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Abstract

Recent advances in materials science research have enabled the production of highly

stretchable devices like sensors and displays. This new field of stretchable electronics

stem from strain engineering and nanocomposite approaches, which require expensive

production methods and result in fragile devices.

The emerging materials group at TU Delft Industrial Design Engineering Depart-

ment large interest on expandable and stretchable light emitting devices culminated

on this work where it was found a method to obtain stretchable electroluminescent de-

vices for application on simple electroluminescent passive matrix displays. The devices

were produced with all solution-based methods and non-expensive techniques as screen

printing. The devices were obtained with by a sandwich structure of an emissive layer

in between two electrodes. It was used as substrate a commercially available silicone

rubber material called Ecoflex 00-30. The same silicone rubber material with ZnS:Cu

phosphorescent powders embed were used as emissive layer. PEDOT:PSS enhanced with

Bis(trifluoromethane)sulfonimide lithium salt was used as electrodes, samples with 10%

enhancer show 800Ω at 0% strain and 2 kΩ at 50% strain. Electroluminescent devices

showed a transmittance of 30% limited by the fabrication technique and a satisfactory

brightness in daylight. The entire structure has less than 250 µm of thickness, encapsu-

lated and with a substrate of 100 µm. Relative luminance characterizations showed good

luminance behaviour upon strain.

Keywords: PEDOT:PSS, Electroluminescence, Electroluminescent devices, Passive Ma-

trix, Screen printing, Stretchable, Transparent
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Resumo

O crescimento de áreas como a eletrónica transparente e/ou eletrónica extensível au-

mentam o número de aplicações como sensores, circuitos extensíveis, têxteis inteligentes,

embalagens inteligentes, etc. Avanços nesta área provêm maioritariamente de strain engi-

neering ou do desenvolvimento de nanocompósitos, que involvem processos complexos

de custos elevados para a produção de dispositivos de baixa eficiência. Estas caracterís-

ticas aumentam as dificuldades de implementação destes processos para produção em

massa a nível industrial.

O trabalho realizado no departamento de Industrial Design enginering da Tecnical

University of Delft culminou no fabrico de uma matriz eletroluminescente extensível.

Dispositivos são fabricados por screen printing e outros métodos de baixo custo. Como

substrato é utelizado Ecoflex 00-30 um material à base silicone disponível comercial-

mente. Este material juntamente com pós fosfrescentes de ZnS:Cu é utilizado na camada

emissora do dispositivo com estrutura sandwich utilizada para obtenção de eletrolumi-

nescência. Como elétrodos é utilizado PEDOT:PSS com propriedades melhoradas dada

a adição de um sal de lítio, estes eletrodos atingem resistências de 800Ω a 0% de exten-

são e 2 kΩ a 50% de extensão. Dispositvos finais possuem uma transmitância de 30%

limitada pelas técnicas de fabrico e um brilho intenso mesmo na presença de luz. O dispo-

sitivo final possui uma espessura inferior a 250 µm mesmo quando encapsulados e com o

substrato de 100 µm.

Palavras-chave: PEDOT:PSS, Electroluminêscencia, Dispositivos electroluminescentes,

Matriz passiva, Screen printing, Extenssível, Transparente
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Objective

Electroluminescence is largely used on display applications. Organic Light Emitting De-

vice (OLED) technology offer applications as curved displays or even flexible displays.

However, when looking for properties like stretchability, a new strategy is needed to

achieve devices like foldable or stretchable displays. The work done with the emerging

materials team at TU Delft Industrial Design Engineering Department aims to find an

approach to simple stretchable electroluminescent displays using high field electrolumi-

nescence. The main objective of this thesis is to develop a stretchable and transparent

electroluminescent passive matrix prototype with enough brightness to be used on daily

applications as: signs with updatable information; smart labels or even for fashion ap-

plications in clothing and architecture. To develop such prototype a typical sandwich

structure is used, where as emissive layer is used phosphrescent ZnS:Cu powders embed

on silicon rubber and or electrodes enhanced PEDOT:PSS electrodes. It is also the ob-

jective of the present thesis to develop such technology using simple all solution-based

methods that are inexpensive and applicable to mass production. This thesis work aims

to:

• Produce non expensive transparent stretchable electrodes;

• Produce devices bright enough to be used with ambiance light using ZnS:Cu phos-

phorescent powders;

• Produce simple stretchable devices that require the lowest use of power possible;

• Produce a working eletroluminescent passive matrix;

xxv





Motivation

Technologies like a curved TV or a curved smartphone display are now a reality on our

daily life and flexible devices are our expectations for the coming years. OLEDs offer

new approaches to flexible displays, permitting intense lighting on flexible substrates.

However, OLEDs are a very sensitive technology, making it difficult to use on collapsible

and stretchable devices. It is one thing to achieve flexibility and another to achieve

stretchability. Stretchability is a desired property for the next step in electronics, offering

countless advantages for large area applications like advertisement screens or wearable

computers. Such characteristic when applied to electronics opens possible applications

on the most varied areas from textile to automobile industry.

Stretchable electronics is not just an ambition, is a growing tendency, products like

sensitive e-skin or stretchable solar cells, are fast arriving to our reality. On a study

made by IDTechEx the stretchable electronics market is estimated to be worth 800 mil-

lion dollars by 2028. [1] On another study provided by RESEARCH AND MARKETS,

the global stretchable electronics market is forecast to grow at a staggering Compound

Annual Growth Rate (CAGR) of over 80% by 2023. [2]

With such a growing importance there is a big effort in the scientific community to

study stretchable electronics. At the current day the research on stretchable electrolumi-

nescent devices, focus on the combination of rigid elements like Light Emitting Diodes

(LED) or OLEDs with soft rubbery polymers. Both referred approaches show lots of diffi-

culties since the combination of rigid elements (LEDs) result in connectivity difficulties

and increased contact resistances, compromising the devices functionality.

The use of OLEDs share some of the same difficulties of using LEDs for stretchable

technologies. But also a great number of other problems, like the reduced life expec-

tation given the extremely sensitiveness to oxygen and moisture. Or the difficulties to

encapsulate devices which cause an aggravation on the degradation, making the devices

very sensitive and not efficient for stretchable applications. More importantly, this sen-

sitiveness demands highly controlled production environment, which requires complex

methods of fabrication and an increased production cost. Given all these problems and

more, other alternatives to achieve fully stretchable devices need to be studied. One of

them is building stretchable light emitting devices using electroluminescence.
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1
Introduction

1.1 Contextualization
The massification of computers and smartphones brought a growing dependence on these

devices, turning them into essential pieces not only at work but also on our daily life. With

such a big role in our lives consumers demand higher quality, convenient and portable

digital devices. [3, 4] So, flexible, foldable and stretchable pieces of technology are now

on the imagination of costumers and engineers. Flexible and stretchable displays have

attracted great attention due to many advantages such as lighter weight, less fragility, and

higher portability than existing displays. These devices have potential to open up future

applications on areas like expandable and foldable screens for smartphones; wearable or

fashionable electronic clothing; rollable or collapsible wallpaper-like lamps; biocompat-

ible sources for in vivo or epidermal medical devices; wearable computers; smart cards,

etc, enabling more freedom for devices design. [5–7]

1.2 Electroluminescence
Electroluminescence is a nonthermal generation of light, resulting from the application of

a electric field to a specific kind of material. [8] This effect was discovered in 1936 by the

french physicist Destriau when he observed that light was emitted from a ZnS compound

upon application of a large electric field. [9] There are two classes of Eletroluminescence

or Eletroluminescent (EL) in inorganic materials: high-field EL and injection EL.[8]

In injection EL, light is emitted upon recombination of minority and majority carriers

across the band gap of crystals, this type of electroluminescent is very common on LED

devices. [8] On the other hand, high field EL is the excitation of luminescence centres

(lattice defects caused by impurities that create prohibited states on the bandgap) which

enables electron excitation and radiative relaxation (see figure 1.1c). [10] On this type

of EL, the majority of charge carriers are accelerated by a strong electric field, usually

around 1× 106 V/cm. The high-energy electrons raise the luminescent centres to excited

quantum states via impact ionization and/or impact excitation. These excited centres

must eventually relax to ground state, emitting photons (process known as the radiative

relaxation). [11, 12]

Semiconductor materials are categorized by direct-gap materials (all the II-VI and

most III-V compounds) or indirect-gap materials (group IV semiconductors and some

III-V compounds). The schematic of figure 1.1 shows the difference between these types

of bandgap. As observable on figure 1.1 direct band gap materials have the minimum

Conduction Band (CB) height directly above the the maximum Valence Band (VB) height.
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On the contrary indirect-gap materials have the maximum VB heigh misaligned with the

minumum CB which usually require emission or absorption of a phonon to complete the

lowest energy transition across the energy gap.

Such conditions make band-to-band radiative transitions much more probable across

a direct bandgap materials than indirect bandgap materials, since on a direct bandgap

material the recombination does not require a momentum change. [13] However, it is pos-

sible to obtain high efficient emitting indirect bandgap materials recurring to impurities.

With semiconductor doping, a recombination center within the band gap is created. So,

the electron is firstly captured by the recombination center and the change in energy and

momentum caused by the capture provokes a lattice vibration (phonon). [13] However,

with the right doping the emission can be electromagnetic and in the visible range, when

such happens the recombination center can be called luminescence center. The doping

can also be used on direct bandgap semiconductors in order to tune a desired frequency

emission, which can be a specific colour.

Figure 1.1: Illustrative schematic for diferent tipes of bandgap, (a) GaAs direct bandgap; (b) Si
indirect bandgap; (c) Si indirect bandgap with a recombination centre.[13]

In this work it is used ZnS phosphor powder embed on an insulating material. ZnS

is a II-VI semiconductor with an energy bandgap of 3.6 eV. [14] There are two structural

variants, cubic phase and hexagonal phase. In either phase, each Zn2+ ion is coordinated

by 4S2− ions in a tetrahedral configuration condition, making ZnS a good emitter. ZnS is

a relatively stable sulphide at atmospheric conditions, yet it requires moisture protection

when subjected to an electric field. [14] Such is due to the field-assisted dissociation of

water that formOH− ions and compromise ZnS and its fucntionality as eletroluminescent

material. [14]

ZnS is the most common material on research and development of eletroluminescent

phosphor applications as TFEL. [8] ZnS is a luminescent material tipicallyused as X-ray

source however as described before, semiconductors can be doped with impurities to form

luminescent centres and enable controlled electroluminescence. On the EL phenomena

the electro-optical characteristics of the EL phosphor are determined by the host (ZnS),

however the wavelength of the emission (colour) is determined by the impurity added to

the host. On this work it was used copper (Cu), which forms ZnS:Cu phosphor powder
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that emits a blue greenish colour, it is also typical to see ZnS doped with manganese (Mn)

which as an orange color however the ZnS:Cu offers a more intense light for the same

power. ZnS is widely used in all types of high-field EL devices, specially for (Alternating

Current (AC)) powder EL devices as the one demonstrated on this work.

1.3 Electroluminescent Devices
The devices developed in this work use a insulating/phosphor/insulating layer structure

first proposed by Russ and Kennedy in 1967. Such design was a major development

when compared with previous developed TFEL devices. [8] This simple EL phosphor

device structure is presented in figure 1.2. These devices follow four simple steps for

light emission that will be described ahead. [8, 15]

(a) (b)

Figure 1.2: (a) Thin film double-insulating-layer TFEL typical device structure showing sequence
of layers; (b) Typical TFEL display with rows and columns.[13]

The display structures rely on important processes that occur within the phosphor

layer and at the phosphor interfaces. [15] This phosphor layer must satisfy some criteria to

enable efficient light emission, it must contain impurities with localized quantum states;

it must be an electrical insulator; it must exhibit an avalanche-type breakdown process

once a critical electric field is reached (on the order of 1× 108 V/m) and the electrons that

generate light must be able to fall into a localized ground state to cause light emission

even in the presence of a high electric field in the phosphor layer. [15]

The electric field (E) is related with the electrode distance (dielectric width (d)) and

with the voltage applied (V). However the electric field is directly related with the charge

in the electrodes (Q) and inversely related with the electrode area (A) and to vacuum

permittivity (ε0). The equation 1.1 translates this relationship. From this it is assumable

a relationship between the electrode conductivity and the electric field.

E =
V
d
⇐⇒ E =

Qd
ε0A

d
⇐⇒ E =

Q
ε0A

(1.1)

The light emission process starts with a voltage application across the TFEL device

electrodes, causing the phosphor layer to sustain a high electric field. [8] The electric

field will allow trapped electrons in the interface between phosphor and insulating layer,

to tunnel into the CB of the phosphor layer. Once traveling on the CB, electrons possess

kinetic energy (they become “hot”) and may impact-excite impurity centers (luminescence
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centers) causing their ground state electrons to become excited. When these excited

electrons return to the ground state, light is emitted. [15]

Conduction band electrons may also excite other valence band electrons into the

conduction band, by a avalanche process. [15] These further excited electrons may excite

luminous centers, causing more light emission. Eventually electrons that are travelling

from one interface layer may arrive to the opposite interface layer where they are trapped

until the electric field is reversed (AC power supply) and all the process repeats it self.

So, on these EL devices light emission is pulsed and an AC voltage is necessary to sustain

the device operation. This voltage usually consists in a series of peak voltage pulses, with

alternating polarity. [15]

1.4 Electroluminescent transparent and stretchable devices
To build stretchable EL devices a structure similar to the structures shown on section 1.3

with stretchable layers should be used. For the emission layer the phosphor powders are

embedded on a silicone rubber material.

A more significant challenge is transparency, given that usually these phosphor pow-

ders are not transparent, as the case of the powder used on this work (ZnS:Cu phosphor

powder) that has a white colour. Despite the difficulties for fabricating a stretchable semi-

transparent emissive EL layer, a bigger difficulty is to obtain transparent and stretchable

electrodes.

1.4.0.1 Stretchable and transparent electrodes

Stretchable conductors are an important component on deformable EL devices. [16] This

kind of stretchable conductors have been fabricated via two main routes: strain engi-

neering and nanocomposites. [17, 18] In the first approach, nanostretchable inorganic

materials, such as metals, are patterned into wavy lines that can be extended when an

underneath elastomer substrate is stretched. [17, 19] It is also common to deposit a thin

layer of conducting materials such as metals, carbon nanotubes, or graphene on a pre-

strained substrate, that leads to the formation of periodic buckles upon the release of

strain, allowing materials to accommodate further cycles of stretching up to the initial

pre-strained value. [20, 21]

The second major route toward stretchable conductors is embedding a conductive

filler in a insulating elastomeric matrix to form a nanocomposite. [20, 22] For applica-

tions as a filler, one-dimentional materials such as Carbon Nanotubes (CNTs) and Silver

Nanowires (AgNWs) are chosen given their high aspect ratios. [20, 22, 23] It is also

common to use metal nanoparticles or flakes as a filler under specific conditions due to

their ability to self-organize upon stretching. [20] Despite this big variety of materials

to choose from, the percolation dependent conductivity is highly strain-sensitive and

remains hurdle for device miniaturization and cycling stability. [20]

Hydrogel ionic conductors are also a popular alternative when compared to stretch-

able electronic conducting structures, which usually show difficulties in circumventing
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their low stretchability, mechanical stability and transmittance. These hydrogels are

easily formed with a solid polymer host (like polyacrylamide) and yield extraordinary

mechanical properties (stretchability higher than 400%) and transparency. [16, 24]

Stretchable ionic conductive electrodes are conductive enough for generating the re-

quired electric field required for a functional EL device. However, all these hydrogel

electrodes require an ionic conductor, as LiClO4 (like the work of Jiangxin Wang team)

or LiCl (in the work of Larson et al.) which are expensive materials. [16, 25] Moreover,

the high toxicity of these materials require large laboratory safety measurements, making

mass production more expensive. Hydrogels produced by all solution-based methods are

difficult to pattern which hinder the work to obtain complex designs, as passive or active

matrixes. Also, these patterning difficulties will cause complications for miniaturisation

or mass production.

To achieve a highly stretchable conductive material that is readily solution-processable

and patternable, an intrinsically stretchable conductor is desirable. [17] With this in mind,

conductive polymers become good candidates given the combination of good intrisically

electrical and mechanical properties that can only be achieved by this kind of polymers.

Also, its solution processability brings advantages for mass production and patterning.

However, the drawback of these materials are the difficulties to achieve high conductivity

and stretchability at the same time. [17, 26, 27]

(Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)) has the high-

est reported conductivity among solution processed polymers, but it has a fracture strain

as low as 5%. [17, 26] PEDOT:PSS conductivities can vary on the form and concentratons

the material, on this work PEDOT:PSS 1.3wt% water dispertion was used which show

a conductivity of 1 S/cm and also a PEDOT:PSS sceenprintable ink wic show a conduc-

tivity of 50Ω/� to 150Ω/�. Efforts have been made to enhance the stretchability of

PEDOT:PSS by incorporating plasticizers such as Zonyl or Triton. [17, 26, 27] However,

an enhanced stretchability often results in lower conductivities, which usually decreases

with strain. [20] Yue Wang et al. reported in 2017 at Science Advances Journal a method

for obtaining highly stretchable and conductive PEDOT:PSS films with high cycling stabil-

ity. This was achieved by simply incorporating ionic additives that assisted stretchability

and electrical conductivity, to which they called Stretchability and Electrical Conductivity

(STEC) enhancers. On the work of Yue Wang and his team results showed conductivities

higher than 4100 S/cm under 100% strain. [17]

High stretchability requires polymer films with both hard and soft domains, typically

seen with hydrogenated Styrene Ethylene Butylene Styrenes (SEBS) block copolymers, or

polyurethane elastomers.[17, 28] In the case of PEDOT:PSS both PEDOT and PSS are semi

crystalline polymers, with observable glass transition temperatures. [17, 29] To achieve a

good conductivity between PEDOT-rich domains it is required a weakened electrostatic

interaction between PEDOT and PSS. Which allows PEDOT to partially aggregate and

form a “hard” conductive network inside the soft PSS matrix. As the figure 1.3 illustrates

this can be done by the STEC enhancers. [17]
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STEC enhancers are ionic compounds and ionic liquids that have sulfonate or sulfon-

imide anions, which are effective dopants for conducting polymers such as PEDOT:PSS.

[17, 30] STEC enhancers soften the PSS domains promoting better connectivity and higher

crystallinity in PEDOT regions while further enhancing electrical conductivity through

hoping. These compounds are commercially available and effectively reduce the PE-

DOT:PSS Young’s moduli by 50 times preserving and/or increasing conductivity. [17]

Both characteristics are achieved when the STEC fills two specific characteristics: (i) good

solubility in water and in the PEDOT:PSS matrix (ii) highly acidic anions that can act as

effective dopants for PEDOT. [17]

Figure 1.3: Illustrative schematic for the STEC ionic interaction with PEDOT and PSS chains.[17].

In the reported paper of Yue Wang et al. a solution with PEDOT:PSS 1.3 wt% in water

and STEC enhancer is deposited via spin coating and/or Ink jet printing on a stretchable

substrate of Polydimethylsiloxane (PDMS). This substrate is previous treated via UV /O3

treatment or O2 plasma etching. For some of these treatments like O2 plasma treatment,

the effects are temporary which make the electrode easily pealed off after periods like

20 days. [31, 32] Even for less specialized and less expensive treatments like the corona

treatment (high frequency discharge that increases the adhesion of a plastic surface) the

same temporary effect is visible. [33] More than that, these methods are expensive and

not available to nonprofessional users. [32] Being the aim of this work to develop a

low cost easy reproducible by non experts method for producing stretchable EL devices,

alternatives were explored.

The work of Michael Wessely and his team at the Université Paris-Saclay suggests

the deposition of a binder layer between the PEDOT:PSS thin film and the hydrophobic

surface. The suggested material is AQUAPLAST-DIY a inexpensive, transparent ink com-

mercially available and commonly used for fabric printing. [32] Since AQUAPLAST-DIY
transparent binder contains a lower percentage of water than the PEDOT:PSS ink, the

use of it as intermediate layer permits the adhesion of the PEDOT:PSS to the substrate.

Also given the its high viscosity it hinders the formation of drops commonly caused by

the hydrophobic PDMS, facilitating the deposition of uniform thin films.

On this work it will be produced a stretchable EL device using silicon rubber materials,

studies will be conduct to find the best production method that fulfil the objectives. Both

Hydrogels and PEDOT:PSS enhanced electrodes will be tested in order to find the best

approach to build an EL stretchable passive matrix.
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2
Methodology

This chapter will be divided in three main parts. First it will be described the methods

used to obtain the Hydrogel and PEDOT:PSS enhanced electrodes. After it will be pre-

sented how final EL devices were built and for last it will the characterizations carried on

electrodes and devices.

2.1 Electrode Production
2.1.1 Hydrogels ionic conductors
To obtain the hydrogel it was reproduced the method achieved by Larson et al. [25] This

procedure is presented on section I.1 of annex I. Various attempts to obtain desired

characteristics were tried, the amount of LiCl was varied between 8M to 2M and it was

also tried the use commercially available sodium chloride (NaCl). Given the lack of

desired properties by following the procedure reported, the reaction time was varied

to obtain satisfying results, and also to study the influence of its variation on the cured

electrode mechanical behaviour.

2.1.2 Conductive polymer electrodes
To produce these electrodes it was bought PEDOT:PSS 1.3 wt% dispersed in water (483095;

Sigma Aldrich) and PEDOT:PSS ink 5 wt% (768650; Sigma Aldrich). The STEC enhancer

Bis(trifluoromethane)sulfonimide lithium salt was aquired from Sigma Aldrich (544094)

and for the substrate it was bought Ecoflex 00-30 from Smooth-On Inc. For last it was

obtained a commercially available binder AQUAPLAST-DIY for promoting adhesion to

the substrate.

To obtain the stretchable substrate, a glass is pre-cleaned with acetone and sprayed

with a mold releasing spray (Ease Release from Smooth-On). Next the Ecoflex is prepared

by mixing the two available parts of the material (part A and B) in 1:1 ratio. The final

solution is taken to low vacuum (800 bar) for 1 minute and then casted using a manual

thin film applicator. The thin films must have around 100 to 150 µm in order to achieve

the searched mechanical properties. Substrates were then cured in an oven at 100℃ for

10 minutes.

Different approaches to PEDOT:PSS electrodes were tried by mixing PEDOT:PSS 1.3

wt% in water or PEDOT:PSS 5 wt% ink with AQUAPLAST-DIY and STEC on different

ratios. The solutions were mixed for 10 minutes and casted with different thicknesses,

which varied between 3 to 8 µm using the film applicator. The thin films were cured in

oven at 100℃ for 10 minutes. The use of AQUAPLAS-DIY as intermediate layer as it is

shown on the schematic of figure I.1 at annex I was tested first by casting and later by
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screen printing (always using a 120T mesh).

The final method achieved for the electrode production was the following. A solution

of PEDOT:PSS 5 wt% screen printable ink and STEC enhancer was mixed for 15 minutes.

In order to find the best ratio, various samples were prepared and characterised culmi-

nating on a solution with 10% to 15% STEC and 90% PEDOT:PSS. This enhanced PE-

DOT:PSS ink was screen printed on a ECOFLEX 00-30 substrate with a intermediate layer

of AQUAPLAST-DIY, also screen printed to ensure good adheasion of the PEDOT:PSS to

the substrate. All layers were cured before a new layer was screen printed. Curing was

done a blow dryer at a hand distance from the sample, until the layer appeared dried. To

produce an electrode at least 3 layers must be screen printed, cured and given the time

to cool down between depositions.

2.2 Devices and passive matrix production
The device structure is shown on figure I.2 at section I.3 of annex I. To build this device,

different layers were screen printed with a 120T mesh and dried with a blow drier, as

described on section 2.1.2 for the electrode production. The emissive layer is then screen

printed directly on top of the cured electrode.

For the emissive layer, phosphor powders of ZnS:Cu (EL phosphor D512B from KPT

Shanghai Dongzhou Industrial CO.,LTD.) were embed on different weight ratios of 10 to

70 % on Ecoflex 00-30 (taking in consideration the Ecoflex 00-30 method of preparation).

The phosphor powders were mixed first with part B and only then the part A was added.

The solution is taken to low vacuum (30 seconds) to reduce the trapped air bubbles.

After removed from vacuum the solution must be rapidly screen printed on top of the

electrode, otherwise it gets too viscous to screen print using a high resolution mesh. After

the deposition, the thin films must be dried by the blow drier and given the time for cool

down. At least two layers must be screen printed to obtain uniform light emission from

the EL device. On top of the emissive layer, a layer of Ecoflex 00-30 was screen printed

with a larger area than the top electrode to avoid short circuits. Before the deposition

of the top electrode, a AQUAPLAST-DIY layer must be screen printed to guarantee the

electrode adhesion. The enhanced PEDOT:PSS ink is then screen printed on top the

AQUAPLAST-DIY. A detailed procedure to obtain these devices is shown on section I.2

of annex I.The matrix was produced using the same method, however the design used on

the mesh were different.

The designs for the matrix are shown on figure I.4a at section I.1 of annex I, while

the designs for the EL devices are shown on figure I.4b. The patterns were drawn using

Adobe Illustrator and then cut on vinyl using a vinyl cutter (USCutter). The vinyl cut

patterns were stuck to the mesh as suggested by figure I.3a and I.3b at section I.1 of annex

I. The material was deposited on top of the cut pattern and it was followed a common

screen-printed technique. It is advised the use of an already patterned mesh to reduce

the production time, improve alignment and permit less damaged samples.
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2.3 Electrodes and devices characterization
Electrodes were characterized for thickness, transmittance and resistance behaviour upon

strain. While devices, were characterized for transmittance and relative luminance with

and without strain as illustrated on schematic of figure I.7 in annex I.

To study different characteristics, various samples were produced. Electrodes with

different number of layers were produced having two, three and five screen printed layers.

For each thickness three different PEDOT:PSS enhanced electrode samples were produced,

with STEC enhancer ratios of 0, 10, 15 and 20%. The majority of the samples with 20%

of STEC enhancer showed poor mechanical properties so they were disregarded.

For the EL devices characterization, samples with the same area but with different

electrodes were characterized in transmittance and luminance with and without strain.

The electrodes of these EL devices all had three screen printed layers but different STEC

enhancer ratios (0, 10 and 15% of STEC). The emissive layers had different number

overlapped layers and different phosphor powder concentrations .

2.3.1 Electrical characterization
The resistance behaviour upon strain was observed using two separated pieces of equip-

ment, one for measuring resistance and another to stretch the sample, as suggested by

the figure I.6 at section I.3 of annex I. The stretching equipment by ZWICK/Roell was

attached to the sample by compressing the clamps to it. To avoid cutting the sample and

bad resistance readings, the clamps were protected with isolation tape. The sample size

(3 cm) was input on the equipment software in order to calculate the strain applied. The

attached cables to the electrode on figure I.6, were connected to a copper tape which was

attached to the electrode in order to avoid piercing the sample and to promote a better

contact. A Squirrel data logger (Grant 2020 Series) to measure the resistance upon strain.

Samples were stretched to a maximum of 80% strain, however when achieved the data

logger measurement capacity of 300 kΩ the tests were stopped.

2.3.2 Transmittance and thickness characterization
To observe transmittance a spectrometer Lambda 950 from Perkin Elmer was used. The

measurements were taken in the visible range from 300 nm to 800 nm. The same tech-

nique was used to observe transmittance of EL devices. The electrodes thickness was

measured using a profilometer XP-200 by AMBIOS Technology.

2.3.3 Luminance characterization
For the luminance measurements it was used a luminance meter LS-100 from MINOLTA

in a dark room. The samples were placed perpendicularly to the equipment as figure

I.8a at section I.3 of annex I suggests and powered by a EL inverter with two homemade

connectors made of clothespins as it can be seen on figure I.8b. For the luminance charac-

terization upon strain it was used a stretching equipment made in the laboratory, given

the need of a darker room to conduct the tests. The strain was always applied at a constant

velocity by manual moving a joystick, the strain calculations were previously calculated.

The set-up is shown on figure I.8c.
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3
Results and Discussions

In this third chapter all experimental results will be presented, the chapter will be divided

in five distinct parts. First it will be discussed the results obtained with hydrogels and

the reasons for looking to different alternatives. On the second part it will be presented

the results of different attempts to obtain a low cost method to produce stretchable and

transparent EL devices with PEDOT:PSS enhanced electrodes. For the third part it will

be observed and discussed the characterizations carried on the enhanced electrodes. On

the fourth part of this chapter it will be presented the EL devices properties such as

transmittance and luminance with and without strain. For last it will be presented the

passive matrix display produced using the methods studied.

3.1 Ionic Hydrogels
Polyacrylamide hydrogels containing ion salts are popular to use as stretchable and

transparent electrodes. However they easily dry out loosing their desired mechanical

properties. [34, 35] One of the ways to achieve desired mechanical properties of high

stretchability is to use highly hydratable salts to retain water in the polyacrylamide ma-

trix avoiding the loss of water and maintaining the mechanical properties. [34, 36] The

method presented on section 2.1.1 was demonstrated by Larson et al. and used to obtain

these hydrogels. [25] The results obtained by Larson’s team show EL devices with extraor-

dinary mechanical properties as stretchability up to >480% strain, for luminescences of

43.2 mlm/W. These devices were operated at 700 Hz under an electric field of 25 kV/cm,

using a voltage source of 2.5 kV.

Attempts to obtain the same results failed. The inability to have the solution at a

stable temperature of 60 ℃, given the lack of a proper hot plate may have caused the

reaction of copolymerization to be altered which provoqued the drying out off the gel

sooner than expected. It is thought that the tempeature variations caused by the method

used to stabilize the temperature was enough to variate the PAM matrix polymerization

time, since the reaction is senstive to temperature variations. [37] It is also thought

that the quantity of the hydrogel solution produced (10 to 20 ml), affects the required

time for polymerization at given temperatures. Such is thought since the quantity of

LiCl and acrylamide in these solutions significantly affect the amount of water in the gel,

which may cause deviations of the ideal temperature for the polymerization and more

importantly deviations of the reaction time. Various tests with shorter reaction times and

different LiCl salt concentrations were tried, however these attempts failed to fulfil the

objectives and when these were achieved could not be reproduced.
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On the few times that was possible to produce a viable solution, the uncured gel was

casted and cured via UV. The cured samples looked humid, sticky, fragile and they did

not properly adhere to ecoflex 00-30. The best samples looked like figure 3.1a. To avoid

these properties, longer periods of curing were tried however samples curled up as figures

3.1b show. The samples produced with longer curing times were less sticky but extremely

fragile, breaking when pulling from the glass substrate where they were casted. When

casted on top o ecoflex 00-30 the adhesion was still poor which may be due to the lack of

surface treatment and/or due to the curling. The curling may have happened not just due

to the curing time, but also to the film thickness (20 to 150 µm) which was significantly

thinner than the reported samples (1 mm). This is thought since some of the samples

curled up even with only 5 more seconds than the original curing time, and also because

the most thin samples curled on the curing time. However, the objective of the thesis

was to obtain devices thinner than 1 mm, so a manual thin film applicator was preferable

than 1 mm dispersion mold used on the work by Larson et al. This decision could be a

contributor factor for the poor properties obtained.

Samples that were not compromised were used to build simple devices as it can be

seen on figure 3.1a. These were extremely fragile and broke under little strain. Moreover,

the adhesion of the cured hydrogel to the Ecoflex 00-30 phosphor layer (emissive layer)

was poor, compromising the device cohesion mainly when flexed or stretched. It was also

tried using another salt to verify the influence on the hydrogel properties. It was used

NaCl to meet the objective of producing low cost devices. The solution crystallized with

less than half of the reaction time, the result can be seen on figure 3.1c.

Despite all the mechanical properties issues the electrodes were conductive even for

lower concentration of LiCl, demonstrating conductivity even with 2M of LiCl. How-

ever, it must be taken in consideration that the LiCL functionality is not just to enable

conductivity but also to retain water on the PAM matrix permitting higher stretchability.

Meaning that a lower concentration of LiCl compromises mechanical properties and also

the electrodes lifetime. [36] With the conductive electrodes an EL device was build as it

can be seen with no light emission on figure 3.1d and emitting light on figure 3.1e. The

light is not intense, and the device broke after the stretch seen on figure 3.1a.

Lithium Chloride is extremely expensive, concentrations of 8M for 10 ml takes 3.39 g

of LiCl which makes the final EL device extremely expensive. Being one of the objectives

producing a low-cost method to obtain stretchable and transparent EL devices, using LiCl

as ionic conductor is not the best option. Moreover, LiCl is also toxic when in contact with

skin, which is a problem since the project aims for biocompatibility. Using encapsulation

to have biocompatibility was thought, however for this hydrogel it was difficult since the

results showed a lack of adhesion to the Ecoflex 00-30, making it difficult to encapsulate

the devices. The high toxicity of the materials require the use of safety equipment which

turns the process more difficult and costlier.

12



3.2. PEDOT:PSS ENHANCED ELECTRODES

(a) (b) (c)

(d) (e)

Figure 3.1: (a) Stretchable device built with Acrylamide electrodes; (b) Curly hydrogel electrodes;
(c) Solidified hydrogel, using NaCl as conducting ionic salt; (d) EL device with hydrogel electrodes,
not emitting; (e) EL device with hydrogel electrodes, emitting.

High viscosity and toxicity of the uncured gel makes it very difficult to pattern, which

makes the hydrogel a not suitable approach to produce applications on displays. Also

the high viscosity of the solution limits the method for future applications that require

miniaturization. The lack of a simple method for the electrode production adds difficulty

to adapt to roll to roll methods typical from industry production. So, taken all these

considerations and the poor results achieved with the given conditions, the method was

abandoned and another one was carried.

3.2 PEDOT:PSS enhanced electrodes
To obtain enhanced PEDOT:PSS electrodes as described by Wang et al. at first it was

added Bis(trifluoromethane)sulfonimide lithium salt to a solution of PEDOT:PSS 1.3% in

water. [17] Various concentrations of the STEC enhancer were experimented, however at

the beginning it was used 40% since this was the minimum reported value to obtain sig-

nificant results. [17] The lack of spin coater and the objective of using simple production

methods made thin film manual casting the preferable alternative method to produce

uniform thin films.

The use of an enhanced PEDOT:PSS watery solution makes it difficult to cast thin

films in non-treated silicon rubber substrates such as Ecoflex 00-30 given the hidrophoic-

ity characteristic from the materials. The absence of surface treatment equipment as
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UV/O3 or O2 plasma, to reduce the hydrophobicity of the surface made it impossible to

obtain consistent and uniform films that adhere to the ecoflex substrates. This condition

compromised the PEDOT:PSS enhanced thin film formation (see figure 3.2). The thin

films were let to dry and then cured at 130℃ as suggested, however their final form

always resemble the films shown on figure 3.2. Since the substrate was not treated for

better wettability there is no adhesion to the surface and when compared to the method

reported by Wang et al., this difference will hinder the polymer curing upon heat exposi-

tion, mainly because these thin films had microns of thickness instead of nanometres as

some of reported films. [17]

(a) (b) (c)

Figure 3.2: (a) Enhanced PEDOT:PSS 1.3% in water solution dropcasted on top of Ecoflex 00-30;
(b) Electrode pattern laser cut on Ecoflex 00-30 as mold for electrode production on top of Ecoflex
00-30 substrate; (c) Simpler ecoflex 00-30 laser cut molds for bulkier electrodes production.

3.2.1 Enhanced PEDOT:PSS and AQUAPLAST-DIY
Solutions to enhance the film adhesion without the use of UV/O3 or O2 plasma treatment

were needed. The reported use of AQUAPLAST-DIY as a binder to obtain better adhesion

to silicon ruber substrates as ecoflex 00-30, had satisfactory results for this kind of appli-

cations. [32] The water presence in the AQUAPLAST makes it soluble on the PEDOT:PSS

solution. So, it was thought that the binder could add viscosity and promote adhesion

to the substrate, permitting more consistent uniform thin films after curing. Different

solutions of enhanced PEDOT:PSS and AQUAPLAST were casted and the results were

observed. These results are shown on table II.1 of annex II.

The attempts carried shown that adhesion is only significantly improved if PEDOT:PSS

is deposited on top of an intermediate layer of AQUAPLAST-DIY. This better adhesion

achieved with the aquaplast intermediate layer as shown on improved mechanical prop-

erties such as stretchability. As it can be seen on figure 3.3a the casting of the PEDOT:PSS

1.3 wt% enhanced solution with a percentage of AQUAPLAST directly on silicone, re-

vealed to not be enough to improove adheasion to the susbtrate, however the samples

produced with an aquapalst intermediate layer proved to adhere to the substrate building

electrodes with better properties.
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(a) (b) (c)

Figure 3.3: PEDOT:PSS 1.3 wt% in water enhanced solution (PEDOT:PSS:STEC:AQUAPLAST)
casted with different conditions.(a) 40/40/20% casted on ecoflex; (b) 35/45/20% casted on ecoflex;
(c) 35/45/20 casted on AQUAPLAST.

The difference in between figure 3.3b and 3.3c as well as other results on table II.1 of

annex II, show clear evidence that a binder intermediate layer results in better mechanical

properties of the electrodes. On the other hand, by observing figure 3.3b, 3.3c and figure

III.1b from annex III, it is perceptible how the films appear humid despite already being

cured and dried for a couple of days. A closer look on table II.1 show that the humidity is

present even on films casted with the AQUAPLAST intermediate layer and it will continue

to be observable but not so significantly on other approaches later discussed on section

3.2.2. Humidity presence on the thin films is relevant because it will made it difficult to

other top layers to adhere, causing difficulties on the device production.

When the thin films leave the oven, they appear cured. However, with exposure to

atmosphere they tend to get wet, accumulating small water droplets on the surface. This

condition changes the adhesion of upper layers and makes the electrodes easily peeled

off upon slight contact. It is thought that the water presence is due to the STEC enhancer

since it is a lithium chloride sulphide and it absorbs water. The layer thickness of some

microns has enough salt to attract water and trap it on its surface. This water adsorption

makes the surface of the films humid and in some cases after prolonged exposure to the

atmosphere it is even possible to see the water droplets on top of the film by naked eye.

Electrodes on figure 3.3c show a lack of uniformity on the deposition, which happened

given the amount of PEDOT:PSS not being enough for the extension of the film causing

the fade up to appear. The same phenomena is visible on the devices of figure 3.4, but

in this case an excess colloidal particles is accumulated on the end. This problem is also

responsible for the last visible line at the end top part of some electrodes like sample 5

and 9 from table II.1 of annex II.

The lack of uniformity visible on the electrodes of figure 3.4 (casted with ±4 µm) is

due to the holes caused by either small defects on surface, or accumulated material on

the film applicator. As mentioned before, due to casting the excess stay in the end. This

characteristic is more accentuated for watery films like the ones casted with PEDOT:PSS

1.3% in water, which is the case of devices on figure 3.4.
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The working device on figure 3.4 shows only emission on the corner. It is thought that

this is due to the larger electrode thickness on that corner, since thicker films have lower

resistance. So, it is plausible to assume that only on that corner the electrodes were con-

ductive enough to generate the strong electrical field required for the electroluminescence

phenomenon.

Figure 3.4: Working de-
vice (only on the corner) pro-
duced by manual casting and
powered by EL inverter of 9V;

In an attempt to solve the humidity problem, the elec-

trodes were cooled under low vacuum and rapidly isolated

with a top layer (usually the emissive layer). This could min-

imize the time exposed to the atmosphere and therefore the

thin film humidity adsorption. The problem with such a

rudimentary solution is that on a top layer deposition that

took more time , the deposited layer would easily peel off
given the humidity presence (figure 3.5f). This condition

made it difficult to encapsulate the device and even if the de-

vice was encapsulated, the presence of a connection to hard

electronics to apply power (like copper tape or copper wires),

will cause the encapsulation layer and the electrode to peel

off at the slightest movement. The adhesion problems seen

on figure 3.5f, are a non-desirable condition when looking

for properties like stretchability and/or flexibility.

In figure 3.5a it is visible the lack of uniformity on the electrodes. Thisis due to

the colloidal PEDOT:PSS 1.3 wt% watery solution not being viscous enough to form a

uniform cast by the manual film applicator. Due to the solution being too much or too

less for the pattern wich can cause excess solution on the end of the deposition. Or due

to a phenomenon common on casting methods, where dispersed particles tend to go

towards the center or to accumulate on the beginning or end of the casting given the

surface tensions that agglomerate particles.

For last, the thin films low adhesion and lack of consistency compromised the matrix

patternization using the manual film applicator. As it can be seen by figure 3.5d and

3.5e, during the emissive layer deposition the excess of the emissive layer solution cures

on top of the mask. So, when removing the mask, the electrodes stick to the emissive

layer (see figure 3.5d) and peel off. In order to avoid this problem, the emissive layer was

shaped on a uniform square. However, as figure 3.5f shows the layer did not adhere to

the electrodes and more importantly, on the emissive layer deposition, the lines where

the electrodes were previously deposited had less thickness (see figure 3.5f) which could

cause short circuiting with the top electrode.

It was tried to screen print the pixels but as it can be seen on figure 3.3b, when the

aquaplast is deposited (after the screen printing of the emissive layer) the electrodes

absorb part of the aquaplast water compromising the device fabrication. For solving

this it was casted a ecoflex layer, however the same problem of adhesion observed in

figure 3.5f happened with frequency. More importantly the presence of an intermediary
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ecoflex layer between the electrodes and the phosphor layer could dramatically reduce

the electric field. The problems experienced with the matrix were experienced in some

degree of similarity with simpler devices which made it difficult to pursue this method.

Moreover, since the matrix is the ultimate objective of this thesis a better solution for

device fabrication must be found.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: (a) Deposited and pattern PEDOT:PSS/STEC electrodes. (b) Deposited emissive layer
by screen printing. (c) Binding layer deposition to facilitate top electrode adhesion and to stabilize
thickness. (d) Vinyl mask with pixels casted. (e) Mask Matrix removal, causing electrodes peeling
off; (f) Low adhesion of the emissive layer to bottom electrodes and substrate.

3.2.2 PEDOT:PSS Screen printing ink electrodes
The results until this point did not fulfil the objectives. In order to get better results, it

was produced PEDOT:PSS enhanced solution with different concentrations of aquaplast

binder and it was also tried to use a different kind of PEDOT:PSS. It was used PEDOT:PSS

5wt% screen printing ink, which has an increased concentration of PEDOT:PSS and other

components as diethylne glycol and ethanol, that permit better PEDOT:PSS solubility in

the ink and also bind the overall solution, enabling better, uniform consistent films.

Similar to the process with the PEDOT:PSS 1.3 wt%, different concentrations of STEC

and AQUAPLAST were tried. The results for these experiments are summed on table

II.1 of annex II. The use of PEDOT:PSS ink enabled more uniform films solving the fade

out problem seen before. The ink use also permitted to obtain better overall mechanical

properties as stretchability (films showed less cracks after stretching) and better adhesion
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(given the reduced presence of moisture). Combined with better mechanical properties

it was achieved a better conductivity, the thin film electrodes with these properties are

shown in figure 3.6.

The electrode in figure 3.6c is not conductive since it is a mixture between a dielectric

material (AQUAPLAST) and PEDOT:PSS which is a poor conductive. When compared

to the films with STEC presence, it is visible a consistency difference and a more opaque

dark blue tone. This shows that the STEC enhancer does not just change the electrical

properties of PEDOT:PSS but also the mechanical and optical properties. [17] Despite

the better electrode properties, they continued to be easily peeled off by a harder touch,

making it difficult to connect with hard electronics for power supply (see figure III.3a

and III.3b of annex III).

The problem with humidity in the films observed on section 3.2.1 was partially solved

with the use of the PEDOT:PSS 5 wt% ink. It was still visible some humidity in the

films, however this did not caused significant problems in adhesion. Moreover, the use

of the PEDOT:PSS ink significantly diminished the transmittance, a commitment that

was considered relevant given the improvements on the mechanical properties and con-

ductivity of the electrodes. It was observable that the increase concentration of STEC

and/or AQUAPLAST reduced the viscosity of the enhanced solution. Condition that at

first was considered positive, since enabled the casting of thinner films with transmittance

improvements. However, latter this would be revealed a problem.

Given the difficulties to pattern devices using casting methods and since it was been

used a screen printable ink, it was tried to use screen printing as patterning method. As

section 3.2.3 shows the results were promising.

(a) (b) (c)

Figure 3.6: PEDOT:PSS enhanced electrodes (a) and (b)obtained with 40% of PEDOT 5 wt%, 20%
of STEC and 40% of AQUAPLAST-DIY. On figure 3.6c is shown a casted film of 50% PEDOT:PSS
5wt% and 50% of aquaplast.
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3.2.3 Screen printed enhanced PEDOT:PSS electrodes
With so much problems due to the casting method and given the reported properties

achieved by Wessely et al. where EL devices electrodes were fabricated by screen print-

ing a PEDOT:PSS 5wt% ink thin film, it was thought to screen print the enhanced PE-

DOT:PSS:STEC:AQUAPLAST solution to obtain better conductivity, transmittance and

stretchability. [32]

Rapidly it was conluded that the use of AQUAPLAST in the enhanced solution was

making it too waterly for screen printing. The same was observed for high STEC concen-

trations (40% STEC and 60% of PEDOT:PSS 5wt%) as it had been reported by Wang et

al. for electrodes of PEDOT:PSS 1.3wt% in water. [17] So, studies were carried and it was

concluded that electrodes must be produced without AQUAPLAST and with a maximum

20% of STEC on a solution with 80% of PEDOT:PSS 5 wt% ink. Given this, different elec-

trodes with 5%, 10% , 15% and 20% of STEC enhancer were produced to verify which one

had the better overall properties: transmittance, stretchability and conductivity. Samples

with 20% STEC were easily peeled off and too fragile, so they were disregarded.

The combination of only PEDOT:PSS 5wt% ink and STEC described on this section

could certainly alter properties on devices produced by casting methods. However, screen

printing offered easier ways to obtain patterns and is highly adjustable to mass production.

Given these advantages, it was decided to use the enhanced PEDOT:PSS solution by screen

printing rather than casting. Moreover, screen printing opens more doors for different

applications and is a low-cost option applicable to mass production.

3.3 Characterization of screen printed enhanced PEDOT:PSS

electrodes
To observe the overall behaviour of the enhanced PEDOT:PSS electrodes, samples were

subjected to different characterization processes explained on section 2.3. The results

of these characterizations are shown on this section that will be divided in two different

subsections. First it will be observed the electrodes aspect under microscope as well as

their transmittance and thickness. Secondly it will be discussed the electrodes electrical

behaviour under strain and how different STEC concentrations and layer number affects

this behaviour.

3.3.1 Microscope observations, thickness measurements and transmittance
considerations

Figure 3.7 show micrographs taken with a camera attached to a microscope with 10X

amplification lens. This figures do not show scale since the equipment did not revealed it.

However the intent of this pictures is just to observe the increasing amount of PEDOT:PSS

on the thin film at each screen printed layer.

Figure 3.7a; 3.7b; 3.7c; 3.7d and 3.7e show samples with one, two three, four and five

layers, respectively. On figure 3.7a; 3.7b it is possible to see dispersed small droplets of

the deposited PEDOT:PSS. Since the conduction on polymers like PEDOT:PSS happens
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by electron hopping between the PEDOT and PSS chains, it is easily assumed that the

electrode is not conductive given the lack of a PEDOT:PSS continue network.

On the other hand on figure 3.7c, 3.7d and 3.7e it is possible to observe a network

of PEDOT:PSS caused by the screen printing mesh. If the polymer maintains a network

between the two ends of the electrode there are always PEDOT:PSS chains in contact,

permitting conduction by hopping on all the electrode.

(a) (b) (c)

(d) (e)

Figure 3.7: Micrographs with 10X magnification of screen printed enhanced PEDOT:PSS elec-
trodes with different number of layers: (a) one layer; (b) two layers; (c) three layers; (d) four layers;
(e) five layers.

The presence of the enhanced ink network can be better observed under a microscope.

Figure 3.8a shows a sample with two layers of PEDOT:PSS enhanced ink where it is clear

the presence of holes on the film caused by the 120T mesh. At the same magnification,

figure 3.8d shows a five layers sample, where it is visible a uniform film caused by the

overlap of various screen printed layers.

On figure 3.8d where it is showed the same sample under 100X amplification, it is

observable the presence of micro cracks, caused by stretching the sample. These cracks

can be better seen on figure 3.8e and 3.8f. Despite the number of cracks, electrodes are

still conductive. The electrical behaviour upon strain will be discussed on section 3.3.2
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The thickness measurements were done with a profilometer as mentioned before. The

sample with five screen printed layers was measured but samples with two and three

layers were not, since the profilometer could not make proper measurements due to the

samples softness. Such could be solved by using a larger tip on the profilometer. However

suc was not available and measurements taken on the five layers sample indicated an

average thickness of 14± 0.5µm. The thickness of the film was lower than expected, but

it demosntrates the good overall electrode properties. Thicker samples could improve

conductivity which is favourable for faster electrode responses when adressing pixels.

However, thicker samples significantly loose transmittance, which could agravate wich

is already one of the limitations of this work. The thickness is limited by the fabrication

method in use, since the thin film thickness will always depend on the mesh thickness

and network aperture. [38] To achieve better transmittance, methods as spin coating

must be used, as reported by Wang et al. [17]

With five screen printed layers an electrode has a thickness of 13 µm. However, since

it was not possible to make other measurements with different number of layers, it is not

accurate to assume the thickness of one layer. From figure 3.8b it is possible to observe the

lines cut by the profilometer on the interface between PEDOT:PSS film and ecoflex. Such

observation indicates that despite the small thickness of the screen printed electrodes,

they were harder than the ecoflex, which is an indicator of good mechanical properties

and good adhesion to the substrate.

The graph of figure 3.9 shows the electrodes transmittance. The transmittance is

presented in relation to the number of screen printed layers instead of thickness and the

values were obtained by calculating the average transmittance from the wavelength of

300 nm to 800 nm, the error is represented on the graph. The spectrum of the samples

showed a peak on the left side of the spectrum around 400 nm to 520 nm corresponding

to the transmittance of the blue tone. From the graph, it is possible to study the influence

of STEC concentration on the electrode transmittance. The graph indicates a transmit-

tance decrease from 75% to 50-60% with the increasing number of PEDOT:PSS enhanced

layers. This decreasing in transmittance is predictable given the expected increase in the

electrode thickness caused by the increased amount of screen printing layers. Moreover,

the decreasing number of holes in the thin film caused by the increase number of over-

lapped layers will also contribute to the reduced transmittance (as it can be verified on

figure 3.8).

It is also observable from the graph of figure 3.9 that an increasing concentration

of STEC enhancer increases the transmittance. However, the effect of the STEC concen-

tration on the transmittance is much weaker than the layer number. So, given the not

perfectly clear correlation, a bigger number of tests is needed to take conclusions. How-

ever, the tendency from figure 3.9 graph is that a higher STEC concentration increases

transmittance.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: (a) PEDOT:PSS sample with two layers at 50X ampliation; (b)PEDOT:PSS sample
with 5 screen printed layers at 50X focused on the zone where thickness measurements with
profilometer were taken; (c) PEDOT:PSS sample with five screen printed layers at 50X ampliation;
(d) PEDOT:PSS sample with five screen printed layer at 100X ampliation; (e) PEDOT:PSS sample
with five layers at 200X ampliation; (f) PEDOT:PSS sample with five screen printed layers at 500X
ampliation on a microcrack ;
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Despite the non significant transmitance variations, given the graph of figure 3.9 it is

still plausable to assume an increased transmittance with increased STEC concentration.

This is plausable since the presence of STEC enhancer softens PEDOT:PSS chains which

have an impact on viscosity, causing more dispersion when screen printing. Moreover,

this statment is supported by the work of Wang et al. where a higher STEC enhancer

concentration shown significant transmittance increases on PEDOT:PSS 1.3 wt% in water

thin films. [17] It is thought that, this increment is caused by the presence of sulphides

wich soften the PEDOT:PSS chains elongating them. This elongation creates spaces be-

tween chains which can increase the amount of light that passes through the polymer,

increasing the overall transmittance. [17] This associated to the change in viscosity of

the enhanced solution can justify this tendency, however in order to make more secure

affirmations more tests need to be carry.

For the sample with 5 layers and 10% STEC, the transmittance is lower than for the

sample with 5 layers and 0% STEC which contradicts the affirmations referred before.

However, it must be considered that the difference is only 2% which is not significant.

Such variation could be caused by a faulty sample or a corrupted test. A major broad of

samples should be characterized in order to verify the influence of an higher enhancer

concentrations in the PEDOT:PSS ink transmittance. The three layer sample with 15%

STEC also deviate from the observed overall correlation, by showing a significantly higher

transmittance. The reason for this deviation is not clear and a bigger number of tests must

be done in order to verify this.

Transmittance is very high for low number of PEDOT:PSS layers. However as pointed

on section 3.3.2 the resistance increases significantly with the decreasing number of

layers. It is thought that this can be surpassed by increasing the amount of STEC in the

solution, however this brings other problems like high resistance for a low strain. An

alternative to increase conductivity and reduce the amount of layers is to use a mesh

with a smaller aperture in order to provide a more closed network, avoiding spaces in

the film which increase resistance. Moreover, it is estimated that with a smaller mesh it

will not be necessary such a big number of layers to achieve proper conductivity and the

transmittance will also be increased.
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Figure 3.9: Graph to describe the influence of number of screen printed layers on transmittance
for electrodes with different concentrations of STEC.

3.3.2 Electrical characterization
The graphs presented on figure 3.10 describe the electrode electrical behaviour upon

strain of samples with 5 screen printed layers, but with different STEC enhancer con-

centrations. It were tested samples with 0, 5, 10 and 15% of STEC which correspond

to graphs 3.10a, 3.10b, 3.10c and 3.10d, respectively. The graphs 3.10a and 3.10b show

some fraction of time without measurement points, which is due to the value measured

being higher than the maximum measurable by the equipment (300 kΩ).

From the graphs it is possible to verify the decrease in resistance upon the increase

in STEC concentration. On the graph 3.10a where it is showed the behaviour of the PE-

DOT:PSS electrode with 0% STEC enhancer, at the strain of 10% the resistance is the same

as the sample with 15% STEC at 70% strain (graph 3.10d). This is not just related with

the increase in conductivity caused by a higher STEC enhancer concentration, but also be-

cause a higher STEC concentration improves the electrode mechanical properties which

reduce the number of cracks created by the strain. With less cracks on the electrodes

there is a decrease in resistance upon strain.

It also can be understood by the graphs of figure 3.10 (principally by graph 3.10c)

that electrodes do not totaly recover the same resistance value from the previous stretch.

This supports the relationship between the cracks caused by stretching and the resistance.

When compared the graph 3.10c with the graph 3.10d this effect is attenuated, since as

discussed the increase STEC concentration elongates the PEDOT:PSS chains improving

the mechanical properties wich reduce the number of physical cracks upon strain, en-

abling the resistance restoration after strain. [17]. The graph 3.10d shows the resistance

behaviour of the highest STEC concentration tested and it is visible that the values of

resistance are restored even for high strains as 60%.

The sample of graph 3.10d showed an abrupt increase on resistance at 70% strain
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which was not completely clear the reason for such. It could be a defective test or could

represent the break of the sample. For better understanding more samples should be

characterized and also a more precise test like a two probe characterizations should be

done. However it should be mentioned that tests done with that strain showed resistance

lower than 300 kΩ.

The graphs 3.10a and 3.10b go only until 20% strain since the maximum resistance

value measurable by the equipment was already been achieved for this strain while for

bigger concentrations of STEC the electrode stands with a low resistance significant more

high strains. Which once more shows the influence of STEC on mechanical properties

which have repercussions on the electrical properties, due to the micro-cracks observed

on figure 3.8f the network of PEDOT:PSS is broken causing the resistance to increase.

An increased concentration of STEC softens the PEDOT:PSS chains which permit a less

fragile electrode, distinguishing the number of micro-cracks impacting resistance.

(a) (b)

(c) (d)

Figure 3.10: Resistance behaviour upon strain with multiple cycles of stretching for different
strains(a) Non-enhanced PEDOT:PSS, 0% STEC; (b) 5% STEC enhanced PEDOT:PSS electrode; (c)
10% STEC enhanced PEDOT:PSS electrode; (d) 15% STEC enhanced PEDOT:PSS electrode
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The resistance measurements were taken with only 2 electrodes placed diagonaly.

So, it is inaccurate to obtain extrinsic values as sheet resistance or intrinsic values like

resistivity or conductivity. Given the importance of closely observing the electrodes

resistance, it was summed up in table 3.1 the direct resistance values measured.

From the table 3.1 it is understood that the STEC presence on the electrodes signifi-

cantly decreases resistance. When compared samples with 0% and 5% STEC enhancer

it seems that the resistance values do not significantly decrease. However, a close look

to the same samples at 10% strain and it is observable a significant discrepancy on re-

sistance. On the sample of PEDOT:PSS without enhancer, at 10% strain the resistance

measured surpasses the equipment limit (300 kΩ) while for the sample with 5% enhancer

the resistance measured goes to a maximum of 240 kΩ (value observed from the graph of

figure 3.10b). This discrepancy gets even more significant for higher STEC concentrations,

which again can be attributed to the improvement of the mechanical properties from the

presence of STEC enhancer.

The values of table 3.1 show that samples with STEC enhancer concentrations of

10% and 15% have a big discrepancy from the electrodes with only PEDOT:PSS ink,

principally for strains above 10%. The resistance of the samples with 10% and 15%

STEC enhancer show that resistance does not decrease linearly with the increase in STEC

concentration, since the sample with 15% STEC enhancer show higher resistance than

the electrode with 10% STEC. Such may be due to the pre-stretching (various cycles up

to 80% like demonstrated on figure 3.10 ) done to the sample with 15% STEC before the

measurements showed on table 3.1 and on figure 3.10. However, this discrepancy is not

significant and the overall data supports the increase in conductivity with the presence

of STEC enhancer. Moreover the behaviour does not have to be linear, a juice point for

the concentration of STEC can be achieved however more samples and a bigger number

of tests tests must be carried to better verify these ideas.

With the current electric measurements it is not possible to compare this work to

Michael Wessely’s team work since no intrinsic electrode properties or sheet resistances

were possible to obtain. [32] However, taking in consideration that Michael Wessely

team used PEDOT:PSS 5wt% screen printing ink to build their electrodes and the pro-

duction method is almost the same, it is plausible to assume that this work should show

better reistance behaviour upon strain and better mechanical properties. Although, a

bigger number of tests like and a two probe characterization should be carried to better

understand the electrical behaviour of the electrodes.
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Table 3.1: Resistance values measured under strain and presented by electrode concentration of
STEC.

Resistance (kΩ)

`````````````̀STEC (%)
Strain (%)

0 10 20 40 60

0 24.7 206 > 300 >300 >300

5 58.8 164 >300 >300 >300

10 0.808 0.875 0.988 1.58 2.61

15 3.11 15.6 16.6 14.6 23.3

The graph of figure 3.11 illustrates better what is observable in table 3.1 where it is

possible to easily verify the influence of strain in the resistance. The values used on this

graph were the average of points measured for different strains and samples from the

graphs of figure 3.10, the same method used for the values of table however repeated.

As it also is observable on the table 3.1 the increased concentration of STEC decreases

the resistance of the electrodes, principally for high strains. From the graph it is clearly

visible that the best sample is the sample with 5 layers and 10% STEC given the values

of resistance close to 1 kΩ. However a big number of samples must be characterized in

order to better verify this conclusions.

Figure 3.11: Graph to describe the influence of strain in resistance for the different samples with
different concentrations of STEC.
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3.4 EL devices characterization
3.4.1 Transmittance characterization
The structure used for fabricating EL devices on this work is shown on figure I.2 at section

I.3 of annex I. On this figure it is visible the presence of the AQUAPLAST transparent

layer as interface of phosphor/electrode and substrate/electrode, used to promote adhe-

sion to the hydrophobic ecoflex.

The increment of a phosphor layer in between the electrodes and adding one more

electrode will reduce the overall transmittance of the EL device when compared to the

electrodes characterization even knowing that the AQUAPALT-DIY layer will not signif-

icantly affect the transmittance given its high transparency. However, in order to verify

the influence of the phosphor layer on the overall device transmittance, studies were

carried. The phosphor powder concentration is important since a high concentration of

it increases the luminance of the device, since an increase number of phosphor particles

will cause more EL phenomenon. The devices characterized had enhanced electrodes

with 10% STEC and 5 screen printed layers and can be seen on figure 3.12a,3.12b and

3.12c.

A phosphor layer composed of 30% phosphor and 70% ecoflex 00-30 is shown on

figure 3.12a, while figures 3.12b and 3.12c show phosphor layers with 50 and 70% phos-

phor, respectively. The transmittance values measured for those samples are presented

on table 3.2 and were obtained by the average of the transmittance values measured

to wavelengths from 300 nm to 800 nm. Contrary on what expected and as the data of

table 3.2 reinforces, there is no significant variation in transmittance between the dif-

ferent concentrations of phosphor powder. It is even possible to verify by table 3.2 that

samples with an emissive layer of 70% phosphor powder show more transmittance than

samples with 30% phosphor powder. Although, these transmittance variations are very

small (maximum discrepancy of 4%) so they should not be taken in consideration, more

samples need to be characterized in order to take better conclusions.

It is understood that for lower thickness the phosphor powder concentration of the

emissive layer do not play a significant role on the overall device transmittance. Which

may be related to the similar thickness of the devices emissive layer. It is thought that

only two layers by screen printing will not cause a big increase in thickness given the

layers overlapping.

Devices show an overall transmittance of 30% making them far from transparent. De-

vices must be produced with 70% of phosphor powder given the lack of influence in trans-

mittance by the phosphor concentration of the emissive layer but the significant increase

in brightness caused by an increased concentration of the phosphor powder as studied

in section 3.4.2. Higher percentages than 70% make the solution of phosphor:ecoflex too

viscous for screen printing principally if used high resolution meshes.
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(a) (b) (c)

Figure 3.12: (a) El device with 2 screen printed layers of 30, 50 and 70% phosphor powder
concentration in ecoflex as screen printed emissive layer

Table 3.2: Transmittance data of EL devices samples with different concentration of phosphor
powder and different number of phosphor layers.

Phosphor quantity (%)
Transmittance (%)

no of layers
1 2

30 36 ± 0.7 30 ± 0.7
50 26 ± 0.6 28 ± 0.6
70 30 ± 0.5 26 ± 0.5

3.4.2 Luminance characterization
3.4.2.1 Luminance characterization without strain

Luminance characterization is one of the most important characterizations for EL devices,

since it is the ultimate functionality of this kind of devices. This luminance character-

ization was carried with stretching and without stretching. Although various samples

were characterized without strain, only the sample with the strongest luminance was

characterized upon strain.

The characterization method is described on section 3.4.2 and the results are summa-

rized on the graph of figure 3.13 on this section, where it is shown how the electrode STEC

enhancer concentration influences the devices luminance. It is important to take in con-

sideration that all the results presented on this section are shown in relative luminance

and were taken on samples with 2 layers.

Absolute values will not be discussed since all the luminance measurements were done

with an inadequate set-up for the luminance meter in use, the angle of measurement was

not taken in consideration. However, all the measurements were taken under the same

conditions which validates the use of relative luminance, being it enough to explore the

relationships that make the objective of this chapter.

Figure 3.13 shows that a higher STEC concentration increases the device brightness.

As referred on section 1.2, electroluminescence is provoked by the collision of electrons
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with luminescence centers causing their excitation followed by de-excitation and emission

of light. A higher STEC concentration increases conductivity which enables the electrode

to have a higher current density which means an increased charge on the electrodes. As

equation 1.1 on section 1.3 shows, an increased charge in the electrode increases the

electric field which stimulates the impact excitation phenomena as well as the avalanche

phenomena resulting in a luminance increase. This is the reason why an increased current

on the electrodes can cause greater light intensity. [11]

The electric field has a greater influence on luminance if there is an increased amount

of phosphor particles. A higher pohosphor powder concentration, increases the number

of ZnS:Cu particles, which means an increased impact ionization and avalanche phe-

nomenon. This idea is supported by the graph 3.13 where it is possible to verify that an

increase on phosphor powder concentration significantly increases the luminance.

It is not accurate to compare the luminance values achieved on this work with the

reported values by the Michael Wessely team since the measurements were not made

accordingly to the devices specifications. However, since it is possible to observe relative

luminance and the production method was identical on both works, the graph of figure

3.13 shows that the STEC enhancer presence on the electrodes increases the device lu-

minance, it is plausible to assume that the luminance values expected for this work may

be similar or greater than the values of 120 to 200 cd/m2 achieved by Michael Wessely’s

team.

Figure 3.13: Luminance Vs STEC concentration graph to study the influence of electrode STEC
concentration and emissive layer phosphor concentration on the brightness of the overall EL
device.
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3.4.2.2 Luminance characterization under strain

The graph of figure 3.14 show the relationship between extension and luminance. This

measurement was made on a EL device with a phosphor layer of 70% phosphor pow-

der and PEDOT:PSS electrodes with 5 screen printed layers enhanced with 15% STEC

enhancer with 2 layers.

The graph 3.14 show that there is a slight increase in luminance from the 0 to 200%

strain. Such was expected since with strain applied on the sample the thickness of the

emissive layer diminuishes increasing the electric field which will have an impact on

luminance. After that it is seen an abrupt deacrease in luminance, wich may happen

since the electrodes increase resistance so significantly that it surpasses the influence

of the reduced thickness in the electric field. Since the electric field is influenced by

the acumulated charge on the interfaces, a higher resistance will decrease the number

of charges on the dieletric interface decreasing the electric field. This influence could

affect more the electric field than the lower thickness. However, further studies must be

done to prove this statement, as well as to ensure the relationship between extension and

luminance increase, already discussed on literature. [25] It must be taken in consideration

that despite the high strains of 800% the value of luminance is higher than half of the

initial value, which shows the good mechanical properties which permit so high strains

on the device without a lot of degradation.

Figure 3.14: Brightness Vs Strain Graph for studying the extension influence on brightness.
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3.5 EL Passive Matrix Display

Using the methods reported on this work it was produced a 5× 5 passive matrix display,

with 25 pixels. The matrix has a size of 11× 11 cm and a pixel size of 0.8 cm. Electrodes

were spaced by 1 cm to securely avoid overlapping of the electrodes causing short circuit-

ing. Only one matrix was produced and no further characterizations were carried given

the duration of the project. This matrix was produced as proof of concept and it was not

connected to hard electronics (as for example a copper tape or wire) for future addressing

tests using Arduino. Given the fragility of the electrodes and the lack of proper material,

for the time of the project it was not possible to produce the addressing connections. Fig-

ure 3.15a, 3.15b, 3.15c and 3.15d shows this passive matrix being stretched on different

situations. Figure 3.15e shows a working pixel flexed, while figure 3.15f, 3.15g and 3.15h

shows the working matrix being wore on an arm with the particularity that the last one

is being stretched. Figure 3.15i shows a working matrix sticked to a refrigerator, which

shows that ecoflex adhesion is enough to adhere to walls, fridges, windows and the ma-

jority of the surfaces, which is a good property for future applications as programmable

alert signs.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.15: Pictures of the working passive matrix on different situations like being stretched,
flexed, used on a harm and sticked to a fridge.
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Conclusions and future perspectives

This thesis compiles the work to obtain low cost easily reproducible stretchable and

transparent electroluminescent device for display applications. The final goal of the

thesis was to obtain a fully functional transparent EL passive matrix display. To fulfil this

objective several different tasks were set:

1. Obtaining a working LiCl based hydrogel electrode;

2. Producing a small stretchable EL device;

3. Studying methods to pattern and obtain a functional passive matrix;

The first task was not accomplished given the production method being too difficult

and dangerous for the conditions available. Hydrogel electrodes proved to be difficult

to produce and they lacked biocompatibility due to the use of highly carcinogenic acry-

lamide monomers and LiCl toxicity. Moreover, the hydrogel electrodes produced showed

lack of adhesion to the ecoflex substrate or encapsulation layer. Such properties hinder

the devices production, making them fragile and with low brightness. Given the objective

to obtain thin low cost stretchable EL devices that show robustness and good brightness,

the method revealed to not be the best approach despite the literature reported results.

With the first task not completed, alternatives to obtain the electrodes were searched.The

use of PEDOT:PSS 1.3 wt% in water electrodes enhanced with Bis(triflu-oromethane)sulfonimide

lithium salt was the best presented solution. This approach also revealed problems with

adhesion of the PEDOT:PSS watery solution to the hydrophobic ecoflex 00-30, which was

solved by using an intermediate layer of AQUAPLAST. The use PEDOT:PSS 5 wt% screen

printing ink instead of the PEDOT:PSS 1.3 wt% in water was more suitable since enabled

more robust electrodes therefore more robust devices. The screen printing of enhanced

PEDOT:PSS ink was limited to a maximum STEC enhancer concentration of 20%. Since

a greater concentration of the enhancer turned the solution too watery for screen print-

ing use. The results were promising and electrodes showed robustness, stretchability

and a significant increase in conductivity when compared to electrodes produced with

PEDOT:PSS ink alone.

Some of the devices produced had less than 170 µm thickness and showed promissing

luminance results with and without strain, using only portable 9V AC inverter presented

on figure I.8 of annex I. A proper luminance characterization it was not possible but is

expected a luminance around 120 cd/m2. Since as explainded, the work of this thesis is

similar to the Michael Wessely team work.[32] Also, when compared the photographs of
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Michael Wessely team to the photographs of annex III it is visible the intense brightness

of the devices produced by this work even with ambient light, such photographs support

the idea of similar brightness, but further studies must be carried.

The work is concluded as successful since a final EL passive matrix was obtained as

it is shown on section 3.3. A low cost easily reproducible method was found to produce

enhanced PEDOT:PSS electrodes with better conductivity and better overall mechanical

properties than PEDOT:PSS ink electrodes. The visible resistance reduction will permit

a fastest response required for application on passive matrix’s or on more complex EL

displays. Despite the limited time and equipment difficulties that compromised the final

results, the future perspectives for this work are significant.

Access to a surface treatment would have permitted the use of the PEDOT:PSS 1.3

wt% water dispersion which will have permitted the use of a greater STEC concentration

as 40%. Such will permit better conductivity and transparency on the electrodes, which if

combined to inkjet printing will permit the printing of small thickness and more complex

patterns as an active matrix. Furthermore, combining surface treatments with the use

of AQUAPLAST-DIY may unlock device properties expected improve properties of the

device. With this it is concluded that, with some more equipment, tests and time, by

following the line of thought initiated on this thesis it can be achieved low cost proper

working displays, ready for the design and commercialization given the easy applicability

to industrial mass production.
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I
Complementary information and

photographs to methodology

This Annex contains complementary information to chapter 2. Here can be found detailed

descriptions of procedures explained on that chapter but also photographs that better

help the understanding of the methods used and how they were used.

I.1 Complementary information to methodology
First it was acquired Acrilamide (Aam)≥ 99% Sigma Aldrich) as well as polyacrylamide

(PAM) MW ∼ 5 × 106 (92560; Sigma Aldrich). As ionic conductor it was used lithium

chlorite (LiCl) (203637; Sigma Aldrich) wich was used on a solution alongside with a

crosslinker (N,N’-methylenebisacrylamide; 146072; Sigma Aldrich) and a photoinitia-

tor (Irgacure 1173- 2-Hydroxy-2-methyl-1-phenyl-propan-1-on; 405655; Sigma Aldrich).

For obtaining the electrodes AAm and LiCL were dissolved in deionized water at the

concentration of 1.75M and 8M, respectively. Followed by PAM at weigh ratio of 0.142

PAM:Aam.[25] This solution was mixed magnetic stirrer at 60 ± 8◦C for 4 hours (this

interval of temperatures it is due to the lack of a proper hot plate that could maintain a

stable temperature at 60℃). After 4 hours a crosslinker was added alongside with the

photoinitiator at weight ratio off 0.01 and 0.016: Aam, respectively. The solution was

mixed for additional 2 hours and then Ultra Violet (UV) cured (Vilber UV Hand LAMP

with UV emission at 365 nm)for 15 seconds. To obtain the thin films it was used a manual

film applicator, which casted the films while the hydrogel was uncured. For bulkier films

only a blade was used to spread the uncured hydrogel.

I.2 Detailed procedure of screen printed devices production
In order to obtain the final EL Device achieved on this work you must:

1. Clean the substrate with acetone;

2. Spray the substrate with Ease Release;

3. Prepare the ecoflex 00-30;

4. Take the prepared ecoflex 00-30 two minutes to low vacuum;

5. Cast a ecoflex 00-30 thin film of around 100 µm

6. Cure the ecoflex for 10 mins at 100℃;

7. Let the ecoflex cool down;
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8. Screen print the AQUAPLAST-DIY in the desired shape;

9. Cure the AQUAPLAST-DIY using the blow drier as described on chapter 2;

10. Cool down the sample;

11. Prepare a solution of PEDOT:PSS 5 wt% ink and STEC (with 10 to 15% STEC);

12. Mix the solution for 15 mins;

13. Screen print the enhanced ink on the desired shape;

14. Cure the electrode with the blow drier and let the sample cool down;

15. Repeat point 13 and 14 for a minimum of 3 layers;

16. Screen print an ecoflex 00-30 layer larger than the deposited electrode, taking in

consideration the contact needed for power supply;

17. Cure using the blow drier and let cool down;

18. Screen print the AQUAPLAST-DIY with the size of the ecoflex 00-30 layer, cure and

let cool down;

19. Repeat the step 13 and 14, for 3 layer of the top electrode;

20. Screen print ecoflex 00-30 layer to encapsulate, taking in consideration the contact

needed for power supply;

I.3 Complementary photographs to methodology

Figure I.1: Illustrative layer schematic of the layers required to obtain the PEDOT:PSS enhanced
electrode.
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Figure I.2: Illustrative layer schematic of the EL device produced on this work.

(a) (b)

Figure I.3: (a) Sticking of Vinyl mask on the mesh for matrix electrode paternization(b) Vinyl
mask stuck the mesh for matrix electrode paternization.
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(a) (b)

Figure I.4: 5× 5cm passive matrix Vinyl designs.
(a) electrodes designs; (b) Pixels designs with
0.8× 0.8cm (emissive layer).

Figure I.5: Device Vinyl designs. (A) bottom
electrode3× 4cm; (B) 3× 3cm emissive layer; (C)
3.3 × 3.3cm ecoflex dielectric layer; (D) 3 × 3cm
top electrode and AQUAPLAST-DIY layer.

Figure I.6: Close up on an electrical characterization upon strain characterisation using the equip-
ment by ZWICK/Roell and a data logger by Squirrel
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Figure I.7: Illustrative schematic of the characterizations carried on this work

(a) (b) (c)

Figure I.8: Required equipment and setup for Brightness characterization. (a) General setup for
brightness characterization; (b) Inverter used to power the EL devices; (c) Homemade automated
extensor used on brightness characterization
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Results on the study of enhanced electrode

production

This annex contains information regarding the samples produced during the study of the

enhanced electrodes composition. During this study it was varied the concentration of

PEDOT:PSS/STEC/AQUAPLAST and also on where it was deposited, or either ecoflex

00-30 or Aquaplast. On this table is also shown photographs of the samples in study and

useful informations regarding the observable properties of the electrodes obtained.
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PRODUCTION
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III
Complementary photographs of working

samples

This Annex contains complementary photographs of devices working, being stretched

and on different surfaces like the skin. The objective of this annex is give a more illus-

trated idea of the devices produced on this work. It can be seen samples produced before

the final EL devices and there is also pictures pictures of the final EL devices produced

by screen printing with the electrodes of PEDOT:PSS enhanced ink. This pictures have

the intent to show in more detail some problems referred on this work.

First it is shown EL devices produced with enhanced electrodes of PEDOT:PSS 1.3

wt% in water by thin film casting. On the figure III.4 is is observable the humidity

adsorbed on the PEDOT:PSS thin films after some atmosphere exposure, where figure

III.1a shows the sample right after coming out of the oven and III.1b shows the sample

after some time exposed to the atmosphere. On figure III.2 is shown the sample emitting

on a dark room where it is visible the low light achieved.

(a) (b) (c)

Figure III.1: Pictures of a PEDOT:PSS 1.3 wt% in water electrode device produced with a manual
thin film applicator.(a) Bottom electrode before leaving the oven; (b) Bottom electrode after
leaving the oven; (b) Top electrode of 3 cm width; (c) Top electrode of 3 cm width.
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(a) (b)

Figure III.2: (a) Thin film device working on dark room;(b) Another thin film device working on
dark room.

(a) (b)

Figure III.3: Encapsulated sample produced with the manual film applicator. (a) a finger is pressed
against the device; (b) The marks of the finger caused by the pressing are visible inside de black
circle;

Now it is presented the devices produced by screen printing with electrodes of PE-

DOT:PSS enhanced ink. This samples were tested attached to walls and on skin, they were

stretched and folded as pictures show, with this use it is visible sometimes the peeling of

of the samples described on this work.

(a) (b) (c)

Figure III.4: EL working device stuck to a wall and on a skin surface. Device produced with 5
layer electrode enhanced with 10% STEC, 2 layers and 50% phosphor powder.
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(a) (b) (c)

(d) (e) (f)

Figure III.5: Sequence of photographs from (a) to (f) stretching a device produced with a 5 layer
electrode enhanced with 10% STEC and 2 layers emissive layer with 50% phosphor powder.
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(a) (b) (c)

(d) (e)

Figure III.6: Sequence of pictures of an working electrode being handled sequence from (a) to
(e), device produced with 5 layer electrode enhanced with 10% STEC, 2 layers and 70% phosphor
powder.

(a) (b) (c)

Figure III.7: EL device being first folded and then stretched on a sequence from (a) to (d).
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