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Abstract 

Solar energy exploitation via photovoltaic (PV) technology has become the main route to 

achieve sustainable development. The emerging perovskite-based PV is considered one of the 

most promising alternative technologies to the conventional Silicon solar cells, since perovskites 

are a class of semiconductor materials with quite favourable optoelectronic proprieties that allow 

attaining high sunlight-to-electricity conversion efficiency. 

The main objective of this work is to improve the performance of perovskite solar cells (PSCs) 

using low-cost techniques and materials. Here, the perovskite (CH3NH3PbI3) is produced as the 

active layer, Titania (TiO2) and copper thiocyanate (CuSCN) are used as the electrons and holes 

transport layers, respectively. The production of homogeneous films is performed via spin-

coating without atmospheric control, which is a great challenge in this area. In addition, the use 

of the inexpensive CuSCN hole transporter is developed, since it is 200 times less expensive than 

the conventionally-used Spiro-OMeTAD. This thesis was also investigated the crystallinity and 

quality of the perovskite film by a range of characterization tools such as XRD, SEM-EDS, AFM 

and UV-visible spectroscopy; as well as the influence of moisture on the active layer. 

 The optimization of the fabrication methods was performed successfully, as demonstrated 

by the achievement of perovskite films with an absorbance of approximately 90-95% and large 

grain sizes of 333 ± 94 nm, allowing a PSC efficiency of 6.35%, with VOC of 0.89V, JSC of 15.46 

mA/cm2, FF of 0.46, RSH of 2516 Ω and RS of 356 Ω. 

Keywords: Photovoltaic technology, solution-processed perovskite solar cell, MAPbI3, spin-coating, 

CuSCN, J-V curves  
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Resumo 

A exploração da energia solar através da tecnologia fotovoltaica (PV) tornou-se o principal 

meio para alcançar o desenvolvimento sustentável. Uma alternativa às convencionais células 

solares de silício é a tecnologia PV baseada em perovskite, já que esta classe de materiais 

semicondutores oferece propriedades optoeletrônicas bastante favoráveis que permitem obter 

uma elevada eficiência de conversão de luz solar em eletricidade. 

O principal objetivo deste trabalho é melhorar o desempenho das células solares de perovskite 

(PSCs) usando técnicas e materiais de baixo custo. Deste modo, a perovskite (CH3NH3PbI3) é 

produzida como camada ativa, a titânia (TiO2) e o tiocianato de cobre (CuSCN) assumem o papel 

de camada de transporte de eletrões e de buracos, respetivamente. A produção de filmes 

homogéneos é realizada via spin-coating, sem controle atmosférico o que se trata de um grande 

desafio nesta área. Além disso, foi desenvolvido o CuSCN como transportador de buracos, uma 

vez que este é 200 vezes mais barato que o convencionalmente usado Spiro-OMeTAD. Nesta tese 

também foi estudada a cristalinidade e a qualidade do filme de perovskite através de uma série de 

ferramentas de caraterização como XRD, SEM-EDS, AFM e espectroscopia UV-visível; bem 

como a influência da humidade na camada ativa. 

A otimização dos métodos de fabricação foi realizada com sucesso, como demonstrado pela 

obtenção de filmes de perovskite com uma absorvância de aproximadamente 90-95% e tamanho 

de grão de 333 ± 94 nm, conferindo uma eficiência de 6.35%, VOC de 0.89V, JSC de 15.46 mA/cm2, 

FF de 0.46, RSH de 2516 Ω e RS de 356 Ω. 

 

Palavra-Chave: Tecnologia fotovoltaica, células solares de perovskite produzidas por 

solução, MAPbI3, spin-coating, CuSCN, Curvas J-V 
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Motivation and Objectives 

 Solar energy has a key role in ensuring a sustainable development since it has the least 

impact in the environment. In addition to this, the sunlight is one of the most cleaned energy 

sources which contributes to this sustainability. 

 Over the years, silicon-based cells have been used for industrial purposes due to their 

achieving efficiencies of 26%, especially crystalline silicon [1]. However, silicon-based 

photovoltaics cells are a high expense of critical processing techniques as it requires high 

temperature or vacuum [2]. Meanwhile, the technology based on thin films and simple deposition 

methods promise low production cost and semiconductor with high quality.  

A new class of thin film SCs which has drawn considerable attention and interest to the 

scientific community is the perovskite SCs. They were introduced to literature in 2009 with a low 

power conversion of only 3.8% [3]. The interest in this SCs was triggered in 2012 when got 9,7% 

with a stability of 500h [4]. This type of SCs has a great efficiency compared to the existing 

organic and dye-sensitized solar cells, reaching top position (22,7%) in 2017. This result arises 

from its high charge mobility, broadband absorption [5], substantial improvement Power 

Conversion Efficiency (PCE). 

The aim of this work is to improve the performance of perovskite solar cells using TiO2 as 

Electron Transport Layer (ETL), CH3NH3PbI3 as an active layer and CuSCN as Hole Transport 

Layer (HTL). Besides, to get a better understanding of the important factors on the SC’s 

fabrication using low cost, simple and fast production methods. In order to do that, the influence 

of different parameters was studied, as described below: 

• ETL and HTL fabrication, using different conventional solutions for TiO2; the influence 

of planar and mesoporous architecture; the impact of Li+ doping; using different solvents 

in CuSCN as di-n-propyl sulfide and dipropyl sulfide and the influence of filtering this 

solution and its amount deposited. The importance of these changes on the solar cell’s 

performance as well as transmittance and reflectance spectrum analysis were conducted. 

• Perovskite layer fabrication and optimization: different ways to anneal (hotplate and tube 

furnace), the influence of filtering the perovskite solution and loading time of perovskite. 

To observe the effect of these changes on the SC’s performance, SEM images, EDS, XRD 

and absorbance spectrum analysis were performed.  

• Solar cells fabrication and characterization. Using a Sun Simulator, the photovoltaic 

response was obtained, and the main solar cells parameters were calculated. XRD and 

absorbance spectrum were completed to characterize the solar cell structure morphology 

and composition, while the layer thicknesses were measured by cross-section SEM 

image. 
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1 Introduction 

In the last decades, solar energy has been playing an important role to ensure a sustainable 

development due to being an alternative source to traditional resources such as coal and fossil 

fuels. Recent studies indicate that this will account for 35% of global electricity generation 

capacity by 2040 [6]. In perspective, solar cell (SC) optimization is one of the best approaches 

for the development and conversion of solar energy (electromagnetic radiation) into electric 

energy based of photovoltaic effect (PV). 

Light absorption, charge separation, charge transport, and charge collection are fundamental 

for photovoltaic process (Figure 1) [4]. In the conversion process, the incident light with energy 

equal to or higher than the band gap creates electron-hole pair into free electric charges which are 

separated within the device by the electric field of the junction, producing an external electric 

current (I-V curve). 

Solar cells are divided in three generations according to their stages of development. The first 

generation of solar cells is made of silicon crystal. Crystalline silicon SCs are present in 90% of 

commercial photovoltaic devices [7]. The second generation of SCs consists of thin films 

materials, such as CdTe, CIGS or GaAs [4]. Many of these materials are too expensive (GaAs), 

too toxic (CdTe) [8], rare or don’t allow low fabrication temperatures. The third generation, 

another thin film technology consists of organic, dye-sensitized, polymer and perovskite solar 

cells [9], [10].  

1.1 Perovskite Solar cell 

1.1.1 Crystal structure  

Perovskites have the common chemical formula ABX3, whose structure and physical 

properties were first described by Weber in 1978 [4]. A and B are cations which reside in the 

corner and the body centre of the pseudocubic unit cell and X is the anion which occupies the 

face centre (Figure 2) [11]. The larger cation A is considered organic, which is generally 

methylammonium (CH3NH3
+ or MA). Ethylammonium and formamidinium (FA) also offer 

Figure 1 | A solar cell: basic device for solar energy conversion. 
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excellent results. The anion X is a halogen, normally iodide (I-), Br- and Cl- are also used in 

perovskites as well as mixed halide materials. For cation B, Pb is universally considered for 

stabilization and efficiency in solar cells although Sn2+ and Ge2+ can also be used due to being in 

the same group as Pb2+. Their performance is poor compared to Pb efficiency [11], [12]. It should 

be noted that cation A is the most important component of the perovskite molecule, determining 

the structure and the crystal size. Thus, it influences directly the perovskite’s stability and its 

optoelectronic properties [7].  

The crystalline structure of perovskite can grow in the cubic, tetragonal or orthorhombic 

phases depending on annealing temperature [13]. The symmetry of the perovskite is proportional 

with an increase of the temperature: CH3NH3PbI3 (MAPbI3) exhibits the orthorhombic phase 

below room temperature (RT), and from RT it is observed a tetragonal configuration [9].  

1.1.2 Perovskite properties  

The materials of the perovskite family present multiple electronic properties, including 

thermoelectric, piezoelectric, superconductivity and semiconductivity, depending on the type of 

material considered. [9]. The MAPbI3 exhibits unique features such as strong absorption over the 

visible and near-infrared spectra [7],[14], uplifted mobilities and diffusion lengths in the µm range 

[7], lower surface recombination rate [9] appropriate band gap (1,4 – 2,2 eV [15]) and solution 

processability [16]. Despite these favourable properties, PSCs have negative aspects such as 

photocurrent hysteresis [17] and some problems of toxicity, due to lead being the major 

constituent of all high performing of PSCs to date, thus raising issues during device’s fabrication, 

deployment and disposal [14], [18]. 

Another critical disadvantage of PSCs is their sensitivity to moisture, both during processing 

and their useful lifetime [19]. This degradation can occur essentially because MA cation has a 

weak connection via hydrogen bonds with lead and iodide. Therefore, a water molecule can break 

these bonds or even a low moisture content can result in the decomposition of PbI2 [20]. However, 

there have been several debates about it. When the perovskite is exposed to very low levels of 

moisture, it is possible to be beneficial. On the other hand, long term contact to air is harmful to 

SCs performance.[21]  Most scientific articles states that PSCs are manufactured under highly 

controlled atmospheric conditions, typically with a glove box, in order to maintain acceptable 

Figure 2 | Crystal structure of organic-inorganic halide perovskites ABX3 (MAPbI3) [8] 
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atmospheric conditions and achieve high performance. The capacity to produce devices at a non-

controllable atmospheric humidity represents a step forward for the eventual commercialization 

[19].  

1.1.3 Perovskite film preparation  

Fabricating perovskite films with better quality is of crucial importance in order to achieve 

superior efficiencies. To obtain good optoelectronic properties in perovskite films, it is necessary 

to have a control of the crystallinity which is related to the morphological development. 

Furthermore, morphology has influence on the charge dissociation, diffusion lengths and charge 

recombination dynamics in the resulting perovskite layer [22]. The morphological characteristics 

depend on some important factors, such as the method of perovskite deposition on the substrate, 

annealing temperature, duration for which temperature is maintained, atmospheric conditions 

during film growth, initial material proportion and solvents/additives used [9]. The perovskite 

layer is expected to possess efficient surface coverage and large grain size to obtain high 

performance[23]. In contrast, inhomogeneous perovskite layer leads to pinhole formation and 

incomplete surface coverage, resulting in increased shunting paths and inefficient light absorption 

in devices [24]. In order to dominate the described challenges, researchers have introduced some 

scientific techniques, from hot-casting [25], solvent engineering [26] to anti-solvent [27]. These 

methods are based on two points of view, inducing rapid homogenous nucleation followed by 

growth of crystalline perovskite (hot casting and antisolvent methods), and changes in the 

intermediate phases delays the crystallization of perovskite (solvent engineering) [28]. In adition, 

various methods for PSCs fabrication techniques have been reported such as spin-coating (used 

in this work), spray coating, inkjet printing, vacuum sublimation, doctor blade printing and slot-

die coating methods [16].  

 Spin coating 

Spin-coating, one of the most economical film production methods, is widely used in PSC 

processed by solution [26]. In this case, it is important to adjust some parameters such as 

temperature, solution wettability and viscosity, spinning rate and time [4]. In addition, by 

following this method, it is possible to achieve better morphology while simultaneously being 

simple, cost-effective and environmentally conscious [24]. However, it requires a controlled 

procedure. The anti-solvent (like toluene, diethyl ether or chlorobenzene [19]) induces excessive 

saturation of the perovskite solution and it is generally dripped into the centre of the film during 

spin-coating. Thus, it results in a radial supersaturation gradient and, consequently, a spatially 

inhomogeneous nucleation of the perovskite layer, leading to defects in the film [29]. Besides 

that, the evaporation during spinning immediately induces the formation of well-crystallized 

perovskite materials due to the strong ionic interaction between metal cations and halogen anions 

[26]. 
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1.1.4  Perovskite solar cell architecture  

The general layer structure for PSCs contains a transparent conductive oxide – typically 

Fluorine-doped Tin Oxide (FTO) or Indium Tin Oxide (ITO) – over a glass substrate, an electron 

transport layer (ETL), an active material (perovskite), a hole transport layer and lastly a metallic 

electrode. The metallic layer and TCO work as a conducting electrode, while HTL and ETL serve 

as an interfacial modifier. The perovskite material acts as a light absorber and transports the 

charge till their arrival at the respective electrodes [9]. The metal electrodes are usually made of 

gold for better bonding with the other layers, although other non-precious metals have also been 

explored (nickel, aluminium or silver) [30].  

In some cases, there are variations in the regular structure of PSCs, some of which were 

considered free of ETM (and HTM) and PSCs only free of HTM [6]. Moreover, two main 

architectures are commonly used for PSCs: planar (Figure 3 a)) and mesoscopic (Figure 3 b)). 

Furthermore, the so-called inverted device structure (Figure 3c)) designates an architecture in 

which each layer is fabricated in the reverse order of the "normal" assembly, and thereby the 

device is illuminated through the HTM layer. [31]. 

Figure 3 | Schematics illustration of perovskite solar cells in a) planar, b) mesoscopic and c) inverted 

architectures [9]. 

 Electron and hole transport material 

For PSCs to function properly, the energy levels of each material layer need to be carefully 

planned. This way, to realize an efficient hole and electron transport and extraction, it is important 

to have a valence band (VB) of HTMs higher than VB of perovskite materials and a conduction 

band (CB) of ETMs lower than CB of perovskite materials [24]. Figure 4 shows the diagram of 

the energy levels of the PSC device: FTO / TiO2 / CH3NH3PbI3 / CuSCN / Au and their respective 

generation and transport of charges. Based on perovskite and energy level alignment, the electrons 

can be transferred to the conduction band of TiO2, and the holes can be collected by HTM 

(CuSCN), then passed to the counter electrode. 

The ETL is a key component of the PSCs and must provide efficient extraction and collection 

of electrons, minimizing charge recombination at interfaces to ensure high performance [32]. 

There are some electron transport materials (ETMs) such as ZnO, ZrO and TiO2 [15]. The 

previous being the most used (in compact and mesoporous architecture) due to being transparent 

to visible light, having low absorption and high refractive indices [6]. However, the electron 

mobility of TiO2 is much lower than the electron mobility in the perovskite layer and the electron 
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transport length in the mesoporous layer is higher than in the compact layer of TiO2 [33]. The 

disadvantage of TiO2 is that a high processing temperature (> 400 °C) is required, which results 

in the impossibility of using low-cost, lightweight and flexible plastic substrates because they are 

unstable at high temperatures [34]. Furthermore, using a mesoporous TiO2 layer (mp:TiO2) 

enhances the performance of the photovoltaic devices as it increases the electron injection rate 

and the charge carrier lifetime and retards the electron–hole recombination [35],[36]. It was also 

demonstrated that mp:TiO2 can be n-doped in a facile and effective way by a similar lithium salt 

surface treatment, facilitating electron injection and transport in the mp:TiO2 [37]. 

The main function of HTL is to prevent direct contact between the perovskite and the metallic 

contact, which minimizes charge recombination and prevents degradation at the metal-perovskite 

interface either to extract perovskite positive charges (holes) and to transport them to the upper 

electrode [7]. The most common material used for the HTL layer is the Spiro-OMeTAD, which 

is very expensive [3]. Other organic and inorganic materials such as PTTA, CuI, NiO, CuSCN 

are also employed [15]. However, the cost of these organic HTMs is high for large scale 

applications and most of the solvents used for this layer have high solubility with the perovskite 

layer which causes their degradation [38]. 

Inorganic HTMs are a class of compounds with potentially greater stability than organic 

HTMs. From the inorganic materials examined to date, CuI, CuSCN and NiO exhibit the most 

promising performances with 7.5, 18.0 and 14.9% of PCE reported, respectively [20]. Regarding 

CuSCN, it is an abundant and a p-type semiconductor with high hole mobility, good thermal 

stability and a well-aligned working function. It is doped intrinsically and transmits light through 

the spectral region of visible and near-infrared [24]. In addition, it can be deposited by processing 

in solution at low temperature, making it compatible with flexible substrates [39]. 

  

Figure 4 | a) Energy level diagram of each material layer considered in this work b) scmatics of PSC with 

mesopouros layer. Charge generattion and transport process are illustrated. Adapted from [3], [11], [58] . 
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2 Experimental 

2.1 Device Fabrication 

The following sections describe the perovskite solar cells’ manufacturing process performed 

during this work. Fabrication of PSC is divided by etching FTO, cleaning the glass followed by 

deposition of: ETM, active layer, HTM and gold contacts. All the depositions, except the last one, 

were carried by spin-coating. The material information used in this work is presented in Table 12 

from section B of Appendices. All the processes were done without a glove box and therefore 

there is no control of moisture.  

2.1.1 Substrate preparation and ETL deposition  

The fluorine-doped tin oxide (FTO) coated glass substrates (100 x 100 x 2.2 mm3), with 25 

Ω/sq and 80-85% of transmittance, cut into 2.5 x 2.5 cm2, were selectively etched with Zinc 

powder and HCl with a cotton stick. After that, the FTO substrates were cleaned in an ultrasonic 

bath with detergent, water, acetone, isopropyl alcohol and ethanol in this order, for 15 min each. 

Then the substrates were dried with nitrogen flow and further cleaned with ultraviolet ozone 

treatment with temperature (80ºC) for 15 min to eliminate any organic contaminants and moisture. 

For the ETL, two precursors were studied for the compact TiO2 layer (c:TiO2), detailed in 

section C.1 from Appendices. 150 µL were dropped in the subtract and spun at 4000 rpm (TiO2 

(1)) and 3000 rpm (TiO2 (2)) for 35 s [33], respectively. After the spin-coating, the c:TiO2 were 

dried at 120 °C for 10 min and then annealed at 500 °C, for 30 min and left to cool down to RT. 

Subsequently, a mesoporous TiO2 layer (mp:TiO2) was deposited, dropping 150 µL and spinning 

for 20 s at 4000 rpm, using a 150 mg/mL solution of 30 NRD TiO2 paste (Dyesol) in EtOH, dried 

at 100 ºC for 10 min and then sintered at 450 °C for 30 min and left to cool down to RT. 

For Li+ treatment of the mesoporous TiO2 scaffold, a 150 µL of LI-TFSI solution in 

acetonitrile (10mg/mL) was spin coated at 3000 rpm for 20 s after 10 s loading time, followed by 

another sintering step at 450 °C for 30 min and left to cool down to RT.  

2.1.2 Perovskite precursor solution and film preparation 

 

 

Figure 5 | Schematic illustration of perovskite deposition with a two-steps program. 
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To deposit perovskite solution (described in section C.2 from Appendices), the solution was 

filtered through a 0.2 µm syringe filter before used. Then 120 µL of solution was spin coated in 

a two-steps program at 1000 and 6000 rpm for 10 and 20 s respectively, with 30 s of loading time. 

During the second step, 100 µL of chlorobenzene were poured on the spinning substrate 10 s prior 

to the end of the program. The perovskite layers were annealed using an annealing program from 

RT to 90 ºC for 40 min and remained 15 min in a tube furnace with nitrogen flow. During the 

deposition it is important to keep the solution in the hot plate with stirring so the temperature does 

not decrease. 

2.1.3 Hole transporting layer and top electrode 

After the perovskite annealing, the substrates were cooled down for few minutes. Two 

solutions were used and are described in section C.3 from Appendices. For first and second 

solutions,120 µL of filtered solution were droped, and spun at 4000 rpm for 30 s with no post heat 

treatment applied. Finally, using acetate masks fabricated by LASER (Universal LASER 

Systems), the counter electrode was deposited by electron-beam evaporation under a high vacuum 

with a thickness between 60-80 nm and an active area of 0.07 cm2.   

2.2 Characterization 

2.2.1 SEM-EDS  

The top-surface and cross-sectional images were examined by scanning electron microscopy 

(SEM) using a Carl Zeiss Auriga crossbeam (SEM-FIB) workstation instrument equipped with 

an Oxfotd Intruments Aztec X-ray energy dispersive spectrometer.  

2.2.2 AFM 
The atomic force microscopy (AFM) measurements were performed in an Asylum Research 

MFP-3D Standalone operated in alternate contact mode in air (commonly known as tapping 

mode), using commercially available silicon AFM probes (Olympus AC160TS; k = 26 N/m, 

f0=300 kHz). The resulting topography were plane fitted in Igor Pro software (Wavemetrics) and 

the final images generated using Gwyddion software. 

2.2.3 XRD 
The crystal structures of the thin films were characterized with X-ray diffraction (XRD) by 

using a PANalytical X’Pert Pro X-ray diffractometer in Bragg-Brentano geometry, with a 

monochromatic Cu-Kα (λ=1.5406 Å). 

2.2.4 UV-Visible Spectroscopy 
 The ultraviolet–visible (UV–vis) absorption was measured by a UV–vis Spectrophotometer 

Shimadzu UV 3101PC by obtaining reflectance and total transmittance with a ISR-260 integrating 

sphere within a range of 300-830 nm.  

2.2.5 Electrical Characterization 
The J-V curves were measured by SS150 Reflective Solar simulator from Sciencetech by 

forward scan (ISC to VOC) under ambient conditions at RT and AM1.5G illumination conditions 

(100 mW/cm2). The SCs were characterized without encapsulating the devices. 
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3 Results and Discussion 

As discussed in the introduction, in order to obtain an efficient perovskite solar cell, it is 

necessary to study and optimize its structure and morphology, although other layers may be 

studied to understand the influence of which one in SC operation. Therefore, this chapter is 

divided into ETL and HTL characterization; perovskite layer characterization and optimizing 

perovskite solar cells and humidity influence. The main characterization realized was electrical 

proprieties once the aim of this project is to increase the PSC performance. Nevertheless, other 

characterizations were made, including morphological, structural and optical. 

3.1 ETL and HTL Optical Characterization 

In this section, HTL and ETL are optically characterized to understand its contribution in SC 

performance. ETL must have a high transmittance to enable the light going through and to achieve 

the active layer. HTL is intended to absorb little radiation to avoid wasting any light which may 

not be absorbed by perovskite and that can be reflected by the gold. Therefore, this light would 

be absorbed again by the active layer. 

Figure 6 | Transmittance spectra of differents substracts as ETL over FTO (black), a) c:TiO2 (1) and (2) with 

red and blue, respectively and b) c:TiO2 (red), adding m:TiO2 (blue) and m:TiO2 doped with Li (pink) 

deposited with the final defined conditions for solar cells fabrication as described in section Experiemtal. 

 

As said in the experimental section, two different TiO2 solutions were prepared. In this 

section, it is called TiO2 (1) for TTIP solution and TiO2 (2) for Acetylacetone solution. Figure 6 

a) and b) show the direct transmittance for the different TiO2 deposited over FTO coated glasses 

and the transmittance spectra with the addition of compact, mesoporous TiO2 and Li+ treatment 

over FTO deposited coated glasses, respectively. The substrate made with c:TiO2 (1) shows a 

lower transmittance compared with FTO and c:TiO2 (2) due to its higher reflective index relative 

to FTO (n=1.8 - 2.0 for FTO and n=2.3 for TiO2 [40]), as it is possible to see by the curves. Despite 

c:TiO2 (2) being better optically for solar cell due to its higher transmittance and small reflectance, 

a)                                   b) 
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it will not be used for ETL since when it is applied for the fabrication of solar cells this does not 

present favourable performances (Table 2 from section 3.2.2 of Results and Discussion).  

Figure 6 b) shows that transmittance decrease with the addition of m:TiO2, as expected, since 

with the deposition of this layer it is possible to observe an opaque film. However, it remains 

approximately constant if it is doped with Li+. In addition, the transmittance’s average reaches 

values of 82% which is remarkable since the transmittance remains high even with the addition 

of other layers over the glass. Further ahead it will be tested the influence of m:TiO2 and Li+ doped 

m:TiO2 in solar cells performance, an increase of efficiencies is expected. [37]. All samples 

reached a maximum transmittance close to 90 % and low parasitic absorption (close to 10 % over 

FTO coated glass) in the UV-Vis spectrum, which is desired, specifically for ETL layers since, 

before reaching the active layer, the light will pass through the glass FTO-ETL (Figure 37 from 

section D of Appendices). 

Although CuSCN is not used over FTO coated glass it is important to study this layer 

optically. Figure 7 a,b) shows the transmittance spectra for CuSCN made with different solutions. 

It is called CuSCN (1) for CuSCN dissolved in di-n-propyl sulfide and CuSCN (2) for the one 

dissolved in diethyl sulfide. No difference in absorbance can be observed for this two films, 

however, CuSCN (2) may be a better option since it has a low absorbance (i.e. high transmittance) 

and it is essential to avoid overlap with the parasitical absorption of MAPbI3 [41]. The average of 

transmittance is 85% and the absorbance reaches values between 5-10% which is notable. 

In these cases, it is not possible to rigorously determine the band gap since the films are too 

thin, making the absorbance spectrum behaviour to be mainly dominated by the glass. Thus, it 

was assumed the theoretical band gaps of 3.8 eV for TiO2, 3.3 eV for CuSCN.  

 

Figure 7 | a) Absorbance and b) Transmittance spectra of differents subtract as HTL: CuSCN (1) and (2) 

is CuSCN dissolved in di-n-propyl sulfide (red) and in diethyl sulfide (blue), respectively. CuSCN layer 

deposited as described in section Experiemtal. 

 

 

 

a)                                 b) 
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3.2 Optimization of Perovskite Solar cell 

For this section, techniques based in last works were used [42],[43] and the performance of 

PSCs was improved. Therefore, it is presented results of some SCs done in this work by 

chronological order. The batch fabricated has on average 8 samples, each of them have 8 contacts, 

usually. The J-V and P-V curve showed the best contact result of SC.  

In this section the optical and the structural characterization are presented to understand the 

contributions of which parameter on the performances of PSC. Throughout this thesis, it was 

possible to verify the improvement of the PSC quality as we were unable to get a complete work 

batch in the beginning. The relative humidity was registered for the whole batch and in the section 

3.3 of Results and Discussion, the relation between the obtained results (PCE and PSCs 

functioning) and moisture’s influence will be analysed. 

3.2.1 Hot plate vs tube furnace annealing 

In the last works already mentioned above, the hot plate was used to anneal perovskite with 

the lower part of the sample directly contacting the surface of the plate and the other side of the 

sample being directly exposed to the air. Therefore, the entire system (sample and air 

environment) is not uniform in temperature. It is important to consider that the annealing method 

is a relevant factor that may be altered to control the quality of the perovskite layer. 

In this study, PbI2 + 3CH3NH3I precursor films on TiO2/FTO/glass substrates were annealed 

both on hot plate and in a tube furnace (Figure 8). Moreover, in this case the tubular furnace is 

filled by a well-controlled temperature and it has nitrogen flow that makes an inert atmosphere. 

Figure 9 shows some visual differences between samples after annealing in a hot plate and tube 

furnace. It is possible to see some differences in colour and brightness of the SC.  

 
 

 

 

 

 

 

 

 

 

Figure 8 | Schematic of the annealing approaches. (a) hot plate. (b) tube furnace. Adapted by [44] 

Regarding the absorbance spectra (Abs = 100% - TTotal - RTotal) in Figure 10 a), no significant 

differences are shown. Both samples demonstrate a variation of absorbance that reaches values 

between 87-93%. It is also possible to observe that perovskite has a band gap close to 1.52 eV 

which is expected [3],[15]. Band gap was obtained by fitting curves on the drop zone. 
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b) 

 

 

 

 

 

 

 

 

Figure 9 | Images of the samples annealed at hotplate vs tube furnace. Films were deposit over c:TiO2 

using TTIP precursor solution. Anneal in hotplate was done for 15 at 90ºC and tube furnace was an annealing 

program at RT to 90 ºC for 40 min and remaining 15 min. 

 

The devices were also characterized using XRD (Figure 10 b)) where the results reveal, for 

both cases, the presence of (110), (112),(211), (202),(220), (310), (224) ,(314) planes at an angle 

2θ of 14,1º, 20º, 23.52º, 24.5º, 28.5º, 31.87º, 40.55º, 43.17º respectively which indicate the 

tetragonal phase of MAPbI3 marked with a full circle [45],[46],[47]. On the other hand, the peaks 

corresponding to the PbI2 phase, at 12.67° and 38.7º are marked with an empty circle [48]. In 

addition, the diffraction peaks of FTO at 26.52 and 37.75 are assigned to the (222) and (200) 

lattice planes, respectively [45] and are marked with a cardinal. These spectra demonstrate a 

higher PbI2 peak for the perovskite fabricated using the tube furnace, indicating higher degree of 

organic degradation on the perovskite film. In contrast, it is observed that perovskite film is more 

crystalline when annealed in a tube furnace since the peaks of MAPbI3 are more intense. 

 

 Before After 

Hot plate 

  

Tube furnace 

  

 

 

 

 

 

Figure 10 | a) Absorbance spectra and b) XRD for perovskite deposited over c:TiO2 using TTIP 

precursor solution in a hot plate and tube furnace. Perovskite layer was annealed in hotplate was done for 

15min at 90ºC and tube furnace was an annealing program at RT to 90 ºC for 40 min and remaining 15 min. 

a) 
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Figure 11 reveals SEM images for these two parameters. SEM images were treated by ImageJ 

software, through which 30 measurements were made and the grain size determined. Thereby, 

Perovskite film fabricated with the annealing on tube furnace and hot plate exhibit a grain size of 

287 ± 94 nm and 294 ± 92 nm, respectively. For these cases, there are only small differences 

registered. Afterwards, an electrical characterization is carried to confirm which method is the 

most indicated to achieve the expected efficiency results. 

    

Figure 11 | SEM images for perovskite deposited over c:TiO2 using TTIP precursor solution in a) a 

hot plate and b) tube furnace. Perovskite layer was annealed in hotplate was done for 15min at 90ºC and 

tube furnace was an annealing program at RT to 90ºC for 40 min and remaining 15 min. No CuSCN was 

deposited. 

The J-V and P-V measurements for the first batch of SC devices are presented in Figure 12, 

with the details of each measurement being presented in Table 1. All the parameters were 

extracted from the I-V curves of the cells and used the equations from section A of Appendices, 

to obtain the fill factor (FF), shunt resistance (RSH), series resistance (RS) and power conversion 

efficiency (PCE). The differences between them are clear: PSC in which perovskite was annealed 

in a tube furnace presents an efficiency four times higher compared with the one annealed in a 

hot plate. However, even the best result shows a low JSC and FF and a very high RS. The PSC 

annealed with the tube furnace exhibit a VOC, JSC and FF of 0.76 V, 9.63 mA/cm2 and 0.23, with 

a PCE of 1.67%. 

  
Figure 12 | a) J-V and b) P-V measurements for solar devices differentiating on anneling methode. 

Devices fabricated using a compact TiO2 using TTIP precursor solution; Perovskite layer was annealed in 

hotplate was done for 15min at 90ºC and tube furnace was a annealing program at RT to 90ºC for 40 min 

and remain 15 min. 120µL of CuSCN was droped and it is dissolved in di-n-propyl sulfide. 

b) a) 

a)                                           b) 
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Table 1 | Performance values for the data presented in Figure 12.  

 VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

Tube furnace 0.76 9.63 0.23 972 1 251 1.67 

Hot plate 0.52 3.89 0.20 1 394 2 933 0.38 

3.2.2 Using two differents TiO2 precursor solution 

The correlation between TiO2 and the crystallographic quality of the perovskite film [49],[50] 

reveals how important is the TiO2 layer to the perovskite morphology, as it is stated within the 

scientific community.  In this part of the study, it was investigated the use of two different TiO2 

precursors for development of SCs.  

Absorbance spectra shows a high absorption for booth TiO2 precursors, values between 87-

91% and a band gap of approximately 1.52 eV (it is expected since is the same as the last section). 

XRD characterization enables us to observe the peaks corresponding to the tetragonal phase of 

MAPbI3 marked with a full circle [45],[46],[47], the PbI2 peak marked with an empty circle [48], 

and also peaks regarding the FTO layer marked with a cardinal [45], both shown in Figure 38 

from section D of Appendices. These results demonstrate that optically and structurally, no 

difference may be noted. However, when the cells are electrically characterized, it becomes 

possible to see some differences.  

Figure 13 shows the J-V and P-V measurements for SCs produced though two different TiO2 

precursors with the corresponding performance values in Table 2. SC produced with compact 

TiO2 layer from TTIP precursor (1) improves all parameters, especially PCE which increased 

more than double. The extremely low JSC and FF confirms the presence of a very high RS, probably 

induced by the presence of precursor products for both c:TiO2 solutions [49]. Additionally, other 

reason for a high series resistance may be the large thickness of the TiO2 layer [47]. It needs to 

be considered the fact that TiO2 using Acetylacetone solution has a lower speed in spin-coating 

than TiO2 using TTIP and it is known that thickness decreases with the increase in speed. 

  

Figure 13 | a) J-V and b) P-V measurements for solar devices differentiating on compact ETL: c:TiO2 

using TTIP precursor solution (TiO2 (1)) and using Acetylacetone (TiO2 (2)). Perovskite layer was described 

in section Experimental. 120µL of CuSCN was dropeded and it is dissolved in di-n-propyl sulfide. 

 

a)                                           b) 
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Table 2 | Performance values for the data presented in Figure 13. 

 VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

c:TiO2 (1) 0.79 1.42 0.39 50 630 3 847 0.44 

c:TiO2 (2) 0.45 1.24 0.30 10 600 4 744 0.17 

 

3.2.3 Effect of different architectures in filtered/unfiltered 

perovskite solutions 

Until this session only the planar architecture for the PSCs was used. From here the influence 

of the different structures will be studied: planar and compact as well as the factor of doping the 

mesoporous layer with Li+.  

Theoretically, the addition of mp:TiO2 layer enhances the performance of the PSCs once it 

improves light absorption and VOC  comparing to the compact architecture [36] [35]. With lithium 

doping, an increase in SC efficiency is also expected, due to better charge collection [37]. 

Fabricated devices were done in a planar structure it was investigated the influence of the 

mesoporous TiO2 layer with and without Li+ doping to improve the device.  

Figure 14 illustrates the difference in brightness, colour and smoothness in the samples that 

were used unfiltered and filtered perovskite solutions. In the sample where the filtered solution 

was used it was observed a shining, dark and smooth surface, although there were some 

imperfections on this surface that were made during the spin-coating. Nevertheless, when the 

filtration is not performed, the film obtained is not homogenous. 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 | Images of the samples using the unfiltered and filtered solution of perovskite. The Perovskite 

was deposited over mesoscopic architecture with Li+ doping. The Perovskite layer was annealed as described 

in section Experimental. 120µL of CuSCN was dropped and it is dissolved in di-n-propyl sulfide. 

 

 

 

 Before After 

Unfiltered 

 

 

Filtered 
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 Unfiltered perovskite solution  

From the optical spectra (Figure 15 a)), there is a decrease in the absorption of light with the 

addition of the mesoporous layer and with the Li+ doping. This is expected since the mesoporous 

layer is opaque, which makes it more difficult for the light to go through. Band gap values were 

obtained with values of 1.48, 1.5 and 1.52 eV to planar, mesoscopic architecture and Li+ doped 

mesoscopic architecture, respectively. Consequently, it is possible to report that band gap 

increases with the addition of these layers. Figure 15 b) reveals the XRD spectra of SCs produced 

on planar, mesoscopic and Li+ doped mesoscopic architecture. The XRD results demonstrate the 

presence of the tetragonal perovskite crystal structure, marked with full circle [45],[46],[47], the 

PbI2 peak marked with an empty circle [48], and also peaks regarding the TiO2 and FTO layer 

marked with an asterisk and a cardinal, respectively [5], [45] . Predictably, the peaks of TiO2 in 

anatase phase rose due to the increased thickness of ETL layer. These samples exhibit a 

considerably high PbI2 peak, indicating a high degree of organic degradation.  

 

 

Figure 15 | a) Absorbance and b) XRD spectra for perovskite deposited over c:TiO2 using TTIP 

precursor (black),  mp:TiO2 (blue) and Li+ doping (red). The unfiltered perovskite solution was deposited as 

described in section Experimental. For this measurements, CuSCN was not deposited. 

The SEM images (Figure 16 a), b) and c)) prove the morphology of perovskite film for these 

SC structures. The grain reaches a size of 260.2 ± 81.5 nm, 312.5 ± 75.8 nm and 350.6 ± 75.4 nm 

for c:TiO2, mp:TiO2 and mp:TiO2 doped with Li+, respectively. Hence, it was possible to confirm 

that the size of the grain increases with the addition of these layers. In short, this is what we are 

looking for since the larger grain size the better will be the performance of the solar cell [23].  

                                                   b) 

a) 
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Figure 16 | SEM images for perovskite deposited over a) c:TiO2 using TTIP precursor, b) mp:TiO2 and 

c) Li+ doping. The unfiltered perovskite solution was deposited as described in section Experimental. For 

this measurements, CuSCN was not deposited.  

Moreover, SEM-EDS of the perovskite’s image in mesoscopic architecture doped with Li+ 

(Figure 39 from section D of Appendices) was done to confirm the presence of the SC elements. 

This ensures that the surface is not homogeneous, as verified in Figure 39 d) and e). The zone 

marked with a) exhibits more intense titanium peak, which may be indicative of the mp:TiO2 layer 

on the surface. On a similar note, when comparing region b) with c) it is possible to verify a more 

intense Sn peak due to the thick FTO layer, which indicates a non-homogeneous perovskite 

surface. 

The electrical measurements for SCs produced on planar, mesoscopic architecture and Li+ 

doped mesoscopic architecture in an unfiltered perovskite solution are presented in Figure 17 with 

the corresponding performance values in Table 3. The performance of PSC based on the mp:TiO2 

illustrates the best efficiency in this section, yielding a value of 1.13%. The JSC, VOC and FF values 

obtained from curves were 6.40 mA/cm2, 0.56V and 0.33, respectively. Meanwhile, lithium 

doping slightly improved FF when compared to planar architecture, despite the low efficiency of 

0.15%.  

 

    

Figure 17 | a) J-V and b) P-V measurements for solar devices with the addition of c:TiO2 (black), 

mp:TiO2 undoped (red) and doped with Li+ (red). The unfiltered perovskite solution was deposited as 

described in section Experimental. 120µL of CuSCN was dropped and it is dissolved in di-n-propyl sulfide. 

 

 

a)                                  b) 

c) b) a) 
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Table 3 | Performance values for the data presented in Figure 17. 

 VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

c:TiO2 0.51 4.10 0.17 1 194 2 833 0.37 

c:TiO2/mp:TiO2 0.56 6.40 0.33 1 432 605 1.13 

c:TiO2/mp:TiO2(Li+) 0.34 1.53 0.25 1 449 2 941 0.15 

 Filtered perovskite solution 

The production of a uniform and homogenous film is crucial to get a device with a great 

execution. Consequently, filtering the perovskite solution may be the key to achieve high 

performance devices, since this method is practiced by the scientific community [44], [47], [51].  

An absorbance between 90-94% is shown in Figure 40 from section D of Appendices, which 

is highlighted. The perovskite films fabricated on the planar, mesoscopic architecture with and 

without Li+ doping presents a band gap of 1.55, 1.52 and 1.5 eV, respectively. For this reason, a 

decrease of the band gap with the addition of these layers is verified, contrary to what was 

confirmed in the unfiltered perovskite solution. 

 
Figure 18 | XRD spectra for filtered perovskite solution deposited over c:TiO2 using TTIP precursor 

(black),  mp:TiO2 (blue) and Li+ doping (red). The perovskite solution was deposited as described in section 

Experimental. For this measurements, CuSCN was not deposited. 

The XRD results (Figure 18) exhibited the presence of the tetragonal perovskite crystal 

structure, marked with full circle [45],[46],[47], as well as peaks regarding the TiO2 and FTO 

layer marked with an asterisk and a cardinal, respectively [5], [45]. The relative intensities of the 

(110) and (220) planes at an angle 2θ of 14.1º and 28.5º, respectively, increased with the addition 

of Li+ doping indicating the improved crystallinity of perovskites and an increased orientation of 

crystalline domains [52]. In contradiction to the previous section, once the solution has been 
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filtered, it is not possible to verify PbI2 peaks. 

The perovskite film was examined by SEM (Figure 19 a), b) and c)), it shows that with the 

planar architecture the grain size is 259.47 ± 56.81 nm, with the addition of mesoporous layer 

there is an increase (307.64 ± 62.80 nm), and the one with the doping of Li+ obtains 332.93 ± 

94.46 nm of grain size. Thus, the grain size increases with the addition of these layers such as 

standard deviation, i.e. when perovskite is deposited on top of c:TiO2, the grain size is more 

uniform. The presence of elements of each layer (FTO/ TiO2/ MAPbI3) can be confirmed by SEM-

EDS through Figure 41 from section D of Appendices. 

   

Figure 19 | SEM images for filtered perovskite solution deposited over a) c: TiO2 using TTIP precursor, 

b) using a mp: TiO2 and c) Li+ doping. The Perovskite layer was annealed as described in section 

Experimental. For this measurements, CuSCN was not deposited. 

 

Figure 20 shows the J-V and P-V measurements from the best contact of SCs produced in 

planar, mesoscopic architecture and Li+ doping and using filtered perovskite solution with the 

corresponding performance values in Table 4. Li+ doped solar cell’s parameters show an overall 

improvement. It is important to highlight the remarkable increase of efficiency corresponding to 

8 times higher than the device with the compact layer. The best cell of this batch (i.e., Li+ doped 

mesoporous layer) exhibit t a VOC of 0.71 V, JSC of 8.69 mA/cm2, FF of 36%, and PCE of 2.22%. 

Therefore, with this increase of performance, it was proved that the Li+ doping enables faster 

electron transport within the mesoporous TiO2 electrodes [37] . It was also demonstrated that 

PSCs prepared on such electrodes achieved substantially higher performances compared with 

undoped electrodes improving PCEs from 1.86 to 2.22%. Moreover, a significant enhancement 

of almost 50% was achieved for the fill factor (FF), which was improved from 22% to 36%.  

 

Table 4 | Performance values for the data presented in Figure 20. 

 VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

c:TiO2 0.54 2.38 0.22 1 687 3 411 0.28 

c:TiO2/m:TiO2 0.69 9.86 0.27 1 197 859 1.86 

c:TiO2/m:TiO2(Li+) 0.71 8.69 0.36 1 109 498 2.22 

 

a) b) c) 
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3.2.4 Effect of perovskite loading time 

As previously stated, the mesoporous layer increases the surface-area of ETL/perovskite 

[35],[36], thus the time that perovskite needs to be soak in the mesoporous matrix (defined as 

loading time) will be investigated below. Three loading times for perovskite deposition were 

studied:10, 30 and 40 s. 

The absorbance spectra behavior shown in Figure 42 a) from section D of Appendices 

demonstrates that there is no difference in band gap between perovskite samples having different 

loading time. Those perovskite layers deposited on the mesoscopic architecture present a band 

gap of approximately 1.54 eV and absorbance values are between 90-93% . Images of each cell 

having loading time 10, 30 and 40 s revels a dark-brown colour and high brightness. They are 

exhibited in Figure 45 from section F of Appendices.  

 

 

Figure 21 | a), b) and c) AFM images for filtered perovskite solution for different perovskite load time: 

10 , 30 and 40 s , respectively. The Perovskite layer was deposited as described in Experiemental. For this 

measurements, CuSCN was not deposited. 

 

 
 

 
 

Figure 20 | a) J-V and b) P-V measurements for solar devices with the addition of c:TiO2 (black), mp: 

TiO2 undoped (red) and doped with Li+ (blue). The Perovskite was deposited as described in section 

Experimental . 120µL of CuSCN was dropped and it is dissolved in di-n-propyl sulfide. 

 

a)                                   b) 

a)                          b)               c) 
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The XRD shown in Figure 42 b) from section D of Appendices confirmed the presence of the 

tetragonal perovskite crystal structure marked with full circle [45],[46],[47] and peaks regarding 

the TiO2 and FTO layer marked with an asterisk and a cardinal, respectively [5], [45]. This 

characterization also reveals peaks of PbI2 (marked with an empty circle [48]), indicating 

perovskite’s degradation. However, the structural results between these three times are similar. 

AFM images (Figure 21) were treated using Gwyddion software and only one measure was 

performed. A uniform film is present with roughness of 22.64, 25.24 and 26.36 nm for 10, 30 and 

40 s of loading time, correspondingly (Table 5). Therefore, the roughness increases with the 

perovskite’s loading time due to the solution being dipped into the scaffold TiO2 during this 

period. Figure 22 revels the SEM image for different load time tested in this work. The grain size 

obtained for 10, 30 and 40 s of loading time is 324.9 ± 86.9, 331.4 ± 75.9 and 312.3 ± 65.9 nm, 

respectively (Table 5). A large grain size is favourable since it is associated to large grain 

boundaries and low recombination.  

Table 5 | Influence of different loading time on MAPbI3 roughness and grain domain size.  

Loading time 10 s 20 s 30 s 

Roughness (nm) 22.64 25.24 26.36 

Grain Size (nm) 260.2 ± 81.5 312.5 ± 75.8 350.6 ± 75.4 

 

The electrical characterization is presented in Figure 23 with the details of each measurement 

being detailed in Table 6. It was achieved 2.86% of PCE, 0.46 of FF and 8.69 mA/cm2 of JSC for 

the cell with 30 s of perovskite’s loading time, becoming the best performance for this parameter. 

Both performances for 10 and 40 s are lower than expected, however it has a great VOC 

(approximately 0.9 V). In short, the ideal period that perovskite should be loaded is 30 s. Thereby, 

it can be penetrated the mesoporous layer long enough to fill the bulks. 

   

Figure 22 | a), b) and c) SEM images for filtered perovskite solution for different perovskite load time: 

10 , 30 and 40 s , respectively. The Perovskite layer was deposited as described in Experiemental. For this 

measurements, CuSCN was not deposited. 

a)                              b)                c) 



Perovskite solar cells: Optimization of Cost-Effective Production 

22 

 

  

Figure 23 | a) J-V and b) P-V measurements for solar devices with load time variation: 10 s (black), 30 

s (red) and 40 s (blue). The Perovskite layer was deposited as described in section Experimental. 120µL of 

CuSCN was dropped and it is dissolved in di-n-propyl sulfide. 

 

Table 6 | Performance values for the data presented in Figure 23. 

3.2.5 Effect of chrolobenzene 

As referred in the introduction, the chlorobenzene deposition is a step used to increase 

nucleation's velocity although it leads to defects in the film as spatially inhomogeneous nucleation 

[29]. Therefore, to obtain a better performance of PSC, the volume of anti-solvent (120 µL and 

100 µL) along with the influence of making it a chlorobenzene’s atmosphere in spin-coater was 

tested. The last procedure consisted of creating a chlorobenzene’s atmosphere by dripping a small 

amount of the solvent (100 µL) inside the spin coater. According to literature, it guarantees an 

increase of reproducibility [53]. 

 

 

Loading time VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

10 s 0.90 6.25 0,34 2 366 1 236 1.95 

30 s 0.72 8.69 0,46 5 490 582 2.86 

40 s 0.87 4.93 0,43 6 080 995 1.89 

   

Figure 24 | SEM images for filtered perovskite solution deposited over mesoporous layer for different 

amonts of chlorobenzene: a) 100 µL, b) 120 µL and with chlorobenzene inside spin-coater c). The Perovskite 

layer was deposited with the parameters described in section Experimental. For this measurements, CuSCN 

was not deposited. 

a)                                   b) 

a) b) c) 
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These three parameters present a similar band gap and absorbance (Figure 43 from section D 

of Appendices). Those perovskite layer deposited on a mesoscopic architecture reveal a band gap 

of approximately 1.54 eV and the absorbance values are between 86-92%. SEM images (Figure 

24) show that grain size increases with the amount of anti-solvent. With 100µL and 120 µL of 

chlorobenzene the grain size is 266 ± 73 nm and 275 ± 58 nm, respectively. For the case where 

chlorobenzene is placed inside the spin-coating it is possible to observe a grain size of 259 ± 86 

nm.  

The Perovskites SCs electrical characterization are shown in Figure 25 and the parameters 

calculated from it are present in Table 7. Perovskite prepared with 120 µL of chlorobenzene 

exhibited lower results compared with the other two cases. When it fabricated with 100 µL of 

chlorobenzene, it allows a PSC efficiency of 4.14 mA/cm2 with a VOC of 0.74 V, JSC of 14.27 

mA/cm2, FF of 0.39. On the other hand, when an atmosphere of chlorobenzene in spin-coater is 

made, it is obtained VOC of 0.81 V, JSC of 15.34 mA/cm2, FF of 0.35 and PCE of 4.42%. In 

conclusion, when only 100 µL of chlorobenzene is used without an atmosphere of chlorobenzene, 

the results achieved are favourable. 

  

Figure 25 | a) J-V and b) P-V measurements for solar devices. The filtered perovskite solution was 

deposited over mesoporous layer with different amonts of chlorobenzene: 100 µL (black), 120 µL (red) and 

with chlorobenzene inside spin-coater (blue). 120µL of CuSCN was dropped and it is dissolved in di-n-

propyl sulfide.  

Table 7 | Performance values for the data presented in Figure 25. 

Chlorobenzene VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

100 µL 0.78 15.57 0.36 1 547 339 4.78 

120 µL 0.74 14.27 0.39 1 692 345 4.14 

With  0.81 15.34 0.35 1 366 470 4.42 
 

3.2.6 Filtered CuSCN dissolved in di-n-propyl sulfide  

 It is known that HTL layer helps protect the perovskite layer from degradation. Therefore, 

the way that CuSCN's deposition is done strongly influences the results achieved [38]. 

Considering that the CuSCN could not be well dissolved and in order to obtain a good interaction 

between these two layers, it was tested the effect of filtering the CuSCN solution dissolved in di-

a)                                   b) 
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n-propyl sulfide. Figure 46 from section E of Appendices shows some perovskite solar cells from 

this batch where it is possible to observe the difference of brightness for the case of filtered (a) 

and b)) and unfiltered CuSCN (c) and d)). As performed for the other parameters, optical and 

structural characterization were done, shown in Figure 26. An absorbance’s average of 92% and 

a band gap of 1.53 and 1.54 eV for the deposition of the filtered and unfiltered CuSCN layer, 

respectively, are achieved. XRD characterization exhibits the presence of the tetragonal 

perovskite crystal structure (full circle) [45],[46],[47], peaks regarding the TiO2 and FTO (asterisk 

and cardinal, respectively) [5], [45] and also peaks corresponding to CuSCN (cross) [54]. Clearly, 

the perovskite film with the filtered solution leads to more intense peaks which is indicative of a 

more crystalline film. 

 

 

These devices were electrically characterized, and the J-V and P-V curves are illustrated in 

Figure 27. The extracted VOC, JSC, FF, RSH, RS and PCE are summarized in Table 8. By 

comparison, obvious difference can be seen between filtered and unfiltered CuSCN dissolved in 

di-n-propyl sulfide. The JSC, VOC and FF values obtained from the curves of the filtered CuSCN 

solution were 15.46 mA/cm2, 0.89V and 0.46, respectively, yielding a PCE of 6.35%. These were 

the best results during this optimization study. In contrast, the corresponding JSC, VOC and FF 

values from electrical measurements of the unfiltered solution were 11.1mAcm−2, 0.78V and 0.36, 

respectively. In conclusion, this process allowed an almost doubled efficiency improvement 

compared to the unfiltered CuSCN solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 | a) Absorbance spectra and b) XRD for solar devices with filtered and not filtered CuSCN 

dissolved in di-n-propyl sulfide solution. The Perovskite layer was annealed as described in section 

Experimental. 120µL of CuSCN was dropped. 

b) 

a) 
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Table 8 | Performance values for the data presented in Figure 2727. 

CuSCN VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

Filtered 0.89 15.46 0.46 2 516 356 6.35 

Not filtered 0.78 11.10 0.36 1 947 489 3.14 

 

SEM-FIB image was taken only two months after manufacturing the PSC due to problems 

with the equipment. Although the sample was still black, bright and without signs of degradation, 

it was possible to verify the state of degradation through the SEM images (Figure 28). 

The bulk density should be as high as possible, however, due to the conditions of the SC at 

that time, it was not possible to provide any comments about it. The thickness of each layer was 

calculated trough ImageJ. The cross section of the SC showed a thickness of 297.4 nm for the 

FTO layer, of 47.5 nm for the compact TiO2, of 623.9 nm for mesoporous and perovskite and 36 

nm of CuSCN. There is no differentiation between mesoporous and perovksite layers due to the 

perovskite being sucked into the TiO2 matrix. EDS characterization was done in order to confirms 

the presence of the elements of each layer (Figure 29). 

 

Figure 28 | SEM-FIB: cross section of a MAPbI3 solar cell produced with filtered CuSCN solution. 

  

Figure 27 | a) J-V and b) P-V measurements with filtered and not filtered CuSCN dissolved in di-n-

propyl sulfide solution. The Perovskite layer was annealed as described in section Experimental. 120µL of 

CuSCN was dropped. 

a) b) 
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Figure 29 | a) SEM and b) EDS mapping of the cross section of a MAPbI3 solar cell produced with 

filtered CuSCN solution. 

 

3.2.7 Different solutions of CuSCN 

So far, only CuSCN dissolved in di-n-propyl sulfide was used for device optimization due to 

delivering time of the reagents. In this study two different solution for HTL were used: CuSCN 

dissolved in di-n-propyl sulfide (1) and CuSCN dissolved in diethyl sulfide (2), both unfiltered.  

  

Figure 30 | Images of the samples with a) CuSCN dissolved in di-n-propyl sulfide and b) dissolved in 

diethyl sulfide.  

A few differences of brightness and colour on the top of the solar cell are revealed in Figure 

30 and also in Figure 47 from section E of Appendices. The SC with CuSCN (1) present a darker 

colour compared with the blue colour of CuSCN (2) Absorbance spectra behaviour is exhibited 

in Figure 31 a) and no differences between these two solutions are noted. Those exhibit an 

absorbance between 87-92% and a band gap of, approximately, 1.53 eV. 

XRD characterization, in Figure 31 b), displays the presence of the tetragonal perovskite 

crystal structure marked with full circle [45],[46],[47], peaks regarding the TiO2 and FTO layer 

marked with an asterisk and a cardinal, respectively [5], [45] and also peaks corresponding to 

CuSCN marked with a cross [54]. This demonstrates that the perovskite film produced below 

CuSCN (2) exhibits higher intensity peaks, i.e., it is more crystalline. 

a)                                               b) 

b) 

a) 
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a) 

 

 

Figure 31 | a) Absorbance spectra and b) XRD for solar devices with diferent solutions of CuSCN 

(dissolved in di-n-propyl sulfide solution- CuSCN (1) and dissolved in diethyl sulphide- CuSCN (2)). The 

Perovskite layer was annealed as describied in section Experimental. 120µL of CuSCN (1) and CuSCN (2) 

unfiltered solution was dropped, respectively. 

As in the previously section, electrical characterization was made, which is illustrated in 

Figure 32 with the corresponding performance values in Table 9. PSC fabricated with CuSCN (2) 

exhibit a value of JSC, VOC, RS and RSH of 10.62 mA/cm2, 0.62 V, 1632 Ω and 392 Ω, respectively, 

yielding a PCE of 2.38%, in opposition with 12.67 mA/cm2, 0.53 V, 1566 Ω and 424 Ω, allowing 

a PCE of 3.51% for the CuSCN (1).  This value is 1.5 times higher than the one for solar cells 

fabricated with CuSCN dissolved in diethyl-sulphide. 

 

  

Figure 32 | a) J-V and b) P-V measurements with diferent solutions of CuSCN (dissolved in di-n-propyl 

sulfide solution- CuSCN (1) and dissolved in diethyl sulphide- CuSCN (2)). The Perovskite layer was 

annealed as described in section Experiemntal. 120µL and 35 µL of CuSCN (1) and CuSCN (2) unfiltered 

solution was dropped, respectively. 

b) 

a)                                  b) 
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Table 9 | Performance values for the data presented in Figure 32. 

 VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

CUSCN (1) 0.53 12.67 0.37 1 566 424 3.51 

CUSCN (2) 0.62 10.62 0.36 1 632 392 2.38 

 

It was expected that PCE would be closer to the obtained in section 3.2.6 of Results and 

Discussion, since this PSC made with CuSCN (1) have the same procedure. The only uncontrolled 

parameter was the moisture, which presented a humidity level of 62% in this batch and in the last 

(section 3.2.6) was of 56%. 

Consequently, other studies have also been carried out to optimize PCS. The influence of the 

solution’s volume to be dropped for HTL was analysed. However, this study had results lower 

than expected since the moisture was quite high, above 66%. 

Volumes of 35 µL and 120 µL of CuSCN solutions, both unfiltered, were studied. Thus, 

electrical measurements were done and they are shown in Figure 44 from section E of Appendices 

with the respective performance values in Table 10. PSC fabricated with 35 µL CuSCN dissolved 

in di-n-propyl sulfide presents the best performance with a VOC, JSC and PCE of 0.84 V, 7.49 

mA/cm2 and 1.76%.  

Table 10 | Performance values for the data presented in Figure 44 from section E of Appendices.  

 

 

3.3 Perovskite’s degradation 

A brief study was performed on SC to investigate the effect of moisture and time on the 

device’s performance as well as in perovskite’s degradation. 

 Effect of moisture 

As referred above, moisture plays a key role in the solar cell´s parameters. These SCs are 

manufactured with the same conditions but present very different performances. This is mainly 

due to the only parameter that was not controlled inside the laboratory: the humidity level. The 

relative humidity (RH) values were recorded through the dehumidifier.  

Figure 33 shows the effect of moisture not only with the SC performance but also with the 

amount of SCs working. With a very high humidity value is noted that the devices perform poorly. 

However, when values of humidity are less than 57% is noticeable an increase of PCE as well of 

CuSCN VOC (V) JSC (mA/cm2) FF RSH (Ω) RS (Ω) PCE (%) 

(1) 35 µL 0.84 7.49 0.28 1 486 1 432 1.76 

(1) 120 µL 0.71 2.11 0.20 3 490 6 969 0.30 

(2) 35 µL 0.67 2.72 0.23 2 340 3 707 0.42 

(2) 120 µL 0.65 0.82 0.23 7 660 10 840 0.12 
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the number of SCs working. It is possible to conclude that solar cells should be produced in 

environments with a level of humidity less than 57% and it is expected to be more degraded for 

moisture values above this value. 

In cases where the number of cells working is eight (8), i.e., the whole batch working, should 

be taken into account not only the humidity factor but owing to the reproducibility of the process.  

 

 Effect of time 

In this section, PSCs were manufactured with filtered and unfiltered perovskite’s solution in a 

mesoscopic architecture, doped with Li+ with 30 s of loading time. The CuSCN deposited in this 

device, it is the one dissolved in di-n-propyl sulfide. Figure 34 shows the impact of the time in 

PSCs. This SCs were kept in an open Petri dish without controlled atmospheric conditions. The 

degradation of perovskite is notable at approximately 30 days although the yellow colour is not 

present. This also translates to better operational stability at non- controlled atmospheric 

conditions. In addition, it is an optimistic point since in literature is possible to observe a quickly 

degradation of perovskite films in just 1 day [20][21]. 

 

Figure 34 | Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at 

"uncontrolled"ambient conditions.  

  

Figure 33 | a) Maximum efficiency in function of relative humidity and b)PCE dependence on the 

humidity. The recorded moisture values were performed with a batch of 8 cells. 

a)                             b) 
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4 Conclusions and Future Perspectives 

As previously mentioned, one of the main goals of this work was to improve the performance 

of perovskite solar cells using TiO2 as Electron Transport Layer (ETL), CH3NH3PbI3 as active 

layer and CuSCN as Hole Transport Layer (HTL). The aim is to also fabricate SCs using low 

cost, simple and fast production methods. Therefore, optical, structural, morphological and 

electrical characterizations were performed.  

In the first part of this work, two solutions for ETL and HTL were tested. For the ETL, 

transmittance values between 79-85% are obtained and with the addition of mesoporous layer the 

transmittance decrease, since this layer has an opaque appearance. In addition, the doped 

mesoporous layer with Li+ presents a maximum transmittance close to 90 % and low parasite 

absorbance (close to 10%) which is a good result since the perovskite will be illuminated through 

glass FTO-ETL. About HTL, the two films produced with CuSCN dissolved in di-n-propyl 

sulfide and dissolved in diethyl sulfide present similar results. Moreover, a transmittance average 

of 85 % and absorbance values between 5-10% are exhibited. This is crucial to avoid overlap with 

the parasitical absorption of MAPbI3. 

On the second part, seven fabrication parameters were changed in order to improve the device: 

changing the annealing method, using two different solutions for c:TiO2, altering the SC 

architecture, influencing of perovskite filtration as well as the anti-solvent volume and using two 

different solutions for CuSCN layer. XRD and electrical characterization proved that perovskite 

films annealed in a tube furnace improved the crystallinity of the film and the performance of the 

device. It was observed that, in general, the band gap of perovskite produced during this work 

was close to 1.53 eV with an absorbance value of, approximately, 92%. For better morphological 

proprieties, i.e. to obtain a large grain size, the perovskite may be deposited on a mesoporous 

architecture doped with Li+ and the perovskite solution may be filtered and loaded for 30 s so the 

perovskite can dip into the mesoporous TiO2 scaffold. Moreover, XRD verified the presence of a 

perovskite film in the tetragonal phase with (110), (112),(211), (202),(220), (310), (224) ,(314) 

planes at a 2θ angle of 14,1º, 20º, 23.52º, 24.5º, 28.5º, 31.87º, 40.55º,  43.17º respectively. On 

other hand, when the perovskite’s solution was unfiltered, the presence of the PbI2 phase was 

observed at 12.67° and 38.7º. This could be caused by device’s degradation during their exposure 

to air or because the solution was not well dissolved. Unlike filtered solution where PbI2 phase 

was not exhibit. Also, in this matter, the CuSCN dissolved in diethyl sulfide is recommended 

since it increases the crystallinity of perovskite’s film.  

The JSC and VOC values obtained from the J-V and P-V curves of the best solar cell produced 

were 15.46 mA/cm2 and 0.89V, respectively, yielding a PCE of 6.35% under standard AM 1.5 

conditions. For RS and RSH values exhibited are 356 and 2516 Ω, respectively, which is a good 

scope in this work, since ideally, these two parameters present the values: RS≈0 and RSH≈∞. With 
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this result it is possible to prove that better perovskite films can be easily prepared in our lab even 

with a relatively high humidity level, suggesting excellent moisture stability. In general, device 

optimization can be considered a success, as the top reported PCE in the previous work was 2.65% 

[43], which has now been increased to 6.35%, more than two times the previous efficiency. The 

best fabrication parameters, within the ones tested, are presented in Table 11. 

Table 11 | Final fabrication conditions for PSCs 

Annealing Tube furnace 

ETL TiO2 (TTIP solution) with a mesoporous layer doped with Li+ 

Perovskite layer Filtered solution with a loading time of 30 s 

Volume of anti-solvent 100 µL without a chlorobenzene’s atmosphere 

HTL Filtered solution of CuSCN dissolved in di-n-propyl sulfide 

Regarding perovskite degradation, more precisely, the influence of moisture on the perovskite 

layer and performance, it was observed that the filtered perovskite film begins to show signs of 

degradation after 30 days, while the unfiltered does not appear to have such degradation. In short, 

solar cells should be manufactured in environments with a humidity level lower than 57%.  

4.1.1 Future perspectives  

When using the standard architecture, a study should be carried out to understand if there is 

an improvement in the SC operation when transparent Titania paste is used [55], since the light 

can go through this layer (ETL) even better and further illuminate the active layer. 

It should be carried out a more detailed study about CuSCN since this layer has a very 

important role in the device. Studies such as filtering effect in both solutions performed in this 

work: CuSCN dissolved in di-n-propyl sulfide and dissolved in diethyl sulfide. Furthermore, the 

velocity during the spin should also be investigated. 

Finally, an investigation about the use of IZO between the CuSCN layer and the gold should 

be taken into account, since researchers have already reported an improvement in efficiency with 

the use of this material [56]. Another material to be also used as a spacer layer with much interest 

is the graphene oxide due to being cheaper and being able to stabilize the perovskite layer [38]. 

As a more general future perspective, it would be interesting to further investigate the effect 

of moisture on film morphology as well as the degradation of the perovskite during constant 

illumination with temperature and to discover ways of it being avoided. It would also be appealing 

to study alternative materials for each layer in the PSC structure to try to optimize the cell and see 

if other materials reduce degradation as well as the applicability in reversed and flexible SCs.  
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Appendices  

A Solar Cell parameters  

In this section the calculations of the solar cell´s parameters are explained through I-V and    

P-V curves (Figure 35) where the main equations used for the solar cell´s electrical 

characterization are presented. Moreover, Figure 36 shows the influence of series resistance (RS) 

and shunt resistance (RSH) in the I-V curves and in fill factor (FF) [57]. Obviously, for the J-V 

curves shown in this work, they are divided by the current for active area and this should be taken 

into account for the equations presents bellow. 

 

 In this way: 

• Maximum power (PMax) may be calculated:  

      𝑃𝑀𝑎𝑥 = 𝐼𝑚𝑝 × 𝑉𝑚𝑝     (1) 

• Fill Factor (FF) is approximate to a square from IV curve and is calculated by:  

      𝐹𝐹 =
𝐼𝑚𝑝×𝑉𝑚𝑝

𝐼𝑆𝐶×𝑉𝑂𝐶
            (2) 

• Power conversion efficiency (PCE) is the ratio between maximum PMax and light power 

(Plight) in W/m2 (1000 W/m2): 

     PCE=
𝑃𝑀𝑎𝑥

𝑃𝑙𝑖𝑔ℎ𝑡
× 100%    (3) 

• RS e RSH, series resistance and shunt resistance, respectively, are obtain by inverse of 

slope of IV curves. Ideally, these two parameters present the values: RS≈0 and RSH≈∞.  

Figure 35 | Illustration of I-V and P-V curves for calculation of solar cell parameters. Adapted from [57]. 

Figure 36 | Influence of series (rigth) and shutt (left) resistance (RS and RSH) in solar cell performance. 

Improving series resistence and decreasing shutt resistance may induce the redution of Isc and Voc, 

respectively. Adapted from [57]. 
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B Materials  

This section presents the reagents used during this thesis with respective abbreviation, purity, 

CAS number and company.  

 

Table 12 | List of reagents used throughout this work with respective abbreviation, purity, CAS and 

company. 

Material Abbreviation Purity Cas Number Company 

Absolute Ethanol EtOH 99,99% 64-17-5 
FISHER 

CHEMICAL 

Acetetonitrile - 99,5% 75-05-8 SIGMA-ALDRICH 

Acetylacetone - 99,50% - FLUKA 

Chlorobenzene - 99% 108-90-7 SIGMA-ALDRICH 

Colloidal TiO2 Paste (22 

Nm) 
-   SIGMA-ALDRICH 

Copper (I) Thiocyanate CuSCN 96% 1111-67-7 ALFA AESAR 

Diethyl Sulfide - 98% 352-93-2 SIGMA-ALDRICH 

Dimethyl Sulfoxide DMSO 99,90% 67-68-5 
FISHER 

CHEMICAL 

Di-N-Propyl Sulfide  98% 111-47-7 ALFA AESAR 

Hidrochloric Acid HCl 37% 7647-01-0 SIGMA-ALDRICH 

Lead Iodide PbI2 99% 10101-63-0 SIGMA ALDRICH 

Lithium Salt Li-TFSI 99,95% 90076-65-6 SIGMA-ALDRICH 

Methylammonium 

Iodide 
MAI 98% 14965-49-2 SIGMA ALDRICH 

N-N 

Dimethylformamide 
DMF 99,80% 68-12-2 PANREAC 

Titanium (Iv) 

Isopropoxide 
TTIP 97% 546-68-9 SIGMA-ALDRICH 

Zinc Powder -  9029-97-4 
JOSÉ M. VAZ 

PEREIRA 
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C Solutions preparation 

This section presents the recipes for the solutions preparation used in the Experimental 

section. 

1.  ETL 

The four precursor solutions needed for ETL fabrication were prepared using the following 

materials: Titanium (IV) Isopropoxide (TTPI), absolute ethanol (EtOH), Hydrochloric acid 

(HCL) and acetylacetone. 

• For the compact TiO2 (1): The first precursor was prepared by a solution of 18 µL of HCl 

in 1.286 mL of EtOH, that was dropwise, to a solution of 180 µL of TTIP in 1.286 mL 

of EtOH and stirred, at least, for 30 min.  

• For the compact TiO2 (2): Other precursor was prepared by a solution of 60 µL of TTIP 

and 40 µL of Acetylacetone in 0,9 mL EtOH and stirred, at least, for 2 hours. 

2.  Perovskite precursor solution 

The materials used to perform the perovskite precursor solutions were Methylammonium 

Iodide (MAI), Lead Iodide (PbI2) powders. As solvent a mix of dimethylformamide (DMF) and 

dimethyl sulfoxide (DMSO) was used with a ratio (DMF:DMSO) of 4:1.  

In other words, the perovskite solution was prepared by dissolving 461 mg PbI2 and 159 mg 

MAI in 0,8 ml DMF and 0,2 ml DMSO. These solutions with concentrations of 1M were stirred 

at 70ºC at least 6h and the substrate was preheated at 70ºC for 10 min on a hotplate. 

3.  HTL  

The precursor solution for HTL fabrication was prepared using a Copper(I) Thiocyanate 

(CuSCN) powder dissolved in Di-n-propyl sulfide (98%) and in Diethyl sulfide. The 

concentration of each solution was a concentration of 15 mg/mL and 35 mg/mL, respectively. 

The first solution was left to stir for 24h at RT and the second solution was stirred 1 hour at RT. 

The first solution should be preferentially filtered through a syringe filter of 0,2 µm. 
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D Optical and Structural Characterization 

This section presents the optical and structural characterization of ETL layer and of the solar 

cells structure without the CuSCN layer and Au contacts.  

Figure 37 | Absorbance spectra of differents substracts as ETL over FTO (black), a) c:TiO2 (1) and (2) 

with red and blue, respectively and b) c:TiO2 (red), adding m:TiO2 (blue) and m:TiO2 doped with Li (pink) 

deposited with the final defined conditions for solar cells fabrication as described in section Experiemtal 

 

 

 

Figure 38 | a) Absorbance spectra and b) XRD  for perovskite deposited over different compact ETL: 

c:TiO2 using TTIP precursor solution (TiO2 (1)) and using Acetylacetone (TiO2 (2)). Perovskite layer was 

described in section Experimental. For this measurements CuSCN was not deposited. 

 

 

 

 

                b) 

a)                 b) 

a)        b) 
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Figure 39 | a), b), c) SEM-EDS characterization, d) and e) SEM image of inhomogeneous perovskite layer. 

Figure 37 d) and e) are from different areas of perovskite film. The Perovskite layer was deposited as described 

in Experiemental. For this measurements, CuSCN was not deposited. 

 

 
Figure 40 | Absorbance spectra for filtered perovskite solution deposited over c:TiO2 using TTIP 

precursor solution (dark points ), using a mp: TiO2 (red points) and Li+ doping (blue points). The Perovskite 

layer was deposited as described in section Experimental. 120µL of CuSCN was dropped and it is dissolved 

in di-n-propyl sulfide. 

d)                                                f) 
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Figure 41 | EDS analysis of perovskite films, deposited over a mesoporours TiO2. The Perovskite layer 

was deposited as described in Experiemental. For this measurements, CuSCN was not deposited. 

 

 

a)

 

 

Figure 42 | a) Absorbance and b) XRD for filtered perovskite solution for different perovskite load time: 

10 , 30 and 40 s , respectively. The Perovskite layer was deposited as described in Experiemental. For this 

measurements, CuSCN was not deposited. 

 

 

 

b) 
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Figure 43 | Absorbance spectra for filtered perovskite solution deposited over c:TiO2 using TTIP precursor 

solution, using a mp:TiO2 and Li+ doping for different amonts of chlorobenzene: a) 100 µL, b) 120 µL and with 

chlorobenzene inside spin-coating c). The Perovskite layer was annealed in a tube furnace with an annealing 

program at RT to 90ºC for 40 min and remaining 15 min. For this measurements, CuSCN was not deposited. 
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E Electrical characterization 

This section presents the J-V and P-V curves to study the influence of the volume of solution 

to be dropped for CuSCN (1) and (2), dissolved in di-n-propyl sulfide and dissolved in diethyl 

sulfide, respectively.  

 

 

Figure 44 | a) J-V and b) P-V measurements with the volume of solution for diferent CuSCN (dissolved 

in di-n-propyl sulfide solution- CuSCN (1) and dissolved in diethyl sulfide- CuSCN (2)). The perovskite 

solution was deposited over c:TiO2 using TTIP precursor solution, using a mp:TiO2 and Li+ doping. The 

Perovskite layer was annealed in a tube furnace with an annealing program at RT to 90ºC for 40 min and 

remaining 15 min.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)                                   b) 
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F Solar cells images  

In this section is shown some images of PSCs made during this thesis that are integrated 

during the text of the section 3.2.5, 3.2.7 and 3.8.2 from Results and Discussion. It is also shown 

an image about the influence of perovskite film over a compact, mesoporous TiO2 layer and doped 

with Li+.  

 

 

                                 

a)                                b) 

 

 

 
 

 

c)                               d) 

 

 

 

 

Figure 46 | Solar cells batch of perovskite film deposited over mesoporous TiO2 layer. a) and b) shows 

the PSC with filtered CuSCN and c) and d) unfiltered CuSCN dissolved in di-n-propyl sulfide. 

Figure 45 | Solar cells batch of perovskite film deposited over mesoporous TiO2 layer with a)10 s, b) 30 s 

and c) 40 s of perovskite load time. CuSCN dissolved in di-n-propyl sulfide. 
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a)                        b)                         c) 
 

 

d)                            e)                          f)                         g) 
 

Figure 47 | Solar cell batch of perovskite films deposited over mesoporous TiO2 layer using a), b) and c) 

CuSCN dissolved in diethyl sulfide and d), e), f) and g) CuSCN dissolved in di-n-propyl sulfide. 


