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Abstract  

Ni-Ti shape memory alloys (SMA), have interesting functional properties such as 

shape memory effect and superelasticity that enable their use in different segments. 

These functional characteristics are obtained through the thermomechanical 

processing (hot and cold). The hot deformation may promote the intended 

metallurgical transformations and the microstructural changes are improved by final 

cold deformation. These processes influence the final mechanical properties of the 

materials and, by consequence, their applications. This work focused on a Ni-rich Ni-

Ti alloy, which may be used in the orthodontic archwires since the alloys used for this 

purpose need to show superelastic characteristics at room and oral temperature. It is 

sought by the mechanical and thermal treatments that the material displays an 

austenite finish temperature below room temperature. 

In this work, the characteristics of the thermomechanical processing are studied using 

samples representative of the different processing steps. For each processing step, the 

effect of the process parameters on the phase transformation temperature, 

superelasticity and shape memory effects was assessed and correlated to its 

microstructure. The structural analysis of each sample was performed by different 

techniques, which allowed the identification of the thermomechanical processing 

evolution. It was noticed that the austenite finish temperature was close to room 

temperature for all the steps. For all the samples, an austenite matrix at room 

temperature was observed. Different heat treatments were applied to identify the most 

suitable changes to be proposed along the rotary forging steps. Thermomechanical 

treatments were performed to understand and verify the structural evolution (by X-ray 

diffraction, using synchrotron radiation) and the mechanical behavior during the hot 

and cold deformations. These treatments allowed us to observe and discuss 

restoration phenomena, such as dynamic recovery and recrystallization.    

In addition, orthodontic archwires were studied in a reverse engineering approach to 

identify their structural characteristics and the corresponding functional behavior. The 

characterization of commercial functionally graded NiTi orthodontic archwire was 

performed and the introduction of graded functionality in conventional archwires was 

analyzed. 

This study aimed to contribute to the development of processing strategies that will 

give rise to more consistently uniform characteristics of Ni-Ti shape memory alloys 

and a minimization of the failures occurring during processing. 

Keywords: Shape Memory Alloys, Rotary Forging, Synchrotron Radiation, Dynamic 

Recrystallization, Orthodontic Archwires 
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Resumo  

As ligas de Ni-Ti com memória de forma, possuem propriedades funcionais bem 

distintas, tais como memória de forma e superelasticidade, que viabilizam o seu uso 

em diversos segmentos. Essas características são obtidas a partir dos processamentos 

termomecânicos, a quente ou a frio, aplicados ao material. A deformação a quente 

promove as transformações metalúrgicas pretendidas e a microestrutura é modificada 

pelas deformações a frio subsequentes. Esses processamentos influenciam o 

comportamento mecânico e as propriedades finais e, por conseguinte, a sua aplicação 

final.    

Este trabalho teve como foco o estudo de uma liga Ni-Ti rica em níquel, que pode ser 

usada para produção de fios ortodônticos e que apresente para tal comportamento 

superelástico próximo da temperatura ambiente e temperatura oral. Esse 

comportamento é obtido através de tratamentos mecânicos e térmicos aplicados.   

Neste trabalho são estudadas as características do processamento termomecânico, 

através de cada uma das amostras representativas das diferentes etapas de 

processamento. Para as amostras das diferentes etapas de processamento, o efeito dos 

parâmetros de processo na temperatura da transformação de fase, os efeitos de 

memória de forma e superelasticidade foram avaliados e correlacionados com a sua 

microestrutura. A análise estrutural de cada amostra foi realizada por diferentes 

técnicas que permitiram a observação da evolução do processamento termomecânico. 

Obteve-se, para todos os passos de processamento estudados, uma temperatura de 

final de transformação em austenite próxima da temperatura ambiente. O material 

com uma matriz austenítica à temperatura ambiente foi observado para todas as 

amostras. Foram realizados tratamentos térmicos para identificar as alterações a 

propor nos tratamentos ao longo do forjagem rotativa. Foram realizados tratamentos 

termomecânicos para entender e verificar a evolução estrutural (por difração de raios-

X usando radiação de sincrotrão) e o comportamento mecânico durante as 

deformações a quente e a frio. Estes tratamentos permitem observar e discutir 

fenómenos de recuperação e de recristalização dinâmicas.    

Além disso, os arcos ortodônticos foram usados em uma abordagem de engenharia 

reversa para identificar a sua estrutura e as correspondentes características funcionais. 

Foi realizada a caracterização de arames ortodônticos comerciais e foi analisada a 

introdução de gradiente funcional em arcos convencionais. 

Este estudo teve como objetivo contribuir para o desenvolvimento de estratégias de 

processamento que darão origem a características mais consistentemente uniformes 

das ligas com memória de forma e a uma minimização das falhas ocorridas durante o 

processamento. 

Palavras-chave: Ligas com Memória de Forma, Forjagem Rotativa, Radiação de 

Sincrotrão, Recristalização Dinâmica, Arames Ortodônticos.  
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1. Introduction 

The first chapter of this work presents a brief introduction to the subject, the aims, scope 

of the study and some general information about the investigation. The partners are 

highlighted in accordance to their contribution to this investigation. The sequence of the 

chapters is shown and explained to clarify the structure of the study.  

Shape memory alloys (SMA) belong to the class of advanced materials which display 

two functional properties with great interest: their superelasticity and shape memory 

effect.    

These alloys present the capability to return to an original shape or dimension when 

subjected to an adequate thermomechanical treatment. (Otsuka, 2005). 

Usually, these materials can be deformed at relatively low temperature (martensitic 

field). After the increase of the temperature (austenitic field), they return to the shape 

they had before the deformation (Shape Memory Effect - SME).    

On the other hand, when deformed in the austenitic field, they are susceptible to a 

reversible phase transformation of the martensitic type. This can be reversed by 

removing the applied load (Superelastic Effect - SE). (Otsuka, 2005) (Mohd, 2014)    

Ni-Ti alloys still display high resistance to fatigue and corrosion, great ductility and 

biocompatibility when compared to other shape memory alloys (e.g. Cu-base or         

Fe-base) (Saburi, 1998).  

This work focused on a Ni-rich Ni-Ti alloy, which may be used in the orthodontic 

archwires, since the Ni-Ti alloys used for this purpose need to show superelastic 

characteristics at room and oral temperature. It is sought by the mechanical and thermal 

treatments that the material displays an austenite finish temperature below room 

temperature.  
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This processing usually involves thermomechanical treatments, which promote the 

improvement of the microstructure aiming the expected performance of the material. An 

in-depth understanding of production steps such as thermomechanical processes is 

required for the successful processing control.  

Therefore, the present work aimed to study the functional behavior of Ni-rich Ni-Ti 

alloy, determining the mechanical properties that are associated with its microstructural 

characteristics. This study allows the association of processing variables (chemical 

composition, solidification and thermal and/or mechanical processing) to the in-service 

behavior of the wires. With this in mind, three main tasks were performed:                   

(i) characterization of the thermomechanical processed samples, (ii) testing of the 

different processing alternatives, and (iii) evaluate the proposed processing through the 

thermomechanical analysis using synchrotron radiation-based X-ray diffraction        

(SR-XRD) technique. In situ deformation experiments were conducted with the high 

energy X-ray diffraction (HEXRD) setup of the HZG beamline HEMS (P07-EH3) at 

Petra III, DESY in Hamburg (Germany). 

Bellow, the thesis chapters with a brief explanation are listed to clarify the structure of 

this document and make easier its reading.   

1.1. Structure of the Study 

The thesis is composed of five chapters, including the Introduction Chapter.  

Chapter 2 - State of the Art - a critical analysis of existing knowledge; 

This chapter presents a critical analysis of the existing knowledge. Firstly, it is 

presented an overview of the Ni-Ti alloys characteristics such as chemical composition, 

phases and precipitates that are present, phase transformations and corresponding 

relevant parameters. This part still describes how the SME and SE occur in shape 

memory alloys. A major focus is put on the relevant points related to the chemical 

composition of the Ni-Ti alloys, but with a greater attention to the Ni-rich alloys.  

The second part presents some details of the Ni-Ti alloys processing. Thermal, 

mechanical and/or thermomechanical treatments modify the phase transformation 

temperatures and affect the SME and SE. Recovery and recrystallization are presented 

and also their influence in processing. The final part approaches the general 
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characteristics of the crystallographic texture and its evolution throughout the 

thermomechanical processing. 

As the current study is focused on the thermomechanical processing of a material 

aiming its application to orthodontic archwires, finally in the third part, some 

characteristics of this type of wires are presented to identify the most important 

properties. Thus, a short evolution overview of the Ni-Ti orthodontic archwires is 

presented: from superelastic to functionally graded orthodontic archwires. 

Chapter 3 - Methodology; 

In this chapter the characteristics of the alloys studied (Ni-rich, equiatomic and Ti-rich 

in the as-cast and remelted conditions) are presented. Afterwards, their 

thermomechanical processing is presented, as well as the characterization techniques 

applied for each sample representative of the different processing steps. Some thermal 

treatments were carried out to simulate the conditions of the material before and after 

each stage of processing. In addition, alternative thermal and thermomechanical 

treatments are analyzed in order to assess the proposed changes of the processing route.   

Chapter 4 – Results and Discussion; 

The Results and Discussion sections is organized in subchapters focused on the 

characterization of the samples representative of the different thermomechanical steps, 

test of the processing parameters and simulation of the thermomechanical process. 

  Chapter 5 - Conclusions and Future Work 

Conclusions and Future Work show the most important conclusions, as well as the 

potential future perspectives for this research.     
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2. State of the Art 

This Chapter presents the literature review focused on the topics that are essential to the 

project understanding, as described in the results and discussion chapter. This 

presentation was divided into three main sections. 

In the first section of this chapter, an overview of the Ni-Ti alloy system is given with 

relevance to the discussions on the composition control, and the phase transformations. 

The Shape Memory Effect (SME) and Superelasticity (SE) are also discussed. 

The second section of this chapter is dedicated to the thermomechanical process in 

general. A short introduction about the mechanical, thermal and thermomechanical 

behavior is presented. The thermomechanical processes that are discussed in the current 

study concern only the hot and cold forging steps. Mechanisms of microstructural 

restoration such as recovery and recrystallization (static and dynamic), the precipitation 

phenomena, and the textural evolution involved in the process are also described.  

Finally, as these processes aim the orthodontic archwires manufacturing, some aspects 

concerning the final characteristics of NiTi orthodontic wires are reviewed in the last 

section of this chapter. Thus, the relevant orthodontic archwires properties, as well as 

the innovative functionally graded archwire properties, currently used during the 

orthodontic treatment, are presented. 

2.1. Ni-Ti Shape Memory Alloys  

Shape memory alloys (SMA), are a group of metallic alloys that have attracted much 

interest for their great application as functional materials in many engineering fields, 

such as active, adaptive or intelligent structures, as well as certain biomedical 

applications. These alloys present two unique properties: shape memory effect and 

superelasticity. Among the SMA, the Ni-Ti alloys are the most important alloy group, 
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not only because of its functional properties but also because they present excellent 

mechanical properties, a very high resistance to corrosion and biocompatibility. 

(Otsuka, 2005) (Funakubo, 1987)  

In the 60s, the Ni-Ti alloys, became very popular through the publicity of Naval 

Ordinance Laboratory (NOL). In that period, Buehler et al. (1961) observed the shape 

memory effect in this alloy. Thus, the NiTiNOL, referring to the near equiatomic 

composition (NiTi) was used as a tribute to this laboratory. (Buehler, 1961) 

 Phase Diagram and Crystal Structures  2.1.1.

The phase diagram of Ni-Ti alloys system is fundamental to understand heat treatments 

of the alloys and improvement of the shape memory characteristics. The properties as 

SE and SME can occur in Ni-Ti alloys with nominal composition range from 48 to      

52 at.% Ni. (Otsuka, 2002) 

In the Ni-Ti binary phase diagram (Figure 2.1), it is possible to observe that the 

solubility changes significantly with increasing temperature on the Ni-rich side, while 

there is a steep boundary in the Ti-rich side. Moreover, a small variation of the ratio of 

Ni-Ti in the alloys can result in precipitation of second phases. (Otsuka, 2002)  

 
Figure 2.1 - Phase diagram of Ti-Ni alloy with the phase equilibrium between the B2 and Ni4Ti3 phases 

added. (Otsuka, 2002) 
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The functional properties displayed in these alloys are possible due to a reversible 

martensitic transformation. NiTi may present three distinct phases: martensite, R-phase 

and austenite. At high-temperature ranges, the stable phase is austenite (A) cubic 

symmetry B2 type (space group 𝑃𝑚3̅𝑚). At low-temperature the stable phase is 

martensite (M) monoclinic symmetry B19’ type (space group 𝑃21 𝑚⁄ ). The 

transformation from B2 into B19' can occur directly or via R-phase (trigonal symmetry, 

space group 𝑃3̅). It can be described by a stretch of the B2 - cubic crystal structure 

along the <111> direction. (Figure 2.2) The reversibility of the transformation of A to 

M and M to A is the condition for the unique behavior of this class of alloys. (Otsuka, 

2005) (Miyazaki, 2009) 

The intermediate transformation to R-phase before achieving the B19' phase can be 

observed if the alloy is subject to specific processing conditions as a variation of Ni 

content, thermal treatment or thermomechanical treatment. (Otsuka, 2005)  

 

Figure 2.2 - Scheme of transformation of (a) cubic (B2) austenite to (b) monoclinic (B19’) phase. 

(Miyazaki, 2009) 

 Shape Memory Effect and Superelasticity  2.1.2.

When the material is cooled from austenite (A) domain, the martensite transformation 

starts at given temperature known as Ms temperature. The transformation from austenite 

to martensite is referred as direct transformation and finishes at martensite 

transformation finish temperature, known as Mf temperature. Thus, when the material at 

low-temperature phase (M) is heated up to a given temperature, the austenite phase 

transformation starts; this temperature is known as As temperature and the 

transformation finishes when the Af temperature is reached. This transformation is 
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referred to as reverse transformation. A and M will be used in this text to indicate the 

phases, austenite and martensite, respectively. The subscripts “s” and “f” indicate the 

start and finish of the transformations. Thus, As, Af, Ms and Mf are used to referrer the 

transformation temperatures of a given shape memory alloy.  

In these alloys each martensitic crystal has a different orientation, called variant. Two 

distinct forms of martensite, twinned martensite or detwinned martensite may exist 

(Figure 2.3). The first one martensite is promoted by the combination of self-

accommodated twins to keep the overall shape (thermally induced – Figure 2.3b) while 

in the other one is activated, typically as a result of external load applied (Figure 2.3c). 

(Otsuka, 2002).   

Further, the martensitic transformation can be stress-induced, promoting the superelastic 

effect (Figure 2.3a). When a stress is applied to the material within a given range of 

temperature where austenite is thermally stable, the superelasticity occurs: the 

deformation during loading may be recovered after unloading, up to 10% strain. 

(Otsuka, 2005)(Dolce, 2001)  

 

Figure 2.3 - (a), (b) and (c) Schematic illustration of the mechanism of the shape-memory effect and 

superelasticity. (Otsuka, 2002) 
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On the other hand, the shape memory effect occurs starting from the martensitic state. A 

shape memory alloy may be given a definite shape in the austenitic phase. So, when 

cooling this alloy up to the temperature range of martensite stability, the shape does not 

change significantly. When the material is deformed in the martensitic state up to a 

certain extent (in most cases up to 10%), this deformation can be retained by the 

material as long as the martensitic stability temperature range is maintained. However, 

the material starts recovering the original shape when it is heated above As temperature. 

When Af is reached, the recovery by shape memory effect should have finished. 

Chowdhry et al.(2017) shows the schema of these phenomena in a stress-strain diagram, 

where the red loop describes the superelastic response of SMAs and the green + blue 

loops show the shape memory effect (Figure 2.4). (Chowdhury, 2017) 

 

Figure 2.4 - Typical superelastic behavior diagram of a shape memory alloy. (Chowdhury, 2017) 

The shape memory effect and superelasticity are closely related as shown through 

stress-temperature phase diagram (Figure 2.5). It is desired that the SMA show the 

shape memory and superelastic properties, but the temperature of the tests and the 

critical stress for dislocation slip, must be considered. The slope for the variation of the 

critical stress for the stress-induced martensitic transformation as a function of 

temperature is given by the Clausius–Clapeyron equation (Eq. 2.1). (Liu, 2008) 
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𝑑𝜎

𝑑𝑇
=  −

𝛥𝑆

𝜀
=  − 

𝛥𝐻∗

𝜀𝑇
                                                   (Eq. 2.1) 

 

Where:  σ is the applied stress, T is the temperature, ΔS is the change in entropy, ε is the 

applied strain, ΔH is the latent heats of transformation for the two transformations.  

Increasing temperature requires a higher stress to promote the stress induced 

transformation. However, the critical stress to induce slip, promoting the plastic 

deformation, decreases with increasing temperature. Thus, the superelastic effect is 

inhibited above a given temperature, where the critical stress for dislocation slip occurs 

earlier than it. So, by the combined change of the transformation temperatures and the 

materials softening (Figure 2.5 - B) or hardening (Figure 2.5 – A), the “window” of 

superelasticity may be changed as a function of the relative positions of Clausius-

Clapeyron and critical dislocation slip lines.   

Thus, Md is the temperature above which the stress-induced martensitic transformation 

is no longer favored. But, it is possible to control the critical stress for inducing 

dislocations slip at a given temperature: (i) by softening the material, the critical stress 

for slip decreases or (ii) hardening the material, the critical stress for slip increases. 

(Otsuka, 2005) 

 

Figure 2.5 - Stress-temperature diagram for shape memory alloy. (Otsuka, 2005) 
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The intermediate R-phase can occur by deformation, below the critical stress for the 

formation of B19’, which is associated with the stress-induced transformation             

B2 → R-phase. 

The transformation strain associated with the A↔R transition is small (~1%); it displays 

attractive properties, such as fast response with respect to temperature change, high 

stability during mechanical or thermal cycling and narrow thermal hysteresis. Hence, 

the R-phase TiNi alloys have potential for commercial applications, especially in 

engineering and medical industries. 

Olbricht et al. (2011), reported a model system for an uniaxial loading-unloading test at 

a temperature above Af. In the curve (stress-strain), the first small loading plateau after 

the initial slope of the linear elastic behavior of B2 corresponds to the stress-induced   

R-phase formation (Figure 2.6a). The linear stress increase at the end of the plateau may 

be attributed to the elastic response of the R-phase; after this, the B19’ starts to form. 

The B19’ (stress-induced martensite - SIM) occurs along the upper plateau of the stress-

strain curve. The increase of the stress following this second loading plateau represents 

the B19’ elastic behavior. At a second critical stress σM+, B19’ starts to form. The 

stress induced formation of B19’ extends over a larger strain interval (~7%) than the 

stress-induced formation of R-phase (~1%). The increase of the stress after this second 

loading plateau represents the elastic behavior of B19’. They reported that the stress-

induced formation of B19’ finishes at the end of the upper loading plateau. The dashed 

horizontal line at σ0 can be thought of as an equilibrium stress. The higher and lower 

loading and unloading plateaus, referred to as σM+ and σM-, indicate the need for 

nucleation during the stress-induced formation of B19’ (forward transformation) and   

R-phase (reverse transformation), respectively. This behavior is observed only if no 

plastic deformation occurs. (Olbricht, 2011) (Olbricht, 2013) 

The tension and compression display similar behavior. However, the plateau stresses in 

tension and compression are different, while, in tension the initiation is followed by a 

drop-in stress and then a plateau, in compression the stress continues to increase, and 

the plateau is less distinct, as shown in Figure 2.6b. (Sittner, 2006) 
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Figure 2.6 - Schematic drawing of stress-induced phase transformations as observed in a uniaxial tensile 

loading/unloading experiment with two-step transformations. Stress is plotted as a function of strain. 

(Olbricht, 2011) (b) stress x strain curves (compression and tension behavior). [adapted from (Sittner, 

2005)] 

Harrison reported about 20 physic characteristics that may be used to assess the changes 

associated with the functional characteristics of shape-memory alloys (transformation 

temperatures and strain recover). Harrison also highlights some technics such as 

hardness, resistivity measurement, differential scanning calorimetry (DSC) and 

thermomechanical tests, among techniques that are based on the SME itself. In the 

current study, in addition to functional properties, the structural differences were 

investigated, by some techniques as: DSC, dilatometry, three-points bending, optical 

microscopy, x-rays among other techniques. (Harrison, 1990) 

 Precipitation Phenomena 2.1.3.

In Ni-rich Ni-Ti alloys, during aging or slow cooling from high temperatures, it is 

possible to observe the precipitation sequence: B2→Ni4Ti3→Ni3Ti2→Ni3Ti (Otsuka, 

2002). 

The precipitation processes in Ni-rich Ni-Ti alloys was studied by Nishida et al. 

(Nishida, 1986), who reported the TTT (time-temperature-transformation) diagram for 

Ti-52 at% Ni composition alloy, as shown in Figure 2.7. For shorter aging time and 

lower temperature, the Ni4Ti3 (metastable phase with a rhombohedral structure) are 

observed. The presence of this precipitate is important to improve the shape memory 

characteristics, since it is distributed on a very fine scale. For intermediate time and 

intermediate temperature, the Ni3Ti2 phase (metastable) appears. However, for longer 

aging time and higher aging temperature, the Ni3Ti (stable) phase occurs. Ni3Ti presents 
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tetragonal structure. The diffusional transformations in this system occurs in this order: 

Ni4Ti3  Ni3Ti2  Ni3Ti. 

 

Figure 2.7 - TTT diagram describing aging behavior for Ti-52 at%Ni. (Nishida, 1986) 

Pelton et al. (2000) reported a TTT diagram (Figure 2.8) considering shorter aging 

times for precipitation phenomena to occur, thus supporting the industrial application 

Ni-Ti alloy. This study showed that the heat treatments until 400 ºC show an increase of 

the Af, from 400 to 500 ºC a decrease of transformation temperature was observed, and 

above 500 ºC, the tendency of the evolution of the transformation temperature is 

inverted. The maximum in the precipitation reaction kinetics is observed at about      

425 °C, the Af increases considerably after this heat treatment temperature. (Pelton, 

2000) It is known that these precipitates (Ni4Ti3, Ni3Ti2, Ni3Ti) can be formed when the 

Ni-Ti alloy is slightly Ni-rich. But, for Ti-rich Ni-Ti alloys, only Ti2Ni precipitates may 

exist. (Saburi, 1998) 

 

Figure 2.8 - TTT (time-temperature-transformation) for the effect of shorter ageing temperature and time 

on the transformation temperature of Ti-50.8% Nitinol wire with a starting Af temperature of 11 ºC. 

(Pelton, 2000) 
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Due to the presence of coherent Ni4Ti3 in the matrix, or to the presence of dislocation 

networks, the thermoelastic transformation occurs, either stress or thermally-induced 

(Otsuka, 2005).  

Because of the precipitation phenomena (Ni4Ti3), the R-phase also can be observed 

during aging treatment. Due to association with a large lattice deformation, these 

precipitates promote a resistance to formation of B19’. However, R-phase 

transformation has a significant smaller lattice deformation and is much less affected by 

the presence of particles. These precipitates formed during aging favor the of R-phase 

formation previously to transforming to B19’. Thus, Ni-rich Ni-Ti alloys usually submit 

a two-stage transformation (B2↔R↔ B19’). (Wang, 2014) 

The Ni-rich Ni-Ti alloys after aging at intermediate temperatures (between 400 and       

500 ºC), also show am abnormal multiple-stage (3-stage) martensitic transformation.  

Fan et al. (2004), reported a comparison between low and high Ni content alloys, and 

showed that the grain boundaries are a necessary ingredient for the formation of 

multiple-stage transformation, but not a sufficient condition. Ni content is an important 

factor in controlling the transformation behavior. The alloys which have low Ni content 

experimented the multi-stage transformation, while the alloys with high Ni content not.  

The multi-stage transformation in alloys with low Ni content occurs due to the 

difference in the kinetics of Ni4Ti3 precipitation during aging treatment between the 

grain boundary and grain interior. This difference is result of a preferential precipitation 

around the grain boundary region and a practically grain interior precipitate-free. They 

suggested that the B2→R→B19 occurs in the grain boundary region, and B2→B19’ 

occurs in the grain interior. The alloys with high Ni content show a small difference in 

the nucleation rate between grain boundary and grain interior due to large driving force 

for precipitation by the Ni supersaturation. This behavior occurs independent of the 

aging time. (Figure 2.9) (Fan, 2004) 
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Figure 2.9 - A unified model for explaining the microstructure evolution at low Ni supersaturation (a and 

b) and high Ni supersaturation (c and d). It also explains both three-stage and two-stage transformation 

behavior of supersaturated Ti–Ni solid solution. (Fan, 2004) 

The commercial Ni-rich Ni-Ti alloys, usually have a small volume fraction of 

precipitates, as Ni4Ti3. These precipitates are distributed in the B2 matrix, affecting the 

transformation temperatures and mechanical characteristics of the alloy. A study by 

Tang et al. (Tang, 1997)(Tang, 1999), which was improved by Frenzel et al. (Frenzel, 

2010) (Figure 2.10), analyzed the effect of the alloy composition on the Ms 

temperatures and reported that the change of 0.1 at.% Ni results in a change of about 10 

ºC of the transformation temperature (Elahinia, 2012). As this variation is much smaller 

than the normal composition tolerances for the engineering materials, the Ni-Ti 

manufacturing demand a lower tolerance, which results in higher costs.   
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Figure 2.10 - Dependence of Ms Temperature on Ni composition of Ni-Ti alloys, left Tang et al. (Tang, 

1997), right Frenzel et al. (Frenzel, 2010) 

 

The current study focused on the thermomechanical process to produce in the future 

orthodontic archwires, and in this field, many customers request certification of the Af 

temperature to ensure that the product is austenitic at human body temperature. Some 

customers specify that the measurements are obtained by differential scanning 

calorimetry (DSC).   

2.2. Processing 

Ni-Ti alloys exhibit good workability compared with other SMAs, but cold workability 

is poor when compared with other materials such as steel. As far as fabrication of Ni-Ti 

alloys is concerned, the casting methods followed by other mechanical and/or thermal 

processes such as hot or cold working and heat treatments (Figure 2.11), with the latter 

having an important role in the shape and application setting of the alloy (Nakahata, 

2011).  Moreover, the producing process of the Ni-Ti - SMA is critical and specifically 

affects ductility, machinability, composition homogeneity, elastic modulus, 

biocompatibility as well as transformation temperatures and microstructure. All these 

characteristics are fundamental for the applications of the material. As mentioned 

previously, this study is focused on the manufacturing requirements for wires and the 

following topics will detail the requirements.  
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Figure 2.11 - Schematic view of NiTi manufacturing process. [adapted from (Nakahata, 2011)] 

 Casting Process 2.2.1.

Ni-Ti alloys manufacturing starts at the melting step. Firstly, the raw materials must 

have as high purity as possible, since the existence of impurities, such as oxygen, 

nitrogen, and carbon can affect seriously the homogeneity of the alloy, thus creating 

uneven composition distribution and change of functional properties of the material.  

Many techniques are used to accomplish the melting process, which includes Vacuum 

Induction Melting (VIM), Vacuum Arc Remelting (VAR) and Electron Beam Melting 

(EBM). However, in this study, only Vacuum Induction Melting and Vacuum Arc 

Remelting were used. These techniques are the main methods of melting commonly 

used for the Ni-Ti alloys manufacturing, providing a transformation temperature control 

of ±5 °C. (Elahinia, 2012) (Reinholz, 2012) The cost of production by either method is 

similar and they both provide suitable material for current medical device requirements 

(ASTM E-112-96, 2000). 

The VIM process is commercially exploited since the ingots from several grams to 

many kilograms may be processed. This process with graphite crucibles is attractive 

because it provides alloys with good chemical homogeneity, it is the cheapest method 

and can be easily handled. VIM process involves melting under vacuum or an inert gas 

atmosphere for the melting of all raw materials. However, it is known that melting SMA 

in graphite crucibles results in an increase of the impurities, such as carbon contents in 

the alloys. (Drennen, 1968) The Ni-Ti alloy melting dissolves carbon from the graphite 

crucibles and some TiC particles are formed during solidification, thus promoting an 

increases of the Ni-concentration and a decrease of the phase transformation 

temperature. (Frenzel, 2004a) The contamination by carbon can be minimized coating 

the graphite crucible with the Ti (bars or disk) to create a TiC diffusion barrier. (Zhang, 
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2005) (Saburi, 1998) (Suzuki, 1998) (Wu, 2002) (Frenzel, 2004b) Even with the inert or 

vacuum atmosphere to impede reactions with the atmospheric contaminants this method 

is incapable of completely stopping the peritectic reaction that forms Ni2Ti4O and TiO2 

oxides. After casting, during the forming processes, these inclusions can form particle 

void assemblies (PVA) and thus promote crack propagation. The oxides are generally 

larger than carbides and fracture more readily to form the PVAs. (Frenzel, 2010) 

(Otubo, 2008) (Frenzel, 2007) (Panton, 2017) (Zhang, 2005) (Frenzel, 2004b) 

(Reinholz, 2012) 

VAR process uses direct current (DC) to melt a compacted Ni-Ti into a water-cooled 

copper crucible that promotes less contamination. This process allows to give the ingot 

an adequate shape to begin the thermomechanical processing. (Coda, 2012)       

(Frenzel, 2004b) 

At the beginning, Ni-Ti alloys have been produced satisfactorily by both vacuum 

induction and arc melting methods. But this process has a problem that is the necessity 

of multiple remelting to ensure chemical homogeneity. As-cast Ni-Ti samples have a 

lower ductility, limited functional properties and lower mechanical strength.        

(Mohd, 2014) (Frenzel, 2004a)  

 Heat Solution Treatment Before Thermomechanical Process 2.2.2.

After melting the ingots, they are often solubilized to ensure homogeneity. Zhang et al. 

(2007), reported that the solution-treatment temperature is no much fundamental for the 

transformation temperature and shape memory properties of the Ti-Ni system, as long 

as the heat treatment is performed in the single-phase B2 regime and oxidation is 

avoided. (Zhang, 2007) 

This study observed Ni-Ti alloys with a Ni range between 49.3 and 50.8% at. Figure 

2.12 shows the partial phase diagram of the Ni %at. There it is highlighted the Ni range 

that was studied. According to the partial phase diagram represented by Povoden- 

Karadeniz et al. (2013), in the temperature range between 650 ºC and 1310 ºC a fully 

B2 matrix can be achieved. (Povoden-Karadeniz, 2013) Meanwhile, Zhang et al. (2007) 

also reported that the temperature over to 1090 ºC can promote problems, such as 

oxidation and order-disorder transition in B2 portion of the Ti-Ni system. (Zhang, 2007)   
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Figure 2.12 - Metastable phase diagram of the Ti–Ni system with the Ni content rang studied.                   

[adapted from (Povoden-Karadeniz, 2013)] 

However, few studies concerning the effect of the solution heat treatment on Ni-Ti 

alloys are reported in the literature.  

Paryab et al. (2010), studied the effect of different heat treatment parameters on 

microstructure and hardness of Ni-Ti (58.5% wt. Ni) SMA. They observed that at high 

temperatures (800 ºC) the matrix has a lower nickel content due to Ni3Ti precipitation. 

This results in a higher Ms temperature, as compared to the matrix treated at 700 ºC. 

(Paryab, 2010) 

Simões et al. (2015), evaluated the influence of solubilization thermal treatments on a 

Ni-Ti SMA, produced by VIM process and reprocessed by plasma melting followed by 

injection molding, in order to compare the thermal properties regarding to the raw 

states. The thermal treatments were carried out at 850 ºC with different times and they 

used the Differential Scanning Calorimetry (DSC) test to determine the phase 

transformation temperatures. (Simões, 2015) 

As mentioned previously, to control the transformation temperature, it is necessary to 

control the Ni concentration with an accuracy of 0.1%.  Since it is complex to control 
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Ni content around 50 at.% with accuracy, the manufacturers normally choose a physical 

control indicator instead of Ni concentration, e.g. through the transformation 

temperature.  

 Thermomechanical Process 2.2.3.

The remelted Ni-Ti alloy has a microstructure that must be refined by additional 

deformation (hot and cold) processes to achieve the desirable properties.  

Thermomechanical processing can be applied to promote the control of the alloys 

characteristics. From the engineering point of view, the control of thermomechanical 

treatment is fundamental in two aspects: (i) to promote the shape of semifinished 

products (metal sheets, tubes, bars) and (ii) to optimize the microstructure to obtain the 

most adequate properties. (Treppmann, 1997)  

Among the final products, the wires are the most common. The knowledge about the 

Ni-Ti alloys properties and the effect of the processing variables are fundamental to 

adequate application of the alloy. 

 

 Hot Working 2.2.3.1.

After production of the ingots, hot working steps are required: (i) to reduce the initial 

size of the ingot; (ii) to change the ingot structure and replace it with an improved one, 

with finer grain structure and higher chemical homogeneity; (iii) to define the texture 

adjustment; (iv) to incorporate the shape memory effect (SME). Hot working needs to 

be applied at a temperature above the recrystallization temperature. At this higher 

temperature, atomic mobility can repair the structural damage caused by the metal-

working process.  

Ni-Ti alloys present a good workability, especially at higher temperatures over 700 ºC, 

where it becomes more stretchable due to its reduced strength. If the Ti content is 

locally higher, due to segregation, a liquid phase may appear at a temperature over    

950 ºC and cracks can form during processing. Thus, it is indicated to use a processing 

temperature between 800 to 900 ºC. (Saburi, 1998)     
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Hot deformation temperatures at above 900 
o
C are not advised. Above this temperature, 

excessive surface oxidation appears. The oxide layer formed is adherent to the material 

and often leads to the risk of oxide inclusion. (Ramaiah, 2006) 

The temperature of 800 °C provides good workability without massive oxide formation 

by higher temperatures range. The surface oxidation more difficult the thinner wires 

fabrication, which have relatively large surface areas. The most frequently used method 

to process rods with diameters greater than 4 mm, is hot working, such as hot forging. 

On the other hand, to produce thinner wires the cold working is indicated, to avoid 

surface oxidation. (Mirzadeh, 2014) Due to these oxidations, this process requires the 

removal of the superficial oxidation, following the solution heat treatment, so that the 

intermediate heat treatment steps can be done.   

The properties of hot deformed materials are markedly influenced by the characteristics 

of the microstructure that is produced by the working process. The microstructure will 

be affected according to the composition of the material, temperature, rate and degree of 

deformation. The deformation alters the grains morphology and increases the 

dislocations density, and, as a consequence, the material’s hardness is increased, and the 

deformation is more difficult to occur. However, as known, during the deformation at 

high temperatures some mechanisms of microstructural restoration, such as recovery 

and recrystallization may occur, and are called as dynamic recovery (DRV) and 

dynamic recrystallization (DRX). (Humphreys, 2004a) 

Occurrence of DRV or DRX is inevitable during the hot deformation of Ni-Ti alloys. 

Understanding these mechanisms during the hot deformation establishes the bases for 

obtaining the suitable microstructure. Depending on the temperature and strain rate as 

well as the materials characteristics, one of them can be the controlling mechanism. 

There are many studies about the occurrence of these phenomena during hot 

deformation of Ni-Ti alloys. (Dehghani, 2010) (Morakabati, 2011) (Jiang, 2013a) 

It was reported that dynamic recrystallization is the dominant phenomenon for 

Ni60wt%-Ti40wt% intermetallic alloy when deformed at 950 and 1150 ºC     

(Dehghani, 2010). 

Srinivasan et al. (1992), observed the hot deformation behaviors of the polycrystalline 

nickel in the temperature range between 750 and 1200 ºC and strain range 0.003–100 s 
-

1
 using processing maps developed based on dynamic material models. They reported a 
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comparison of the variations of grain size and efficiency at corresponding strain rates 

shows that the DRX temperature corresponding to a 50% change in the grain size is 

similarly to temperature for peak efficiency. However, the efficiency peak in the 

processing map represents the optimum temperature for dynamic recrystallization. 

(Srinivasan, 1992) 

Morakabati et al. (2011), investigated the deformation behavior of a 49.8 Ni-50.2 Ti 

%at. alloy using the hot compression test in the temperature range of 700 ºC - 1100 ºC, 

and strain rate of 0.001 s
-1

 to 1 s
-1

. A processing map of the alloy was developed to 

evaluate the efficiency of hot deformation and to identify the instability regions of the 

flow. They reported the peak efficiency between the 24 - 28% at temperature range of 

900 ºC - 1000 ºC, and strain rates higher than 0.01 s
-1

 in the processing map. The hot 

ductility and the deformation efficiency of the alloy exhibit almost similar variation 

with temperature, showing maximum at temperature range of 900 and 1000 ºC and 

minimum at 700 and 1100 ºC. Besides, the minimum hot ductility lies in the instability 

regions of the processing map. The peak efficiency of 28% and microstructural analysis 

suggests that DRV can occur during hot working of the alloy. At strain rates higher than 

0.1 s
-1

, the peak efficiency domain shifts from the temperature range of                      

850 ºC - 1000 ºC to lower temperature range of 800 ºC - 950 ºC which is desirable for 

hot working of the Ni-Ti alloy. This study presents one type of stress-strain curves 

(Figure 2.13) is characterized by “nearly ascending curves”. The true stress increases 

slightly with increasing strain, this type of flow curves can be seen at temperatures 

lower than 900 ºC. However an instability region has been found at 1000 ºC and strain 

rates higher than 1 s
-1

 and at 1100 ºC and all range of strain rates. (Morakabati, 2011) 

Jiang et al. (2013a) studied the mechanical behavior of Ni-Ti SMA under hot 

deformation with the strain rates of 0.001
−1

 s
−1

 and at the temperatures of 600 −1000 °C. 

This study investigated the DRV and DRX by microstructural evolution. The influence 

of the strain rates, the deformation temperature and the deformation degree on the DRV 

and DRX of Ni-Ti SMA was obtained as well. The results show the combination of 

DRV and DRX at 600 ºC and 700 ºC, but the complete DRX occurs at higher 

temperatures (800 – 1000 ºC). Thus, addition, the strain rates and the deformation 

temperatures have important effects on the size of the grains from DRX. They observed 

that decreasing the stain rate contributes to obtain the large equiaxed grains, as shown in 

Figure 2.14. (Jiang, 2013a)  
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Figure 2.13 – Ni-Ti SMA true stress-true strain curves at different temperatures and strain rate 0.001 s
-1

.  

(Morakabati, 2011) 

 

Figure 2.14 - Optical microstructures of Ni-Ti samples at 800 ºC – (a) 0.001 s
-1

; (b) 0.01 s
-1

; (c) 0.1 s
-1

 and 

(d) 1 s
-1

. [adapted from (Jiang, 2013a)] 

Dehghani et al. (2010), studied the hot compression behavior of the Ti-60.0 wt.% Ni 

alloy, the test was carried out from 950 to 1050 ºC and at a strain rate of 0.001– 0.35 s
-1

. 

They observed that the peak and steady-state stresses decrease with increasing 

deformation temperature and decreasing strain rate. These studies reported that this 

alloy experienced dynamic recrystallization. (Dehghani, 2010) 

Khamei et al. (2010), studied the microstructural evolution during the hot deformation 

of the Ti-55Ni (at.%) and observed that the dominant softening mechanism, is dynamic 

recrystallization by a bulging and necklace mechanism. Usually the nucleation of DRX 
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grains in polycrystals proceeds from prior grain boundaries to no recrystallized regions. 

The new grains are formed at the grain boundary serrations. After the repetition of this 

process, the necklace structure is formed. In addition, this study presents the influence 

of strain on the microstructure of specimen deformed at 1050 ºC and at the strain rate of 

0.1 s
-1

 (Figure 2.15). The initial material has homogenized microstructure with uniform 

grains. It is possible to observe that when the strain is increased to 0.2, the original grain 

boundaries become serrated, and a small number of dynamically recrystallized grains 

were observed on the boundaries grain. The strain increased from 0.4 to 0.7, the DRX 

grains are more evident. At strain of 1.0 there is no significantly sign of initial grains, 

the microstructure is completely recrystallized. Thus, the larger the deformation, more 

fraction of DRX grains are formed. (Khamei, 2010) 

 

Figure 2.15 - Microstructural evolution of Ni-Ti alloy with increasing strain, deformed in compression at 

temperature of 1050 ºC and a strain rate of 0.1 s
-1

. (Khamei, 2010) 
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The onset of DRX can be detected from the inflections in plots of the work hardening 

rate (θ) versus σ (before the peak point of flow curves) as shown in Figure 2.16a. The θ 

– σ curves (Figure 2.16a) show inflection points, which is evident from the appearance 

of a global minimum in -dθ /dσ versus σ curves (Figure 2.16b). These observations are 

considered as signs for the occurrence of DRX. In each curve of Figure 2.16a, the work 

hardening rate (θ) linearly decreases with the flow stress. After that, the curves 

gradually change to another linear line and then drop toward θ = 0 at peak stress. 

Afterwards, the work hardening rate becomes negative and then again tends to θ = 0 at 

steady-state stress. This is better shown in Figure 2.16c and these results are consistent 

with the general DRX behavior (Mirzadeh, 2009) (Mirzadeh, 2010) (Mirzadeh, 2012). 

The characteristic points of flow curves were detected from -dθ/dσ versus σ (based on 

their minimums to find the critical stress for initiation of DRX, σC, as shown in Figure 

2.16b), θ–σ (to find the peak stress, σP, and steady-state stress, σS, as shown in Figure 

2.16c), θ–ε (to find the peak strain εP and steady-state strain εS, as shown in Figure 

2.16d), and lnθ–ε curves (based on their inflection points to find the critical strain for 

the onset of DRX, εC) (Mirzadeh, 2014). 

 

Figure 2.16 - Work hardening rate analyses. It should be noted that third order polynomials were fitted to 

the θ–σ curves (until the peak point corresponding to θ= 0) to get smoother -dθ/dσ–σ curves. (Mirzadeh, 

2014) 
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 Cold Working 2.2.3.2.

Cold deformation aims to acquire the final form and the required mechanical properties 

according to its final application. Comparing to the hot working, cold working is more 

difficult. The workability depends on the composition of the alloy. As mentioned 

previously, the hardness increases with increasing Ni content, especially if the alloy 

exceeds 51% at Ni.   

Then, after hot deformation steps, the process is followed by a series of cold working 

processes, with intermediate annealing thermal treatments in a range of temperatures 

between 500 ºC and 800 ºC. This heat treatment promotes the rearrangement of the 

dislocations, imposed by deformation, thus increasing its ductility and restoring the 

structure. In this case, the recovery or recrystallization that occurs is called static; the 

annealing is usually carried out without stress or strain. These mechanisms occur when 

the material is annealed at high temperature (above recrystallization temperature) for a 

certain time.  In addition, an oxide layer, formed by the heat treatment, on the wire 

surface improves the lubrication. (Suzuki, 1998) 

Świec et.al, studied an alloy of nominal chemical composition of Ni50.4Ti49.6 alloy after 

cold rolling in the martensitic state and further annealed. They reported that the cold 

deformation can affect the shape memory effect and transition temperatures. Due to 

reduction of the grain size, the hardness increases with increasing deformation degree. 

Transition temperatures decrease with the increase of deformation degree and the 

decrease of annealing temperature. (Świec, 2016)  

 Heat Treatments 2.2.4.

Heat treatments on Ni-rich Ni-Ti alloys, aim to reduce and/or eliminate residual 

deformation introduced by deformation processes, as well as the solution and ageing 

treatment aim to control the presence, shape and distribution of the Ni-rich precipitate in 

the matrix. They are important to improve functional properties and the mechanical 

properties of Ni-Ti SMA.  

To achieve optimized properties, before deformation by cold work, about 30-40%, a 

previous heat treatment must be applied. These materials are typically heat treated at 

about 500 °C. 
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After ageing treatment, the Ni-rich Ni-Ti alloy present the multi steps transformation. 

The literature presents factors to explain this, such as: heterogeneous distribution of 

stresses in the matrix of B2 around the precipitates of Ni4Ti3, due to the degree of 

incoherence between the precipitates and the matrix of B2 and compositional 

heterogeneity in the matrix of B2 around the precipitates of Ni4Ti3. (Khalil-Allafi, 2004) 

(Zhou, 2005) 

Lekston. et.al., showed the results of the research on Ni-Ti rods after hot rotary forging 

before the solution heat treatment at 800 °C/15 min, 750 °C/15 min and 700 °C/15 min 

followed by quenching into the mixture of water and ice. The samples quenched from 

800 °C/15 min were aged at 300, 350, 400, 450, 500, 550 and 600 °C for 30 and          

60 minutes. They reported that at room temperature the samples after solution treatment 

and aging present B2 and a small quantity of B19’ phases. The DSC measurements 

showed one step reversible martensitic phase transitions B2 ↔ B19’ for the alloy after 

solution treatments and the aged samples at 400 and 450 ºC presented multi steps 

transitions (Figure 2.17). The sample after heat solution treatment at 800 ºC showed the 

Af  near room temperature. (Lekston, 2016) 

 

Figure 2.17 - DSC charts of the samples after solution treatment at 800 ºC/15 min and aged at 400, 450, 

and 500 ºC for 30 and 60 minutes. (Lekston, 2016) 

Jiang et.al. (2013b), studied the influence on microstructural evolution and mechanical 

behavior of the Ni-Ti SMA with a nominal composition of Ni50.9Ti49 which was 

subjected to solution treatment at 850 ºC during 2 hours and subsequent ageing for 2h at 

300 ºC,   450 ºC and 600 ºC. They reported that the solution treatment contributes to 

eliminate the Ti2Ni phase in the as-received Ni-Ti sample. Solution treatment leads to 

ordered domain of atomic arrangement in Ni-Ti alloy. Moreover, solution treatment can 
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eliminate the dislocation defects in the as-received Ni-Ti sample. For the aged samples, 

all treatments showed a Ni4Ti3 precipitates, the R-phase and the B2 austenite coexist in 

the NiTi matrix at room temperature  (Jiang, 2013b) 

Yeung et al. (2004), explored the effects of heat treatment process in austenite phase 

transition temperature on a near-equiatomic Ni-Ti (Ti–55 wt.% Ni) and adjusted the 

transition temperature by heat treatment method. This study applied the solid solution 

treated at 800, 850 and 900 ºC during 1 hour. They reported that the austenite transition 

can be manipulated by adjusting some heat treatment parameters such as: time and 

temperature. However, the temperature is the most critical factor to change the 

transition temperature. (Yeung, 2004) 

 Functional Gradient  2.2.5.

Some applications of Ni-Ti SMAs, requiring a wider controllable range, a wider 

temperature/stress range than that associated to a specific composition/heat treatment 

may be required (Otsuka, 2005). In such a situation, the possible solution will be to use 

a functionally graded material (Shariat, 2017). 

Functionally graded SMAs have the benefit of combining the functionalities of the SME 

and those of functionally graded structures. By suitable design, they may display a 

complex deformation behavior that is not observed in uniform shape memory alloys. 

Functional gradient may be introduced by: (i) a geometrical gradient (variable cross-

section along a specific direction), (ii) a chemical composition gradient (either along the 

longitudinal direction, or along the thickness), (iii) a graded heat treatment, or (iv) may 

indirectly arise from a processing technique, such as welding. (Shariat, 2017) 

Shariat et al. (2017) reported that depending on the direction of the property or 

geometry gradient relative to the direction of loading, the designs can be classified into 

two types of gradient configuration: series and parallel designs. They also present that 

the series design is in analogue to the Maxwell model in mechanics, in which the 

external load is applied in the direction of the gradient. The deformation (and 

transformation) occurs sequentially and extended from one end to the other          

(Figure 2.18)  
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Figure 2.18 - Designs of microstructural or compositional functionally graded (FG) Ni-Ti. (a) and (b) 

show examples of functionally graded in series and parallel configuration (d). (e) and (f) show examples 

of the series configuration mechanical behavior and parallel configuration mechanical behavior. [adapted 

from (Shariat, 2017)] 

In this current study was observed the characteristic of the microstructurally or 

compositionally graded Ni-Ti SMA performed by the series configuration.  

The SMAs compositionally graded have variations in composition, such as Ni and Ti 

content, across the material. The heat treatment performed in a Ni-rich Ni-Ti alloy, after 

cold work below recrystallization temperature promotes a progressive increase of the 

Ms temperature with increasing the heat treatment temperature. Concurrently the critical 

stress for inducing the martensitic transformation at a specific temperature above the Ms 

temperature decreases. These treatments affect the mechanical properties and 

transformation, by the formation of the Ni-rich precipitates (coherent and incoherent). 

Thus, these heat treatments provide the formation of the microstructural gradient. The 
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alloy displays, variation in microstructural characteristics, across the material treatment 

direction, but the global composition is uniform. Stress, strain and transformation 

temperature are sensitive to heat treatment.   

Shariat et al. (2017) and Meng et al. (2016) reported that a Ni-Ti wire with 50.8% at. Ni 

(as received sample) exhibits full pseudoelastic behavior during the deformation and 

after electrical heat treatment the sample exhibit two stress plateau over stress-induced 

transformation (Figure 2.19). The deformation of unheated section of the wire displays 

the stress plateau values close to as-received sample and display the pseudoelastic 

recovery upon unloading. The deformation of heated section of the wire displays lower 

stress plateau and shows no recovery upon unloading. They confirm that, this behavior 

is attributed to the over-aging of this section and transform the coherent precipitates 

(Ni4Ti3) into incoherent (Ti2Ni3 and TiNi3) precipitates. The localized heat treatment 

promotes the formation of the Ni4Ti3 precipitates; the internal section, being the one that 

is heated to a higher temperature, will have a more intense precipitation which will give 

rise to Ti-richer matrix; this higher Ti content of the matrix brings as a consequence a 

higher transformation temperature and, ultimately, also a lower critical stress for the 

austenite – martensite stress-induced transformation. (Shariat, 2017) (Meng, 2016)       

 

 

Figure 2.19 - Tensile deformation behavior of Ti-50.8 at.%Ni wires after local over-aging by electrical 

resistance heating. (higher plateau – no heat-treated section and lower plateau – treated section).     

(adapted from (Shariat, 2017)) 

 



31 

 

2.3. Textural Evolution 

As mentioned in earlier topics, the manufacturing of the Ni-Ti materials involves 

several processing procedures, such as rod drawing and heat treatment, aiming the 

modification of microstructure, the transformation temperatures and the mechanical 

properties. These procedures can also lead to texturing (crystallographic alignment) of 

the material. The texture has an influence on its mechanical properties.   

Normally, in a polycrystalline material the grains have a crystallographic orientation 

different from the one presented by its neighboring grains. When the material with a 

deformation texture is recrystallized, the new structure of the grain can present a 

different texture from the deformation texture: the recrystallization texture. Ni-Ti alloys 

usually show the typical α<110> fiber texture for the bcc structure. (Miyazaki, 1989) 

(Laplanche, 2017) 

Suresh et al. (2012), studied the evolution of grain boundary microstructure and 

crystallographic texture during hot rolling of a 50.6 % at.Ni Ni-Ti alloy. The alloy was 

produced by the vacuum arc melting technique. The starting material was heat treated at 

1000 ºC, followed by water quenching. The treated samples were hot rolled at 700 ºC to 

total reductions of 60 %, 80 % and 90 %, with a 10 % reduction per pass and 

intermediate annealing at 700 ºC during 3 min. The crystallographic texture of the 

deformed sample consists mainly of <111> fiber texture. The texture components on the 

fiber exhibit some correlation with the type of coincidence site lattice boundary. They 

reported the complete orientation distribution function (ODF) for starting material and 

the rolled samples, calculated from the X-ray diffraction pole figures. Figure 2.20 shows 

the ODFs for the starting materials and deformed materials, where 60 % rolled sample 

displays a very weak texture and the texture is strongly defined after 80 % rolling, but 

decreased again for the 90% rolling reduction.(Suresh., 2012)  
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Figure 2.20 - The ϕ2 sections of the complete orientation distribution function (ODF) of (a) starting 

material and (b) 60 %, (c) 80% and (d) 90% deformed Ni-Ti. (Suresh, 2012) 

 

In the past, Willemse et.al (1991), investigated the texture of Ti-44Ni-5Cu (at %) shape 

memory alloy wire after cold drawing and annealing at 550 ºC during 3 minutes under 

tensile stress. The textures were observed by x-ray diffraction patterns, using the 

transmission mode. The texture of the austenite (B2 structure) and martensite (B19’ 

monoclinic) phases was determined as a function of the percent of cold deformation 

during the drawing process and the number of cycles on thermomechanical cycling. 

Figure 2.21 shows the example of the observation of the texture by x-ray diffraction 

patterns, where the [110], [1-10] [101] and [-101] directions are parallel to the wire axis. 

The preference for the [-101] component was reported. However, after heating the wire 

above Af temperature and cooling at room temperature, this preference disappears. The 

preference develops again after thermomechanical cycling. (Willemse, 1991) 
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Figure 2.21 - Observed reflection on wire axis and diffraction pattern of the B2 phase. (Willemse, 1991) 

Paula et.al. (2007), studied the evolution of texture in a plate of Ni-Rich Ni-Ti alloy 

(50.8at%Ni-Ti) SMA. (Figure 2.22 (a) as-received sample, (b) heat treated sample and 

(c) heat treated + cold rolled + heat treated sample). The texture analysis at room 

temperature was performed with the rolling direction aligned with φ = 0º and the 

transversal direction with φ = 90º. Due to the thermal/mechanical alloy history 

(annealed, as-received condition, and subsequent thermal treatment at 500 ºC during   

30 minutes) different phase transformation temperatures are observed. They reported 

that the heat treatment at 500 ºC promoted recrystallization and Ni4Ti3 precipitation was 

observed. This contributes to stress relief inside the austenite grains, the texture 

components observed close to  = 18º associated with texture components 

{210}<110>B2 and other components close to  = 30º associated with texture 

components {211}<110>B2, with RD in <110>, as shown in Figure 2.22. (Paula, 2007) 

(Ribeiro, 2011) 

 
Figure 2.22 - Pole Figures (110)B2 obtained from as-received, heat treated at 500 ºC and deformed. 

(Paula., 2007) 
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Laplanche et.al., studied the evolution of microstructure during processing of 51% at Ni 

Ni-Ti alloys hot rolled. The process results in a heterogeneous microstructure which 

reflects a temperature gradient in the sheet. Near the surface, equiaxed and randomly 

oriented grains are observed, while the interior grains present a strong texture 

containing two main texture components {111}<110> and {110}<110>; these interior 

grains are elongated along the rolling direction. On the other hand the cold rolling with 

a recrystallization heat treatment produces homogeneous microstructure, promoting, as 

a consequence, a random grain orientation along the rolling and transverse directions, 

while the normal direction shows a strong γ-fiber {111}<uvw> texture.         

(Laplanche, 2015) 

2.4. Orthodontic Archwires 

As this study focused on an alloy that is intended to be used in the orthodontic segment, 

with superelastic characteristics at room and oral temperature, it is fundamental to 

discuss some characteristics about this product. Through these characteristics it is 

possible to understand the properties that need to be achieved in order to obtain the most 

suitable functional properties for orthodontic segment.       

The aim of orthodontic treatment is to move the teeth to the correct position through the 

application of forces (Figure 2.23).  

 

Figure 2.23 - Sequence of the orthodontic treatment.                                                                                 

(Files provided by Dr. Raffaela Magalhães with patient authorization) 

The orthodontic mechanics principle is based on elastic energy storage and its 

conversion into mechanical work giving rise to tooth movement. (Cardoso, 2009)  

However, the ideal situation is when this force produces tooth movement with light and 

continuous force, without damage to the teeth or periodontal tissues. When a force is 

applied, the orthodontic archwire needs to display an elastic behavior during a period of 
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weeks to months. For this reason, the superelasticity it is an important property, due to 

biological compatibility with the tooth movement, during a long period of deactivation. 

The superelastic behavior can be analyzed by the shape of load-deflection tests (three-

point bending test). The plateau during unloading (Figure2.24 – yellow box)  has been 

defined as the superelastic actuation region during the treatment (Nespoli, 2005).        

Figure 2.24 shows the load-deflection curves of the wires with graded actuating forces 

at different temperatures.  

Moreover, different stages (initial, intermediate or final) of the orthodontic treatment 

require different orthodontic archwires.(Proffit, 2013) (Melsen, 2007) 

 

Figure 2.24 - Load-deflection curves of the wires with graded actuating forces at 

different temperature and the superelastic actuation is identified. 

Since the beginning of the orthodontic history, the archwires have become more 

complex and convenient for different clinical cases. Due to the advancements in the 

technology over time, some improvements of the orthodontic archwires properties were 

performed.  

Earlier, Edward Angle, who was an important professional at orthodontic field, has 

chosen the gold alloys as his favorite material for the orthodontic archwires. But the 

economic factors helped to determine the acceptance of stainless steel (SS) over gold. 

(Kusy, 2002) The SS alloys also show a good combination of mechanical properties and 

cost. (Muguruma, 2018) (Kusy, 2007) Afterwards, Elgin Watch Company developed a 

complex alloy: cobalt (40%), chromium (20%), iron (16%) and nickel (15%). This 
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cobalt – chromium alloy was marketed as ElgiuTM (Rocky Mountain Co).  (Cardoso, 

2009) These alloys show mechanical properties similar to stainless steel for the same 

dimensions of the wires producing force with the same magnitude. (Khamatkar, 2015)  

In the 70s the Beta-titanium wires were introduced. They are also known as titanium-

molybdenum alloy (TMA) (ORMCO, Orange, CA, USA) or Titanium- Niobium 

(ORMCO, Orange, CA, USA). Their first application on the orthodontic field occurred 

in the 1980s and a different titanium alloy was called as "high temperature". (Johnson, 

2003) These alloys have: an excellent formability, lower forces, good resistance to 

corrosion and good biocompatibility but they are expensive. (Cash, 2004) 

Just in the 80s was reported the use of a new superelastic Ni-Ti alloys. These alloys 

displayed elastic recovery and lower stiffness than other conventional Ni-Ti wires. 

However, in the 90s the thermoactivated Ni-Ti alloys were introduced. These alloys 

have a superelastic effect activated by oral temperature. (Gioka, 2002) Even in the 90s 

Ni-Ti with the addition of copper (CuNiTi) became available on the market. Still in 

1990s occurred the emergence of gradually thermoactivated Ni-Ti wires. These wires 

show a range of different forces that can be generated by the same archwire in its 

different segments. (Kotha, 2014)  

The archwires are chosen depending on their properties. For the initial stage of the 

treatment (leveling and alignment), the most commonly used archwires are Ni-Ti 

orthodontic archwires (SMA). As Ni-Ti archwires have the unique properties shape 

memory effect and superelasticity, they are useful for initial leveling and alignment of 

teeth. (Riley, 2009) 

To support the discussion about Ni-Ti orthodontic archwires behavior in this study, two 

types of orthodontic archwires are presented: superelastic and thermally active 

archwires.    

Ni-Ti superelastic orthodontic archwires usually are nearly equiatomic proportions or 

slightly Ni-rich, promoting the stability of the austenite phase at room temperature          

(Af ≤ 25 ºC). However, the thermally active archwires are Ti-rich, and the Af 

temperature is higher than for superelastic orthodontic archwires (Af > 25 ºC). 

Dependent on the composition, the Af temperature for these archwires can be close to 

oral temperature (~34 ºC). The thermally active archwire has a fully B2 structure at oral 

temperature, whereas at room temperature is composed of martensite, austenite and 
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perhaps R-phase. Thus, these orthodontic archwires have the capability to be more 

easily applied to the malposed teeth. At lower temperatures (e.g. cold water 5 °C) the 

archwires can be deformed into the desired configuration and ligated in the teeth before 

heating above its transition temperature range, e.g. by human body temperature        

(~37 ºC). At this temperature, the archwire attempts to return to its original form, 

displaying shape memory.(Hurst, 1990)  

Many authors investigated the thermal and mechanical behavior of the Ni-Ti 

orthodontic archwires. 

Iijima et al. (2002), studied three Ni-Ti SE archwires, in order to evaluate the effects of 

temperatures changes (from 37 to 60 ºC) in the mechanical properties of the wires. This 

study concludes that the load delivered by the Ni-Ti wires increases on heating and 

decreases on cooling. (Iijima, 2002) 

Through the heat treatment, as mentioned previously, the functional gradient can be 

introduced in the orthodontic archwire. This archwire shows light forces in the incisive 

segment, medium force in the premolar segment and a higher force in the molar region. 

The literature reported an actuating force of about 3 N in the molar region, 1.8 N in the 

premolar region and in the incisive region displayed a plateau force of 0.8 N        

(Malik, 2015). Currently, the archwires with graded actuating forces are commonly used 

during the orthodontic treatment. (Mullins, 1996)  

As shown in section 2.1, the functional characteristics present in these alloys are a 

consequence of phase transformations that take place within well-defined temperature 

range or stress range, depending on being thermal or stress-induced. These 

temperature/stress ranges are a function of chemical composition and heat treatment of 

the material.  

For applications, e.g. orthodontic treatments, requiring a wider controllable range, a 

wider temperature/stress range than that associated to a specific composition/heat 

treatment may be required. The use of functionally graded materials is a good solution. 

This type of materials can display the martensitic transformation at a different 

temperature or stress along their length. (Shariat, 2017) 
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3. Materials and Methods 

 In this section, the characteristics of each alloy studied, the thermal and 

thermomechanical treatment applied, and characterization techniques used in this 

investigation are reported.  

The materials are described in three sections:  

- Alloys in the as-cast and remelted conditions;  

- Thermomechanical processing;  

- Ni-Ti orthodontic archwire. 

Three distinct Ni-Ti alloys in the as-cast and remelted condition were used for the 

thermomechanical processing (forging process). Three alloys with different Ni 

concentration from 49.3 to 50.8% at.Ni (global composition). The main alloy 

investigated in this study was 50.8% at.Ni alloy. Moreover, in parallel to this 

investigation, a study of the 49.3% at.Ni (slightly Ti-rich) and 49.9% at.Ni (very close 

to equiatomic composition) alloys was done, to understand the relationship between 

properties and structure.  

The thermal and thermomechanical treatments were applied in order to understand the 

functional behavior, by controlling the thermophysical, structural/textural and 

mechanical characteristics. Thus, the forging process steps were analyzed to identify the 

main characteristics of the structural changes and their correlation with the processing 

parameters. 

In addition, orthodontic archwires were used in a reverse engineering approach to 

identify the best process sequence that could be applied to achieve the most adequate 

characteristics of the product. Following this trend, the characterization of commercial 

3 
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functionally graded Ni-Ti orthodontic archwire was performed and the introduction of 

graded functionality in conventional archwires was analyzed. 

Different characterization techniques were used throughout the study: wavelength 

dispersion spectroscopy (WDS), Electronic Microprobe analysis (EMPA), optical 

microscopy (OM), scanning electron microscopic (SEM), energy dispersive X-ray 

spectroscopy (EDS), Electron Backscattered Diffraction (EBSD), X-ray diffraction 

using conventional lab sources (XRD),  X-ray diffraction using synchrotron radiation 

(SR-XRD), differential scanning calorimetry (DSC), thermomechanical analysis (TMA 

- dilatometry (DT), mechanical tests (compression/tensile and three-point bending). The 

techniques are presented with their general characteristics. 

3.1. Ni-Ti Alloys 

The materials investigated in this study were three Ni-Ti alloys, which are Ni-rich 

“alloy 1” with 50.8% at. Ni, “alloy 2” with 49.9% at. Ni and “alloy 3” with 49.3% at. Ni 

(global composition), Table 3.1. These alloys were manufactured and supplied by Prof. 

Jorge Otubo of the Technological Institute of Aeronautics (ITA), Brazil. 

Table 3.1 – Alloys: 1, 2 and 3 Ni and Ti contents (%at). 

Alloy Ni %at. Ti %at 

1 50.8 49.2 

2 49.9 50.1 

3 49.3 50.7 

 

 As-cast and Remelted alloys   3.1.1.

Three ingots were produced by vacuum induction melting (VIM) under Argon 

atmosphere using a graphite crucible. After melting, the materials were cut into pieces 

with a mass of approximately 90g and remelted by Vacuum Arc Remelting (VAR), 

using a copper crucible to maintain low carbon levels (Figure 3.1a). The ingots remelted 

in the copper crucibles have an appropriate shape to start rotary forging, as shown in 

Figure 3.1b. For this study two ingots of each alloy were used (Figure 3.1c): one was 

used for rotary forging, another for complementary tests. The remelting parameters 

were: current 230A, direct polarity, constant current, vacuum at 10
-2

 mbar. 
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Figure 3.1 – Vacuum Arc Remelting (VAR) a) During remelting process; b) After remelting process; and 

c) three processed ingots. 

The overall chemical composition of the materials was determined by wavelength 

dispersion spectroscopy (WDS – Oxford Instruments, controlled by INCA software, 

available at Instituto Nacional de Tecnologia (INT), Brazil). The WDS analysis was 

performed on an SEM FEG 450 with a tungsten filament. The WDS parameters were: 

20 kV accelerating voltage, WD 12 mm and probe current of 13.3 nA for 5 spots in 

metal matrix of each sample were used. The magnification used was enough to choose 

the metallic matrix region inside the NiTi dendrites without influence of the 

interdentritic regions (TiC and/or oxides (TiO2 and/or Ti4Ni2O), using magnifications 

10.000x and 20.000x.   

Given that the aim of this study is to get a material that displays superelastic behavior at 

room temperature, the NiTi_1 alloy (Ni-rich alloy with 50.8% at.Ni, as shown before) 

was chosen as the main alloy for this study.   

Moreover, the same rotary forging process was performed in all the three alloys. The 

alloys 2 and 3 (with different Ni contents, as mentioned previously) were analyzed to 

compare their results with alloy 1 results during discussion of the results. 

 Thermomechanical Process 3.1.2.

This study was focused on the improvement of the manufacturing requirements for Ni-

Ti wires. The following sections details the thermomechanical processing (rotary 

forging) steps which produced the main samples for this study.    

The thermomechanical processing of the ingot started by heating at 800 ºC during       

30 minutes. After this heating, the ingots were shaped to the circular section wire by hot 

and cold forging steps until they reached a final diameter of around 3 mm.  
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In order to represent the processing applied and to facilitate its understanding, a 

schematic with the steps of rotary forging and intercalated heat treatments is shown in 

Figure 3.2.  

 

Figure 3.2 – Scheme of the initial thermomechanical processing applied to the ingots, with forging stages, 

temperature and time of the intercalated heat treatments and sample diameters. 

For rotary forging process two forgers were used: four hammers (for the first two with 

bigger reductions – Figure 3.3a) and two hammers (for the four following reductions, 

two hot, and two cold deformations with smaller reductions – Figure 3.3b). 

 

 

Figure 3.3 - Equipment: a) 4 hammers and b) 2 hammers, used to rotary forging steps 
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Before each forging step, the material was heated up to 800 ºC during 10 minutes. After 

this heat treatment, the material was carried straight from the furnace to forgers. 

However, previously to fifth and sixth steps (cold rotary forging steps), the material was 

heated up to 800 ºC during 10 minutes and quenched into water at room temperature. 

As shown in Figure 3.2, the samples obtained for this study are: A, B, C, D, E and F; 

these samples represent the corresponding steps, with diameter reduction (Eq. 3.1) and 

are highlighted with a red circle in Figure 3.2. Where, φ is the diameter reduction; Δd is 

the change in the diameter and d0 is the original diameter (in our case, d0 = 10 𝑚𝑚). 

 

 

                                                               φ =  
𝛥d

d0
                                                             3.1 

 

 

- Before the rotary forging process (Starting Material) 

(A) as-cast (AC) 

(B) remelted (Rem)  

- Forging Steps  

(C) 1st hot forging step (1F_1h), ( d0 = 10 𝑚𝑚) 

(D) 3rd hot forging step (3F_3h)  

(E) 5th forging step –1
st
. cold-forging step (5F_4h1c)  

(F) 6th forging step – 2
nd

. cold-forging step (6F_4h2c) 

At the 6th forging step a wire with about 3 mm in diameter was obtained.  

Figure 3.4 shows a schematic of the designation of the samples referring to the applied 

rotary forging process. 
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Figure 3.4 - Scheme for the samples identification. 

 

 Heat Treatments 3.1.3.

The heat treatments were investigated by variation of temperature and holding time in 

different processing step samples. 

From remelted condition, two different specimens were cut. To evaluate the effect of 

the conditions for the solubilization treatments, the samples were to a heat treatment 

condition: 30 minutes at 800 ºC and 120 minutes at 950 ºC.  

From the first hot rotary forging step (1F_1h sample), five different specimens were cut 

along the longitudinal direction. These samples measure about 1 mm in height and            

10 mm in diameter. To evaluate the effect of the conditions for the intermediate 

treatments, the samples were submitted to solution heat treatments conditions: 

- 120 minutes at 800 ºC, to be compared with the 800 ºC during 10 minutes, 

used in the previous processing path; 

- 120 minutes at 850 ºC; 

- 120 minutes at 900 ºC; 

- and 120 minutes at 950 ºC. 

 

After each condition, the samples were quenched into water. The heat treatment for all 

the Ni-Ti samples was carried out in a conventional furnace. 

From the 1F_1h, 3F_3h, 5F_4h1c samples conditions, two different specimens were cut 



45 

 

to evaluate the effect of the intermediate treatments conditions. All these samples were 

subjected to two heat treatment conditions: 10 minutes at 800 ºC and 15 minutes at 

850 ºC.  

From 6F_4h2c sample condition, three different specimens were cut. To evaluate the 

effect of the conditions for the aging treatments, the samples were subjected to three 

heat treatment conditions: 30 minutes at 350 ºC, 400 ºC and 450 ºC.  

This set of tests aimed to verify the influence of the treatment conditions on the 

transformation characteristics of the samples of the different rotary forging steps.  

3.2.  Orthodontic Archwires 

For this study were selected three different types of Ni-Ti orthodontic archwires: 

Superelastic supplied by Morelli – Brazil; Thermo Plus supplied by Morelli- Brazil and 

BioForce supplied by Dentsply GAC International – USA, Table 3.2. 

Table 3.2 – Ni-Ti orthodontic archwires: Commercial name, Manufacturer, type, dimension (mm) and 

LOT (product batch). 

Commercial 

Name 

Manufacturer Type Dimension 

Superelastic Morelli Superelastic 0.4 x 0.4 

Thermo Plus Morelli Thermo-active 0.4 x 0.4 

BioForce GAC Functionally Graded 0.4 x 0.4 

 

 Localized Heat Treatment Performed in Superelastic Orthodontic 3.2.1.

Archwire (Morelli SE)  

The functional gradient was introduced in the Morelli SE orthodontic archwire. Sample 

has been cut with 55 mm length and a localized heat treatment at 300 ºC for 10 minutes 

by Joule effect with 3.14 A, 1 V±0.5 has been carried on along a 32 mm long segment 

centered into the archwire. Inside this 32 mm long segment subjected to localized heat 

treatment, two segments of 8 mm length (hereafter referred to as external) have been 

separated from a central part 16 mm long (hereafter referred to as internal). A transition 

zone is indicated between internal and external zones. The three zones were investigated 

in order to relate the temperature profile and functional gradient introduced in the 

Morelli SE orthodontic archwire. The temperature measurement of the wire without 

disturbing the heat flow, was performed using an infrared camera Fluke Ti400     

(Figure 3.5).  
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Figure 3.5 - Schematic view of the electrical local heating system of Ni-Ti wire and temperature profile.    

(Unpublished data from Inácio and Santos) 

The details of the technique which was applied have been reported in previous study 

(Rodrigues, 2018); only some details about the sample are highlighted in this study for 

the convenience of the subsequent discussion about the influence of the heat treatment 

on the Ni-Ti orthodontic archwire.  

 

3.3. Characterization Techniques  

 Scanning electronic microscopy (SEM) 3.3.1.

The scanning electron microscopy was used to analyze the microstructure of each step 

of the rotary forging process. The samples were prepared by electrolytic polishing using 

20 % H2SO4 and 80% Methanol solution, at room temperature, with 0.8A during 10 to 

26 seconds. The scanning electron microscope used was a FEI Quanta 250 FEG 

(available at the Instituto Militar de Engenharia (IME) - Brazil) at an acceleration 

voltage of 20 kV. In addition, energy dispersive X-ray spectroscopy (EDS) was 

performed, to quantify the chemical composition of the matrix for the samples.  
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 Electron Backscattered Diffraction (EBSD) 3.3.2.

For electron backscattered diffraction (EBSD) analysis, measurements were performed 

in a FEI Quanta-3D field emission gun-scanning electron microscope (FEG-SEM) with 

Tex-SEM Laboratories (TSL)-Orientation Imaging Microscopy (OIMTM) EBSD 

system (available at the Indian Institute of Technology Bombay – India; in collaboration 

with Dr Ritwik Basu). The samples were subjected to electropolishing using a Struers 

Lectropol 5 system: 18 V DC, electrolyte of 80:20 (by volume) methanol: perchloric 

acid at 0 °C.  

 Electron Microprobe Analysis (EMPA)  3.3.3.

The Electron microprobe analysis with field emission gun (FEG) performed using a 

CAMECA SX5FE to check the matrix composition for the rotary forging step samples. 

The experimental parameters employed were: accelerating voltage of 15 kV, beam 

current of 20 nA, counting time of 10s. The probe diameter varied during the 

investigation from 1 to 10 μm, the following standards were used: 

- TiO2 for Ti,  

- pure Ni for Ni,  

- Fe2O3 for O, 

- SiC for C.  

 Optical microscopy (OM) 3.3.4.

For microstructural observation, the specimens were mounted in epoxy resin and 

mechanically polished up to 4000 fine grit Silicon Carbide Paper. To reveal the 

microstructure of the samples, the following etching solution was used:                        

10 vol% HF + 45 vol% HNO3 + 45 vol% H2O. Optical microscopy was carried out 

using a Leica DMI5000M optical microscope. 

 X-Ray Diffraction Analysis (XRD) 3.3.5.

XRD was applied to investigate the structural characteristics of the materials, such as 

the crystal structure, preferential orientation of the grains and the identification of the 

present phases.  
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The relationship between the wavelength of the incident x-rays, the angle of incidence 

and spacing between the crystal lattice planes of atoms is represented by the Bragg’s 

law (Eq. 3.2 and Figure 3.6). 

                                                      𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃                                                            3.2 

  

Where: 𝑛 is an integer number, 𝜆 is the wavelength of x-rays, 𝑑 is the interplanar 

spacing of the crystal and 𝜃 is the angle of reflection. (Cullity, 1978)  

 

Figure 3.6 - Schematic representation of the Bragg’s law. 

 

For the SR-XRD measurement, the identification of the diffraction peaks was 

performed based on the ICDD database. 

The XRD tests were run in 2 different systems (lab source and synchrotron radiation) 

that are described in the following sections. 

 Conventional X-Ray Source (XRD)  3.3.5.1.

The conventional source was a rotating-anode based Bruker X-ray diffractometer, using 

CuKα radiation to perform non-ambient measurements and texture analysis          

(Figure 3.7). The non-ambient measurements were performed using a TTK-450 

chamber (from Anton Paar), in the range −120 to +120 °C at intervals of 10 °C (Figure 

3.7a), during heating and cooling. The 2θ scans covered the range from 36° to 50° 

(δ2θ = 0.04°; acquisition 1s per point), so that the (110)B2 diffraction peak was 

observed, as well as other neighboring peaks (from B19’, R-phase and precipitates). 

This measurement also allows to determine the structural transformations sequences for 

the different thermomechanical steps. The texture measurements were performed with 

an Eulerian Cradle (0 <  < 69, δ = 3º; 0 < φ < 360°, δφ = 3°) for the (110)B2, (200)B2, 

and (211)B2 diffraction peaks (Figure 3.7b). 
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Figure 3.7 - Examples of XRD results (1F1q sample), at high/low temperature: during heating and 

cooling, between −120 and 120 °C (a); Pole Figures (b) (Rodrigues, 2017a) 

 

 Synchrotron Radiation X-ray Diffraction (SR-XRD) 3.3.5.2.

This study was carried out in two different SR (Synchrotron Radiation) facilities: 

PETRA III: an energy of 6 GeV, a current of 100 mA; and  

LNLS: an energy of 1.37 GeV, a current of 250 mA 

Each beamline was used with different experimental configurations. The LNLS 

(XRD1), promotes a beamline with low energy, which is primarily dedicated to           

θ− 2θ/GIXRD (Grazing Incidence X-ray Diffraction) material characterization, while 

PETRA III (P07) beamline is a high energy beamline, allowing x-ray diffraction in 

transmission mode. 

 Petra III – P07/DESY 3.3.5.3.

Three different structural characterizations using synchrotron radiation, were performed, 

in beamline P07 High-Energy Materials Science (HEMS) of Petra III/DESY (Deutsches 

Elektronen-Synchrotron), located at Hamburg - Germany. 

The first measurements used a wavelength of 0.143 Å (87 keV); a beam spot 

200 × 200 μm
2
 was used to scan the samples, at room temperature, along its diameter 

(as shown in Figure 3.8) and a two-dimensional (2D) detector PERKIN ELMER XRD 
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1621 was placed at 1.35 m from the sample. The raw 2D images were treated using 

Fit2D program (Hammersley, 1996) in order to calculate the individual XRD patterns 

by integration from 0° to 360° (azimuthal angles).  

 

Figure 3.8 - Scheme of the SR-XRD measurement at room temperature along the sample diameter. 

 

The second type of measurement was performed to observe the mechanical behavior 

(uniaxial tensile tests) of the functionally graded orthodontic archwire with in-situ XRD 

experiments. The tensile tests were performed in an INSTRON, using a 20 kN load cell. 

The test consisted of a complete cycle with discrete steps at 0.6%, 1.9%, 2.8%, 5.9% 

and 6.3%, run with a cross-head speed of 0.5 mm/min and maximum stroke of 8% of 

the gauge length. For these uniaxial loading in tension, the directions parallel to the 

loading axis (phi0) and perpendicular to the loading axis (phi90) were chosen to be 

observed. 

For this measurement, a wavelength of 0.124 Å (98 keV) and a beam spot                  

200 × 200 μm
2
 was used to scan the samples, at room temperature, along its gauge 

length (32 mm), where the gauge length is representative of the total length of the 

localized heat treatment, (as shown in Figure 3.9) and a two-dimensional (2D) detector 

PERKIN ELMER XRD 1621 was placed at 1.62 m from the sample. The raw 2D 

images were treated using Fit2D program (Hammersley, 1996) in order to calculate the 
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individual XRD patterns for 360 bins of the azimuthal angle from 0 to 360º.    

(Appendix A.1)  

 

 

 

 

Figure 3.9 - Schematic representation of the SR-XRD measurement at room temperature along gauge 

length (32 mm), total length of the localized heat treatment. Phi 0 and phi 90 to the normal direction. 

(more details in the text) 

 

The third type of measurement was performed to simulate some steps of the 

thermomechanical process with in-situ XRD experiments (thermomechanical cycles).  

These experiments were performed using wavelength from 0.124 Å (98 keV) with a 

distance sample-detector of 1.37 m. The modified Dilatometer Bähr DIL 805 A/D at the 

HEMS, equipped with a load cell of 20 kN, has been used to simulate different 

thermomechanical cycles. The induction coils were designed to permit the X-ray beam 

through without hitting any metallic component (Figure 3.10). 
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Figure 3.10 - Scheme of the direction of the beam, part of the interior of the equipment and the position of 

the detector in relation to the sample.  

 

The sample was heated from 25 °C up to 850 °C (under vacuum), with a heating rate of 

200 °C/min. After the first step of the heating to 850 ºC, the sample was submitted to an 

isothermal holding step for 5 min, to ensure the thermal equilibrium conditions. Then, 

the sample was deformed (at 850 ºC) with a strain rate of 10
-3

 s
-1

.  

After this, the sample was cooled during a short time. This step was applied to simulate 

the transport of the material from the furnace to the forging. This cycle was followed by 

the second, third and fourth heating steps with the same conditions of the first 

deformation step (heating - deformation - cooling).  

After these four steps of hot deformation, the sample was heated up to 850 ºC, cooled to 

room temperature, held for 5 minutes and deformed with a strain rate of 10
-1

 s
-1

. 

Afterwards, the sample was heated up to 850 ºC, cooled to room temperature, held for     

5 minutes and deformed (10
-1

 s
-1

). The total length change was φ = 0.20. 

After the deformation steps, an aging at 500 ºC during 30 minutes was performed, 

followed by cooling down to room temperature.  

This experiment was performed in order to assess the proposed changes of the 

processing variables as an alternative to the preliminary ones. Figure 3.11 shows the 

scheme of the thermomechanical cycle.  
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The XRD analysis, was performed on transmission mode and the Debye-Scherrer rings 

were captured using a 2D detector from PerkinElmer. The raw 2D images were treated 

using Fit2D program (Hammersley, 1996) in order to calculate the individual XRD 

patterns by integration from 0° to 360° (azimuthal angles).  

 

Figure 3.11 - Scheme of the thermomechanical process with in-situ deformation experiments 

(thermomechanical cycles performed in DESY) 

 LNLS - XRD 1 / CNPEM 3.3.5.4.

In order to evaluate the hot-workability and processing parameters of a cast and hot 

deformation Ni-Ti alloy, the x-ray scattering and Thermo-Mechanical simulation 

(XTMS) experiments were carried out using the XRD1 beamline, LNLS - CNPEM, 

Campinas - Brazil. The uniaxial compression tests were carried out under an argon inert 

gas atmosphere (under a vacuum atmosphere 10
-2

 mbar) and deformation by an 

advanced thermo-mechanical simulator, the Gleeble
®
 Synchrotron system with Kapton 

protection, as shown in Figure 3.12. 

 

Figure 3.12 - Thermo-mechanical simulator, the Gleeble® Synchrotron system and scheme of the 

measurement. 
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Therein, the sample was heated to 850 °C with a heating rate of 200 ºC/min and held for 

3 min. After that, the sample was compressed with a strain rate of 10
-1

s
-1

 to a total 

length change of φ = 0.12 (equal to 12 % height reduction) and subsequent linear 

cooling to room temperature. This heating / deformation / cooling cycle was repeated 4 

times, as shown in Figure 3.13. The diffraction patterns were recorded with a Mythen-

1K detector, using a wavelength of 1.0332 Å (12 keV). The evaluation of raw data as 

well as the generation of θ angle x intensity plots was conducted by means of the 

software Origin. High Score from PANanalytical was used for peak identification. The 

focus of this measurement was to verify the thermomechanical behavior under high-

speed deformation, to simulate the rate of the deformation during the forging process. 

 

Figure 3.13 - Scheme of the thermomechanical process applied with strain rate of     10
-3

 s
-1

 (hot 

deformations performed in LNLS). 

 Differential Scanning Calorimetry (DSC) 3.3.6.

Calorimetric measurements were performed by Differential scanning calorimetry (DSC 

- DSC 204 F1 Phoenix from Netzsch) and it was used to characterize the phase 

transformation temperatures of all samples. This analysis was used according to the 

following scheme: 

(a) for the transformation temperatures characterization, the sample (10 to 12 mg) was 

heated to 150 ºC at a heating rate of 10 ºC/min and subsequently cooled to -150 ºC at a 
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cooling rate of 10 ºC/min again heated to 150 ºC at a heating rate of 10 ºC/min and 

followed by cooling to room temperature (Figure 3.14a).  

(b) to study the ageing effect, the samples (10 to 12 mg) were heated to 500 ºC at a 

continuous heating rate of 10 ºC/min followed by cooling to room temperature at a 

cooling rate of 20 ºC/min. Immediately after the first run, the same sample was heated 

to 150 ºC and subsequently cooled to -150 ºC again heated to 150 ºC and followed by 

cooling to room temperature (Figure 3.14b). The heating up to 500 ºC is used to identify 

the possibility of the occurrence of recovery, recrystallization and/or precipitation. In 

the second run (up to 150 ºC / -150 ºC / 150 ºC / Room Temperature) the new phase 

transformation temperatures are determined.  

In all cases, the phase transformation temperatures were determined by the tangent 

methods. 

Before examination by DSC, the samples were cut with a precision cutting machine and 

then chemically etched (10 vol% HF + 45 vol% HNO3 + 45 vol% H2O) in order to 

remove the layer deformed by the cutting operation. The DSC curves are represented in 

charts, which show heat flow per unit mass (mW / mg) versus the temperature (°C). 

 

 

Figure 3.14 - Differential scanning calorimetry schemes. 

 

 Thermomechanical Analysis (TMA) 3.3.7.

 Dilatometric Analysis 3.3.7.1.

The dilatometry technique is applied to investigate the dimensional changes of the 

materials when subjected to temperatures variation. It is a powerful technique in the 

analysis of the phase transformation of Ni-Ti alloys with shape memory alloys because 

it allows to determine small dimensional variations in the material. It is possible to 
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determine the expansion coefficient and to identify any structural change in the 

material. Any linear dimension variation of the solid, such as length, width or thickness, 

is called linear dilation. A change in temperature dT promotes a variation ΔL of the 

linear dimension. The variation ΔL is proportional to the ΔT and to the original 

dimension (Eq. 3.3). The linear expansion coefficient (α) has different values for 

different materials and crystalline structures. 

                                                                     𝜶 =  
∆𝑳

𝑳⁄

∆𝑻
                                                  3.3 

 

When a phase transformation is observed, a slope change in the thermal expansion 

curve occurs until the end of the transformation is achieved.  

 Three-point Bending Tests 3.3.7.2.

In the orthodontic archwires, other thermomechanical analysis have been performed 

using three-point bending mode. Orthodontic archwires were tested in a temperature 

range from -10 to +100 ºC, using a heating rate of 2 ºC/min and cooling rate of              

1 ºC/min. For this measurement a support span of 9 mm and an actuation force 

following a triangular waveform (frequency 0.01Hz) was used; the force was ranging 

from 100 mN to 1250 mN, in order to accommodate the different deformation 

characteristics of the austenite (higher temperature range) and R-phase and martensite 

phase (lower temperature range). The maximum deflection of the wires ranged from 

100 µm to 750 µm. 

The TMA analysis, (dilatometry analysis and three-point bending analysis) were 

performed using a PT 1600 from Linseis. 

 Mechanical testing 3.3.8.

 Three-point bending tests 3.3.8.1.

To simulate the orthodontic treatment in an oral environment and the simulated force 

exerted on a lingually displaced maxillary lateral incisor (ISO 158411:2014), a three-

point bending test was carried out for each orthodontic archwire.    

The tests were performed at different temperatures: 5 ºC (cold water), 20 ºC (commonly 

room temperature in the orthodontic room), 25 ºC (conventional room temperature) and 



57 

 

37 ºC (human body temperature). The archwire was heated/cooled by immersion in a 

thermally stabilized water bath for approximately5 min to reach the test temperature. 

The length size of each wire segment, 15 mm, was chosen in accordance with           

ISO 15841:2014. (ISO, 2014) All samples were loaded with the same protocol on a 

tensile machine (Shimadzu AG-50kNG equipped with a 500 N load cell). Each archwire 

was first loaded to a deflection of 2 mm and then unloaded at a rate of 0.5 mm/min. The 

mechanical properties were analyzed at 1.0, 0.75 and 0.5 mm during unloading at 

deflection curves (Figure 3.15). This describes the average slope of the unloading curve 

in relation to its force level. 

 

 

 

Figure 3.15 - Displacements (0.5, 0.75 and 1.0 mm) analyzed in deflection curve (slope of the 

deactivation curve - superelastic behavior). 
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4. Results and Discussion 

In this section, all characterization results and thermal and thermomechanical treatment 

applied for all alloys studied, as well as the orthodontic archwires characterization are 

discussed. These results are divided in five sections:  

- Section 4.1: Results of the characterization of the starting materials (alloys 1, 2 

and 3, in the as-cast and remelted conditions) before rotary forging process. In 

addition, a brief observation on the forging process of the alloys 1, 2 and 3 are 

depicted. These observations were performed in the first hot deformation and 

second cold deformation steps for all the alloys. 

- The results of this section are presented following the sequence along the initial 

thermomechanical processing steps. Thus, in the Section 4.2 the characterization 

of the samples obtained in the first hot forging step (NiTi_1_1F1h), third hot 

forging step (NiTi_1_3F3h), first cold forging step (NiTi_1_5F4h1c) and second 

cold forging step (NiTi_1_6F4h2c) was performed; 

- Section 4.3 illustrates the characterization of the thermally treated samples to 

investigate the heat treatment effects on the solution heat treated ingot and 

between consecutive thermomechanical processing steps. 

- Section 4.4 illustrates the tests carried out aiming to verify and discuss the 

conditions previously proposed in the Section 4.3. 

- Finally, Section 4.5 shows the orthodontic archwires characterization results. In 

addition, a possible improvement for the final product regarding the 

thermomechanical processing is presented and discussed. This improvement is 

related to the obtainment of functionally graded wires.  
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4.1.  Starting Materials (as-cast and remelting condition)  

In this section the characterization results of the three alloys in the as-cast and remelted 

condition, to understand the forging route and to check their properties were reported. 

Before explaining the characteristics of the starting materials, it is easier to remember 

here that we will present results of the alloys with different Ni content (“alloy 2” and 

“alloy 3”) in order to compare with the results for the “alloy 1”. 

The phase transformation temperatures of the NiTi_1 (as-cast and remelted), NiTi_2 

(as-cast and remelted) and NiTi_3 (as-cast and remelted) samples were observed by 

DSC. Additionally, the phases presented at room temperature were identified by        

SR-XRD. 

Figure 4.1a depicts the DSC curves of the as-cast and remelted samples (alloy 1). This 

alloy was designed to have higher Ni-content. The temperature range that was used to 

perform the DSC test was not enough to show the transformation temperatures in the as-

cast sample. However, this was expected, since the samples melted did not present 

adequate homogeneity in composition to show the transformation temperature near 

room temperature. (Frenzel, 2010) (Saburi, 1998) It is possible to observe that the 

remelting step (VAR process) was enough to identify the transformation B2 ↔ B19 ' 

with a high degree of control over the microstructural homogeneity. The remelted 

sample showed an Af temperature close to room temperature (30.1 ºC, see Table 4.1), 

which is expected for this Ni content alloy (Ostuka, 2005).    

 

Figure 4.1 - (a) DSC curves NiTi_1_as-cast and remelted samples (b) SR - XRD - NiTi_1_as-cast and 

remelted samples 
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It is known that the VIM process allows the formation of compounds resulting from the 

reaction of Ni and/or Ti with impurities such as oxygen and carbon (Ni2Ti4O and 

TiC).(Frenzel, 2004a) (Zhang, 2005) SR-XRD results demonstrate the presence of these 

compounds for both samples (Figure 4.1b). At this step it is also possible the formation 

of precipitates such as Ni3Ti and Ti2Ni (Coda, 2012). However, with the subsequent 

heat treatment these may be dissolved.  

Figure 4.2a shows the DSC curves of the as-cast and remelted samples (alloy 2). This 

alloy was designed to have an equiatomic composition. For this sample the temperature 

range that was used to perform the DSC test was not enough to show the transformation 

temperature in the sample as-cast. This behavior is consistent with the sample 

NiTi_1_as-cast results, since both samples are in the as-cast condition. The result of the 

alloy in the remelted condition does not present a defined phase transformation 

temperature. It is possible to observe just one broad peak corresponding to the 

martensite –austenite phase transformation during heating, and that the Af is lower than 

room temperature (-12.2  ºC, see Table 4.1). This temperature indicates a Ni content 

higher  than expected, increasing Ni content, gives decreasing transformation 

temperature. The results of SR-XRD also present compounds formed by the impurities 

(oxygen and carbon) coming from the process VIM and still rich precipitates in Ni and 

Ti (TiNi3 and Ti2Ni), (Figure 4.2b).(Otubo, 2008) 

 

Figure 4.2  - (a) DSC curves NiTi_2_as-cast and remelted samples (b) SR - XRD - NiTi_2_as-cast and 

remelted samples 

DSC curves of the as-cast and remelted samples (alloy 3) is shown in Figure 4.3a. This 

alloy was designed to have higher Ti-content. Again, the temperature range that was 

used to perform the DSC test was not enough to show the phase transformation 
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temperature in the sample as-cast. This was expected, as previously observed and 

discussed for the “alloy 1” and “alloy 2” (Frenzel, 2010)(Saburi, 1998). It is possible to 

observe that the second remelting step (VAR process) was enough to identify the 

transformation B2 ↔ B19'. Remelted sample showed Af temperature above room 

temperature (65.6 ºC, see Table 4.1), which is expected for the Ti-rich Ni-Ti alloy. 

Again, the compounds of Ti4Ni2O and TiC were present and shown by SR-XRD results 

(Figure 4.3b). In addition, SR-XRD results showed the B19’ phase at room temperature, 

which supports the Ti-rich Ni-Ti alloy characteristic. When comparing to DSC results at 

room temperature (highlighted by the vertical line in Figure 4.3 a), the presence of B19’ 

phase was expected. For the same reason depicted for the “alloy 1” and “alloy 2”, the 

presence of the precipitates such as Ni3Ti and Ti2Ni was observed. (Bhagyaraj, 2013) 

The literature reported that in either equiatomic or Ti-rich composition, the Ti2Ni phase 

is formed during solidification from the melting process alloy. Besides, the volume 

fraction of Ti2Ni increases with the increase of Ti content in the alloy.(Nishida, 

1986)(Wu, 2010) 

 

Figure 4.3 - (a) DSC curves NiTi_3_as-cast and remelted samples (b) SR - XRD - NiTi_3_as-cast and 

remelted samples 

Table 4.1 - Transformation Temperatures in degree Celsius of as-cast and remelting 1, 2 and 3 samples. 

Samples B2B19’ B19’B2 

Cooling Heating 

Ms Mp Mf As Ap Af 

1_as-cast -2.5 -18.3 -113 -130 18.9 29.8 

2_as-cast - - - - - - 

3_as-cast - - - - - 1.8 

1_remelted 0.7 -10.8 -28.0 -6.4 11.6 30.1 

2_remelted - - - -132 -48.7 -12.2 

3_remelted 35.5 24.9 2.4 43.3 59.1 65.6 
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(-) no detected 

After these observations the “alloy 1”, “alloy 2” and “alloy 3” (remelted condition) were 

solubilized at 950 ºC during 2 hours and then heated up to 500 ºC. This heating allowed 

to identify some phenomena during heating that confirm the alloys characteristic. 

 

Figure 4.4 – DSC results: (a) heating up to 500 ºC, (b) Af temperature (remelted condition, after solution 

heat treatment at 950 ºC during 2 h and after heating up to 500 ºC. 

 

The effect of the heating on the three alloys are shown in Figure 4.4a. The “alloy 1” and 

“alloy 2” present some phenomena (exo.) from 300 ºC to 450 ºC. This effect is not 

observed for the “alloy 3” alloy. This behavior can be confirmed by Af temperature 

(Figure 4.4b):  

- “alloy 1” sample, after heat treatment at 950 ºC for 2h, showed a decrease of the Af 

temperature, probably due to the dissolution of the precipitates (Ni3Ti) that were 

identified in NiTi_1_rem sample. When the sample was heated up to 500 ºC the Af 

temperature increased, indicating that the metastable precipitates (Ni4Ti3) were formed. 

Ni4Ti3 is the first precipitate to occur, at lower temperatures and shorter holding times. 

Pelton et al. (2000) showed a TTT diagram for Ni-Ti system with focus on shorter 

holding times for the precipitation phenomenon onset. In this study, the authors used a 

Ni-rich Ni-Ti alloy such as the main alloy (NiTi_1). In this TTT diagram, it is possible 

to observe that the Ni4Ti3 formation can occur in the temperature range from 350 to    

500 ºC, during a short holding time, even for a few seconds. (Pelton, 2000) 

- “alloy 2” sample, after heat treatment at 950 ºC for 2 h, did not show a clear phase 

transformation in the temperature range that was used to perform the DSC test. When 

the sample was heated up to 500 ºC, the Af temperature increased, this probably 
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indicates the beginning of the precipitates formation. Such a behavior is expected for the 

equiatomic and Ni-rich Ni-Ti alloys. (Otsuka, 2005)   

- “alloy 3” sample, after heat treatment at 950 ºC for 2 h, showed an increase of the Af 

temperature, probably because the Ti-rich precipitates (Ti2Ni) that were identified in 

NiTi_3_rem sample were dissolved. When the sample was heated up to 500 ºC the Af 

temperature did not change. Owing to the characteristics of Ti-rich Ni-Ti alloys, the 

precipitates are formed at higher temperature than the one used in this measurement. 

Therefore, this behavior proves that this alloy is Ti-rich Ni-Ti alloy. (Bhagyaraj, 2013) 

 

 Microstructural Characterizations of the alloys 1, 2 and 3 (first hot 4.1.1.

deformation and second cold deformation samples) 

The hot and cold working characterizations are necessary to understand the influence of 

both deformations on the materials properties with different Ni content.  

The characterization of the first hot rotary forging step and second cold rotary forging 

step samples was performed by: DSC, SR-XRD.  

DSC measurement was used to verify the transformation temperature (Figure 4.5a). 

NiTi_1 sample result shows the transformation temperature close to room temperature. 

NiTi_1_6F-4h2c, second cold rotary forging step sample depicts the Af temperature 

below room temperature. This temperature it is expected to Ni-rich Ni-Ti alloys. These 

SMAs display a superelastic behavior at room temperature. (Saburi, 1998)  

The sample NiTi_2_1F_1h presents the transformation temperature out of the range 

used in this technique (-150 to 150 ºC). This behavior was discussed in remelted 

condition results. NiTi_2_6F_4h2c DSC results shows one transformation broad peak 

on heating and on cooling, suggesting that B2 ↔ B19’ takes place in one single step. 

However, the partial overlap of the temperature ranges of DSC peaks during cooling 

and heating, suggest a two-steps transformation as B2 ↔ R ↔ B19’. The very broad 

peak may also to the deformation of the material. The increment of the deformation 

probably promoted the grain refinement, but not enough to reveal the adequate 

functional properties. Just in this result of the 6F_4h2c step it is possible to observe a 

peak transformation. (Otsuka, 2005)  
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NiTi_3_1F_1h results, show the Af temperature above room temperature. After this 

deformation route, the R-phase was evident on cooling curve, through two-steps 

transformation as B2 → R → B19’. On heating curve, one step transformation was 

observed as B2 → B19’. The phase transformation temperatures above room 

temperature is expected on Ti-rich Ni-Ti alloys. (Otsuka, 2005) 

 

Figure 4.5 - (a) DSC curves (b) SR-XRD diffractograms of the 1, 2 and 3 alloys at first hot deformation 

step (1F_1h) and at first cold deformation step (6F_4h2c). 

To have a complete microstructural characterization of all samples, synchrotron-based 

x-ray diffraction was performed. Figure 4.5b shows the superimposition of the 

diffractograms, at room temperature, of the1F_1h and 6F_4h2c (1, 2 and 3 alloys) 

samples. A clear distinction between the three alloys is noticed: while the NiTi_1_1h 

sample is fully austenitic, the NiTi_2_1F_1h and NiTi_3_1F_1h present a mixture of 

austenite, R-phase and martensite. The NiTi_1_6F_4h2c and NiTi_3_6F_4h2c samples 

present a mixture of austenite, R-phase and martensite. The broadening of the (110)B2 

peak may be associated with the presence of precipitates. NiTi_2_6F_4h2c sample is 
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fully austenitic. This is corroborating the DSC results, because the deformation 

influence is observed just at last deformation step.   

The results presented confirmed that the sample 1 is the most suitable sample for 

producing a material that can present at room temperature the superelastic behavior. 

Therefore, this alloy was the chosen material to continue in the next steps of this work.  

 NiTi_1_Rem Alloy 1 As Remelted 4.1.2.

For an initial exploration of this “alloy 1", we focused on the behavior of an alloy which 

offers conventional B2↔B19' transformation behavior (Ni-rich Ni-Ti alloy). Thus, to 

confirm these characteristics other tests were carried out. 

The chemical composition of the NiTi_1_rem sample was verified by WDS analysis 

which revealed that the material is Ni-rich Ni-Ti alloy, as shown in Table 4.2.    

(Ribeiro, 2015) 

Table 4.2 - Remelted Samples Ni and Ti contents (%at) (WDS - analysis) 

Contents NiTi_1_as-cast NiTi_1_rem 

(%at.) WDS WDS 

Ni 51.52 51.03 

Ti 48.48 48.97 

 

The values that are shown in Table 4.1 do not present a significant difference between 

the composition before (as-cast condition) and after remelting process (remelted 

condition). This result indicates that the argon atmosphere was effective and did not 

promoted a significant surface oxidation, as reported in literature. (Coda, 2012) 

(Morgan, 2008) (Kabiri, 2012) 

Figure 4.6a and b show secondary electron (SE) and back-scattered electron (BSE) 

micrographs of the NiTi_1_rem sample. The microstructure of the NiTi_1_rem sample 

(Figure 4.6a) reveals grains of metallic matrix (dark areas) surrounded by particles 

(lighter areas).  
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Figure 4.6 - SEM images of NiTi_1_rem: (a) Secondary electron image, (b) Backscattered image 

 

Figure 4.6b was generated using backscattered electrons and enhanced the contrast 

between the Nitinol matrix material and the oxide and/or carbide inclusions. The 

characteristic observed using secondary electrons are associated with inclusions. EDS 

analysis (Figure 4.7a) indicates that these particles would be related to inclusions 

coming from the VIM process, because they are associated with Ti, C, O and Ni at 

lower levels. (Coda, 2012) (Qiuhui, 2018) Thus, these can be associated to TiC, 

Ti2Ni4O, as observed in SR-XRD results (Figure 4.1b). (Frenzel, 2004a) In addition, the 

EDS analysis allowed to verify the chemical composition at some points on the matrix, 

which to suggest that Ni-rich precipitates are presents, since the matrix are rich in Ti.   

Figure 4.7b depicted the micrograph of the NiTi_1_Rem sample and revealed grains 

uniformly distributed. As can be seen, the remelted specimen mostly consists of highly 

segregated and coring products (microsegregation). The microstructure is a typical cast 

structure, in agreement with other studies. (Jiang, 2012) The presence of large TiC 

precipitates may be noted. The presence of the austenite and martensite phases in the 

NiTi_1_rem sample has been also confirmed by EBSD technique and the results are 

shown in Figure 4.7 c and d. A typical refined grain with serrated boundaries is 

observed. In the Figure 4.7c austenite phase is indexed and in Figure 4.7d the austenite 

phase is not indexed and reveals the presence of the second phase. The studied 

NiTi_1_rem sample did not show preferred orientation and the crystallographic 
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orientation of grain is uniformly distributed (Figure 4.7c). Other authors have also 

observed the same behavior after melting process. (Świec, 2016) (Qiuhui, 2018) Luo 

et.al., studied an near equiatomic Ti-50.6 at.% Ni alloy produced by vacuum arc 

remelting and reported that the material shows the microstructure consists of austenite 

grains and few second phase particles appear at both the grain boundary regions and 

interiors. (Luo, 2017)  

 

 

Figure 4.7 – (a) EDS results of the NiTi_1_Rem sample, (b) Micrograph of the NiTi_1_rem. (c and b) 

EBSD map of NiTi_1_rem sample at room temperature. 

 

 Starting Materials Summary 4.1.3.

The casting process was not focus of this study. However, this stage of the Ni-Ti alloy 

manufacturing is fundamental to understand the alloy characteristics and to design the 

thermomechanical process. This stage has a great influence on the microstructure and 

homogeneity of the ingots produced. 

Although this study does not have a control of this stage, some sample observations are 

important in order to understand the thermomechanical process. Firstly, the NiTi_1-

Rem sample depicts a typical remelted structure characteristics; The presence of oxygen 

and carbon are common in this casting processes, Ni-rich precipitates are presents on 

the matrix, but these could be dissolved in the heat solution treatment.  



69 

 

According to the characteristics discussed in this section, the ingot NiTi_1_Rem shows 

conditions for be processed and still obtain a product with the desired functional 

properties.  

 

4.2. Initial Thermomechanical Process (Rotary Forging Steps) 

This study aimed to characterize the rotary forging steps and to understand the forging 

route. The separation of hot and cold working was necessary to understand the influence 

of both kinds of deformation processes on the materials properties.  

Thus, this section discusses the characterization of rotary forging steps in order to 

identify possible parameters changes in the initial process.  

 

 Hot Rotary Forging Steps 4.2.1.

Starting from the melting process, the ingot was heated up to 800 ºC for 30 minutes 

before the start of the deformation. Firstly, hot working was applied to reduce the size 

of the start ingot, to set up the homogenization of the microstructure and to modify the 

solidification grain texture adjustment.  

 First Hot Rotary Forging Step
1
 4.2.1.1.

Figure 4.8 depicts the transformation temperatures and the phases that are present at 

room temperature for the first hot rotary forging step (NiTi_1_1F_1h). This sample is 

fully austenitic slightly above room temperature, Af = 27.5 ºC (Table 4.3). For all the 

DSC results, room temperature is highlighted with a vertical line. Furthermore SR-XRD 

patterns depict the presence of a mixture of the B2 and B19’ phases.   

The DSC curves show one transformation (broad) peak on heating and one on cooling, 

suggesting that B2 ↔ B19’ took place in one single step, but the XRD high/low 

temperature results (Figure 4.9) showed the presence of the intermediate R-phase 

(Figure 4.8). Thus, from XRD high/low results, we may conclude that during 

                                                 
1 The below results (section 4.2.1.1) were already published in a paper in the journal Powder Diffraction, entitled 

Microstructural Characterization of NiTi Shape Memory Alloy Produced by Rotary Hot Forging. (Rodrigues et al., 

2017a) 
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cooling/heating, there is a two-step phase transformation (B2 ↔ R ↔ B19’). This 

information is not evident in DSC results, but it is consistent with the partial overlap of 

the temperature ranges of DSC peaks during cooling and heating, due to the smaller 

thermal hysteresis of the B2 ↔ R. The introduction of dislocations network by 

deformation can change the transformation path from B2↔B19’ into B2↔R↔B19’, 

due to the previous deformation imposed. (Otsuka, 2005)   

 

Figure 4.8 – (a) DSC curves NiTi_1_1F_1h sample (b) SR - XRD of NiTi_1_1F_1h sample. 

 

X-Ray diffraction assay at high/low temperatures was performed at the temperatures 

previously determined by DSC on cooling and heating range. The aim of this analyze 

was to confirm the phases present. For the higher temperature (above 30 ºC), the (110)B2 

is clearly visible (Figure 4.9 heating). During cooling, under 30 ºC, there is an abrupt 

decrease of the intensity of the (110)B2 peak and two peaks associated to R-phase, close 

to (110)B2 peak, were noticed. During further cooling, other peaks associated to B19’ 

appeared (Figure 4.9 cooling). The SR-XRD did not depict the R-phase, because this 

technique was performed at room temperature. In accordance with XRD at high/low 

temperature, the R-phase was not evident at this temperature.     
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Figure 4.9 - XRD results at high/low temperature: (a)during heating and cooling, between -120 and      

120 ºC (b) separate diffractograms for three different temperatures                                                              

(-120, 25 and 120 ºC) 

 

As mentioned previously this sample presented the inclusion of a dislocation network 

imposed by the deformation, therefore it is necessary to verify the behavior in relation 

to the phenomena of microstructural restoration. To understand the microstructural 

restoration phenomena after the first hot deformation, the discussion will be focused on 

an analysis of the influence of the heat treatment on the static phenomena that may 

occur. Such discussion is necessary because these phenomena are responsible for the 

success of the thermomechanical processes. 

A set of thermal treatments (Figure 4.10a) has been carried on by heating the sample at 

a constant rate of 10 ºC/min to sequentially higher temperatures ranging from 250 to         

500 ºC. The applied temperature range was chosen based on the common temperature 

where such phenomena occurred (i.e. static recovery and recrystallization phenomena). 
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Figure 4.10  – (a) Heat release by continuous heating of the NiTi alloy to different maximum 

temperatures. (b) DSC curves: NiTi_1_1F1h (N-HTT = NiTi_1_1F1h without heat treatment) and 

NiTi_1_1F_1h heat treated from 250 to 450 ºC. 

 

Some exothermic reactions were observed for all curves; it can also be observed that the 

phenomena are better visualized in 450 ºC curves (Figure 4.9a). The influence of the 

heat treatments can be observed in the phase transformation temperatures. Analyzing 

the DSC curves after heat treatment (Figure 4.11b), the following is observed: (i) at 250 

and 300 ºC curves the transformation peak is shifted to lower temperatures, indicating a 

stress relaxation / decreased density of structural defects; (ii) while at 350 and 450 ºC 

curves the same peak shifted to higher temperatures, indicating a decrease of the Ni 

content as a consequence of the possible formation of precipitates. Thus, 350 and      

450 ºC can be highlighted as two ageing temperatures that most impact the phase 

transformation temperatures.  

Fan et al. (2017), reported a similar behavior in Ni51Ti49 alloy heat treated at 500 ºC 

during 1.5h. After aging, R-phase transformation occurred during the cooling process 

and then resulted in a two-stage B2↔R↔B19’ transformation. Fan et al.(2017) reported 

that the R phase transformation is mainly introduced by the coherent and semi-coherent 

Ni4Ti3 precipitates (Fan, 2017). Other authors have also observed the same behavior 

after heat treatment with the same temperatures and alloy composition. (Pelton, 2000) 

(Khalil-Allafi, 2002) 

This previous analysis of heat treatment temperatures enables to verify that the range 

from room temperature to 500 ºC would be appropriate to identify the occurrence of 

possible microstructural evolution. Therefore, the results corresponding to heating up to 

500 ºC are presented and discussed for all the processing steps below.  
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In a deformed material, due to the stored energy, reliable calorimetric measurements of 

restoration phenomena can be observed in a range temperature which no phase 

transformations are relevant (such as precipitation). 

Figure 4.10a shows the heating curves from room temperature to 500 ºC 

(NiTi_1_1F_1h sample). In this case two stages were detected, the broad peak    

(δH=1.3 J/g) at 60 – 250 ºC, corresponding to the heat evolved during recovery, and the 

peak at 360 ºC (260 – 450 ºC / δH=2.7 J/g) corresponding to the heat evolved during 

recrystallization. 

These results corroborate the XRD measurements carried out with heating. According to 

Humphreys et al. (2004b), the broadening, measured through the Full Width at Half 

Maximum (FWHM), and the shift of the x-ray diffraction peaks (110)B2 confirm the 

occurrence of the recovery followed by static recrystallization (Figure 4.11b and c). 

(Humphreys, 2004b)   

However, due to the small size of the Ni4Ti3 precipitate, lab source XRD is not feasible 

to determine its presence. The FWHM decreased from 250 ºC to 450 ºC, which suggests 

a recovery (up to 300-350ºC) / recrystallization (above 350ºC) of the austenite structure 

(Humphreys, 2014). In addition, it was evident that the austenite peak shifted to smaller 

2θ angles, corresponding to larger d-spacing due to heating. 

 

Figure 4.11 – Recovery recrystallization results: (a) DSC curves heat treated to 500 ºC; (b) XRD at high 

temperature and (c) FWHM and d-spacing observed. 

 

 Third Hot Rotary Forging Step 4.2.1.2.

The third deformation corresponds to the deformation of φ = 0.2 (20% diameter 

reduction in relation to first hot rotary forging step). As this sample presents more 
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deformation, some different characteristics are observed when comparing to the first 

step.  

DSC and SR-XRD results of the third hot rotary forging step (NiTi_1_3F_3h) are 

shown in Figure 4.12. The transformation temperatures obtained by DSC analysis 

(Figure 4.12a) showed that the sample is austenitic at room temperature. The austenite 

finish is close to room temperature (Af = 19.5 ºC, see Table 4.3). Meanwhile, SR-XRD 

results illustrate the presence of only B2. (Figure 4.13b). 

 

 

Figure 4.12 - (a) DSC curves NiTi_1_3F_3h sample (b) SR - XRD of NiTi_1_3F_3h sample. 

 

The DSC curves showed one transformation peak (very broad) on heating and another 

one on cooling, suggesting that B2 ↔ B19’ took place in one single step.  However, the 

partial overlap of the temperature ranges of DSC peaks during cooling and heating 

suggests a two-steps transformation as B2 ↔ R ↔ B19’. The very broad peak is 

consistent with the deformation suffered by the material. XRD at high/low temperature 

result (Figure 4.13) showed that the intermediate R-phase was formed. Similarly, to the 

NiTi_1_1F_1h sample results, a two-step phase transformation occurred                    

(B2 ↔ R ↔ B19’). The occurrence of two-steps transformation (B2 ↔ R ↔ B19') was 

associated to the occurrence of Ni4Ti3 precipitation. (Lekston, 2007)(Otsuka, 2005)   
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Figure 4.13 - NiTi_1_3F_3h XRD results at high/low temperature: (a) during heating and cooling, 

between -120 and 120 ºC (b) separate diffractograms for three different temperatures                                

(-120, 25 and 120 ºC) 

 

Figure 4.14a shows the heating curves from room temperature to 500 ºC 

(NiTi_1_3F_3h sample). In this case, two exothermic events were detected, the broad 

peak (δH= 0.9 J/g) at 50 – 180 ºC, corresponding to the heat evolved during recovery, 

and the peak at 380 ºC (300 – 490 ºC / δH=1.8 J/g) corresponding to the heat evolved 

during the recrystallization. Different recrystallization temperatures are shown along the 

deformation process, and the higher recrystallization temperature was observed for 

3F_3h sample in comparison with the 1F_1h. Although the same behavior was observed 

in both hot rotary forging steps samples, XRD studies in the 3F_3h sample were carried 

out during the cooling and heating in order to confirm the occurrence of the R-phase 

during the phase transition. The XRD patterns are shown in Figure 4.14b and c.    

(Świec, 2016) 

From 250 ºC to 300 ºC the FWHM decreased and stabilized up to 350 ºC, suggesting a 

recovery. Between 350-450 ºC the FWHM decreased. In addition, it is evident that the 

austenite peak shifted to smaller 2θ angles, corresponding to a larger d-spacing due to 

heating. After heating up to 500 ºC, the Af temperature increased (Af= 39.9 ºC) and the 

R-phase was evident. Such behavior indicates that the precipitation phenomenon 
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occurred, and Ni4Ti3 precipitates were formed. (Pelton, 2000)(Fan, 2017)             

(Khalil-Allafi, 2002)  

As mentioned previously, it is difficult to determine by XRD technique the presence of 

Ni4Ti3 precipitates. 

 

Figure 4.14 – NiTi_1_3F_3h - Recovery recrystallization results: (a) DSC curves heat treated to 500 ºC; 

(b) XRD at high temperature and (c) FWHM and d-spacing observed. 

 

 Cold Rotary Forging Steps 4.2.2.

After hot rotary forging steps, the cold rotary forging steps were applied. Intermediate 

heat treatments at 800 ºC during 10 min were performed followed by quenching into 

water. This step is important to assure a particular microstructure and an improvement 

of the functional properties. (Suzuki, 1998)(Habu, 2009).  

 First Cold Rotary Forging Step 4.2.2.1.

The first cold deformation corresponds to a total length change of φ = 0.5 (equal to     

50 % diameter reduction). As this sample was deformed at room temperature, some 

different behaviors are observed when comparing to the hot steps.  

DSC curves for first cold rotary forging sample (NiTi_1_5F_4h1c) showed one 

exothermic peak during cooling and heating (Figure 4.15a). The Af temperature was 

bellow room temperature (Af = 8.7 ºC, see Table 4.3). This material is superelastic at 

room temperature. Until this deformation step, the starting temperature of thermal peaks 

corresponding to phase transition decreased with increasing deformation degree. SR-

XRD results illustrate the presence of a mixture of the B2, B19’ phases (Figure 4.15b). 
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Figure 4.15 – (a) DSC curves NiTi_1_5F_4h1c sample (b) SR - XRD of NiTi_1_5F_4h1c sample. 

A partial overlap of the temperature ranges of DSC peaks during cooling and heating 

occurred, suggesting a two-steps transformation as B2 ↔ R ↔ B19’ (Figure 4.15a). The 

hysteresis value indicates the presence of R-phase. Then, this characteristic was 

confirmed by the XRD high/low temperature (Figure 4.16). During cooling and heating 

the intermediate R-phase was formed. Thus, a transformation of two-stage was observed 

(B2 ↔ R ↔ B19’) for both cooling and heating curves. The alloy heterogeneity 

compositional, namely richer Ni content in few regions of the material matrix, explains 

the occurrence of the Ni4Ti3 precipitation. (Jiang, 2015) 

 

Figure 4.16 – NiTi_1_5F_4h1c XRD results at high/low temperature: (a)during heating and cooling, 

between -120 and 120 ºC (b) separate diffractograms for three different temperatures                                

(-120, 25 and 120 ºC).   
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The recovery and recrystallization phenomena were investigated during a heating up to 

500 ºC on NiTi_5F_4h1c sample by DSC, complemented by information on 

transformation temperatures obtained by DSC tests (-150 ºC to 150 ºC), before and after 

ramp, as shown in Figure 4.17. The XRD at high temperature could not be performed 

due to the small size of the samples, which prevented satisfactory measurement. 

Figure 4.17a shows the heating curves from room temperature to 500 ºC 

(NiTi_1_5F_4h1c sample). In this sample two exothermic events were detected. The 

broad peak (δH= 12.9 J/g) in the temperature range from 50 to 350 ºC, corresponding to 

the heat evolved during recovery and the peak at 405 ºC (extending from 350 to 475 ºC / 

δH= 8.3 J/g) corresponding to the heat evolved during recrystallization and 

precipitation. (Humphreys, 2004b) 

DSC curves recorded during thermal cycle (from -150 to 150 ºC) after heating up to       

500 ºC showed one endothermic peak corresponding to reverse phase transformation. In 

addition, the transformation temperature shifted to a higher temperature (Af = 40 ºC). 

The presence of R-phase evidenced by the partial overlap of the endo and exothermal 

peaks suggests the formation of the Ni4Ti3 precipitate. (Jiang, 2015) 

 

Figure 4.17 – NiTi_1_5F_4h1c - Recovery recrystallization results: (a) DSC curves heat treated to       

500 ºC; (b) DSC thermal characterization from -150 to 150 ºC before and after heat treatment to 500 ºC 

compared (1- before heat treatment -dash line and 2- after heat treatment – solid line). 
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 Second Cold Rotary Forging Step 4.2.2.2.

The second cold deformation corresponds to a deformation of φ = 0.7 (equal to 70 % 

diameter reduction).  

On the sample NiTI_1_6F_4h2c, the Af temperature shifted to higher temperature      

(Af = 20.2 ºC, see Table 4.3) compared to NiTI_1_5F_4h1c Af temperature                 

(Af = 8.7 ºC). Even with increased cold deformation, the sample is still austenitic at 

room temperature (Figure 4.18b). At room temperature the SR-XRD showed the 

presence of a mixture of the B2, R-phase, B19’, Ni4Ti3 (Figure 4.18b). 

 

 

Figure 4.18 – (a) DSC curves NiTi_1_6F_4h2c sample (b) SR - XRD of NiTi_1_6F_4h2c sample. 

 

The DSC chart depicts one transformation peak on heating and one on cooling, 

suggesting that B2 ↔ B19’ took place in a single step with a hysteresis value of       

17.3 ºC. Furthermore, X-Ray diffraction assay at high/low temperatures was performed 

to confirm the phases present. For higher temperature (at 100 ºC), the (110)B2 is clearly 

visible (Figure 4.19 heating). During cooling, below 25 ºC, there is an abrupt decrease 

of the intensity of the (110)B2 peak and two peaks were detected close to (110)B2 peak 

being associated to the R-phase. (Lekston, 2007) In addition, it is possible to conclude 

that, during cooling/heating, there was a two-step phase transformation                      

(B2 ↔ R ↔ B19’). Thus, from XRD results the R-phase was identified at room 

temperature, this corroborate the SR-XRD results. 
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Figure 4.19 – NiTi_1_6F_4h2c XRD results at high/low temperature: (a)during heating and cooling, 

between -120 and 120 ºC (b) separate diffractograms for three different temperatures                                 

(-120, 25 and 120 ºC). 

 

The recovery and recrystallization phenomena were observed by DSC test. Figure 4.20a 

shows the heating curves from room temperature to 500 ºC (NiTi_1_6F_4h2c sample). 

It is seen that a continuous exothermic event started at ~230 ºC until a larger exothermic 

peak occurred at 370 ºC, finishing around 500 ºC. This broad peak is attributed to 

structural relaxation and recovery and recrystallization phenomena. Even after the 

recovery occurred, the grains are still in a relatively high strain energy state.(Cun, 2016) 

Saburi (1998) studied Ni-Ti alloys and reported recrystallization temperature when the 

samples were cold deformed (about 25%) and annealed between 500 ºC and 600 ºC. 

According to this author, cold deformed specimens (25%) annealed at 600 ºC 

(temperature close to the recrystallization temperature) display a behavior similar to 

alloys annealed at 850 ºC. (Saburi, 1998)  

The recrystallization temperatures, of both cold deformed samples results, showed that 

increasing the percentage of cold work the rate of recrystallization is enhanced, once the 

recrystallization temperature is dropped. 

Similar to the first cold forging step deformation, the DSC was performed during 

thermal cycle (from -150 to 150 ºC) before and after heating up to 500 ºC heating. The 

result showed two-stage phase transformation of B2→R→B19' on cooling and one 
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stage phase transformation of B19'→B2 on heating (Figure 4.20 b – line 2). In addition, 

the transformation temperature shifted to a higher temperature (Af = 49 ºC). Again, the 

presence of the R-phase suggests the formation of the Ni4Ti3 precipitate. (Jiang, 2015) 

 

 

Figure 4.20 – NiTi_1_6F_4h2c - Recovery recrystallization results: (a) DSC curves heat treated to       

500 ºC; (b) DSC thermal characterization from -150 to 150 ºC before and after heat treatment to 500 ºC 

compared (1- before heat treatment -dash line and 2- after heat treatment – blue line). 

 

During the investigation the assays results depicted that for all the samples, the 

temperature of 400 ºC is enough to promote static restoration phenomena.  

It is desirable that the intermediate heat treatment can promote the microstructural static 

restoration phenomena after the deformation steps. Then, it is supposed that the 800 ºC 

applied between deformation steps was enough to promote these phenomena.   

 Rotary Forging Process Evolution 4.2.3.

A wide range of mechanisms are responsible for the evolution of microstructures in the 

Ni-Ti alloys. The physical metallurgy of a thermomechanical treatment is dependent on 

the various metallurgical mechanisms that take place during processing. The 

interrelation of recrystallization, recovery, precipitation and phase transformations, 

leads to the development of the microstructure through thermomechanical process 

(Humphreys, 2004) (Treppmann, 1997).  

To understand this behavior, the structural characterization results are shown in the 

following sections.  
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  Microstructural and Compositional Evolution by Thermal and 4.2.3.1.

Chemical Analysis  

Figure 4.21 shows the transformation temperatures of the samples along the rotary 

forging process and are compared to the values shown in Table 4.3. As shown before, 

all the samples showed one-step transformation on heating and one on cooling with a 

partially overlapped range of temperatures. However, all transformations occurred 

below 30 ºC. Thus, the rotary forging process occurred at austenite field, once the hot 

steps were performed at ~800 ºC, and the cold deformation steps presented the Af 

temperature close to room temperature.   

 

Figure 4.21 – DSC curves of the Rem., 1F1h,3F3h, 5F_4h1c and 6F_4h2c steps, cooling curves and 

heating curves. 

Table 4.3 - Phase transformation temperatures in degree Celsius for NiTi_1 samples. 

 Cooling (ºC) Heating (°C) 

Ms Mp Mf As Ap Af 

1F_1h 7.2 -29.4 -59.0 -15.1 9.2 27.5 

3F_3h 13.5 * -81.6 -25.5 -3.5 19.5 

5F_4h_1c -16.8 -35.1 -87.6 -16.5 -0.2 8.7 

6F_4h2c -15.6 -2.6 -36.2 1.7 13.4 20.2 
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The difference between NiTi_1_1F_1h DSC curves and NiTi_1_3F_3h curves is the 

partial transformation suppression observed in NiTi_1_3F_3h sample results. This 

behavior can be explained by the temperature reduction of the ingot/bar during the 

transporting from the furnace to the hammers which it becomes more expressive with 

the reduction of the cross section of the bar. It is supposed that the deformation 

temperature decreases gradually throughout the rotary forging steps. Thus, the 

deformation temperature of the sample 3F_3h was less than the deformation 

temperature of the sample 1F_1h. This promotes the partial suppression of phase 

transformations that occurs due to the possible present hardening in the B2 matrix (from 

1F_1=198 HV to 3F_3h=300 HV (Ribeiro, 2015)), resulting from the third hot rotary 

forging step. (Otsuka, 2005)  

The cold steps samples showed the stabilization of the austenite phase close to room 

temperature. The Ni content at these samples is higher enough to reduce the martensite 

transformation temperature (Figure 4.22). It is supposed that all cold processing 

occurred in the austenitic domain, and it is known that, when B2 is deformed above the 

level of superelastic recovery, an increase of martensitic transformation temperature 

will occur (Table 4.3 - 5F_4h1c and 6F_4h2c samples).(Elahinia, 2012) 

Taking in consideration that the Ni content has an influence on the phase transformation 

temperature, a chemical analysis was performed. This analysis allows to observe the Ni, 

Ti, C and O contents evolution along the rotary forging processing. In order to verify 

the composition in the material, the analysis along the diameter of the NiTi_1_1F, 

NiTi_3F_3h and NiTi_1_5F_4h1c samples were done (Figure 4.22).   
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Figure 4.22 – Chemical analysis (EMPA) results (a) elements at.%; (b) Comparison between at.%Ni x Af; 

(c) elements at.% global composition values, in addition Ni effective after Ti2Ni4O and TiC observation. 

 

It can be observed that the homogeneity produced by the forging process promotes an 

increase of the Ni content in the matrix by the dissolution of precipitates (Ni-Ti system) 

along the hot forging steps. In addition, inclusions such as carbides and oxides are 

fragmented, resulting in the reduction of their size and promotes a finer dispersion in the 

matrix (Figure 4.22a). The effective Ni on the matrix, when considered the impurities, is 

shown in Figure 4.22c and d. (Coda, 2012) 

All the samples are Ni-rich alloys and showed an increase of Ni content of the matrix 

during the rotary forging process. This increase of the Ni content is inferred from the 

decrease on the austenite finish temperature as observed in the DSC results          

(Figure 4.22b).   

To confirm the matrix homogenization along the rotary forging steps, a microstructural 

observation was performed by optical microscopy, as shown in Section 4.2.3.2. 
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 Microstructural Evolution by Optical Microscopy  4.2.3.2.

At the beginning of deformed process (NiTi_1_1F_1h sample) the grains are coarse, 

with average grain size 40 µm, as shown in Figure 4.23. This result demonstrated that 

the material has an austenite matrix at room temperature, in accordance with the DSC 

and SR-XRD results (Figure 4.7).    

As result of the deformation, grains are elongated along the deformation direction. The 

deformation promoted the heterogeneous microstructure observed in Figure 4.23b. 

The deformation evolution, represented by NiTi_1_3F_3h sample (Figure 4.23 c and d), 

showed characteristics of possible dynamic recrystallization occurrence during hot 

deformation. The elongated grains can also be readily seen in these figures. Ni-Ti SMA 

shows a significant grain elongation during dynamic recrystallization. (Humphreys, 

2004)(Jiang, 2012) Therefore, in this condition the average grain size of the specimen is 

36 µm, thinner than the average of the NiTi_1_1F_1h grain size (40 µm). 

It can be seen from Figure 4.23 that recovery and recrystallization cause grain refining 

in the process of deformation. This is observed because the new generated grains 

replaced the original grains. Figure 4.23c shows the effect of recovery and 

recrystallization at increased high temperature deformation is more apparent than that in 

Figure 4.23a.  

The original grains are elongated perpendicularly to the deformation direction      

(Figure 4.23 e and g) at cold steps. Increasing the deformation promotes the elongation 

of the grains and the decrease of the grain size. (Świec, 2016) The grains now are 

homogeneous in center and edge of the sample.  

Moreover, during the remelting process there was a faster cooling in the area close to 

the ingot edge (part of the material in contact with the crucible) by water cooling. Thus, 

the difference between edge and center of the sample promoted the heterogeneous 

microstructure (Figure 4.23 b and d). Therefore, the grains close to the edge are finer, 

while the grains in the center are coarser. However, along the successive deformation 

steps, the difference is attenuated, as shown in Figure 4.23 f and h.   

Furthermore, comparing with the original remelted microstructure, the microstructures 

of the samples after forging process still possess a lot of dendritic grains. The remelted 

sample contains B2 austenite and some second phases.  
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Figure 4.23 – Micrographs of the NiTi_1 alloy hot and cold deformations steps. 
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 Microstructural Evolution by EBSD  4.2.3.3.

Electron backscatter diffraction (EBSD) in the scanning electron microscope (SEM) is a 

powerful tool to measure the size, distribution and volume fraction of deformed and 

recrystallized grains because of its ability to obtain information about individual grains 

and to establish direct neighborhood relationships between these grains. It is often used 

to analyze the thermomechanical behavior of the SMAs.   

The EBSD results of the evolution of the microstructures along the forging process is 

seen in the inverse pole figure maps estimated for both austenite and martensite phases. 

The inverse pole figure (IFP) colors refer to the directions perpendicular to the EBSD 

scan plane (cross-sectional plane of the cylindrical samples). To discuss the 

microstructure evolution, the Rem. sample results need to be compared with the results 

for deformed samples. The summarized view is:  

1. Rem. sample: shows refined grains with serrated boundaries; 

2. 1F_1h: shows large grains with serrations; 

3. 3F_3h: shows large grains and recrystallized grains; 

4. 5F_4h1c: presence of twin-like bands in the parent austenite grains;  

5. 6F_4h2c: fine-grained distribution of austenite and martensite phases. 

 

Figure 4.24 shows in the NiTi-B2-IFP maps the black regions which had data points of 

CI≤ 0.1. Typically, the B19´ monoclinic martensite structure is often difficult to 

characterize by XRD and EBSD; it must be pointed out that the presence of martensite 

was also observed in these "black" regions, under the conditions of detection of 

minimum five diffraction bands and CI>0.1. It must also be noted that each different 

microstructure had varying austenite grain sizes, as apparent in the IPF maps, hence it 

was impossible to maintain identical scan sizes for all specimens. 
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Figure 4.24 - Enlarged image quality maps of the NiTi_1 alloy hot and cold deformations steps. 
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NiTi_1_Rem sample showed a homogenized microstructure, where the serration in the 

boundaries can be associated to precipitation that promotes pinning during the boundary 

migration. SR-XRD measurements further clarified the possible presence of Ni4Ti3, 

Ni3Ti sometimes overlapping each other. The SR-XRD measurement for compositional 

analysis were performed on few randomly distributed precipitates of different size and 

shapes, indicated by suitable markers. The location of such precipitates was found both 

in the interior and at grain-boundaries. Ni4Ti3 or other complex precipitates could not be 

indexed by EBSD due to their smaller size, below the resolution of this technique.   

This sample showed presence of martensite mainly visible in the grain boundaries. 

However, the presence of martensite is observed due to deformation applied or after 

thermomechanical process without intermediate heat treatment. For this case the 

presence of the martensite may have resulted from the cut and polishing treatment.  

The mechanisms of dynamic recovery are dislocation climb, cross-slip and glide, which 

result in the formation of low angle boundaries that also occur during static recovery; 

these enable the subgrains to remain approximately equiaxed during the deformation. 

During the hot deformation some reorientation of subgrains may also occur. 

(Humphreys, 2004a) 

Dynamic recrystallization generally starts at the old grain boundaries. New grains are 

subsequently nucleated at the boundaries of the growing grains and in this way a 

thickening band of recrystallized grains is formed. When there is a large difference 

between initial grain size and recrystallized grain size, a necklace structure of grain may 

be formed, and the material will become fully recrystallized. (Humphreys, 2004a) 

NiTi_1_1F_1h sample showed large grains with serrated grain in boundaries. Along the 

rotary forging it is expected the pre-existence of the grain-boundaries elongated in 

deformation direction, causing grain boundary serration. In Figure 4.25 the black circles 

show out fine grains of austenite sparsely distributed along these serrated boundaries. 

These grains appear to be dynamically recrystallized. (Sakai, 2014) (Basu, 2015) 
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Figure 4.25 - Enlarged image quality maps of 

NiTi_1_1F_1h sample 
 

Figure 4.26 - Enlarged image quality maps of 

NiTi_1_3F_3h sample 

  

 

NiTi_1_3F_3h sample showed a similar behavior to that of the NiTi_1_1F_1h sample. 

However, the increased deformation promotes a larger amount of the recrystallized 

grains.  

It can be seen that the original grains are elongated perpendicularly to the deformation 

direction and the original grain boundaries show the fine DRX grains and typical 

“necklace structure” of DRX (Figure 4.26). As the deformation percentage increased, 

the number of DRX grains increased and the grain size decreased, as elucidated in 

Figure 4.26. 

NiTi_1_5F_4h_1c sample showed that the combinations of hot and cold deformation 

with short annealing treatments induced significant differences in in-grain 

misorientation and grain boundary fractions for both phases. This microstructure was 

characterized by several twin-like features, typical of cold deformed microstructure. The 

twin-like bands were observed inside the parent austenite grains. Since the cold forging 

induced certain martensite variants which promoted specific preferential orientations; 
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however, above a certain stress value deformation by irreversible dislocation slip will 

occur. This behavior induced a formation of a new variant that could not have been 

formed during the process. The retained martensite appears as a result of the local strain 

inhomogeneity and the applied stresses. (Świec, 2016) (Laplanche, 2015)      

The presence of phases mixture was shown in NiTi_1_6F_4h_2c sample. This mixture 

may be from B19´, R-phase and precipitates such as Ni4Ti3. This result showed that 

cold deformation with short annealing treatments increase the differences in-grain 

misorientation and grain boundary fractions for all the phases.  

 

 Microstructural Evolution by SEM  4.2.3.4.

As discussed, the material has structure characterized upon the conditions during 

solidification. Hence, the structure of Ni-Ti alloy depends not only upon the conditions 

under which the metal is cast and solidified, but also upon the composition of the alloy, 

as well as its thermal and process characteristics.   

The surface morphologies of the samples are shown in Figure 4.27. All the samples 

displayed an oxide layer, resulting from the manufacturing process black phases in the 

micrographs. The presence of Ni-rich phases in the surface was observed in all the 

samples. After etching, most of the oxide layer was removed. 

Along the thermomechanical process the elongation of the grains is evident. The B2 

matrix is observed in all the samples. The Ni content increases, the size of the grains 

and the precipitates decrease, showing a higher distribution of large particles. Along the 

thermomechanical process the grains are equiaxial. 
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Figure 4.27 - SEM images of the NiTi_1 alloy hot and cold deformations steps (backscatter mode). 
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 Textural Evolution  4.2.3.5.

The texture is an important parameter describing the microstructure evolution along the 

deformation of the material. Usually, textures are determined by x-ray diffraction and 

represented by a pole figure. (Cullity, 1978) The purpose of the results presented in this 

section is to provide the information to the variation of the intensity of the (110)B2, 

(200)B2 and (211)B2 peaks along the azimuthal angle ϕ (transmission mode), as shown in 

Figure 4.28 column a, and the pole figure (reflection mode) as shown in Figure 4.28 

column b. 

The variation of the intensity of the (110)B2, (200)B2 and (211)B2 peaks along the 

azimuthal angle ϕ are represented by colors in Figure 4.28a: red line (110)B2 intensity, 

black line (200)B2 intensity and blue line (211)B2 intensity. The position of the peak 

intensity along the azimuthal angle versus 2θ are shown in Figure 4.28 on the left top.  

In this study the pole figures (covering an area of up to 69º from the center), were 

obtained by the reflection technique. The stereograms for (110)B2, (200)B2 and (211)B2 

are shown in Figure 4.28 on the right top.  

The deformation in Ni-Ti alloys is complex and difficult to investigate in the initial 

stages of the deformation by hot forging processes. The texture in the cold deformed 

materials is better interpreted, because at this stage the percentage of the deformation is 

significant. The orientation changes that take place during deformation are not random.  

Figure 4.28 shows the textural evolution along the deformation steps, where it is 

possible to observe a typical solidification texture for the NiTi_1_Rem sample. 

However, for the other samples (1F_1h, 3H_3h, 5F_4h1c and 6F_4h2c) it was only 

possible to observe a tendency of the texture. This is consistent with the deformation 

direction. The higher intensities were observed in the center of {110}<110>B2  and other 

intensities were identified  {200}<110>B2.   

The evolution of the intensity variation of the (110)B2 and (200)B2 peaks along the 

deformation steps is evident as shown in the NiTi_1_3F_3h. However, the sample 

NiTi_1_5F_4h1c and NiTi_1_6F_4h2c show a possible B19’ (Figure 4.28a). The 

Appendix A02 shows separately each deformation result, to clarify the intensity 

observation. 
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The α<110> fiber texture is desired after cold drawing in the product aimed to be 

produced from this thermomechanical process.  

 

Figure 4.28 - Variation of the 2θ peak position and intensity of the (110)B2 (200)B2 (211)B2 peaks along 

the azimuthal angle (transmission mode) and Pole Figure (110)B2 (reflection mode) of the NiTi_1 alloy 

hot and cold deformations steps. 
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 Rotary Forging Process Evolution Summary 4.2.4.

In order to elucidate the effects of thermomechanical treatment on the alloy, the 

characterization results need to be observed together. During deformation the 

microstructure of alloy changed in several ways.  

An important observation was that the grains changed their shape and there was a large 

increase of the total grain boundary area. The new grain boundary area had to be created 

during deformation and this was done by the incorporation of some dislocations that 

were continuously created during the deformation process. The orientations of single 

crystals and of the individual grains of a polycrystalline metal change relative to the 

direction(s) of the applied stress(es). These changes are not random and involve 

rotations which are directly related to the crystallography of the deformation. The 

results showed that this behavior occurred when the grains acquired a preferred 

orientation, which became stronger as deformation proceeded. The grain refinement was 

clearly evidenced in the microstructural observation, where in the last sample (6F_4h2c) 

equiaxial grains are evident. The presence of the R-phase in this sample was detected by 

SR-XRD and DSC.  

The temperature (800 ºC) applied in the intermediate heat treatments was suitable. 

However, for the third deformation, this temperature was not enough to promote the 

deformation in an adequate condition. This parameter needed to be changed, to improve 

the forging process. However, increasing this temperature above 900 ºC is insecure. 

This temperature can promote second phase formation on the matrix (Otsuka, 2005).  

The temperature applied must allow the adequate high temperature deformation. The 

heat released during the transport of the material from the furnace to the forge must be 

considered. This issue is discussed on the next part of the study (section 4.3).  

Dynamic phenomena which occurred during the deformation, were observed through 

the EBSD test and OM. As mentioned previously, increasing the deformation, a larger 

number of recrystallized grains were observed followed by other phase formation       

(R-phase and/or B19’), in the final deformation steps.  

Other parameter that could be changed is the heat treatment time. But, if the time 

applied is longer, the probability of surface oxidation is real. The time in this situation 

needs to ensure a good homogenization of the temperature in all the material.  
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The time and temperature applied in this process did not increase the oxygen and carbon 

content on the material. In addition, along the deformation the inclusions present, have 

become small enough to promote their best dispersion in the matrix.    

The 3F_3h step results show that the increased contact surface promotes a faster cooling 

of the material and, as a consequence, the deformation is more difficult to occur.  

The second cold deformation step Af is higher (20.2 ºC) than first cold deformation step 

Af (8.7 ºC) which proves that the refinement of the material structure was reached. The 

Af temperature close to room temperature and the structural refinement is desired for the 

application that this investigation aimed.   

Analysis of the initial rotary forging process results allowed to identify the following 

points: (i) the heat treatment before the first hot deformation step (solution heat 

treatment applied to remelted ingot) needs to be changed, in order to dissolve the       

Ni-rich precipitates; (ii) the intermediate solution heat treatment requires different 

parameters (time and temperature), due to the cooling of the material (during ingot 

transportation from the furnace to the hammers) to allow the hot deformation  to be 

performed; (iii) the initial rotary forging process presents the Af temperature at 6F_4h2c 

step close to room temperature, this characteristic must be kept after the changes on the 

processing parameters.  

 

4.3.  Heat Treatments 

Taking in consideration the discussion presented in Section 4.2, the heat treatment 

conditions in different rotary forging processing steps samples were investigated. Such 

investigation is important because for each rotary forging process step, a specific 

microstructure characteristic is required. Therefore, this section focused on the 

investigation of better parameters (time and temperature) to apply in the rotary forging 

process in the alloy 1. This step of the study was separated in  

(i) solubilization heat treatment adjustment to apply to the ingot (Rem. Sample 

– initial heat treatment),  

(ii) intermediate heat treatment between deformation steps and  

(iii) aging treatment,  

aiming to select the parameters to improve the materials functional properties. 
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 Initial Solution Heat Treatment  4.3.1.

At the beginning of this study the sample NiTi_1_Rem sample was chosen to be 

investigated. This sample was chosen, because it was identified as presenting the best 

condition to obtain the superelastic alloy. For the alloys production success, it is 

important that the starting material shows the best homogenization condition as 

possible.   

The DSC and SR-XRD methods were applied to determine the effects of the solution 

heat treatment on the transformation temperatures and the structural characteristic, 

which are very important properties for starting deformation steps.  

The results are presented for the NiTi_1_Rem sample heat treated at 800 ºC during       

30 minutes (initial proposal for the solubilization path) and the alternative treatment that 

is proposed: 120 minutes soaking time at 950 ºC (Figure 4.29).  

Remelted sample showed Af temperature above room temperature (30.1 ºC, see Table 

4.1), which is expected for this Ni content alloy (Coda, 2012). The section 4.1 discussed 

the presence of the precipitates from the remelted condition.  

 

 

Figure 4.29 - a) comparison between DSC curves (a) and superposition of the SR-XRD patterns (b) of 

NiTi_1_Rem sample and NiTi_1_Rem heat-treated at 800 ºC during 30 minutes and 950 ºC during      

120 minutes. 

 

This heat treatment aims to obtain the microstructure without precipitates. The 

precipitates dissolutions promote an increase of the Ni content in the matrix, 
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consequently, a decrease of transformation temperature (Otsuka, 2005) (Frenzel, 2012). 

The decrease of the transformation temperature is desirable, since this sample needs to 

show a superelastic behavior at room temperature.   

It is known that at the beginning of the Ni-Ti SMA manufacturing (as remelted 

condition) it is not possible to observe the functional properties. The thermomechanical 

process is required to promote these properties (Otsuka, 2005) (Saburi 1998) (Suzuki 

1998).  

It can be observed from the Figure 4.29 that after the solution treatment                    

(950 ºC/120 min) applied in NiTi_1_Rem sample, the matrix is still B2 austenite, but 

Ti3Ni phase (identified in Section 4.1) disappears. Therefore, Ti3Ni phase can be 

dissolved in the NiTi_1_Rem sample heat treated at 950 ºC during 120 minutes; the 

broadening of the austenite peak, in NiTi_1_Rem and 800 ºC/10 min sample patterns, 

may be associated with the presence of the R-phases at room temperature. 

NiTi_1_Rem_950 ºC/120 min. result depicts the transformation temperatures lower than 

for the NiTi_1_Rem_800 ºC/30 min. result. The heat treatment (950 ºC/120 min.) 

promotes the precipitates dissolution, thus, increasing the Ni content on the matrix. This 

means that heat treatment at 950 ºC during 120 minutes, is the better solution heat 

treatment for this sample. 

 Solution Heat Treatment between deformations steps 4.3.2.

The sample NiTi_1F_1h was chosen to investigate the solution heat treatment between 

deformations steps. This sample was chosen, because the first hot forging step it is 

important in the discussion about the microstructure modified by the deformation.  

The results are presented for NiTi_1_1F_1h sample heat treated at 800 ºC during         

10 minutes (initial proposal for the thermomechanical path) and the alternative 

treatments that are proposed: 120 minutes soaking time at 800, 850, 900, 950 ºC.  

  First Hot Forging Sample (NiTi_1_1F_1h) 4.3.2.1.

Figure 4.30 shows the locations of all spots (10 spots along a radius) of the 

NiTi_1_1F_1h sample. The difference between the periphery (spot 1 – A) and the center 

(spot 10 - B) is clear. The patterns show the influence of the thermomechanical process 
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applied to the sample. Thus, only spots A and B were chosen to be discussed in more 

detail at this study. 

The Debye–Scherrer rings that were recorded for each location (A and B), allow not 

only the visualization of the phases present, but also complementary information, as the 

more uniformly distributed intensity of the Debye-Scherrer rings, as a consequence of 

the first thermomechanical process step. At each spot (A and B) the B2 rings are 

identified (Figure 4.30).  

 

Figure 4.30 – Scheme of locations of the SR-XRD measurements on the samples and First structural 

characterization: A) Outer Spot - Debye–Scherrer rings, B) Inner Spot - Debye–Scherrer rings of first hot 

forging step (NiTi_1_1F_1h). 

 

Figure 4.31 shows DSC curves of the first hot rotary forging step sample (1F) for spots 

A and B. For spot A, DSC measurement shows two-step transformation during cooling 

(B2  R  B19’) and the reverse transition on heating. However, the spot B DSC 

measurement shows one single (very broad) peak during the cooling and the reverse 

transition on heating. However, a partial overlap, during cooling and heating, of the 

transformation temperatures ranges occurs, which can be explained by the existence of 

the R-phase transition. For the 1F sample, the transformation changes from B2–B19’ to 
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B2–R–B19’ may occur due to the introduction of dislocation networks by deformation. 

These dislocations networks can occur due to the previous deformation imposed, with 

more evidence at the edge of the sample (Otsuka, 2005).  

Since the detailed study about these differences and the underlying reasons has been 

reported in the 4.2.1.1. section, only some key results are highlighted here for the 

convenience of the subsequent study about the influence of the solution heat treatment 

on the NiTi_1_1F_1h sample.  

 

 

Figure 4.31 – DSC curves of the First Hot Forging Sample (NiTi_1_1F_1h)– Spot A (outer) and Spot B 

(inner) 

 

 First Hot Forging Sample (NiTi_1_1F_1h) and First Hot 4.3.2.2.

Forging Sample (NiTi_1_1F_1h) heat treated at 800 ºC during 10 

minutes.   

To understand the influence of the heat treatment during 10 min on the 1F sample, a 

comparison between the Spot B of the first hot forging step sample (1F) and the Spot B 

of the 1F heat treated sample at 800 ºC during 10 minutes is presented.    

Figure 4.32a depicts SR-XRD patterns at room temperature. The 800 ºC/10 minutes 

sample shows the presence of the B2 and Ni4Ti3. The Ni4Ti3 is suitable to appear during 

cooling to room temperature (Coan, 2017)  
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Figure 4.32b depicts the DSC measurements of the transformation behavior of the first 

step of hot rotary forging step sample (NiTi_1_1F_1h) and the NiTi_1_1F_1h sample 

after solution treatment at 800 ºC during 10 minutes (800 ºC/ 10 min). From the DSC 

measurements, it is visible that the characteristic temperatures (namely Ap and Mp) 

shifted to slightly higher temperatures with heat solution treatment. This shift of the 

transformation temperatures to higher temperatures, can be explained by the Ni-content 

change of the matrix: Ni decreases when Ni-rich precipitates are formed (such as Ni4Ti3 

during cooling to room temperature) (Oliveira, 2018). 

 

Figure 4.32 – a) comparison between SR-XRD pattern of First Hot Forging Sample (NiTi_1_1F_1h) and 

First Hot Forging Sample (NiTi_1_1F_1h) heat-treated at 800 ºC during 10 minutes c) DSC curves. 

 

 Comparison of the First Hot Forging Sample heat treated at    4.3.2.3.

800 ºC during 10 minutes and First Hot Forging Sample heat 

treated at 800, 850, 900 and 950 ºC during 120 minutes 

The effect of different temperatures (800, 850, 900, 950 ºC) during 120 minutes of the 

solution heat treatment on NiTi_1_1F_1h sample are now shown and discussed. For 

comparison, the NiTi_1_1F_1h sample heat-treated at 800 ºC during 10 minutes was 

also included. From this point onwards, the samples are mentioned in accordance with 

the temperature and time of the heat treatment.  

The time of 120 minutes of heat treatment was used based on different studies that used 

this heat treatment in order to obtain a homogenized matrix. A. Safdel et al. (2017) and 

S. Jiang et al.(2013b), subjected the Ni-Ti sample with a nominal composition of   
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Ni50.5 (at%) and Ni50.9Ti49.1 (mole fraction, %), respectively, to a solution treatment 

held for 2h at 850 ºC and then water quenched the material. (Safdel, 2017)            

(Jiang, 2013b) 

Figure 4.33a shows the DSC charts evolution with solution heat treatment temperature. 

There are two characteristic features that change with increasing temperature: (1) the 

type of transformation changes from overlapped curves at cooling and heating          

(800 ºC/10 min and 800 ºC/120 min samples) through one step (at 850 ºC) and back to 

overlapped curves at cooling and heating (900 and 950 ºC/120 min); (2) there are shifts 

in peak positions and in the temperatures where transformations start and finish. 

However, 850, 900 and 950 ºC/120 min, show similar peak temperature. In addition, 

decreasing transformation start temperatures are observed as a result of the increase of 

the heat solution treatment temperature. Figure 4.33b shows all temperatures of distinct 

DSC peaks (’peak temperatures’) observed in Figure 4.33a. 

On cooling from the B2-regime, DSC curves of the heat-treated samples show the 

following features: (1) the temperature where the transformation starts is higher at 

800 ºC/120 min and decrease for 850, 900 and 950 ºC/120 min solution heat treated 

samples. (2) The position of the DSC peak on cooling for the 800 ºC/120 min sample is 

at the highest temperature. (3) The transformation peak temperatures for the 850, 900 

and 950 ºC/120 min samples have two common characteristics: for these solution heat 

treatment temperatures the peak temperatures on cooling and heating are very similar.  

Apparently, for the solution heat treatment at 800 ºC increasing the soaking time from 

10 min to 120 min slightly increased the Mp.  

Increasing the solution heat treatment from 800 to 850 ºC (for 120 min soaking time) 

significantly decreases Mp; further increase of the solution heat treatment does not 

change Mp significantly. On the other hand, Ap temperature is significantly reduced 

when the soaking time for 800 ºC is increased from 10 to 120 min; but, for 120 min 

soaking time, increasing the annealing temperature from 850 to 950 ºC does not change 

Ap temperature significantly. 
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Figure 4.33 – a) DSC curves on cooling from the B2 regime and DSC curves on heating from the B19’. 

The five DSC curves show the influence of solution heat treatment. b) Peak temperatures - Mp cooling 

and Ap heating. 

 

Figure 4.34 shows the Debye–Scherrer rings that were recorded for the periphery and 

the center region, which allows for visualization of the phases present. 

 

 

Figure 4.34 - Debye–Scherrer diffraction rings at the outer (A) and inner (B) of the mapped area 

presented in Figure 3 for each sample (800 ºC/10 min, 800 ºC/120 min, 850 ºC/120 min, 900 ºC/120 min 

and 950 ºC/120 min. 

 

Diffractograms of the 0 to 360º integration the Debye–Scherrer rings for A and B spots 

of all samples are presented in Figure 4.35. The cartesian and 3d plots of the Debye-

Scherrer rings integrated along all azimuthal angle φ (from 0 to 360º in 1º bins) versus 

2θ are shown in Figure 4.36. 
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Indexing of the diffraction patterns shows that in both spots (A and B) for all the 

samples the Ti4Ni2O are present as well as for NiTi_1_1F_1h sample (Figure 4.34).  

This becomes evident analyzing the cartesian plotting of the intensity for different 

azimuthal angles versus 2theta (Figure 4.35). Examining the A and B spots do not show 

a significant difference between both regions. 

At 800 ºC/10 min, 800 ºC/120 min and 850 ºC/120 min, it is possible to observe the 

Ni4Ti3 precipitate. For the heat solution treatment temperature 900 °C, Ni4Ti3 

precipitates are not evident. 

In Figure 4.35, 800 ºC/10 min, 800 ºC/120 min and 850 ºC/120 min samples show 

similar characteristics. Although the samples are mainly austenitic, small amounts of   

R-phase are detected in the diffraction pattern, for the measurement at room 

temperature.  

For 800 ºC/10 min, 800 ºC/120 min and 850 ºC/120 min samples, there is no difference 

in (110)B2 peak along the azimuthal angles.  The A and B spots for these samples do not 

show a significant difference between both regions.  

The 900 ºC/120 min sample is fully austenitic without evidence of the Ni4Ti3 precipitate 

(Figure 4.35). Again, this sample Figure 4.35 does not show a significant difference 

between both regions (A and B spots). 

Sample 950 ºC/120 min is more complex to analyze. This condition shows the fully 

austenitic matrix, without precipitates as well as for 900 ºC/120 min sample         

(Figure 4.35). There is an increase in the intensity of the (110)B2 peak and it is evident 

that the austenite peak shifts to smaller 2θ angles, corresponding to larger d-spacing. 

This can be explained by the higher temperature of treatment.  

On the other hand, Figure 4.36 shows distinct B2 spots along the azimuthal angles. This 

indicates an evident growth of the grain.  
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Figure 4.35 – a) outer (A) b) (B) inner – Sequence of XRD line diagrams at different solution heat 

treatment obtained by the integration of the diffraction patterns recorded at room temperature. 

 

According to the presented results, it is possible to observe that the solution heat 

treatments 800 ºC/10 min and 800 ºC/120 min do not show significant differences 

between them. The solution heat treatment at 800 and 850 ºC/120 min present the 

Ni4Ti3 precipitate after cooling to room temperature, while the solution heat treatment at 

900 and 950 ºC/120 min do not present. On the other hand, the solution heat treatment 

at 900 and 950 ºC/120 min promote a grain growth. This can be observed in Debye–

Scherrer rings (Figure 4.35): the rings show many discontinuities and isolated spots of 

very high intensities, as shown in Figure 4.36, where the intensity versus 2θ is plotted as 

a function of the azimuthal angle (ϕ). 
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Figure 4.36 – Cartesian and 3d plots transform of Debye–Scherrer diffraction rings (azimuthal angles) vs. 

2θ for A and B spots for each heat-treated sample. 

The optical micrographs (Figure 4.37) show the difference on the grain size (Table 4.4): 

grain size increases when the temperature of the heat treatment increases. In the sample 

heat treated at 950 ºC it is evident the grain growth, as shown by the XRD results. 
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Table 4.4 – Average of the Grain Size of the heat solution treated samples.                                                   

( ASTM E-112-96, 2000) 

Sample (µm) 

800 ºC/10 min 38.4 

800 ºC/120 min 41.4 

850 ºC/120 min 46.0 

900 ºC/120 min 61.3 

950 ºC/120 min 93.3 

 

 

 

Figure 4.37 - Microstructure of the specimens submitted to solution heat treatment. 

 

As 800 ºC/10 min and 800 ºC/120 min samples show the highest transformation 

temperatures at cooling and heating, little difference was observed between these 

samples. 850 ºC/120 min sample shows the lower transformation temperatures. The 

900 ºC/120 min and 950 ºC/120 min samples show the Af close room temperature. All 

these conditions assure that the hot forging process will occur in the austenitic field. 
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Still, the 900 ° C/ 120 min and 950 ° C/120 min samples show significant grain growth 

which is not desired for the propose of this study. 

Therefore, in the SR-XRD and DSC investigations, it is visible that for the solution heat 

treatment between forging steps, the temperature of the 850 ºC is indicated.  

Firstly, because the lower transformation temperature assures the stability of the 

austenite phase at room temperature. Secondly, at this condition, the grain growth is not 

observed. Finally, since the indicated hot processing temperature for these alloys is 

about 800 ºC; the preliminary heat solution at 850 ºC can assure that forging will be 

carried out at 800 ºC, taking into account the transport of the material from the furnace 

to the forge. Based on these results 850 ºC was applied in the test of heat treatment.   

 

 Intermediate Heat Treatment (850 ºC during 15 minutes) 4.3.3.

Heat treatment at 800 ºC during 10 minutes and 800 ºC during 120 minutes, showed a 

small difference between them. This study aimed to verify the influence of the heat 

treatment proposed (850 ºC/15 min) on the phase transformation temperature. 

The results are presented for the NiTi_1_1F_1h, NiTi_1_3F_3h and NiTi_1_5F_4h1c 

samples heat treated at 800 ºC during 10 minutes followed by a comparison with the 

NiTi_1_1F_1h, NiTi_1_3F_3h and NiTi_1_5F_4h1c samples heat treated at 850 ºC 

during 15 minutes. Both heat treatments were applied to investigate the microstructure 

after each deformation step before the next deformation step.  

An important observation about this intermediate heat treatment is that for the heat 

treatment above 500 ºC all the samples experimented the restoration/recrystallyzation 

phenomena. According to the partial phase diagram, based on Ni % at., for both 

temperatures (800 and 850 ºC) that were applied, a fully homogenized matrix can be 

achieved (Figure 4.38). 
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Figure 4.38 - Partial phase diagram of Ti-Ni system. (adapted from (Somsen, 1999)) 

Increasing from 10 minutes to 15 minutes was proposed because a long time in the 

furnace can promote a major surface oxide formation. The 10 minutes is not enough to 

assure the temperature homogenization on the material after hot forging steps (see, 

section 4.2.).  

The transformation temperature does not change significantly for the different heat 

treatments. This indicates that the time of 15 minutes does not change the materials 

characteristics but ensures better homogenization, and a decrease of the transformation 

temperatures. Table 4.5. shows a comparison between transformation temperatures 

before and after heat treatment.  

 

Table 4.5 - Phase transformation temperatures in degree Celsius for 1F_1h, 3F_3h and 5F_4h1c samples, 

before and after heat treatment (800 ºC during 10 minutes and 850 ºC during 15 minutes) 

Sample Cooling (ºC) Heating (ºC) 

Ms Mf As Af 

Pro 800 ºC 

10 min 

850 ºC 

15 min 

Proc 800 ºC 

10 min 

850 ºC 

15 min 

Proc 800 ºC 

10 min 

850 ºC 

15 min 

Proc 800 ºC 

10 min 

850 ºC 

15 min 

1F_1h 7.2 8.9 6.2 -59.0 -35 -24 -15.1 -10.4 -0.4 27.5 28.5 25.5 

3F_3h 13.5 1.0 -1.0 -81.6 -46 -35 -25.5 -23 -22 19.5 18 15.0 

5F_4h1c -16.8 -11.2 -13.0 -87.6 -34 -27 -16.5 -11.2 -0.4 8.7 10.4 7.5 
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 Aging Treatment
2
 4.3.4.

Ni-rich Ni-Ti alloys can exhibit shape memory and superelastic properties resulting 

from an austenite–martensite transformation under temperature change or applied stress. 

The properties of this transformation are strongly influenced by the presence of Ni4Ti3 

precipitates in the B2 austenite matrix. 

As the studied forging process aims the production of the alloy which is superelastic at 

room temperature, aging treatments in the final forging sample (6F_4h2c) were done, to 

verify their behavior after heat treatment. 

For heat treatments at high temperatures, there is enough thermal energy to allow rapid 

diffusion of Ni and Ti atoms in the matrix. On the other hand, at a lower temperature 

nucleation rate is higher, but the diffusion coefficients are low. Both processes are 

equilibrated at intermediate temperatures (350 – 450 °C) to achieve maximum 

precipitation rates. As a consequence, the Af increases due to the increased relative ratio 

of Ti/Ni in the matrix, as a consequence of the increasing Ni4Ti3 precipitation. The 

overall composition of the material does not change, but localized composition shifts 

induced by Ni-rich precipitates. (Pelton, 2000)  

The size of the Ni4Ti3 precipitates increases with increasing aging temperature and 

aging time. The smaller Ni4Ti3 particles (e.g, less than about 100 nm) are coherent with 

the B2 austenite matrix. As mentioned previously, the presence of these precipitates can 

promote the R-phase formation. Therefore, the occurrence of two-stage phase 

transformation of B2↔R↔B19' is considered to be a consequence of the aging Ni-rich 

Ni-Ti SMA. (Jiang, 2015) 

In order to assess which is the best temperature for the aging treatment, the 

thermophysical characteristics of the alloy were studied after cold deformation followed 

by a comparative aging treatment at 350 ºC, 400 ºC and 450 ºC for 30 minutes.  

                                                 

2
 The below results (section 4.3.4) were already published in a paper in the Ciência e Tecnologia dos Materiais, 

entitled Influence of ageing treatment on the thermophysical characteristics and mechanical properties of forging wire 

Ni-rich NiTi alloy for superelastic applications (Rodrigues et al. 2017b). 
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Figure 4.39 shows the DSC curves for the samples: NiTi_1_6F_4h2c and 

NiTi_1_6F_4h2c aged at 350, 400 and 450 ºC during 30 min. Table 4.6 shows the 

values of the Af temperatures for the different conditions tested on this work.  

Liu et al. (1997), reported that the transformation temperature could be increased by 

aging between 325 and 375 ºC, because the internal elastic stress fields created during 

the precipitation process, inside the parent phase, affect the transformation 

temperature.(Liu, 1997) However, in this study the aging treatments of 400 and 450 ºC 

are also favorable for such precipitate formation. Without the precipitation, the Af 

temperature would be reduced. Therefore, it is possible to verify that the Af for the 

sample aged at 350 °C during 30 minutes is below room temperature. 

The DSC curves of the 400 and 450 ºC aging treatment show one broad endothermic 

peak revealing multiple-stages transformation (Figure 4.38). DSC curves show a similar 

behavior for the endothermic peak corresponding to the reverse phase transformation. In 

addition, the transformation temperature shifted to a higher temperature                       

(Af 400 ºC = 37.5 ºC and Af 450 ºC = 39.6 ºC). The smaller hysteresis suggests the R-phase 

presence. (Otsuka, 2005) (Jiang, 2015) 

According to McCormick, et al. (1994), this broad peak is related to a multiple-stage 

transition behavior in Ni-rich Ni-Ti alloy, which may appear on cooling and heating due 

to two separate martensitic transitions in separate regions of the grains (interior versus 

grain-boundary). Nevertheless, such local strain induced martensite would only affect 

microstructure adjacent to precipitates (McCormick, 1994) (Yeung, 2004). The aging 

results at 400 and 450 ºC can be attributed to such multiple stage transition behavior. 
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Figure 4.39 - DSC Curves of aging temperatures at 30 minutes soaking time: 350 ºC, 400 ºC and 450 ºC. 

 

The existence of R-phase in the sample heat treated at 400 ºC during 30 minutes, as well 

as in the sample heat treated at 450 ºC during 30 minutes, can again be justified by the 

presence of Ni4Ti3 precipitates. (Khalil-Allafi, 2002). 

Additionally, the presence of these precipitates can be beneficial because precipitation-

hardening increases the yield strength of austenite, which in turn contributes to better 

functional stability. The presence of Ni4Ti3 precipitates is more evident after heat 

treatment at 450 ºC, as evidenced by broadening of the peak, on cooling and heating 

(Figure 4.39). 

Table 4.6 – Values of austenitic transformation final temperature for the NiTi_6F_4h2c and 

NiTi_1_6F_4h2c aging treated samples, in Celsius degrees. 

 

 

 

 

 

Thus, the increase of the aging temperature and time in the aging heat treatments 

performed, probably promoted increasing precipitation of Ni4Ti3, thus decreasing Ni 

content and giving increased Af temperature.  

Samples Af (ºC) 

NiTi_6F_4h2c 20.2 

350 ºC/30 min 20.0 

400 ºC/30 min 37.5 

450 ºC/30 min 39.6 
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 Thermomechanical Process Proposed (Rotary Forging Route) 4.3.5.

The studied rotary forging process aimed to promote the material manufacturing with 

the most adequate functional properties, with an adequate chemical composition, 

followed by mechanical working, and heat treatment. The Ni-Ti alloys for orthodontic 

applications must have SME or SE at temperatures below the oral temperature. 

After analyzing the results, some parameters were proposed to improve the rotary 

forging process. Figure 4.40 shows the rotary forging route proposed. 

 

 

Figure 4.40 – Rotary forging route proposed with forging stages, temperature and time of the intercalated 

heat treatments and sample diameters. 

 

The first topic observed was the heat treatment of the ingot before the first deformation. 

The solution heat treatment at 950 ºC during 120 minutes, showed the better condition 

for this process step. The as remelted ingot, after this solution heat treatment, presents a 

fully austenitic matrix, i.e., without precipitates, and the phase transformation 

temperatures are below room temperature. Initiating the rotary forging process with a 

fully austenitic matrix will allow the control of the processing.      

The reductions of the rod diameter will be obtained by the rotary forging process. This 

process requires to repeat the operation of heating in the furnace and transporting to the 

forge of the obtained rods several times. Thus, before each forging process the rods will 
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be heated to about 850 °C during 15 minutes. This parameter was chosen because it is 

necessary to ensure the homogenization of the material (hot and cold deformations). In 

addition, it ensures that the hot deformation is performed at a temperature close to 

800 °C, considering the transport of the material from the furnace to the forge.  

Ni-Ti SMAs products (e.g., bars, wires) are often finished by cold working to achieve 

dimensional control and enhanced surface quality. Heat treatment after cold working is 

necessary to minimize the effects of cold working and to restore the shape memory 

effect of SMAs. Therefore, in order to optimize the physical and mechanical properties 

of a Ni-Ti product and to achieve the desired properties, the material is cold worked and 

heat treated. In the presented results the aging treatment above 450 ºC is suitable to 

promote the Ni4Ti3 precipitates formation.  

 

4.4. Thermomechanical Process Simulation  

This section shows the measurements that were performed to simulate the steps of the 

initial thermomechanical process (described in section 3.1.2 and illustrated in Figure 

3.2) with in-situ deformation experiments (thermomechanical cycles – hot and cold 

steps).  Based on the previous results, the measurements were performed using the 

NiTi_1_Rem sample solution heat treated (950 ºC during 120 minutes), to understand 

the mechanical and structural behavior. To check the final properties a DSC test was 

performed. 

 

 Optimization of Hot and Cold Working Parameters Using 4.4.1.

Synchrotron Radiation 

A deformation route was applied in order to observe the deformation parameters (time, 

temperature, stress and strain rate) during hot/cold working and aging treatment step. 

The thermomechanical cycles (under vacuum) performed are shown in Figure 4.41. 

In the Figure 4.41, the hot deformations are represented by numbers 1, 2, 3 and 4 (green 

box) and the cold deformations are represented by numbers 5 and 6 (green box). The 

letter a (red box) represents the initial heating up to 850 ºC before the first hot 

deformation. The letter b (blue box) represents the cooling before first cooling 



115 

 

deformation and after hot deformations. Letter c (red box) indicates the heating up to 

500 ºC after cold deformations. Letter d (yellow box) represents the aging treatment. 

Finally, the letter e (blue box) indicates the end of the thermomechanical measurement.       

 

 

Figure 4.41 - Thermomechanical treatment simulation scheme applied with highlighted of the heating, 

deformations and aging treatment steps.  

 

The initial sample (NiTi_1_Rem) was solution heat treated at 950 ºC during               

120 minutes, to obtain a homogeneous matrix, based on section 4.3.1 discussion.  

Figure 4.42 depicts a sequence of the diffractograms of the heating up to 850 ºC and     

d-spacing evolution (Figure 4.41a). In all the diffractograms sequence the material is 

fully austenitic. Due to heating it was evident that the austenite peak (110)B2 shifted to 

smaller 2θ angles, corresponding to larger d-spacing. 
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Figure 4.42 - SR - XRD patterns obtained during heating up to 850 ºC and d-spacing evolution. 

After heating up to 850 ºC, the sample was deformed at high temperature (1, 2, 3 and 4 

deformations) and at room temperature (5 and 6 deformations) with a strain rate of           

10
-3

 s
-1

. The total length change was 20%. 

Flow curves obtained at different deformation conditions and work hardening rate 

analysis are shown in Figure 4.43. The following results were calculated in accordance 

with the methodology reported in the literature. (Mirzadeh, 2014)                    

(Mirzadeh, 2009)(Mirzadeh, 2012) (Jiang, 2013)  (Morakabati, 2011) 

 

Figure 4.43 – Hot (1, 2, 3 and 4) and cold (5 and 6) true stress-true strain curves and work hardening rate 

analysis (2
nd

, 3
rd

 and 4
th

 deformations). 
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The hot deformations curves (1, 2, 3 and 4) exhibit typical single peak DRX (dynamic 

recrystallization) behavior with a broad peak followed by a gradual fall toward a steady 

state stress.  

In the single peak behavior, it is known that the new cycles of DRX initiate before 

completion of the first cycle. After the first DRX cycle conclusion, the following DRX 

cycles are incomplete. The flow curve will represent the averaged flow stress of grains 

at different stages of recrystallization in the form of a broad peak along the deformation 

(Mirzadeh, 2014). This behavior is more evident in curves 2, 3 and 4. The curve 1 has 

an initial component of the deformation stabilization due to the gradual pushrods 

contact; for this reason, the discussion about its behavior will be not focused. 

Figure 4.43 (2, 3 and 4) also show the flow stresses increase with increasing 

deformation at the same deformation temperature, which reveals that Ni-Ti alloy is 

sensitive to the increasing deformation at elevated temperatures (850 ºC). This can be 

attributed to the increased rate of restoration processes and decreasing work hardening 

rate. At critical deformation degree, work-hardening leads to the rapid increase of stress, 

after this moment, the dynamic recrystallization leads to prevailing softening over 

hardening, so the flow stress of Ni-Ti SMA decreases.  (Mirzadeh, 2014) 

It has been shown that the onset of DRX can also be detected from inflections in plots 

of the strain hardening rate versus stress. Therefore, the onset of DRX was detected 

from the inflections in plots of the work hardening rate versus true stress (before the 

peak point of flow curves). These observations are considered as signs for the 

occurrence of DRX. In each curve of Figure 4.43, the work hardening rate decreases 

with the flow stress.  

The curves gradually change to another linear line and then drop toward work hardening 

rate = 0 at peak stress. Afterwards, the work hardening rate becomes negative and then 

again tends to work hardening rate = 0 at steady-state stress. These results are consistent 

with the general DRX behavior. (Mirzadeh, 2009)(Mirzadeh, 2012)(Mirzadeh, 2014) 

For these deformation parameters (850 ºC and 10
-3

 s
-1

), the critical stress increases from 

82.87 MPa (2
nd

 deformation), to 92.58 MPa (3
rd

 deformation) and finally to 98.85 MPa 

(4
th

 deformation). These values are in agreement with other studies with similar 

deformation conditions. (Jiang, 2013)  (Morakabati, 2011) 
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The cold deformations curves (5 and 6) exhibit typical hardening behavior. Decreasing 

the deformation temperature, the true stress values increase. As it is seen the stress 

plateau region corresponding to SIM formation cannot be distinguished. The material at 

these stages showed a smaller deformation due to the measurement limitation.  In these 

curves an elastic deformation of austenite as a parent phase only was observed. Safdel et 

al.  (2017) reported a similar behavior in an alloy with 50.5 at %Ni during cold 

compression tests that were executed at 25 °C under the strain rate of 0.001 s
-1

. 

However, this study showed a higher deformation with four stages: elastic deformation 

of austenite; initiation of SIM formation and plastic deformation of retained austenite; 

continuous SIM formation and elastic deformation of previous martensite; and the 

plastic deformation of martensite. (Safdel, 2017) 

Hence, the dynamic recovery or dynamic recrystallization of Ni-Ti alloy is unable to be 

evaluated only by the true stress-true strain curves and structural analysis is a necessary 

approach. The evolution of FWHM, d-spacing and the superimposition of the 

diffractograms obtained during the deformations are shown in Figure 4.44. 

 

Figure 4.44 - FWHM, d-spacing and SR-XRD patterns of the hot and cold deformations during 

thermomechanical measurement with a strain rate of 10
-3

 s
-1

. 
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In the superimposition of the diffractograms obtained during the deformations a clear 

distinction between the moment before, during and after deformation is noticed: while 

before and after deformations in 2θ is in the same position, the peak during the 

deformation is shifted to higher 2θ values, corresponding to smaller d-spacing due to the 

deformation performed. The shift of the austenite peak, which may be associated with 

the deformation performed, is marked by the red diffractogram. Each deformation is 

highlighted in Figure 4.44 by the corresponding numbers. 

Analysis of (110)B2 peak profiles indicated that FWHM is sensitive to the variation in 

microstructure and stress–strain accumulation in the material. During the deformations, 

the peak positions and FWHM vary significantly. The FWHM value is sensitive to the 

variation in microstructure and stress-strain accumulation in the material. Normally, an 

increase of stacking faults and the presence of deformation stress causes an increase of 

the FWHM. During the stress peak of deformation, the FWHM decreases. After 

deformation, the FWHM remained close to the last straining step, whereas the FWHM 

increases in the austenite indicating accommodation of strain. In summary, the presence 

of stress in the material causes an increase of the FWHM, while relaxation of stress 

decreases FWHM. (Vashista, 2012) 

The superposition diffractograms of both cold deformations (5 and 6) depict the (110)B2 

peak in higher 2θ position, indicating the influence of the compressive deformation 

performed at room temperature. After last deformation, the material is fully austenitic.  

The observation of Debye–Scherrer rings by the intensity versus 2θ is plotted as a 

function of the azimuthal angle (ϕ) (Figure 4.45). The evolution of the (110)B2 peak 

along the deformations may be observed. The first deformation depicts discontinuities 

and isolated spots of very high intensities. From 2
nd

 deformation to 6
th

 deformation it is 

observed the homogenization of the peak intensities. This information is clear in       

Figure 4.46, where the cartesian plots (intensity versus 2θ are plotted as a function of 

the azimuthal angle (ϕ)) after each deformation. A texture evolution along the 

deformation may be also observed.    

These deformations lead to texturing (crystallographic alignment) of the material. The 

texture has an influence on its mechanical properties as confirmed by the mechanical 

behavior (Figure 4.43) (Suresh, 2012). However, is not possible to define an exact 

texture by this measurement, because the deformation is not enough to allow this 
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appreciation. But for a qualitative observation it is possible to discuss some details. 

Increasing the deformation shows a trend to stabilize a deformation texture (Figure 4.46 

- black line). The 1
st
 deformation display a very weak texture and the texture is more 

strongly defined after 4
th

 deformation and it remains until 6
th

 deformation.  

 

 

 

Figure 4.45 - 3D plots transform of Debye–Scherrer diffraction rings (azimuthal angles) vs. 2θ –      

before, peak and after each deformation (hot and cold). 
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Figure 4.46 - Hot and cold deformations behavior and crystallographic orientation. 

 

This study aims to process a material which displays a superelastic behavior at room 

temperature. In order to verify this behavior, the superposition of the diffractograms of 

after hot deformations (Figure 4.41-b) and after cold deformations (Figure 4.41-c) are 

shown in Figure 4.47. These results illustrate that the material is fully austenitic for both 

situations at room temperature.  

 

Figure 4.47 - SR-XRD patterns after hot deformations (b) and after cold deformations (c). 
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The cold deformation after hot deformation confirms that this step is important to assure 

a particular microstructure and an improvement of the functional properties. (Suzuki, 

1998)(Habu,2009). However, it is known that the aging treatment may promote the 

metastable precipitates formation, such as Ni4Ti3. It is also known that Ni4Ti3 is the first 

precipitate to occur, at lower temperatures and shorter permanence times. 

According to previous results discussed in section 4.3.4, the temperature of 500 ºC was 

chosen to test the aging treatment during this measurement test. Figure 4.48 shows the 

aging treatment evolution from 1 minute to 30 minutes.  

In order to clarify the influence of the aging treatment on the of the Ni4Ti3 precipitates 

formation, the superposition of the diffractograms for each minute is shown in       

Figure 4.48. The aging time global view is shown in Figure 4.48 and a broadening of 

the (110)B2 peak along the time can be noticed on the right-hand side of this peak. The 

peak observed on the right-hand side, corresponding to Ni4Ti3 and was indexed using 

the 00-39-1113 ICDD card.  

The volume fraction of the Ni4Ti3 precipitates increased up to 20 minutes. However, 

after this time (from 21 to 30 minutes) the volume fraction did not show a significant 

change. This means that it is not necessary to perform the aging treatment for a long 

time to obtain the metastable precipitates formation. Thus, a short time of the aging 

treatment is enough to adjust the transformation temperature. Due to the occurrence of 

Ni-rich precipitates (Ni4Ti3), there is a Ni depletion in the surrounding matrix and a 

subsequent increase of the transformation temperature (Otsuka, 2005).  

Therefore, the occurrence of two-stage phase transformation of B2↔R↔B19' is 

considered to be a consequence of the aging Ni-rich Ni-Ti SMA. (Jiang, 2015) 
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Figure 4.48 – Superposition of SR-XRD patterns of each minute during aging treatment at 500 ºC during 

30 minutes. 

 

DSC measurement was used to investigate the phase transformation behavior of the 

NiTi_1 sample after thermomechanical measurement. As shown in Figure 4.49, one 

step phase transformation (B2 ↔ B19’) was detected in solution heat treated condition 

sample (at 950 ºC during 2h) on the cooling and heating. The transformation 

temperatures were below room temperature, because of the higher Ni content, as 

discussed previously (section 4.3.1). This confirms that the solution heat treatment is 

efficient to promote complete matrix homogenization. After thermomechanical test,    

R-phase was observed on the cooling curves, resulting in a two steps transformation 

(B2↔R↔ B19’). The R-phase transformation is mainly introduced by the Ni4Ti3 

precipitates, as shown in Figure 4.50. On heating, the sample after thermomechanical 

simulation shows only one transformation peak, suggesting that B19’↔ B2 took place 

in one single step. The transformation temperatures of the NiTi_1_Rem sample 
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(solution heat treated at 950 ºC during 120 minutes) increased after the 

thermomechanical process applied (Af = 30 ºC).  

 

 

Figure 4.49 - DSC curves of the initial 

(NiTi_1_rem. Heat treated at 950 ºC/120 min.) 

and final (after thermomechanical simulation) 

samples. 

 

Figure 4.50 – Superposition of the SR-XRD 

patterns obtained during cooling after aging 

treatment at 500 ºC during 30 min. 

 

The proposed thermomechanical treatment combined with aging treatment provided 

enough conditions for the precipitation process, which decreased the Ni content on the 

matrix, increasing the transformation temperatures. In addition, the R phase observed at 

room temperature in the sample after thermomechanical simulation (DSC results - 

Figure 4.49 – black curves) was corroborated with the presence of Ni4Ti3 precipitates, 

as shown in Figure 4.50 through diffractograms superposition of the cooling to room 

temperature after aging treatment. The existing phases after the thermomechanical 

treatment are austenite and Ni4Ti3 (Figure 4.50). 

 

 Optimization of Hot Deformations with Different Strain Rate 4.4.2.

Taking into consideration that the real deformation during forging process has a strain 

rate higher than 10
-3

s
-1

, other hot deformation conditions were tested. The strain rate of 

10
-1

s
-1

 at 850 ºC (12% total length change) was applied in order to verify the occurrence 

of the recovery and recrystallization phenomena during deformations.    

Flow curves obtained at different deformations and work hardening rate analysis are 

shown in Figure 4.51. The higher strain rate applied in this measurement resulted in less 
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defined curves. Due to small deformation, the strain rate applied during this 

measurement was too fast to obtain more data that could be used to discuss the results.  

Anyway, the hot deformation curves (1, 2, 3 and 4) exhibit typical single peak DRX 

(dynamic recrystallization) behavior with a broad peak followed by a gradual fall of 

stress. 

Higher strain rate also shows that the flow stresses increase with increasing deformation 

at the same deformation temperature. However, the 2
nd

 deformation shows the opposite 

behavior. This can be explained by the deformation accommodated, due to the tantalum 

plate protection used during the deformation. This behavior was discussed previously 

during the results of the deformation with strain rate of 10
-3

s
-1

.  

Again, DRX behavior was observed in all deformations. However, the work hardening 

rate behavior is more evident. This can be explained through the combination of the 

higher strain rate deformation and temperature. The curves behavior show that the strain 

rate was high enough to promote the single peak followed by the stress stabilization. 

For these deformation parameters (850 ºC and 10
-1

 s
-1

 ) the critical stress increases from 

170 MPa (1
st
 deformation), to 150 MPa (2

nd
 deformation), then to 189 MPa (3

rd
 

deformation) and finally to 220 MPa (4
th

 deformation). These values are in agreement 

with other studies with similar deformation conditions. (Jiang, 2012)(Morakabati, 2011) 
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Figure 4.51 – NiTi_1_Rem. true stress-true strain curves of the hot deformations (at 850 ºC) evolutions 

with strain rate of 10
-1

s
-1

 and comparison between the FWHM and 2θ evolution.  

 

Due to measurement limitation a simple analysis of the FWHM against 2θ was 

performed. After the 1
st
 deformation, the FWHM increased. On the other hand, further 

deformation promoted a decrease of the FWHM due to recrystallization. It is known 

that the 2θ did not show a change after the deformations, but only during the 

deformation. The increasing deformation shifted the 2θ to higher angles, indicating a 

smaller d-spacing. This occurs due to the compressive deformation.   

The cold deformations were not applied in this measurement.  
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The behavior after hot deformations was compared to the first measurement. At the first 

measurement (strain rate of 10
-3 

s
-1

) after the hot deformations, the SR-XRD patterns 

show that the sample was fully austenitic at room temperature.  

For this measurement (strain rate of 10
-1 

s
-1

), the DSC test was performed to investigate 

the phase transformation.  

As shown in Figure 4.52, one step phase transformation (B2 ↔ B19’) was detected in 

solution heat treated sample (at 950 ºC during 2 h) on the cooling and heating, as well as 

in the solubilized sample after deformation (at strain rate of 10
-3 

s
-1

). The transformation 

temperatures were below room temperature, because of the higher Ni content, as 

discussed previously (section 4.3.1). After thermomechanical test, the phase 

transformation shifted to lower temperatures. This indicates that the hot deformation 

promoted the dynamic recrystallization phenomenon occurrence and the 

homogenization of the matrix.  

 

Figure 4.52 - DSC curves of the NiTi_1_Rem heat treated at 950 ºC during 120 min and after hot 

deformations with strain rate of   10
-1

s
-1

. 

 

Both strain rates applied in this study show that the dynamic recrystallization occurred. 

It is possible to highlight that the temperature of the 850 ºC is suitable for hot 

deformations with these strain rates.    
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 Aging Treatment Optimization 4.4.3.

It has been recognized that the martensitic transformation behavior in the Ni-Ti SMAs 

is associated with the distribution of Ni4Ti3 particles, while the distribution behavior of 

Ni4Ti3 precipitates can be affected by several factors, including the heat treatment 

condition, initial Ni/Ti atomic ratio and the applied external stress.  

The literature reported that the compression aging of single crystalline materials under a 

stress about 50 MPa promotes the Ni4Ti3 particles formation. 

Ke et al. (2012), reported a study about the microstructure evolution of Ni4Ti3 

precipitates during stress-free and stress-assisted aging of bi-crystalline Ni-Ti shape 

memory alloys with 51.5% at.Ni. The results showed that during stress-free aging, the 

Ni4Ti3 precipitates exhibited a heterogeneous distribution while stress-assisted aging 

could give rise to homogeneous distribution of the precipitates on the matrix (Ke, 2012). 

Cong et al. (2014), reported a study of the thermomechanical properties and phase 

transformation behaviors of slightly Ni-rich Ni-Ti biomedical shape memory wires 

containing homogeneously distributed nanoscale precipitates induced by stress-assisted 

aging. The results showed that the size and volume fraction of precipitates increased 

with prolonged aging time (at 500 ºC under 70 MPa) (Cong, 2014). 

In order to understand the influence of the applied stress applied during aging treatment, 

the synchrotron radiation test was applied. The evolution of Ni4Ti3 precipitates during 

stress-assisted aging at 500 ºC during 30 minutes under 70 MPa for NiTi_Rem sample 

was observed. These results were compared with the stress-free aging performed during 

the thermomechanical simulation (section 4.4.1.). 

Figure 4.53 shows the broadening of the (110)B2 peak is still visible and other extra 

peaks, corresponding to Ni4Ti3, were observed. All these peaks were indexed using the 

same 00-39-1113 ICDD card corresponding to Ni4Ti3. The Ni4Ti3 intensity in the 

diffractograms is very low when compared to the observed austenite. Moreover, the 

most intense peak for this precipitate occurs very close to the (110)B2 peak and therefore 

is partially overlapped, as highlighted in the Figure 4.54. 



129 

 

 

Figure 4.53 – Superposition of the SR-XRD patterns (0, 10, 20 and 30 minutes) during stress-assisted 

aging treatment at 500 ºC during 30 min under 70 MPa. 

 

The stress-free aging results show that the volume fraction of the Ni4Ti3 precipitates 

increases up to 15 minutes, while the stress-assisted aging results show that the volume 

fraction of the Ni4Ti3 precipitates increases up to 20 minutes.  

However, the intensity of the Ni4Ti3 (close to (110)B2 peak) is higher in the stress-

assisted aging measurement compared to the stress-free aging measurement as shown at          

Figure 4.54.  

The compression load that was applied during aging treatment improved the 

precipitation of Ni4Ti3. This promotes an increase on the Ti/Ni ratio in Ni-Ti matrix. 

The Ni-content ratio in Ni-Ti matrix permits the control of the phase transformation 

temperature, which is desirable for developing shape memory alloys for medical 

application. Transformation temperatures were increased after aging, giving an 

excellent combination of shape memory effect and superelastic behavior at room/oral 

temperatures, as required by the orthodontic applications aimed for this material. 

As mentioned previously, the size and volume fraction of the precipitates increase along 

the aging time.  The external stress has an evident effect in the precipitation kinetics in 

Ni-Ti alloy.  

However, stress-free aging shows that the volume fraction does not strongly change 

during aging. Equilibrium volume fractions are reached after short ageing times         

(15 min). 
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Figure 4.54 - Superposition diffractograms of the stress-free and stress-assisted aging treatment at 500 ºC 

during 30 minutes. 

 

After both aging treatments, R-phase was observed on the cooling curves. The stress-

free aging may have promoted the heterogeneous distribution of the precipitation on the 

matrix, because it was observed in the DSC cooling curve a multi-stage phase 

transformation, while the stress-assisted aging may have induced the homogeneous 

distribution of the precipitation on the matrix resulting in a two steps transformation 

(B2↔R↔ B19’).  

On heating, both samples showed only one transformation peak, suggesting that   

B19’↔ B2 transformation took place in one single step. Moreover, the stress-assisted 

aging promoted a shift of the transformations temperature to slightly higher temperature 

(e.g., Af temperature from 30 ºC to 34 ºC) most probably related to the higher fraction 

of Ni4Ti3 precipitation. 
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Figure 4.55 also shows that a rather substantial portion of the observed functional 

changes are in fact due to the diffusion-controlled mechanism of Ni4Ti3 precipitation 

even at stress-free aging. The generation of dislocations, the precipitation of Ni4Ti3, and 

the interaction between these microstructural features, have a combined effect on the 

functional properties of Ni-Ti along the time.  

 

Figure 4.55 – DSC curves of the NiTi_1_Rem sample after stress-free and stress-assisted aging. 

 

 Thermomechanical Process Simulation Summary 4.4.4.

In summary, a material with R-phase at room temperature and austenite phase close to 

oral temperature was achieved using the thermomechanical simulation proposed. The 

following are the major conclusions that can be drawn: 

- The thermomechanical simulation indicated that the dynamic recrystallization 

occurred for both measurements, with strain rates of 10
-3

 and 10
-1

 s
-1

 at 850 ºC; 

- The hot deformations at 850 ºC combined with strain rates of 10
-3

 and 10
-1

 s
-1

, show 

that these parameters were enough to identify the dynamic recrystallization 

phenomenon.  

- The in-situ experiments of high temperature deformations using SR-XRD reflection 

mode (Grazing Incidence X-ray Diffraction) need to be improved. The amount of the 

data obtained during the test was not enough to investigate the details of dynamic 

recrystallization occurrence; 
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-  From the deformation processing proposed according to NiTi_1_Rem experiment, the 

optimum intermediate heating temperature was confirmed as 850 ºC, allowing a good 

hot-deformation condition even considering the temperature drop during transfer of the 

material from the furnace to the forging; 

- After cold deformation, the material was still fully austenitic at room temperature; 

- After aging at 500 ºC, the material showed Af temperature below oral temperature         

(Af = 30 ºC). This characteristic is desirable for the product that is required to be 

superelastic at the body temperature; 

- The stress-assisted aging promoted the Ni4Ti3 formation. This aging treatment allows 

to obtain a more homogeneous precipitation. The control of this precipitation allows to 

adequate the design for the material in accordance with different applications;   

- The thermomechanical route proposed may allow to produce a material with a 

superelastic behavior close to the body temperature, such as orthodontic archwires. The 

presence of the R-phase at room temperature is an interesting feature achieved, because 

this phase enables easier materials deformation followed by thermally induced shape 

memory effect at oral temperature. 

 

4.5. Orthodontic Archwires  

In this section the orthodontic archwires characterization results are discussed, in order 

to identify the most relevant properties of the product. Firstly, the difference between 

superelastic archwire and thermo-active archwire characteristics were investigated.   

The superelastic archwires, are austenitic close to room temperature and undergo 

martensitic transformation by mechanical deformation, while the thermo-active 

archwires are partially martensitic and display a thermally induced shape memory effect 

and the transition temperatures B19’→ B2 occur close to oral temperature. 

Thinking of the biological condition, the GAC developed a functionally graded Ni-Ti 

archwire and offers the BioForce archwires. These archwires apply low and gentle 

forces in the incisive teeth, increasing the forces across the premolars up to the molars 

teeth. This force begins at 0.8 N and increases up to 3 N, to provide the appropriate 
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force to each tooth, promoting the comfort of the patient. Thus, the BioForce archwire 

characterization was performed in order to understand their behavior. (Mullins, 1996) 

Following this trend, the introduction of graded functionality in commercial superelastic 

orthodontic archwires was analyzed. There are few studies concerning the 

manufacturing of the functionally graded Ni-Ti orthodontic archwires reported in the 

literature. (Sevilla, 2008) (Sudershan, 2015) 

In order to understand the behavior of the functional gradient along the archwire length, 

at room temperature, the discussion is carried on analyzing separately the archwires 

with different characteristics. Such separation is needed as the introduction of graded 

functionality was performed in commercial homogeneous superelastic archwire. 

 Superelastic orthodontic archwire 4.5.1.

The Af temperature is the most important temperature to determine from the clinical and 

manufacturers point of view, because at this temperature the alloy is stable and exhibits 

the final adequate shape for the application that is aimed. 

The superelastic orthodontic archwire (Morelli SE) transformation temperatures were 

obtained by DSC analysis and are shown Figure 4.56. This sample is austenitic at room 

temperature (Af = 20 ºC). This result was similar to results reported by Spini et al. 

(2017) (Af = 19.82 ±1.57 ºC). This result indicates the capability of actuation via the 

superelastic effect during the orthodontic treatment. The Af temperature being below 

oral temperature, there is no phase transformation. The transformation takes place 

before the archwire is positioned on the teeth (Ohara, 2016).   
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Figure 4.56 -DSC curves of the superelastic orthodontic archwire 

 

The DSC result shows two transformation peaks on heating and on cooling, indicating 

the R phase presence (B2 ↔ R↔ B19’).  The SR-XRD results (Figure 4.57) show the 

intermediate Ni4Ti3 presence at room temperature, along the archwire length analyzed. 

This precipitate is common due to the orthodontic archwires manufacturing.  

As discussed previously, the cold working is used to produce the final product shape. 

The final process of Ni-Ti SMA fabrication is shape memory treatment. To memorize 

the shape of the wire an intermediate heat treatment (between 400 and 500 ºC) during 

10 to 100 minutes (depending on the material) was performed. It is necessary a 

fastening of the wire in order not to change of the shape during the heat treatment.       

(Suzuki, 1998) 

 

Figure 4.57 - SR-XRD pattern at room temperature of the superelastic archwire.  
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The load developed by these wires depends on the geometrical properties, the 

temperature and level of strain. Normally, this archwire generates constant forces in a 

wide range of displacement during the orthodontic treatment. It is worth remembering 

that this behavior occurred due to material chemical composition, and the 

thermomechanical process applied.  

 Thermo-active orthodontic archwire 4.5.2.

Figure 4.58a depicts the DSC curve of the thermo-active archwire. Upon cooling a two-

step transformation was observed. Upon heating, one step transformation is clearly 

observed. It can also be observed that the high temperature peaks in both cooling and 

heating ramps are symmetric. As the heat treatment fixed transformation temperatures, 

symmetrical and well-defined peaks would be expected.  

The R-phase presence in thermo-active archwire at room temperature (Af =18 ºC) favors 

the thermally induced shape memory effect. In addition, the transition temperatures 

B19’→ B2 occur close to oral temperature (~34 ºC). 

Similar information can be obtained from thermomechanical analysis (TMA) using 

three-point bending mode (Figure 4.58b). The archwire clearly manifest the B19’→B2 

via both the DSC and TMA method. Also, As and Af temperature values evaluated 

through TMA resulted higher than those measured via DSC (TMA – As = 6.0 ºC and   

Af = 20.5 ºC and DSC - As = 7.3 ºC and Af = 17.7 ºC). The difference between these 

results can be explained by technique limitation. However, the difference between these 

values in practice has no significant difference. It can be observed that the variation of 

the length is consistent with the transition temperature range. This means that 

transformations from martensite to austenite are occurring at oral temperature and the 

superelastic behavior is reached. Such verifications are in line with what was observed 

from the DSC measurements.  

Spini et al. (2014), reported the Af (20.39 ºC) of the same thermo-active archwire was 

close to room temperature and lower than the oral temperature, being completely in an 

austenitic phase (greater rigidity) for clinical applications. 

 



136 

 

 
Figure 4.58 - DSC curves, dilatometry measurement curve and SR-XRD patterns at room temperature of 

the thermo - active archwire. 

 

From the DSC and TMA measurements presented previously it can be inferred that the 

R-phase is present at room temperature. Both these techniques are not able to confirm 

the exact phase that is present at room temperature. As such, to obtain this information 

the three diffractograms of different regions along the archwire length are presented in 

Figure 4.58c. All the regions show the presence of B2 and R-phase. The SR-XRD 

results confirm the DSC and TMA results.  

Namely, this archwire, with R-phase presence at room temperature, show an easier way 

to position it on the tooth. In contrast to this, the mouth environment causes the phase to 

change to austenite, increasing the force applied to the tooth during the orthodontic 

treatment (with the increasing temperature). 

 Ni-Ti orthodontic archwires with graded actuating forces 4.5.3.

Three sections (Incisive - S01, Premolar - S02 and Molar - S03) of the Ni-Ti 

orthodontic archwires with graded actuating forces (Ni-Ti orthodontic Archwire – 

BioForce Dentsply GAC International, Inc., Central Islip, NY, USA) were investigated, 

to provide a better understanding of their functional behavior, as shown in Figure 4.59. 
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Figure 4.59 - Scheme of the sections S01, S02, S03 of the studied orthodontic archwire.             

Dimensions in mm. 

 

Figure 4.60 depicts the DSC curves of the three sections. The phase transformation 

temperatures are shown in Table 4.7. 

The S03 shows an Af near room temperature while S01 and S02 segments have slightly 

transformation temperatures above that, but closer to oral temperature (~34 ºC); so, all 

the curves on heating presented Af temperatures lower than 37 °C (human body 

temperature), indicating the capability of actuation via the superelastic effect during 

orthodontic treatment. 

The DSC results show a two-step transformation during the cooling, suggesting that 

B2↔R and R↔B19’ transformation occurred. For all archwire segments, the presence 

of intermediate R-phase is in agreement with other studies. (Bradley, 1996)   

(Sudershan, 2015) 

On heating, S01 and S02 segments show only one transformation peak, suggesting that 

B19’ ↔ B2 transformation took place in one single step. S03 heating curve shows a 

peak on the onset side which would indicate the presence of the R-phase. 

Typically, this orthodontic archwire presents Af temperatures close to oral temperature, 

thus allowing the austenitic transformation to occur as the temperature is increased from 

room temperature to oral temperature. 

Due to these characteristics, a DSC analysis was performed in the range of 5 to 40 ºC 

(Figure 4.61) to observe the B2↔R-phase transformation.  

Other studies (Nespoli,2015)(Brantley, 2003) used DSC measurements to show the      

R-phase transition. They observed the broadening of the heating peak and expected a 
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mixture of the phases (B2 - R - B19') for archwire segments. At human body 

temperature (37 ºC), however, all the wire segments are fully austenitic. For all archwire 

segments, cooling curves show the presence of intermediate R-phase. (Brantley, 2001) 

(Bradley, 1996) 

 

 

Figure 4.60 - DSC curves of three sections (S01, S02 

and S03) of the Ni-Ti orthodontic archwires with 

graded actuating forces. 

Table 4.7 – Phase transformation temperatures 

of the S01, S02 and S03 of the Ni-Ti 

orthodontic archwires with graded actuating 

forces, in Celsius degrees. 

 

 

The results are confirmed by the literature that show the Af temperature of orthodontic 

archwires with graded actuating forces for the molar segment, pre-molar segment and 

incisive segment are 25.9±0.7 ºC, 27.5±1.2 ºC and 30.2±0.5 ºC, respectively 

(Sudershan, 2015).  

Considering the R-phase presence, three-point bending results performed by TMA are 

plotted together with DSC and are shown in Figure 4.61. The three-point bending test 

for all three sections showed that the deflection of the wire stays constant at the highest 

temperature range (above 30 ºC) where the austenite is thermally stable (full recovery of 

the deformation by superelastic effect). With decreasing temperature, this deflection 

amplitude rate starts increasing up to a maximum that occurs at a temperature above         

25 ºC. These results are confirmed by the mechanical tests that show that S01 and S02 

segment have somewhat lower actuating forces than the S03 segment (Figure 4.63).  
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Figure 4.61 - DSC and three-point bending (TMA) results for the three sections of the Ni-Ti orthodontic 

archwires with graded actuating forces. 

Figure 4.62a shows the schematic of the measurement along the length of the archwire 

(50 mm with the spacing distance of the 1 mm) at room temperature.  

Figure 4.62b shows the present phases in each segment through a scheme with three 

diffraction patterns, one pattern of each segment (In Figure 4.61a the S03 diffraction 

patterns is highlighted by red line, S02 diffraction patterns is highlighted by blue line 

and S01 diffraction patterns is highlighted by green line).  

 

Figure 4.62 - SR-XRD patterns at room temperature for the three sections along the Ni-Ti orthodontic 

archwires with graded actuating forces length. a) superimposition of the XRD patterns of all scans along 

the wire to observe the graded functionally wire. b)  diffraction patterns for the three sections to compare 

the phases present at room temperature. 

 

Diffractograms obtained at S03 are well indexed by B2 austenitic phase. The B2 peak 

was observed with different intensities along the functionally graded wire and the        

R-phase is identified at sections S01 and S02. The Ni4Ti3 precipitate was observed at 

S01.  
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The existence of R-phase in S01, as well as in the premolar section (S02), can be 

justified by the heat treatment applied on the archwire (Ni4Ti3 formation). (Khalil-Allafi 

, 2002). The presence of Ni4Ti3 precipitates is more evident in S01, as evidenced by 

broadening of the peak, which is marked by purple line in Figure 4.62b.  

It is supposed that in the heat-treated sections, precipitation phenomena, namely of 

Ni4Ti3, originates a Ni depletion of the surrounding matrix. As such, this composition 

variation is responsible for a change in the transformation temperatures, allowing for   

R-phase to be present at room temperature (see Table 4.7).  These observations support 

the existence of a functional gradient. 

Figure 4.62 shows the load-deflection curves for the test of three sections at room 

temperature. At room temperature, the three sections present some unrecovered 

deformation, which is more significant in segments S01 and S02.  This deformation 

could be recovered by shape memory effect with the increase of the temperature. 

There is a clear difference between the mechanical behavior of the different sections. 

According to the DSC test (Table 4.7), the S03 specimen shows lower Af temperature, 

i.e. the higher Ni content on the matrix, which is confirmed by mechanical testing. It 

can be seen that the upper plateau increases, which indicates a higher critical stress for 

the stress-induced martensite to be formed. Again, these observations support the 

existence of a functional gradient along the wire. (Sakima, 2006) (Nespoli, 2015) 

 

Figure 4.63 - Plot of representative load-deflection data for the three sections of the Ni-Ti orthodontic 

archwires with graded actuating forces testing at room temperature. 

The analyzed points of the displacement (0.5, 0.75 and 1.0 mm) are the points related to 

the clinically advisable rate of biological tooth movement, which is about 0.5 to 1.0 mm 

in 4 to 5 weeks.(Pilon, 1996)(Eagly, 1991) (Proffit, 2018) For this reason, all the values 

reported here represent data from the force-displacement curves during unloading 

portion in the range 0.5 to 1.0 mm. These curves are depicted in Figure 4.64a, b and c. 
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Figure 4.64d, e and f depict the slopes of the superelastic lower plateau of each segment 

at the studied temperatures. 

During the orthodontic treatment, 37 ºC is the most important actuation temperature. 

Thus, the observation about 37 ºC will be discussed first. The results at this temperature 

show that the range of actuating forces is significant for all the sections. None of the 

sections showed unrecovered deformation after the three-point bending test. A much 

wider range of force of the unloading superelastic plateau was recorded for the S03 

segment compared to the S01 and S02 segments. For S03 the forces varied from  2.09 to 

1.92 N, S02 from 1.43  to 1.28 N and S01 from 0.88 to 0.56 N (Figure 4.64d). As 

expected, molar segment yielded higher actuating force values. 

The results at 25 ºC temperature are similar to 37 ºC results, once the Af is close to this 

temperature. For 25 ºC, lower actuating forces are observed when compared to the 

corresponding actuating forces at 37 ºC. At 25 ºC there is also full recover of the 

deformation (superelastic behavior). The wider range of force of the unloading 

superelastic plateau was recorded for the S03 as expected. The average of the slope of 

actuating forces (superelastic behavior) are: S01 from  0.48 to 0.14 N, S02 from 1.24 to 

0.90 N and S03 from 1.11 to 0.79 N (Figure 4.63e).    

The results for 20 ° C will be discussed taking into consideration the fact that this is a 

common room temperature in the orthodontic clinical room. As mentioned before, this 

measurement was performed by immersion in a water bath with a controlled 

temperature The S01 section does not present a significant actuation force. A light 

actuation force was just observed for the S03 and S02. This indicates that the 

deformation is easier at this temperature and can be bent into desirable shapes without 

breaking or deforming permanently. The average of the slope of actuating forces 

(superelastic behavior) are: S01 is null, S02 from 0.05 to 0.46 N and S03 from 0.5 to 

0.95 N (Figure 4.63f).     

The graph comparing the different segments tested at 5 °C did not show unloading 

plateaus. This suggests that all the segments were not in austenitic field, depicting that 5 

°C is below the Af temperature for this orthodontic archwire. 
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Figure 4.64 - Force x Stroke curves for the three sections of the Ni-Ti orthodontic archwires with graded 

actuating forces (a) S01, (b) S02, (c) S03 at four temperatures (5, 20, 25 and 37 ºC). (d) Slope 37 ºC, (e) 

slope 25 ºC and (f) slope 20 ºC. 

 

Extrapolating these results to a clinical situation, it can be suggested that when the 

patient ingests warm drinks the force delivered by these archwires increases and 

stimulates tooth movement. Conversely, cold drinks might reduce the force delivered by 

these archwires.   

In general, the manufacturing of the Ni-Ti orthodontic archwire has a complex 

metallurgical process. The chemical composition, the heat treatment, and 

thermomechanical process influence the properties of the wires. 

The different sections of the Ni-Ti orthodontic archwire used in this study showed:       

i) different structural characteristic; ii) distinct phase transformation temperatures;       

iii) different load-deflection curves for all the tested condition. 

Finally, at the body temperature (37º C) all the samples showed a superelastic effect 

when they were analyzed. At this temperature, the forces were light and continuous in 2 

mm of deflection. All the sections showed the typical plateau for superelasticity. The 

section S03 as the molar segment, S02 as the premolar segment, and S01 as incisive 

segment, showed decreasing actuation force (average of the slope of actuating forces - 

superelastic behavior) from 2 N, 1.3 N and 0.7 N, respectively, similar behavior is 

reported in the literature (Sudershan, 2015). The lower load levels correlated with the Af 
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temperatures suggests that the actuating force levels at which the superelastic effect 

occurs are lower for the segments of the wire which have higher Af temperatures.   

The different behavior between the sections evaluated in this study probably may be 

attributed to a thermal process applied. 

 Commercial Ni-Ti Orthodontic Archwires Summary  4.5.4.

It is expected that the Ni-Ti orthodontic archwires show the adequate functional 

properties and generates continuous and light forces during the orthodontic treatment. 

The Ni-Ti orthodontic archwires with graded actuation forces needs to develop these 

forces in different ways for each tooth. The following conclusions can be drawn from 

this work: 

- Commercial Ni-Ti orthodontic archwires investigated in this study present the 

Af temperature close to room temperature and at oral temperature all the 

archwires are fully austenitic; 

- The superelastic orthodontic archwire do not show different mechanical 

behavior in the environment oral; 

- The orthodontic archwire with graded actuation forces tested has different 

mechanical properties along the length of the wire;  

-  For the orthodontic archwire with graded actuation forces, the functional 

gradient is put into evidence on SR- XRD analysis; 

- For the orthodontic archwire with graded actuating forces there are significant 

differences in the forces and moments of the unloading superelastic plateaus, 

comparing the different sections of the archwire at different temperatures;   

- Clinically, the Af temperatures below oral temperature are interesting because at 

these temperatures they show an easier formability.  

 Functionally Graded Orthodontic Archwires 4.5.5.

The functional gradient was introduced in the superelastic Ni-Ti orthodontic archwire 

(Morelli - SE) that was discussed previously in section 4.5.1.  

Figure 4.65 shows the DSC curves of the three zones of the Ni-Ti orthodontic archwire 

heat treated (300 ºC during 10 minutes) where internal is the heat-treated zone, 

transition is intermediate zone (between heated and no heated sections) and external is 

no heat-treated zone. The phase transformation temperatures are shown in Table 4.8.  
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Figure 4.65 - DSC curves of the three zones of the Ni-Ti orthodontic archwire heat treated (300 ºC during 

10 minutes). 

 

Table 4.8 - Transformation temperature of the three zones of the Ni-Ti orthodontic archwire heat treated 

(300 ºC during 10 minutes), in Celsius degree. 

Sample 

(zone)  

Cooling Heating 

Rs Rf Ms Mf Rs Rf As Af 

Internal   35 8 -59 x -2 x x 45 

Transition   37 13 -47 x -11 x x 43 

External    31 -20 -61 x -34 x x 17.7 
x- not detected 

The internal and external zones DSC results show two transformation peaks on heating 

and on cooling, indicating the R phase presence (B2 ↔ R↔ B19’). On the other hand, 

the transition zone DSC curves show one transformation (broad) peak on heating and 

one on cooling, suggesting that B2 ↔ B19’ took place in one single step, but due to 

narrow thermal hysteresis the presence of the R-phase may be considered.   

Similarly, to commercial orthodontic archwires with graded actuation forces, the three 

zones presented different Af temperatures. This is due to the presence of a gradient of 

transformation temperatures, which arise from the gradient of chemical compositions, 

within the heat-treated zone. (Shariat, 2017)  

From the DSC measurement it can be inferred that a microstructural gradient is present 

in this treated archwire.  This technique is not capable of providing a localized analysis 

along the heat-treated archwire. To identify the microstructural behavior of the whole 

length of the heat-treated archwire (300 ºC during 10 minutes), the SR-XRD analysis 
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was performed, as shown in Figure 4.66. This measurement allows to identify the heat-

treated zone and the symmetry of the heat treatment behavior.  

   

Figure 4.66 - SR-XRD partners along the Ni-Ti orthodontic archwire heat treated (300 ºC during            

10 minutes) length. 

 

Figure 4.66 depicts the diffractograms (integrated for Phi from 0 to 360º) and three 

diffractograms of different regions of the functionally graded orthodontic archwires 

(zoom): internal zone (green line), transition zone (blue line) and external zone (red 

line).  

The superposition of the three diffractograms allowed us to identify a clear difference 

between the zones. The intensity of the (110)B2 peak decreasing from the external zone 

to the internal zone is noticed. The external zone is fully austenitic, while the internal 

zone shows the presence of the R-phase.   

The existence of R-phase can be justified by the presence of Ni4Ti3 precipitates. The 

Ni4Ti3 presence is due to the higher temperature reached during the heat treatment at the 

internal zone. It is known that this precipitate may occur, at lower temperatures and 

shorter permanence time (Otsuka, 2005). 

Pelton et al. (2000) used an alloy with similar characteristics as the one used as base 

material (superelastic orthodontic archwire) for this study. They reported that it is 

possible to observe the Ni4Ti3 precipitation in a temperature range from 300 to 500 ᵒC, 

in a short-elapsed time, of a couple of seconds. 



146 

 

A simple observation of the superelastic archwire texture was necessary to understand 

the behavior during the mechanical test of the functionally graded archwire; where the 

tensile and compressive sides are phi0 and phi90 respectively. Figures 4.67 show the 

pole figures, for superelastic archwire. This sample has two overlapped textures: 

{110}<110> and {200}<110>.  

 

 

Figure 4.67 - Pole Figures of superelastic archwire. 

 

Other authors have reported the same texture components on Ni-Ti drawn wires. 

(Hasan, 2008) (Sun, 2018) 

The single scan (sscan measurement) was performed along the 32 mm total length of 

the heat-treated arch-wire. Due to symmetry, we are presenting the results only from the 

center point (at 16 mm from one edge) to the end (32 mm) (Figure 4.68). The intensity 

of (200)B2 along the orthodontic archwire is higher for phi0 than for phi90. The (110)B2 

intensity increases from the center (16 mm) to the edge (32 mm), while R-phase 

(indicated by an arrow in Figure 4.68) is decreasing. This behavior is more evident in 

phi0 than in phi90. 
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Figure 4.68 – SR-XRD diffractograms - intensity versus 2θ of the phi0 and phi90 of the Ni-Ti orthodontic 

archwire heat treated (300 ºC during 10 minutes) between 16 and 32 mm of length. 

Orthodontic applications of Ni-Ti alloys require a suitable mechanical behavior during 

the treatment, in order to take advantage of superelasticity. In this study an observation 

of the structural behavior during the tensile test was performed. Therefore, a deeper 

approach to mechanical behavior will not be carried out in this discussion.  

During the tensile test (Figure 4.69a and b) a typical yielding behavior associated with a 

stress plateau due to reversible stress-induced martensite (SIM) transformation 

occurring between austenite and martensite is observed. Specific steps of the stress-

strain curve were previously selected in accordance with displacement during the 

orthodontic treatment (Figure 4.69).  During this test, the SR-XRD images were in-situ 

collected along the gauge length (32 mm) of the heat treated (300 ºC during 10 minutes) 

Ni-Ti orthodontic archwire. 

For these uniaxial loading in tension, the directions parallel to the loading axis (phi0) 

and perpendicular to the loading axis (phi90) were chosen. The SR-XRD results (the 

intensity versus 2θ) are plotted as 3D representations of the 2θ scans, as a function of 

the position along the heat-treated segment of the orthodontic archwire for the two 

azimuthal angles. (Figure 4.69a and b).  

The Figures 4.69 and 4.70 show the results of the deformation evolution during the 

tensile test. In Figure 4.69 all the length of the archwire was observed for each step of 

the deformation, for phi0 and phi90, while Figure 4.70 shows a single diffractogram of 
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each zone (internal zone - transition zone - external zone) at different tensile steps 

(cyclestp measurement) for phi0 and phi90. 

During loading, the intensity of the B2 peaks is decreasing and a combination of the 

appearance of new peaks and peak overlap can be observed, which is an indication of 

the evolution of a new phase at high stress. These phases were indexed as monoclinic 

B19’ and R-phase which were formed by deformation. 

The stress-induced R-phase peaks are seen in Points 1 – 0.6% and 2 – 1.9% (red and 

green boxes), not overlapped by the much more intense austenite (110)B2 peak. The 

presence of the R-phase indicates that a certain level of stress has been reached which is 

below the martensitic phase transformation stress plateau. The presence of the R-phase 

can be observed in tensile curves for both phi (phi0 and phi90), where a change in slope 

can be noticed in the elastic deformation portion of the austenite in the tensile curve. 

The R-phase can be clearly identified in Figure 4.70, by green line, in the phi0 and 

phi90 diffractograms of each zone.    

The B19' was observed at 2.8% of the deformation, which corresponds to the zone 

around the middle of the plateau on the tensile curve (Point 3 – orange box). It is 

observed that the R-phase coexists with B19' and B2 phases up to 5.9% (Point 4 – black 

box). At 6.3%, the material is fully B19' (Point 5 – blue box). During loading, the B19' 

peaks are increased while B2 peaks decreased until they disappear. (Young, 

2010)(Héraud, 2015) On the other hand, the reverse behavior can be observed during 

unloading: 2.8% and 0.6% (Points 6 and 7 – purple and pink boxes). The SXRD 

patterns obtained at unloading, at 0.6%, show the peaks of B2 phase. It is then observed 

that the stress-induced R-phase is reversible, as well as for B19' phase. These results are 

in accordance with literature. (Benafan, 2017) 

On loading, the SIM is starting from the middle region of the archwire and, with further 

strain, it progresses till it reaches both ends of the wire. This behavior is coherent with 

observations reported in the literature. (Sevilla, 2008) (Meng, 2016) (Shariat, 2017) 

The behavior observed during the tensile loading was attributed to SIM. The strain was 

reversible, and the plastic deformation did not occur within the austenite phase under 

the stress tested, as reported by other authors. (Benafan, 2017) 

Examining the tensile and compressive sides (phi0 and phi90, respectively) shows a 

striking difference in the martensite variants of the stress-induced martensitic formed. 
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The martensite must find a different way to accommodate the stress state, because it is 

not possible to expand in the phi0 direction on the compressive side as it is for the 

tensile side to expand in the phi90 direction. 

Figure 4.71a shows the comparison between maximum of the (110)B2 intensity along 

the deformation of each zone for phi0 and phi90. In the internal zone the higher 

intensity was observed in phi0 for the first three steps. The intensities are similarly to 

the steps where the material is fully martensitic. At unloading step (06%) the (110)B2 

peak increased with the same behavior. At internal zone the transformation was 

reversible. A similar behavior was observed in transition zone results. However, in 

external zone the material is fully martensite after deformation. This behavior confirms 

the previous observation, that the martensitic transformation beginning at the middle of 

the wire, where the higher temperature was reached during the heat treatment. (Benafan, 

2017) 

The prominent (110)B2 peak in phi0 splits into two martensite peaks, (020)B19’ and 

(021)B19’ show intense stress-induced texturing, while the (110)B2 peak in phi90 splits 

into three martensite peaks, (110)B19’, (002)B19’ and (111)B19’ show intense stress-

induced texturing as shown in Figure 4.70.  These results are similar to those reported in 

the literature. (Hasan, 2008) 

Figure 4.71b shows the comparison between 2θ (110)B2 along the deformation of each 

zone for phi0 and phi90. The 2θ for phi0 and phi90 are similar in all the zones. As 

mentioned previously, the tensile and compressive directions display a preferential 

behavior. At phi0 the 2θ (110)B2 during the tensile test shifted to higher 2θ values, due 

to the decreased of the d-spacing, while at phi90 the 2θ (110)B2 shifted to lower 2θ 

values because the d-spacing increases due the tensile versus compressive components.   

In this measurement the superelastic plateau occurred at roughly 25 N. The results 

showed that this treated archwire displays different behavior along its length. A 

complete loading–unloading cycle was observed; the deformation behavior is largely 

superelastic.     

The heat treatment at 300 ºC during 10 minutes (by Joule effect) has significant 

influence on the structural behavior along the archwire length. The precipitation 

phenomena, namely Ni4Ti3, originates a Ni depletion of the surrounding matrix; these 



150 

 

precipitates can induce the R-phase presence. The heat treatment at 300 ºC during       

10 minutes increased the austenite finish temperature.   

The behavior of the heat-treated archwire heat-treated does not compare to the 

commercial orthodontic archwires with graded actuating forces, because the heat 

treatment applied needs further improvement. The first results presented here about the 

materials behavior after heat treatment demonstrate that this mechanism is more 

complex than previously reported. 
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Figure 4.69 - In situ SXRD analysis during tensile test (a - phi0 and b - phi90) of the Ni-Ti orthodontic 

archwire heat treated (300 ºC during 10 minutes). 
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Figure 4.70 - Single diffractogram of each zone (zone 1 – treated zone, zone 2 – intermediate zone and 

zone 3 – no treated zone) during the tensile test - phi0 and phi90. 

 

Figure 4.71 – Comparison between: (a) maximum of the (110)B2 intensity and (b) 2θ along the 

deformation of each zone - phi0 and phi90. 
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5. Conclusions and Future Work  

We studied three different Ni-content alloys to be processed: Ni-rich “alloy 1” with 

50.8% at. Ni, close to equiatomic “alloy 2” with 49.9% at. Ni and Ti-rich “alloy 3” with 

49.3% at. Ni (global composition). We have also analyzed commercial orthodontic 

archwires. 

The main conclusions of these studies will be presented in separate sections according 

to the different processing steps and, finally, for the analyses of commercial orthodontic 

archwires.  

5.1.  As-cast and remelt  

The functional characteristics, namely Af temperature, of the three alloys were 

identified. Alloy “1” has been chosen as the main alloy to be investigated due to its 

most interesting functional characteristics.  

For all these alloys the solubilization treatment has given a fully austenitic matrix at 

room temperature. 

The optimization condition of the solubilization treatment has led us to consider 950 ºC 

during 120 minutes as the most favorable processing parameters.     

5.2.  Hot Forging Steps 

The characterization of the forging steps allowed us to verify that the deformation 

temperature that was applied promoted the dynamic recrystallization. 

The microstructural analysis of these forging steps, as well as the in-situ study for 

simulation of hot working, led us to propose 850 ºC during 15 minutes as the most 

favorable condition for the intermediate annealing.  

5 
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This parameter choice was supported by the need to guarantee that hot deformation 

would take a place in the most favorable condition for dynamic recovery and 

recrystallization to occur, even considering the possible cooling of the material during 

the transportation from furnace to forging equipment.  

5.3.  Cold Forging Steps 

The analysis of the forging steps confirmed that the microstructural refinement was 

ensured, always guaranteeing at the same time a fully austenitic matrix close to room 

temperature; at the last cold forging step some residual R-phase and/or B19’ were 

identified at room temperature. 

The microstructural analyses of the final forging steps, as well as in-situ studies on 

simulated thermomechanical cycles, allowed us to propose a most convenient 

intermediate annealing treatment: 850 ºC during 15 minutes, just like the previous 

processing step (hot forging). 

5.4.  Aging Heat Treatment  

Preliminary studies at 350, 400, 450 and 500 ºC allowed us to identify 500 ºC as the 

most suitable aging heat treatment temperature. 

The analysis of structural evolution during aging (stress-free and stress-assisted aging) 

allowed us to confirm a significant acceleration of the Ni4Ti3 precipitate kinetics when 

a compressive loading is applied. The kinetics of the stress-assisted aging was stabilized 

at the end of 15 minutes compared to 20 minutes for the stress-free aging.      

5.5.  Orthodontic Archwires Characteristics 

Two commercial orthodontic archwires were analyzed in order to better understand the 

expected characteristics for the material to be used in their fabrication.  

Morelli archwires (superelastic and thermo-activated) were studied to identify two 

classes of situations: Af below room temperature (superelastic) and Af slightly above 

room temperature (thermo-activated). The superelastic archwires, are austenitic close to 

room temperature and undergo martensitic transformation by mechanical deformation, 

while the thermo-activated archwires are partially martensitic at room temperature and 

display  thermally induced shape memory effect when heated to oral temperature. 
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Also, BioForce archwires were studied in order to investigate a very recent innovation: 

the introduction of a functional gradient. We have also analyzed the possibility of 

introducing this functional gradient on conventional commercial archwires (sold as 

uniform archwires). The results of our study prove the feasibility of the use of a portable 

equipment to introduce localized heat treatments that may be custom-designed.   

5.6.  Future Work 

The melting/casting of these alloys require further improvement in order to reduce the 

inclusions contents (TiC and Ti2Ni4O). 

The presence of the inclusions in the current study did not represent a significant 

limitation as they did not result in fracture during the steps under analysis. Nor should 

they represent a limitation to the analysis of microstructural evolution during the 

successive thermomechanical steps, in agreement with other authors findings. (Coda, 

2012) (Reinholz, 2012) 

A further analysis with lab scale reproduction of the thermomechanical processing 

incorporating the proposed changes is suggested as a continuation of these studies. 

A more detailed microstructural analysis (TEM and EBSD) of the aging (stress-free and 

stress-assisted) is suggested as a continuation.   

Using our experience on the aging of commercial alloys, a prototype for localized heat 

treatments of conventional archwires may be designed. 
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7. Appendix 

A.1 – FIT2D
3
 

FIT2D is both a general purpose and specialist analysis program supporting one and two 

dimensional data processing. For the XRD experiments, raw data are collected as 2D 

images (TIF format) of Debye-Scherrer rings. FIT2D allows the 2D images to be 

integrated to 1D profile with user specified 2θ.  It provides a variety of different output 

possibilities, such as different 2θ scans, for different azimuth ranges; a 1D profile of 

intensity of a ring as a function of azimuth; or a polar transform of the data.  

The diffraction patterns must be calibrated for accurate analysis. In our case, LaB6 

powder standard was used. This powder is generally put on sample holder and exposed 

to x-ray with similar experimental parameters as for the sample (same detector distance, 

etc). Additional patterns may be taken at different detector positions in order to gain 

precision. Those well-known samples allow corrections for detector tilt, sample-detector 

distance and beam center position. Such operations were done using the Fit2D software 

package available from ESRF
3
 (Hammersley, 1996).  

In the next table we present the typical interfaces of the FIT2D program for the most 

common procedures used in this work. 

 

Instructions 
Interfaces of the FIT2D 

program 
Comments 

1- Open FIT2D 

program and I 

ACCEPT. 

 

2- Check the Values 

and select OK 
 

1                      
 

2 

                                                 
3
 Website: http://www.esrf.eu/computing/scientific/FIT2D/ 

http://www.esrf.eu/computing/scientific/FIT2D/
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3- Select POWDER 

DIFFRACTION – 

2D sub-menu. 

 
3 

 

4- Select INPUT 

sub-menu 

 

 

 
4 

 

5- In this step a tif. 

file will be chosen. 

 
5 

 

Calibration 

6- The calibrant sub-

menu is selected 

and the LaB6 

chosen. 

7- In FIT2D There 

are some calibrant 

options 
 

6 

 
7 
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8- Some points are 

user-selected for a 

specific ring 

through the 

graphical 

interface 

 
6 

It is generally found that the 

best fit is obtained when 

taking into account only 

well separated rings. 

9- After finishing the 

selection of the 

points, other rings 

are then selected 

for inclusion in 

the refinement 

procedure 

 
7 

 

10- A number of 

parameters can be 

entered by user, 

including pixel 

size. 

11- Choose to refine 

sample detector 

distance.  

12- Select OK 
 

11 

Other parameters can be 

chosen to be refined. 

 

It is advised not to refine 

wavelength and distance 

together.  

13- Select OUTPUT  

 
13 

The output formats are also 

variable such as CHIPLOT, 

SPREAD SHEET formats, 

as well as ASCII format, 

which can be used for 

multiple purposes for further 

analysis. 
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Data Analysis 

Integration 0 - 360º 

6- Select 

INTEGRATE sub-

menu 

 
6 

 

7- Input the correct 

parameters 

  

8- OK 

 
7 

 

9- Select OUTPUT 

 
9 

The output formats are also 

variable such as CHIPLOT 

(2 columns 2 / Intensity), 

SPREAD SHEET (2D 

matrix of intensities; rows: 

azimuthal angle; columns: 

2), in ASCII format, which 

can be used for multiple 

purposes for further 

analysis. 
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CAKE 

6- The cake command 

allows an arbitrary 

user to ``cake'' the 

data and integrate 

it to one single 

azimuthal range or 

to a multiple 

azimuthal angular 

range.  
6 

Select:   

- STARTING 

AZIMUTH 

- END AZIMUTH 

- INNER LIMIT 

(radial, 2) 

- OUTER LIMIT 

(radial, 2) 

7- Exit CAKE sub-

menu and return to 

calling menu. 

8- Select OK 

 
7 

Change the parameters to 

integrate the currently 

defined ``cake'' region  

9- EXIT 

10- Select OUTPUT 

 
8 

The output formats are also 

variable such as CHIPLOT 

(2 columns 2 / Intensity), 

SPREAD SHEET (2D 

matrix of intensities; rows: 

azimuthal angle; columns: 

2), in ASCII format, which 

can be used for multiple 

purposes for further 

analysis. 

Macro Language 

For batch data analysis. 

1- Main meu 

select 

MACRO LOG 

FILE 

2- Select RUN 

SEQUENCE 

 
1 

 
2 
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3 - Input the macro and select the first and last tif. file 
%!*\ BEGINNING OF GUI MACRO FILE 
%!*\ 

%!*\ This is a comment line 

%!*\ 
EXIT 

POWDER DIFFRACTION (2-D) 

INPUT 
#IN 

O.K. 

O.K. 
CAKE 

KEYBOARD 

1744.500 
1746.000 

           1 

 5.0000000E+01 
 2.5000000E+01 

           1 

 5.0000000E+01 
 5.0000000E+01 

           1 

 2.0000000E+01 
 1.2500000E+01 

           1 

 2.5000000E+01 
 1.2500000E+0 

INTEGRATE 

X-PIXEL SIZE 
200.0000 

Y-PIXEL SIZE 

200.0000 
DISTANCE 

1771.147 
WAVELENGTH 

0.124 

X-BEAM CENTRE 
1013.434 

Y-BEAM CENTRE 

1030.978 
TILT ROTATION 

0.0 

ANGLE OF TILT 
0.0 

O.K. 

START AZIMUTH 
0.0000 

END AZIMUTH 

360.0000 
INNER RADIUS 

100.000 

OUTER RADIUS 
1000.000 

SCAN TYPE 

2-THETA 
AZIMUTH BINS 

360 

RADIAL BINS 
900 

O.K. 

EXIT 
OUTPUT 

SPREAD SHEET 

YES 
#OUT 

EXIT 

MACROS / LOG FILE 
%!*\ END OF IO MACRO FILE 
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A.2 – Analysis of 2θ position and austenite peaks intensity along the azimuthal angle. 

 

Figure A.2 -1 The 2-D and 3-D in situ x-ray diffraction example to 

variation of the 2θ peak position and intensity of the (110)B2, (200)B2 

and (211)B2 peaks along the azimuthal angle. 

 

 

 

An analysis example of the variation of the 2θ peak position and 

intensity of the (110)B2, (200)B2 and (211)B2 peaks along the 

azimuthal angle - ϕ [360º] is shown in Figure A.2-1, by the level 

chart: 

-Blue Arrow: corresponds the observation of a single Phi. The 2θ 

position of each austenite peak can be observed by the upper box to 

the level chart. In this example the phi 30 is represented, highlighted 

by the blue line in the 3d chart.   

-Pink arrow: corresponds to the observation of the variation of the 

austenite peaks intensities. The variation of the intensity of the peak 

positioned at 2θ equals to 3.835 along the azimuthal angle that can 

be observed by the right box of the level chart. In this example the 

(110)B2 peak depicted is highlighted by the pink rectangle in the 3d 

chart. 
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A.3 – Supplementary Figures - Figure 4.28 

 

A.3-1 Variation of the 2θ peak position and intensity of the (110)B2, (200)B2 and (211)B2 peaks along the azimuthal angle for each rotary forging 

steps. 
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