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Preface 

This thesis assembles data obtained during my PhD research project developed at the New York 

University School of Medicine, Department of Medical and Molecular Parasitology; and at the 

Instituto Gulbenkian de Ciência, from August 2001 to July 2005. The work was supervised by 

Doctor Maria Manuel Mota and co-supervised by Doctor Ana Rodriguez. The financial support was 

provided by Fundação para a Ciência e Tecnologia with a PhD fellowship grant 

(SFRH/BD/3230/2000). 

 

 

This thesis is structured in 7 chapters, which are preceded by a summary, both in Portuguese and 

English, outlining the aims, results and outcomes, of this Malaria research project. The first chapter 

places our work within the Malaria scientific field giving a background and significance of its input, 

and also specifies the objectives that we proposed to accomplish. A general introduction to Malaria 

ant its current world situation is presented in chapter two, together with a literature review of the 

late insights to liver stage biology and immunity, in addition to the present  knowledge concerning 

apoptosis at host-pathogen interface. A description of the methods and materials employed to carry 

out the present work is done in chapter three. The results obtained throughout this research project 

are presented in the next three chapters from four to six. Each one is organized as follow: a short 

specific introduction to the particular subject, data observed and analyzed, and a discussion of those. 

Finally, chapter seven encloses an overall discussion and conclusion of the studies performed, 

together with an additional perspective of the recent highlights to what lies ahead within this 

scientific area of Malaria research. In Appendix are included the publications that derived from this 

project. 

 
 
The data presented in this dissertation is the result of my own work and it is stated in the text 

whenever data or reagents produced by others as part of collaborations were used. This work has 

not been previously submitted for any degree at this or any university.  
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Cover Legend| A cell undergoing apoptosis with generation of apoptotic bodies that are engulfed by a phagocyte. 
(adapted from Kerr,1995) 
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Sumário 

A malária é uma das doenças infecciosas mais importantes a nível mundial, sendo anualmente 

responsável por mais de 1 milhão de mortes. O agente causador da doença é o parasita intracelular, 

denominado Plasmodium, que possui um ciclo de vida bastante complexo. A infecção tem início com 

a inoculação de esporozoítos através da picada de um mosquito fêmea Anopheles, o vector de 

transmissão da doença. Uma vez na corrente sanguínea, o esporozoíto migra até ao fígado onde 

infecta a célula hospedeira, o hepatócito. No fígado, o parasita replica-se e desenvolve-se até atingir 

o seu próximo estado de maturação – o merozoíto. 

Dada esta complexidade, é natural que o Plasmodium provoque no hospedeiro uma variedade de 

mecanismos distintos, especialmente ao nível imunitário. Por isso, a resposta imune desenvolvida 

pelo hospedeiro, contra o parasita, é caracterizada como sendo complexa e específica em relação à 

espécie e ao estádio do mesmo. 

De forma a adquirir uma resposta imune protectora contra a malária é necessário que o indivíduo 

seja infectado consecutivamente durante a vida. Mesmo assim o resultado obtido é apenas uma 

imunidade parcial contra o parasita.  

Melhorias significativas têm sido registadas, no que diz respeito à compreensão dos mecanismos de 

protecção envolvidos na doença, assim como na identificação de novas moléculas que possam ser 

utilizadas no desenvolvimento de novas vacinas. No entanto, ainda não está disponível uma vacina 

que seja eficaz conferindo uma protecção total.  

O uso de esporozoítos irradiados em imunizações induz uma protecção total contra a doença, que é 

mediada pela activação de linfócitos T CD8+ específicos para antigénios do parasita. O início desta 

resposta é mediado por células dendríticas, embora a origem dos antigénios intervenientes seja ainda 

desconhecida. 

Os esporozoítos irradiados conseguem infectar os hepatócitos. Contudo, não são capazes de 

progredir para a fase sanguínea da doença. Este desenvolvimento incompleto da fase hepática é uma 

característica fundamental para que ocorra imunidade. Embora alguns dos mecanismos protectores 

induzidos pela infecção com esporozoítos irradiados já tenham sido identificados é, ainda, 

necessário proceder a uma caracterização detalhada dos mesmos. 

Sendo o fígado um local de extrema importância durante o ciclo de vida do parasita da malária, 

qualquer descoberta ao nível das interacções que se estabelecem entre o Plasmodium e o hepatócito, 

terá uma repercussão no melhoramento do processo de indução de uma resposta imune contra a 

doença. 

Utilizando um modelo murino, demonstrou-se que os hepatócitos infectados com esporozoítos 

irradiados entram em apoptose logo após o início da infecção. Durante esta fase as células 
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dendríticas são recrutadas para o fígado, local onde fagocitam os corpos apoptóticos provenientes 

dos hepatóctios que entraram em morte celular. Uma vez que estas células são capazes de apresentar 

antigénios exógenos e ainda induzir o priming e activação das células T, os resultados por nós obtidos 

sugerem que os hepatócitos infectados apoptóticos são a fonte de antigénios do parasita utilizada 

pelas células dendríticas durante a iniciação de uma resposta imune contra a malária.  

Durante o curso de uma infecção, a morte celular possui um papel fundamental no estabelecimento 

de uma resposta imune contra um agente patogénico. Os parasitas possuem a capacidade de 

modular esta resposta através da indução ou inibição da morte da célula hospedeira, de forma a 

possibilitar o seu desenvolvimento e sobrevivência. 

Previamente, foi demonstrado que durante a migração dos esporozoítos através dos hepatócitos, as 

células atravessadas secretam um factor de crescimento específico, o HGF -“hepatocyte growth 

factor”, que aumenta a susceptibilidade celular à infecção. Esta via de sinalização iniciada pelo HGF 

através do seu receptor, o MET, provoca uma série de efeitos em diversos tipos de células. Entre 

eles destaca-se a protecção contra a morte celular programada. Considerando tal facto, estudou-se 

qual o efeito desta protecção durante a infecção por Plasmodium, tendo como hipótese que a 

activação da via de sinalização do HGF/MET induziria uma protecção da apoptose nas células 

infectadas. Os resultados por nós obtidos confirmaram esta teoria. A inibição desta via de 

sinalização induziu um aumento na quantidade de morte celular observada. 

Tendo em conta que, usualmente, a activação da sinalização do HGF ocorre segundo o sinal de 

transdução do PI3K/Akt, testou-se se o bloqueio desta via produzia algum efeito na infecção. De 

facto, os resultados observados indicam que esta via de sinalização é utilizada durante a infecção 

quando o HGF/MET é activado. Estas observações demonstram que a inibição da apoptose da 

célula hospedeira durante a infecção por Plasmodium é necessária para ocorrer doença. 

Na parte final deste trabalho, procurou-se ainda identificar um gene do parasita responsável pela 

inibição da morte do hepatócito. Algumas observações preliminares levaram-nos a sugerir que a 

proteína HSP70 do parasita possa exercer uma função neste processo, daí que sugerimos que no 

futuro este envolvimento seja mais aprofundado. 

Assim, os resultados apresentados nesta tese contribuem para um maior esclarecimento e 

compreensão das interacções que se estabelecem no fígado aquando da infecção por Plasmodium, e 

para um conhecimento mais alargado da relação entre o parasita e o hepatócito.   

 

Palavras-chave: malária; apoptose; células dendríticas; infecção hepática; Plasmodium esporozoíto; 
resposta imune.   
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Abstract 
Malaria is one of the most predominant infectious diseases worldwide, accounting for more than 1 

million deaths annually. The intracellular parasite Plasmodium is the causative agent of malaria which 

undergoes a complicated life cycle. Infection is initiated by inoculation of sporozoites through 

mosquito bite, which journey to the liver where they must migrate and invade hepatocytes in order 

to replicate and mature.  

Immunity to malaria is complex and is essentially both species and stage specific, thus a wide variety 

of distinct immune mechanisms are provoked by the parasite in the host.  

The generation and maintenance of protective immune responses requires repeated infections over 

the lifetime of an individual and even though only partial immunity is achieved against the disease. 

Despite the significant advances in understanding mechanisms of protection and identifying new 

targets for vaccine design, an effective protection against malaria is still not available.  

However, immunization with irradiated Plasmodium sporozoites induces antigen-specific CD8+ T 

cells immune response that confers complete protection against malaria. The initiation of this 

response is mediated by dendritic cells, but the source of parasite antigens intervening in this 

response remains unknown. Irradiated sporozoites are capable of infecting hepatocytes but do not 

progress into blood stages forms. Both this incomplete liver development and the hepatic stage itself 

are indispensable steps for the outcome of a successful malaria protection. Although some 

protective mechanisms conferred by irradiated sporozoites have been identified, a thorough 

characterization is still needed. 

The liver plays a key role in the life cycle of the malaria parasite and therefore insights into 

Plasmodium-hepatocyte interactions will have a promising effect in improving the process of 

triggering an immune response against the disease. 

Using a rodent malaria model, we show that hepatocytes infected with irradiated Plasmodium 

sporozoites undergo apoptosis shortly after infection. In addition, after infection dendritic cells are 

recruited to the liver where they phagocytose apoptotic bodies derived from infected hepatocytes. 

Given that dendritic cells are capable of cross-presenting exogenous antigens and elicit the priming 

and activation of T cells, our results suggest that the apoptotic Plasmodium infected hepatocytes 

provide a source of parasite antigens for the initiation of the protective immune response against the 

disease. 

Cell death plays a central role in the course of an infection helping establish an immune response 

against a pathogen. Furthermore, some parasites have the capacity to modulate this response by 

apoptosis induction or inhibition of the infected host cell, in order to survive and develop within the 

host. 
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Previously it was shown that wounding of hepatocytes by sporozoite migration induces the secretion 

of hepatocyte growth factor (HGF) by traversed cells, which renders neighbor hepatocytes 

susceptible to infection. The signaling initiated by HGF through its receptor MET has 

multifunctional effects on various cell types. Survival signals and protection of host cells is one of 

these features of HGF/MET signaling. The role of this protection on Plasmodium infected 

hepatocytes was also a subject of study in this thesis. 

Therefore, we hypothesize that HGF/MET would induce in infected host cells protection from 

apoptosis, which in turn would lead to an increased infection. Our data confirms that HGF/MET 

signaling protects infected cells from apoptosis, since an increase in apoptosis of infected cells was 

observed when the signaling pathway was inhibited. 

Given that HGF inhibits cell death primarily through the PI3-kinase/Akt signal transduction 

pathway, we tested if the infection susceptibility increase was impaired by inhibition of this pathway. 

In fact, inhibition of PI3-kinase completely abrogates the HGF effect on malaria infection. Taken 

together, these results implicate that the permissive effect of HGF for susceptibility to malaria 

infection is, at least in part, mediated by its anti-apoptotic signal. To our knowledge, these results 

demonstrate for the first time that active host’s cell apoptosis inhibition during infection by 

Plasmodium is required for a successful infection. 

Finally, an attempt at identifying a Plasmodium candidate gene responsible for the apoptosis inhibition 

of the host cell was carried out. Preliminary results evidence a promising role for Plasmodium heat 

shock protein 70 which broad function should be studied in the future. 

In summary, data presented in this thesis contributes to a wider understanding of the events that 

occur in the liver during a malaria infection and expand our knowledge within the interactions 

established between the malaria parasite and its host. 

 

Keywords: malaria; apoptosis; dendritic cells; hepatocyte infection; Plasmodium sporozoite; immune 
response.  
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Abbreviations 

Ab  antibody 

APC  antigen presenting cell 

CS  circumsporozoite protein 

CTL  cytotoxic T Lymphocyte 

DAPI   4'6-diamidino-2-phenylindole 

DC  dendritic cell 

DMEM Dulbeco’s modified  eagles medium  
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FADD  Fas-associated death domain 

GFP  green fluorescence protein 

Hepa 1-6 mouse hepatoma cell line  

HepG2  human hepatoma cell line  

HGF  hepatocyte growth factor 

HSP  heat shock protein 

IFN  interferon 

IL  interleukin 

i.p.  intraperitoneal 

i.v.  intravenous 

MAPK  mitogen-activated protein kinase 

MET  tyrosine kinase receptor  

MHC  major histocompatibility complex 

NFkB  nuclear factor kappa B 

NK  natural killer cell 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PFA   paraformaldehyde  

PI3K   phosphoinositide 3-Kinase 

RT   room temperature 

RT-PCR reverse transcriptase polymerase chain reaction 
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TNF  tumour necrosis factor 
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1.1 Background and Significance 

Malaria is one of the most prevalent and severe human infectious diseases in the world. Recently its 

incidence has increased and it is estimated more than 300 million episodes of acute illness occur in 

endemic countries and at least 1 million people die per year from this disease (WHO, 2003). With 

41% of the world’s population exposed to this threat, malaria also imposes an extreme burden onto 

affected populations as economy and development are deeply impaired resulting from the 

symptoms experienced by infected individuals. Applicable measures to control the disease vary 

according to each country’s endemicity but several factors contribute to malaria resurgence such as 

drug-resistant parasite strains and insecticide-resistant mosquitoes (Greenwood et al., 2005; WHO, 

2003). 

After decades of a relative lack of attention, new efforts are presently being made to address these 

challenges, such as new strategies that are being applied to the development of an effective vaccine 

(Moorthy et al., 2004; Tongren et al., 2004). Although in terms of public health vaccination has 

always been a priority, it still remains an elusive and complex research field. A comprehensive 

knowledge of the host-parasite interface would constitute a reinsured guarantee for attaining this 

goal successfully.   

Malaria is caused by the intracellular Apicomplexan parasite Plasmodium spp., which holds a complex 

life cycle involving different hosts and stages of infection. The first step in malaria infection is the 

invasion of the liver by Plasmodium sporozoites. These are the infective form of the parasite, 

transmitted by female anopheline mosquitoes during a blood meal. Inside hepatocytes, sporozoites 

replicate and develop into a merozoite state, a process that constitutes the hepatic stage of the 

parasite life cycle. Although, being an obligatory step towards the establishment of a successful 

malaria infection, this stage of Plasmodium life cycle is poorly understood. This parasite specificity 

towards the liver cells indicates that parasite-encoded surface proteins and host surface receptors 

are implicated in the process of invasion and development, playing a key role in the establishment 

of infection. However, the mechanisms, as well as the host and parasite molecules, at play during 

the course of infection in the mammalian host by malaria sporozoites are not entirely known 

(Gruner et al., 2003; Miller et al., 2002; Plebanski and Hill, 2000). 

The full requirements for Plasmodium development inside hepatocytes are still unknown. The lack of 

an adequate in vitro system capable of delivering sufficient material has deeply impeded research 

within the study of host/parasite interactions. Currently, in vitro cultivation methods have been 

developed, and hepatoma cell lines are being used as in vitro models for Plasmodium infection to 

study the molecular and cellular basis of invasion mechanisms and intracellular development of the 

parasite. Nevertheless, infection yields remain very low and the limited number of infective 
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mosquitoes available impairs a swift progress in the understanding of malaria liver stage biology 

(Mota and Rodriguez, 2000; Calvo-Calle et al., 1994; Hollingdale et al., 1983b). 

The availability of the genome sequence of both several Plasmodium species and their host provides 

a genetic tool that greatly increases the possibilities of research in this area (Cooke and Coppel, 

2004). 

The liver, besides being the place where amplification and molecular changes of Plasmodium 

parasites take place, is also a unique organ in what regards the host’s immune responses (Knolle and 

Gerken, 2000). The antigenic pool generated within this organ is required for the induction and 

maintenance of a protective anti-malaria immune response. Thus, the hepatic stage may well hold 

the secret for understanding the parasite’s preference for this organ within the mammalian host and, 

simultaneously, providing effective immune targets against the disease (Baldacci and Ménard, 2004; 

Frevert, 2004; Krzych et al., 2000). 

Unlike many other diseases in which a lifelong resistance to re-infection is induced, malaria causes 

only partial immunity after several years of recurring infections and illness. Nonetheless, a complete 

resistance to malaria can be achieved by vaccination with radiation-attenuated sporozoites in both 

mice and humans (Doolan and Hoffman, 2000; Weiss, 1990; Clyde et al., 1975; Nussenzweig et al., 

1972; Nussenzweig et al., 1967). 

Irradiated sporozoites infect hepatocytes as normal sporozoites, but they do not reach a merozoite 

stage (Scheller et al., 1995; Sigler et al., 1984). Additionally, it is known that it is essential that a 

hepatic stage occurs during infection for the effectiveness of irradiated-sporozoite protection 

(Scheller and Azad, 1995). Although, until now this is the only vaccine that confers complete 

protection, the mechanism behind the process of the establishment of the immune response 

associated is still unclear (Doolan and Hoffman, 2000). 

Intracellular pathogens have the capacity to modulate the host cell response and exploit its resources 

in order to develop and replicate. Parasites can manipulate host cell behavior, including immune 

modulation and regulation of apoptosis (James and Green, 2004). While infected cells are capable of 

initiating their own death, a process called apoptosis, which can be used by the organism as a 

defense mechanism against pathogens, inhibition of host cell apoptosis is frequently used by 

parasites as a strategy for survival (Heussler et al., 2001; Luder et al., 2001). 

During the course of infection, apoptosis of infected host cells may either be induced by the host 

cell response or be a direct result of pathogen invasion. In both cases, apoptotic death results in the 

formation of apoptotic bodies. These apoptotic bodies are taken up by phagocytes that rapidly 

recognize and phagocytose them, eliminating the parasite together with the remains of the infected 

cell. The pathogen-derived antigens included in apoptotic bodies can be presented by dendritic cells 

in the context of both class I and class II molecules, which are recognized by CD8+ and CD4+ T 
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cells respectively, and activate naïve lymphocytes for the initiation of an immune response (Schaible 

et al., 2003; Savill et al., 2002; Rodriguez et al., 1999; Albert et al., 1998a). 

Dendritic cells are key players in initiating immune responses because they are the only cell type that 

are able to prime naïve T cells efficiently as well as cross-present exogenous antigens (Banchereau et 

al., 2000; Mellman et al., 1998).  

It has been shown that dendritic cells are able to induce P. yoelii-specific CD8+ and CD4+ T cells 

(Bruna-Romero and Rodriguez, 2001). Additionally, dendritic cells-depleted mice failed to induce 

cytotoxic T cell responses with a result in the loss of priming potential of dendritic cells during P. 

yoelii infection (Jung et al., 2002). 

Altogether, these observations suggest an important role of dendritic cells during the immune 

response initiated against liver stages. An extended comprehensive knowledge of these molecular 

and cellular events will provide promising immediate applications in the field of vaccine 

development.  
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1.2 Objectives 

Hepatocyte infection by gamma-irradiated Plasmodium sporozoites is required to achieve complete 

protection against malaria. The basic trigger of this conferred immunity is still unknown. Conversely, 

apoptotic bodies derived from infected cells enclose a source of antigens that are processed by 

dendritic cells, which efficiently present pathogen antigens for the initiation of immune responses. 

The major goal of this project is to elucidate the role of hepatocyte apoptosis in the course of a 

malaria liver infection. 

For this purpose, we focused on two main aspects. First, it was determined whether apoptotic death 

of hepatocytes infected with irradiated sporozoites would play a role in the initiation of an anti-

malarial immune response. The immunological mechanisms that mediate this protection were 

studied, namely the origin of Plasmodium antigens, and the way in which its processing and 

presentation occur. Furthermore, the involvement of dendritic cells as key mediators of the 

protective immunity conferred by irradiated-sporozoites immunization was also examined.  

Secondly, molecular aspects of parasite survival and development during the establishment of a 

successful liver infection were also addressed. The hypothesis of hepatocyte apoptosis modulation 

by the parasite was studied as well as the involvement of a host cell pathway. 

Additionally, an attempt was made at identifying a Plasmodium gene product as a candidate 

responsible for the inhibition of apoptosis of hepatocytes. In this context, the role played by the 

parasite’s heat shock protein 70 during liver infection was studied. 
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2.1 Malaria: historical aspects and current global picture 

The malaria situation deteriorated during the 90’s and recent estimates have shown an increase in 

numbers of morbidity and mortality as a result of overlooked prevention measures together with the 

widespread of resistance to drugs and insecticides. To overcome this situation new efforts are being 

undertaken with a focus on both cure and prevention of this disease. Attempts to address these 

challenges include the use of new technologies in research and the combination of different 

therapies in the field (Breman et al., 2004; Nchinda, 1998). 

The fight against this menace is currently being pursuit by an international partnership launched by 

the World Health Organization (WHO), the Roll Back Malaria, whose goal is to attain a 50% 

reduction of the burden of malaria by 2010. The impact of this achievement will reach far beyond 

the disease burden itself since it will implicate several factors and success will result in a global 

development for the countries at risk and the world’s populations in general (WHO, 2003; Fig. 2.1). 

Malaria is a parasitic disease caused by the intracellular pathogen Plasmodium and transmitted by a 

mosquito vector. In ancient times it was believed that the disease had its origin in the injurious air 

inhaled from swamps and marshes, thus the name ‘mal aria’ (bad air). In 1880, Lavern’s discovery of 

the unicellular parasite P. falciparum in the blood of a French soldier put an end to this belief 

(Laveran, 1880). In 1897, the mode of transmission to humans was uncovered and attributed to the 

female Anopheles mosquito bite by Ronald Ross (Ross, 1897). The missing part of the malaria 

parasite’s cycle, the exo-erythrocytic liver schizont, was only elucidated in 1948 by Shortt and 

Garnham, when malaria parasites where found developing in livers of sporozoite-infected monkeys 

and, subsequently, in livers of human volunteers infected by mosquitoes carrying P. vivax (Shortt and 

Garnham, 1948).  

Presently, around 40% of the world’s population is at risk of infection and more than a million 

people die each year, mostly children under five years of age and pregnant women. Symptoms 

appear within a week or two after transmission and consist of fever, nausea, vomiting, fatigue and 

headaches. They can progress into organ failure, coma and death, 90% of which occurs in tropical 

sub-Saharan African countries. Eradication of malaria from western European countries was 

achieved after the World War II when the anti-malarial drug chloroquine and the insecticide DDT 

became widely available (Hay et al., 2004; Greenwood and Mutabingwa, 2002). 

The search for a safe and effective vaccine against malaria has become a case of endless failures. 

Years of vaccine research have produced few hopeful candidates and although scientists are 

doubling research efforts, an effective vaccine is, at best, years away. In terms of epidemiology, 

human malaria is extremely complex, depending on transmission levels and acquired immunity. The 

relationship between the prevalence of severe malaria phenotypes and higher transmission rates is 

General Introduction|9  

 



not linear. In fact, exposure during early childhood could account for a lower risk of severity as 

protection is stimulated against subsequent attacks (Snow et al., 1997).     

There are four Plasmodium species that infect humans: P. vivax, P. falciparum, P.malariae, and P. ovale. 

The first two are the most common, with P. falciparum being the most deadly form of the parasite 

and responsible for the majority of the worst case scenarios of severe malaria infection. P. vivax 

accounts for the major cause of morbidity but is no longer a significant cause of mortality. A wide 

range of clinical symptoms, including fever, life threatening anemia, and coma in children and naïve 

adults characterize infection with P. falciparum (Greenwood et al., 2005; Trigg and Kondrachine, 

1998). 

The present crisis is mainly due to resistance developed against drugs by Plasmodium parasites and 

against insecticides by Anopheline mosquitoes. Additionally, national transmission control programs 

have weakened and increased migration and tourism contribute to the current situation (Greenwood 

and Mutabingwa, 2002). Malaria’s burden has an impact on the economical and political prospects 

of developing countries in which disease is endemic; therefore concerted funding for interventions 

and research priorities such as drug/vaccine development are being used to overcome this 

deteriorating situation (Sachs and Malaney, 2002).   

In particular, vaccine development requires the achievement of several goals: induction of strong, 

durable and strain-transcending immune responses; identification of protective antigens for stage-

specific immunity; and successful combination of candidate immunogens (Greenwood, 2005; 

Carvalho et al., 2002). 

In humans, the first report of protection induced by a vaccine occurred in 1973 when volunteers 

where being submitted to infected-gamma-irradiated mosquito bites (Hoffman et al., 2002; Clyde et 

al., 1973a). However, this approach was impracticable at a large-scale, and so a search for molecules-

based vaccines was initiated. Throughout the last two decades, success in protection of animal 

experimental models raised the enthusiasm about a few candidate molecules, but these met with 

failure during human trials. More recently, efforts were translated in a pack of potential candidates 

that are currently under clinical assessment (Moorthy et al., 2004; Moorthy and Hill, 2002).    
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Fig. 2.1|Global distribution of malaria. (A) World’s malaria transmission risk in 2003 and (B) the estimated incidence of 
clinical malaria episodes caused by any Plasmodium species, resulting from local transmission, country level averages in 2004. 
(adapted from Roll Back Malaria partnership report, 2005) 
 

 

2.2 Plasmodium life cycle 

Plasmodium presents an extremely complex life cycle involving two hosts, a vertebrate host, and the 

invertebrate host, the female Anopheles mosquito vector. Interaction between them results in 

transmission and allows the infection to endure. Parasites enter the mammalian host through the 

bite of an infected female Anopheles mosquito during a blood meal. During such a meal, 

approximately five to twenty sporozoites will be injected into the host, which reach the liver within 

minutes (Vanderberg and Frevert, 2004; Ponnudurai et al., 1991; Rosenberg et al., 1990; Vanderberg, 

1977). The sporozoites are deposited under the skin of the host, migrate into the bloodstream and 

aim directly to the liver, where they infect and develop inside hepatocytes (Matsuoka et al., 2002; 

Sidjanski and Vanderberg, 1997; Shin et al., 1982). This is known as the asexual exo-erythrocytic or 

hepatic stage of the parasite’s life cycle. For human malaria, this stage lasts 5 to 7 days on average 

while in rodent malaria it lasts only 2 days (Meis and Verhave, 1988). This is also the asymptomatic 

stage of the disease. At the end of the hepatic stage, 10.000 to 30.000 merozoites per invading 

sporozoite will be released into the blood-stream from where they disseminate systemically. Each 

merozoite invades an erythrocyte and divides mitotically to form an erythrocytic schizont, 

containing up to 20 daughter merozoites. These merozoites can re-infect fresh erythrocytes, giving 

rise to a cyclical blood stage infection with a periodicity of 48-72 hours, depending on the Plasmodium 

species. This constitutes the asexual blood stage of a malaria infection. In this stage, disease 

symptoms occur and infected individuals can get sick. In order to complete the cycle, there are some 

merozoites that develop into sexual parasite stages, the male and female gametocytes, which will be 

taken up by mosquitoes during blood meals. Gametocytes undergo fertilization and maturation in 

the mosquito midgut, forming an infective ookinete form that migrates into the mosquito hemocele 

General Introduction|11  

 



and develops into an oocyst form where sporozoites are developed (Miller et al., 2002; Gysin, 1998; 

Landau and Gautret, 1998).  When fully matured, oocysts burst and release sporozoites which 

migrate into the mosquito’s salivary glands, completing Plasmodium’s life cycle (Fig. 2.2). 
 
 
 

 

 

 
 
 
 
 
Fig. 2.2|Plasmodium life cycle. 
When an infected female anopheline 
mosquito takes a blood meal, 
sporozoites enter the host 
bloodstream and travel through the 
circulation to the liver (A). 
Sporozoites invade hepatocytes and 
enter a phase of asexual 
reproduction in which they amplify 
their number thousands of times by 
the production of merozoites (B). 
The liver cell ruptures and the 
merozoites are released into the 
blood, attaching to and invading 
erythrocytes, beginning the 

erythrocytic cycle. Each merozoite invades an erythrocyte and replicates initiating a cycle that ends with the burst of the mature 
erythrocytic schizont and the release of new merozoites, which will infect new erythrocytes. Illness starts when the mature 
asexual erythrocytic schizont, ruptures (C). Other blood stages differentiate into male and female sexual stages parasites called 
gametocytes. These gametocytes enter a mosquito as it takes a blood meal. Sexual reproduction occurs in the mosquito midgut, 
and gametes fuse forming a motile zygote, the ookinet, that mature and migrates through the mosquito midgut developing into 
an oocyst, within which sporozoites develop. After being released, novel sporozoites travel to the salivary glands, making the 
mosquito infective (D). 
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2.3 Liver stage biology  

The discovery of a mammalian malaria exo-erythrocytic stage was the last missing piece to be filled 

in the parasite’s life cycle, when liver schizogony was described in African monkeys (Shortt and 

Garnham, 1948). Since no symptoms are associated with this parasite stage, little attention was given 

to the events that occur during sporozoite invasion of hepatocyte and the intrahepatic development. 

However, this scenario changed when in 1967, Nussenzweig reported that immunizing mice with 

radiation-attenuated Plasmodium berghei sporozoites protected them against challenge with fully 

infectious sporozoites (Nussenzweig et al, 1967). These rodent studies provided the impetus for 

human studies, and, during the 1970s, Clyde, Rieckmann and colleagues established that immunizing 

human volunteers with the bites of irradiated mosquitoes carrying P. falciparum sporozoites in their 

salivary glands could protect volunteers against challenge with fully infectious P. falciparum 
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sporozoites (Edelman et al., 1993; Herrington et al., 1991; Rieckmann, 1990; Rieckman et al., 1979; 

Clyde et al., 1975; Rieckman et al., 1974; Clyde et al., 1973 a, b) 

Still until the mid-1980s, knowledge of the biology of malaria liver stage was restricted to the fact 

that these forms of the parasite could arrest in the liver and later be responsible for relapses during 

infections with certain Plasmodium species, the so-called uninucleated “hypnozoite” form (Cogswell et 

al., 1991; Krotoski et al., 1980). 

Since then, experimental data from several laboratories began to elucidate the numerous steps taken 

by sporozoites from the starting point of invasion to their development inside the liver as well as the 

immune response that occurs during different immunization strategies with special emphasis for the 

immunization with attenuated parasites (Engwerda and Good, 2005; Baldacci and Menard, 2004). 

The study of the cell biology of the Plasmodium liver stage is particularly difficult due to lack of a high 

infectious in vitro culture system, isolation and number of sporozoites needed. Still, the recent 

advance in direct live observation of parasites within the liver represents a useful resource, 

promising an outbreak of insights into this field (Frevert et al., 2005; Hollingdale et al., 1998; Calvo-

Calle et al., 1994; Hollingdale et al., 1983b). 

The reasons why Plasmodium has elected the liver and the hepatocyte as a first cellular home inside 

mammalian hosts are not fully elucidated. However, it is possible that the reason is related to the 

hepatocyte’s highly complex metabolism, which is capable of fulfilling all parasite replication needs 

(Frevert et al., 2004; Saliba and Kirk, 2001). Others support the idea that the immunologic 

characteristics of this organ allow parasites to survive and pursue infection, either by minimal 

immune responses that are thought to occur or by the induction of immune tolerance. In addition, 

hepatocytes are capable of expressing major histocompatibility complex (MHC) class I and class II, 

while erythrocytes are not (Crispe, 2003; Krzych et al., 2000; Rajan, 1997). Another aspect to take 

into account is the morphology of the liver itself and the fact that hepatocytes are heterogeneous 

and allow easy access to venules and arteries separated by the space of Disse (Enomoto et al., 2004; 

Wisse et al., 1985).  

 

2.3.1 From skin to liver  

To reach the first and essential stop of its journey, the hepatocyte, Plasmodium sporozoites have to 

travel from the skin inoculation site to the liver. Being a highly vascularized organ, the skin is the 

perfect place for a mosquito blood meal, which usually last for 30s in Anopheles and occurs after a 

single probe of blood taken in small pools originated by capillary damage. Mosquito injections are 

accompanied by saliva, which has an anti-coagulant activity, facilitating blood digestion. In spite of 

the hundreds of sporozoites present in the mosquito’s salivary glands only a small number are 
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transmitted during the bite of an infected mosquito (Matsuoka et al., 2002; Ponnudurai et al., 1991; 

Rosenbergh et al., 1990; Vanderberg, 1977; Griffiths and Gordon, 1952; Boyd and Kitchen, 1939). 

The migration of the sporozoite from the site of bite to the liver has been an issue under discussion. 

Previous studies with P. yoelii-infected mosquitoes allowed to feed in mice, provided evidence that 

mosquitoes deposit sporozoites in an avascular skin tissue area and, within 10 minutes post-

inoculation, sporozoites could be found in the host’s bloodstream, long enough to find a blood 

vessel (Sidjanski and Vanderberg, 1997). A recent study applying intravital observations of P. berghei-

infected mice at the site of mosquito bite revealed that parasites migrate widely across the skin 

covering distances of many micrometers for several minutes before reaching circulation (Vanderberg 

and Frevert, 2004). Anti-sporozoite acquired immunity reduces motility speed and could interfere 

with skin crossing (Frevert et al., 2005; Vanderberg and Frevert, 2004). Either because they find 

themselves in a new rough environment when they change from salivary glands to connective tissue 

or to prevent hostile encounters with the host immune system defenses, sporozoites have a short life 

span of approximately of 20 minutes to leave circulation in liver sinusoids and enter the parenchyma 

to infect hepatocytes.  

The gliding motility presented by sporozoites is used during infections in vivo for their migration 

through the dermis, as was previously demonstrated in vitro (Vanderberg and Frevert, 2004; 

Vanderberg, 1974). Plasmodium gliding movement in host cells is characterized by trails of 

circumsporozoite (CS) protein that are left behind, similar to what occurs when they are placed in 

contact with artificial surfaces (Frevert et al., 1998; Stewart and Vanderberg, 1991). The released CS 

protein is distributed throughout the cytoplasm of the cell and it has been proposed that is capable 

of inhibiting translation at the initiation step of protein synthesis, as it binds to RNA-associated 

binding sites on ribosomes (Frevert et al., 1998; Hugel et al., 1996). Nevertheless, mosquito-

transmitted sporozoites are more infective than sporozoites injected intravenously, and are even 

capable of avoiding the antibody response mounted against them (Krettli and Dantas, 1999; 

Vaughan et al., 1999; Beier et al., 1991; Ponnudurai et al., 1991).  

 

2.3.2 Reaching the liver  

The liver is organized in lobules formed by connective tissue with branches for the portal venule 

and the hepatic arteriole. It possesses a diverse population of cells such as specialized endothelial 

cells, Kupffer cells (liver resident macrophages) and stellate cells (fat-storing cells) (Enomoto et al., 

2004; Sinnis, 1996). 

There are several interactions established between sporozoite proteins and the liver cells 

components. Malaria sporozoites possess an apical complex constituted by secretory organelles, 

unique to Apicomplexa parasites and essential for the invasion process. The major component of 
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the surface coat of Plasmodium sporozoites is the CS protein, which is responsible for the oocyst 

maturation and sporozoite morphogenesis (Kappe et al., 2004; Nussenzweig and Nussenzweig, 

1989). It is mainly stored in the micronemes (sporozoites secretory organelles) and is continuously 

exported to the cell surface and discarded at the parasite posterior pole (Thathy et al., 2002; Stewart 

and Vanderberg, 1991; Posthuma et al., 1989). It also possesses a glycosyl-phosphatidylinositol (GPI) 

sequence as anchor at the C-terminus of the CS protein, which also contains a species-specific 

central repeat region and two conserved motifs. Specific regions within these motifs are responsible 

for the linkage to the glycosaminoglycan of liver sulfated proteoglycans and sporozoite motility and 

invasion (Tewari et al., 2002; Ying et al., 1997). 

Another protein present in the micronemes that is also expressed at the sporozoite membrane 

surface upon secretion induced by cell-contact is the thrombospodin-related adhesive protein 

(TRAP) (Bhanot et al., 2003; Gantt et al., 2000; Templeton and Kaslow, 1997). Besides being 

involved in sporozoite invasion of salivary glands and the hepatocyte, its vital role was assessed 

when P. berghei mutant TRAP parasites were shown to lose their gliding motility (Matuschewski et al., 

2002; Wengelnik et al., 1999; Sultan et al., 1997). 

On the host side, the molecules that seem to play an important role during infection by allowing 

sporozoites to recognize and reach the liver are the proteoglycans. These molecules, which are 

highly sulfated and abundant, are involved in the molecular mechanism of sporozoite adhesion, 

where CS protein binds to hepatocyte membranes (Frevert et al., 1993; Cerami et al., 1992). Both CS 

and TRAP are capable of recognizing in particular the glycosaminoglycan chains (GAG) in the 

sulfated proteoglycans expressed by liver cells (Ying et al., 1997; Robson et al., 1995). 

When entering the liver sinusoids either via the hepatic arteriole or the portal venule, sporozoites 

glide along the endothelial cell layer through the endothelia, interacting with extracellular matrix 

proteoglycans that protrude from the space of Disse until they encounter a Kupffer cell and 

recognize the proteoglycans expressed on its surface (Pradel et al., 2002; Pradel and Frevert, 2001). 

Although previous work with P. berghei in rats suggested that these cells were responsible for parasite 

phagocytosis removing them from circulation, recently Kupffer cells were shown to be the liver 

portal entry to sporozoites from a set of experimental data based on in vitro models with P. berghei 

and P. yoelii sporozoite infections and Kupffer cells isolated from rat livers (Pradel and Frevert, 2001; 

Meis et al., 1983). Moreover, the development of most exo-erythrocytic forms close to the liver 

portal venules, where the Kupffer cells are located, also suggests that the these cells could well 

function as access gates to the liver (Verhave et al., 1985; Sleyster and Knook, 1982).  

Thus, the current model proposes that sporozoites recognize and bind to proteoglycans expressed 

on the surface of Kupffer cells using their major surface proteins, CS protein and TRAP (Pinzon-

Ortiz et al., 2001; Cerami et al., 1992). They actively invade, safely traverse and successfully exit 
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Kupffer cells protected by a non-fusogenic vacuole through the space of Disse (Frevert et al., 2005; 

Meis et al., 1983c).  

 

2.3.3 Hepatocyte invasion  

Hepatocyte infection occurs after sporozoites exit the space of Disse and gain access to the liver 

parenchyma. Sporozoites first migrate through several hepatocytes before invading a final one 

within a parasitophorous vacuole. The traversed cells have their plasma membrane wounded by the 

parasite and can either survive, undergoing a resealing process, or die (Mota et al., 2001). 

Experimental evidence demonstrates that when sporozoites invade host cells without formation of a 

vacuole the parasites do not develop, meaning that migration is a feature that precedes infection 

(Mota et al., 2001). This migration of parasites leaves behind wounded cells that could be needed to 

potentiate infection, which would be beneficial for the parasite’s development within infected 

hepatocytes. On the other hand, one could also suppose that wounding would increase the 

generalized inflammation detectable shortly after inoculation (Khan and Vanderberg, 1992). This 

particular sporozoite feature can be observed either in vitro or in vivo in mice livers, and it is 

unspecific as is shown by the fact that a range of cell types are suitable for hosting Plasmodium 

migration (Mota et al., 2001). Moreover, during parasites in vivo journey from the skin to the liver 

they encounter different tissues and probably migrate through them (Mota and Rodriguez, 2004). 

The molecular mechanism is still not fully elucidated, but recent reports revealed a newly discovered 

sporozoite protein that plays a role in migration. The SPECT protein (sporozoite microneme 

protein essential for cell traversal), which is localized in sporozoites micronemes, is required for the 

parasite’s migration in vitro. Yet, exo-erythrocytic development was maintained, and a lower 

infectivity was shown in vivo, suggesting that host cell migration is mandatory for sporozoite access 

into the liver parenchyma (Ishino et al., 2004). Recently, another SPECT protein was described and a 

similar function was shown for a protein present in mosquito ookinete invasion into the midgut 

epithelium (Ishino et al., 2005a; Kadota et al., 2004). 

The final invasion is accompanied by the secretion of TRAP and the parasite finds itself surrounded 

by a parasitophorous vacuole, inside which it replicates and develops (Silvie et al., 2004; Mota et al., 

2001; Meis et al., 1983b). Detailed information about how this event takes place is scarce, in part 

because of the low infectivity of sporozoites in vitro. By analogy with related parasites such as 

Toxoplasma gondii, it is believed that sporozoite internalization with formation of a parasitophorous 

vacuole occurs within a few seconds and is dependent on the plasma membrane-associated motor 

that also drives parasite gliding motility (Soldati and Meissner, 2004). In addition, there is an 

associated intense secretory activity in their apical end, which is either a constitutive exocytosis of 
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molecules from within the apical organelles, or a regulated exocytosis restricted to the formation of a 

cap (Mota and Rodriguez, 2004; Mota et al., 2002). 

Moreover, migration induces secretion of “hepatocyte growth factor” (HGF) that render the 

surroundings more adequate to parasite growth and are imperative in order to obtain a successful 

infection (Carrolo et al., 2003). Experimental evidence has suggested that other host cell factors are 

involved in sporozoite infection in the liver, for example, the interaction of the CS protein with the 

low-density lipoprotein-related protein receptor or the requirement of CD81 tetraspanin for P. 

falciparum and P. yoelii sporozoites to invade hepatocytes (Silvie et al., 2003; Shabkibaei and Frevert, 

1996).  

 

2.3.4 Intrahepatic development  

Knowledge concerning parasite development inside hepatocytes is still very limited considering the 

large range of morphological characteristics that occurs during this intrahepatic development. 

Hepatic schizogony, where parasites grow, maturate and replicate, lasts 2 days for rodent species and 

5 to 7 days for primates, resulting in 10.000 to 30.000 of merozoites from each invading sporozoite 

(Meis et al., 1985 a, b; Meis et al., 1983 a, b). From seize a single generation, merozoites individualize 

in the cytoplasm, and then separate as islets within which membrane formation occurs before 

rupture into the bloodstream. An infective mosquito bite leads to the formation of around 12 exo-

erythrocytic schizonts in a few days, reaching 100 µm in size, contrasting with blood stages that only 

enlarge up to 12 µm, replicating into 8 to 24 erythrocytic schizonts. Thus, the parasite’s needs for 

membrane and nucleic acid synthesis during the liver stage are enormous, almost three times more 

than for blood stages schizogony (Hollingdale, 1985). Nutrients are obtained from the hepatocyte 

which as it harbors glycogen and serum protein factories, allowing the maturation process to 

progress ending in the release of merozoites that will invade erythrocytes (Frevert, 2004; Meis et al., 

1985 a, b). 

However, sporozoites are able to undergo partial development to early exo-erythrocytic forms in the 

absence of host cells or other cell types, and preserve some morphological and molecular features 

presented by regular ones (Wang et al., 2004; Kaiser et al., 2003). 

 

 

2.4 Immunity to malaria liver stage  
When naturally exposed to malaria, humans gradually acquire immunity to the parasite, although 

repeated infections are required in order to maintain it. Naturally acquired immunity is characterized 

by being short-lived and strain-specific (Hviid, 2005; Day and Marsh, 1991). The reasons for such 
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scarce protection are not known. It is mediated by blood-stage specific antibodies and is partially T 

cell-based (Stevenson and Riley, 2004; Good and Doolan, 1999). But the contribution of each of the 

different stages to the general immunity-related protection remains poorly understood. During the 

blood stages it is clear that the host develops mechanisms either to neutralize the effects of parasite-

released toxins or to kill the parasite or even to inhibit its replication. The reduced acquisition of 

malaria immunity in naturally exposed populations has also been explained by the fact that the 

parasite actively modulates the immune system of the host during blood stages, preventing the 

development of specific immune responses (Ocana-Morgner et al., 2003; Urban et al., 1999; 

Plebanski et al., 1997). Concerning the liver, the fact that the gut is located close to the liver is one of 

the reasons why this organ has such a peculiar immunologic profile, predominantly tolerogenic 

when responding to foreign antigens. Liver dendritic cells, Kupffer cells and sinusoidal endothelia 

are mature antigen-presenting cells that undertake the task of maintaining this immune environment 

(Doherty and O’Farrelly, 2001; Knolle and Gerken, 2000; Lohse et al., 1996). Together with anti-

inflammatory cytokine secretion, the liver controls the inflammation induced by influx of bacteria 

and endotoxins from intestines, and reaches a state of portal vein tolerance. Antigen-specific 

activated CD8+ T cells are eliminated by Fas-induced apoptosis considering the model of activation-

induced cell death, thus accounting for liver tolerance (Crispe, 2003). 

Nevertheless, naturally acquired protection observed in infected individuals and several experimental 

data records, raised hopes for the development and feasibility of an effective vaccine against this 

disease (Carvalho et al., 2002).  

In what regards the liver stage of infection, major hopes were raised based on the fact that sterile 

protective immunity was obtained both in mice, monkeys and humans; against P. berghei, P. yoelli, P. 

knowlesi, P. falciparum or P. vivax sporozoite challenge induced by immunization with radiation-

attenuated sporozoites (Hoffman et al., 2002; Gwadz et al., 1979; Clyde, 1975; Clyde et al., 1973 a, b; 

Nussenzweig et al., 1969; 1967). 

Protective mechanisms against the liver stage of malaria infection have been the aim of many studies, 

since knowledge concerning the type of immune responses induced towards the infected hepatocyte 

are still very limited. The advantages of inducing exo-erythrocytic stage immunity would not only be 

a decrease in mortality and disease transmission, but also a prevention of symptoms, since the 

parasite would be arrested before reaching the erythrocytic stage (Tdryk and Walther, 2005; Tsuji 

and Zavala, 2003). 

 

2.4.1 Natural infection versus immunization  

Mimicking features occurring in naturally infected individuals is the general aim of vaccines which, 

in turn, means that they must be capable of inducing antibodies and T cell responses, if possible to 
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more than one antigen. In particular, a greater magnitude in responses than the one achieved in 

individuals that have been infected, together with transcendence both in time and strains, would be 

desirable for the development of a vaccine against malaria. Administration of a cocktail of several 

antigens has been the prevailing hypothesis for many years now, but an expensive and complex 

product would be the likely result. Ideally, a vaccine against the exo-erythrocytic stage of the parasite 

should fulfill two roles: the induction of high titers of functional antibodies against sporozoites 

inoculated by the infectious mosquito, in order to stop them from entering the liver; the 

establishment of potent cytotoxic T lymphocyte immunogenicity against the liver stage to kill all 

infected hepatocytes while not harming the host (Hill, 2006; Doolan and Hoffman, 2000; Doolan 

and Hoffman, 1997). 

In that respect, the discovery that immunization with radiation-attenuated sporozoites could lead to 

full protection paved the way to determine the full range of factors involved in this protection, 

namely Plasmodium antigens, initiation of host immune response and immune response types (Nardin 

et al., 1999). Gamma-irradiated sporozoites infect the liver but are arrested there without pursing to 

blood stages. Later, it was also found that the targets of this protection were not only the sporozoite 

but mainly the infected hepatocyte (Scheller and Azad, 1995; Suhrbier et al., 1990; Weiss, 1990; 

Hoffman et al., 1989). In fact, sporozoites irradiated with a dose that did not allow them to reach the 

liver were not protective any more (Silvie et al., 2002; Nussler et al., 1989). Still, is not clear if this 

relies on the presentation of different and specific antigens or on the way that antigens are presented 

to the host immune system (Langhorne et al., 2004; Krzych et al., 2000). 

 

2.4.2 Exo-erythrocytic antigens  

Some sporozoite antigens are also expressed within the newly formed liver stage forms. In fact, a 

limited number have been already identified and characterized as targets for CD8+ T cell responses. 

Among these are the CS protein and the TRAP protein (Khusmith et al., 1994; Rogers et al., 1992; 

Weiss et al., 1992). Another protein that has also been shown to be a target for T cells is the P. yoelii 

hepatocyte exported protein 17 (PyHEP17), an homolog of the P. falciparum exported protein 1 

(PfEXP) (Doolan et al., 1996).   

The first strictly specific malaria liver stage antigen discovered was the P. falciparum liver stage 

antigen 1 (PfLSA-1), which is expressed in the vacuole lumen and is solely expressed during the 

hepatic stage (Guerin-Marchand et al., 1987). The LSA-3 antigen was characterized through antibody 

recognition in immunized and non-immunized individuals (Daubersies et al., 2000; Connelly et al., 

1997). A few other parasite proteins appear at this stage of the parasite’s life cycle, such as 

glutamine-rich protein and parasite heat shock protein 70 (Kumar et al., 1993). More parasite 
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proteins are being identified through recent new genomic approaches, leading to an increase in the 

number of the antigenic repertoire known in malaria (Gruner et al., 2003).  

Recently, several Plasmodium genes, which are not expressed in the blood stages and some are also 

not expressed in the sporozoites, were shown to possess a vital role for parasite liver development 

(Ishino et al., 2005b; Mueller et al., 2005; van Dijk et al., 2005; Kraiser et al., 2003).  

 

2.4.3 Initiation of host immune response  

Naïve T cell priming by sporozoites can occur by specialized presenting cells, macrophages, 

dendritic cells, and B cells (Riley, 1999; Druilhe et al., 1998; Pape et al., 1997). There is evidence that 

sporozoites are able to avoid destruction by macrophages, from which they can exit and induce 

death (Vanderberg et al., 1990; Seguin et al., 1989; Danforth et al., 1980). In fact, sporozoites are too 

large to be internalized by B cells, but released material might be taken up by specific B cells, thereby 

initiating activation of a T cell response (Link et al., 1993; Stewart and Vanderberg, 1992). Although 

it has been shown that the infected liver cell can present parasite-derived peptides on its surface, 

expressed on MHC class I or class II molecules and recognized by CD8+ and CD4+ T cells, 

respectively, the hepatocyte does not normally express co-stimulatory molecules necessary for naïve 

T cell activation, which the high levels of Interleukin-10 (IL-10) present in the liver, may further 

delay (Renia et al., 1993; Weiss et al., 1993; Weiss, 1990; Hoffman et al., 1989). Thus, the possibility 

that infected hepatocytes can activate naïve T cells is unlikely (Krzych et al., 2000; Vanderberg et al., 

1993). Furthermore, the existence of a parasitophorous vacuole between the parasite and the host 

cell poses some questions. Trafficking of Plasmodium antigens inside the hepatocyte between the 

parasitophorous vacuole and the host cell membrane is still an unclear issue. This double biological 

membrane constitutes a barrier to the transport of malarial peptide epitopes by MHC molecules 

(Frevert, 2004; Gruner et al., 2003; Mellman et al., 1998).  

 

2.4.4 Host immune responses after immunization  

The protective mechanisms induced by immunization with irradiated sporozoites were extensively 

studied. Since the liver is an immune privileged site, the infected hepatocyte was for decades 

considered to be protected from the immune system and, therefore, immunity was thought to be 

anti-sporozoite only. However, later was shown that this immune response is mounted against the 

infected liver cell (Lau et al., 2001; Hoffman and Doolan, 2000; Hoffman et al., 1998).  

The first line of effector mechanisms triggered by malaria infection is antibody response.  CS protein 

is a target for the production of neutralizing antibodies that induce protection as conservation within 

each plasmodial species is very high (Hollingdale et al., 1998; McCutchan et al., 1996; Hollingdale et 

al., 1984; Lockyer et al., 1989; Santoro et al., 1983). Antibodies against the CS protein protected mice 
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by either blocking sporozoite invasion or by killing sporozoites themselves, ultimately leading to 

immunity. This immune response mechanism against sporozoites is described in the literature for 

different parasite species: P. berghei, P. yoelli and P. vivax (Charoenvit et al., 1991; Wirtz et al., 1991; 

Weber et al., 1987; Potocnjak et al., 1980; Yoshida et al., 1980). In rodent models there are examples 

of antibody production against single epitopes of different proteins, like the P. yoelii HEP17 that is 

capable of removing infected hepatocytes in culture (Charoenvit et al., 1995). Hepatocyte invasion 

and development of P. falciparum was prevented when an anti-Pf-CS protein repeats monoclonal 

antibody was used in vitro (Mazier et al., 1986; Hollingdale et al., 1984). However, protection does not 

consistently correlate with anti-CS antibody levels in malaria-exposed individuals or immunized 

volunteers. Besides, no vaccine has been shown to induce a strong sterile immunity based on the 

induction of anti-CS antibodies alone (Herrington et al., 1987; Hoffman et al., 1987). 

The role of T cells was first demonstrated when irradiated sporozoites conferred protection in mice, 

which were not capable of making antibodies (Chen et al., 1977). Additionally, spleen cells or 

immune T cells from sporozoite-immunized mice could confer protection against malaria, when 

adoptive transfer was performed in vivo into naïve mice (Egan et al., 1987; Verhave et al., 1978). 

Protective immunity induced by irradiated sporozoites is completely dependent on the presence of 

CD8+ T cells while a requirement for CD4+ T cells has only been demonstrated in a few strains 

(Tsuji and Zavala, 2003; Doolan and Hoffman, 2000; Weiss et al., 1993; Tsujii et al., 1990).  

CD8+ T cells have been implicated as critical effector cells in this protection, thus being the core of 

several immunologic studies, which provided the following observations. Induction of IFN-γ is a 

direct consequence of the CD8+ T cell activation, IFN-γ production precedes and initiates 

production of IL-12, and then IL-12 in turn induces IFN-γ production by APCs and/or natural 

killer cells (NK) in a positive feedback loop that represents an important amplifying mechanism. 

The IFN-γ then activates inducible nitric oxide (NO) synthase and induces the L-arginine-dependent 

NO pathway, subsequently eliminating the infected hepatocyte or the intrahepatic schizont (Morrot 

and Zavala, 2004b; Krzych et al., 2000; Doolan and Hoffman, 1999; Sedegah et al., 1994; Nussler et 

al., 1993; Nussler et al., 1991; Schofield et al., 1987a). Nevertheless, irradiated sporozoite 

immunization induces distinct mechanisms of protection in different hosts (Doolan and Hoffman, 

2000). 

In vitro, CD8+ T cells against a single epitope in the carboxyl terminus of the P. yoelii CS protein 

eliminated infected hepatocytes from culture in an antigen-specific, MHC-restricted manner (Weiss, 

1990). Protection against infection in mice was also achieved by using CD8+ T cells that are specific 

for an epitope of the CS protein either for P. berghei CS or P. yoelii CS, which could, in some cases, be 

abolished by in vivo treatment with anti-IFN-γ (Weiss et al., 1992; Rodrigues et al., 1991; Romero et al., 

1989). Besides CS protein, other clones against different proteins could protect mice such as TRAP, 
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which conferred protection in a CD4+ T cell, IFN-γ dependent manner (Wang et al., 1996; Khusmith 

et al., 1994). CD4+ T cells directed against a single epitope in the amino terminus of the P. yoelli CS 

protein eliminated infected hepatocytes from culture in an IFN-γ-independent manner (Renia et al., 

1993; Renia et al., 1991). A heat-shock-like protein (PfHSP70) on the hepatocyte surface was a target 

for in vitro antibody-dependent cell-mediated cytotoxic mechanisms by liver non-parenchymal cells 

(Renia et al., 1990). 

Besides antibodies and T cells contributions to immunity, the effect and the role of the most 

important cytokines in malaria infection have also been studied. Regarding IFN-γ, a systemic 

administration of this cytokine is capable of partly protect against P. berghei and P. cynomolgi 

sporozoite challenge in mice and in monkeys, respectively (Ferreira et al., 1986, Schofield et al., 1987b; 

Maheshwari et al., 1986). On the other hand, in vivo IFN-γ depletion leads to abrogation of irradiated 

P. berghei and P. yoelii sporozoites-induced immunity (Rodrigues et al., 1991; Hoffman et al., 1989; 

Weiss et al., 1988; Schofield et al., 1987a). When treated with IFN-γ, Plasmodium spp.-infected 

hepatocytes were eliminated from in vitro cultures. IFN-γ’s activity was also shown to be nitric oxide-

dependent (Mellouk et al., 1994; Mellouk et al., 1991; Ferreira et al., 1986). Another important 

cytokine that is able to modulate hepatic stage development during malaria infection is tumour 

necrosis factor-α (TNF-α). Inhibition of development is obtained in P. berghei-infected HepG2 cells 

(Schofield et al., 1987b). In vivo administration of murine recombinant TNF-α induced high 

protection in mice challenged with P. yoelii sporozoites (Nussler et al., 1991). However, when purified 

cultures of primary hepatocytes infected with P. berghei or P. yoelii were used, no effect was observed 

(Mellouk et al., 1991). Nevertheless, the addition of non-parenchymal cells to the hepatocytes 

restored TNF-α-induced parasite inhibition. Subsequently, it was shown that this was due to IL-6 

secretion from non-parenchymal cells (Nussler et al., 1991). Administration of recombinant 

interleukin-12 (IL-12) protects mice from sporozoite challenge with P. yoelii and P. cynomolgi in 

monkeys (Hoffman et al., 1997; Sedegah et al., 1994). Other reports have also mentioned the 

inhibitory effect of IL-1 on intrahepatic development of P. yoelii and P. falciparum, in this case when 

applied before sporozoite inoculation (Pied et al., 1992; Mellouk et al., 1987). 

Still, doubts subsist regarding the differences induced by irradiated and live sporozoites especially in 

what concerns how antigen presentation occurs, which given the opposed outcome have necessarily 

to hold divergences. Within it for sure is the mediated switch from tolerogenic immune status to a 

local inflammatory one, accomplishing malaria exo-erythrocytic forms clearance (Stevenson and 

Riley, 2004).  

Immunization with blood stage antigens, heat-killed, formalin-inactivated or lysed sporozoites, or 

even sporozoite antigens, did not lead to a level of protection similar to that achieved when 
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irradiated sporozoites were used (Plebanski and Hill, 2000). Instead, live sporozoites and 

chloroquine-treated mice immunizations, were capable of preventing erythrocyte infection (Belnoue 

et al., 2004). These data provided further insights to the fact that immunity conferred by irradiated 

sporozoites is triggered by the infected hepatocyte as a first target and sporozoite liver development 

is required for it to occur. Moreover, live sporozoites have to target the liver for protection to occur.  

Additionally, sporozoites last 30 min or less in the mammalian host, so any immune response 

targeting this stage has to be activated and completed within minutes of infection. On the other 

hand, the liver stage is much more extended both in rodents, where parasite develops for 24h-48h, 

and in humans, where, depending on Plasmodium species, development can last for 5-14 days 

(Doolan and Hoffman, 2000).  

How the knowledge obtained with study of the immunizations with irradiated sporozoites 

conciliates with the field observations is also crucial to fully understand the potential of the liver 

stages. T cells specific for both variant and conserved pre-erythrocytic malaria antigens are not 

found consistently in naturally exposed individuals and T cell responses are generally suppressed 

during the course of malaria infection (Good and Doolan, 1999; Hviid et al., 1991; Ho et al., 1986; 

Troye-Blomberg et al., 1984). 

A complete description of the mechanisms involved in this protection could drive adequate 

strategies for the development of a vaccine capable of conferring complete immunity (Hill, 2006). 

 

 

2.5 Apoptosis at the host-pathogen interface 

2.5.1 Cell death  

In humans, approximately 10 billion cells die per day during its maintenance. The need of 

eliminating excess cells or potentially dangerous ones, protecting the organism from threats to its 

homeostasis and simultaneously allowing the control of cell numbers and tissue size, confers cell 

death an importance comparable to the cellular processes of cell division or migration. This is a 

highly complex molecular process of cellular destruction, and is defined as programmed cell death or 

apoptosis (Gavrilescu and Denkers, 2003). 

Apoptosis is a genetically controlled biological event, characterized by a pattern of molecular and 

morphological changes that typically take place in multicellular organisms when they undergo death. 

It holds a major role in development, proliferation, maintenance, perpetuation of cellular integrity 

and tissue homeostasis. It plays a central role in the normal development and function of the 

immune system of higher vertebrates (Vaux and Strasser, 1996; Raff, 1992). 
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Such a powerful process has to be tightly regulated as abnormalities in the apoptotic progression 

commonly lead to pathology, including development of autoimmune diseases, ageing, cancer and 

neurodegenerative disorders (Strasser et al., 1997; Thompson, 1995). 

Over the years, apoptosis and its regulation became an essential area of research, allowing significant 

progress in the understanding of this cellular process. Programmed cell death was first described by 

Carl Vogt in 1842 and, since then, acquired several names. The term apoptosis was created in 1972 

by Kerr and collaborators to describe the morphological appearance of the dying cells observed in 

various tissues and cell types (Kerr et al., 1972). These dying cells presented and shared many 

morphological features distinct from the ones observed in cells undergoing necrotic cell death and 

suggestions were made that these belonged to a conserved, common and endogenous cell death 

program (Wyllie et al., 1980). 

Since those early days, the nematode Caenorhadditis elegans was used as a model to uncover the 

apoptotic machinery and its molecular components allowing the identification of several molecules 

involved in this process (Hengartner and Horvitz, 1994; Ellis and Horvitz, 1986). Mammalian 

orthologs were also described and it is now generally accepted that the apoptotic process involves a 

shared biochemical suicide program that exists in most cells and is turned on by a variety of normal 

developmental and pathogenic triggers (Fink and Cookson, 2005; James and Green, 2002).  

This process of self-destruction is a direct consequence of the activation of a large number of 

conserved gene and protein families. Apoptosis differs from other types of cell death, such as 

necrosis, and is characterized by a unique range of morphological and biochemical features that are 

commonly present in a dying cell and which constitute the basis for the identification of this 

biological event (Hengartner, 2000). Nuclear chromatin condensation and fragmentation, 

vacuolization of the cytoplasm, cell shrinkage with organelle preservation, membrane blebbing, 

DNA degradation followed by detachment from the substrate and formation of membrane-bound 

apoptotic bodies, are features that determine apoptotic cell fate, a process that cannot be reversed 

once it has been initiated (Hacker, 2000). The lack of inflammatory response is also a hallmark of 

death by apoptosis as apoptotic bodies are rapidly engulfed by phagocytes without causing 

inflammation (Savill and Fadok, 2000).  

Conversely, necrosis results from a physical injury and is not genetically controlled. Cellular swelling 

with disruption of organelles and rupture of the plasma membrane are marks that typify a non-

apoptotic death. Thus, cells dying by apoptosis or necrosis present large differences in their 

appearance. Furthermore, necrosis contrary to apoptosis is usually associated with inflammation. 

Although apoptosis and necrosis are independent processes they can be related since an event that 

produces necrosis may trigger apoptosis in the surrounding tissue. On the other hand the induction 

of apoptosis under certain conditions could indirectly result in necrosis (Serhan and Savill, 2005).   
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A number of cysteine proteases that are specifically activated in apoptotic cells are responsible for 

the morphological changes observed. These death proteases are homologous to each other, and are 

part of a large protein family known as caspases (Thornberry and Lazebnik, 1998; Alnemri, 1997). 

They are highly conserved throughout evolution and can be found in organisms ranging from 

worms to mammals, including insects and nematodes. Caspases are synthesized as precursors that 

have almost no catalytic activity. When activated, they are known to be the central executioners of 

the apoptotic process and are capable of regulating their own activity. Caspase-mediated proteolytic 

reactions are very specific, recognizing and cleaving aspartic acid-containing recognition sequences 

(Thomberry et al., 1997). When caspase-activity is abrogated, either by inhibitors or through 

mutations, prevention or reduction of cell death occurs (Hengarther, 2000).  

 

2.5.2 Pathways of apoptosis  

Apoptosis is triggered by a stimulus that is responsible for initiating the whole cascade process. 

Several types of stimuli are capable of initiating cell death by apoptosis. These include internal 

stimuli like death ligands binding to specific cell surface receptors, such as Fas or tumor necrosis 

factor receptor, and external stimuli like chemotherapeutic agents, irradiation, reactive oxygen 

species, and growth factors (Chipuk and Green, 2005). Transduction of these pro-apoptotic signals 

via different pathways results either in activation of caspases or in the release of cytochrome c from 

the mitochondria into the cytosol, leading to the formation of the apoptosome and to the activation 

of a caspase cascade, which ultimately results in cell death. Depending on whether the trigger for 

apoptosis is internal or external, two main pathways, the extrinsic (death receptors) and intrinsic 

(mitochondria) pathways, can be used by the organism (Hengartner, 2000).  

The extrinsic pathway is initiated by the interaction of specific ligands with appropriate cell-surface 

receptors, like the Fas-FasL and the TNF-α, and TNF-α receptor (TNFR). These are receptor-ligand 

interactions in which both members are part of the death receptor families of proteins. When FasL 

binds to Fas at the cell surface, a death-inducing signaling complex (DISC) is formed. The DISC 

incorporates one or more adapter molecules like the Fas-adapter death domain (FADD), which bind 

the receptor on one side, and the pro-initiator caspase-8 or -10 on the other, through their death 

domains. Subsequently, activated caspase-8 cleaves and activates the effectors caspases -3, -6, -7 

from their precursor state thereby completing the cascade. Caspase-8 can also cleave Bid, a pro-

apoptotic cytosolic Bcl-2 family protein that, in its truncated form, translocates to the mitochondria 

allowing the bridge between pathways and eliciting the intrinsic course (Nagata, 1997). 

The latter pathway has is centered in the mitochondrial changes that are limited to the breaking of 

the outer membrane integrity with the release of cytochrome c and other mitochondrial 

intramembrane components into the cytosol. Cytochrome c interacts with apoptosis-activating factor 
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(Apaf)-1 from the cytosol, inducing its oligomerization into a complex structure named apoptosome 

which also includes pro-caspase-9. Once activated, this structure is capable of activating the 

downstream effector caspases, leading to apoptosis through the mitochondrial pathway. At certain 

key points there are other molecules that allow this catalytic cascade to be regulated by either 

positive or negative feedbacks. The Bcl-2 family proteins, that include the anti-apoptotic Bcl-2, Bcl-

xl, Bcl-w, Mcl-1 constitute an example of this. These proteins prevent apoptosis by protecting 

mitochondria from permeabilization and inhibiting the action of the pro-apoptotic Bcl-2 family 

members (Bax, Bak, Bad, Bid), which are responsible for inducing cytochrome c release from the 

mitochondria triggering the apoptotic cascade (Kroemer and Reed, 2000; Adams and Cory, 1998). 

In addition to these two major pathways, there are other alternative routes to caspase activation. The 

release of perforin and granzymes by NK cells or antigen specific CTLs, which, through endocytosis 

and pore formation, give access to the cytosol where Bid and/or caspase-3 is activated and 

apoptosis is induced in target cells (Kojima et al., 1994; Shi et al., 1992; Odake et al., 1991; Poe et al., 

1991) (Fig. 2.3). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.3| Pathways of apoptosis. (A) Extrinsic or death receptor-mediated pathway. Extracellular molecules (TNF-α and 
FasL) bind to TNFR family members (TNFRI and Fas, respectively). Recruitment of FADD to the receptors leads to Casp-8 
activation, which in turn results in activation of Casp-3, Casp-6, and Casp-7. (B) Intrinsic or mitochondrial pathway. Stress, 
irradiation and inflammation act on mitochondrial through intermediary pro-apoptotic Bcl-2 family members such as Bax, 
resulting in blocking of the anti-apoptotic activity of Bcl-2 (red lines). As a result, cytochrome c translocates into the cytoplasm 
and activates Casp-9 through APAF-1. Casp-8 may also trigger the mitochondrial pathway through the activation of Bid, which 
like Bax, inhibits the anti-apoptotic activity of Bcl-2. (C) Cytotoxic cells introduce granzyme molecules into the target cell in a 
process mediated by multimerization of the perforin molecule. Granzymes cleave various substractes, including caspases, 
resulting in cell death. The dashed arrows indicate secondary effectors of activated caspases, and the green arrows indicate 
cleavage and activation. (adapted from Gavrilescu and Denkers, 2003)  
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2.5.3 Intracellular living 

Intracellular organisms invade cells in order to exploit cellular resources and multiply, ensuring the 

perpetuation of the pathogen’s life cycle. The relationship between a host and a pathogen has a 

dynamic nature that has evolved to enable coexistence between the two entities. Pathogens use 

different strategies to make use of the host’s resources that determine the fate of the interaction 

established between host and pathogen. A successful infection results in a considerable cellular 

reorganization with clear advantages for the infectious agent. Therefore, obligatory intracellular 

parasitism requires a close regulation of crucial events like a successful entry, intracellular replication 

and exit from the host cell (Alonso and Garcia-del Portillo, 2004; Nyalwidhe et al., 2003; Kahn et al., 

2002).  

Pathogens encounter different environments along their way, which lead to changes in 

microorganism responses through signal transduction pathways which have to adapt to the 

surrounding conditions. This lifestyle demands a subversion and exploitation of the host cell at 

various levels, from using host resources to evading the host’s defense system (Ploegh, 1998). 

Probably the most obvious potential outcome of host-pathogen interactions is the death of host 

cells (James and Green, 2002). It has long been known that this can result from an infection, either 

as a direct effect of the pathogen or through pathogen-produced products. Pathogen-induced cell 

death seems like a simple infection outcome, but undergoing research has demonstrated that is 

rather complicated as it may occur by a variety of complex mechanisms. When a cell detects that has 

been invaded and is fated to die, it is capable of accelerating the dying process in order to arrest 

parasite growth, limiting the damage to the host organism and thereby protecting the uninfected 

cells and ultimately preventing infection (Luder et al., 2001).  

Pathogens have developed mechanisms to prevent host cell death by disabling the host’s apoptotic 

machinery and thereby promoting its own survival and replication. Descriptions of such behaviors 

can be found in the literature for several pathogens like viruses, bacteria, parasites, and fungi, where 

modulation includes prevention of apoptosis in parasitized host cells and also promotes the death of 

immune cells that are targeted to them (Hasnain et al., 2003; DosReis and Barcinski, 2001). 

Thus, uncovering mechanisms responsible for pathogenesis is critically dependent on elucidating 

factors required by a pathogen to kill or preserve the host’s life. Such knowledge may ultimately 

contribute towards the discovery of novel therapeutic targets with potential use in various diseases 

(Fink and Cookson, 2005). 

 

2.5.4 Modulation of apoptosis and parasite survival/death  

Upon infection there is a complex interaction of parasite proteins with cellular host proteins 

originating a variety of responses from both of them. Phagocytosis of the pathogen, release of 
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cytokines, secretion of toxins, production of reactive oxygen species, are common outcomes of this 

type of relationship. Many examples of strategies used by viruses and bacteria preventing the death 

of the host cell through either of the apoptotic pathways have been reported (Gao and Kwaik, 2000; 

Granville et al., 1998; Liles, 1997). 

Analogous mechanisms have been proposed for protozoa including receptor-mediated apoptotic 

triggers and stress-mediated apoptosis stimuli, suggesting that a close interaction at different check 

points is established with the apoptotic machinery of the host cell. Therefore, the abrogation of host 

cell apoptosis often turns out to be beneficial for the pathogen and to result in a successful invasion 

(Heussler et al., 2001).  

While in many cases the mechanisms for resistance to apoptosis are still unknown, in others there 

appear to be a variety of ways in which the pathogen ensures cellular survival. These include 

production of molecules that resemble and mimic Bcl-2 protein, the expression of inhibitors for 

death receptor signaling pathway, the generation of caspase inhibitors and interference with nuclear 

factor kB (NFkB) pathway. So, several studies point out to parasite-produced molecules that are 

capable of directly activating apoptotic pathways in the target cells (Gavrilescu and Denkers, 2003; 

Hasnain et al., 2003). 

Among these are examples of parasitic infections conferring protection to induced-apoptosis in 

infected-host cells. Decreased caspase activation and reduced levels of poly (ADP-ribose) 

polymerase expression were described in Toxoplasma-infected cells (Goebel et al., 2001; Nash et al., 

1998). On the other hand, cell viability in the absence of growth factors was shown to be induced 

when Leishmania-infected macrophages soluble mediators were released (Moore et al., 1994). 

Both induction and inhibition mechanisms were described in Trypanosoma cruzi-infected cells, 

depending on the stimulus elicited. Hence, an apoptotic pathway can be induced during infection by 

radiation and chemicals and when a different pathway, like Fas or TNF-α, was triggered, host cells 

became protected and resistant to death (Nakajima-Shimada et al., 2000; Nunes et al., 1998; Lopes et 

al., 1995).  In addition, Trypanosoma is able to produce a trans-sialidase that can interact with the host 

cell PI3K-Akt pathway to promote survival in the peripheral nervous system and also seems to be 

responsible for cell depletion in the thymus during infection (Mucci et al., 2002; Chen et al., 2001; 

Chuenkova et al., 2001).  

Theileria is another parasitic pathogen that is able to subvert the host for its own benefit, making use 

of remarkable approaches, resembling a cancer cell. This parasite places a huge pressure on the host 

cell by taking control of both the cell cycle and the apoptosis process through several mechanisms 

that involve the activaction of transcription factors like AP-1, ATF-2, which are implicated in JNK 

and MAPK pathways (Heussler et al., 1999; Romashkova and Makarov, 1999; Palmer et al., 1997). 

NFkB signaling pathway is normally associated with transcription of pro-inflammatory mediators 
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and resistance to infection. However, it can also induce expression of several anti-apoptotic proteins, 

including IAPs and c-FLIP, which blocks caspase-8 activity leading to survival (Barkett and Gilmore, 

1999). Theileria-infected cells show an activated phenotype as the inhibitor molecule (IkB) is 

degraded by phosphorylation, maintaining the nuclear translocation leading to immortalized-infected 

cells. Consequently, these modulations of the biology of Theileria-infected cells lead to death-

resistance to both extrinsic and intrinsic apoptotic triggers (Kuenzi et al., 2003; Heussler et al., 2002; 

Heussler et al., 1999). 

Other examples of mitochondrial pathway induced-death are also found in the literature, although 

not directly involving the infected cell. During acute T. gondii infection, CD4+ and CD8+ T cells 

accumulate in the brain and express high mRNA levels of Bax and Bad, while in chronic infection T 

lymphocyte expression of pro-apoptotic molecules is downregulated and anti-apoptotic levels of 

Bcl-2 and Bcl-xl are increased (Schluter et al., 2001; Khan et al., 1996). 

Similar processes occur with P. berghei lethal infection (a model for rodent cerebral malaria), where 

increased levels of Bax, Bcl-2, p53, and cytoplasmic cytochrome c in the brain were measured. 

Furthermore, alterations on mitochondria morphology were detected, suggesting that the 

dysfunction of this organelle may play a role in cerebral malaria phenotypes, although it is not clear 

which apoptotic pathway was followed (Kumar and Babu, 2002). 

For extracellular parasites the induction of apoptosis occurs in cells that constitute their diet or 

appear along their pathway of invasion. Entamoeba histolytica-infected cells undergo apoptosis through 

a cell lectin-binding surface contact mechanism while evidence shows helminths parasites targeting 

for host cells mobilized to attack them using also Fas-FasL interaction (Lopez-Briones et al., 2003; 

Chen et al., 2002; Jenson et al., 2002; Kuroda et al., 2002; Rumbley et al., 2001; Huston et al., 2000).  

Similar events occur in a virus-host relationship. Upon viral infection many cells undergo apoptosis, 

thereby reducing the viral load. Therefore, interfering with host cell apoptosis would lead to 

replication and spreading of progeny. For this purpose, strategic points in the apoptotic pathways 

are targets for viral proteins that evolved to be able to inhibit or delay the host’s protective actions 

by targeting cells of the immune system or the host cell itself (Granville et al., 1998; Ploegh, 1998). 

The anti-apoptotic members of the Bcl-2 family, the inactivation of tumor suppressor p53 and 

caspases inhibition are examples of targets for this modulation (Tabakin-Fix et al ., 2005; Li et al., 

2002; Yang et al., 2002; Bertin et al., 1996; Shen and Shenk, 1995). In latent viral infections, the host 

protein translation machinery is controlled by the virus. Initiation of a viral infection leads to the 

shutting down of the host’s protein synthesis, which in turn leads to a decline of metabolic processes 

and apoptosis induction (Clemens, 2005). 
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2.5.5 Modulation of apoptosis and immunity 

Cell-specific apoptosis contributes to the regulation of pathogen-induced immune responses (Luder 

et al., 2001). As the Fas-FasL signaling pathway is specifically involved in apoptosis, disruption of the 

Fas-FasL pathways can be directly related to an alteration in apoptosis steady-state (Dockrell, 2003). 

Studies with knockout mice infected with different protozoa showed that FasL-triggered apoptosis 

plays a role in resistance to infection as the lack of function of this molecules induced higher levels 

of parasitemia and lesions that the mice failed to resolve (Lopes et al., 1999; Conceicao-Silva et al., 

1998). However, it is not known if this outcome results from infected cell lysis or prevention of 

uncontrolled inflammatory reactions at the lesion site.   

Production of FasL, which, through interaction with its receptor Fas will initiate the apoptosis 

cascade, for instance in T- and B-cells, leading to lymphocytopenia, occurs in Plasmodium, T. gondii 

and Leishmania (Eidsmo et al., 2002; Nishikawa et al., 2002; Wipasa et al., 2001; Matsumoto et al., 

2000). 

When ovalbumin- or parasite-specific T cells were adoptively transferred into P. yoelii-infected T cell-

deficient nude mice, only the P. yoelii-specific T cells underwent apoptosis and demonstrated signs of 

increased Fas expression. These data suggest a mechanism to eliminate anti-Plasmodium T-cell 

effectors. Moreover, in an acute blood stage infection with P. chabaudi, 60% of the spleen cells 

express the Fas molecule (Wipasa et al., 2001; Helmby et al., 2000). In human malaria, infected 

individuals express high levels of apoptotic markers in peripheral blood mononuclear cells, which in 

vitro are sensitive to apoptosis induction and have elevated soluble Fas levels in serum. Thus, this 

apoptotic pathway may also play a role in infection. In addition, FasL levels have been shown to 

decrease with malaria chemotherapy (Kemp et al., 2002). 

CTLs employ perforin and granzyme molecules to directly trigger apoptosis in infected target cells. 

Several intracellular protozoans elicit MHC class I-restricted CD8+ CTL activity; these parasites 

include Toxoplasma gondii, Plasmodium spp., Trypanosoma cruzi and Leishmania major (Bonelo et al., 2000; 

da Conceicao-Silva et al., 1994; Grazzinelli et al., 1993; Nickell et al., 1993; Rodrigues et al., 1991). 

However, it seems that perforin-mediated CTL activity does not protect the host, as perforin-

knockout mice were resistant to infection with T. gondii and T. cruzi (Nickell and Sharma, 2000; 

Denkers et al., 1997).  

Reports concerning immunity-related apoptosis describe additional immunologic factors that 

possess a significant role in the outcome phenotype. Pro-inflammatory cytokines are able to mediate 

apoptosis process during pathogenic infections. However, it is difficult to determine the biological 

significance of apoptosis driven by mediators such as IFN-γ, IL-12, NO and TNF-α; because these 

molecules are, in addition, involved in resistance to pathogens and are needed for host survival 

(Denkers, 2003; Martins et al., 1999; Grazzinelli et al., 1998; Silva et al., 1998). 
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3.1 Cells 

Two hepatoma cell lines were used for in vitro culture experiments: a human hepatoma cell line, 

HepG2 (ATCC, HB8065) and a mouse hepatoma cell line Hepa 1-6 (ATCC, CRL-1830) (Darlington 

et al., 1980). Both cell lines are efficiently infected by rodent malaria parasites which are capable of 

undergoing complete development (Mota and Rodriguez, 2000; Hollingdale et al., 1983 a,b). This 

constitutes the in vitro model system used to reproduce a malaria liver stage infection during the 

experimental studies performed.  

 

3.2 Parasites, mosquitoes and mice 

Plasmodium yoelii (17XNL, non-lethal strain) or Plasmodium berghei (NK65 or ANKA strains) 

sporozoites were obtained from infected mosquitoes and were used either for in vitro or in vivo 

experiments. Parasites were maintained by alternate cyclic passages in mosquitoes and mice 

(Vanderberg and Gwadz, 1980). 

Additionally, Anopheles stephensi infected mosquitoes were also obtained from the Centro de Malária e 

outras Doenças Tropicais (Lisboa, Portugal) and the University Medical Center St. Radbound 

(Nijmegen, The Netherlands), and further maintained in our departments under adequate conditions 

(Benedict, 1997). BALB/c or C57/BL6 mouse strains aged between 6-8 weeks were purchased from 

Taconic Farms (Germantown, New York, US) or Instituto Gulbenkian de Ciência (Oeiras, Portugal). 

Animals were bred and maintained in a pathogen-free animal facility. 

 

3.3 Sporozoite isolation and purification  

Female Anopheles stephensi mosquitoes were fed on infected Plasmodium spp. mice. Sporozoites were 

obtained by dissection from their salivary glands at days 18-21 post feeding. Dissections of mosquito 

salivary glands were performed in RPMI 1640 medium (Gibco) containing 1% mouse serum 

(Gibco). The glands were mechanically disrupted and homogenized to free the parasites. The debris 

was pelleted after spinning at 20g for 5 min at 4ºC. Sporozoites were then collected, counted and 

maintained on ice until use (adapted from Ozaki et al., 1984). Sporozoites infectivity was dependent 

on the parasite strain in use. The number of sporozoites per infected mosquito was determined 

using a hemacytometer (Neubauer chamber). Irradiated sporozoites were submitted to gamma-

source radiation equivalent to 20 Krad dose (137Cs source). Heat-killed sporozoites were submitted 

to a heat shock treatment of 56º C for 15-30 min. 

 
3.4 In vitro infections  

One day prior to infection, 2×105 Hepa 1-6 (or HepG2 cells) were harvested in 24-well plates over a 

glass coversilp in complete Dulbecco’s MEM medium (DMEM; Sigma) supplemented with 10% 
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heat-inactivated fetal bovine serum, 100 U/ml penicillin, 0.1 mg/ml streptomycin, and 2mM 

glutamine and grown at 37ºC with 5% CO2. 

P. yoelii sporozoites (105/well) or P. berghei sporozoites (3×104/well) were added to the monolayers of 

Hepa 1-6 or HepG2 cells respectively, centrifuged for 5 min at 1800g and incubated at 37ºC with 5% 

CO2. At different time points after infection, cells were washed twice with Phosphate Buffered 

Saline (PBS) and fixed in 4% Paraformaldehyde (PFA) for 20 min at room temperature (RT) (Fig. 

3.1). 

 

 

 Plasmodium sporozoites

Hepa 1-6 or HepG2Hepa 1-6 or HepG2 Infected hepatocytesInfected hepatocytes

A B

24h24h

Exo-erythrocytic forms

 

Fig. 3.1|Schematic representation of the 
in vitro sporozoite infection system. 
Hepatoma cells were seeded in 24-well plates 
over glass coverslips and allowed to grow 
overnight at 37ºC in a 5% CO2 atmosphere. On 
the next day sporozoites are added to the cells 
and allowed to develop into exo-erythrocytic 
forms (EEFs) for 24h (A). The number of EEFs 
in a coverslip was counted under a fluorescence 
microscope (Plasmodium exo-erythrocytic form, 
green; nucleus, blue) (B).    

 

 

 

 

3.5 Immunofluorescence assays  

After fixation with PFA, hepatoma cells were washed with PBS and incubated for at least 1h in a 

protein blocking solution (3% Bovine Serum Albumin, 100mM Glycine, 10% Goat serum; Sigma) to 

avoid unspecific reaction, containing 0.1% Saponin (Sigma) for permeabilization. Cells were then 

kept for 45 min at RT with the primary antibody against parasite heat shock protein 70 (HSP70) 

(Tsuji et al., 1994). After washing twice with PBS, cells were incubated for 45 min at RT with 

secondary anti-mouse IgG fluorescein (FITC)-conjugated antibody (Sigma) diluted in blocking 

solution. Hepatoma cells were then washed twice in PBS and incubated with 4'6-diamidino-2-

phenylindole (DAPI, Sigma) diluted in PBS during 1 min for staining the nuclei. Afterwards, cells 

were washed 3 times with PBS and the coverslip was mounted on a slide with mounting medium 

Mowiol (Calbiochem) and observed in a fluorescence microscope (Leica DM LB2). All the 

immunofluorescence assays (IFA) were performed following the procedure described above using 

the antibodies relevant for each assay as listed in Table 3.1. 
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Table 3.1|Antibodies used in immunofluorescence stainings. 

Designation Staining feature Origin 

NYSI  P. yoelii CS protein (Charoenvit et al., 1987) 

Anti- Mouse IgG FITC or R-PE Mouse IgG Sigma  

2E6 P. yoelii HSP70 (Tsuji et al., 1994) 

Anti-NFkB p65 (relA) NFkB Santa Cruz Biotecnology 

Anti-albumin Mouse albumin Cappel / ICN  Irvine 

PE-Anti-CD11c Dendritic cell Pharmingen 

FITC-Anti-Mac3 Macrophages Pharmingen 

Anti-Rabbit IgG FITC or Texas Red Rabbit IgG Jackson BioLabs 

Anti-Active Caspase-3 p18 fragment of caspase-3 Promega 

 

 

3.6 Cell treatment during sporozoite infection 

The study of the effect of different treatments during the course of in vitro Plasmodium sporozoites 

infection was carried out according to the effect under study. Therefore, (i) hepatocyte growth factor 

(HGF) (500 ng/ml, Calbiochem) was added to cells 1h prior infection; (ii) carbobenzoxy-valyl-

alanyl-aspartyl-[O-methyl]- fluoromethylketone (Z-VAD-FMK) (20µM, Promega) was also added to 

cells 1h prior infection; (iii) the agonist antibodies DN-30 and DO-24 (1µg/ml) (Prat et al.,1998) 

were added to cells 90 min post infection; (iv) and LY294002 (25µM, Sigma) and PD98059 (30µM, 

Sigma) were added to cells 1h prior infection and followed by washes with PBS before addition of 

Plasmodium sporozoites. Reagents were diluted in serum-free DMEM, which was used under the 

same conditions as the control. 

 

3.7 Apoptosis induction assays 

For the apoptosis induction assays, Hepa1-6 or HepG2 cells were treated with Tumor Necrosis 

Factor- α (TNF-α, 10ng/ml, R&D Systems) and Cycloheximide (CHX, 10µg/ml, Sigma) or 

exposed to UV light in order to induce apoptosis 18h after sporozoite infection. Heat killed parasites 

(30min; 56ºC) were used as control. Six hours later cells were fixed and stained for parasite detection 

and host cell apoptosis quantification.  

 

3.8 Detection of apoptosis     

Apoptotic cells were detected and quantified by different methods based on features that a cell 

commonly displays during the apoptotic cascade process (Chipuk and Green, 2005). 
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The TUNEL assay using In Situ Cell Death Detection reagent (Roche) was performed according to 

the manufacturer instructions in order to examine DNA breaks in cells undergoing apoptosis. 

Briefly, after apoptosis induction cells were fixed with 4% PFA and permeabilized with 0.1% Triton 

X-100 in 0.1% sodium citrate. After washing with PBS, cells were incubated with the reaction 

mixture for 60 min at 37°C. Stained cells were mounted with Mowiol and analyzed under a 

fluorescence microscope (Leica DM LB2). 

Apoptosis was also detected by immunofluorescence assays (see section 3.5). Cells were stained with 

anti-NFkB p65 (relA) (Santa Cruz) antibody to observe the translocation of the transcription factor 

NFkB from the cytoplasm to the nucleus of the cell (Barkett and Gilmore, 1999), and caspase 

activity was measured with anti-active-caspase-3 antibody (Promega). Both NFkB translocation and 

caspase activity are characteristic features of apoptosis (Thornberry and Lazebnik, 1998). 

Simultaneously, all cells were incubated with DAPI for nuclear morphology assessment (see section 

3.5). 

 

3.9 Dendritic cell recruitment to the liver     

Groups of 3 mice were infected by mosquito bite (each anesthetized mouse was in contact with 50 P. 

yoelii-infected mosquitoes for 20 min) or by intravenous (i.v.) administration with 105 P. yoelii 

sporozoites in a total volume of 100 µl (gamma-irradiated or non-irradiated) or with salivary glands 

of uninfected mosquitoes as control. At different times after infection, livers were collected and 

frozen in Tissue-Tek (Sakura), and 15 histological sections (10 µm) from each mouse liver were 

examined with PE-anti-CD11c mouse antibody (Pharmigen) for detection and quantification of 

dendritic cells. 

 

3.10 In vivo infection, isolation and staining of liver mononuclear cells 

BALB/c female mice of 6-8 weeks of age were infected with P. yoelii gamma-irradiated (20 Krad), 

non-irradiated, or heat-killed (15 min; 56ºC) sporozoites by i.v. injection (1×106 sporozoites/mouse).  

Six hours after infection the liver of each animal was collected, manually homogenized, and passed 

through a cell strainer in DMEM medium. The cell suspension was washed and resuspended in a 

35% Percoll (Pharmacia Biotech) gradient solution and centrifuged (500g; 10 min). The 

mononuclear-cell pellet was resuspended in 1ml erythrocyte lysis buffer (Cappel) for 1 min and 

washed 3 times with PBS. Isolated cells were counted and placed for 1h on poly-L-lysine coated 

coverslips (~1.5×106 cells/liver were obtained). After fixation with 2% PFA, mononuclear cells were 

stained with PE-anti-CD11c and FITC-anti-Mac3 antibodies (Pharmigen) for dendritic cell and 

macrophage labeling, respectively. Parasites were stained with anti-P. yoelii HSP70 monoclonal 
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antibody (2E6). Cells were also stained with anti-albumin (Cappel/ICN Irvine) and anti-active 

caspase-3 (Promega). Quantification was performed with a fluorescence microscope. 

 

3.11 Detection and quantification of in vivo Plasmodium sporozoite infection 
using Reverse Transcription and Real-Time PCR 
 
Forty hours post infection, livers of mice inoculated with 50.000 Plasmodium sporozoites by i.v. 

injection were mechanically homogenized (Tissue Tearer Blader) in 4 ml denaturing solution (4M 

Guanidium Thiocyanate, 25 mM Sodium Citrate pH 7, 0.5% N-Laurosyl-sarcosine, 0.1% β-

mercaptoethanol; Sigma) and processed for RNA isolation using RNeasy Mini kit (Qiagen) 

according to the protocol supplied by the manufacturer. Total RNA (1 µg) was reverse-transcribed 

to cDNA by using a first strand cDNA synthesis kit (Roche) in a 20 µl reaction volume on a PTC 

100 programmable Thermal Controller (MJ Research, Inc). 

A 4 µl sample of the resulting product was used for real-time PCR amplification of P. berghei 18S 

rRNA sequence using SYBRGreen I (Light cycler-FastStart DNA master SYBRGreen I, Roche) as 

fluorogenic probe and specific primers (5’-AAGCATTAAATAAAGCGAATACATCCTTAC-3’ 

and 5’-GGAGATTGGTTTTGACGTTTATGTG-3’). Amplification was performed in Roche 

LightCycler Quantitative Realtime PCR system (Roche) with the following temperature profile: 95ºC 

for 10 min, and 40 cycles of denaturation at 95ºC for 15 sec, annealing at 60ºC for 5 sec and 

extension at 72ºC for 20 sec. Control plasmids with standard concentrations of 18S rRNA gene 

were used as described elsewhere (Bruña-Romero et al., 2001). The amount of parasite 18S rRNA 

molecules detected in each sample is represented as the number of plasmid-equivalent in 

comparison with a standard curve generated with plasmid DNA (Bruña-Romero et al., 2001).    

 

3.12 Inhibition of PI3-kinase pathway during Plasmodium infection  

LY294002 (2.5 mg, PI3-kinase inhibitor, Calbiochem) in DMSO was injected intraperitonealy (i.p.). 

The control group was injected with the same volume of DMSO. Thirty minutes later, mice were 

infected by i.v. injection with P. berghei (5x104) sporozoites. Real-time PCR was used for 

quantification of parasite load (see section 3.11). 

 

3.13 Analysis of AKT expression during Plasmodium infection   

Mice were injected with LY294002 or DMSO (control) 30 min prior to infection with P. berghei 

sporozoites. Three hours after infection, livers were collected and cell lysates were separated by 

sodium dodecyl sulfate-palyacrylamide gel electrophoresis (SDS-PAGE) and probed with polyclonal 

anti-phospho-Akt (phospho-Ser-473) and total Akt antibodies (Cell Signalling). Detection was 
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performed with the enhanced chemiluminescence system (ECL; Amersham International) following 

the manufacturer’s instructions.  

 

3.14 Immunopreciptitation and Western blot analysis  

Cells were lysed on ice in EB buffer (20 mM Tris-HCl, pH 7.4, 5 mM EDTA, 150 mM NaCl, 10% 

glycerol, 1% Triton X-100) and in the presence of a cocktail mixture of protease and phosphatase 

inhibitors. Immunoprecipitation was performed according to standard protocols and with the 

appropriate antibodies (Celis et al., 1994). When amounts of the same protein in different samples 

were compared, the total protein in the lysates was determined using the BCA Protein Assay Kit 

(Pierce) according to the manufacturer’s protocol.  

Immunoprecipitated or total lysate proteins were resolved by SDS-PAGE and transferred to 

nitrocellulose membrane. Membranes were then probed with specific antibodies and binding was 

detected by Western blotting, which was performed according to standard methods. Final detection 

was performed with the enhanced chemiluminescence system (ECL; Amersham International) 

following the supplier’s instructions.  

 

3.15 MET down-modulation by siRNA in hepatoma cell line 

MET expression was down-modulated in HepG2 cells by transduction with the lentiviral vector 

PCCLsin.PPT.hPGK.GFP.Wpre, engineered to carry either the required sequence for synthesizing 

MET-targeted siRNA or a control siRNA, under the transcriptional control of the H1 promoter. 

siRNAs were produced as previously described (Pennacchietti et al., 2003). Two different siRNAs 

against Met were used as well as for the control siRNA. 

The sequences used were the follwing: for MET (5’-

GATCCCCGTCATAGGAAGAGGGCATTTTCAAGAGAAATGCCCTCTTCCTATGACTTTT

TGGAAA-3’ and 5’-AGCTTTTCCAAAAAGTCATAGGAAGAGGGCA 

TTTCTCTTGAAAATGCCCTCTTCCTATGACGGG-3’) and for the control (5’-

GATCCCCCTCATAGGAAGACCCCATTTTCAAGAGAAATGGTGGTCTTCCTATGACTTT

TTGGAAA-3’ and 5’-AGCTTTTCCAAAAACTCATAGGAAGACCCCAT 

TTCTCTTGAAAATGGGGTCTTCCTATGAGGGG-3’).  

Lentivirus production and infection of HepG2 cells were performed as previously described (Vigna 

and Naldini, 2000). Briefly, lentiviruses were produced by transient transfection of 293T cells. 

Transfections (200nM of each oligo) were done with Oligofectamine reagent (Invitrogen) follwing 

supplier’s instructions. HepG2 cells were transduced by overnight incubation with lentiviruses 

collected from 24 h supernatants, in Iscove supplemented medium (Gibco) with 8 µg/mL Polybrene 

(Sigma). Selection was done with G418 (1 µg/ml; Sigma) and the resistant cells were pooled and 
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assayed for the expression of MET protein by Western blot analysis, as follows. After selection, cells 

were kept in culture for 72h and then extracted with boiling Laemmli buffer (Laemmli, 1970). Equal 

amounts of proteins evaluated by BCA method (Pierce) were loaded in each lane. Western blots 

were probed with antibodies against human MET (C12; Santa Cruz Biotechnology) and standard 

protocols used (Vigna and Naldini, 2000). 

 

3.16 Assembly of DN MET-GFP hepatoma cell line 

For virus production, Met cDNA was subcloned in pLXSN plasmid. Dominant-negative Met was 

produced by fusing the extracellular and transmembrane portions of Met with GFP sequence in the 

pEGFP-N1 vector. A KpnI site was introduced at position 2962 of the Met coding sequence by PCR 

(forward oligonucleotide: 5’-GGAGCACAATAACAGGTGTTG-3; reverse oligonucleotide: 5’-

TTCCGGTACCCAATCTTTAATTTGCTTTCTCTTTTTC-3’). The sequences coding for the 

extracellular and transmembrane portions of Met were subcloned as a SacI–KpnI fragment into the 

pEGFP-N1 vector. This chimeric construct was then sequenced and subcloned in the lentiviral 

vector p156RRLsin-PPT-hCMV-MCS-pre. The transfections were performed by the calcium 

phosphate and DEAE dextran methods using 2-5 µg of each construct (Giordano et al., 2002; Vigna 

and Naldini, 2000). 

In vitro infection of hepatocytes was done by incubating the cells overnight in the presence of virus-

containing supernatant. Efficiency of infection was evaluated using GFP fluorescence and infected 

hepatoma cell lines expressing the Met-GFP construct were sorted by FACS to select positive cells. 

A control cell line was made with equal amounts of viral particles containing GFP alone (Carrolo et 

al., 2003; Giordano et al., 2002; Vigna and Naldini, 2000). 

 

3.17 Isolation of plasmid DNA 

All plasmid DNA were isolated either on a small scale (minipreps) using the QIAprep spin Kit 

(Qiagen) or on a large scale (maxipreps) with the Plasmid Maxi Kit (Qiagen). In both procedures the 

manufacturer’s protocols were followed.  

 

3.18 DNA restriction enzyme digestion  

The digestion of plasmid DNA was performed according with the dilution advised by the supplier 

using suitable volumes of the buffer specific for each enzyme used, according to standard 

procedures (Sambrook and Russell, 2001). 
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3.19 DNA Electrophoresis 

DNA samples smaller than 20Kbp were resolved in 1-3% (w/v) agarose gels in TE buffer (10 mM 

Tris-Cl, 1 mM EDTA, pH 7.5) using conventional submarine methods and apparatus. 

 

3.20 DNA Extraction from agarose gels 

DNA samples were extracted from agarose gels using a QIAquick gel Extraction Kit (Qiagen) 

according to the manufacturer’s instructions. 

 

3.21 Cloning PCR products 

PCR products larger than 3 Kb were cloned into pCR 2.1-TOPO (Invitrogen) vector and 

transformed into TOP10 One Shot cells following the manufacturer’s instructions. 

 

3.22 HSP 70 construct 

The DNA sequence of interest (P. yoelii HSP70) was amplified by PCR using specific primers 

(forward 5’-CCGCTCGAGATGGCTAACGCAAAAGCATCAAAGCCA-3 and reverse 5’-

ATAAGAATGCGGCCGCTTAATCAACTTCTTCAACAGTTGGTCC-3). Results were analyzed 

in 1% (w/v) agarose gel in TE buffer and PCR products cloned in PCR 2.1 TOPO vector 

(Invitrogen). The fragments were subsequently digested with the appropriate restriction enzymes 

and subcloned into a mammalian expression vector, pCI-neo (Promega) (see section 3.18). 

 

3.23 In vitro transient transfection system  

Plasmids were introduced into hepatocytes using a cationic polymer transfection reagent, jetPEI-Gal 

(PolyPlus). Transfection was performed according to the manufacturer’s protocol. For stable 

transfection the selection was performed using G418 sulfate (Cellgro) as the limiting reagent. 
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Chapter Four 
 

RESULTS I 
Role of dendritic cells during liver stage malaria 

and the initiation of an immune response 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend|Model of anti-malaria immune responses induced by irradiated sporozoites. Protective 
immune responses to malaria can be induced in humans and mice by injection of irradiated sporozoites. These infect 
hepatocytes as well as non irradiated sporozoites do, but they are not capable to develop into merozoites. The 
decrease observed in the number of infected hepatocytes suggests that these cells are dying during this period of 
development. Our working hypothesis predicts that the apoptotic bodies originate from infected hepatocytes by 
irradiated sporozoites are phagocytosed by dendritic cells. After migration to the lymph nodes, DCs have the ability 
to present Plasmodium antigens included in these apoptotic bodies and activate T lymphocytes, initiating an immune 
response against malaria.     



4.1 Introduction 

A large variety of strategies are being followed in the quest for a vaccine against Malaria. Complete 

protection against the disease is based on attempts to exploit any existing checkpoints throughout 

the complex life cycle of the Plasmodium parasite. Although several infection-blocking candidates, 

aiming at specific stages of the cycle, are under scrutiny, none of them are able to induce protection 

and long term immunity comparable to the levels achieved with irradiated-attenuated sporozoites 

(Greenwood, 2005). 

As mentioned before, full protection to malaria is only achieved in mice, monkeys and humans by 

immunization with irradiated-attenuated Plasmodium sporozoites (Doolan and Hoffman, 2000; 

Chatterjee et al., 1996; Nussenzweig et al., 1967). 

Protection was at first attributed to the antibody response mounted against Plasmodium 

circumsporozoite protein (CS), mainly because these antibodies were capable of neutralizing 

sporozoite infectivity and high levels of anti-CS led to protection against a sporozoite challenge in 

humans (Mazier et al., 1988; Herrington et al., 1987). Currently, it is well established that the 

sporozoite-infected hepatocyte is the main target of this response generated by irradiated 

sporozoites and that the strong cytotoxic T lymphocyte (CTL) activity parasite-specific elicited has a 

pivotal role in immunity (Hoffman et al., 1989; Weiss et al., 1988; Schofield et al., 1987 a, b). Taken 

together with the acquisition of effective antimalarial immunity in endemic populations, these data 

provide reasons to hope that a malaria vaccine conferring protective immunity is feasible (Carvalho 

et al., 2002). Thus, revealing the mechanism behind the initiation of the immune response generated 

with this immunization is of extreme importance to the development of vaccine delivery systems 

that can induce such protection (Stevenson and Riley, 2004). 

Irradiated sporozoites fail to establish a blood-stage infection. They are capable of invading the liver 

and infect hepatocytes as normal sporozoites do, but then growth is abrogated when a trophozoite 

stage is reached and schizogony is aborted (Ngonseu et al., 1998; Chatterjee et al., 1996; Scheller et al., 

1995; Sigler et al., 1984). Although this is a short term intrahepatocytic development, the profile of 

liver antigens expressed is enough for inducing immunity (Suhrbier et al., 1990). In fact, the 

development inside the hepatocytes appears to be a requisite for protection since infected 

hepatocytes were able to induce partial protection once grafted in the spleen after infectious 

sporozoite challenge, while inactivated sporozoites and their extracts where shown to be incapable 

of inducing any effect (Scheller and Azad, 1995; Renia et al., 1994; Mazier et al., 1988; Alger and 

Harant, 1976). 

Hepatocytes are the most abundant cells in the liver and the only cell population that can sustain 

complete Plasmodium exo-erythrocytic form (EEF) development (Meis et al., 1983 a, b). Thus, besides 

being important for the parasite’s survival, the liver has a crucial role on the anti-Plasmodium 
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immunity establishment and maintenance as it harbours the source of parasite antigens that initiate 

an immune response in the host, the infected hepatocyte (Krzych et al., 2000; Scheller and Azad, 

1995).    

This irradiated sporozoites immune response has been characterized as being dependent of CD8+ T 

cells as they recognize an epitope in the CS protein and, upon passive transfer of these cytotoxic T 

cell clones, a high degree of protection was obtained (Romero et al., 1989). On the other hand, in vivo 

depletion of these T cells decreases drastically the protective immunity against live sporozoite 

challenge (Weiss et al., 1988; Schofield et al., 1987a). 

The target of these malaria specific CD8+ T cells is the infected hepatocyte (Hoffman and Doolan, 

2000; Suhrbier et al., 1990; Hoffman et al., 1989). Since T cells only recognize antigens after they 

have been processed and presented on cell surfaces along with major histocompatibility complex 

(MHC) molecules, CD8+ T cells would exclusively be activated by parasite-derived epitopes in 

association with MHC class I molecules, given that lymphocytes are antigen recognition-restricted 

concerning MHC molecules (Townsend and Bodmer, 1989). 

As the hepatocyte is the only cell type that can bear parasite development and is able to express 

MHC class I molecules on its surface, it is only when the hepatic stage occurs that this type of 

immunity is established (Doolan and Hoffman, 2000; Suhrbier et al., 1990). However, in order to 

have a CD8+ T cell response it is required to have efficient priming of naïve T cells that will be 

responsible for the initiation of the immune response itself. In subsequent infections, a stimulation 

of memory T cells resident in the liver also has to occur (Morrot and Zavala, 2004b; Chatterjee et al., 

1999; Riley, 1999). 

CD8+ T lymphocyte responses are primed by MHC class I-associated peptides usually generated 

from endogenous proteins in the cytosol of professional antigen-presenting cells (APC), the 

dendritic cells. They are known to be highly efficient modulators of the immune system uniquely 

specialized in initiating T cell immunity either in vitro or in vivo (Larsson et al., 2001; Banchereau and 

Steinman, 1998). During malaria infection, no dendritic cells are infected by Plasmodium sporozoites 

as they can only replicate in hepatocytes. However, specific CD8+ T cells reactive to Plasmodium 

antigens were found in irradiated sporozoite-immunized hosts, suggesting that parasite antigens are 

transferred to APCs (Krzych et al., 2000; Rodrigues et al., 1991; Hoffman et al., 1989; Romero et al., 

1989; Weiss et al., 1988). This phenomenon in which dendritic cells can also present exogenous 

antigens associated with MHC class I molecules generating CD8+ T cell epitopes has been 

denominated as “cross-presentation” (Heath and Carborne, 2001). In addition, recent data 

demonstrated that dendritic cells are required for induction of this specific anti-malaria CD8+ T cells 

response after immunization with irradiated sporozoites as in vivo depletion of these APCs led to the 

abrogation of Plasmodium specific CD8+ T priming (Jung et al., 2002).   
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Infection is often accompanied by the apoptotic death of the infected host cell, which normally 

leads to the formation of apoptotic bodies that carry pathogen antigens within. Several studies have 

now demonstrated that cross-presentation of antigens in apoptotic bodies is an alternative way used 

by dendritic cells of cross-priming cytotoxic immune responses against intracellular pathogens which 

do not infect directly professional APCs (Winau et al., 2005; Schaible et al., 2003; Yrlid and Wick, 

2000; Albert et al., 1998b). This mechanism of antigen presentation via uptake of apoptotic infected 

cells has turned out to be a tool through which immunity is modulated (Albert, 2004; Fonteneau et 

al., 2002). Recently, it has been proposed that apoptosis of host cells contributes to immunity 

induced by irradiated-parasite vaccines. Irradiation is a potent inducer of apoptosis and for decades 

irradiated-attenuate parasites have been used as live vaccines which in case of Plasmodium resulted in 

the achievement of full protection against the disease (James and Green, 2004; Hoffman et al., 2002). 

The data presented in this chapter elucidates one mechanism behind the protection reached with 

Plasmodium irradiated-sporozoites immunization, highlighting one source of parasite antigen that 

mediates the immune response. Evidence showed that hepatocytes infected with irradiated 

Plasmodium sporozoites undergo apoptosis shortly after infection. In addition, infection with 

irradiated sporozoites induces the recruitment of dendritic cells to the liver of the host, where they 

phagocytose the apoptotic infected hepatocytes. Moreover, it is proposed that these apoptotic 

Plasmodium-infected hepatocytes constitute a source of parasite antigens responsible for the initiation 

of a protective anti-malarial immune response by dendritic cells.       

 

 

4.2 Results 

4.2.1 Irradiated Plasmodium sporozoites induce infected hepatocytes apoptosis 
in vitro 
 
Although it is a fact known for some years now that irradiated sporozoites induce protection, the 
mechanism behind this effect is still not understood. Given the outstanding results concerning the 
immune responses obtained with irradiated sporozoites, its importance in the development of a 
hepatic stage vaccine is a clear requirement. The scrutiny of how this immunity is established is the 
focus of intense research efforts and an essential task for the control of the malaria parasite (Krzych 
and Schwenk, 2005).  
Since the first description of the malaria exo-erythrocytic stage that attempts were made to establish 
EEF cultures in vitro (Hollingdale et al., 1983 a, b). Several studies were carried out, using different in 
vitro methods and parasite strains, pursuing a culture system where the parasite fully develops into 
mature infectious EEFs (Mota and Rodriguez, 2000; Calvo-Calle et al., 1994). 
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It is known that even high doses of radiation do not affect hepatocyte’s invasion by sporozoites in 
vitro (Nussler et al., 1989). It was also described previously that at early time points in culture the 
EEFs from both irradiated and non-irradiated sporozoites are indistinguishable. However, at time 
points 1-2 days post-infection, a pronounced decrease in the number of irradiated EEFs was 
observed (Suhrbier et al., 1990; Suhrbier et al., 1987; Hollingdale, 1985; Sigler et al., 1984). 
In order to study the survival of hepatocytes infected with irradiated Plasmodium sporozoites at 
earlier times after infection, a murine hepatoma cell line, Hepa 1-6 (or a human equivalent, HepG2), 
was incubated with either irradiated or non-irradiated P. yoelii (or P. berghei) sporozoites and infected 
cells were counted at different time points post-infection. Infected cultures were stained with an 
antibody against HSP70, a protein that is highly expressed in developing parasites inside hepatocytes 
but not in sporozoites (Kumar et al., 1993). 
The result revealed that the number of EEFs found in culture for both non-irradiated and irradiated 
sporozoites decreases with the course of time and this reduction is more marked in Hepa 1-6 
hepatoma cells infected with P. yoelii irradiated sporozoites (squares, Fig. 4.1) rather than when non-
irradiated sporozoites were used (circles; Fig. 4.1). This decrease starts occurring shortly after 
infection and in the 24h-48h time frame the number of EEFs in hepatocytes infected with non-
irradiated sporozoites stabilizes while it decreases steeply in those infected with irradiated ones.     
 

 
 
 
 
Fig. 4.1|Time-course of an in vitro 
infection with non-irradiated or 
irradiated P. yoelii sporozoites. Hepa 1-6 
cells were infected with non-irradiated 
(circles) or irradiated P.yoelii sporozoites 
(squares) during different incubation periods. 
The cells were fixed and EEFs were stained 
with anti-HSP70 antibody for quantification 
under a fluorescence microscope. 
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The reason for this decrease in the number of infected cells has been attributed to the degeneration 
of intracellular parasites shortly after invasion (Suhrbier et al., 1990; Sigler et al., 1984). We tested 
whether this was the case or whether, alternatively, hepatocytes infected with irradiated sporozoites 
were dying by apoptosis of the infected cells. To evaluate this hypothesis, infected cells were 
examined for nuclear morphology and activation of NFkB p65 (relA), a transcription factor that is 
translocated to the nucleus after initiation of certain apoptotic pathways (Barkett and Gilmore, 1999). 
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Fig. 4.2|Irradiated P. yoelii sporozoites lead to the apoptosis of the infected hepatocyte. Hepa 1-6 cells were 
incubated with P. yoelii irradiated (a,b) or non-irradiated (c,d) P. yoelii sporozoites. Cells were fixed after 6h and stained with 
anti-PyHSP70 Ab to detect EEFs (green), anti-NFkB to observe the transcription factor translocation from the cytoplasm to the 
nucleus of the cell (red) and DAPI to evaluate nuclear morphology (blue).  

 
Both the staining with DAPI (blue; Fig. 4.2), showing the irregular nuclear shape, and the 
translocation of the transcription factor NFkB (red; Fig. 4.2) from the cytoplasm to the nucleus, 
constitute evidence of apoptosis in cells infected with irradiated sporozoites (Fig. 4.2 a,b), while 
infection with non-irradiated sporozoites results in no signs of apoptotic cells (Fig. 4.2 c,d). 
Apoptotic cells were quantified for infection with each type of sporozoite and the results are shown 
below (Fig.  4.3). Apoptosis level is higher in cells infected with irradiated sporozoites in both 
methods used for detection.  
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Fig. 4.3|Quantification of apoptosis at early time 
points after infection. Hepa 1-6 cells were incubated with 
irradiated or non-irradiated P. yoelii sporozoites. Apoptosis 
was monitored by assessment of nuclear morphology (black 
bars) and nuclear translocation of NFkB p65 (white bars). 
Error bars represent the standard deviation of triplicate 
samples. Asterisks (*) indicate a significant difference between 
control and irradiated sporozoites (P<0.05). 

 
 

It could also be observed that EEFs formed by irradiated sporozoites are much smaller than those 
formed by non-irradiated ones (Fig. 4.2). It has previously been reported that although irradiation 
leaves the sporozoites capable of invading and transforming into trophozoites, development is 
compromised resulting in a smaller EEF size. The rapid growth and replication observed in normal 
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sporozoite infections is limited when sporozoite irradiation takes place (Scheller et al., 1995; Nussler 
et al., 1989; Sigler et al., 1984). Comparing parasite strains and host cell types, it is evident that the 
pair formed by host cell/parasite is of extreme importance for achieving normal rates of 
development when in vitro cultures of hepatoma cells are used and could also account for differences 
in EEFs size (Scheller et al., 1994; Hollingdale et al., 1983a). 
Apoptotic cell death is mediated by molecular pathways that culminate in the activation of a family 
of cysteine proteases denominated caspases. These proteases orchestrate the dismantling and 
clearance of the dying cell. Caspase-3 plays a central role in the apoptosis cascade and its activation 
is a conserved feature of the apoptotic process (Chipuk and Green, 2005; Thornberry and Lazebnik, 
1998). Therefore, apoptosis in hepatocytes infected with irradiated sporozoites was also confirmed 
by detection of caspase-3 activation (Fig. 4.4). The high degree of caspase-3 activation (red; Fig 4.4) 
seen in cells infected with irradiated spororozoites (green; Fig. 4.4) coincides with apoptotic cells 
carrying condensed chromatin observed with DAPI staining in blue.  
 
 
 

  
 
 
Fig. 4.4|Apoptotic cell infected with irradiated P. yoelii 
sporozoites. Hepa 1-6 cells were incubated with P. yoelii irradiated 
sporozoites. 6h post-infection cells were fixed and stained with anti- 
PyHSP70 Ab to detect EEFs (green), anti-active-caspase-3 (red) and DAPI to 
observe nuclear morphology (blue).  
 

 

 

 

Parasite irradiation probably reduces the ability of de novo synthesis of parasite molecules responsible 

for inhibition of apoptosis of the infected cell, eventually leading to the abrogation of infection and 

cell death. However, a lower but significant amount of apoptosis also occurs during a non-irradiated 

sporozoite infection, suggesting that, in some cases or at certain level, the normal parasite cannot 

prevent the apoptosis of their host. This observation raises some questions about whether this 

phenomenon could play a role during the establishment of infection and, specifically, in generating 

immunity.   

 
4.2.2 The role of dendritic cells during P.  yoelii infection 
Dendritic cells are antigen-presenting cells, capable of initiating and modulating immune responses. 
In their immature form, they traffic from blood into peripheral tissues, which they scan like sentinels 
looking for antigens that they can capture and process. They subsequently migrate to draining lymph 
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nodes, where they are converted into mature and fully activated cells and present antigens to resting 
lymphocytes (Figdor et al., 2004; Banchereau and Steinman, 1998).  
 
 
4.2.2.1 Recruitment of dendritic cells to the liver after malaria infection  

In order to determine if dendritic cells are implicated in the process of establishing a liver-stage 
immune response, in vivo assessment of whether dendritic cells were present in the liver during 
infection was done. 
Livers of mice injected with irradiated and non-irradiated P. yoelii sporozoites were collected at 
different time points post-injection. Histological sections stained with antibody against mouse 
myeloid dendritic cell marker, anti-CD11c, constitute evidence of the presence of dendritic cells in 
the liver shortly after infection (Fig. 4.5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.5|Dendritic cells are present in the liver after infection with Plasmodium sporozoites. Histological liver 
sections of mice infected with malaria by mosquito bite were stained with antibodies against mouse dendritic cell marker anti-
CD11c (green)(a, transmitted light overlay; b). There is evidence of dendritic cell presence near a blood vessel.  
 

 

The quantification of these histological sections showed that during malaria infection the number of 

dendritic cells increases in the liver (Fig. 4.6a). Similar results were obtained when mice were 

subjected to bites from infected mosquitoes (Fig. 4.6b). In both cases an increased recruitment of 

dendritic cells early after infection was observed, which was independent of sporozoite irradiation 

and infection route used. However, when the recruitment was induced by bites from infected 

mosquitoes, a lower amount of dendritic cells was detected, probably because of the smaller 

numbers of sporozoites injected by mosquito bite (Medica and Sinnis, 2005; Vaughan et al., 1999; 

Vanderberg, 1977).  

The recruitment of these antigen presenting cells in the liver indicates that they might play a specific 

role during Plasmodium infections. The increase in the number of dendritic cells in the liver during 

malaria infection would allow these cells to rapidly capture parasite antigens. However, in order to 

be able to present those antigens, these cells have to receive a maturation signal and become fully 

activated. The source for these signals may have various origins. Among them are the pathogen itself 
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or inflammatory cytokines (Guermonprez et al., 2002; Medzhitov and Janeway, 2000; Albert et al., 

1998b). The fact that Plasmodium sporozoites migrate through several hepatocytes in the liver before 

choosing one to infect, and, in this process, disrupt plasma membranes, causing cell wounding and 

necrotic death, could account for the origin of this maturation signal (Mota et al., 2001; Meis et al., 

1985a). In fact, wounded and dying cells induce local inflammatory responses that can be 

responsible for mediating the dendritic cell recruitment to the tissues and, consequently cause 

maturation (Shi et al., 2000; Dieu-Nosjean et al., 1999). It was also described that Plasmodium hepatic 

stages lead to specific inflammatory responses with recruitment of mononuclear cells (Khan and 

Vanderberg, 1992). In addition, the release of uric acid from dying cells would, likewise, provide 

additional maturation signals for dendritic cells (Shi et al., 2003).  
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Fig. 4.6|Dendritic cells are recruited to the liver after infection with P. yoelii sporozoites. Quantification of 
dendritic cells in histological sections of mice livers by anti-CD11c staining. (a) Dendritic cell number in livers of non-infected 
mice (black bars) and in mice injected with non-irradiated (white bars) or irradiated (striped bars) P. yoelii sporozoites, at 
different times post-infection. (b) Dendritic cell number in livers of mice bitten by 50 uninfected (black bars) or infected (white 
bars) mosquitoes obtained at different times post feeding. Error bars represent the standard deviation of triplicate histological 
samples, each composed of ≥5 liver sections to cover 10 mm2. Asterisks (*) indicate a significant difference between the sample 
and the control (P<0.02).  
 
 
4.2.2.2 Plasmodium antigens are phagocytosed by dendritic cells and macrophages 

As shown above infected hepatocytes undergo apoptosis during infection. In this process, they 

originate apoptotic bodies, which have to be cleared from the liver. Dendritic cells and macrophages 

are professional antigen-presenting phagocytes capable of large-scale phagocytosis of apoptotic cells 

and clearance of microbial pathogens (Savill et al., 2002; Rubartelli et al., 1997). To determine 

whether apoptotic hepatocytes containing P. yoelii antigens are phagocytosed by antigen presenting 

cells in the liver, we isolated non-parenchymal mononuclear cells from the livers of mice immunized 

with irradiated sporozoites at different times after injection. P. yoelli antigen-carrying dendritic cells 

and macrophages were found at 6h post-infection, demonstrating the uptake of Plasmodium antigens 

by these phagocytic cells (Fig. 4.7). 
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Fig. 4.7|Phagocytosis of 
apoptotic hepatocytes 
containing Plasmodium 
antigens by dendritic cells 
and macrophages. Liver non-
parenchymal mononuclear cells 
obtained 6h after injection of mice 
with irradiated P. yoelii sporozoites 

and stained with different antibodies: dendritic cell (anti-CD11c, red; a and b), macrophage (anti-Mac3, green; c) and P. yoelii 
HSP70 (blue; a, b, c). Plasmodium antigens were found inside both phagocytic cells type. 

a cba cb

 

 
An average of 3 macrophages and 2 dendritic cells in each PyHSP70 vacuole-containing liver were 

found in 3 different experiments. The number of dendritic cells containing these vesicles is probably 

higher in the mouse, but after dendritic cells have internalized and processed the apoptotic bodies, 

they leave peripheral organs and migrate to the lymph nodes, subsequently to having received an 

activation signal. As a result, the time that they remain in the liver is very short. Therefore, the 

quantification obtained 6h after immunization might, in fact, correspond to what would be expected, 

because it corresponds to the number of phagocytic cells that were still in the liver and have not yet 

migrated to the lymph node. Thus, the time frame for detection of phagocytic cells carrying parasite 

antigens is very short and restricted as the time gap between these two events is of approximately 1 

h (Sallusto and Lanzavecchia, 2000). 

The HSP70-positive vesicles found inside macrophages and dendritic cells must be derived from 

infected hepatocytes, since this protein is not expressed in sporozoites and appears only in infected 

hepatocytes, approximately 6 h post-infection (Kumar et al., 1993).  

In order to evaluate the origin of the phagocytosed Plasmodium antigens, phagocytic cells were also 

stained for mouse albumin, a common protein known to be found in the cytosol of hepatocytes 

(Doweiko and Nompleggi, 1991). The results demonstrated that albumin is present in the 

phagocytosed vesicles, confirming that infected hepatocytes, and not dead sporozoites, are the 

source of uptaken antigens, corresponding to the colocalization observed between the parasite and 

albumin (Fig. 4.8). As a control, non-parenchymal liver mononuclear cells were isolated from non-

infected control mice and processed likewise. No P. yoelii HSP70 or albumin staining was found in 

these cells. 
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Fig. 4.8|Hepatocyte proteins are found in P. yoelii phagocytosed vesicles. Liver non-parenchymal mononuclear cells 
obtained 6h after injection of mice with irradiated P. yoelii sporozoites were stained with anti-P. yoelii HSP70 (blue; b) and anti-
albumin (red; c) antibodies. Plasmodium vesicles colocalized with albumin, a protein abundant in the liver (b and c overlay; d). 
Transmitted light view (a). Cells isolated from livers of non-infected control mice did not present any albumin staining. 
 

 

To confirm if these HSP70-positive vesicles were derived from apoptotic cells, phagocytic cells were 

stained with anti-active-capase-3 antibody. Phagocytes showed evidence that, indeed, there is 

activation of caspase-3 in the Plasmodium antigen-containing vesicles implicating that dendritic cells 

phagocytose apoptotic infected hepatocytes during malaria infections in vivo (Fig. 4.9). Non-infected 

control mice did not exhibit any positive staining for capase-3 activation. 

 

a b c da b c d

 
Fig. 4.9|Caspase-3 is active in P. yoelii phagocytosed apoptotic bodies. Liver non-parenchymal mononuclear cells 
obtained 6h after injection of mice with irradiated P. yoelii sporozoites were stained with anti-P. yoelii HSP70 (green; b) and anti-
active-caspase-3 (red; c) antibodies. Plasmodium vesicles colocalized with activated caspase-3 indicating an apoptotic origin (b and 
c overlay; d). Transmitted light view (a). Cells isolated from livers of non-infected control mice did not present any caspase-3 
activation. 
 

 

When liver non-parenchymal mononuclear cells were analyzed 12 h post-infection, no cells were 

found containing P. yoelii HSP70, suggesting that infected hepatocyte death and clearance occurs 

early during in vivo infections with irradiated sporozoites. This is consistent with the observation that 

Plasmodium sporozoite infection and initiation of the immune response occurs rapidly, since 

activation of specific anti-P. yoelii CD8+ T cells is detected as soon as 8 h after inoculation of 

sporozoites (Hafalla et al., 2003; Hafalla et al., 2002; Sano et al., 2001).  
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4.2.2.3 Establishment of a cross-presentation assay  

To initiate immune responses, dendritic cells need to activate naïve T lymphocytes into cytotoxic T 

lymphocytes by taking up, processing and degrading antigens into peptides which can then be 

presented on MHC class I molecules. Dendritic cells can present antigens acquired either by 

internalization or synthesized in their cytosol. When pathogens do not infect these professional 

antigen-presentation cells, antigens are acquired via an exogenous route, transported into the cytosol 

and presented by MHC class I molecules through a cross-presentation process (Gil-Torregrosa et al., 

2004; Albert et al., 1998 a, b). 

Since Plasmodium-infected apoptotic hepatocytes are phagocytosed by dendritic cells and apoptotic 

cells constitute an efficient exogenous source for antigens, able to induce a malaria immune 

response, a cross-presentation assay capable of proving that dendritic cells are the ones responsible 

for this cross-presentation, after the antigen uptake provided by the apoptotic infected hepatocytes, 

was necessary.     

Several attempts were made pursing this aim but the results obtained were either inconclusive and 

inconsistent or irreproducible between different experiments for an array of different reasons. For 

example, the total cell number present in a liver (109) and the small proportion of these that were 

potentially infected and antigen-providing was a huge disadvantage on setting up such an assay.  

Therefore, the positive results obtained constitute preliminary data only and are not shown here. 

Nevertheless, the approaches followed in this process are described next. 

 

Plasmodium circumsporozoite protein construct  
A genetic approach was undertaken to evaluate if dendritic cells are capable of cross-presenting 

Plasmodium antigens derived from apoptotic bodies. A plasmid construct was made using the P. yoelii 

CS protein (kindly supplied by Dr. Oscar Bruña-Romero). Hepa 1-6 cells were transfected with this 

construct and apoptosis was induced by UV light. The apoptotic bodies generated in the process 

were incubated with dendritic cells for 6h to allow phagocytosis. These cells were then injected into 

mice and an ELISPOT assay was performed nine days post injection for determination of activated 

CD8+ T cells specific for Plasmodium CS protein through the quantification of IFN-γ production 

(Carvalho et al., 2001).  

 

CD8+ T cell clone specific for Plasmodium CS 
Another approach that was carried out was based on the use of an immunologic tool for detection 

of P. yoelii-specific antigen presentation. To observe if dendritic cells were able to activate T cells 

after phagocytosing the parasite antigens in the liver, mice were injected with irradiated and heat-

killed sporozoites (used as negative control). Liver cells were isolated and placed together with the 

CD8+ T cell clone (Y26) specific for an epitope from P. yoelii CS protein (Rodrigues et al., 1991). 
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After an incubation period of 24h the T cells were stained with anti-IFN-γ antibody (Molecular 

Probes) to analyze T cell activation. Although this would not prove that dendritic cells mediate 

cross-presentation of Plasmodium antigens in vivo, it could have suggested that they had the capacity 

to do so.  

 

CD11c+ depleted transgenic mouse 
A novel diphteria toxin-based system that allows the inducible, short-term ablation of dendritic cells 

in vivo was lately reported (Jung et al., 2002). The loss of T cell activation using this system would 

implicate dendritic cells in the process of presenting Plasmodium antigens to T cells. 

To determine whether liver dendritic cells were the ones responsible for the observed T cell 

activation, transgenic mice expressing the diphtheria toxin receptor under the control of CD11c+ 

promoter were used. These mice can be depleted of CD11c+ dendritic cells by a diphtheria toxin 

injection 24h prior malaria infection. Irradiated and non-irradiated sporozoites were injected and 

livers were removed 6h later. Liver mononuclear cells were incubated with the T cell clone specific 

for an epitope from P. yoelii CS protein (Y26) and activation was detected by IFN-γ expression 24h 

later. 

 

Further antigen presentation assays will have to be performed to establish and confirm the 

preliminary data already obtained with these approaches. The search for a more accurate cross-

presentation assay making use of the technology that is becoming available in this area of research 

will continue. 

 

 

4.3 Discussion 

It has been over 30 years since the first successful human malaria vaccine trial (Clyde et al., 1973a). 

Bites of hundreds of irradiated infected mosquitoes where then used to immunize volunteers, and 

established that protection against malaria could also be achieved in humans as had been shown for 

mice by Nussenweig and colleagues (Nussenzweig et al., 1967). However, such approach was 

dismissed for large-scale vaccinations due to safety and logistics problems. 

Nevertheless, it is important to understand the mechanisms behind irradiated sporozoite-induced 

protection, as their efficiency has not yet been replicated by other forms of human anti-malaria 

vaccines. In fact, consecutive drawbacks have been reported when subunit vaccine strategies were 

applied, although very promising candidates are presently on trial (Hill, 2006; Stoute et al., 1997). 

Thus, whole parasite approaches are still being considered, either by pursuing a doable protocol with 
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irradiated sporozoite immunization or by making use of genetically modified parasites that are being 

shown to be capable of inducing protection in mice (Mueller et al., 2005; Luke and Hoffman, 2003). 

Protection was attributed to a continuous supply of antigen provided by the intracellular hepatic 

parasites that remained in the liver for extended periods of time (Scheller and Azad, 1995). 

Furthermore, it is known that irradiated sporozoite-induced immunity is mediated by CD8+ T cells 

and dendritic cells, although the mechanisms underneath antigen presentation to T cells remain 

unclear, since the low number of Plasmodium-infected hepatocytes in the liver has prevented the 

development of direct observation of this process (Morrot and Zavala, 2004b; Jung et al., 2002; 

Bruña-Romero and Rodriguez, 2001; Weiss et al., 1988). 

The results presented in this chapter show that in the P. yoelii experimental malaria model, there is an 

increase in the apoptotic death of hepatocytes infected with irradiated sporozoites when compared 

with normal sporozoite infection. The apoptotic bodies originated from infected hepatocytes were 

shown to be phagocytosed by both dendritic cells and macrophages present in the liver, implying 

that presentation from these cells would be responsible for the protection induced by irradiated 

sporozoites. However, it was previously established that only dendritic cells are required for 

activation of Plasmodium-specific CD8+ T cells in vivo (Jung et al., 2002). Dendritic cells are 

professional antigen-presenting cells with the unique ability to capture exogenous antigens within 

the phagosome and to present them on MHC class I molecules to antigen-specific CD8+ T cells 

inducing its activation (Guermonprez et al., 2003; Houde et al., 2003).  

The low number of vesicles containing material derived from apoptotic Plasmodium-infected 

hepatocytes detected 6h post-sporozoite inoculation is explained by the restricted time frame within 

dendritic cells migration. These cells take approximately 1h to leave the liver and travel to the lymph 

nodes, after antigen uptake (Sallusto and Lanzavecchia, 2000). Thus, at 6h post-immunization we 

could only find the cells that had phagocytosed parasite material but that had not yet left the liver. 

Therefore, we could not exclude the possibility that more cells acquire antigens from apoptotic 

hepatocytes during Plasmodium infection. Still, low numbers of dendritic cells that migrated to the 

lymph nodes could activate T cells and, therefore, initiate efficient T cells responses (Martin-

Fontecha et al., 2003). In addition, protective CD8+ T cells are generated within the first 8h post 

irradiated sporozoite-infection, suggesting that only the antigens delivered before this time 

contribute to immunity (Hafalla et al., 2002). 

Apoptotic hepatocytes containing Plasmodium antigens provide an optimal source of antigens for 

dendritic cells cross-presentation, as was observed for viral antigens presentation originated from 

virus-induced apoptosis (Albert et al., 1998a). Besides, apoptotic hepatocytes possess the appropriate 

size, which ranges approximately between 1 and 10 µm, to be internalized by phagocytosis. A cross-

presentation mechanism would also provide an explanation for the fact that liver infection is a 
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requisite for protection against this stage of the parasite’s life cycle, as well as for the activation of 

CD8+ T cells by an obligate intracellular parasite that can develop only inside hepatocytes, which are 

non-professional antigen-presenting cells. Moreover, the inflammatory environment induced during 

sporozoite infection of the liver, mediated either by Kupffer cells or by wounded hepatocytes 

traversed during sporozoite migration, may also favour the recruitment of large numbers of 

dendritic cells and provide maturation signals for them (Frevert, 2004; Mota et al., 2002; Khan and 

Vanderberg, 1992).  

Apoptotic cells originated as a consequence of a physiological cell death that occurs during growth 

or development do not release maturation signals nor induce immunity during clearance (Gallucci et 

al., 1999). On the other hand, apoptotic cells expressing HSPs are very effective stimulators of 

dendritic cells and T cell activators (Masse et al., 2004; Feng et al., 2003). Indeed, this could be 

applied to hepatocytes infected with irradiated sporozoites, since besides being stressed cells they 

also express Plasmodium HSP70. 

Invasion of hepatocytes is essential for protection to occur. The decrease observed in the number of 

host cells infected with normal sporozoites 48h after infection suggests that normal sporozoites may 

also use this mechanism to generate CD8+ T cells and protective immune responses that are 

observed when blood-stage infection is inhibited (Belnoue et al., 2004; Ocana-Morgner et al., 2003; 

Orjih et al., 1982; Alger and Harant, 1976; Spitalny and Nussenzweig, 1972). 

The apoptotic pathway that determines hepatocyte death during infection is not yet fully understood. 

However, it seems likely that the mitochondrial pathway would be used instead of the death 

receptor-mediated or the granzyme/perforin pathway. The fact that our results show activation of 

caspase-3 does not exclude or confirm any of these routes since this enzyme is a final player of the 

apoptosis cascade (Hengartner, 2000). Additionally, since the immune response to liver stage 

parasites occurs in either perforin-deficient or Fas-deficient mice, it is unlikely that these pathways 

are involved (Doolan and Hoffman, 2000). 

Dendritic cells use virus-infected dead or dying cells as exogenous sources of antigens for 

presentation on MHC class I and class II molecules to initiate T cell responses. This pathway is 

thought to be critical for the development of effective antiviral immunity in vivo (Albert, 2004; 

Fonteneau et al., 2002; Norbury et al., 2002; Albert et al., 1998a). 

Recently, dendritic cell presentation of Mycobacterium tuberculosis antigens derived from apoptotic 

infected macrophages has been described as an alternative pathway of T cell activation (Schaible et 

al., 2003). Like Plasmodium sporozoites in hepatocytes, Mycobaterium is secluded in an intracellular 

compartment during infection, which suggests that presentation of antigens from apoptotic infected 

cells may represent a common mechanism of immune activation for vesicle-contained pathogens 

(Winau et al., 2005; Winau et al., 2004).  
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Experimental live vaccines based on irradiated parasites have been used as a model for protection in 

malaria and schistosomiasis (Bergquist et al., 2002; Nussenzweig and Long, 1994). It is possible that 

irradiation of these parasites blocks the ability to neutralize the apoptotic machinery of host cells 

allowing them to resume their natural tendency to undergo apoptosis upon being infected (James 

and Green, 2004).  

Even though the existence of cross-presentation has been proposed, it had not yet been shown for 

malaria infection (White et al., 1996). Nevertheless, further work is required in order to demonstrate 

that phagocytosis of apoptotic infected host cells results in efficient presentation of parasite antigens 

to T cells. 

 

 Dendritic cells in liver stage malaria|57  

 



 



 
 

 
 
 
 
 

Infection

Migration

Exocytosis

HGF

X
No infection

HGFMET

Infection

Migration

Exocytosis

HGF

XX
No infection

HGFMET HGFMET

 
 
 
Chapter Five 

 

RESULTS II 
Anti-Apoptotic HGF/MET signalling  

in malaria infection 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Legend|Model of hepatocyte infection by Plasmodium sporozoites. Sporozoites traverse several 
hepatocytes, disrupting their plasma membranes. This induces the activation of sporozoite exocytosis and the 
secretion of HGF from hepatocytes. Within 2 to 4h, HGF binds to its receptor MET, in neighbouring hepatocytes, 
transducing signals that lead to actin cytoskeleton reorganization and inhibition of infected host cell apoptosis. As a 
result, parasite development occurs successufully. 



5.1 Introduction 

Once they reach the liver, Plasmodium sporozoites can invade hepatocytes in two distinct ways: either 

by disrupting their plasma membrane or by inducing the formation of a parasitophorous vacuole 

around themselves. The first mode of entry allows the parasite to migrate through hepatocytes, 

experiencing a direct contact with the host cytoplasm and is followed by rapid exit of the 

sporozoites using the same mechanism. Thus, sporozoites traverse several hepatocytes before 

invading a final one where a vacuole is formed by invagination of the host plasma membrane and 

liver infection starts (Mota et al., 2001; Mota and Rodriguez, 2001). This feature of Plasmodium’s 

invasion process is essential since parasites become activated during the migration process, inducing 

exocytosis of apical organelles, a requirement for vacuole formation when the final hepatocyte is 

infected (Mota et al., 2002). Most of the sporozoite-traversed hepatocytes survive by resealing their 

plasma membrane and avoid death, but for as long as rupture persists, growth factors and other 

proteins stored in the cytosol are released into the extracellular environment. Moreover, after 

resealing, wounded cells express and secrete growth factors, like the hepatocyte growth factor 

(HGF), which render neighbouring hepatocytes more susceptible to infection (Carrolo et al., 2003).  

HGF, also known as scatter factor, was first described as a potent mitogen for hepatocytes during 

liver regeneration as well as motility factor inducing “scattering activity” in polarized epithelia cells 

(Bussolino et al., 1992; Bottaro et al., 1991; Stoker et al., 1987; Nakamura et al., 1986). This 

glycoprotein is secreted as a biologically inert precursor (pro-HGF) that, under specific conditions, 

such as tissue damage, and through a proteolytic digestion becomes a bioactive heterodimer mature 

HGF form (Zarnegar and Michalopoulos, 1995). 

The receptor for HGF was identified as a c-met proto-oncogene product encoding a receptor 

tyrosine kinase (Bottaro et al., 1991; Naldini et al., 1991; Park et al., 1986; Cooper et al., 1984). 

The MET receptor has two main structural characteristics: a unique multifunctional docking site 

through which recruitment of all the downstream signalling molecules occurs, and one single large 

adaptor protein with multiple substrates, known as Gab1, that mediate most of the complex cellular 

responses subsequent to activation (Birchmeier et al., 2003; Furge et al., 2000). Like its ligand, MET 

is also a heterodimer with an entirely extracellular alpha chain and a polypeptide chain with an 

intracellular tyrosine kinase domain. The stimulation of MET results in a series of biological and 

biochemical effects within the cell, leading to scattering, proliferation and growth, enhanced cell 

motility, angiogenesis, survival and the invasion of extracellular matrices (Trusolino and Comoglio, 

2002). 

MET expression occurs in the normal epithelium of almost every tissue, although other cell types 

such as endothelial cells, hematopoietic cells, microglial cells, neurons, and a variety of tumor cell 
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lines also express this receptor (Zarnegar and Michalopoulos, 1995). Alterations in the HGF/MET 

signalling have emerged as crucial features of many human malignancies suggesting that interfering 

with activation of this pathway might hold therapeutic value. Thus, several strategies have been 

developed in order to manipulate the transduction signals involved, either by constitutive activation 

or inhibition to different degrees (Corso et al., 2005).  

 
 

 

 

Fig. 5.1|Schematic representation of the 
different pathways that are activated by 
HGF/MET signalling.  Upon HGF stimulation, 
two receptor molecules dimerize and cross-
phosphorylate each other, thereby creating binding 
sites for signalling molecules within the cell. From 
the activation of each transducer results an array of 
biological activities that are here summarized 
(adapted from Mota et al., 2004). 

 

 

 

HGF/MET signalling enhances Plasmodium liver infection and is required not for invasion but rather 

at early stages of parasite development within the host cell. In vivo inactivation of MET inhibits P. 

berghei liver infection, confirming the relevance of this mechanism for infection. Furthermore, MET 

signals induce the reorganization of host cell’s actin cytoskeleton which is believed to have a 

contribution for the final outcome of Plasmodium sporozoite infection (Mota and Rodriguez, 2004; 

Carrolo et al., 2003). 

A host-pathogen interaction triggers a variety of responses that force the pathogen to develop 

strategies to manipulate the host. As already mention, direct, as well as indirect, effects of pathogens 

and their products modulate host cell death (Luder et al., 2001). The induction of apoptosis upon 

infection results from a complex interaction of parasite proteins with cellular host proteins. Infected 

cells constitute a threat to the host and therefore are normally destroyed. On the other hand, 

abrogation of host cell apoptosis is often beneficial for the pathogens as they are able to exploit host 

resources in order to satisfy their needs and extending their life inside the host, which outcomes in a 

successful invasion (Hasnain et al., 2003).  

Inhibition of apoptosis by bacteria and other intracellular parasites such as Leishmania and 

Toxoplasma is well documented (Heussler et al., 2001; Gao and Kwaik, 2000; Nash et al., 1998; Moore 

and Matlashewski, 1994). However, the genes involved in this process have not yet been identified 

(Payne et al., 2003). 
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Although the mechanism through which the HGF/MET axis elicits inhibition of apoptosis is not 

completely understood, there is no doubt that HGF is a strong promoter of cell survival, since this 

biological response was observed in liver development through gene ablation or overexpression 

studies in transgenic mice (Amicone et al., 1997; Maina et al., 1996; Schmidt et al., 1995). In addition, 

the anti-apoptotic effect of HGF has also been reported on various cell types, from epithelia to 

tumors (Xiau et al., 2001; Bardelli et al., 1999; Fan et al., 1998).   

In this chapter, an additional role is proposed for HGF in the maintenance of Plasmodium infection: 

protection from apoptosis. The results showed that apoptosis inhibition on infected cells is 

mediated by HGF/MET signalling via the PI3K pathway and allows parasite persistence within the 

liver until full development is reached.    

 

5.2 Results 

5.2.1 Sporozoite infection protects cells from apoptosis 

To determine whether Plasmodium infected cells were protected from apoptosis, HepG2 cells were 

incubated with P. berghei sporozoites (live or heat-killed, as control) and treated 18h later with TNF 

and Cycloheximide (CHX) to induce apoptosis. Six hours post-induction, apoptosis was quantified 

using different methods to evaluate distinct apoptosis features. Infected cells are more protected 

from apoptosis than non-infected ones, as shown when activation of caspase-3 is measured (red; 

Fig. 5.2) and nuclear morphology analyzed after staining with DAPI (blue; Fig. 5.2). Apoptosis was 

also quantified by TUNEL assay for assessment of DNA breaks, a common apoptotic mark (striped 

bars; Fig. 5.3). Similar data were obtained using a different cell type (Hepa 1-6 cells) and a different 

inductor of apoptosis (UV light; Fig. 5.3 b). In this case a higher level of protection than the one 

observed when infected cells were induced with TNF and CHX was observed. Taken together, these 

data constitute evidence that P. berghei sporozoite infection protects host cells from apoptosis.  

 
 
 
 

Fig. 5.2|Plasmodium infection protects from death. A host cell infected with 
P. berghei sporozoites not showing signs of apoptosis and surrounded by apoptotic 
non-infected cells, as detected by anti-PyHSP70 (green), DAPI (blue) and anti-
active-caspase-3 antibody (red)  
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Fig. 5.3|Infected 
cells are more 
resistant to 

sis. HepG2 
cells were 
incubated with P. 
berghei sporozoites 

(heat-killed 
sporozoites were 

used as control) and treated 18h later with TNF and Cicloheximide to induce apoptosis. (a) Apoptosis was quantified 6h post-
induction by nuclear morphology following DAPI staining (black bars), active caspase-3 (white bars) and TUNEL detection (strip 
bars). (b) Hepa 1-6 cells were incubated with P. berghei sporozoites (heat-killed sporozoites were used as control) and exposed to 
UV light 18h post-infection. After 6h, apoptotic cells were counted by TUNEL detection. (a, b) Infected cells were stained with 
anti-PyHSP70 antibody to detect EEFs in culture. 
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5.2.2 HGF/MET signalling enhances infection and confers protection from 
apoptosis 
 
Several cytokines and growth factors are capable of inducing different cell mechanisms and essential 

cell functions such as proliferation, differentiation, chemotaxis and survival. One of these molecules 

is the hepatocyte growth factor (HGF) (Trusolino and Comoglio, 2002). Binding of HGF to its 

receptor c-Met induces the activation of a tyrosine kinase-dependent cascade of events that results in 

phosphorylation of a series of residues and leads to the recruitment of intracellular signaling 

molecules which trigger a range of biological responses within the cell (Mota et al., 2004). The 

presence of this growth factor during a malaria infection enhances the infection outcome and is 

mediated by HGF-induced MET activation (Carrolo et al., 2003). 

Taking this into account, it was hypothesized that the increase in the infection is caused by HGF-

induced protection from apoptosis. To test this possibility, first, the HGF effect on Plasmodium-

sporozoite infected cells was determined. In order to do so, HepG2 cells were treated with HGF 

(500 ng/ml) 1h prior to infection with P. berghei sporozoites. Control cells did not undergo HGF 

treatment. After 6h, cells were stained for parasite detection (anti-HSP70 antibody) and apoptosis 

quantification by nuclear morphology (DAPI) of infected hepatocytes. The results showed that the 

presence of HGF leads to an increase in infection and to a reduction in the number of apoptotic 

infected cells, suggesting that HGF-induced MET activation is protecting the host cell from death 

(Fig. 5.4). 
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Fig. 5.4|HGF-induced MET activation enhances infection and protects infected cells from apoptosis. (a, b) 
HepG2 cells were treated with HGF for 1h, and incubated with P. berghei sporozoites. Hepatocytes were fixed after 24h 
(infection, a) or 6h (apoptosis, b), and stained with anti-HSP70 antibody (to visualize the parasite) and with DAPI (nuclear 
morphology) to quantify apoptosis. 

 

In addition, two monoclonal antibodies, DO-24 and DO-30, that act on the extracellular domain of 

the MET receptor were used to assess the same question with a different approach. These agonist 

monoclonal antibodies have been described to have diverse effects on cells and to activate various 

pathways (Prat et al., 1998). While DO-24 is a full agonist, capable of inducing a strong response 

from the receptor and trigger what is known as the complete invasive growth program, including cell 

survival, the DO-30 antibody has a partial effect, causing a weak activation of MET and inducing 

motility only (Prat et al., 1998). 

To evaluate the effect of these agonists on infection, HepG2 cells were infected with P. berghei 

sporozoites 2h after addition of the antibodies. The number of EEFs was quantified by 

immunofluorescence staining with anti-HSP70 antibody for parasite detection. Results show that 

both antibodies lead to an increase in infection, although to different extents. Apoptosis 

quantification either by nuclear morphology and caspase-3 activity revealed a correlation between 

the increment in infection and a reduction of infected hepatocyte death (Fig. 5.5). The full agonist 

DO-24 had a stronger effect than the partial agonist DN-30. The caspase-3 activity is involved in 

late stage apoptosis justifying why this percentage is lower although showing the same trend 

(Thromberry and Lazebnick, 1998). These results demonstrate that signaling through HGF/MET 

pathway during a malaria infection is directly implicated in the protection from apoptosis of the 

infected host cell.  
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Fig. 5.5|HGF agonists induce infection and host cell protection. HepG2 cells were pre-treated for 2h with the agonist 
anti-MET monoclonal antibodies DN-30 or DO-24 (1µg/ml) and afterwards infected with P. berghei sporozoites. (a) The number 
of infected cells (EEFs) was quantified 24h post infection by counting anti-Plasmodium-HSP70 positive cells. (b) Apoptosis was 
quantified 6h post infection by DAPI (black bars) and caspase-3 activity (white bars). Untreated-infected cells were used as 
control. 

 

In order to analyze the behavior of infected cells in the presence of an apoptosis inhibitor, we used 

Z-VAD-FMK, a cell permeable broad-spectrum caspase inhibitor that binds covalently to active 

caspases in living cells, is non-cytotoxic and has been shown to inhibit apoptosis randomly (Chipuk 

and Green, 2005; Al-Olayan et al., 2002). HepG2 cells were treated with Z-VAD-FMK (20µM) or 

with HGF (500 ng/ml) 1h prior to infection with P. berghei sporozoites. The chemically induced 

inhibition of apoptosis led to a higher infection than that observed either with HGF or with 

untreated cells, lending further support to the previous results (Fig. 5.6).  
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Fig. 5.6|Inhibition of caspase activity 
increases infection. 1h prior to infection 
with P. berghei sporozoites, HepG2 cells were 
treated either with Z-VAD-FMK (20µM) or 
with HGF (500 ng/ml). The number of 
infected cells (EEFs) was determined 24h post 
infection after staining with anti-HSP70 
antibody. As control, untreated infected cells 
were quantified. 

 

 

 

5.2.3 MET inactivation leads to apoptosis during infection 

The HGF-mediated signaling cascade occurs through a tyrosine kinase receptor, c-Met. Its activity is 

essential for the progress of the downstream catalytic processes. In order to determine the effect of 

MET signaling impairment on infected hepatocytes, a stable transfected HepG2 MET-dominant-

negative-form cell line (DN MET-GFP) was used. For this purpose, a lentivirus expressing a 
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chimeric construct containing the extracellular and transmembrane domains of met fused to gfp 

sequences was transfected into HepG2 cells. The product of this construct is expressed at the 

plasma membrane and binds to HGF but it is unable to transduce signals into the cell since it lacks 

the kinase domain and the tyrosines acting as docking sites for intracellular substrates. This chimeric 

receptor behaves as a dominant negative, because it dimerizes with endogenous MET and 

consequently prevents its activation (Carrolo et al., 2003; Giordano et al., 2002; Vigna and Giordano, 

2000). Because cells transfected with this lentivirus become fluorescent, it is possible to determine 

the infection level of single-transduced cells 24h after infection. 

As previously mentioned, the activation of the MET receptor is essential for the infection of 

hepatocytes by Plasmodium sporozoites (Carrolo et al., 2003). The impairment of the signal abolishes 

completely the infection 24h post-transduction, as no individual cells transduced with MET-GFP 

were found to be infected with Plasmodium (Fig. 5.7a). The number of apoptotic cells correlates with 

MET inactivation as in these cells apoptosis increased to 68% while control cells (GFP-transduced 

only) show a 21% level of death, as determined by observation of nuclear morphology 6h post-

infection following DAPI staining clearly shows apoptosis features in MET-GFP transduced cells 

(Fig. 5.7b; Fig. 5.8).  These results strongly suggest that MET signaling is required for host cell 

apoptosis inhibition and in that way for host cell survival and infection success through an anti-

apoptotic mechanism.  
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Fig. 5.7|MET inactivation leads to early apoptosis of infected cells. HepG2 cells were transduced with a lentivirus 
expressing MET-GFP or GPF alone (control). The dominant negative hepatocyte MET mutant cell and control lines were 
infected with P. berghei sporozoites. 24h post-infection the number of EEFs was determined (a) and 6h post-infection apoptosis 
was quantified by nuclear morphology observation (b). All P ≤ 0,001. 
 

 

It is likely that all infected cells undergo apoptosis in the absence of a functional MET receptor 

within 24h, as no infected cells were found at this time point. No increase in apoptosis of non-

infected transduced cells was observed. 
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Fig. 5.8|Dominant negative MET-GFP infected cell undergoing 
apoptosis. (a) HepG2 cell 6h after infection with P. berghei sporozoites (red, 
anti-HSP70) with a normal nuclear morphology (blue, DAPI). (b) Infected cell 
expressing MET-GFP (green) 6h post-infection with a parasite starting to 
develop (red, anti-HSP70) and exhibiting apoptosis features detected by nuclear 
morphology with DAPI (blue).  
 

5.2.4 MET down-regulation leads to apoptosis during infection 

As shown above the impairment of HGF/MET signaling using a dominant negative form of MET 

leads to higher levels of apoptosis and promotes the early death of the infected cell. To confirm 

these results we also abrogated MET expression using RNA interference. HepG2 cells were 

transduced with a lentivirus vector expressing a short interfering RNA (siRNA) oligonucleotide 

targeted at MET. A control sequence was used that did not cause any reduction on MET expression 

as detected by Western blot analysis (Fig. 5.9). 

 

Control siRNA MET siRNAControl siRNA MET siRNA

Fig. 5.9|MET expression on short interfering RNA cell line. Western 
blot analysis of MET expression in HepG2 cells transduced with lentiviruses 
expressing control siRNA oligonucleotide (left lane) or MET siRNA 
oligonucleotide (right lane) to knockdown met. 

 

The down-modulation of MET activity showed similar results as the ones obtained for the dominant 

negative cell line, that is, an inverse correlation between a decrease in infection (Fig. 5.10a) and an 

increase in apoptosis of infected cells (Fig. 5.10b). This evidence confirms the relation between 

hepatocyte survival and HGF/MET activation, indicating that its anti-apoptotic activity is essential 

during Plasmodium infection. 
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Fig. 5.10|Down-modulation of HGF/MET signaling leads to early apoptosis of infected cells. Lentivirus 
engineered to express MET-specific siRNA oligonucleotides were used to transduce HepG2 cells. Hepatocytes transfected with a 
siRNA specific for the met gene were infected with P. berghei sporozoites. As control, hepatocytes were transfected with a siRNA 
of an unrelated sequence. (a) Infection was quantified 24h post-sporozoite addition by counting the number of EEFs and (b) 6h 
post-infection apoptosis was quantified by nuclear morphology observation with DAPI staining. All P ≤ 0,001. 
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5.2.5 Anti-apoptotic effect of HGF/MET signalling is mediated via activation of 
PI3K pathway  
In a signalling cascade, a series of subsequently biological events take part in the process of reaching 

a target or accomplishing a certain level of activation or induction. In HGF cascade the survival 

pathway is mediated by a phosphoinositide 3-Kinase (PI3K)/Akt, whose activity directs the cell to a 

death inhibition state (Webster and Anwer, 2001; Xiau et al., 2001).  

To determine if this pathway is implicated in malaria infection, HepG2 cells were treated with a 

specific PI3K inhibitor (LY294002) 1h prior infection with P. berghei sporozoites. Additionally, a 

mitogen-activated protein kinase (MAPK) inhibitor (PD98059) was used to evaluate if this pathway 

was involved in protection from apoptosis. An anti-apoptotic role has also been described for 

MAPK pathway, since once activated by HGF, it was capable of rescuing cells from apoptosis, 

although to much smaller extent (Xiau et al., 2001). 

As shown below in Figure 5.11 when cells are treated with either of these inhibitors there is a 

significant decrease in infection. This effect is stronger when the PI3K activity is inhibited. When 

apoptosis was quantified after 6h on the same infection experiment, a significant increase was 

detected in the apoptotic cells number, only when cells were pretreated with the PI3K inhibitor. 

These results show that, although both PI3K and MAPK pathways seem to be involved in 

Plasmodium infection, only PI3K/Akt via appears to be important for host cell protection from 

apoptosis. 
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Fig. 5.11|Inhibition of PI3K/AKT pathway in vitro leads to a decrease in infection. HepG2 cells were pretreated 
with LY294002 (25µM, PI3K inhibitor) and with PD98059 (30µM, MAPK inhibitor) for 1h. Inhibitors were washed before 
infection with P. berghei sporozoites. Control cells were incubated with DMSO. (a) 24h post-infection cells were fixed, stained 
and EEFs were counted (PLY ≤ 0,001; PPD = 0,003). (b) 6h post-infection cells were fixed and apoptotic cells quantified by DAPI 
staining (PLY = 0,002; PPD = 0,09). 
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5.2.6 Inhibition of PI3K pathway decreases Plasmodium infection in vivo 

In vivo assays with PI3K inhibitor have previously been performed, demonstrating its activity in 

mouse models (Hu et al., 2002; Semba et al., 2002). To determine if the effect observed in vitro, could 

also be extrapolated to a natural infection in vivo, mice were injected with 2.5 mg of LY294002, 30 

minutes prior to sporozoites infection. Livers (from 4 animals in each experimental group) were 

collected 40h later and the parasite load was determined by real-time RT-PCR with primers specific 

for P. berghei.  Data obtained reveal a significant reduction in liver infection observed in animals 

pretreated with the PI3K inhibitor (Fig. 5.12a). A Western blot analysis was also performed to 

confirm whether the inhibitory treatment applied was targeting the PI3K pathway. As shown below 

the phosphorylation of Akt was reduced in the treated animals. Since this molecule is located 

downstream of PI3K, its decreased phosphorylation state expresses the inhibition level obtained 

(Fig. 5.12b). 

Taken together, the in vitro and in vivo results reveal that the anti-apoptotic effect exerted by 

HGF/MET signalling through activation of the PI3K/Akt pathway is crucial for the success of a 

malaria infection. 
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Fig. 5.12|In vivo inhibition of PI3K/AKT pathway during infection. (a) Mice were injected with LY294002 or DMSO 
(control), 30 min prior i.v. injection of P. berghei sporozoites. Livers were removed and real time RT-PCR was performed 40h 
post-infection with parasite specific primers to quantify infection (P≤ 0,005). (b) Mice were injected with LY294002 or DMSO, 
30 min prior to infection with P. berghei sporozoites. Livers were extracted 3h post-infection and phospho-Ser473-Akt and total 
Akt were quantified (ni, non-infected).  

 
 
 
5.3 Discussion 

Plasmodium infection is initiated by the inoculation of sporozoites in the skin of the host, from where 

they migrate towards the liver, which is the first obligatory step crucial for parasite development and 

success of a malaria infection. Inside hepatocytes, sporozoites migrate through several hepatocytes 
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by breaching their plasma membrane before infecting a final one surrounded by a parasitophorous 

vacuole where the intrahepatic form of the parasite grows and multiplies (Mota et al., 2001). 

Although during this period there is an extensive parasite multiplication in the liver each one giving 

rise to 10-30 thousand new parasites in 2-10 days, depending on the parasite species not much is 

known about its requirements and strategies used to survive and to accomplish a successful 

development (Baldacci and Menard, 2004). 

It is known that intracellular pathogens have developed powerful strategies to manipulate host cell 

functions. Many of them have evolved to exploit the host cell machinery involved in normal cell 

proliferation, development and cell death to their own advantage (Sibley, 2004; Heussler et al., 2001). 

Obligatory life inside a host cell directs the pathogen to induce host cell survival or to prevent its 

death in order to prolong the parasite’s life and ensure its full development. Thus, inhibition of 

apoptosis constitutes a significant advantage for a parasite. Such events have been reported for 

several pathogens, like bacteria and other intracellular parasites, as Leishmania and Toxoplasma (Gao 

and Abu Kwaik, 2000; Nash et al., 1998; Moore and Matlashewski, 1994). 

The results presented in this chapter show that P. berghei sporozoites are no exception and require an 

active process of inhibition of host cell apoptosis in order to reach the next infective stage. 

However, Plasmodium sporozoites seem to use a unique feature since they take advantage of a host 

molecule not secreted by the infected cell but by neighboring ones, previously traversed by the 

parasite, instead. Whether this is the only mechanism used by the parasite to avoid host cell 

apoptosis remains unknown. 

Our results show that PI3-kinase activation is important for the survival of the infected cell. The 

anti-apoptotic effect mediated by HGF uses this signal transduction pathway. However, we cannot 

exclude that the infection inhibition observed both in vitro and in vivo by the specific PI3-kinase 

inhibitor could be due to PI3-kinase mediated survival signals other than those generated through 

HGF/MET signaling.  

While sporozoites migrate through cells by breaching hepatocyte plasma membrane, HGF is 

secreted (Carrolo et al., 2003). This secretion of a factor by the host cell leads to an increase in the 

number of Plasmodium-infected cells. In fact, results showed that infection was dependent on HGF 

receptor MET activation, and HGF/MET signalling was not required for invasion but rather for 

early parasite development. In the liver, hepatocytes do not normally express HGF which is 

produced by non-parenchymal cells, but, the MET receptor is selectively expressed by hepatocytes 

(Ishikawa et al., 2001). 

Since HGF-MET signalling confers resistance to death and infection was higher under its stimulus it 

can be suggested that these events were correlated (Fan et al., 1998; Bardelli et al., 1996). Thus, we 

now report this additional role for HGF in the maintenance of Plasmodium infection, which is the 
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prevention of infected host cell apoptosis, a crucial requirement to elicit the full development of the 

parasite. Moreover, in infected cells a higher level of apoptosis was observed when HGF/MET 

signalling or PI3K/Akt pathway were inhibited, suggesting that these two pathways are connected. 

The earlier work already mentioned also showed that one of the causes of HGF requirement for 

hepatic infection was the remodeling of the host cell actin cytoskeleton (Carrolo et al., 2003). In fact, 

it was observed that pretreatment of host cells with HGF abrogates the negative effect that 

cytochalasin-D has on infection. This strongly suggests that HGF/MET signaling effect on infection 

involves the host cell actin reorganization. 

Upon HGF stimulation, MET mediates the coordination of multiple cellular processes. Thus, it is 

likely that many of these processes might play a role during the development of Plasmodium 

sporozoites inside cells. It is also likely that apoptosis protection and actin reorganization are linked. 

In fact, studies in bacteria have demonstrated that several bacteria interfere with the fate of host cells 

through their activity on Rho GTPases, also favouring survival or death depending on their needs 

(Fiorentini et al., 2003). 

It has also been reported that hepatitis patients, which express high levels of HGF, are more 

susceptible to severe malaria. A requirement for MET signalling might provide an explanation for 

this observation (Thursz et al., 1995; Naoumov and Eddleston, 1994). 

Recently, a protein called SPECT (sporozoite microneme protein essential for cell traversal) was 

characterized in one of the secretory organs of sporozoites, the micronemes (Ishino et al., 2004). 

Transgenic parasites lacking this protein do not migrate through cells in vitro and show a strong 

reduction of infectivity in vivo, indicating that migration through host cells is required in order to 

establish a successful infection in the host. However, these results appear to contradict our 

hypothesis that migration through cells leads to HGF secretion required for infection, as SPECT 

mutants are able to infect host cells in vitro without previous migration through cells. The reason for 

this apparent discrepancy may be found in the particular characteristics of the in vitro cell system 

used for infection. The hepatoma cell line constitutively produces HGF and other factors that 

induce a basal level of activation of MET receptor (Conrotto et al., 2004). This is different from the 

conditions that sporozoites encounter in vivo, since in resting conditions primary hepatocytes do not 

express HGF and MET is not activated (Matsumoto and Nakamura, 1991). These constitutive levels 

of HGF are probably enough to support sporozoite infection at a basal level and therefore the 

additional HGF induced by migration would not be required. 

The outcome of our studies on the anti-apoptotic role of HGF signalling, help understand why 

signalling via HGF/MET is essential for an efficient malaria infection to occur. Further studies on 

parasite requirements inside hepatocytes to achieve successful development, may provide effective 

strategies for early intervention. 
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RESULTS III 
Does PyHSP70 inhibit infected hepatocyte apoptosis? 

 



 
 

 
 
 



6.1 Introduction 

Heat shock proteins are highly evolutionarily conserved molecular chaperones that have a wide 

range of functions within the cell. They are classified into several families, according to their 

molecular size. When cells are exposed to stress, such as temperature increase, hypoxia, and 

intoxication with heavy metals, the biosynthesis of these proteins is engaged in order to help 

preserve normal cell functions and to facilitate adaptation to environmental changes (Lindquist, 

1992).  

From bacteria to mammalian cells, these protein families ensure proper folding and function of 

other proteins, allowing them to acquire the correct shape and preventing or reverting stress-

induced protein misfolding (Schlesinger, 1990). Initially, it was thought that these proteins were 

effective only when high temperature was used as a stress inducer, as was described in salivary 

glands of Drosophila in 1962 (Ritossa, 1962). However, these molecules are not only expressed under 

stress conditions but also possess important functions during common physiological processes 

(Bukau and Horwich, 1998; Langer et al., 1992). Moreover, the exposure of cells to damage induces 

signals that are able to mediate cell death or, alternatively, survival pathways that allow cells to 

overcome damage. Therefore, heat shock proteins can act at different sites in the apoptotic cascade, 

inhibiting death and promoting survival (Fig. 6.1) (Beere, 2004). 

Among these families of proteins is the heat shock protein 70 (HSP70) family. This family 

constitutes one of the most abundant and conserved group of chaperones and its members are 

implicated in a large variety of activities within the cell, such as assembly and disassembly of newly 

synthesized protein complexes, refolding of denaturated proteins and protein translocation and 

degradation (Young et al., 2004; Hartl, 1996; Craig et al., 1993). Localized in different cellular 

compartments, they are present in mammalian cells, yeasts, plants, bacteria, and parasites (Mayer and 

Bukau, 1998; Lindquist and Craig, 1988). Typically, HSP70 proteins have three domains: an N-

terminal ATPase domain, a substrate-binding domain and a C-terminal conserved region containing 

a peptide sequence motif, EEVD. At the molecular level, they recognize unstable peptides to which 

they bind in an ATP-dependent process. In addition, their binding to exposed hydrophobic regions, 

facilitates the folding of nascent proteins into a tertiary structure (Mayer et al., 2000; Blatch and 

Lassle, 1999).  

In a variety of infections, HSPs are synthesized by both the host and the pathogen and their role in 

the host-pathogen relationship is very important and diverse.  As a host response to stress, these 

molecules contribute to its defence from toxic stimuli triggered by pathogen invasion. Conversely, 

pathogen’s HSPs help to escape the host defence system and perpetuate infection (Hisaeda and 

Himeno, 1997; Polla, 1991).  
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Virulent strains of some protozoa express higher amounts of HSPs as compared to low virulent 

strains. During Toxoplasma gondii infection, expression of HSP70 is induced in virulent strains, a fact 

that seems to provide protection for these strains since parasites are able to persist as tachyzoites 

without the requirement for the encystations observed in avirulent strains (Dobbin et al., 2002; 

Lyons and Johnson, 1995).  

HSPs are also responsible for the pathogen’s adaptation to the host environment. Parasites that 

possess a biphasic cycle involving two different hosts have to adapt to the temperature changes that 

occur between the vector and the mammalian environments. The response to this temperature shift 

has been shown to involve the production of HSP70, both in Leishmania major and in Trypanosoma 

brucei, which allows the parasite to differentiate into proliferative forms (Polla, 1991; Shapira et al., 

1988; van der Ploeg et al., 1985). 
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Fig. 6.1|Events regulated by HSPs in the mitochondrial and death 
receptor-mediated apoptotic pathways. Extracellular signals or 
stresses converge to regulate the mitochondria-mediated pathway to caspase 
activation and cell death. (A) Heat shock proteins intervene at multiple 
points within this pathway both upstream and downstream of the associated 
mitochondrial changes to regulate the engagement and/or progression of 
apoptotic events. (C) Ligation of cell surface death receptors, e.g. Fas and 
TNFR1, by the appropriate ligand engages multiple intracellular signals 
leading to caspase activation and cell death or NFkB-mediated survival. Many 
elements of these pathways are regulated by the activities of HSPs to help 
maintain cellular survival following death receptor ligation. HSP-mediated 
inhibition is indicated (T-bars) and HSP-mediated potentiation of a signaling 
pathway is depicted as a direct interaction between the HSP and its target 
(+) (adapted from Beere, 2004). 
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HSPs of malaria parasites were cloned and shown to be extremely similar to homologous 

mammalian ones (Syin and Goldman, 1996; Bonnefoy et al., 1994; Su and Wellems, 1994; Kumar et 

al., 1991). Within the different Plasmodium species several homologs of HSP70 were identified, like 

genes encoded by P. chabaudi and P. cynomolgi that present a 97% of sequence homology, indicating a 

close relation between these molecules (Kumar and Zheng, 1998; Eckert et al., 1992; Mattei et al., 

1989; Sheppard et al., 1989). 

P. berghei (PbHSP70) and P. falciparum (PfHSP70) HSP70s are expressed in the blood and liver stages 

of these parasites, but not in sporozoites (Tsuji et al., 1994; Kumar et al., 1993; Bianco et al., 1986; 

Renia et al., 1990).  

Additional studies have shown that during a natural infection, Plasmodium stress proteins are targets 

of the host immune system. Immune responses to malarial HSPs have been demonstrated in 

patients with malaria (Behr et al., 1992; Kumar et al., 1993; Bianco et al., 1986). PfHSP70 is in fact a 

target to antibody-dependent response and is recognized by T cells from infected individuals (Behr 

et al., 1992; Kumar et al., 1993). Like mammalian HSP70s, the P. falciparum protein has the EEVD 

characteristic motif at its C-terminus. The presence of an additional motif (GGMP repeats) is 

thought to be responsible for inducing this immune response in the host, since this motif is only 

observed in proteins of parasitic origin (Kumar and Zheng, 1998).  

Similar to other parasites, P. falciparum showed a marked increase in HSP70 expression when 

submitted to higher temperatures. This heat shock response was shown to be transient since once 

the stress was removed the induction was repressed. Such behaviour could indicate a protective 

function during malaria fever episodes, resulting in the in vivo survival of the parasite (Biswas and 

Sharma, 1994; Joshi et al., 1992; Kumar et al., 1991). 

However, this cytoprotection of the malaria parasite through its action as a molecular chaperone 

requires further studies, since the biochemical and chaperone properties of PfHSP70 are not totally 

understood. Due to an extremely A/T-rich genome and the usage of codons that are rarely used in 

Eschericia coli, it has been difficult to overexpress Plasmodium proteins (Matambo et al., 2004; Baca and 

Hol, 2000). Recently, further studies were performed to address the activity of PfHSP70 in vivo and 

its role as a chaperone. Data demonstrated the presence of a basal ATPase activity which was 

thermo-inducible and shown to be cytoprotective (Shonhai et al., 2005).  

Other families of heat shock proteins are also present in malaria parasites. HSP90, the most 

abundant chaperone in mammalian cells, plays an essential role in the folding of proteins that act on 

cell cycle regulation and signal transduction. The PyHSP90 is differently expressed throughout the 

life cycle, highly on blood asexual stages and very scarcely on gametocytes (Zhang et al., 1999). 

PfHSP90 was shown to be essential for parasite viability in blood stages, since treatment with 
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geldanamycin, a highly specific inhibitor of HSP90, was able to abrogate parasite growth 

(Banumathy et al., 2003; Kumar et al., 2003).  

Overall, the induction of HSPs upon cellular exposure to stress is clearly related to the involvement 

of these proteins in inducing survival and allowing cells to tolerate and recover from damage (Beere, 

2005). Such evidence has also been implicated in tumour resistance to chemotherapeutic strategies 

and carcinogenesis (Creagh et al., 2000).  

As mentioned in chapter II of this thesis, several records show evidence that cell death is a 

conserved mechanism throughout evolution and is also present in parasitic protozoa (Deponte and 

Becker, 2004). Moreover, Plasmodium infection does lead to host cell death inhibition. However, the 

plasmodial proteins responsible for this inhibitory function are still unknown. Therefore, like other 

pathogens, Plasmodium must carry anti-apoptotic genes with homology to cellular regulators with 

similar functions or genes not directly coding for anti-apoptotic proteins, but able to modulate the 

expression of cellular apoptosis-regulators genes in hepatocytes.  Consequently a search for 

homologues of known apoptotic inhibitors within Plasmodium genome databases could uncover 

possible candidates with this ability in the parasite. Furthermore, members of these families are 

present in a wide range of organisms and all contain defined and conserved motifs (Hurd and 

Carter, 2004). 

This chapter represents a pilot attempt to study the function of PyHSP70 as a possible candidate 

responsible for the inhibition of apoptosis in infected hepatocytes. The preliminary results presented 

here support this hypothesis. Hepatoma cells transfected with a Plasmodium HSP70 gene are 

protected against apoptosis, suggesting that Plasmodium HSPs may account for parasite survival 

during liver stage infection.   

 

 

6.2 Results 

6.2.1 PyHSP70 expression protects hepatocytes from death  

As previously shown, Plasmodium sporozoites are capable of protecting the hepatocyte from 

undergoing apoptosis by inhibiting host cell death (see chapter V).  

To evaluate whether a Plasmodium HSP70 has any role during liver infection, apoptosis of 

hepatocytes transfected with a construct expressing PyHSP70 was induced by UV light exposure. 

Results showed a decrease in apoptosis in the presence of HSP70, while cells transfected with a 

green fluorescence protein (gfp) construct or another irrelevant gene (control), presented much 

higher levels of cell death (Fig. 6.2). 
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The inhibition of apoptosis induced by PyHSP70 overexpression in hepatocytes suggests that this 

protein could have a protective function during liver infection, preventing hepatocytes from 

undergoing apoptosis. 
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Fig. 6.2|P. yoelii HSP70 protects 
hepatocytes from apoptosis. Hepa 1-6 cells 
were transfected with different DNA plasmid 
constructs expressing P. yoelii HSP70 
(PyHSP70), green fluorescence protein (gfp), an 
irrelevant gene (control). 24h post-transfection 
apoptosis was induced by UV light. After 6h, 
cells were stained with DAPI and apoptotic cells 
were quantified.  

 
 

In order to establish a stable cell line expressing this protein that would allow a broader application 

of this tool to further studies, an attempt was made to assemble a construct with a mammalian 

vector that would additionally provide the possibility to control gene expression by induction 

through a Zeocin resistance gene (Invitrogen). After selection the results obtained were not 

satisfactory since the expected appropriate expression was not achieved. A likely explanation for 

these observations is the already known difficulty inherent to the cloning of Plasmodium proteins due 

to its A/T–rich genome that confers problems to protein expression experiments. 

 

6.2.2 PyHSP70 knock out parasite 

To analyze and validate the actual role of HSP70 in apoptosis inhibition, it is essential that 

functional studies are made using parasites in which expression of this protein has been knocked 

out. The first step to achieve this goal, is to produce a construct that will block protein expression, 

which can be accomplished by cloning only a fraction of the gene sequence. This experiment is still 

under progress and a final conclusion was not yet possible. 
 

 

6.3 Discussion 

Many pathogens like schistosomes, leishmania, trypanosomes and malaria plasmodia, have to face 

sudden temperature shifts during transmission from vector to the host. The increase in temperature 

imposes a heat shock to parasites, which leads to the induction of HSPs. Moreover, the host-parasite 

interface is apoptosis dependent since this process can be used by the host as a defence mechanism 
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or by the parasite to perpetuate infection (Polla, 1991). Therefore, the existence of mechanisms able 

to induce or inhibit apoptosis is essential within this dual relationship and the balance between them 

dictates host cell fate. Furthermore, in order to control pathogenesis and regulate homeostatic 

development, it seems intuitive that all species should harbour cellular protective mechanisms and 

conversely members of the apoptotic machinery ready to induce cell death. Several characteristic 

features of apoptosis have already been described for protozoan parasites indicating that they 

possess cellular mechanism of cell death similar to that of multicellular eukaryotes (Arnoult et al., 

2002). For P. berghei, caspase-like activity was detected in the cytoplasm of ookinetes along with 

apoptotic morphological and biochemical features (Al-Olayan et al., 2002). Therefore, together with 

the existence of apoptotic inducers within Plasmodium, there should also be apoptosis inhibitors.  

The presence of HSP70 in Plasmodium species makes it an obvious candidate for this task. In 

addition, one can expect that more cellular processes will be discovered that depend on the 

chaperone activity of HSP70. Its abundance and antigenicity, which triggers potent immune 

responses, makes it a vaccine candidate worth investigating. 
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7.1 Final Discussion and Conclusion 

When an intracellular parasite depends on a host in order to complete its life cycle, a close 

interaction must be established between the host and the parasite. Confined inside a host cell the 

parasite ensures a source of nutrients and, at the same time, a location where it can avert the host’s 

immune system. Throughout infection, the nature of this relationship is dictated by the different 

parasite-specific requirements along its life cycle. However, host-parasite interactions also reflect the 

balance between the pathogen virulence mechanisms and host defences, which exert a major effect 

in the final outcome of infection as well.  

For malaria parasites, this relationship is highly complex and diverse, in accord with the demands of 

the life cycle of Plasmodium. Since the liver is the first target of Plasmodium parasites and this site of 

infection is obligatory for disease progression, it is essential to reveal and comprehend the basic 

biological interactions established between the parasite and its host cell, the hepatocyte (Lau et al., 

2001; Shin et al., 1982).   

For a long time this was a hard task due to the limited experimental accessibility of the models and 

molecular tools available. However, these difficulties are being overcome and the possibilities of 

research in this area are increasing greatly, as a consequence of the development of new technologies 

and genetic tools (Amino et al., 2005; Frevert et al., 2005; Gardiner et al., 2005). Nevertheless, there 

has always been the problem of obtaining enough quantities of sporozoites that would allow liver 

infection to be mimicked in vitro (Luke and Hoffman, 2003). Together with the low infectivity rates 

that are obtained experimentally, there is a rather remarkable poor knowledge of the mechanisms 

involved in invasion and intracellular development used by the parasite (Kappe et al., 2004; Druilhe 

et al., 1998).  

Usually, it is considered that host manipulation is a strategy used by intracellular parasites. How 

parasites manage to evade host defences has always been a hub under a continuous survey. 

Antigenic variation, resistance to immunological attacks and escape to safe compartments are 

common strategies used (Zambrano-Villa et al., 2002). Moreover, it is becoming common knowledge 

that different parasites make use of similar strategies to subvert host signalling pathways in their own 

benefit, such as activating some in order to exploit them for invasion and development or inhibiting 

others in order to prevent hostile responses (Kahn et al., 2002).   

During its permanence in the liver, sporozoites undergo a process of replication and development 

that exploits resources provided by the hepatocyte. In addition, as is the case with any intracellular 

pathogen, parasites develop ways of controlling host cell behaviour towards increasing their own 

survival and inducing changes in the host that can ultimately elicit effects in immune modulation and 

regulation of apoptosis (James and Green, 2004; Hasnain et al., 2003). For Plasmodium parasites both 

of these effects happen during infection but none of them have been yet completely elucidated. 
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Aiming at clarifying some essential features within Plasmodium-hepatocyte interactions, the main goal 

of the project presented here was to determine the role of hepatocyte apoptosis in the inhibition of 

development of exo-erythrocytic forms and in the initiation of protective immune responses to 

malaria by dendritic cells. 

Plasmodium liver stages are considered to be a singular phase of the parasite life cycle in terms of 

immunity. Besides constituting a crucial step for its survival, they are also imperative for the 

induction, establishment and maintenance of an effector anti-parasitic immune response (Doolan 

and Hoffman, 2000). Although characterized as multi-factorial, this protection is essentially 

dependent on Plasmodium antigen-specific T cells, in particular effector and memory CD8+ T cells, 

which are responsible for the elimination of the infected hepatocyte and, in addition, are 

indispensable for enhancing the efficacy of a long lasting immunity against malaria (Morrot and 

Zavala, 2004a). 

Natural recurrent infections cause only partial immunity, which is mediated by antibodies directed to 

the blood-stage of the parasite (Hviid, 2005; Day and Marsh, 1991). Only irradiated sporozoite 

immunization leads to complete resistance or sterile immunity in both mice and humans after 

repeated immunizations (Hoffman et al., 2002). These attenuated parasites infect hepatocytes in a 

similar way compared to normal ones. However, they fail to complete a full infection, presumably 

because their DNA was damaged upon radiation and protein synthesis was affected (Suhrbier et al., 

1990). Nevertheless, protection is obtained when live attenuated sporozoites reach the liver while 

inactivated sporozoites or their extracts have consistently failed to achieve the same goal. Different 

studies also support the hypothesis that there is a requirement for intra-hepatic development for 

protection to be induced, as removal of liver parasites by primaquine treatment abolishes protection 

(Krzych et al., 2000; Scheller and Azad, 1995; Bates et al., 1990).  

Discovered more than 30 years ago the feasibility of an anti-malaria vaccine through these irradiated 

sporozoites immunizations proved that protection against Plasmodia was possible. Why this is so is 

still under debate. Yet, a broad use of this type of vaccine was considered an impossible approach to 

undertake, because of the impossibility of obtaining high numbers of sporozoites, as they cannot be 

cultured in vitro (Luke and Hoffman, 2003). Thus, reproducing this induced immunity became an 

alternative approach. Consequently, to understanding the mechanisms occurring in the liver either 

during a natural infection or in model systems of protective immunity such as irradiated sporozoites 

immunizations will facilitate the exploitation of these responses to a expedite progress in vaccine 

development. 

Sporozoites preferentially infect the liver, where immune responses tend to be biased towards 

immunological tolerance (Crispe, 2003). This unique feature may contribute to the success of 

Plasmodium infection of this organ, since it allows the parasite to develop and promotes conditions 
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that seem to fit the parasite’s needs. Besides this, several hypotheses were proposed to explain why 

attenuated sporozoites are so efficient. Options are based on sporozoite activity after irradiation, its 

interaction with the hepatocyte, the subsequent initiation of the immune response and its persistence 

within the hepatocyte. As a result there is a high level of IFN-γ production when challenge is 

induced in immunized mice and humans, suggesting that an enhanced efficiency in T cell priming 

events takes place. Gamma-irradiation induces a partial delay in the maturation of the parasite, 

leading to its extended permanence in the liver, and generating a depot of antigen, which seems 

necessary for the establishment of a local antigen-specific protective immunity (Krzych et al., 2000). 

However, different systems such as viral infections present an independency between antigen 

persistence and the maintenance of memory CD8+ T cells responses (Wherry et al., 2004; Mueller et 

al., 2002). 

Nevertheless, in endemic areas, naturally exposed individuals do not acquire long term protection, 

indicating a persistent lack of memory. This issue is still not fully understood and remains a rather 

controversial subject. Yet a few causes are appointed by some authors that could explain such 

evidence. The tolerant environment that dominates on the liver is a key feature, as is the 

sequestration of the liver-stage antigens within hepatocytes, and the relatively short duration of the 

liver infection (Struik and Riley, 2004). Polymorphisms at the regions recognized by the CD8+ T 

cells induce an antagonistic effect that interferes with priming and survival of memory T cells, an 

event designated by altered peptide ligand, which is appointed as another explanation for lack of 

memory (Plebanski et al., 1999; 1997). Furthermore, the mixture of different Plasmodium strains in 

endemic areas can aggravate the dynamic interactions of variant-specific T cell responses resulting in 

immune interference (Zimmerman et al., 2004; Bruce and Day, 2002). 

The initiation of a specific immune response against a disease requires the activation of T cells by 

professional antigen-presenting cells (Mellman et al., 1998). In some biological systems the identity 

of these cells is still to be determined. However, in most cases, dendritic cells are the ones that 

efficiently activate naïve T cells because of their unique ability to induce primary immune responses 

through priming (Sher et al., 2003; Bruña-Romero and Rodriguez, 2001). 

During pathogenic infections, apoptosis of infected cells could either be caused by the host’s 

immune response or be a direct effect induced by the pathogen (Gavrilescu and Denkers, 2003). 

But, in any case, the result is the formation of apoptotic bodies that are loaded with antigens derived 

from the pathogen. In order to reduce the risk of an inflammatory response these apoptotic cells 

have to be removed (Savill and Fadok, 2000). Phagocytes, such as macrophages and immature 

dendritic cells, have the ability to capture these vesicles and present enclosed antigens to activate T 

lymphocytes (Albert et al., 1998 a, b). However, only dendritic cells have the capacity of presenting 
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such antigens in both MHC class I and II contexts, making use of a cross-presentation mechanism, 

and consequently inducing the priming of naïve T lymphocytes (Guermonprez et al., 2003). 

Immunization with irradiated sporozoites induces specific CD8+ T cells against Plasmodium antigens 

which are involved in mounting protection against the disease (Rodrigues et al., 1991; Hoffman et al., 

1989; Romero et al., 1989; Weiss et al., 1988). Moreover, a large number of pathogens do not infect 

or replicate within professional antigen presenting cells, but still their antigens are presented by 

MHC class I molecules since activated-specific cytotoxic T lymphocytes are found in vivo. For this 

activation to occur there is the requirement of a restricted-class I presentation (Gil-Torregrosa et al., 

2004). Plasmodium sporozoites fit in this category since they are only able to fully develop in 

hepatocytes. Consequently, the activation of specific anti-malaria T lymphocytes observed during 

irradiated sporozoite infection must occur through cross-presentation of parasite antigens 

performed by antigen presenting cells, the dendritic cells.  

Several examples of transfer and presentation of cellular antigens can be found in the literature and 

this hypothesis has been already demonstrated for viral proteins, tumour antigens and protein-

coated antigens (Albert, 2004; Shen and Rock, 2004; Fonteneau et al., 2002; Sigal et al., 1999; Huang 

et al., 1994). Because of the immunological relevance of CD8+ T cell activation, cross-presentation 

should undergo some sort of control in terms of specificity and efficiency. These two main 

characteristics can be ensured by receptor-mediated processes. Although both macrophages and 

dendritic cells are skilled cells in terms of antigen phagocytosis, in respect to cross-presentation and 

T cell priming, macrophages are known to be poor stimulators of naïve T cells in vitro. The higher 

efficiency of dendritic cells in the priming of naïve T cells is, at least in part, mediated by the 

presence of co-stimulatory molecules that allow longer and more efficient interactions with T cells 

(Heath et al., 2004). 

The experimental in vitro observation that a decrease in the number of infected hepatocytes in 

culture occurs with time led to the basis of our working hypothesis (Silvie et al., 2002; Suhrbier et al., 

1990; Sigler et al., 1984). Could apoptotic bodies generated from Plasmodium infected hepatocytes 

infected with irradiated sporozoites be phagocytosed in the liver by dendritic cells? And if so, could 

these cells mediate cytotoxic T lymphocyte activation by cross-presentation?  

Thus, in the first part of this project, we accessed our hypothesis by determining whether infected 

hepatocytes were undergoing apoptotic death and therefore decreasing in number during the course 

of infection. Apoptosis was detected in infected hepatocytes which were then shown to be 

phagocytosed by both macrophages and dendritic cells present in the liver. An increased recruitment 

of dendritic cells was observed during in vivo infection which, together with the apoptotic markers 

and hepatic origin evidenced by phagocytosed vesicles, implicates dendritic cells in the uptake of 

Plasmodium antigens present in apoptotic hepatocytes. 
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This model links two key processes in the control of infection: apoptosis of infected cells and 

antigen uptake by antigen presenting cells. Data obtained strongly associate these events, which 

could provide a mechanism for the initiation of immune responses against malaria. 

During the course of our studies, Jung and colleagues showed that during malaria infection there is a 

dendritic cell dependency in order to obtain a CD8+ T cell immune response. This strongly suggests 

that priming takes place via cross-presentation of antigens originated from infected hepatocytes 

provided by dendritic cells. Making use of a conditional knock out mouse that can induce ablation 

of CD11c+ dendritic cells, the essential requirement of these cells to elicit a CD8+ T cell response to 

malaria was revealed. However, in this study, the interface of these cells with sporozoites or infected 

hepatocytes was not analyzed (Jung et al., 2002). 

To initiate the process of antigen presentation to T cells, dendritic cells must be able to phagocytose 

Plasmodium antigens. Thus, size is an important feature in this process. Either the whole sporozoite 

or CS protein that is shed from the parasite surface could be phagocytosed by antigen presenting 

cells (Hugel et al., 1996). Yet, phagocytosis per se is not capable of explaining why for instance heat 

killed sporozoites do not induce T cell responses and why irradiated sporozoites are a better 

immunogen (Alger and Harant, 1976; Spitalny and Nussenzweig, 1972). Although there is a visible 

difference in apoptosis during irradiated versus non-irradiated sporozoite infections, the lower 

amount of apoptotic hepatocytes detected in non-irradiated sporozoite infections indicates that in 

some cases, normal sporozoites are not capable of inhibiting their host death. Such evidence could 

hold an effect in immunity and should be further analyzed.  

As already mentioned, dendritic cells need to mature in order to achieve effective T cell activation. 

Since it is known that apoptotic bodies are unable to induce dendritic cell maturation, sporozoites 

must be responsible for this action (Albert, 2004; Liu et al., 2002; Gallucci et al., 1999; Albert et al., 

1998b). Furthermore, wounded hepatocytes generated during sporozoite migration could lead to 

dendritic cells maturation due to the pro-inflammatory environment induced and the release of 

maturation signals (Frevert, 2004; Khan and Vanderberg, 1992). Endogenous adjuvant activity was 

detected in the cytoplasm of cells undergoing cellular injury or tumor death. The resulting 

components can stimulate immune responses since they constitute a danger signal to the immune 

system (Shi et al., 2003; Shi and Rock, 2002; Shi et al., 2000). 

During malaria liver stages, functional in vivo antigen presentation seems to be limited by time. After 

irradiated sporozoites immunization, the priming of naïve T cells is very fast reaching a maximum 

within the first 8h (Hafalla et al., 2002). Moreover, antigen-specific activated CD8+ T cells are 

inhibited as early as 24 to 48h after priming (Hafalla et al., 2003; Mercado et al., 2000). Extrapolating 

to a natural infection, the rate of exposure and priming of T cell should be dependent on the biting 

by infectious mosquitoes. However, very low frequencies of T cells against liver stage antigens are 
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observed. Therefore, this means that, when the threshold is reached, the CD8+ T cells specific for 

sporozoite-derived antigens will be preserved regardless of the inoculation rates (Hafalla et al., 2002). 

In addition, the discrepancy between irradiated sporozoites and normal sporozoites in inducing 

immunity can be also supported by the subsequent occurrence of a blood stage infection in the 

second and not in the first, since a blood stage infection could lead to an immuno-suppression of 

CD8+ T cell function against the initial liver stages (Ocana-Morgner et al., 2003). 

In the context of the variety of the cellular populations that are present in the liver the full role of 

Kupffer cells remains an unanswered question. Recent studies regarding their involvement and 

immune status during infection revealed that these cells could function as antigen-presenting cells, 

whose activity is much higher in challenged irradiated sporozoite-immunized mice than in normal 

sporozoite-infected mice. In addition, an enhanced expression of MHC classes I and II and 

costimulatory molecules was also a difference observed between these two types of Kupffer cells. 

Further analysis should still be carried out in order to understand the contribution of these cells 

during protection conferred by irradiated sporozoite immunizations. However, the absence of an 

increased expression of class I on Kupffer cells originated from immunized mice in response to in 

vitro normal sporozoite challenge suggests that other responses from different primed liver cells in 

vivo may occur (Steers et al., 2005). 

Recently, a number of studies using different epitopes from the Plasmodium CS protein as a way to 

pulse dendritic cells or access the induction of MHC class I-restricted antigen-specific T cells, have 

validated and confirmed the role of dendritic cells as skilled to process and present sporozoite 

antigens. Moreover, the priming events are clearly different between normal or irradiated parasites, 

where the latter induce higher levels of IFN-γ production (Plebanski et al., 2005). 

Furthermore, it was shown that the successful synthetic peptide vaccine trial that induced high 

antigen-specific T cell responses in volunteers is likely to be due to dendritic cell cross-presentation, 

which requires the proteosome and the MHC class I pathway for processing and the endosomal 

compartment for the presentation (Prato et al., 2005).   

Analyzing the extremely complex interaction between Plasmodium sporozoites and hepatocytes, it 

becomes clear that several other molecules must play significant roles during liver infection, either 

from the parasite or the host sides. New findings are elucidating the recognition and invasion 

process of the hepatocyte by the parasite. These processes appear to involve other sporozoite 

proteins besides CS and TRAP, such as microneme proteins essential for cell traversal, other 

proteins involved in sporozoite motility or even proteins essential for the recognition of surface 

receptors on host cells (Ishino et al., 2005 a, b; Ishino et al., 2004; Khater et al., 2004).  

In this thesis, we have also addressed the host’s input to this interplay. Cellular death can be either 

induced or inhibited (Vaux and Strasser, 1996). Both events constitute opposite mechanisms that 
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carry different benefits to each one of the parts involved. On the host side, apoptosis is seen as a 

defence mechanism because infection is eliminated. On the other hand, for the parasite, the 

inhibition of host cell apoptosis has huge advantages as it allows the pathogen to prolong its life 

within the host cell, thereby perpetuating infection. Examples of such inhibitors can be found 

among different intracellular parasites like Leishmania and Toxoplasma (Sinai et al., 2004; Luder et al., 

2001). Such evidence is also present within viral infections, where a few inhibitors have been 

characterized in detail (Hasnain et al., 2003). Moreover, parasites find ways of imitating the 

modulation of apoptotic pathways that occur in normal cells. All these data suggest that Plasmodium 

might engage in similar strategies during liver infection, but little is known regarding this issue. 

Thus, our study’s starting point was to examine how sporozoite infection related to these 

observations and in order to achieve that understanding, we analyzed the outcome of induced 

apoptosis on infected hepatocytes. Our results confirmed that Plasmodium infection protects host 

hepatocytes from apoptosis during liver stage malaria. Such behaviour was expected since similar 

observations were already made for other intracellular parasites like Toxoplasma and Leishmania (Nash 

et al., 1998; Moore and Matlashewski, 1994). 

Previous work has shown that, during Plasmodium infection, sporozoites migrate through several 

hepatocytes before establishing in a definitive one (Mota et al., 2001). By breaching their plasma 

membranes, the parasite leaves a trail of wounded cells which secrete a host molecule, HGF, to the 

surrounding environment. The secreted HGF and the activation of its receptor c-Met, makes host 

cells more susceptible to malaria infection. Furthermore, sporozoite infection is dependent on this 

activation and induced stimuli, which facilitates parasite development (Carrolo et al., 2003).  

HGF is responsible for activating a vast cascade of signaling pathways within cells, including 

inhibition of apoptosis (Birchmeier et al., 2003). Therefore, we hypothesized that, during liver 

infection, HGF/MET signaling could play a role in the previously observed anti-apoptotic effect. 

Data obtained confirmed our hypothesis and provided further evidence that infection-induced 

protection is mediated by the PI3K/AKT signalling pathway. Previously, numerous studies had 

already shown that this survival cascade is usually constitutively activated in several types of cancer 

cells and is currently being targeted as therapeutic approach (Kim et al., 2005).  

More recently, it was demonstrated that P. berghei inhibition of hepatocyte apoptosis also occurs 

during the late phase of liver infection. Resistance to induced apoptosis of infected cells was shown 

to be increased 2 days after infection, independent of the HGF/MET signalling pathway (van de 

Sand et al., 2005). Our results concerning apoptosis inhibition at the early phase of the parasite 

development are in agreement with the observation that HGF/MET signalling protracts for several 

hours only. Additionally, a new interest has arisen concerning a different but highly plausible 

occurrence is to know how the parasite inhibits pro-apoptotic signals instead (van de Sand et al., 
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2005). Our data implicate and reinforce the inhibition of apoptosis as a crucial strategy through 

which Plasmodium controls the survival outcome of the hepatocytes.  

The HGF/MET complex has been as well extensively studied in cancer research, and constitutes an 

attractive target for use in therapy since several approaches have been described that can be 

employed to interfere with this pathway. However, the practical results of an application of such 

strategies remain unclear, mainly due to the lack of appropriate delivery systems (Corso et al., 2005).  

An extrapolation of these procedures to malaria infection could lead to an interesting progress in 

terms of preventive strategies, since HGF/MET usage as a targeting candidate for drug 

development would hold an effect in liver infection. In addition, such a target could avoid the 

emergence of drug resistance since there is no direct interaction with the pathogen itself. 

At the end of our studies, we attempted to identify a Plasmodium gene responsible for infection-

induced hepatocyte survival. It is known that cell death is a highly conserved process throughout 

evolution (Vaux et al., 1994; Wyllie et al., 1980). Therefore, parasites themselves should encode 

proteins that may be responsible for interfering with the regular function of this cellular process. In 

fact, there are reports of viruses that carry genetic information for anti-apoptotic genes, namely 

homologues to cellular regulators (Clarke et al., 2005; Barry and McFadden, 1998). Finding 

Plasmodium homologues of a known apoptosis inhibitor would open future possibilities for 

functional studies using knock out parasites. Additionally, gene targeting knock out experiences 

could lead to the elimination of this putative apoptosis inhibitor gene. The availability of the 

Plasmodium genome sequence facilitates the identification of prospective candidates that might be 

involved in liver infection, which may hold a huge potential as novel targets in disease control 

(Duffy et al., 2005; Cooper and Carucci, 2004). 

Likewise, heat shock proteins (HSPs) belong to a group of molecular chaperones that are also highly 

conserved (Lindquist and Craig, 1988). These proteins are specialized in rescuing cells from damage 

when they are exposed to stress, and their mode of action includes ensuring cellular survival. 

Therefore, HSPs commonly act as anti-apoptotic chaperones being themselves checkpoints along 

the apoptosis pathways with the ability of shutting these pathways off (Beere, 2005).  

HSP70 is one of the most abundant protein families that is present in several organisms including 

parasites (Dobbin et al., 2002; Rico et al., 1999; Levy et al., 1992). Plasmodium HSP70 is expressed 

among different parasite species and has a high degree of immunogenicity which makes it a target of 

immune responses during infection (Zhang et al., 2001; Behr et al., 1992). 

All together and since P. yoelii HSP70 (PyHSP70) fitted in these profiles we decided to examine its 

function as an apoptosis inhibitor candidate. Our preliminary results suggest that the PyHSP70 

could influence the infection process, as this protein has the ability of inhibiting hepatocyte 

apoptosis and is, therefore, worth considering and exploring in a future project. This plausible 
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identification of a Plasmodium gene responsible for apoptosis inhibition of hepatocytes does not 

exclude the possibility of more and different genes being implicated in this process, which justifies 

the continuing study and search to find more candidates. 

 

 

7.2 Perspectives 

The work presented in this thesis provides immediate contribution to the understanding of the 

cellular and molecular mechanisms involved in some aspects of Plasmodium-hepatocyte interactions. 

Crucial steps in malaria infection take place inside hepatocytes which are related not only to parasite 

development but also with the immune responses developed against the disease.  

One of the greatest challenges facing infectious diseases research at the present time is to learn how 

to arm the host immune system strong enough to defeat disease. At the moment vaccine 

development interests are focused in finding Plasmodium molecules that can confer a long-lasting 

protection against liver and subsequent blood stage infection. The use of a single protein in a 

vaccine has consistently led to failure, thus progress must also be applied to the development of 

whole attenuated parasite vaccine. Besides irradiation other options are now being exposed such as 

the use of genetically engineered inactivated parasites and combinations of various vaccination 

regimens (Good, 2005; Todryk and Walther, 2005). 

Due to the latest examples and the enlightening on different infection models, some authors do 

agree that dendritic cells should be targeted in order to obtain an effective malaria vaccine 

application (Bertholet et al., 2005; Blachere et al., 2005; Plebanski et al., 2005; Sher et al., 2003; 

Norbury et al., 2002). The selection of the right Plasmodium antigen as well as the adjuvant that would 

target an innate response involving dendritic cells could be much more protective. Therefore, in the 

future it should be considered the interaction maintained by Plasmodium with these antigen 

presenting cells, and also the direct relation that is observed between these and the CD8+ T cell 

interactions (Engwerda and Good, 2005). 

In addition, remaining questions address a few issues like the migration of parasite-specific T cell to 

the infected liver, their elimination and the development of memory against the parasite. It is still 

very important to engage a thorough characterization of the important antigens relevant to vaccine 

development and theirs respective induced-immunity (Krzych and Schwenk, 2005). 

Within technical support new tools are becoming available in particular in the imaging field, which 

will contribute to enhance the accuracy of our knowledge specially and if possible at a more 

physiological environment closer to what occurs in vivo. A new input is also being applied to the 

search for alternative methods concerning detection of immune responses (Amino et al., 2005; van 

Baalen et al., 2005). 
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Plasmodium antigens presented in the context of host cell apoptosis are an alternative mechanism 

involved in the induction of protective immunity by irradiated sporozoites. Our findings are being 

reinforced by out coming results. Clearly the consequences of apoptosis are being redefined specially 

at the immunological level. Certainly with all the evidence raising from different infection models it 

would be very misleading to view apoptotic death as single simplistic event. An opposite outlook is 

taking this common cellular process to a level of importance that for sure will worth to continuous 

studying (Restifo, 2000).     

In the future, and making use of both parasite and host transcriptome and proteome, an extensive 

study will help to reveal more parasite strategies used to influence host cell apoptosis during 

infection, either by activating anti-apoptotic mechanisms or by inhibiting pro-apoptotic ones 

(Cooper and Carucci, 2004). 

As previously mentioned, the targeting of malaria parasites both through vaccine or anti-malaria 

drugs is mostly performed using components of the parasite. Those are involved in the host-parasite 

interactions and are essential for survival and development or on the other hand involved in disease 

pathology. Another strategy that could be undertaken is to act on and exploit the host molecules 

that interact with the parasite components or molecules produced by it. In this context, HGF/MET 

signalling should be consider a drug target candidate against malaria since an intervention based on 

the tools available should lead to a successful prevention of infection. 

Presently, in the new post-genomic era is essential that a clear view of the elements that are involved 

either in basic understanding of Plasmodium species biology or in applied work aimed at control and 

prevention of the disease is achieved. Taking a step forward within research would leads us to the 

application of systems-biology to malaria, since an integration of several data sets would raised the 

chances of being successful both in vaccine and drug development against the disease (Young and 

Winzeler, 2005).  
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Malaria starts with infection of the host liver by Plasmodium sporozoites. Inoculation with radiation-attenuated
Plasmodium sporozoites induces complete protection against malaria. Protection is mediated by dendritic cells
(DCs) and CD8+ T cells, but the source of parasite antigens mediating this response remains unclear. Here,
we show that hepatocytes infected with irradiated Plasmodium sporozoites undergo apoptosis shortly after
infection. Infection with irradiated sporozoites induces the recruitment of DCs to the liver, where they phago-
cytose apoptotic infected hepatocytes containing parasite antigens. We propose that apoptotic Plasmodium-
infected hepatocytes provide a source of parasite antigens for the initiation of the protective immune response.

Complete protection against malaria in humans and

mice can be obtained by inoculation with irradiated

Plasmodium sporozoites that induce specific CD8+ T

cells [1]. Irradiated sporozoites infect hepatocytes in

vivo, as normal sporozoites do; however, irradiated spo-

rozoites do not progress further to blood-stage infec-

tions and, therefore, do not induce malaria-associated

pathology [2]. During sporozoite infection, no “pro-

fessional” antigen-presenting cells (i.e., cells that may

stimulate not only memory T cells but also naive T

cells) are infected by Plasmodium sporozoites, since they

replicate only in hepatocytes. Nevertheless, specific

CD8+ T cells reactive to Plasmodium antigens are found

in irradiated sporozoite–immunized hosts [3, 4], sug-

gesting that parasite antigens are transferred to profes-

sional antigen-presenting cells [5]. Dendritic cells (DCs)

are able to present exogenous antigens associated with
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major histocompatibility complex (MHC) class I mol-

ecules and activate CD8+ T cells, a process called “cross-

presentation” [6]. Interestingly, DCs are required for

induction of specific antimalaria CD8+ T cells after vac-

cination with irradiated sporozoites [7].

Intrahepatocytic development of irradiated sporozo-

ites appears to be required for induction of protection,

since infected hepatocytes and their extracts have been

shown to induce significant protection [8], whereas in-

activated sporozoites and their extracts have consistently

failed to achieve the same goal [9, 10]. That hepatocyte

infection is required for induction of a cytotoxic response

in the host suggests that the source of Plasmodium an-

tigens for the initiation of an immune response is not

individual sporozoites but infected cells [11].

During pathogenic infections, apoptosis of infected

cells results in the formation of apoptotic bodies loaded

with pathogen antigens. Cross-presentation of antigens

in apoptotic bodies phagocytosed by DCs has been pro-

posed as a mechanism of antigen presentation in cy-

totoxic immune responses against intracellular patho-

gens [12, 13]. It has also been proposed that apoptosis

of host cells contributes to immunity induced by ir-

radiated-parasite vaccines [14]. Here, we show that ap-

optotic infected hepatocytes are phagocytosed by DCs

in the liver of the host, providing a source of Plas-

modium antigens for the initiation of antimalaria im-

mune responses.
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MATERIALS AND METHODS

Host cells, parasites, and mice. Hepa 1-6 (ATCC CRL-1830),

a hepatoma cell line derived from a C57L/J mouse that is ef-

ficiently infected by rodent malaria parasites, was used for in

vitro hepatocyte cultures. Plasmodium yoelii (cell line 17X NL)

and Plasmodium berghei (parasite line NK65) sporozoites were

isolated from salivary glands of infected Anopheles stephensi

mosquitoes. Sporozoites were irradiated with a g source (20

krad). BALB/c mice were purchased from Taconic.

In vitro infections. One day before infection, Hepa52 � 10

1-6 cells/mL were plated in 24-well plates (Costar) over glass

coverslips in Dulbecco’s MEM (Sigma) supplemented with 10%

heat-inactivated fetal bovine serum, 100 U/mL penicillin, 0.1

mg/mL streptomycin, and 2 mmol/L l-glutamine at 37�C with

5% CO2. A total of sporozoites were added to Hepa 1-51 � 10

6 cell coverslips on plates, centrifuged for 5 min at 1800 g, and

incubated for different durations. Cells were washed twice with

PBS and fixed in 4% paraformaldehyde.

In vivo infection, isolation, and staining of liver mononuclear

cells. Two mice per group were infected with P. yoelii g-irra-

diated, nonirradiated, or heat-killed (15 min; 56�C) sporozoites

by intravenous (iv) injection (1�106 sporozoites/mouse). Six

hours after injection, livers were removed and mechanically ho-

mogenized. The cell suspension was washed and resuspended in

a 35% Percoll (Pharmacia Biotech) gradient solution and cen-

trifuged at 500 g for 10 min. The mononuclear-cell pellet ob-

tained was resuspended in 1 mL of erythrocyte lysis buffer for

1 min and washed. Isolated cells were counted and placed for 1

h on poly-l-lysine coverslips (∼ cells/liver were ob-61.5 � 10

tained). After fixation, cells were incubated with phycoerythrin

(PE)–anti-CD11c and fluorescein isiothiocyanate (FITC)–anti-

Mac3 (Pharmigen) for staining of DCs and macrophages, re-

spectively. Parasites were stained with anti-Hsp70 monoclonal

antibody (2E6). Cells were also stained with anti-albumin (Cap-

pel/ICN Irvine) and anti–activated caspase-3 (Promega).

Detection of apoptosis. Apoptotic cells were detected and

quantified by staining with anti–NF-kB p65 (relA) (Santa Cruz

Biotechnology), for examination of the translocation of NF-kB

from the cytoplasm to the nucleus of the cell, or with anti–

activated caspase-3 (Promega). All cells were also incubated

with 4′6′-diamidino-2-phenylindole (DAPI) for nuclear stain-

ing, to allow morphological detection of apoptosis.

DC recruitment to the liver. Groups consisting of 3 mice

were infected by mosquito bite (each anesthetized mouse was

in contact with 50 P. yoelii–infected mosquitoes for 20 min)

or by iv injection with P. yoelii sporozoites (g-irradiated51 � 10

or nonirradiated) or with salivary glands of uninfected mos-

quitoes as a control. At different times after infection, livers

were removed and frozen, and 15 histological sections from

each mouse were examined with PE–anti-CD11c (Pharmigen)

for detection and quantification of DCs.

RESULTS

During in vitro infection of hepatocytes by Plasmodium spo-

rozoites, a decrease in the number of developing parasites is

observed 2–3 days after infection. This decrease is more pro-

nounced for irradiated sporozoites than for nonirradiated ones

[2, 15]. To study the survival of hepatocytes infected with ir-

radiated Plasmodium sporozoites at earlier times after infection,

we stained Plasmodium-infected hepatocyte cultures with an

anti-Hsp70 antibody, a molecule that is highly expressed in

developing parasites inside hepatocytes but not in sporozoites

[16]. We found that the number of Hepa 1-6 hepatoma cells

infected with P. yoelii and P. berghei (data not shown) irradiated

sporozoites was lower than the number infected with nonir-

radiated sporozoites and that the number of infected cells had

already decreased shortly after infection (figure 1A).

The decrease in the number of infected hepatocytes has been

attributed to degeneration of intracellular parasites [2]. We

wanted to determine whether the reduction in the number of

infected hepatocytes is due to hepatocyte apoptotic death trig-

gered by degenerated parasites. Apoptosis in infected hepato-

cyte cultures was first monitored by assessment of nuclear mor-

phology and activation of NF-kB p65 (relA), a transcription

factor that is translocated to the nucleus early after initiation

of certain apoptotic pathways [18] (figure 1B). We observed

that hepatocytes infected with irradiated sporozoites undergo

apoptosis 6 h after infection (figure 1C). Apoptosis in hepa-

tocytes infected with irradiated sporozoites was also confirmed

by detection of caspase-3 activation (figure 1D). Irradiation

probably inhibits the synthesis of parasite factors that are nec-

essary for the prevention of apoptosis of infected hepatocytes,

resulting in an abortive infection and cell death. However, a

lower but significant amount of apoptosis was also found in

hepatocytes infected with normal sporozoites, suggesting that,

in some cases, normal sporozoite infection cannot prevent the

apoptosis of host cells.

In response to inflammatory signals, immature DCs are re-

cruited from the blood into peripheral tissues, where they ef-

ficiently phagocytose foreign antigens. To determine whether

liver infection by P. yoelii sporozoites induces the recruitment

of DCs, livers of mice injected with irradiated or nonirradiated

sporozoites were obtained at different times after injection. His-

tological sections showed a recruitment of DCs early after in-

fection (figure 2A). When mice were subjected to bites from

infected mosquitoes, a similar effect was observed (figure 2B).

The recruitment of DCs induced by bites from infected mos-

quitoes is of a lower magnitude, probably because of the smaller

numbers of sporozoites injected by mosquito bite [19].

Increased numbers of DCs in the liver during malaria in-

fection would allow rapid capture of parasite antigens. How-

ever, to activate DCs for antigen presentation, these cells need

to receive a maturation signal, which can be provided by the
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Figure 1. Infected hepatocyte apoptosis. A, Infection of Hepa 1-6 cells by irradiated (white circles) or nonirradiated (black circles) Plasmodium
yoelii sporozoites, quantified at different times after infection. Infection was quantified by counting the no. of infected cells with developing parasites
in duplicated samples. Variation between duplicates was !8%. Shown are the results of 1 experiment that was representative of 3. B, Hepa 1-6
cells were incubated with P. yoelii irradiated (upper panels) or control (lower panels) sporozoites for 6 h. Intracellular parasites were stained with
anti-Hsp70 antibody (green). The size of the parasite vesicle is smaller in irradiated parasites [17]. Apoptosis was monitored by assessment of nuclear
morphology (4′6′-diamidino-2-phenylindole [DAPI] staining, blue) and nuclear translocation of NF-kB p65 (red) [18]. C, Quantification of apoptotic infected
cells by nuclear morphology (black bars) and NF-kB translocation (white bars). Error bars represent the SD of triplicate samples. Asterisks (*) indicate
a significant difference between control and irradiated sporozoites ( ). D, Apoptosis was also detected by anti–activated caspase-3 stainingP ! .05
(red) in infected cells containing intracellular parasites (green, marked by an arrowhead).

pathogen itself or by inflammatory lymphokines [20]. Before

infection, Plasmodium sporozoites migrate through several he-

patocytes in the liver, disrupting their plasma membranes and

causing cell wounding and necrotic death [21, 22]. Wounded

and dying cells induce local inflammatory responses that me-

diate the recruitment of DCs to tissues [23]. In fact, Plasmodium

liver infection induces an inflammatory response and the re-

cruitment of mononuclear cells [24]. Release of uric acid from

dying cells would provide an additional maturation signal for

DCs [25].

Apoptotic cells are rapidly phagocytosed in the body by mac-

rophages and DCs [26]. To determine whether apoptotic he-

patocytes containing P. yoelii antigens are phagocytosed by an-

tigen-presenting cells in the liver, we isolated nonparenchymal

mononuclear cells from the livers of mice immunized with

irradiated sporozoites, at different times after injection. We
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Figure 2. Phagocytosis of apoptotic hepatocytes containing Plasmodium antigens by dendritic cells (DCs) and macrophages in the liver. A and B,
Quantification of DCs in histological sections of mouse livers. A, DCs in uninfected mice (black bars) and in mice after different times of infection
with P. yoelii nonirradiated (white bars) or irradiated (striped bars) sporozoites. B, DCs in mice bitten by 50 uninfected (black bars) or infected (white
bars) mosquitoes. Error bars represent the SD of triplicate histological samples, each composed of �5 liver sections to cover 10 mm2. Asterisks (*)
indicate a significant difference between the sample and the control at time 0 h ( ). C–M, Liver nonparenchymal mononuclear cells, obtainedP ! .02
6 h after injection of mice with P. yoelii irradiated sporozoites and stained with different markers: DC marker (CD11c, red), macrophage marker (mac-
3, green), and Plasmodium Hsp70 (blue). DCs (C and D) and macrophages (E) were found to contain vesicles positive for Hsp70. F–I, Albumin/Hsp70
staining, in the same microscope field showing a cell in transmitted light (F), staining for albumin (red, G), Plasmodium Hsp70 (blue, H), and an overlay
of albumin and Hsp70 staining (I). J–M, Apoptosis/Plasmodium staining, in the same microscope field showing cells in transmitted light (J), staining
for activated caspase-3 (red, K), Plasmodium Hsp70 (green, L), and an overlay of caspase-3 and Hsp70 (M).

found that, 6 h after injection, macrophages and DCs in the

liver carry vesicles that contain P. yoelii Hsp70 (figure 2C–2E).

In 3 separate experiments, we found an average of 3 macro-

phages and 2 DCs in each liver containing Hsp70-positive ves-

icles. The number of DCs containing these vesicles is probably

higher in the mouse, but DCs rapidly leave peripheral organs

and migrate to the lymph nodes after receiving activation sig-

nals. The Hsp70-positive vesicles found inside macrophages and

DCs must be derived from infected hepatocytes, since this pro-

tein is not expressed in sporozoites and appears only in infected

hepatocytes ∼6 h after infection [16]. In addition, we found

that P. yoelii Hsp70-containing vesicles also contain mouse al-

bumin, a protein present in the cytosol of hepatocytes (figure

2F–2I), confirming that these vesicles are derived from infected

hepatocytes. No P. yoelii Hsp70 or albumin staining was present

in nonparenchymal liver mononuclear cells isolated from non-

infected control mice. To confirm that these Hsp70-positive

vesicles were derived from apoptotic cells, we stained cells with

anti–activated caspase-3. We found that vesicles positive for

Plasmodium Hsp70 were also positive for activated caspase-3
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(figure 2J–2M), confirming that DCs phagocytose apoptotic

infected hepatocytes during malaria infections in vivo.

When liver nonparenchymal mononuclear cells were ana-

lyzed 12 h after infection, no cells were found containing P.

yoelii Hsp70, which suggests that infected hepatocyte death and

clearance occurs early during in vivo infections with irradiated

sporozoites. This is consistent with the observation that Plas-

modium sporozoite infection and initiation of the immune re-

sponse occurs rapidly, since activation of specific anti–P. yoelii

CD8+ T cells is detected as soon as 8 h after inoculation of

sporozoites [27].

DISCUSSION

Protection against malaria can be achieved by immunization with

irradiated sporozoites [28]. This discovery raised expectations for

the development of a malaria vaccine; however, because of the

lack of an in vitro system for the generation of large numbers

of sporozoites, broad use of an irradiated sporozoite vaccine

against malaria is not considered feasible. It is important to un-

derstand the mechanisms underlying protection induced by ir-

radiated sporozoites, since this efficient protection has not yet

been replicated by other forms of human antimalaria vaccines.

CD8+ T cells and DCs mediate immunity induced by irradiated

sporozoites [4, 7], but the mechanisms involved in antigen pre-

sentation to T cells remain unclear, since the low number of

Plasmodium-infected hepatocytes in the liver has prevented the

development of direct antigen-presentation studies.

We found that both macrophages and DCs phagocytose in-

fected hepatocyte apoptotic bodies but that, in Plasmodium liver

infection, only DCs are required for activation of CD8+ T cells

in vivo [7]. DC phagocytosis triggers cross-presentation of an-

tigens within the phagosome and results in efficient CD8+ T

cell activation [29, 30]. Apoptotic hepatocytes containing Plas-

modium antigens provide an optimal source of antigens for DC

cross-presentation, since they are of the appropriate size (1–10

mm) to be internalized by phagocytosis. This mechanism would

also explain the requirement for liver infection to achieve pro-

tection against this stage of the parasite, as well as the activation

of CD8+ T cells by an obligate intracellular parasite that can

develop only inside hepatocytes, which are nonprofessional an-

tigen-presenting cells. The inflammatory environment induced

during sporozoite infection in the liver [24] will also favor this

process, by inducing the recruitment of large numbers of DCs

and providing maturation signals for these cells.

DCs can acquire virus-infected dead or dying cells as exoge-

nous sources of antigens for presentation on MHC class I and

II molecules to initiate T cell responses [12]. This pathway is

thought to be critical for the development of effective antiviral

immunity in vivo [13]. Recently, DC presentation of Mycobac-

terium tuberculosis antigens derived from apoptotic infected mac-

rophages has been described as an alternative pathway of T cell

activation [31]. Like Plasmodium sporozoites in hepatocytes, My-

cobacterium is secluded in an intracellular compartment during

infection, which suggests that presentation of antigens from ap-

optotic infected cells may represent a common mechanism of

immune activation for vesicle-contained pathogens.

Experimental live vaccines based on irradiated parasites have

been used as a model for protection in malaria [1] and schis-

tosomiasis [32]. It is possible that irradiation of these parasites

blocks their ability to neutralize the apoptotic machinery of

host cells, allowing them to resume their natural tendency to

undergo apoptosis upon being infected. Further work is re-

quired to demonstrate that phagocytosis of apoptotic infected

host cells results in efficient presentation of parasite antigens

to T cells.
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Summary

 

Plasmodium

 

, the causative agent of malaria, migrates
through several hepatocytes before initiating a
malaria infection. We have previously shown that this
process induces the secretion of hepatocyte growth
factor (HGF) by traversed cells, which renders neigh-
bour hepatocytes susceptible to infection. The signal-
ling initiated by HGF through its receptor MET has
multifunctional effects on various cell types. Our
results reveal a major role for apoptosis protection of
host cells by HGF/MET signalling on the host suscep-
tibility to infection. Inhibition of HGF/MET signalling
induces a specific increase in apoptosis of infected
cells leading to a great reduction on infection. Since
HGF/MET signalling is capable of protecting cells
from apoptosis by using both PI3-kinase/Akt and, to
a lesser extent, MAPK pathways, we determined the
impact of these pathways on 

 

Plasmodium

 

 sporozoite
infection. Although inhibition of either of these path-
ways leads to a reduction in infection, inhibition of
PI3-kinase/Akt pathway caused a stronger effect,
which correlated with a higher level of apoptosis in
infected host cells. Altogether, the results show that
the HGF/MET signalling requirement for infection is
mediated by its anti-apoptotic signal effects. These
results demonstrate for the first time that active inhi-

bition of apoptosis in host cell during infection by

 

Plasmodium

 

 is required for a successful infection.

Introduction

 

Liver infection is the first obligatory step of a 

 

Plasmodium

 

infection. Consequently, it is essential that we understand
which hepatocyte–

 

Plasmodium

 

 interactions are neces-
sary for establishment and success of infection. After

 

Plasmodium

 

 sporozoites are injected into the mammalian
host by infected mosquitoes, they migrate to the liver.
There, sporozoites traverse the cytosol of several hepato-
cytes before invading a final one by forming a parasito-
phorous vacuole (Mota 

 

et al

 

., 2001). We have shown that
during this process of traversing cells, 

 

Plasmodium

 

 sporo-
zoites not only become activated (Mota 

 

et al

 

., 2002) but
also induce traversed cells to secrete hepatocyte growth
factor (HGF), which signals through its receptor MET on
neighbouring cells, rendering them more susceptible to
infection (Carrolo 

 

et al

 

., 2003).
Exploitation of host cell resources is a well known sur-

vival strategy of intracellular pathogens (Muller and Rudel,
2001). Apoptosis can be used by the host cell as a
defence mechanism against intracellular pathogens, as it
is beneficial for the organism to eliminate infected cells
rather than to preserve them and risk spreading of the
pathogen. Conversely, inhibition of host cell apoptosis is
advantageous for the pathogen to prolong life in the
infected cell in order to complete its development. Studies
have focused primarily on viral infections, where several
inhibitors of host cell apoptosis have been characterized
in detail (Blaho, 2003). Generally, inhibitors are homo-
logues of cellular proteins used in normal cells for the
modulation of apoptotic pathways. Inhibition of apoptosis
by several bacteria and intracellular parasites like 

 

Leish-
mania

 

 and 

 

Toxoplasma

 

 has also been documented
(Moore and Matlashewski, 1994; Nash 

 

et al

 

., 1998). How-
ever, the genes involved in this process have not been
identified yet (Payne 

 

et al

 

., 2003).
Hepatocyte growth factor (HGF) stimulation elicits

through MET a wide spectrum of biological responses
such as motogenesis, mitogenesis and protection from
apoptosis. HGF has strong anti-apoptotic effects in a
series of different cells (Fan 

 

et al

 

., 1998; Bardelli 

 

et al

 

.,
1999; Xiao 

 

et al

 

., 2001). In this study, we sought to
determine the role of apoptosis protection mediated by
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HGF/MET signalling during 

 

Plasmodium

 

 infection. Our
results show a crucial role for the anti-apoptotic signal
mediated by HGF/MET on the maintenance of a malaria
infection.

 

Results

 

Infected cells are protected from apoptosis

 

To determine whether infected cells were protected from
apoptosis, HepG2 cells were incubated with 

 

Plasmodium
berghei

 

 sporozoites (live or heat-killed, as control) and
treated 18 h later with TNF and Cycloheximide to induce
apoptosis. Six hours later apoptosis was quantified using
different methods: (i) nuclear morphology detected by
4,6-diamidino-2-phenylindole (DAPI): control 

 

=

 

 42.0 

 

±

 

 7.1;
infected cells 

 

=

 

 8.3 

 

±

 

 1.5 (Fig. 1B); (ii) active caspase-3:
control 

 

=

 

 37.9 

 

±

 

 0.8; infected cells 

 

=

 

 7.9 

 

±

 

 2.4; (iii) TUNEL:
control 

 

=

 

 31.8 

 

±

 

 3.8; infected cells 

 

=

 

 15.9 

 

±

 

 3.7.
Similar results were obtained using a different cell type

(Hepa1-6  cells)  and  a  different  inductor  of  apoptosis
(UV irradiation) (TUNEL: control 

 

=

 

 72.3 

 

±

 

 5.1; infected
cells 

 

=

 

 12.1 

 

±

 

 1.5). These results show that 

 

P. berghei

 

infection protects host cells from apoptosis.

 

MET activation enhances 

 

P. berghei

 

 sporozoite infection 
and protects infected cells from apoptosis

 

We have previously reported that HGF-induced increase
on malaria infection is mediated through its receptor MET
(Carrolo 

 

et al

 

., 2003). Since HGF-induced MET activation
protects different cell types from apoptosis (Fan 

 

et al

 

.,
1998; Bardelli 

 

et al

 

., 1999; Xiao 

 

et al

 

., 2001), we hypoth-
esized that HGF/MET signalling increases infection by
protecting host cells from apoptosis. Pretreatment of
HepG2 cells with HGF leads to an increment in infection
that is accompanied by an increase in apoptosis protec-
tion of 

 

P. berghei

 

-infected cells (Fig. 2A and B). Similar

results were obtained using staining for active caspase-3
(control 

 

=

 

 15.7 

 

±

 

 1.5; HGF 

 

=

 

 6.9 

 

±

 

 1.5).
Previous work has described two monoclonal antibod-

ies (DO-24 and DN-30) directed against the extracellular
domain of MET (Prat 

 

et al

 

., 1998). These are agonist
mAbs but while DO-24 is a full agonist and can induce a
strong receptor activation and trigger the complete inva-
sive growth programme, DN-30 is a partial agonist that
can only weakly activate MET (Prat 

 

et al

 

., 1998). Both
mAbs enhanced the level of infection, although at distinct
levels (Fig. 2C). The increment caused by the full agonist
DO-24 mAb was higher than that induced by the partial
agonist DN-30 (Fig. 2C). Apoptosis of infected cells was
reduced proportionally to increased infection level, as
measured by nuclear morphology detected by DAPI
(Fig. 2D)  and  active  caspase-3  (control 

 

=

 

 16.8 

 

±

 

 6.0;
DN-30 

 

=

 

 2.2 

 

±

 

 0.6; DO-24 

 

=

 

 0.3 

 

±

 

 0.4). Similar results
were also observed in Hepa1-6 cells (data not shown).
Taken together, these results show that the increase on
hepatic infection induced by the HGF/MET signalling cor-
relates with the apoptosis protection conferred by this
ligand–receptor system to the infected cells.

 

MET inactivation leads to early apoptosis of infected cells

 

Hepatocyte growth factor activation of its receptor MET is
a prerequisite for the infection of hepatocytes with 

 

Plas-
modium

 

 sporozoites (Carrolo 

 

et al

 

., 2003). The above-
described findings show that increase on 

 

Plasmodium

 

sporozoite infection caused by MET activation correlates
with an increased level of host cell protection from apop-
tosis. Thus, we hypothesized that MET requirement for
infection could be dependent on its anti-apoptotic role in
infected host cells. HepG2 cells were transduced with a
lentivirus expressing a chimeric construct containing the
extracellular and transmembrane domains of 

 

met

 

 fused to

 

gfp

 

 sequences. The product of this construct is expressed

A
p

o
p

to
ti

c 
ce

lls
 (

%
)

Control Infected cells

A B

60 

50 

40 

30 

20 

10 

0

 

Fig. 1.

 

Infected cells are more resistant to apo-
ptosis. HepG2 cells were incubated with 

 

P. berghei

 

 sporozoites and treated 18 h later 
with TNF and Cycloheximide to induce 
apoptosis.
A. Visualization of an infected cell with 

 

P. berghei

 

 (green) not showing apoptotic signs 
and surrounded by apoptotic non-infected cells, 
as detected by DAPI in blue and anti-active 
caspase-3 in red.
B. Apoptosis quantification by nuclear morphol-
ogy detected by DAPI of HepG2 cells infected 
with 

 

P. berghei

 

 sporozoites (live or heat-killed, 
as control) 6 h after apoptosis induction with 
TNF and Cycloheximide.
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at the plasma membrane and binds HGF but it is unable
to transduce signals into the cell since it lacks the kinase
domain and the tyrosines acting as docking sites for intra-
cellular substrates. This chimeric receptor thus behaves
as a dominant interfering protein since it dimerizes with
endogenous MET and prevents its activation (Giordano

 

et al

 

., 2002). As control, HepG2 cells were transduced
with a lentivirus expressing GFP only. Since cells trans-
duced with these lentivirus (control or MET-GFP) become
fluorescent, we were able to determine the infection level
of single-transduced cells 24 h after infection (Fig. 3B). As
already reported (Carrolo 

 

et al

 

., 2003), no individual cells
transduced with MET-GFP were found infected with 

 

Plas-
modium

 

 24 h later (Fig. 3B). The results show that MET
inactivation correlates with a significant increase of apo-
ptosis in infected cells (21% in control and 68% in infected
MET-GFP transduced cells), as observed by nuclear mor-
phology 6 h post infection detected by DAPI (Fig. 3A and
C). Presumably, all infected cells undergo apoptosis in the
absence of a functional MET receptor within 24 h, as no
infected cells are found at this time (Fig. 3B). No increase
in apoptosis of non-infected transduced cells was found.

To definitively assess the role of MET anti-apoptotic
activity we abrogated MET expression by interference
RNA. Lentivirus engineered to express MET-specific
siRNA oligos were used to transduce HepG2 cells.
Expression of MET siRNA, but not of a control sequence,
caused a reduction of MET expression, as detected by
Western blot (Fig. 3D). As expected, the 

 

P. berghei

 

 sporo-
zoite infection rate of these cells was severely decreased
as compared with cells infected with lentivirus expressing
the control siRNA (Fig. 3E). Moreover, sporozoite infec-
tion in MET siRNA expressing cells was inversely propor-

tional to the level of apoptosis, as measured by nuclear
morphology detected by DAPI 6 h after infection (Fig. 3F).
Altogether, these results show that MET-dependency for

 

Plasmodium

 

 sporozoite infection is highly dependent on
its anti-apoptotic activity.

 

HGF/MET signalling protects infected host cells via 
activation of PI3-kinase pathway

 

In several cellular models, HGF has a strong anti-apop-
totic activity mediated by PI3-kinase/Akt signal transduc-
tion pathway (Webster and Anwer, 2001; Xiao 

 

et al

 

.,
2001), since it is almost completely inhibited by the spe-
cific PI3-kinase inhibitor LY294002. An additional anti-
apoptotic role is played by MAPK, although the protective
effect mediated by this pathway is less marked than that
of PI3-kinase/Akt (Xiao 

 

et al

 

., 2001). Thus, we sought to
determine the role of each of these pathways on hepato-
cyte infection by 

 

P. berghei

 

 sporozoites. The results show
that inhibition of either PI3-kinase/Akt or MAPK pathways
(by LY294002 and PD98059 respectively) induced a
decrease in infection. However, the decrease was more
marked with LY294002 (Fig. 4A). When we quantified
apoptosis on the same infection experiment (6 h post
infection), we detected a significant increase in the level
of apoptosis only in cells treated with the PI3-kinase/Akt
inhibitor LY294002, as detected by DAPI (Fig. 4B) or
active caspase-3 (control 

 

=

 

 8.5 

 

±

 

 2.1; LY294002 

 

=

 

 13.5 

 

±

 

3.5; PD 

 

=

 

 21.5 

 

±

 

 10.0). These results show that, although
both PI3-kinase and MAPK pathways play a role in infec-
tion, only the PI3-kinase/Akt pathway seems to play a
critical role in 

 

Plasmodium

 

 infection by protecting host
cells from apoptosis.
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Fig. 2.

 

Increased infection correlates with MET 
activation and protection of infected cells from 
apoptosis.
A, B. HepG2 cells were incubated or not 
(control) with HGF 1 h prior to infection with 

 

P. berghei

 

 sporozoites. (A) Infection was quan-
tified 24 h post infection by counting the number 
of infected cells (EEFs). (B) Apoptosis was 
quantified 6 h post infection by nuclear mor-
phology by DAPI staining.
C, D. HepG2 cells were incubated with the ago-
nist anti-MET monoclonal antibodies DN-30 or 
DO-24 followed by addition of 

 

P. berghei

 

 sporo-
zoites. The same procedure (as in A, B) was 
followed for quantification of infection and 
apoptosis.
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Fig. 3.

 

MET inactivation leads to early apoptosis of infected cells.
A, B, C. HepG2 cells were transduced with lentivirus expressing MET-GFP or GFP alone (control). Cells were then seeded on glass coverslips 
24 h prior to addition of 

 

P. berghei

 

 sporozoites. (A) Right panel represents an infected cell expressing MET-GFP (green) 6 h after infection with 
a parasite starting to develop (red) and showing signs of apoptosis as indicated by the nuclear morphology stained by DAPI (blue). Left panel 
represents an infected cell not expressing MET-GFP and not showing apoptotic features. (B) Infection was quantified 24 h post infection by 
counting the number of infected cells (EEFs). (C) Apoptosis was quantified 6 h post infection by nuclear morphology by DAPI staining.
D, E, F. HepG2 cells were transduced with lentivirus expressing MET siRNA oligos or an unrelated oligo (control) (D) Western blot analysis of 
MET in HepG2 cells transduced with lentiviruses expressing control oligos (left) or MET siRNA oligos (right) to knockdown 

 

met

 

. (E, F) Infection 
and apoptosis were quantified as before. All 

 

P-values £ 0.001.
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Fig. 4. Inhibition of PI3-kinase pathway leads 
to a decrease in infection both in vitro and in 
vivo.
A, B. HepG2 cells were pretreated with 
LY294002 or PD98059 for 1 h followed by 
washes and infection with P. berghei sporozoi-
tes. Control cells were not incubated with either 
LY294002 or PD98059. (A) Infection was quan-
tified 24 h post infection by counting the number 
of infected cells (EEFs) (*PLY £ 0.001; 
PPD = 0.003). (B) Apoptosis was quantified 6 h 
post infection by nuclear morphology by DAPI 
staining (*PLY = 0.002; PPD = 0.09).
C. Mice were injected or not (control) with 
LY294002 30 min prior to infection with 
P. berghei sporozoites. Livers from both groups 
were removed 40 h post infection and real-time 
RT-PCR performed with parasite-specific prim-
ers to quantify liver infection (*P < 0.005).
D. Mice were injected or not (control) with 
LY294002 or DMSO, 30 min prior to infection 
with P. berghei sporozoites. Livers were 
extracted 3 h post infection and phospho-
Ser473-Akt and total Akt were quantified. ni, not 
infected.
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Inhibition of PI3-kinase pathway decreases Plasmodium 
infection in vivo

To determine whether the above-described finding
observed in vitro could be extrapolated to a natural infec-
tion in vivo, we treated mice with the PI3-kinase inhibitor
LY294002, that is also active in in vivo models (Hu et al.,
2002; Semba et al., 2002). The results show that in vivo
inhibition of the PI3-kinase pathway led to a reduced liver
infection by Plasmodium sporozoites (Fig. 4C). Western
blot analysis was also performed to confirm that the inhib-
itory treatment was targeting the PI3-kinase pathway. As
shown in Fig. 4D, the phosphorylation of AKT was
reduced in LY294002-treated animals. Taken together, our
in vitro and in vivo results reveal that the anti-apoptotic
effect exerted by HGF/MET signalling through activation
of the PI3-Kinase/Akt pathway is crucial for the success
of a malaria infection.

Discussion

On entering their host, Plasmodium sporozoites migrate
directly to the liver. Once there, they migrate through sev-
eral hepatocytes by breaching their plasma membranes
before infecting a final one surrounded by a parasito-
phorous vacuole where the intrahepatic form of the para-
site grows and multiplies (Mota et al., 2001). Although
during this period there is an extensive parasite multipli-
cation (each parasite gives rise to 10–30 thousand new
parasites in 2–10 days, depending on the parasite spe-
cies), not much is known about its requirements and the
strategies used to survive and to accomplish a successful
development. It is known that intracellular pathogens have
developed powerful abilities to manipulate host cell func-
tions that benefit the pathogen (Sibley, 2004). In particular,
it seems that many pathogens have evolved to exploit host
cell machinery involved in normal cell proliferation, devel-
opment and cell death (apoptosis) to their own advantage
(Blaho, 2003). The results presented in this report show
that P. berghei sporozoites are not an exception and
require an active process of inhibition of host cell apopto-
sis in order to reach the next infective stage. However,
Plasmodium sporozoites seem to use a unique feature
since they take advantage of a host molecule not secreted
by the infected cell but by neighbouring ones, previously
traversed by the parasite. Whether this is the solely mech-
anism used by the parasite to avoid host cell apoptosis
remains unknown.

Our results also show that PI3-kinase activation is
important for the survival of the infected cell. The anti-
apoptotic effect mediated by HGF uses this signal trans-
duction pathway. However, we cannot exclude that the
infection inhibition observed both in vitro and in vivo by
the specific PI3-kinase inhibitor could be due to PI3-

kinase mediated survival signals other than those gener-
ated through HGF/MET signalling.

We have previously shown that HGF and its receptor
are required for a malaria hepatic infection and that host
cell actin cytoskeleton remodelling is one of the causes
of such requirement (Carrolo et al., 2003). In fact, we have
observed that pretreatment of host cells with HGF abro-
gates the negative effect that cytochalasin-D has on infec-
tion. This strongly suggests that HGF/MET signalling
effect on infection involves the host cell actin cytoskeleton
reorganization (Carrolo et al., 2003). We now report that
part of HGF/MET activity on infection is also due to pre-
vention of infected host cell apoptosis, a crucial require-
ment to elicit the full development of the parasite. Upon
HGF stimulation, MET mediates the coordinated execu-
tion of multiple cellular processes. Thus, it is likely that
many of these processes might play a role during the
development of Plasmodium sporozoites inside cells. It is
also likely that apoptosis protection and actin reorganiza-
tion are linked. In fact, studies in bacteria have demon-
strated that several bacteria interfere with the fate of host
cells through their activity on Rho GTPases, also favour-
ing survival or death depending on their needs (Fiorentini
et al., 2003).

Recently, a protein called SPECT (sporozoite micron-
eme protein essential for cell traversal) was characterized
in one of the secretory organs of sporozoites, the micron-
emes (Ishino et al., 2004). Transgenic parasites lacking
this protein do not migrate through cells in vitro and show
a strong reduction of infectivity in vivo, indicating that
migration through host cells is required to establish a
successful infection in the host. However, these results
appear to contradict our hypothesis that migration through
cells leads to HGF secretion required for infection, as they
are able to infect host cells in vitro without previous migra-
tion through cells. Therefore, they would not induce host
cells to produce HGF and infection would be inhibited. The
reason for this apparent discrepancy may be found in the
particular characteristics of the in vitro cell system used
for infection. The hepatoma cell line (HepG2 cells) pro-
duces constitutively HGF and other factors that induce a
basal level of activation of MET receptor (Conrotto et al.,
2004). This is different from the conditions that sporozoites
encounter in vivo, as in resting conditions primary hepa-
tocytes do not express HGF and MET is not activated
(Matsumoto and Nakamura, 1991). These constitutive lev-
els of HGF are probably enough to support sporozoite
infection at a basal level and therefore the additional HGF
induced by migration would not be required.

Hepatocyte infection by Plasmodium sporozoites
begins by traversing several hepatocytes disrupting their
plasma membranes. This process induces the activation
of sporozoite exocytosis (Mota et al., 2002) and the secre-
tion of HGF from hepatocytes (Carrolo et al., 2003). HGF



608 P. Leirião et al.

© 2005 Blackwell Publishing Ltd, Cellular Microbiology, 7, 603–609

binds to its receptor (MET) in neighbour hepatocytes, and
activates signal transduction pathways that make them
susceptible for infection (Carrolo et al., 2003). Inhibition of
HGF/MET signalling leads to an increase of infected host
cell apoptosis during early stages of intrahepatic parasite
development, thus decreasing the success of infection.

Development of Plasmodium sporozoites inside hepa-
tocytes is the first obligatory step in a mammalian host
and it is decisive for the success of a malaria infection.
Thus, the study of parasite requirements to achieve the
next infective stage is an effective strategy for any form of
early intervention.

Experimental procedures

Cells and parasites

HepG2 or Hepa1-6 cells were maintained in DMEM 10% FCS,
1% penicillin/streptomycin and 1 mM glutamine. P. berghei ANKA
sporozoites were obtained from dissection of infected Anopheles
stephensi mosquito salivary glands.

Sporozoite infection

Plasmodium berghei sporozoites (3 ¥ 104) were added to mono-
layers of 2 ¥ 105 HepG2 or Hepa1-6 cells for 6 or 24 h before
fixation and staining with anti-EEF mAb (2E6) (Tsuji et al., 1994),
followed by anti-mouse secondary antibodies. Infection was
quantified by counting the number of infected cells (EEFs, exo-
erythrocytic forms) per coverslip. The study of the effect of differ-
ent reagents on infection were performed in distinct ways: (i) HGF
(500 ng ml-1) was added to cells 1 h prior to infection; (ii) The
agonist antibodies DN-30 and DO-24 (1 mg ml-1) were added to
cells 90 min post infection; and (iii) LY294002 (25 mM) and
PD98059 (30 mM) were added to cells 1 h prior to infection and
followed by washes before addition of P. berghei sporozoites.

Apoptosis induction and detection assays

For the apoptosis induction assays, HepG2 or Hepa1-6 cells
were treated with TNF (10 ng ml-1, R&D Systems) and Cyclohex-
imide (10 mg ml-1, Sigma) or with UV stimuli, in order to induce
apoptosis, 18 h post infection with P. berghei sporozoites. Heat-
killed parasites (30 min at 56∞C) were used as control. Six hours
later cells were fixed and stained for parasite detection and
apoptosis quantification. Three distinct fluorescent methods for
apoptosis detection were used, based on different features of
apoptosis: (i) TUNEL (Roche), which detects DNA breaks; (ii)
nuclear morphology by DAPI staining; (iii) active caspase-3
detection (Promega). During infections with P. berghei sporozoi-
tes, apoptosis was detected 6 h post infection. The effect of
different reagents on infected cell apoptosis was performed as
described above.

Hepatocyte cell lines transfection and MET modulation

Vectors collected from 24 h supernatants of transfected Phoenix
cells were used to infect HepG2 cells. Infected cells were

selected with G418 (1 mg ml-1) and the resistant cells were
pooled and examined by Western blot.

MET expression was down-modulated in HepG2 cells by trans-
duction with the lentiviral vector PCCLsin.PPT.hPGK.GFP.Wpre,
used to express siRNA for MET or control siRNA (under the
transcriptional control of the H1 promoter). The oligonucleotides
used were as follow: for MET, 5¢- GATCCCCGTCATAGGAAGA
GGGCATTTTCAAGAGAAATGCCCTCTTCCTATGACTTTTTGG
AAA-3¢ and 5¢-AGCTTTTCCAAAAAGTCATAGGAAGAGGGCAT
TTCTCTTGAAAATGCCCTCTTCCTATGACGGG-3¢; for the con-
trol 5¢-GATCCCCCTCATAGGAAGACCCCATTTTCAAGAGAAA
TGGTGGTCTTCCTATGACTTTTTGGAAA-3¢ and 5¢-AGCTTTT
CCAAAAACTCATAGGAAGACCCCATTTCTCTTGAAAATGGGG
TCTTCCTATGAGGGG-3¢. Lentivirus production and infection of
HepG2 cells were performed as previously described (Vigna and
Naldini, 2000).

Quantification of in vivo infection by real-time PCR and 
Akt Western blot

Mice were injected intraperitonealy with 2.5 mg of LY294002
(Calbiochem) in DMSO. The control group was injected with the
same volume of DMSO. Thirty minutes later, mice were infected
by intravenous injection with P. berghei (5 ¥ 104) sporozoites.
Real-time PCR using primers specific for P. berghei 18S rRNA
(5¢-AAGCATTAAATAAAGCGAATACATCCTTAC-3¢ and 5¢-GGAG
ATTGGTTTTGACGTTTATGTG-3¢) was used for quantification of
parasite load in the livers of mice 40 h after challenge, according
to the method developed to P. yoelii infections (Bruna-Romero
et al., 2001).

Mice were injected or not (control) with LY294002 or DMSO
30 min prior to infection with P. berghei sporozoites. 3 h post
infection, livers were extracted and SDS-PAGE gels of cell lysates
were probed with polyclonal antiphospho-Akt (phospho-Ser-473)
and total Akt antibodies (Cell Signalling). Detection was per-
formed by using enhanced chemiluminescence (Amersham
International).
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