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Abstract 

 

A model capable of describing the optoelectronic response of tandem photovoltaic cells is 

introduced, employing commercial software provided by Lumerical Solutions Inc. Specifically, 

a four-terminal thin perovskite/silicon architecture is studied, with special focus on the optical 

properties of the interlayer, and also on the ITO contact problematic – tackled by an alternative 

design, where all but one transparent contact are comprised of state-of-the-art transparent metallic 

structured grids. Furthermore, a look into how light-trapping formalisms are essential to the suc-

cess of this architecture is taken. 

Thus, this research aims to demonstrate the means to overcome one of the main constraints 

in tandem cells performance, the transparent oxide’s parasitic absorption characteristics. Addi-

tionally, the possibility of highly efficient, thin and flexible, solar cells is explored, being con-

cluded that these can be achieved with the referred architecture after careful optimization of the 

design parameters. The developed optoelectronic model can predict the response of heterojunc-

tion solar cells, and also of modelling perovskite solar cells – aspects which are not commonly 

reported in recent literature. 

The parasitic absorption is reduced by 30% when replacing two ITO contacts by the novel 

metallic grid alternatives. Simultaneously, on a hypothetical light-management scenario where 

10x optical path length in the bottom layer is implemented, up to 27% efficiency is achievable by 

the tandem device. 

The attained results can be used as a guideline for forthcoming architecture improvements 

showing promise for the future of thin and flexible photovoltaic applications. 

 

Keywords: Four-Terminal Tandem Solar Cells, Perovskite/Si Photovoltaics, Transparent 

Contacts, Optoelectronic modelling 
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Resumo 

 

Neste projecto é introduzido um modelo computacional capaz de simular o comportamento 

optoeletrónico de fotovoltaicos em configuração tandem, com o recurso ao software comercial da 

Lumerical Solutions Inc. Em específico, uma arquitetura de quatro terminais perovskite/sílicio é 

estudada, onde é dado foco às propriedades da interlayer e na problemática dos contactos de ITO. 

Esta última problemática é enfrentada com um design alternativos, onde todos menos um dos 

contactos transparentes são compostos por estruturas metálicas transparentes. Também é 

projectado a performance desta arquitectura quando implementadas soluções de light-trapping. 

Desta forma, esta pesquisa almeja demonstrar como ultrapassar uma das principais falhas 

apontadas à arquitetura tandem, a absorção parasitica dos óxidos transparentes. Mais, explora-se 

a possibilidade de células fotovoltaicos de alta eficiência e baixa espessura. Capaz de modelar o 

comportamento de células de perovskite, o modelo optoeletrónico desenvolvido tem também a 

capacidade de prever a resposta de dispositivos fotovoltaicos baseados em heterojunções, 

aspectos pouco explorados na literatura recente. 

A absorção parasitica é reduzida em 30% com a substituição do ITO. Num cenário 

hipotético de light-trapping onde a célula inferior obsefva um aumento do percurso óptico em 

10x, denota-se uma eficiência de conversão de 27% por parte do dispositivo. 

Os resultados obtidos assumem um papel de guia para optimização de arquiteturas futuras, 

e mostram um futuro promissor para aplicações onde se desejam fotovoltaicos finos e flexiveis. 

 

Palavras-chave: Células Tandem de Quatro-Terminais, Contactos Transparentes, 

Fotovoltaicos à base de Si/Perovskite, Simulação de Optoelétronica 
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ε – permittivity  

µ - permeability 

λ – wavelength 

η – photovoltaic efficiency (%) 

c – speed of light in the vacuum (3x108 m / s) 

E – electric field (V / m) 
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E-field – electric field 

ETL – electron transport layer 

FDTD – finite-differences time-domain 



2D Optimization of Thin Perovskite/Silicon Four-Terminal Tandem Solar Cells 

 

xv 

 

FEM – Finite element method 

FF – Fill factor 

H-field – magnetic field 

HOIP – hybrid organic-inorganic perovskite 

HTL – hole transport layer 

ITO – indium tin oxide 

LCOE – levelized cost of electricity 

LT – Light-trapping 

MPP – maximum power point 

NIR – near infrared 

OPL – optical path length 

PSC – perovskite solar cell 

PV – photovoltaic 

SHJ – silicon heterojunction cell 

Spiro-OMeTAD - N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi[9H-fluorene]-

2,2′,7,7′-tetramine 

TCO – transparent conductive oxide 

TCOC – transparent conductive oxide contacts 

TM – Transfer-matrix 

TMC – transparent metal contacts 

  



xvi 

 

 

Motivation 

Ever since the Industrial Revolution, electric energy has been the engine of humanity. Wars have 

been fought for fuel and sacrifices made for the sake of assuring energy supplies. The focus on 

fossil fuels has taken a toll on the environment and on human relations, fueling the need for re-

newable energies that are conflict free.  

The Earth’s area is that of 510 072 000 km2, from which 29.2 % are land[1]. Considering 

an average of 3 sun peak hours and 1000 W/m2 solar irradiance, this represents 446 820 000 TWh 

reaching the ground daily, and integrating over the whole year, 1.6 × 1011 TWh of energy is in-

tercepted by the surface – not accounting for 70% of the planet’s area that is covered by water. 

To take this into perspective, the global energy demand in 2016 reached 13 800 Mtoe or 16 0494 

TWh, representing roughly 0.0001% of the of available energy[2].  

This illustrates the abundance of energy that we receive from the Sun. Only during the day 

can one harvest the sun’s energy, which hinders our ability to use solar power as our main source 

of energy without advanced energy storage solutions. Nonetheless, it shows that, if sufficiently 

cheap photovoltaic solutions come into play, we can rely on solar power as an abundant and 

renewable source of energy when coupled with other energy sources. Emerging materials and 

technologies like perovskite solar cells (PSCs) and highly efficient heterojunction architectures, 

of similar fashion of what is studied in this work, can be part of the answer for modern energy 

needs. Integrating these materials and designs into mobile electronics is one step further into the 

energy-on-demand reality of today.  

Furthermore, the modelling of materials and devices is procedure that allows not only for 

better optimization of current devices but also to predict their behavior prior to their manufactur-

ing and testing. 
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Chapter 1: Introduction 

Since the first reported hybrid organic-inorganic perovskites (HOIP) solar cell by Miyasaka and 

Kojima in 2009, the field of PSCs has grown with gusto[3]–[5]. From the first cell’s unassuming 

start with 3.8% reported efficiency and a lifespan of mere minutes, to a grander 22.7% efficiency 

and cells showing 1000+ hours of lifetime, this new technology has been touted as one of the 

most promising silicon alternatives[3], [6]–[8]. Despite the antagonist view of silicon vs alterna-

tive – a recurrent point in previous emerging photovoltaic technologies like CdTe – a promising 

application of these novel materials is in the integration with silicon towards highly efficient tan-

dem modules. In this sense, one takes benefit of HOIP’s tunable bandgap characteristic for top 

cell functions and c-Si’s competence for bottom cell purposes[4], [5], [9]. 

One of the restraining factors in mechanically stacked solar cells like those here studied, is 

the employment of transparent conductive oxides (TCOs) as electrical contacts. These materials 

exhibit notorious parasitic absorptions and, as such, are desirable to be replaced. For that reason, 

a promising alternative are contacts based on metals in the fashion of micro-meshes, nanowire 

grids, nanowire bundles, among others, that exhibit high transmittances in the near-infrared 

(NIR), coupled with good electrical properties. These can be engineered to cover a minute per-

centage of the applied area and, whilst these may be novel designs, they have been applied in 

photovoltaics, displays and even energy-storage technologies with success[5], [10]–[17].  

This work strives to further lay the path for improved thin tandem architectures. These will 

help the perovskite / silicon heterojunction emerge in the photovoltaic market as a high efficiency 

and cost-effective flexible photovoltaics. 

1.1 Market analysis 

The current photovoltaic market is effectively dominated by silicon-based cell technologies, with 

thin-film technologies exhibiting low market margins. Of the 94.6 GW installed worldwide  by 

2017, c-Si enjoys 95% share of production[18].  Crystalline silicon manufacturers enjoy the ben-

efits of economy of scale, low production costs and high reliability that contribute to the 
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increasingly smaller price per kWp. Similarly, material usage for silicon cells has been lowered 

significantly during the last 13 years from around 16 g/Wp to about 4 g/Wp due to increased 

efficiencies and, for example, thinner wafers[18].  

For a photovoltaic installation, the levelized cost of electricity (LCOE) is mostly dominated 

by the balance-of-system costs (BOS) – like inverters, construction, connectors and so on- while 

those associated with the cell processing account for less than 20% of the commercial module 

and 10% of the whole system[19]. Most BOS costs are area-dependent, as more connections and 

structures are needed with higher photovoltaic installation (PV) areas. With this in mind, increas-

ing the cell-efficiency can directly lower the installation costs if this increase can be done without 

significantly inflating the processing costs[4], [19], [20].  

While lab c-Si cells approach 27% efficiencies, available commercial solutions present a 

record efficiency of 22%[21], with typical efficiencies around 17-18%[4]. Taking this into ac-

count, it may prove difficult for standalone PSCs to break into the PV market, directly competing 

with the established c-Si standard. Instead, these could be paired with existing commercial tech-

nologies - towards highly efficient and low-cost tandem cells that can lower LCOE and introduce 

the novel material into the c-Si industry, benefitting from the manufacturing know-how of the 

tech giants. 

Here the focus is, however, on light and flexible photovoltaics, which have not seen adop-

tion due to lack of commercial solutions. The co-joining of these semiconductors in the low mi-

cron thicknesses presents a possible way to achieve cost-effective, highly efficient wearable or 

generally flexible photovoltaics and possibly revolutionizing the mobile electronics market. 

 

1.2 Perovskite Solar Cells 

HOIPs are one of the most promising photovoltaic materials of today, showing high efficiencies 

while using relatively simple fabrication processes, low cost and potential roll-to-roll applica-

tions[22], [23]. The basic HOIP, ABX3, crystalline structure is displayed in Figure 1.1. 

The most widespread HOIP absorber has the chemical formula CH3NH3PbI3[3] , [7], [10], 

[23]–[28], exhibits a 1.57 eV bandgap and is considered one of the prime candidates for single-

junction cell architectures. Through stoichiometry engineering one can design the bandgap of the 

HOIP absorber to fit different applications. In this study, a 1.75 eV HOIP is considered, a material 

that could be achieved through the adjustment of the cations in the X and A positions[29]–[34]. 



2D Optimization of Thin Perovskite/Silicon Four-Terminal Tandem Solar Cells 

 

3 

 

The Achilles heel of these novel absorbers 

is the medium- and long-term stability – having 

the famous long life of c-Si to compete with – as 

they are heavily affected by moisture. Moreover, 

the most common architectures rely on a light-

degradation inducing material (TiO2) as elec-

tron-transport layer (ETL) and an organic Li-

doped material (Spiro) as hole-transport layer 

(HTL)[6], [7], [24], [33], [35]–[37]. The large 

area mechanical strength of mainstream architec-

tures is also very low, although the use of inter-

nal hexagonal scaffolds shows great prom-

ise[38]. 

Despite their drawbacks, interest in HOIPs 

soared rapidly and if their stability issues are successfully tackled, can become one of the most 

prevalent semiconductors of today. 

1.3 Tandem solar cell architectures 

Tandem devices have traditionally been restricted to niche applications, due to them being heavily 

based on III-V semiconductors. These are undesirable in terms of cost for most commercial ap-

plications[39], being mostly employed in niche scenarios, e.g. space applications[40].  

With a bandgap of 1.1 eV, c-Si cells are nearly ideal for the role of low bandgap bottom 

absorbers[41], requiring as a top absorber partner for a two-junction cell semiconductors with a 

high bandgap in the 1.7 to 1.8 eV range[9]. High bandgap semiconductors are difficult to come 

by, with the most prominent candidates being III-V materials which, as mentioned, are notori-

ously costlier than silicon and thus are not quite economically viable[4]. It is in this niche that the 

recent interest in low-cost perovskite absorbers for this role rises, as a straightforward stoichiom-

etry of 2:1 bromine to iodine in the standard CH3NH3Pb(I1-xBrx) gives a near ideal bandgap of 

1.76 eV[29], [42]. Extensive studies have been performed on the marriage of these materials, and 

experimental results are promising, having H. Snaith’s company Oxford PV recently reported a 

27.3% efficiency, certified by ISE[43]–[48]. 

Tandem cells can be architected in several configurations, and each has its pros and cons. 

Those that are considered most important are described here and their benefits compared. 

X

X

X

A A

A

A

A A

B
X

X

X

A

Figure 1.1 Perovskite crystalline 

structure. 
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The architecture where upon this work is built is the four-terminal tandem (4T), where two 

cells are separately fabricated and afterwards mechanically stacked. A schematic of this kind of 

device is shown in Figure 1.2. From a fabrication point of view, this is the simplest way of achiev-

ing a heterojunction. Each sub-cell is separately manufactured, thus allowing for the optimal fab-

rication conditions for each cell. This is otherwise not possible for architectures where the cells 

are built on top of each other, as the more direct alternative, the monolithic two-terminal tan-

dem[4], [5], [9], [10], [20], [49]–[52].  The 4T structure requires four electrodes, three of which 

require high transparency and can be sources of parasitic absorption in these devices, a major 

drawback pointed at this design. From another standpoint, however, the electrical independence 

of the two sub-cells allows the operation of these at their maximum power points (MPP), making 

the device less sensitive to variations of the incident radiation [4], [5], [10], [49], [52]  

In the two-terminal tandem (2T) architecture (Figure 1.2), only two electrical contacts are 

considered, as the sub-cells are monolithically integrated and connected in series, with a separat-

ing tunnel junction in between. This architecture uses less material than the latter, as only 2 con-

tacts are required. A mere transparent contact is required and as such the device is less prone to 

parasitic absorptions. Kirchoff’s law determines that the device will have a voltage equal to the 

sum of the sub-cell voltages – which in turn reduces the resistive losses of the system[41].  The 

series connection limits the current in the system, where the maximum current is determined by 

the sub-cell with the lowest current. The device must be designed in order to minimize the current 

mismatch. For optimal performance the device would require specific design specifications for 

where it would be placed, geographically, which is not feasible from a manufacturing and com-

mercial standpoint.  Comparing with the 4T model, the processing is also more complicated, as 

the manufacturing steps of the top cell need to be compatible with the bottom cell layers, as to 

not affect performance. The bottom cell must also act as a suitable substrate for the top cell to 

minimize interfacial defects[4], [5], [10], [20], [49]–[51]. 

 

Figure 1.2: Main tandem architectures for PV integration; 4T (left) and 2T (right). 
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1.4 Material Modelling 

The computational modelling of materials dates back its roots from World War II when Jon Von 

Neumann and Stan Ulam started using simulation methods to determine the behavior of neutrons 

in alternative to traditional trial-and-error methods, that were deemed too costly, giving birth to 

the popular Monte Carlo method [53]. Since the 1940’s, computational power has exponentially 

grown, and more complex simulation of materials and its behaviors are now possible. 

Today, material modelling tools are necessary in science and engineering projects to elim-

inate trial-and-error loops when developing new materials, device architectures, manufacturing 

processes or components. The physical behavior of multiple cases can be predicted through sim-

ulation of atomic to macroscopic problem, reducing the number of complicated and expensive 

experiments that would otherwise be necessary. 

Here, finite elements (FEM) and finite-differences time-domain (FDTD) methods are em-

ployed to model rather complex photovoltaic devices, through commercial software distributed 

by Lumerical Solutions Inc. – namely Lumerical FDTD and Lumerical DEVICE. 

The common characteristic of these numerical formalisms is that both methods require a 

volume discretization. However, while FDTD uses a structured mesh, FEM relies on an unstruc-

tured one, which allows it to solve fine and complex geometric details. In FEM, the system is 

divided in several units (finite elements) or nodes that are all linked together. The possibility of 

local mesh refinement allows FEM to tackle more complicated geometries[54]. 

While most, if not all, physics problems are explained by a system of partial differential 

equations, analytical solutions are not, by far, always possible to achieve. In those cases, numer-

ical methods like FDTD and FEM are employed, allowing us to reach a deeper understanding of 

the complex systems around, being solar cells one example. 
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Chapter 2: Simulation methodology 

2.1 Finite-differences time-domain method 

The study started with an optical simulation setup, provided by Lumerical Solutions Inc. FDTD-

formalism based software, commonly used in photonics[55]. The FDTD method was proposed 

for the first time by Yee[56]. It can be a computationally demanding method, while simultane-

ously relies on a comprehensive working principle that makes it a popular tool for solving several 

electromagnetism problems[54]. 

From Maxwell’s theory of electromagnetism, the Ampere’s and Faraday’s laws are ex-

pressed as following:  

 ∇ × 𝑬 = −𝜇𝑚

𝜕𝑯

𝜕𝑡
  (1)  

 ∇ × 𝑯 = 𝜖
𝜕𝑬

𝜕𝑡
+ 𝑱 (2)  

where E is the electric field, H magnetic field, µm the permeability, t time, ε the permittivity and 

J the current density. The curl operators describe a spatial variation of the fields and, from the 

above equations, are also coupled to a time variation, resulting in a time-varying magnetic field 

(H-field) that leads to a rotational electric field (E-field). This results in the basic FDTD time-

stepping relations, where the E-field at an initial time permits the calculation of the H-field at this 

given time[54]. A schematic of the cartesian Yee cell used in FDTD is presented in Figure 2.1. 

 

Figure 2.1: Illustration of the discretization performed in the FDTD method. a) 2-D, 

H-field along the axis; b) analog case, E-field along the axis.; c) 3-D Yee grid. 
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This scheme proposed by Yee is still used at the core of most FDTD software and is named 

the Yee lattice. The vector components of each field are spatially staggered on unit cells of rec-

tangular nature, in a way that each E-field vector component is midway placed between a pair of 

H-field vector components[54]. 

2.2  Finite elements method for charge transport 

Lumerical DEVICE employs a numerical discretization method to solve the constitutive 

equations of device physics over a finite-element mesh that represents a semiconductor device. 

The mesh stores the values of all physical quantities throughout the device, including impurity 

concentrations (ND, NA), carrier concentrations (n,p),  and electrostatic potential (φ);  and also 

specifies which boundaries of the device are electrodes.  Upon calculating the state of the mesh 

that satisfies the device-physics equations, DEVICE Charge solver records the current and voltage 

of each electrode.   By repeating this procedure over aa a sweep over a certain range of electrode 

biases, the I–V behavior of the device can be simulated. Given that 4-Terminal solar cells are 

being simulated, this process was individually performed for the top and bottom cells. The gen-

eration rate is imported from the optical solver, Lumerical FDTD. 

As these simulations sought steady-state solutions under drift-diffusion carrier transport, for 

which the constitutive equations of device physics are the drift-diffusion, Poisson and continuity 

equations: 

 𝑱𝑛,𝑝 = 𝑞 𝜇𝑛,𝑝𝑬𝑛/𝑝 ±  𝑞𝐷𝑛,𝑝∇𝑛/𝑝 (3)  

 −∇ ∙ (ϵ∇𝐕) = qρ (4)  

 
𝜕𝑛/𝑝

𝜕𝑡
= ±

1

𝑞
∇ ∙ 𝑱𝑛,𝑝 − 𝑅𝑛,𝑝 (5)  

here R is the net recombination rate (n and p subscripts indicate electron or hole, respectively), q 

the electron charge, n/p the electron/hole carrier density, ρ the charge density, µ mobility, D dif-

fusivity, V the electrostatic potential and finally C, the ionized impurity density. R=Rn=Rp since 

the considered processes associated with the material are assumed as equivalent when applied to 

both holes and electrons.  

The terminal I–V behavior of the cells and overall device was simulated.  The model included the 

effects of doping dependent mobility and Auger recombination, using default parameters for both.  

Homogeneous bulk and surface Shockley-Read-Hall (SRH) recombination were also considered. 
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Chapter 3: Results and discussion 

When considering 4T tandem architectures where each sub-cell is electrically independent or de-

coupled, the constituent cells require a physical separation layer that is both non-conductive and 

an optical coupler. The former guarantees that the sub-cells are insulated from one another, and 

the latter that the transmission from the top cell’s unabsorbed light is maximized. 

To explore how the interlayer plays a role in the device, an ideal, non-absorbing, material was 

considered. The refractive index and thickness of this abstract material were varied to maximize 

the photocurrent on the thin c-Si bottom layer. This is measured by the equivalent Jsc in the target 

layer. This approach should establish some design rules for the choice of interlayer materials to 

be employed in tandem architectures. 

The interlayer is optimized for two device architectures: a standard one with all-TCO con-

tact layers – namely indium tin oxide (ITO) – and the alternative one, where the interlayer’s sur-

rounding ITO contacts are replaced with idealized metallic contacts, previously introduced. These 

will be referred throughout this work as transparent conductive contacts (TCOC) and transparent 

metal contacts (TMC). Both TCOC and TMC architectures are shown in the schematic present in 

Figure 3.1. The metal-based contacts are assumed to exhibit total transparency and permit direct 

contact between the interlayer and surrounding materials. Here, a possible replacement of TCO 

contacts is evaluated, giving preference to various types of metallic nano- and micro-structured 

contacts exhibiting high transmittance in the desired 700-1100 nm range[5], [11]–[17], [57], [58]. 

A full replacement of the TCO in lieu of the metallic contacts is not considered in this study, as 

the perovskite solar cell benefits from an anti-reflection effect introduced by the top ITO contact, 

which counterbalances the parasitic absorption, as previously concluded by Topic et al[57]. With 

the removal of the top ITO contact, another anti-reflection coating (ARC) should be implemented. 

In that case, fluoride glasses should be considered, as the popular MgF2 for this purpose, which 

have medium refractive indexes (~1.5) and are transparent [59]. 

Furthermore, a projection of theoretical performance when implementing light manage-

ment strategies is devised by simulating an increased optical path length in the bottom cell. This 

should lay some initial work into future thin tandem architectures, where light trapping (LT) 

structures could be integrated in the device to improve the bottom cell performance, and present 

a lower cost when compared to more standard silicon heterojunction (SHJ) bottom cell architec-

tures via a reduced absorber thickness, while maintaining a similar efficiency figure[60].  
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A standard PSC is considered for the top absorber where perovskite presents a 1.75 eV 

bandgap, optimal for silicon tandems[4], [9]. A thin silicon cell is considered as the bottom cell. 

This choice of bottom cell derives from recently shown devices built on ultra-thin mono-crystal-

line silicon wafers[61], [62]. These c-Si wafers are considered prime candidates for high effi-

ciency thin cells through LT implementations, given that their thickness should enable high ab-

sorption enhancements, as predicted by analytical methods with geometric optics in mind, ana-

lyzed in Section 3.3, where the Lambertian light scattering limit is calculated for the bottom cell.  

 

 

 

Figure 3.1: Schematic representative of the two architectures considered. The con-

tacts that border the interlayer are different for each case: at the left, transparent metal 

contacts (TMC) are employed and at the right, standard TCOC design. 

The optical constants were taken or adapted from the literature, as seen in Table 3.1. The 

HOIP’s refractive index was adapted by blue-shifting the optical constants 0.18 eV. This is in 

accordance with recent experimental findings on higher band-gap perovskites that agree with a 

complete blue-shift of the absorption coefficient as utilized here and previously by Saliba et al.[5], 

[63]. The thicknesses of the involved layers are also discriminated in Table 3.1. The experimental 

ITO TiO2 Spiro-OMeTAD HOIP

TMC Interlayer c-Si Ag

TMC TCOC 
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optical data of each material are further presented in Annex I, together with the shifted HOIP 

refractive index.  

Table 3.1 Source of optical material data used in the simulation and respective layer 

thicknesses. 

Material Thickness (nm) Refractive index 
   

In2O3-SnO2 80 (top) 100 (else) Extracted[64] 
TiO2 10 Extracted[65] 

CH3NH3PbBrxI1-x 500 Adapted[66]  
Spiro-OMeTAD 100 Extracted[43]  

Si 1500 Extracted[67] 
Au 200 Extracted[67] 

Interlayer 0 to 2500 1.2 to 3.2 
   

3.1 Validation of the simulation setup 

Before considering any results from simulations, validation of the model is required. Here, a pre-

liminary study on the influence of the wavelength discretization is made, using the popular ana-

lytical transfer-matrix formalism, comparing the calculations done by this method with those re-

sulting from the numerical simulations.  

In Lumerical Inc’s FDTD solver, the wavelength discretization of the used light-source is 

defined by the number of frequency points (nf) used.  Given that the points used directly affects 

simulation time as well as accuracy, a conciliation should be done between these aspects. Simu-

lation accuracy becomes of greater importance when interference patterns are expected to be pre-

sent, result of nano- and micrometric structures. Simultaneously, data resolution is significant 

when looking into periodic behaviours, as the period of these can be misinterpreted due to insuf-

ficient sampling rate, something well known and pointed at by Shannon and Nyquist sampling 

theorem[68]. This problematic can be perceived in Figure 3.2a), where the power absorbed on a 

500 nm perovskite / 15 µm c-Si tandem is shown for different frequency point values, and differ-

ent patterns materialize. The effect is more pronounced at wavelengths that interact with the sili-

con layer, which is notorious for its Fabry-Pierot interference patterns[69] . 

The equivalent short-circuit current (Jsc) of both cells was chosen as a figure of merit due 

to its direct relation with the absorbance, as described by the following equation: 

 𝐽𝑠𝑐 = 𝑞 ∫
𝜆

ℎ𝑐
𝐴(𝜆)𝐼𝐴𝑀1.5𝐺(𝜆)𝑑𝜆 (1)  
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where λ is the wavelength, h the Planck constant, c the speed of light, A is absorption, and IAM1.5(λ) 

the irradiance given by the AM 1.5G spectra. Hence, a sweep evaluating the Jsc as a function of 

points used was fashioned, as shown in Figure 3.2b).  

 

Figure 3.2 : a) Absorption in the tandem structure for different values of frequency 

points. b) Short-circuit current density as a function of the number of used frequency points 

(represented by nf); at the bottom a 15 µm thick silicon bottom cell case; at the top a 1.5 µm 

thick silicon bottom cell case.  

A maximum variation of 11% is seen for the 15 µm Si layer, followed by 6% in the thinner 

1.5 µm variant. The perovskite cell does not exhibit much of absolute variation in the Jsc, mainly 

due to its strong linear absorbing properties. The Jsc value stabilizes at around 500 points for the 

thinner device, and 700 for the thicker one. Taking these findings into account, a fixed 1001 

frequency points was set for every simulation performed henceforth and again the TM-resulting 

profiles were compared with the numerical results, shown in Figure 3.3. 

These show FDTD calculated absorption spectra to accurately match those calculated ana-

lytically by the TM method. Therefore, one can consider that the simulations performed here are 

in accordance from a computational point of view. 
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Figure 3.3: Absorption spectra for the planar devices, resulting from FDTD simula-

tion and transfer-matrix method. a) TMC variant; b) TCOC case. 

3.2 Planar device: optical simulations for interlayer optimiza-

tion 

As previously mentioned, one of the purposes of this study is to optimize the thickness and re-

fractive index of the interlayer. This is a critical component of multi-terminal heterojunction solar 

cell, ultimately defining the transmittance efficiency and electrical insulation between sub-

cells[4], [9], [52]. A non-absorbing polymeric material would be ideal here, and to emulate this 

the extinction coefficient, k, was set to 0.  The index was set, as referred in Table 3.1, from 1.2 to 

3.2 and the thickness was varied from 0 (no interlayer) to 2 µm.  

The optimal interlayer is pursued for both the TCOC and TMC designs, and the corre-

sponding sweeps are represented in Figure 3.4. The optimal parameters and equivalent Jsc for each 

layer are shown in Table 3.2. The optimization leads refractive indexes of 2.13 and 1.36 for the 

TMC and TCOC, respectively. A sharper maximum bottom-cell Jsc of 65.40 A/m2 is noted for 

TMC design, compared to the 61.20 A/m2 of the TCOC - a relative 6.42% increase. Simultane-

ously, the total parasitic absorption observed is 30% lower in the TMC device. The drop in para-

sitic absorption is linked to the outright removal of two ITO layers and the consequential elimi-

nation of their contribution to this metric. The reflection profiles for each scheme are also pre-

sented in Figure 3.5, providing further insight on the device’s behavior, and are analyzed ahead. 

Returning to the optimized refractive index values, it is observed that for the TCOC design, 

values lower than ITO’s index are preferable in lieu of those that would optically match the sub-
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cells (Figure 3.4). This is a curious observation and can be explained by two factors: the first 

being that ITO itself is not a remarkable optical matcher between spiro-OMeTAD (n~1.6) and c-

Si (n~3.6) in the 700-1100 nm range, followed in second by the low absorptivity of silicon in the 

NIR[10], [67]. These two factors explain why it is advantageous to introduce a low index material 

between the two ITO contacts – increasing the absorption in the c-Si by at the cost of less trans-

mitted radiation from the top cell, by virtue of internal reflections in the considered interfaces. 

This situation leads to better performance than a simple optical matching, else the optimal inter-

layer thickness would converge to 0. The TMC variant is less complex and the interlayer simply 

converges to an index matching value between the c-Si and spiro-OMeTAD. In Figure 3.6 a sim-

plified schematic of the light’s path in each structure is presented to better illustrate why each 

optimal index converged to such different values.  

 

Figure 3.4: Contour plots of the bottom layer’s Jsx in function of the interlayer’s re-

fractive index and thickness. At the top, the TCOC case and at the bottom the TMC case. 
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The bottom c-Si absorber - a material with a low absorption coefficient in the NIR re-

gion[67] – is not seen as an excellent performer (Table 3.2). This observation is further exacer-

bated when comparing c-Si with the remaining layers – where it’s absorption accounts for merely 

20.01% of the light absorbed in the TCOC device and 21.84% in the TMC. This leads to an overall 

anemic efficiency of the bottom cell, <1.6% for either case. In fact, when examining the reflection 

figures (in both TCOC and TMC), shown in Figure 3.5, a large portion of NIR radiation is re-

flected, i.e. not absorbed.  

Integrating the reflection in the 700-1100 nm range, it is seen that more light is reflected in 

the TMC case than for the TCOC design (TMC’s 221 vs TCOC’s 208). This not unexpected, 

given that while it was seen that the c-Si cell has a higher photocurrent figure than the TCOC, 

there was a steep decrease in the parasitic absorption (see Table 3.2) and that multiple passes are 

occurring in the bottom TCOC cell (see Figure 3.6) that, while providing some heightened c-Si 

absorption, can also lead to higher parasitic absorption by the ITO contacts. This suggests that the 

higher bottom cell absorption (in the TMC case) is mostly due to the index matching scenario 

provided by the interlayer’s refractive index of 2.13, and that the parasitic absorption is not the 

major hinder of the silicon’s performance in this ultra-thin bottom cell scenario. Even when ig-

noring the parasitic absorption, the optical performance of the TCOC design is hindered by the 

application of ITO as middle contacts by poor optical matching in the considered 700-1100 nm 

range. 

 

Figure 3.5: Reflection profile for the TCOC (black) and TMC (red) cases, considering 

the optimized interlayer values. 
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Figure 3.6: Simplified scheme of the optical path in each design. a) TCOC case, the 

complexity of the ITO/Interlayer/ITO interfaces give rise to internal reflections, benefited 

by the low interlayer index, aiding the silicon’s absorption. b) TMC, simpler case of index 

matching where an intermediate value is found as optimal, optically matching the top and 

bottom cells. 

Nonetheless, the future belongs to those who prepare it today, and thus it should be noted 

that lowering the parasitic absorption gives more room for bottom cell absorption in future itera-

tions of the architecture, when light management techniques are considered and employed. This 

will be further verified in a future section. 

Table 3.2: Summary of equivalent absorptions and optimal interlayer parameters for 

both the TCOC and TMC cases.  

 Jsc (A/m2) 

 TCOC TMC 

Materials    

   
ITO 16.06 8.490 

Compact TiO2 00.89 0.850 
HOIP 221.70 218.01 

Spiro-OMeTAD 5.58 6.47 
c-Si 61.13 65.35 

Total 305.52 299.21 
   

Optimal interlayer parameters 

   
Refractive index, 

n 
1.36* 2.13 

Thickness (nm) 160 81 
   

Spiro-OMeTAD

Interlayer

Silicon

ITO

ITO

Silver

n ~1.8

n = 1.36

n ~1.6

n ~3.6

n ~1.8

Interlayer

Silver

n = 2.13

TCOC TMC

Silicon n ~3.6

Spiro-OMeTAD n ~1.6

a) b)

(*) As explained previously, this index number leads to 2D light trapping effects that explain the otherwise uncommonly 

low value that does not match with that of the surrounding ITO layers. 
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To assess if the previous interlayer optimization was, in fact, accurate for a higher c-Si 

optical path length (OPL), an arbitrary interlayer thickness was considered (500 nm) and upon 

that the interlayer’s refractive index was varied from 1 to 3. The resulting sweep is shown here in 

Figure 3.7 and go in accordance with the previous analysis. In the TCOC case, a low interlayer 

index remains preferred, whereas the TMC interlayer converged to a higher – index matching – 

value. 

 

Figure 3.7: Equivalent 15 µm bottom cell Jsc in function of the interlayer’s refractive 

index. The interlayer thickness is set to 500 nm. Similar or equal values to the previous 

optimization are found as best for each design. 

3.2.1 Absorption profiles 

Most state-of-the-art perovskite/silicon tandem devices, especially those with record efficiencies 

involve novel silicon heterojunction (SHJ) solar cells as the complementary absorber to the per-

ovskite[4], [5], [10], [49], [52]. These designs, however, are in the range of hundreds of microns 

in total thickness making the thought of flexibility impossible, absorbing the majority of the NIR 

radiation in the silicon bulk thickness[57]. This thought is what lead to the consideration of such 

thin silicon thicknesses in the bottom cell that, as commented before, perform poorly by them-

selves. However, the analysis of the absorption profiles of these should be analyzed to establish 

further optimization guidelines. 

Looking at the perovskite absorption profile in Figure 3.8 a non-complete absorption of the 

top cell’s design wavelengths (300-700 nm) is seen.  Even considering the outstanding perfor-

mance of perovskite absorbers[70], here a slightly higher thickness would be ideal, to avoid < 

700 nm light being transmitted and absorbed by the silicon bottom cell. This would minimize 
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thermalization losses of high energy photons and maximize the possible device’s efficiency, 

which ultimately is the main objective of any tandem configuration. 

 

Figure 3.8: Absorption of both designs (TMC and TCOC), with optimized interlayer. 

Still considering the HOIP absorber, higher NIR absorptions are seen in the TCOC device. 

This is thought as a result of the internal scattering behavior that occurs in the interlayer (see 

Figure 3.6), possibly leading to higher dwell times of NIR photons in the top cell when compared 

to the TMC design, hence a higher absorption figure. 

It is seen that the absorption in the 900-1100 nm range is higher for the TMC’s bottom cell, 

which coincides with the wavelengths where the material’s absorption coefficient and refractive 

index are lower. In this region, the optical matching of the TMC case serves the bottom cell best, 

reflecting on the higher performance. It is also in this region that a sharp reduction in parasitic 

absorption is seen. In the TCOC design, light is reflected multiple times in the ITO/Interlayer/ITO 

interfaces and, while it appears to bring a positive effect for the silicon’s absorption, it also leads 

to higher parasitic absorption by the ITO contacts. The removal of ITO leads to a slightly higher 

spiro-OMeTAD absorption – justified by the simple higher availability of absorbable radiation. 
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These interlayer optimizations allow the narrowing of the parameters for future integration 

with light trapping (LT) structures. A widely studied field, LT implementations strive to increase 

the optical path length in solar cells by significant values and increasing the absorption of the 

semiconductor. thus, employing novel light trapping structures in the fashion of plasmonic nano-

particles, Mie-scattering spheroids or even simple pyramidal texturization, would enhance the 

NIR response of the device and consequently increase its efficiency even in this thin architecture 

scenario[18], [55], [77], [78], [60], [69], [71]–[76].  

In the following section, the performance of a bottom cell with integrated LT is predicted 

through analytical and numerical methods. First the Lambertian LT limit is analytically calculated 

for a range of crystalline silicon cell thickness, in the 700-1100 nm wavelengths to examine the 

potential of the bottom cell. Subsequently, a lower limit of the previous analysis is chosen as the 

maximum optical path length gain for this study’s cell of 1.5 µm thick, and the optoelectronic 

performance of the sub cell is evaluated for the OPLs leading to the maximum chosen (15 µm). 

3.3 Ray optics path length limits in bottom c-Si cell 

It was verified that in a planar device, as predicted, the bottom 1.5 µm cell shows weak absorbance 

in the NIR region. This shortcoming can be tackled through advanced light management tech-

niques, or through outright increasing the silicon’s thickness. In this section, the possible gains of 

the implementation of LT mechanisms are explored. Light trapping methodologies allow higher 

absorption figures in the semiconductor in question, by means of OPL increase or through the 

creation of high E-field intensity regions or localized modes. 

The optimized parameters that were found and discussed in the previous section, shown on 

Table 3.2, were used for the remainder of the simulations performed in this work. Thus, the TCOC 

cell, a refractive index (n) of 1.36 together with 160 nm of thickness was considered for the in-

terlayer, and in the TMC variant, n was set to 2.13 and the thickness to 81 nm. 

A semiconductor can either have a direct or indirect bandgap. The minimal energy-state in 

the conduction band and the maximum for the valence band are characterized by their crystal 

momentum (k-vector) in the Brillouin zone. If in the maximum and minimum of the valence and 

conduction bands the crystal momentum coincides, the bandgap is deemed direct and, for the 

same-energy photons, no additional momentum is required for the transition to occur. When the 

k-vector is different, the bandgap is indirect, and a transfer of momentum is needed so that the 

electron can make the transition – a phonon assisted transition [79], [80].  
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In indirect bandgap semiconductors, due to the need of emission of a phonon during the 

absorption of near-bandgap photons, the probability of absorption of these is severely reduced, 

increasing their penetration depth [79], [80]. This reflects on the observed absorption figures of 

direct and indirect semiconductor – the former need reduced thicknesses to absorb a great part of 

the sunlight, while the latter need higher thicknesses. This is no different for c-Si, and thus for 

thin absorber thicknesses like those studied here, LT is of paramount importance to ensure the 

viability of the device. It is of even more importance when we consider that c-Si is here considered 

as a bottom cell, and the wavelengths that are meant for absorption are those which need higher 

dwell time in the material. While these statements may paint a grim picture for the application of 

thin c-Si wafers, it should be noted that these allow for flexible devices, are lighter than standard 

SHJ cells , can be cheaper and show enhanced electrical properties – as lower bulk recombination 

– and even reduced light induced Staebler Wronski degradation [81], [82]. 

Light trapping in PV was first proposed by Yablanovitch and Cody, where they explored 

analytical solutions to optical path enhancement in photovoltaics with ideal Lambertian LT. This 

LT nomenclature encompasses all possible gains that can be achieved through geometric optics, 

where multiple internal reflections in the absorber material occur (e.g. due to the geometry of the 

back reflector)[69], [81]–[84]. A schematic of a Lambertian back reflector is shown in Figure 3.9. 

There is no consideration of other light trapping mechanisms, where the formation of localized 

modes where the absorption is enhanced – as is the case with Mie mechanisms, localized plas-

monics and other, complex approaches[50], [60], [74]–[76], [85]. This analytical formalism as-

sesses traditional light-trapping limits and is therefore chosen here as an OPL increase benchmark 

for the bottom cell. The maximum photocurrent is calculated for different cell thicknesses and 

presented in Figure 3.10. To contemplate the fact that this absorber is designed as a bottom cell, 

the incident wavelengths were set to 700-1100 nm range. It is observed that, at 1.5 µm c-Si thick-

ness, the Lambertian limit equals to a 17 µm sub cell without LT applied to it. Based on this 

observation, the maximum OPL in the remaining simulations was set as 15 µm. It should be 

repeated that this is an approximation to light trapping, and that the results shown here are not of 

LT schemes in the cell, however they serve as a preview to the possible gains of their implemen-

tation. The bottom cell gains of a 30 µm cell are also pointed out in Figure 3.10. This thickness 

represents the state-of-the-art thicknesses in c-Si solar cells. Although, to the knowledge of the 

author, there’s no commercially available wafers of such thickness, several authors have fabri-

cated c-Si solar cells with such thickness and lower by prior etching  of higher, hundreds of µm 

range, wafers[81], [86]–[88], it remains important to demonstrate success of experimental solar 

cells for lower and lower thicknesses, to drive the industry into the manufacturing of ultra-thin 

wafers and reduce material usage.  
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Figure 3.9: LT scheme with a Lambertian back reflector.  

Integrating the solar spectrum in the 700-1100 nm range, the maximum photogeneration is 

found to be 233.3 A/m2. The analytical data presented in Figure 3.10 show that a 30 µm cell with 

ideal Lambertian LT presents a Jph of 228.9 A/m2. It is therefore logical, that for thicknesses > 30 

µm, the observed theoretical photocurrent gains are minimal. This observation goes very much in 

accordance with those made by Shockley, where he stated a 30 µm c-Si wafer is sufficient for 

high-efficiency single-junction solar cell. These observations indicate that ultra-thin c-Si cells 

may be in fact ideal for the bottom absorber role, as the reduced thicknesses mean higher carrier 

collection efficiency as the carrier diffusion length required for collection is, consequently, lower. 

 

Figure 3.10: Bottom cell analytically determined photocurrent. The comparison for a 

no-LT case and the Lambertian limit is shown, and the possible gains on a 1.5 µm c-Si slab. 

The case for 30 µm c-Si cells is also pointed out. The Lambertian LT absorption of the 1.5 

µm cell is equivalent to a non-LT cell with 17 µm thickness (pointed out by the dashed line). 

θ
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reflection
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3.4 Complete optical and electrical solar cell simulations 

In this section, the results of electrical simulations are used to evaluate the theoretical electrical 

performance of the device. These simulations are an important part of the established optoelec-

tronic model and present great potential in the optimization of photovoltaic designs. To demon-

strate the capabilities of the model, here they were also employed to assess the best doping orien-

tation of the silicon bottom cell, n+– p - p+ or p+- p – n+. The scope of this portion of the model is 

not as extensive as the optical part, but nonetheless demonstrate its usefulness. 

The physical quantities that best evaluate the performance of a solar cell are mainly the 

efficiency and fill-factor (FF) which are calculated using the following equations: 

 𝐹𝐹 =
𝐽𝑀𝑃 × 𝑉𝑀𝑃

𝐽𝑠𝑐 × 𝑉𝑜𝑐
 (2)  

 𝜂 =
𝐹𝐹 × 𝑃𝑚𝑎𝑥

𝑃𝑠𝑜𝑙𝑎𝑟
 (3)  

where, V the voltage, P is the power in W/m2. The “MP” subscript indicates the maximum power 

point. The “solar” subscript the irradiance that is commonly approximated to 1000 W/m2.  

An optical thickness of 15 µm was taken in consideration for the absorption spectra further 

analyzed and shown in Figure 3.12, as it is within the previously calculated Lambertian limit (LT 

1.5 µm = no-LT 17 µm), and constitutes a feasible OPL increase when taking into account modern 

LT approaches[60], [74]–[76]. It should be noted that the presented absorption profiles are not of 

a true light trapping scenario, but of a thicker silicon cell. This was the chosen approach to emulate 

the increase in OPL. Nonetheless, one can find value and make projections of the device’s re-

sponse when looking into the absorption profiles and the behavior of the layers involved anyway.  

The physical parameters and doping profiles considered in the DEVICE simulations are 

summarized in Table 3.3. It is important to take into account that the considered formalisms, 

which were covered in Simulation methodology do not properly describe the charge behavior in 

hybrid semiconductors, such as HOIPs.  Given this, the physical parameters of the HOIP had to 

be adjusted in such a way that the electrical performance of the top PSC was satisfactorily simu-

lated. While these may ultimately be inaccurate, they were adapted from literature sources[24], 

[32], [34], [89], [90]. The same is applicable to spiro-OMeTAD, as the organic nature of the 

material means that the considered equations are not inherently valid to describe its behavior. 

However, knowing the hole separating function that the material performs, the parameters were 

adjusted to fit that role based on previous authors[91]. The compact TiO2 and ITO parameters 



2D Optimization of Thin Perovskite/Silicon Four-Terminal Tandem Solar Cells 

 

23 

 

were sourced from the literature in similar fashion[91] and the parameters for c-Si were directly 

used from the software’s database. 

Table 3.3: Physical parameters considered in the electrical simulations. +Spiro-

OMeTAD. XShockley-Read-Hall recombination. oCarrier mobility. #effective mass. Φ is the 

work function. 

In Table 3.4 the absorption of each layer, for the 15 µm Si bottom cell, is shown through 

equivalent short-circuit current density values. The total perovskite absorption drops, compared 

to previously obtained values, seen in Figure 3.8 and Table 3.2. This is likewise observable in the 

absorption and reflection profiles (Figure 3.11 and Figure 3.12). Due to less back-reflected radi-

ation travelling from the bottom cell to the top of the device (versus the no-LT scenario), the 

perovskite layer loses most of the ˃700 nm absorption. This reinforces what was discussed in 

Planar device: optical simulations for interlayer optimization, that the perovskite’s high Jsc figure 

was inflated due to NIR absorption. This is a consequence of the chosen experimental data (Table 

3.1, Figure 4.2). This behavior should not influence the choice of the best design here, as the 

absorption properties of perovskites post bandgap may vary with many factors.  

Therefore, to eliminate this variation from the choice of which is the best design, the least 

NIR absorbing perovskite was considered when calculating the combined efficiency of the device. 

 HOIP TiO2 Spiro+ ITO  c-Si  
Fundamental Prop.        

        
dc permittivity 6.5 9.0 3.0 -  11.7  

Φ (eV) 3.93 4.50 3.80 4.50  4.59  
Eg (eV) 1.75 3.20 2.30 -  1.11  

#m*
e 0.10 1.18 0.05 -  1.18  

#m*h 1.00 0.81 1.00 -  0.81  
oµe (cm2/V s) 10.0 5.0 0.5 -  1471.0  
oµh (cm2/V s) 10.0 0.2 10.0 -  470.5  

XSRHh (s) 10-6 2x10-8 2x10-9 -  4x10-7  
XSRHe (s) 10-8 2x10-8 2x10-8 -  10-6  

        

Doping Properties        

Dopant type p n p - n p p 

Conc.  
(cm-3) 

4x1016 5x1017  1018  - 
2x1020

to 
1015 

2x1016 
2x1020 

to 
1010 

 
Profile 

 
Const. Const. Const. - erfc Const. erfc 

Junction width (µm) - - - - 0.2 - 0.2 
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This assures that the total device efficiency cannot be linked to the perovskite’s enhanced NIR 

absorption in detriment of the intended c-Si’s and that only the bottom cell performance influ-

ences the result. Thus, the PSC top cell of the 15 µm c-Si TMC device – which is coincidentally, 

the best performing bottom cell - was chosen. The PSC then presents a 20.49% efficiency figure, 

which is lower than a state-of-the art 1.57 eV PSC. This is expectable for a higher bandgap cell, 

which should perform lower than a cell with an ideal bandgap for single-junction applications. 

Finally, we then see combined device efficiencies up-to 27.08% for the TMC case, and 26.52% 

for the TCOC, which are both higher than the record Si performance[92]. 

When a no-LT approach was studied (Planar device: optical simulations for interlayer 

optimization subsection), both designs performed similarly due to the thin c-Si thickness consid-

ered, and the benefits from the index matching interlayer and parasitic absorption elimination 

were rather insubstantial (see Table 3.2). Only here, by emulating light-trapping techniques, we 

see the fruits of the labor that was the interlayer optimization and the ITO replacement, observed 

in the 9% lower reflection and 8% c-Si higher absorption for TMC, when compared to TCOC. 

 

Figure 3.11: Reflection profiles of TMC (red) and TCOC (black) w\ 10x bottom cell 

OPL. The 700-1100 nm wavelengths were integrated for comparison purposes. 

With the increased performance of the bottom cell, the main contributors for parasitic ab-

sorption – ITO and spiro-OMeTAD – absorb less radiation. A difference between the absorptions 
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of the ITO and spiro-OMeTAD layers is still noted between the architectures, where the TMC 

understandably presents less than half the parasitic ITO absorption of the TCOC due to the elim-

inated contacts. These layers, particularly the organic spiro-OMeTAD, persist as a substitution 

priority in perovskite architectures, partly due to the parasitic absorption exhibited by either and 

the degradation potential presented by the organic layer. Alternatives for hole-transport materials 

have been searched in the organics and oxides alike – and even the removal of the HTL has been 

considered -, and further studies should be made in this area[34], [38], [89], [93]–[99]. The de-

fining electrical parameters of a solar cell were taken for the various silicon OPLs, results pre-

sented in Table 3.5. Further simulations were performed for higher than the Lambertian limit, 

present in Annex II. 

The simulations studying the best doping configuration, n+ p p (referred as nip) vs p p n+ 

(pin), were ran for the TMC case only since there are no pertinent differences from an electrical 

performance point of view. The influence of the contacts was not studied here, and ideal contacts 

were considered for every simulation. In further work, however, the influence of the contact prop-

erties should be taken into account. It is found that the optimal configuration is nip, mostly due 

to the more pronounced absorbance in the back of the cell, as the incident light is mostly com-

posed of wavelengths >700 nm. In that region the absorption coefficient of c-Si is lower and 

therefore absorption is done at higher penetration depth. Photogeneration is preferred to occur in 

the p or intrinsic sections of the material, due to the diffusional nature of the minority carriers 

(faster diffusing electrons for p, slower holes for n)[80], [100]. For more complex LT implemen-

tations these results may be different, and this study serves to remind that different absorption 

characteristics may benefit from different doping configurations. 

Table 3.4: Equivalent short circuit current of the layers of the light-trapping 15 µm 

c-Si bottom cell design. 

 Jsc (A/m2) 
 TCOC TMC 

Materials    
   

ITO 9.35 4.44 

Compact TiO2 0.86 0.85 

HOIP 207.85 203.38 

Spiro-OMeTAD 3.96 4.59 

c-Si 153.66 166.75 

Total 375.68 380.00 
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Figure 3.12: Absorption spectra for the equivalent 15 µm sub-cell devices; in the top 

the TMC case and in the bottom the TCOC.  

The simulated PSC open circuit voltage is 1.23 V, which presents interesting possibilities 

in the overall device configuration. Due to the higher bandgap, this is slightly higher than the 

already high Voc in standard PSCs, which depend on complex defect physics[90]. This value is 

roughly double that of silicon cells – as reinforced by the simulation results in Table 3.5 – allow-

ing for a two bottom cells in series, parallel with one top type of configuration. This is illustrated 

in Figure 3.13 a) and b) and represents a voltage matching internal circuit, where the bottom cell 

is split in two separate cells, united in series to sum their voltages, which in turn are parallel with 

the top. Considering negligible resistive losses, operation at maximum power point (MPP) and 

perfect voltage matching, the performance of the tandem module can be estimated by a rather 

simple current sum case, accounting for the voltage-matching configuration previously men-

tioned. For a 1 cm2 cell, the output IV curve of the idealized device is shown in Figure 3.13 c).  
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Table 3.5 : Solar I-V curve characteristic of various optical path lengths of the silicon 

bottom cell, for both the micro-mesh and TCO case, together with the less absorbing PSC. 

 O.P.L (µm) VOC (V) Jsc (A/m2) Pmax (W/m2) FF (%) Eff. (%) 

TMC 
(nip) 

1.5 0.57 33.6 15.7 82.00 1.57 
3.0 0.58 57.8 27.7 82.15 2.77 
5.0 0.59 101.5 50.1 82.92 5.01 

15.0 0.60 132.3 65.9 82.49 6.59 

TMC 
(pin) 

1.5 0.56 33.4 15.6 82.38 1.56 
3.0 0.58 57.3 27.4 82.10 2.75 
5.0 0.59 99.8 49.2 82.93 4.92 

15.0 0.60 128.5 63.9 82.57 6.39 
 1.5 0.56 30.5 14.1 82.00 1.42 
 3.0 0.58 52.6 25.0 82.00 2.50 

TCOC 5.0 0.59 92.6 42.6 82.95 4.56 
 15.0 0.6 121.4 60.3 82.68 6.03 

PSC 
(TMC, 

15 µm) 
0.5 1.23 197.5 204.8 84.33 20.49 

 

 

Figure 3.13: a) Equivalent electric circuit of the module b) Schematic of the 1 cm2 

tandem unit cell and c) output IV curve of the device and the sub-cells (15 µm TMC case). 

The tandem (blue) is displayed, and results from the sum of the 0.5 cm2 Si cells in series (full 

red) with the PSC (green). As a comparison, a 1 cm2 c-Si cell IV curve is shown (dash red).  

The tandem IV is calculated considering ideal series/parallel resistances between cells. 
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3.5 Results summary and analysis 

Until now, the most remarkable perovskite/silicon tandem configurations that have been designed 

were done so bearing in mind pre-existing commercial SHJ silicon modules, where the perovskite 

top cell would be placed on top. While this is probably the most likely format which PSCs will 

introduce themselves on the PV market, the happy marriage of these materials should not end 

here. Together, significantly thin solar cells capable of joining high efficiency and flexibility are 

achievable, after some of the presented obstacles to the architecture are surpassed. 

One of the pointed problematics 

in 4T architectures is on the parasitic ab-

sorption that transparent contacts intro-

duce. This is tackled here by the intro-

duction of the TMC design, which leads 

to better photocurrent generation in the 

bottom cell. The chart in Figure 3.14 il-

lustrates this, where the differences be-

tween TMC and TCOC are discrimi-

nated, for LT and no-LT scenarios. The 

benefit of the TMC implementation is 

better seen in the LT cases, where an 8% 

higher c-Si photocurrent is noted versus 

the TCOC, together with a 30% lower 

parasitic absorption. A lower perovskite absorption is seen in the TMC, indicating less NIR radi-

ation being reflected in the bottom layers, indicating that the interlayer design is more effective 

in this case. With these observations in mind, it can be safely said that the TMC design is better 

than the traditional TCOC, especially when light-trapping implementation is accounted for.  

The LT analysis done in the subsection Ray optics path length limits in bottom c-Si cell 

suggests that these techniques have the potential of allowing high absorption in a thin silicon slab, 

complementing perfectly with the ultra-thin film perovskite top cell. Only with LT methodologies 

are thin and flexible designs legitimized, permitting for bulk-like absorptions in micrometric cells. 

These results paint a promising picture for the future of flexible PV and illustrate how the 

upcoming HOIP materials can revolutionize the energy and mobile electronics market, by bring-

ing forth low-cost and thin photovoltaics. 
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Chapter 4: Conclusion 

The strive for low cost, high efficiency photovoltaics whose production can be integrated with 

existing processes and techniques is one of the most disputed topics in PV research. Additionally, 

the combination of the previous characteristics with flexible implementations is considered as one 

of the holy grails of the research community. In this work, the possibility of integrating all these 

properties is studied, and the findings lead to a promising outlook. 

Although depending on further study in light-management techniques for the near-infrared 

absorption of the silicon bottom cell, the optical path length approximation here used suggests 

conceivable 27% efficiencies (see Table 3.5). This figure is above that of record monolithic sili-

con designs, all in micrometric thicknesses, further demonstrating the elegant blend between per-

ovskite and silicon. Furthermore, the performance difference between a standard architecture with 

contacts comprised of the widely used TCO, indium tin oxide, and idealized metallic contacts 

(TCOC and TMC) was investigated to further evaluate the performance loss due to parasitic ab-

sorption in these common electrical contacts. Comparing these, a 30% drop in parasitic absorption 

is noted (Table 3.2). When optimizing the interlayer for both designs, it was found that the ideal 

values of real refractive index or the TCOC and TMC are 1.36 and 2.13, respectively (Figure 3.4 

and Table 3.2). It is concluded that the ITO not only is detrimental in terms of unwanted absorp-

tion but also hinders the index-matching benefits that the interlayer should bring.  

Due to high parasitic absorption figures found in the optical simulations ran in this study, 

collectively with the degradation properties that influence the perovskite absorber, the organic 

spiro-OMeTAD material is pointed out as a priority material to be replaced in standard perovskite 

solar cell architectures, further reinforcing previous conclusions by other authors.  

The cases studied in this project just barely show the advantages of the opto-electronic 

model developed and employed, as time and computational power constraints limited the scope 

of the work. The IV response of a high-bandgap perovskite solar cell was successfully modelled, 

and of the rest  While the simulated structures were inspired by existing designs, that are inher-

ently limited by experimental feasibility, future architectures will most likely feature more 
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optimized layer thicknesses and materials, and the 3-dimensional capabilities of the model can 

adjust to these future designs and help develop them.  
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Annex I: Optical data 

Here are presented the refractive indexes used in the optical simulations. These were either ex-

tracted and used as is or adapted to fit the needs of this work. Those unchanged (i.e. extracted and 

used as-is in the simulator) are present in Figure 4.1 and the adapted HOIP index is present at 

Figure 4.2. 

 

Figure 4.1: Silver[67], crystalline Si[67], indium tin oxide[64], titanium oxide[65], 

spiro-OMeTAD[43] refractive indexes. 

 As mentioned in the Results and discussion section, the HOIP refractive index was 

adapted by blueshifting the optical properties by the desired amount that would result in a 1.75 

eV perovskite. This methodology is consistent to that presented previously by Saliba et al[5]. 
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Figure 4.2: HOIP refractive index. Experimental 1.57 eV HOIP (blue and green) and 

blue-shifted 1.75 eV HOIP (black and red) are present, the latter obtained by the previously 

mentioned methodology[66]. 
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Annex II: Simulated I-V curves 

Bottom cells with OPLs unto 30 µm were simulated. While it was mentioned that 15 µm is within 

the Lambertian limit, optical thicknesses beyond that limit were also tested to see what would 

happen in an extreme light trapping scenario. These I-V curves are shown here in IV curves of 

the Si bottom cell, for the npp configuration for OPL from 1.5 to 30 µm., and the whole of elec-

trical parameters results are shown in the table, where marked in red are those, beyond Lambertian 

LT OPLs.  

 

Figure 4.3: IV curves of the Si bottom cell, for the npp configuration for OPL from 

1.5 to 30 µm. 
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It was seen in the Ray optics path length limits in bottom c-Si cell section that, with Lam-

bertian LT, the considered 1.5 µm c-Si cell could absorb up to the equivalent of 17 µm non-LT 

c-Si. It was then defined that simulations with a optical silicon thickness up to 15 µm would be 

performed to evaluate how electrically a device with LT present would perform. To complement 

this, higher OPL were simulated just to assess how more complex forms of LT can increase the 

performance of the bottom cell, up to 30 µm c-Si thickness. It is seen that up to 7.98% bottom 

cell efficiencies can be had here, compared to the previous 6.59% Lambertian LT maximum. 

Table 4.1: Electrical parameters for the device’s cells. The results for c-Si bottom cell 

with OPL within the Lambertian limit (1.5-15 µm, see Figure 3.10) are in black, those be-

yond that are marked in red. 

 O.P.L (µm) VOC (V) Jsc (A/m2) Pmax (W/m2) FF (%) Eff. (%) 

TMC 
(npp) 

1.5 0.57 33.6 15.7 82.00 1.57 
3.0 0.58 57.8 27.7 82.15 2.77 
5.0 0.59 101.5 50.1 82.92 5.01 

15.0 0.60 132.3 65.9 82.49 6.59 
22.5 0.61 144.1 72.3 82.62 7.23 
30.0 0.61 158.2 79.8 82.92 7.98 

TMC 
(pnp) 

1.5 0.56 33.4 15.6 82.38 1.56 
3.0 0.58 57.3 27.4 82.10 2.75 
5.0 0.59 99.8 49.2 82.93 4.92 

15.0 0.60 128.5 63.9 82.57 6.39 
22.5 0.60 138.6 69.2 82.50 6.92 
30.0 0.61 151.4 76.1 82.72 7.61 

 1.5 0.56 30.5 14.1 82.00 1.42 
 3.0 0.58 52.6 25.0 82.00 2.50 

TCOC 5.0 0.59 92.6 42.6 82.95 4.56 
 15.0 0.6 121.4 60.3 82.68 6.03 
 22.5 0.60 132.9 66.2 82.49 6.62 
 30.0 0.60 137.5 68.7 82.53 6.88 

PSC 
(TMC + 
15 µm) 

0.5 1.23 197.5 204.8 84.33 20.49 

 

The device-physics equations that are solved by DEVICE depend on the type of simulation 

and on which carrier-transport model is employed. Our simulations sought steady-state solutions 

under drift-diffusion carrier transport, for which the constitutive equations of device physics are: 

1.The Poisson equation, 

∇⋅ε∇φ=−q(p−n+ND−NA)−ρT 

Where ε is the electrical permittivity,q is the electron charge, and ρT isthe charge density 

due to traps. 



2D Optimization of Thin Perovskite/Silicon Four-Terminal Tandem Solar Cells 

 

41 

 

 

2. The electron continuity equation, 

−∇⋅(μnn∇EF n)=q(UR/G−Gopt) 

Where EF n is the electron quasi-Fermi level,μn is the electron mobility, UR/G is the net 

recombination rate due to recombination/generation processes, and Gopt is the optical generation 

rate. 

3.The hole continuity equation, 

∇⋅(μpp∇EF p)=q(UR/G−Gopt) 

Where EF pis the hole quasi-Fermi level and μp is the hole mobility. 

 


