method for each model.
Each method runs the respective model class and interprets its results. For example if a
model returns an index, the method in ExecModels will see if that index means there is
or not risk of infection. It will then store the result on the database. Each method should
have its own model code as name (example: GrapeDownyMildewEPI) so we execute it
using Reflection.

In order to add a new model to the system it is only required to:

1. Insert model in database, so the system knows for which plot it should run it (each
plot has a set of plants, each plant has its enemies and enemies may have several
models).

2. Create Java class that executes the model and returns its value.

3. Create a method in the class ExecModels that runs the previously created Java class
and interprets its results.

Whenever we want to execute the models in our system, we iterate through all the
users, their farms, their plots, their plants and finally their plant enemy models. For each
model we want to run, we execute their respective method in the ExecModels class. It
will then automatically execute the model, interpret the results and store them in the
database in the corresponding plot source.

58

6.W
E

B
S

E
R

V
E

R
6.1.M

odelling

Figure 6.1: Java class diagram of enemy models implemented.

59

6. WEB SERVER 6.1. Modelling

6.1.4 Time-series segmentation

As stated previously we created two scripts that generate image files in SVG format with
segmentation of time series with 2 different types of data from our database.

The scripts were developed in Java, and therefore it is possible to execute them from
the command line. The notation for their execution is:

1 java -cp "bin:lib/*" ExecSegmentSeries [-interpolate numberNearest maxDistance]

lat lon day month year numberOfDays maxError

2 java -cp "bin:lib/*" ExecSegmentSeriesTsp [-interpolate numberNearest

maxDistance] lat lon day month year numberOfDays maxError

ExecSegmentSeriesTsp is the same as ExecSegmentSeries but instead of using air tem-
perature at 1.5 meters, uses air temperature at 0.05 meters.

And their parameters are:

• Optional:

– -interpolate, if user wants to interpolate data. If not, script will use closest
source of information.

– numberNearest - maximum number of nearest sources to interpolate

– maxDistance - maximum distance to the nearest sources to interpolate (in me-
ters)

• Required:

– lat - latitude

– lon - longitude

– day - day of the first day to be presented

– month - month of the first day to be presented

– year - year of the first day to be presented

– numberOfDays - number of days following the first day

– maxError - maximum value of error to be used on the segmentations. Usually
is 1

Example of a execution:

1 java -cp "bin:lib/*" ExecSegmentSeries -interpolate 10 50000 35 -8 24 8 2013 5

1

When executed, the script will follow a set of operations in order to generate its out-
puts.

1. First, it starts by reading the parameters.

60

6. WEB SERVER 6.2. Code samples

2. Then the process of obtaining values start. For both satellite data and weather sta-
tion data there are 2 different ways of obtaining values depending if the user re-
quested interpolation or not.

• If user requested interpolation, for each day, for each 15 minute interval, do:

(a) Obtain all the values in the database for that specific time.

(b) Calculate the interpolated value for the location provided.

(c) Add the value into the time series if exists.

• If user didn’t request interpolation

(a) Obtain nearest source to the location provided

(b) For each day, for each 15 minute interval, obtain the value from that source
and insert into the time series if exists.

3. After, the script starts creating the SVG.

(a) First, it creates the string which will have the content and inserts the calculated
values of sunrise, sunset and solar noon.

(b) Then, add every known point in our time series to the string.

(c) After, execute the segmentation algorithm and add the segments into the string.
Each segment will be represented by 2 points highlighted, and a line between
them.

(d) Finally the script creates the SVG and prints the string into the file.

4. At the end, the script creates 2 CSV files, one for each time series (each data type)
and prints the respective segments, exporting the starting point, end point and the
segment slope.

6.2 Code samples

The web server implementation is mainly divided in three sections:

• Scripts for downloading data, inserting it and running disease models.

• Web server with a RESTfull API that receives requests from the mobile application.

• Scripts created to generate image frills with time-series segmentation.

6.2.1 Download satellite data

Satellite data is downloaded from a FTP server hosted by Universidade de Évora. This
server receives automatically data from the IPMA and allows us to download them. The
files are in Bzip2 format containing a compressed HDF5 file.

We created a script in Java that essentially executes the following steps sequentially:

61

6. WEB SERVER 6.2. Code samples

1. Connect to the FTP server and get the list of files available.

2. For each file:

(a) Check if data from the file was already inserted previously.

(b) If it wasn’t:

i. Download it, decompress and obtain the HDF5 file.

ii. Read data from HDF5 file and insert in our database.

This script can be executed anytime and it will insert the newest data, but usually it
is executed daily just before running the enemy models.

6.2.1.1 Connecting to the FTP server

Using the JSch java library we connect to the FTP server and get the list of files:

1 JSch jsch = new JSch();

2

3 // Create session

4 Session session = jsch.getSession(SFTPUSER, SFTPHOST, SFTPPORT);

5 session.setPassword(SFTPPASS);

6 session.connect();

7

8 // Open channel

9 Channel channel = session.openChannel("sftp");

10 channel.connect();

11 ChannelSftp channelSftp = (ChannelSftp) channel;

12

13 // Get contents of target directory

14 channelSftp.cd(SFTPWORKINGDIR);

15 Vector<LsEntry> list = channelSftp.ls("*.bz2");

16 ...

6.2.1.2 Downloading .bz2 files and decompressing them

When downloading the .bz2 files from the FTP server we need to decompress and store
them in a temporary .h5 file. For the decompression we used the Apache Commons
Compress library.

1 for (LsEntry entry : list) {

2

3 // If file size = 0 ignore file.

4 if (entry.getAttrs().getSize() == 0)

5 continue;

6

7 // Create temporary HDF5 file to read data from.

8 BufferedInputStream in = new BufferedInputStream(channelSftp.get(entry.

getFilename()));

9 FileOutputStream out = new FileOutputStream("temp.h5");

62

6. WEB SERVER 6.2. Code samples

10 BZip2CompressorInputStream bzIn = new BZip2CompressorInputStream(in);

11 final byte[] buffer = new byte[1024];

12 int n = 0;

13 while (-1 != (n = bzIn.read(buffer))) {

14 out.write(buffer, 0, n);

15 }

16 ...

17 }

6.2.1.3 Reading HDF5 file

After the HDF5 file is available we open it and read its values.

An HDF5 file is a file containing multiple data sets in the form of spreadsheets. In this
case the only dataset that is important is the one called LST which is the first one. To do
this we have used the Java HDF5 Object Package:

1 // Retrieve an instance of the temporary H5File

2 FileFormat fileFormat = FileFormat.getFileFormat(FileFormat.FILE_TYPE_HDF5);

3

4 // Open the file with read-only access

5 FileFormat testFile = fileFormat.open("temp.h5", FileFormat.READ);

6

7 // Open the file and retrieve the file structure

8 testFile.open();

9 Group root = (Group) ((javax.swing.tree.DefaultMutableTreeNode) testFile.

getRootNode()).getUserObject();

10

11 // Retrieve the dataset "LST"

12 Dataset lst = (Dataset) root.getMemberList().get(0);

13 short[] lstRead = (short[]) lst.read();

14 ...

After reading the file and obtaining the data set we have to:

1. Cycle through the sheet cells

2. For each cell:

(a) Check if cell value is valid (-80 means value is not available)

(b) Get cell coordinates and verify it they belong in Portugal.

Cell coordinates are obtained using the formulas found in [32].

(c) If they belong and cell value is valid, add value to be inserted in the end

3. Insert all values previously selected

63

6. WEB SERVER 6.2. Code samples

6.2.2 Download weather station data

Weather station data is obtained from the IPMA web site, so it is only necessary to make
an HTTP GET call and receive the CSV files.

The sequence for the download of weather station data and insertion in the database
is as follows:

1. For each weather station:

(a) Download CSV file

(b) Cycle through its lines and columns

(c) For each value:

i. Check if value was already inserted in the database.

ii. If it wasn’t add value to be inserted in the end.

(d) Insert all values previously selected

To read CSV files we used the OpenCSV parser library for Java.
This is a sample code explaining how it is done:

1 // Get weather stations

2 SourceType type = SourceType.getSourceTypeByDenomination("Weather Station");

3 Source[] sources = type.getSources();

4 for (Source source : sources) {

5

6 // Download CSV

7 URL website = new URL("http://www.ipma.pt/resources.www/data/observacao/emas/

hora.csv/ema" + source.sourceExternalID + ".csv");

8 BufferedReader in = new BufferedReader(new InputStreamReader(website.

openStream()));

9

10 // Read CSV

11 CSVReader csvReader = new CSVReader(in, ’;’);

12 List<String[]> csv = csvReader.readAll();

13 for (String[] line : csv)

14 insertValues(line);

15 }

6.2.2.1 Read weather data from files

In addition to inserting data that has been downloaded, it is also possible to insert data
that is on disk. However, these data were provided in different formats and therefore it
was necessary to create different scripts for each of them.

• LST on text files

One single text file contains all LST values for all locations in portugal in every
15min interval of a day. The file contains one line for each location (aprox. 6000)
and one column for each time interval (96).

64

6. WEB SERVER 6.2. Code samples

• Weather station on Excel files

One single Excel file contains all meteorological values for one weather station in
all available years. The file contains one row for each time interval of 1 hour and
one column for each data type.

6.2.3 Enemy models executions

Enemy models are to be executed on a daily basis and for that they require the meteoro-
logical data from the previous day.

The overall order of steps required to be executed are:

1. Retrieve all values from the previous day of all necessary data types and all lo-
cations. We do this first since this data will be commonly used for all following
interpolations.

2. Get all plots in the system.

3. For each plot:

(a) Interpolate required values for the plot location.

(b) Check which models will need to be executed in the current plot.

(c) For each model of each plot:

i. Execute it and store the results in the database.

6.2.4 Spatial Interpolation

A Java class called IDW was created to make spatial interpolation of values. It contains
the following methods:

• IDW(HashMap<Integer, Double>, double, int)

Constructor that receives an HashMap which is the set of known points, where
the key is an Integer with the geodataid, and the Double is its known value. It
also receives the maximum distance between points to be used and the maximum
number of points.

• setMaxDistance(double)

Sets the maximum distance to be used.

• setNumNearest(int)

Sets the maximum number of points to use, ordered by distance to the point to
interpolate.

• getSortedDistances(double, double)

Private method which queries the database for the distance between one point to
the whole list of known points, and returns them ordered by the distance ascending.

65

6. WEB SERVER 6.2. Code samples

• interpolate(double, double)

Returns the value interpolated for the specific location. The parameters are the
latitude and longitude.

Whenever we require to interpolate a value for a specific plot we create a new instance
of IDW with the known points, and execute the interpolate method.

Example of how the interpolation of daily values is done for one plot:

1 private static double[] interpolate24hValues(List<HashMap<Integer, Double>>

positions, GeographicalData geo, Double maxDistance, int numNearest) {

2 double[] interpolatedValues = new double[24];

3

4 // For each hour

5 for (int i = 0; i < 24; i++) {

6 IDW idw = new IDW(positions.get(i), maxDistance, numNearest);

7 interpolatedValues[i] = idw.interpolate(geo);

8 }

9 return interpolatedValues;

10 }

Then, in the IDW class the method interpolate will execute the Inverse Distance Weight
algorithm for the location received as a parameter. The following is the code of the
method:

1 public double interpolate(GeographicalData point) {

2

3 // Get distances ordered ascending

4 HashMap<Integer, Double> nearest = getSortedDistances(point.Latitude, point

.Longitude);

5

6 double sumValues = 0;

7 double sumWeight = 0;

8

9 // Iterate trough all known values

10 for (int geoID : nearest.keySet()) {

11

12 // Get weight for current known point.

13 // Power parameter = 2 as default.

14 double weight = 1 / Math.pow(nearest.get(geoid), 2);

15

16 // Add value to sum of values

17 sumValues = sumValues + ((positions.get(geoID)) * weight);

18

19 // Add weight to sum of weights

20 sumWeight = sumWeight + weight;

21 }

22

23 // Return value interpolated

24 return sumValues / sumWeight;

25 }

66

6. WEB SERVER 6.2. Code samples

6.2.5 Web methods implementation

As stated in the State of the Art chapter, the implementation of our web services is done
using Apache Tomcat togheter with JAX-RS (Jersey) and a library called Jackson.

The following is an example of how the implementation was made. A simple web
method was chosen to demonstrate how the Jersey annotations are specified and how
the Jackson library is used to map objects into JSON strings.

1 @Path("/plots/")

2 public class Plots {

3

4 /**
5 * Web Method that receives a plot identifier and returns the plot in JSON

6 * format

7 *
8 * @param plotID

9 * - the ID of the specified plot

10 * @return String with the JSON content of the plot

11 */

12 @GET

13 @Path("/getPlot")

14 @Produces(MediaType.APPLICATION_JSON)

15 public String getPlot(@QueryParam(value = "plotid") int plotID) {

16

17 // Get plot from our database.

18 Plot plot = Plot.get(plotID);

19

20 // Instantiate a Jackson mapper.

21 ObjectMapper mapper = new ObjectMapper();

22

23 String json = "";

24 try {

25 // Map the object as a JSON string using Jackson mapper.

26 json = mapper.writeValueAsString(plot);

27 } catch (JsonProcessingException e) {

28 // Do something with the exception. Log error for example.

29 ...

30 }

31

32 // Return the mapped string or empty if exception occurred.

33 return json;

34 }

35

36 ...

37 }

67

6. WEB SERVER 6.2. Code samples

6.2.6 Time-series segmentation implementation

The implementation of the time series scripts consisted on taking advantage of a object
oriented programming language like Java, creating Java classes to build a hierarchy for
our segmentation.

The following are some code samples of the implementation made:

6.2.6.1 Obtain data with interpolation

1 // Calendar aux starts from the first time and will be incremented every 15

min.

2 Calendar aux = (Calendar) start.clone();

3

4 // If is to do interpolation

5 if (interpolation) {

6

7 // For each day

8 for (int i = 0; i < numOfDays; i++) {

9

10 // Create daily values for later calculations

11 TimeSeries<TimeDate> daily = new TimeSeries<TimeDate>(24);

12 Calendar day = (Calendar) aux.clone();

13

14 // For each 15 minute interval

15 for (int j = 0; j < 24 * 4; j++) {

16

17 // Get all values in this specific time

18 List<TemporalData> datas = TemporalData

19 .getTemporalDataExactTime(aux, type.dataTypeID);

20

21 // Insert values into a HashMap to use for interpolation

22 HashMap<Integer, Double> positions = new HashMap<Integer, Double>();

23 for (TemporalData data : datas) {

24 positions.put(data.geoDataID,

25 Double.parseDouble(data.value));

26 }

27

28 // Create IDW instance

29 IDW idw = new IDW(positions, maxDistance, numNearest);

30

31 // Obtain interpolated value for position provided

32 double value = idw.interpolate(lat, lon);

33

34 // If value is valid, insert into TimeSeries

35 if (value != 0 && !Double.isNaN(value)) {

36 // Create TimeDate value to be inserted in TimeSeries

37 TimeDate time = new TimeDate(origin, new Date(aux.getTimeInMillis()

));

38

68

6. WEB SERVER 6.2. Code samples

39 ts.add(time, value);

40 daily.add(time, value);

41 }

42

43 // Increase calendar by 15min for next iteration

44 aux.add(Calendar.MINUTE, 15);

45

46 }

47 // At the end of each day, addStatsToText will calculate daily max, min

and avg values and add them to SVG.

48 addStatsToText(i, daily, true, day);

49 }

50 }

6.2.6.2 Obtain data without interpolation

1 // Calendar aux starts from the first time and will be incremented every

2 // 15min.

3 Calendar aux = (Calendar) start.clone();

4

5 // If is to do interpolation

6 if (interpolation) {

7 ...

8 } else {

9

10 // Get nearest source. In this case is for satellite.

11 GeographicalData geo = GeographicalData

12 .getGeoDataByLatLon(lat, lon);

13 if (geo == null) {

14 geo = getNearbyLST(lat, lon);

15 } else {

16 Source src = Source.getSource(geo.SourceID);

17 if (src.sourceTypeID != Source.getSourceByName("LSA SAF").sourceTypeID)

18 geo = getNearbyLST(lat, lon);

19 }

20

21 // newStart will be used as the first time of each interval. Starts

22 // as the previous day since it will be immediatly incremented.

23 Calendar newStart = (Calendar) start.clone();

24 newStart.add(Calendar.DAY_OF_YEAR, -1);

25

26 // For each day

27 for (int i = 0; i < numOfDays; i++) {

28

29 // Create daily time series for later calculations

30 TimeSeries<TimeDate> daily = new TimeSeries<TimeDate>(24);

31

32 // Add a day to both calendars to adjust interval

33 newStart.add(Calendar.DAY_OF_YEAR, 1);

69

6. WEB SERVER 6.2. Code samples

34 aux.add(Calendar.DAY_OF_YEAR, 1);

35

36 // Obtain all values from a day from one source

37 List<TemporalData> allData = TemporalData

38 .getTemporalDataInInterval(newStart, aux,

39 type.dataTypeID, geo.GeoDataID);

40

41 // Iterate through all values

42 Iterator<TemporalData> ite = allData.iterator();

43 while (ite.hasNext()) {

44 TemporalData data = ite.next();

45

46 // Create TimeDate value to be inserted in TimeSeries

47 Date d = new Date(data.time.getTime());

48 TimeDate time = new TimeDate(origin, d);

49

50 // Insert value into TimeSeries

51 double value = Double.parseDouble(data.value);

52 ts.add(time, value);

53 daily.add(time, value);

54 }

55 // At the end of each day, addStatsToText will calculate daily

56 // max, min and avg values and add them to SVG.

57 addStatsToText(i, daily, true, newStart);

58 }

59 }

6.2.6.3 SVG creation

The SVG is created initially by filling a string with XML. Then when the string is finished,
we create the SVG file and add the string content into it.

Creating the string and file header, graphHeader, footer and the graph itself with the
points:

1 String header = "<svg xmlns=’http://www.w3.org/2000/svg’ width=’"

2 + (numOfDays * 240) + "’ height=’860’ >";

3 String graphHeader = "<g transform=’translate(0,700) scale(10,-8)’>";

4 String footer = "</g></svg>";

5 String graph = ts.graph("black") + tsStation.graph("blue");

70

6. WEB SERVER 6.2. Code samples

The method graph from the TimeSeries class, simply returns a string with all the points
in SVG notation:

1 public String graph(String color) {

2

3 String graph = "";

4 for (int i = 0; i < time.size(); i++) {

5 String coordX = Double.toString(this.time.get(i).valueOf());

6 String coordY = Double.toString(this.data.get(i));

7 graph += "<circle r=’0.2’ fill=’" + color + "’ cx=’" + coordX

8 + "’ cy=’" + coordY + "’/>";

9 }

10

11 return graph;

12 }

For the segments, we must first execute the segmentation algorithms, and then insert
each statement into the SVG string:

1 for (Segment<TimeDate> seg : slidingWindow(ts, error)) {

2

3 double x1 = seg.getTimeSeries().getTimeValue(0);

4 double x2 = seg.getTimeSeries().getTimeValue(

5 seg.getTimeSeries().getLength() - 1);

6 graph += seg.getLine().graph(x1, x2, "red");

7 }

Where, the graph method from the Line class has a similar return string to the previ-
ous graph method:

1 public String graph(double x1, double x2, String color) {

2 double y1 = getY(x1);

3 double y2 = getY(x2);

4

5 String line = "<line stroke=’" + color + "’ stroke-width=’0.1’ x1=’"

6 + x1 + "’ y1=’" + y1 + "’ x2=’" + x2 + "’ y2=’" + y2 + "’ />";

7 String p1 = "<circle r=’0.2’ stroke=’" + color + "’ cx=’" + x1

8 + "’ cy=’" + y1 + "’/>";

9 String p2 = "<circle r=’0.2’ stroke=’" + color + "’ cx=’" + x2

10 + "’ cy=’" + y2 + "’/>";

11

12 return p1 + line + p2;

13 }

71

6. WEB SERVER 6.2. Code samples

Finally, when the string is finished, all that is required is to create the file and write the
string into it:

1 OutputStream os = new FileOutputStream("SegmentSeries_" + lat + "_" + lon

+ "_"

2 + day + "_" + month + "_" + year + "_" + numOfDays + "_"

3 + interpolation + ".svg");

4 PrintStream printStream = new PrintStream(os);

5 printStream.print(header + text + graphHeader + graph + axis

6 + footer);

7 printStream.close();

72

6.W
E

B
S

E
R

V
E

R
6.2.C

ode
sam

plesFigure 6.2: Class diagram of the classes created for time-series segmentation.

73

6. WEB SERVER 6.3. Conclusions

6.3 Conclusions

Regarding the REST API, we created an API that allows insertion and selection of any
required information to the mobile application. It was also established an architecture
which allows easy insertion of new enemy models in our system without having to make
drastic changes to the code every time a new model is created.

74

7
Mobile Application

This chapter focuses on explaining how the mobile application was developed. It is not
too much detailed since only a simple prototype was developed to test the interaction
with our server.

First we start with some code samples about the interaction between the mobile ap-
plication and the web server, then we explain the usability proposed in our application,
followed by a sequence of screenshots which show how the usability is displayed.

7.1 Implementation

The Android application was developed for Android 2.2 using the Android SDK for the
Eclipse IDE.

Since it was a prototype, the implementation was fairly simple. However we will
present a brief explanation of the interaction with our web services.

7.1.1 JSON parser

We obtain and parse the data via an auxiliary class which was created to make HttpRe-
quests and return the results in Java objects.

The class is called JSONParser and has 2 methods:

• getJSONObjectFromUrl(String url)

Parses the result as a JSONObject.

• getJSONArrayFromUrl(String url)

Parses the result as a JSONArray.

75

7. MOBILE APPLICATION 7.1. Implementation

Sample code from JSONParser class:

1

2 public class JSONParser {

3

4 static InputStream is = null;

5 static String json = "";

6

7 public JSONObject getJSONObjectFromUrl(String url) {

8

9 // Making HTTP request

10 try {

11 // defaultHttpClient

12 DefaultHttpClient httpClient = new DefaultHttpClient();

13 HttpGet httpGet = new HttpGet(url);

14 HttpResponse httpResponse = httpClient.execute(httpGet);

15 HttpEntity httpEntity = httpResponse.getEntity();

16 is = httpEntity.getContent();

17 } catch (Exception e) {

18 Log.e("Buffer Error", "Error converting result " + e.toString());

19 }

20

21 // Read from stream

22 try {

23 BufferedReader reader = new BufferedReader(new InputStreamReader(

24 is, "utf-8"), 8);

25 StringBuilder sb = new StringBuilder();

26 String line = null;

27 while ((line = reader.readLine()) != null) {

28 sb.append(line + "n");

29 }

30 is.close();

31 json = sb.toString();

32 } catch (Exception e) {

33 Log.e("Buffer Error", "Error converting result " + e.toString());

34 }

35

36 JSONObject jObj = null;

37 // try parse the string to a JSON object

38 try {

39 jObj = new JSONObject(json);

40 } catch (JSONException e) {

41 Log.e("JSON Parser", "Error parsing data " + e.toString());

42 }

43

44 // return JSON String

45 return jObj;

46

47 }

48

49 // Make request and parse to JSONArray

76

7. MOBILE APPLICATION 7.1. Implementation

50 public JSONArray getJSONArrayFromUrl(String url) {

51

52 // Making HTTP request

53 try {

54 // defaultHttpClient

55 DefaultHttpClient httpClient = new DefaultHttpClient();

56 HttpGet httpGet = new HttpGet(url);

57 HttpResponse httpResponse = httpClient.execute(httpGet);

58 HttpEntity httpEntity = httpResponse.getEntity();

59 is = httpEntity.getContent();

60 } catch (Exception e) {

61 Log.e("Buffer Error", "Error converting result 1" + e.toString());

62 }

63

64 // Read from stream

65 try {

66 BufferedReader reader = new BufferedReader(new InputStreamReader(

67 is, "utf-8"), 8);

68 StringBuilder sb = new StringBuilder();

69 String line = null;

70 while ((line = reader.readLine()) != null) {

71 sb.append(line + "n");

72 }

73 is.close();

74 json = sb.toString();

75 } catch (Exception e) {

76 Log.e("Buffer Error", "Error converting result " + e.toString());

77 }

78

79 JSONArray jObj = null;

80 // try parse the string to a JSON array

81 try {

82 jObj = new JSONArray(json);

83 } catch (JSONException e) {

84 Log.e("JSON Parser", "Error parsing data " + e.toString());

85 }

86

87 // return JSON String

88 return jObj;

89 }

90 }

7.1.2 Obtaining data

And then, this is how our Java code uses the JSON Parser to make requests and store its
results into arrays.

1 // Instantiate parser

2 JSONParser parser = new JSONParser();

3

77

7. MOBILE APPLICATION 7.2. Usability

4 // Obtain the values from HTTP Request

5 JSONArray array = parser.getJSONArrayFromUrl("http://"

6 + getString(R.string.host)

7 + "/DiseaseWarningSystem/rest/users/getUserFarms?userid="

8 + userid);

9

10 // Read values from JSONArray and store in temporary array

11 String[] farms = new String[array.length()];

12

13 // The IDs are important to create the lists in the application

14 farmIDs = new int[array.length()];

15 try {

16 // Looping through All Caches

17 for (int i = 0; i < array.length(); i++) {

18 JSONObject c = array.getJSONObject(i);

19 farms[i] = c.getString("farmName");

20 farmIDs[i] = c.getInt("farmID");

21 }

22 } catch (JSONException e) {

23 // Do something with exception. Log error for example.

24 }

7.2 Usability

As far as our mobile application, we created a sequence of screens where we can move
along the information regarding one user.

At this moment the application is made in Portuguese since our targets are Por-
tuguese farmers, but a possible future work is to make an international version using
Android’s capabilities.

7.2.1 Login screen

The first screen is the login screen which only allows the user to access its information if
he is previously registered. When the login is made the main menu enables the used to
choose between seeing it’s farms or updating his account.

7.2.2 Farms and plots

After choosing to view the list of farms, it is possible to select one to:

• View a list of farm plots.

• Add a new plot.

• Remove the association of the farm to the user.

The same can then later be done to the plot. After selecting the plot from a list of plots
that belong to a farm, it is possible to:

78

7. MOBILE APPLICATION 7.3. Screenshots

• List the plot’s crops.

• Add a new crop.

• View a list of its traps.

• Add a new trap.

• Remove a plot from the current farm.

7.2.3 Crops and enemies

Finally, after choosing the crop from a list of crops it is possible to:

• Show the results of plant enemy models for that particular plot location.

• Add a disease observation.

• Add a plant phenological stage observation.

• Add a treatment made.

• Delete crop from the current plot.

7.3 Screenshots

The following are screenshots taken to the Android application to illustrate the possible
options that the users should have in our application.

79

7. MOBILE APPLICATION 7.3. Screenshots

Figure 7.1: Login screen.

Figure 7.2: Main menu.

Figure 7.3: Example of a view of a farm.

Figure 7.4: Example of a view of a plot.

80

7. MOBILE APPLICATION 7.3. Screenshots

Figure 7.5: Example of a view of a crop.

Figure 7.6: Example of a view of plant enemy models results.

Figure 7.7: Example of a view for submitting a plant enemy observation.

81

7. MOBILE APPLICATION 7.3. Screenshots

82

8
Performance tests

In this chapter we provide the results of this work obtained while testing our system.
Since models validation wasn’t the objective, these tests are mostly performance tests to
verify if the system is able to process a large number of plots and how long it does it take.

8.1 System characteristics

All tests were made on a MacBook Pro. The system characteristics are:

• Processor: 2.3 GHz Intel Core i5

• Memory: 4 GB 1333 Mhz DDR3

• Graphics: Intel HD Graphics 3000 384 MB

• Operating System: OS X 10.8.4

• Disk: 320 SATA disk, with approximately 30 Gb free

Since tests were made on a laptop with limited computing performance, it is possible
to conclude that when the platform is tested on a server with much higher memory and
processor the results are expected to be much better.

83

8. PERFORMANCE TESTS 8.2. Data insertion

8.2 Data insertion

8.2.1 Satellite

8.2.1.1 From FTP Server

Each file from the FTP server has a maximum of 6000 values which correspond to the
6000 locations of Portugal.

While executing our script to download files and insert them, the highest number of
values in one file we encountered was 6099 which took around 5 seconds to insert.

If we multiply that value for 24 we get exactly 2 minutes, which is the approximate
time it takes to insert all values corresponding to a day of satellite data.

8.2.1.2 From text file

Each text file has around 6000 lines corresponding to the locations in Portugal and 96
columns corresponding to the 15 minute intervals in one day.

Therefore, the maximum number of values to be inserted are: 6000 ∗ 96 = 576000.
However since some values might be not available (due to cloud coverage for example)
these values can be different. We made five tests for five different days.

• 10 January 2008

– Number of values: 206377

– Duration: 43 seconds

• 11 January 2008

– Number of values: 238859

– Duration: 48 seconds

• 12 January 2008

– Number of values: 407504

– Duration: 1 minute and 10 seconds

• 13 January 2008

– Number of values: 147216

– Duration: 30 seconds

• 14 January 2008

– Number of values: 315165

– Duration: 49 seconds

84

8. PERFORMANCE TESTS 8.3. Data selection

8.2.2 Weather stations

8.2.2.1 From IPMA website

There are around 125 weather stations with data available on the IPMA website. Some
stations have different data types available but almost all of them have 6 values for each
hour.

So, since the script should be also executed once every day, we will have a maximum
of 18000 values to insert.

These 18000 values took 18 seconds to be downloaded and inserted in the database.

8.2.2.2 From Excel file

Each Excel file has all data from 2008 to 2010 from one weather station. We executed our
script for several different files and recorded how long it took.

• Sines

– Number of values: 1133644

– Duration: 6 minutes and 29 seconds

• Porto

– Number of values: 1076577

– Duration: 5 minutes and 29 seconds

• Coimbra

– Number of values: 1130877

– Duration: 4 minutes and 40 seconds

With a 5-6 minute average for each station, and since we have historic files of 59
stations, it would take around 5 hours to insert all data from 59 weather stations from
2008 to 2010.

8.3 Data selection

Due to the indexes created on our temporaldata table, all selections are very fast to be
executed.

The most common query to be made to our database is to select all temporal values
from all locations of one specific data type and in one day.

A test was made to select all land surface temperature values in January 12, 2008. It
took 8 seconds to obtain 407504 values.

85

8. PERFORMANCE TESTS 8.4. Models execution

8.4 Models execution

In these tests we execute our main script that will run several enemy models and store
their results in the database. This script should be executed one time each day, right after
downloading and inserting the latest meteorological data.

An important factor is that this script makes all data selections, interpolations, execu-
tions of models and insertions of their results.

Several tests were made by varying the number of models.

8.4.1 1000 models

In this test we made a simple test. Since we have implemented 5 models, we created 200
test plots and executed their models for one day.

Duration: 35 seconds

8.4.2 10000 models

Then, we tried the same 5 models but with 2000 plots for one specific day.

Duration: 6 minutes and 7 seconds

8.4.3 100000 models

Finally, we created 20000 fictional plots and executed 5 models for each.

Duration: 1 hour, 2 minutes and 35 seconds

8.5 Time-series segmentation

Some tests were also made to verify how long would take for time-series segmentation
to execute depending on the number of days requested and if the user chose to have
interpolation or not.

8.5.1 Interpolation

We tried with interpolation for several different numbers of days:

• 1 day: 32 seconds

• 5 days: 3 minutes and 5 seconds

• 15 days: 8 minutes and 36 seconds

• 30 days: 14 minutes and 48 seconds

86

8. PERFORMANCE TESTS 8.6. Conclusions

8.5.2 No interpolation

We also made some tests to verify how long the same executions would take without
interpolation:

• 1 day:13 seconds

• 5 days: 32 seconds

• 15 days: 1 minute and 71 seconds

• 30 days: 3 minutes and 7 seconds

8.6 Conclusions

Before making conclusions, it is necessary to take into consideration that all tests were
performed on a laptop with limited processing and memory, and with other applications
running at the same time.

In data insertions, it is possible to verify that with our implementation of the COPY
statement the insertion times are extremely fast and efficient. Each day it would take a
couple of minutes to insert all values from the current sources available.

In data selections, as was previously appointed, the indexes created allow fast data
access to any values we might want to read.

In the models executions, although some executions took around one hour, they are
supposed to be executed only once each day, and even if this laptop was going to be the
server executing them, they would still be all executed under a couple of hours. Also,
the last test executed a large amount of models corresponding to 20000 plots. This is
probably around the maximum number of plots that a system like this could have if it is
restricted to Portugal.

In conclusion, with a good server hosting our platform, we conclude that there won’t
be any major efficiency problems with our scripts executions and our platform is ready
to be deployed and start running.

87

8. PERFORMANCE TESTS 8.6. Conclusions

88

9
Final conclusions

First it was necessary to understand the agricultural domain and know what was the
problem in order to list the necessary requirements for our implementation. Based on
the problem, a solution was planned. It involved a database, a web server and a mobile
application.

The database was created in PostgreSQL with PostGIS extension and stores all the
meteorological data available from our satellite and weather station sources. It also stores
information regarding the system users, their farms and their plots, as well as interactions
made and the enemy models outcomes.

A server was created using Apache Tomcat which enables it to be constantly running.
The server has many functions. The first is to download and insert meteorological data
in the database. To do this, we created scripts that are able to insert satellite data from
a FTP server or from text files, and weather station data from the IPMA website or from
Excel files.

Secondly, we created a script that iterates trough all plots that belong to each user, and,
for each plot, executes each associated enemy model storing its results in the database.
The structure developed for the enemy models allows easy insertion of new models to
the system.

It was also created a RESTfull API to interact with the mobile application. This API
has methods that allow the mobile application to display all information regarding the
user and to submit his interactions.

Some specific scripts were also constructed, as requested by the PROTOMATE project
to allow future analysis of data in our system. One of them is the segmentation of time
series, which generates a linear interpolated representation of two different data types
for future comparisons (usually LST and Tsp).

89

9. FINAL CONCLUSIONS 9.1. Future work

We also developed a mobile application to interact with our system. This mobile
application is just a prototype but allows most of the required interaction between the
user and the system, such as showing the model results for the user’s plots and allowing
the user to submit different types of observations.

After the development, performance tests were made to verify if our platform is effi-
cient and scalable.

In summary, we have created and tested a platform that is a starting point for a com-
plex system that can handle billions of agricultural data at the same time, executes em-
pirical models every day and serves as an analysis application for future researches.

9.1 Future work

Since one of our main goals for our platform is to be scalable and flexible, there are obvi-
ously several subjects that can/might be done in the future.

9.1.1 Validation of models with real data

It can be possible to validate the models implemented. For that it is necessary to execute
these models on a daily basis for a long period of time, and then, compare its results with
real time observations made by the agronomists.

9.1.2 Development of new enemy models

Apart from validating models it can be also possible to create new models for other dis-
eases. All that is necessary is to verify at which meteorological circumstances infections
occurred and use the weather values stored in the database to create new models.

9.1.3 Creation of risk maps from the platform and connection to a GIS

At this moment the infection results are only being stored in the database and presented
to the users via the mobile application. However since we used a geospatial database as
PostgreSQL with PostGis, it is possible to integrate our database with an geographical
information system, such as QuantumGIS.

These systems are able to read geographical data from the database and generate risk
maps with its values to be visualised.

9.1.4 Robust interpolation methods

It can be possible to implement more robust interpolation methods in order to better de-
tect correlation between, for example, the relative humidity index and relative humidity
verified at weather stations.

90

9. FINAL CONCLUSIONS

9.1.5 Improving mobile interface

Since the mobile application created was just a prototype to receive and send information
to the web server, it is necessary to improve its interface in case a more serious application
is required. This improved mobile application should also obey the Android guidelines.

9.1.6 Add more data sources and enemy models

In the future, new data sources such as different satellites might be available and our
platform is able to store any kind of data.

Besides, it is also possible to integrate new enemy models into our system, allowing
the possibility of having dozens or hundreds of models in the future.

9.2 Work done

Since one of the goals of this dissertation was to create a platform to be used by the
PROTOMATE project, a stable version was deployed early and started being used.

9.2.1 Developments made

Routines for analysing and exploring the data have been implemented in the PostgresSQL
server by developing specific pg/PLSQL stored procedures and functions. Moreover, it
is now possible to visualise the data via a QuantumGIS module developed in Phyton,
which remotely connects to the database.

The schema of the database did not suffer any substantial changes, except special
tables to store the results of long running SQL queries to process the data.

9.2.2 Results obtained

At this stage, the team of the PROTOMATE project is analysing the LST data since 2008
in order to check their quality.

It was possible to detect some problems in the existing data, namely impossible tem-
perature values. This was a problem that was corrected in late July by the LSA SAF. Other
more subtle problems in the satellite LST data are being currently studied.

Additionally, the correlation of LST with weather station parameters is being studied,
and it was possible to identify very interesting patterns on the data that will be published
by the PROTOMATE team.

91

9. FINAL CONCLUSIONS

92

Bibliography

[1] Plant disease management. [Online]. Available: http://www.apsnet.org/edcenter/
intropp/topics/Pages/PlantDiseaseManagement.aspx (visited on 02/01/2013).

[2] Agronomy day - the morrow plots: a landmark for agriculture. [Online]. Available: http:
//agronomyday.cropsci.illinois.edu/2001/morrow-plots/ (visited
on 09/22/2013).

[3] Cadernos de campo. [Online]. Available: http : / / www . dgadr . mamaot . pt /
sustentavel / producao - integrada / cadernos - de - campo (visited on
09/22/2013).

[4] Wikipedia, Phenology — wikipedia, the free encyclopedia, [Online; accessed 3-December-
2012], 2012. [Online]. Available: \url{http://en.wikipedia.org/wiki/
Phenology}.

[5] Vineyard ipm scouting report for week of 3 may 2010. [Online]. Available: http://
door.uwex.edu/files/2010/10/IPMReportweek5.3.10.pdf.

[6] Tomato. [Online]. Available: http://www.sqm.com/en-us/unidadesdenegocios/
nutrici%C3%B3nvegetaldeespecilidad/cultivos/tomate.aspx (vis-
ited on 09/22/2013).

[7] P Amaro, A protecção integrada. Portuguese. Lisboa, 2003, ISBN: 9728669100 9789728669102.

[8] Bayer CropScience portugal. [Online]. Available: http://www.bayercropscience.
pt/internet/problemas/problema.asp?id_problema=154 (visited on
02/01/2013).

[9] Models: powdery mildew of grape–UC IPM. [Online]. Available: http://www.ipm.
ucdavis.edu/DISEASE/DATABASE/grapepowderymildew.html (visited on
02/01/2013).

[10] C. Thomas, W. Gubler, and G. Leavitt, “Field testing of a powdery mildew disease
forecast model on grapes in california”, Phytopathology, vol. 84, p. 1070, 1994.

[11] E. Weber, W. Gubler, and A. Derr, “Powdery mildew controlled with fewer fungi-
cide applications”, Winegrowing. Jan./Feb, pp. 13–16, 1996.

93

http://www.apsnet.org/edcenter/intropp/topics/Pages/PlantDiseaseManagement.aspx
http://www.apsnet.org/edcenter/intropp/topics/Pages/PlantDiseaseManagement.aspx
http://agronomyday.cropsci.illinois.edu/2001/morrow-plots/
http://agronomyday.cropsci.illinois.edu/2001/morrow-plots/
http://www.dgadr.mamaot.pt/sustentavel/producao-integrada/cadernos-de-campo
http://www.dgadr.mamaot.pt/sustentavel/producao-integrada/cadernos-de-campo
\url{http://en.wikipedia.org/wiki/Phenology}
\url{http://en.wikipedia.org/wiki/Phenology}
http://door.uwex.edu/files/2010/10/IPMReportweek5.3.10.pdf
http://door.uwex.edu/files/2010/10/IPMReportweek5.3.10.pdf
http://www.sqm.com/en-us/unidadesdenegocios/nutrici%C3%B3nvegetaldeespecilidad/cultivos/tomate.aspx
http://www.sqm.com/en-us/unidadesdenegocios/nutrici%C3%B3nvegetaldeespecilidad/cultivos/tomate.aspx
http://www.bayercropscience.pt/internet/problemas/problema.asp?id_problema=154
http://www.bayercropscience.pt/internet/problemas/problema.asp?id_problema=154
http://www.ipm.ucdavis.edu/DISEASE/DATABASE/grapepowderymildew.html
http://www.ipm.ucdavis.edu/DISEASE/DATABASE/grapepowderymildew.html

BIBLIOGRAPHY

[12] Control of powdery mildew using the UC davis powdery mildew risk index. [Online].
Available: http://www.apsnet.org/publications/apsnetfeatures/
Pages/UCDavisRisk.aspx (visited on 09/22/2013).

[13] R. Snyder, P. La Vine, M. Sall, J. Wrysinski, and F. Schick, “Grape mildew control in
the central valley of california using the powdery mildew index.”, Leaflet-University
of California, 1983.

[14] Downy mildew of grape. [Online]. Available: http://www.apsnet.org/edcenter/
intropp/lessons/fungi/Oomycetes/Pages/DownyMildewGrape.aspx

(visited on 09/22/2013).

[15] T. Caffi, V. Rossi, A. Cossu, and F. Fronteddu, “Empirical vs. mechanistic models for
primary infections of plasmopara viticola”, EPPO Bulletin, vol. 37, no. 2, pp. 261–
271, Aug. 2007, ISSN: 0250-8052, 1365-2338. DOI: 10.1111/j.1365-2338.2007.
01120.x. [Online]. Available: http://doi.wiley.com/10.1111/j.1365-
2338.2007.01120.x (visited on 09/22/2013).

[16] The university of maine - UMaine extension: insect pests & plant diseases - early blight of
tomato. [Online]. Available: http://umaine.edu/ipm/ipddl/publications/
5087e/ (visited on 09/22/2013).

[17] The university of maine - UMaine extension: insect pests & plant diseases - septoria leaf
spot of tomato. [Online]. Available: http://umaine.edu/ipm/ipddl/publications/
5088e/ (visited on 09/22/2013).

[18] [Online]. Available: http://www.extension.umn.edu/yardandgarden/
ygbriefs/p250tomatoanthracnose.html (visited on 09/22/2013).

[19] NEWA - using tomcast and blitecast forecasts effectively. [Online]. Available: http://
newa.cornell.edu/index.php?page=Using-Tomcast-and-Blitecast-

Forecasts-Effectively#simcast (visited on 09/22/2013).

[20] R. Cowling, P. Rundel, B. Lamont, M. Kalin Arroyo, and M. Arianoutsou, “Plant
diversity in mediterranean-climate regions”, Trends in Ecology & Evolution, vol. 11,
no. 9, pp. 362–366, 1996.

[21] J. Robinson and J. Harding, The Oxford companion to wine. Oxford University Press
Oxford, 1994, vol. 56.

[22] M. do Céu Godinho, F. Amaro, E. Figueiredo, and A. Mexia, “Protecção integrada
em tomate de indústria”, in, I. N. de Investigação Agrária e das Pescas, Ed. 2006,
ch. 6.1 - Mildio, pp. 22–31, ISBN: 972-579-032-4.

[23] M. Gleason, K. Duttweiler, J. Batzer, S. Taylor, P. Sentelhas, J. Monteiro, and T.
Gillespie, “Obtaining weather data for input to crop disease-warning systems: leaf
wetness duration as a case study”, Scientia Agricola, vol. 65, no. SPE, pp. 76–87,
2008.

94

http://www.apsnet.org/publications/apsnetfeatures/Pages/UCDavisRisk.aspx
http://www.apsnet.org/publications/apsnetfeatures/Pages/UCDavisRisk.aspx
http://www.apsnet.org/edcenter/intropp/lessons/fungi/Oomycetes/Pages/DownyMildewGrape.aspx
http://www.apsnet.org/edcenter/intropp/lessons/fungi/Oomycetes/Pages/DownyMildewGrape.aspx
http://dx.doi.org/10.1111/j.1365-2338.2007.01120.x
http://dx.doi.org/10.1111/j.1365-2338.2007.01120.x
http://doi.wiley.com/10.1111/j.1365-2338.2007.01120.x
http://doi.wiley.com/10.1111/j.1365-2338.2007.01120.x
http://umaine.edu/ipm/ipddl/publications/5087e/
http://umaine.edu/ipm/ipddl/publications/5087e/
http://umaine.edu/ipm/ipddl/publications/5088e/
http://umaine.edu/ipm/ipddl/publications/5088e/
http://www.extension.umn.edu/yardandgarden/ygbriefs/p250tomatoanthracnose.html
http://www.extension.umn.edu/yardandgarden/ygbriefs/p250tomatoanthracnose.html
http://newa.cornell.edu/index.php?page=Using-Tomcast-and-Blitecast-Forecasts-Effectively#simcast
http://newa.cornell.edu/index.php?page=Using-Tomcast-and-Blitecast-Forecasts-Effectively#simcast
http://newa.cornell.edu/index.php?page=Using-Tomcast-and-Blitecast-Forecasts-Effectively#simcast

BIBLIOGRAPHY

[24] Why do dew drops do what they do on leaves? [Online]. Available: http://www.
terradaily.com/reports/Why_do_dew_drops_do_what_they_do_on_

leaves_999.html (visited on 09/22/2013).

[25] K. Kim, S. Taylor, M. Gleason, and K. Koehler, “Model to enhance site-specific esti-
mation of leaf wetness duration”, Plant Disease, vol. 86, no. 2, pp. 179–185, 2002.

[26] P. Sentelhas, A. Dalla Marta, S. Orlandini, E. Santos, T. Gillespie, and M. Gleason,
“Suitability of relative humidity as an estimator of leaf wetness duration”, Agricul-
tural and Forest Meteorology, vol. 148, no. 3, pp. 392–400, 2008.

[27] J. Yang, Y. Wang, and P. August, “Estimation of land surface temperature using spa-
tial interpolation and satellite-derived surface emissivity”, Journal of Environmental
Informatics, vol. 4, no. 1, pp. 37–44, 2004.

[28] K. Stahl, R. Moore, J. Floyer, M. Asplin, and I. McKendry, “Comparison of ap-
proaches for spatial interpolation of daily air temperature in a large region with
complex topography and highly variable station density”, Agricultural and Forest
Meteorology, vol. 139, no. 3, pp. 224–236, 2006.

[29] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting
time series”, in Data Mining, 2001. ICDM 2001, Proceedings IEEE International Con-
ference on, 2001, pp. 289–296.

[30] General solar position calculations. [Online]. Available: http://www.esrl.noaa.
gov/gmd/grad/solcalc/solareqns.PDF.

[31] S. Kisilevich, F. Mansmann, M. Nanni, and S. Rinzivillo, Spatio-temporal clustering.
Springer, 2010. [Online]. Available: http://link.springer.com/chapter/
10.1007/978-0-387-09823-4_44 (visited on 09/22/2013).

[32] Product user manual - land surface temperature (lst). [Online]. Available: http://
landsaf.meteo.pt/GetDocument.do?id=304.

95

http://www.terradaily.com/reports/Why_do_dew_drops_do_what_they_do_on_leaves_999.html
http://www.terradaily.com/reports/Why_do_dew_drops_do_what_they_do_on_leaves_999.html
http://www.terradaily.com/reports/Why_do_dew_drops_do_what_they_do_on_leaves_999.html
http://www.esrl.noaa.gov/gmd/grad/solcalc/solareqns.PDF
http://www.esrl.noaa.gov/gmd/grad/solcalc/solareqns.PDF
http://link.springer.com/chapter/10.1007/978-0-387-09823-4_44
http://link.springer.com/chapter/10.1007/978-0-387-09823-4_44
http://landsaf.meteo.pt/GetDocument.do?id=304
http://landsaf.meteo.pt/GetDocument.do?id=304

	Introduction
	Motivation and context
	Objectives
	Major contributions
	Innovation using satellite data
	Managing large volumes of information
	User interaction

	Document organisation

	Problem
	Agricultural domain
	Field notebooks

	Plant diseases
	Grape powdery mildew
	Grape downy mildew
	Tomato diseases
	Models validation

	Data required
	Environmental
	Calculated
	Spatial interpolation

	PROTOMATE project and data problems
	Current issues
	Time-series segmentation

	Conclusions

	Approach
	Solution presented
	Database
	Database type

	Web server
	Weather data acquisition
	Run plant enemy models
	Web services
	Analysis functions

	Mobile application

	State of the Art
	Database
	Possible options
	Database chosen

	Web server
	Apache Tomcat
	JAX-RS and Jersey
	PostgreSQL JDBC
	HDF Object Package

	Mobile application
	Operating system

	Conclusions

	Database
	Database model
	Geographical and temporal data
	User interactions
	Object-relational mapping

	Implementation
	Connecting to the DB
	Geographical data
	Temporal Data
	Indexes

	Conclusions

	Web server
	Modelling
	REST API
	JSON response
	Enemy models
	Time-series segmentation

	Code samples
	Download satellite data
	Download weather station data
	Enemy models executions
	Spatial Interpolation
	Web methods implementation
	Time-series segmentation implementation

	Conclusions

	Mobile Application
	Implementation
	JSON parser
	Obtaining data

	Usability
	Login screen
	Farms and plots
	Crops and enemies

	Screenshots

	Performance tests
	System characteristics
	Data insertion
	Satellite
	Weather stations

	Data selection
	Models execution
	1000 models
	10000 models
	100000 models

	Time-series segmentation
	Interpolation
	No interpolation

	Conclusions

	Final conclusions
	Future work
	Validation of models with real data
	Development of new enemy models
	Creation of risk maps from the platform and connection to a GIS
	Robust interpolation methods
	Improving mobile interface
	Add more data sources and enemy models

	Work done
	Developments made
	Results obtained

