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T́ıtulo

Diferentes Padrões de Atividade Induzem Diversas Formas de Plasti-

cidade Estrutural em Esṕıculas Dendŕıticas

Resumo

As śınapses, locais onde os neurónios se conetam entre si, são os lo-

cais onde se supõe que a aprendizagem ocorra através de alterações nestas

conecções. LTP (do inglês long-term potentiation) e o LTD (do inglês

long-term depression) foram propostos como mecanismos de adaptação

das conecções entre neurónios. Através de uncaging de glutamato me-

diado pela luz, foi elucidada uma relação linear entre a quantidade de

corrente que passa por uma śınapse individual e o tamanho da respectiva

esṕıcula dendritica, permitindo que as alterações estruturais que ocor-

rem ao ńıvel das esṕıculas sirva como medida para estimar plast́ıcidade

sináptica. Para quantificar de forma eficiente e exata as dinâmicas estru-

turais observadas em imagens adquiridas em microscópio de dois fotões de-

senvolvemos uma toolbox baseada Matlab, denomidade SpineS, que anal-

isa automaticamente as alterações de volume das esṕıculas dendriticas ao

longo do tempo, baseando-se numa livraria de imagens representativas.

Padrões de estimulação regularmente espaçados, como padrões de alta ou

baixa frequência (do inglês high-frequency, HFS, e low-frequency stimula-

tion, LFS, respectivamente), que são tradicionalmente usados para induzir

plasticidade no hipocampo não são as formas mais comuns de atividade

no cérebro. Assim, decidimos estudar quais são as formas funcionais e es-

truturais que padrões irregulares de atividade geram em esṕıculas dendrit-

icas individuais de neurónios piramidais da região de CA1 do hipocampo.

Para isso foram desenhados padrões de estimulação que seguem uma dis-

tribuição Poisson e se assemelham aos padrões de atividade recebidos por

estes neurónios textitin vivo. Neste estudo descobrimos que a longevidade
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induzida por esta estimulação é determinada pela estrutura temporal do

padrão de estimulação. Quando a atividade ocorre de forma homogénea ao

longo do tempo, é observado um crescimento robusto e de longa duração,

até 4 horas, em esṕıculas individuais, que depende de ativação de recep-

tores NMDA e śıntese de protéınas. Contrariamente, se a densidade de

eventos de atividade se acumular no ińıcio ou no fim do padrão de es-

timulação apenas ocorre um crescimento das esṕıculas de curta duração.

Estas experiências demonstram que o fator chave na indução de alterações

sinápticas de longa duração em botões individuais é a estrutura tempo-

ral do padrão de estimulação, sendo que a duração total do estimulo, o

número de eventos de atividade e a quantidade de glutamato libertado

não difere entre padrões. De maior relevância foi a observação de que,

durante a estimulação destes diversos padrões de atividade, as esṕıculas

dendriticas sofrem rápidas alterações estruturais. Recolhemos imagens

das alterações que ocorrem durante os 60 segundos de estimulação e de-

scobrimos que o crescimente toal de uma esṕıcula dendritica é altamente

variável mesmo em resposta ao mesmo padrão de actividade. Contudo, a

quantidade total de crescimento expressa em cada esṕıcula está significati-

vamente relacionada com o facto de uma determinada esṕıcula sofrer plas-

ticidade de longa-duração, independentemente do padrão de estimulação.

Isto indica que para determinados padrões de estimulação a integração

final que ocorre ao ńıvel da esṕıcula é o que determina em última análise

a longevidade da plasticidade sináptica.

Estes resultados elucidam como diferentes padrões de atividade levam

a processos fundamentalmente diferentes de plasticidade ao ńıvel das

sinapses, permitindo compreender como as alterações da atividade neural

in vivo têm consequências ao ńıvel das sinapses e ao ńıvel dos circuitos

neuronais.
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Abstract

Synapses are the sites at which learning is proposed to occur through

changes in the strength of neuronal connections. Utilizing 2-photon me-

diated glutamate uncaging and imaging, the size of a dendritic spine and

the amount of current which that synapse conducts has been shown to be

linearly correlated and thus allows for structural changes in spine volumes

to serve as a proxy for measuring plasticity. In order to efficiently and ac-

curately quantify such structural dynamics, we developed a Matlab-based

toolbox, named SpineS, which automatically analyses dendritic spine vol-

ume changes more rapidly, and with greater precision, based on a learned

library of representative images. Regularly spaced stimulations, such as

the high- and low-frequency patterns traditionally used to induce plas-

ticity in the hippocampus, are not the most common forms of activity

which occur in the brain. Therefore, we decided to investigate what are

the functional and structural correlates of irregular patterns of activity

at single spines of hippocampal CA1 pyramidal neurons. To accomplish

this, we designed stimulation paradigms that follow a Poisson distribu-

tion, resembling the in vivo firing properties of the endogenous inputs to

these neurons. We found that the longevity of the induced potentiation

is determined by the timing structure of the stimulation pattern. When

the activity that is delivered is homogeneously distributed over time, we

observe robust and long-lasting potentiation and growth of single spines

that last for at least 4 hours, requires NMDA activation and new protein

synthesis. In contrast to this finding, if the density of events is clustered

either towards the beginning or towards the end of the stimulus train, only

short-term potentiation is achieved. These experiments demonstrate that

a key factor in the induction of long-lasting changes at individual inputs is

the structure of the activity, as the total stimulation time, the number of

events, and the amount of glutamate delivered are all constant. Of further

interest to us was the observation that during the delivery of these vari-
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ous activity patterns, we saw that spines were undergoing rapid structural

dynamics. We imaged the changes that were taking place during these 60

second stimulation periods and found that the total spine growth is highly

variable even in response to the same activity pattern. However, the to-

tal amount of growth expressed at a spine was significantly correlated to

whether that particular spine will undergo long-lasting plasticity. This

indicates that for certain patterns of activity, the final integration which

occurs within a spine is ultimately what influences its long-term plasticity

outcome.

These results shed light on how different patterns of activity lead to

fundamentally different plasticity processes at synapses, providing insight

as to how the variety of neural activity patterns in vivo will have long-term

consequences for synaptic strength and thus circuit organization.
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Introduction
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1.1 Neuron Doctrine

In the early 1800s, the brain was thought to be a continuous network of

tissue, a theory known as the reticular theory. Santiago Ramón y Cajal,

widely thought of as the father of modern neuroscience, used Golgi staining

technique to show that the brain is made up of discrete elements, named

neurons. Having observed discreet spaces at the tips of cerebellar basket

cells, he proposed that neurons are the fundamental units of the nervous

system, in a theory known as the neuron doctrine (López-Muñoz, Boya,

& Alamo, 2006). Further research suggested that neurons are connected

to each other via synapses, a term coined by Sherrington in 1897 (Foster,

1895; Fulton, 1960; Sabbatini, 2003; Segal, 2004).

The discovery of the discrete nature of brain tissue and the hypothe-

sized role of synapses in the formation of memories raised various questions

about how the number of neurons or synapses are involved in the storage

of memory, how different forms of activity could be responsible for the

encoding and shaping of information storage, and what are the specific

mechanisms underlying these processes. In particular, understanding how

synapses are formed and whether and how they are modified are questions

which the neuroscience community is still trying to understand, and which

will be addressed in part by the work presented in the following chapters

of this thesis.

1.2 Synaptic Plasticity

With the advent of electron microscope, it was demonstrated that neurons

are indeed connected to each other via synapses (Palade, 1954; De Rober-

tis & Bennett, 1955; López-Muñoz et al., 2006). The human brain has

on average 1011 neurons and an estimated number of 1014 synapses con-

necting them (DeFelipe, Marco, Busturia, & Merchán-Pérez, 1999; Brait-

6



enberg, 2001; Azevedo et al., 2009). The discovery of synapses between

neurons raised the question of how connectivity is established and how

communication between neurons takes place. Further, it raised the possi-

bility that the efficacy of these points of connection may be modified, as

a means by which to encode the changes during learning. Synaptic plas-

ticity refers to the changes in the efficacy of synaptic connections and the

efficacy of synapses changes conditional to activity (Bliss & Lømo, 1973)

as well as during learning (Whitlock, Heynen, Shuler, & Bear, 2006), and

these changes correlate with the structural alterations of dendritic spines

(Asrican, Lisman, & Otmakhov, 2007; Matsuzaki, Honkura, Ellis-Davies,

& Kasai, 2004).

Many studies to date have focused on defining how neurons communi-

cate across synapses, beginning with an understanding of the basic orga-

nization of the structure. The synapse is a tripartite complex, composed

of a pre-synaptic axon terminal, a post-synaptic dendritic spine, and glia

(Araque, Parpura, Sanzgiri, & Haydon, 1999). When an action potential

reaches the axon terminal, it leads to the opening of voltage-gated calcium

channels which further leads to the release of glutamate in a stochas-

tic manner. Glutamate released from the axonal bouton (pre-synaptic

partner of a synapse) binds to glutamatergic receptors at spines (Figure

1.2.1). Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-

methyl-D-aspartate (NMDA) receptors are the two main glutamatergic

receptors, crucial for synaptic transmission and plasticity. The binding

of glutamate induces conformational changes in receptors leading to ionic

exchanges between the inside and outside of the spine. AMPARs predom-

inantly conduct Na ions and have faster channel kinetics compared with

NMDARs, which puts them in the first node of the synaptic transmission-

chain. NMDARs conduct both Na and Ca ions and Ca2+ is required for

the induction of synaptic plasticity. Calcium theory of plasticity suggests

that the immediate high concentration of Ca2+ leads to long-term po-
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Figure 1.2.1. An Excitatory Synapse. Action potentials arriving the
axonal terminal activates the voltage-gated Ca2+ channels which leads to
Ca2+ entering the terminal and the release of glutamate. Glutamate binds
to AMPA and NMDA receptors. AMPAR requires only glutamate to be
activated. NMDAR requires glutamate and electrical depolarization, due
to the a Mg2+ blocking the channel in a voltage-dependent manner, which
makes NMDARs coincident detectors of glutamate binding and depolar-
ization. Upon the depolarization of a neuron, activity back-propagates
through dendrites to spines (back-propagating action potential (bpAP)).

tentiation (LTP), whereas prolonged low concentration of Ca2+ leads to

long-term depression (LTD) (Otmakhov, Griffith, & Lisman, 1997; Lis-

man & McIntyre, 2001). Hence, Ca2+ couples electrical excitation with

intracellular signaling pathways (Hestrin, Sah, & Nicoll, 1990). Two main

pathways are required for synaptic plasticity and structural remodeling,

Ca→CaMK (Ca2+/Calmodulin dependent protein kinase II) pathway
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and Ras→MAPK (Mitogen activated protein kinase) pathway (Sheng &

Kim, 2002).

The type of LTP mentioned above is called NMDAR-dependent LTP

and it has been proposed that there are different temporal phases of this

NMDAR-dependent LTP (Bliss, Collingridge, & Morris, 2014), an ini-

tial short period lasting about 15-20 min following induction, an early

phase often referred of E-LTP that lasts for about an hour, and a third

phase, called as late LTP (L-LTP) which persists over a longer period of

time and is predominantly characterized by its protein synthesis depen-

dence (Stäubli & Scafidi, 1999; Redondo & Morris, 2011). It has been

shown that protein-synthesis inhibitor anisomycin blocks the induction

of L-LTP (Fonseca, Nägerl, Morris, & Bonhoeffer, 2004; Govindarajan,

Israely, Huang, & Tonegawa, 2011) and long-term memory at 24 h in a

novelty exploration task (Wang, Redondo, & Morris, 2010).

It was Donald Hebb who first postulated that activity may be the

governing factor of synaptic plasticity, which was later supported by ex-

perimental evidence (Hebb, 1949; Lowel & Singer, 1992). In his seminal

book The Organization of Behavior: A Neuropsychological Theory, Hebb

famously wrote:

When an axon of cell A is near enough to excite a cell B and

repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells

such that A’s efficiency, as one of the cells firing B, is increased

(Hebb, 1949).

which has later been popularized by Siegrid Löwel’s summary:

Neurons wire together if they fire together (Lowel & Singer,

1992).

Mathematical studies that had been performed around the time that

Hebb was developing his ideas (McCulloch & Pitts, 1943; Farley & Clark,
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1954), as well as the additional modeling work (Rosenblatt, 1958; Bi-

enenstock, Cooper, & Munro, 1982), suggested that plasticity could be

established in two directions: the electro-chemical transmission efficacy

between two neurons can either increase or decrease in response to activ-

ity. These processes were later experimentally shown to occur across a

variety of different synapses (Bliss & Lømo, 1973; Ito & Kano, 1982; Bear

& Malenka, 1994), and became known as LTP and LTD, respectively.

Today, it is well established that LTP and LTD are key cellular mech-

anisms for learning and memory (Sigurdsson, Doyère, Cain, & LeDoux,

2007; Feldman, 2009). Importantly, accompanying these changes in synap-

tic strength are the structural modifications of dendritic spines, which will

be discussed in greater detail below in section 1.4.

1.3 Synaptic Plasticity in the Hippocampus

It has been shown that lesions of the hippocampus (such as in the famous

case of HM) led to the inability to form new memories (Scoville & Milner,

1957). Evidently, hippocampus has been the major focus of the studies

addressing cellular mechanisms of learning and memory. Bliss and Lømo

were the first to show that high frequency electrical stimulation of per-

forant pathway axons increases the efficacy of synaptic transmission at

dentate gyrus-perforant pathway synapses (Figure 1.3.1) of anesthetized

rabbit hippocampus (Bliss & Lømo, 1973). This was the first experimen-

tal evidence to show the plastic nature of a synapse. Synaptic plasticity

has since been characterized at the majority of synapses within the ner-

vous system, from different regions of the hippocampus (Bliss et al., 2014;

Huganir & Nicoll, 2013), to the cortex (Froemke, 2015; Friauf, Fischer,

& Fuhr, 2015), as well as at subcortical regions such as the amygdala

(Mahan & Ressler, 2012) and striatum (Hawes, Gillani, Evans, Benkert,

& Blackwell, 2013; Cerovic, dIsa, Tonini, & Brambilla, 2013).
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Figure 1.3.1. Hippocampal Circuitry of a Transverse Slice. Hip-
pocampus has a very stereotypical structure. Hippocampal slices retain
their cytoarchitecture and connections ex vivo which facilitates the stud-
ies of synaptic plasticity mechanisms. Placing a stimulation electrode at
one pathway allows the studies of specific types of synapses. (Image is
modified from Deng, Aimone, & Gage, 2010)

The hippocampus is located in the medial temporal lobe and it repre-

sents a part of the limbic system (Eichenbaum, 1997). In addition to being

the site where synaptic plasticity was first described, is also a structure

highly amenable to experimental manipulation. This is due to its highly

laminar organization, which allows for the connections within the structure

to be maintained when manipulated ex vivo. When sliced transversally,

tri-synaptic pathway of the hippocampus can be preserved intact. Cortical

projections enter the hippocampus via the perforant and the temporoam-

monic pathways (Figure 1.3.1 (Deng, Aimone, & Gage, 2010)). Perforant

pathway starts with dentate gyrus (DG) and DG granular cells send axons

to CA3 area via mossy fibers, and the Schaffer collateral axons emerging

from CA3 pyramidal neurons form synapses onto the apical dendrites of

CA1 pyramidal neurons. On the other hand, temporoammonic pathway
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axons form synapses onto the basal dendrites of CA1 pyramidal neurons.

In this thesis, Schaffer collateral synapses have been studied.

Behavioral studies showed that CA1 pyramidal neurons fire condi-

tional to the animal’s location (hence they are called place cells) (O’Keefe

& Dostrovsky, 1971) and the Schaffer collateral synapses were shown to

be modified during the formation of this place memory (McHugh, Blum,

Tsien, Tonegawa, & Wilson, 1996; Mehta, Quirk, & Wilson, 2000). This

long-term modifications on the transmission efficacy of a synapse is a func-

tion of the converging activity and the subsequent firing caused by that

activity. There has been two ways of studying plasticity electrically, re-

peated high or low frequency activation of pre-synaptic terminals (Bliss &

Lømo, 1973; Bienenstock et al., 1982), and coincident activation of post-

synaptic action potentials (APs) and excitatory post-synaptic potentials

(EPSPs) (Markram, Lübke, Frotscher, & Sakmann, 1997; Bi & Poo, 1998;

Lisman & Spruston, 2010).

Recent advancements in the field of optics in combination with photo-

activatable compounds have made it possible to study plasticity at the

level of single synapses.

1.4 Dendritic Spines and Structure-Function

Coupling

Although focus in Hebbs postulate (see section 1.2) is often placed on

the need for coincident activity in order to effect changes in efficacy be-

tween synapses, an integral part of the theory is the requirement for ”some

growth process or metabolic change” to accompany the changes in efficacy.

Therefore, we will discuss the structural changes that occur during synap-

tic plasticity below.

Dendritic spines are the post-synaptic structures on which the major-

ity of excitatory synapses of pyramidal neurons in the brain are located.
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Their morphology is highly regulated by incoming activity. As described

above, the induction of plasticity requires CaMKII and Ras/MAPK sig-

naling pathways. However, the activation pattern and the morphology of

the spine determines the level at which these interactions happen. This

occurs due to filtering and compartmentalization of electro-chemical in-

teractions within the volume of the spine head (Harris & Stevens, 1989;

Tonnesen, Katona, Rózsa, Nagerl, et al., 2014). The post-synaptic density

(PSD), the region at the tip of a spine, is the region where the majority

of receptors are clustered and interact, and the size of this specializa-

tion is strongly correlated with the volume of the spine head (Harris &

Stevens, 1989; Arellano, Benavides-Piccione, DeFelipe, & Yuste, 2007).

As early as 1975, it was shown that the size of a spine changes immedi-

ately following a stimulation (Van Harreveld & Fifkova, 1975) in dentate

gyrus granular cells. In a follow up study, this spine enlargement was sup-

pressed when a protein synthesis inhibitor, anisomycin, was applied prior

to the stimulation (Fifková, Anderson, Young, & Van Harreveld, 1982).

Further evidence supporting the connection between functional and struc-

tural coupling was seen when in response to brief bursts of high frequency

stimulation of Schaffer collateral-commisural projections, the number of

shaft synapses increases and the variability of dendritic spines decreases

(Lee, Schottler, Oliver, & Lynch, 1980). More recently, an electron mi-

croscopy study showed that when an axon makes more than one synapse

with multiple spines, those spines have similar volumes, indicating that

activity is critical for determining spine size (Bartol et al., 2015).

A major advance in our understanding of the relationship between

spine size and synapse function accompanied the technological develop-

ment which allowed for precise stimulation of single spines. Technical

developments in the field of microscopy enabled researches to monitor

structural changes at single-synapse level in vivo. Invention of caged

compounds in combination with the improved spatial optical targeting
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of laser beams advanced the field one step further in terms of the speci-

ficity of the targeted synapses (Ellis-Davies, 2007). Caged compounds

are light-sensitive precursors of ligands that are inactive in the absence of

light. Application of light pulses onto these compounds breaks the cage

by a process called photolysis and frees the ligand from the cage, enabling

spatio-temporally controlled manipulations of targeted processes. Schiller

et al. used UV excitable caged glutamate to study NMDA-dependent

Ca2+ dynamics at single spines (Schiller, Schiller, & Clapham, 1998) and

they showed that, when paired with AP firing, uncaging controlled NM-

DAR activation caused a supralinear increase in Ca2+ through these re-

ceptors. Patterned two-photon uncaging was used to understand dendritic

integration mechanism at cortical (Branco, Clark, & Häusser, 2010) and

CA1 pyramidal neurons (Smith, Ellis-Davies, & Magee, 2003; Losonczy &

Magee, 2006; Losonczy, Makara, & Magee, 2008). Using two-photon glu-

tamate uncaging in combination with somatic and dendritic patch clamp

recordings, significant contributions were made by showing that pseudo-

synchroneous multisite glutamate uncaging leads to the non-linear inte-

gration of EPSCs at hippocampal CA1 pyramidal neurons (Smith et al.,

2003; Losonczy & Magee, 2006; Losonczy et al., 2008) and spatio-temporal

properties of the multisite uncaging patterns determine the level of non-

linearity of dendritic calcium and somatic EPSC integration (Branco et

al., 2010).

This technology allowed for the careful assessment of spine volume in

relation to the amount of current that the synapse conducts (Matsuzaki et

al., 2004). A tight positive correlation between synaptic current and spine

head volume has been demonstrated (Matsuzaki et al., 2004; Asrican et

al., 2007; Harvey & Svoboda, 2007). This findings allowed researchers to

use spine head volume as a proxy for plasticity.
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1.5 Single Spine Plasticity

Matsuzaki et al. used two-photon glutamate uncaging and imaging to

stimulate single dendritic spines and monitor their structural responses

regarding activity (Matsuzaki et al., 2004). They developed a glutamate

uncaging protocol by comparing normalized volume responses of dendritic

spines to two different electrical stimulation condition. First, they stimu-

lated Schaffer collaterals with 100 Hz, 1 sec electrical stimulation with the

presence of 1 mM Mg2+ as they imaged a CA1 dendritic branch. Simi-

lar spine volume change was also induced by with 2 Hz, 60 sec electrical

stimulation without Mg2+. Therefore, this [Mg2+] dependent frequency

mapping allowed them to come up with the uncaging pattern they used

for the study (60 uncaging pulses (each 0.6 msec) in 1 min, see Table 1.1).

Glutamate uncaging induced similar spine enlargement as well, and they

also showed that this form of LTP is NMDAR and CaMKII dependent

((Matsuzaki et al., 2004), Figure 1f and Figure 2e, respectively).

In a following study (Harvey & Svoboda, 2007), another regular

uncaging pattern was found to evoke similar single-spine volume dynam-

ics using 30 uncaging pulses (each pulse 4 msec, instead of 0.6 msec in

the previously described study) for 1 min. Additionally, they showed that

the stimulation of multiple spines with two different uncaging protocols

(30 pulses,1 min, 4msec vs 30 pulses, 1 min, 1msec), did not lead to the

potentiation of spines stimulated with shorter pulse lengths, hence this

protocol is referred to as sub-threshold.

Govindarajan et al. using the same stimulation protocol in combina-

tion with forskolin in order to raise the intracellular levels of cyclic-AMP

(cAMP) in the stimulated neurons. cAMP is a second messenger that acts

on protein kinase A (PKA) pathway, hence boosting the protein transla-

tion in the cell. This study showed that the uncaging induced LTP under
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Figure 1.5.1. Pre-synaptic Neurotransmitter Release can be Mim-
icked by Glutamate Uncaging. Two-photon glutamate uncaging al-
lows glutamate to be released in a spatially specific, controlled way, al-
lowing single spines to be studied. Studies addressing NMDA dependent
plasticity are performed in the absence of Mg2+

the influence of forskolin extended the longevity of the structural spine

plasticity (Govindarajan et al., 2011).

Table 1.1 summarizes the stimulation protocols that has been used to

induce LTP at single dendritic spines using electrical and uncaging laser

pulses.
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Table 1.1. Requirements of Inducing Plasticity at Single Den-
dritic Spines. Plasticity can be induced at single spines using electrical
stimulation of glutamate uncaging. Glutamate uncaging under the ab-
sence of [Mg2+] induces plasticity that is conditional to the number of
uncaging pulses and pulse width.

Study
Stim.
Type

Freq.
(Hz)

Stim.
Len.
(sec)

#
of

Pulses

Mg
(mM)

Uncaging
Pulse Len.

(msec)

Matsuzaki
et al.
(2004)

Electrical 100 1 100 1 -
Electrical 2 60 120 0 -
Uncaging 1 60 60 0 0.6

Harvey
&

Svoboda
(2007)

Uncaging 0.5 60 30 0 4

Israely
et al.
(2011)

Uncaging 0.5 60 30 0 4

1.6 Spike-Timing Dependent Plasticity

It has been shown that relative firing times between a pair of feed-forward

connected neurons determines the direction and the level of plasticity at

the synapse connecting these neurons. This phenomenon is known as

spike-timing dependent plasticity (STDP) (Markram et al., 1997; Bi &

Poo, 1998). STDP is proposed to be the mechanism governing the synaptic

plasticity in vivo (Paulsen & Sejnowski, 2000). However, this proposal is

highly debated (Lisman & Spruston, 2005, 2010).

There has been various working models proposed to be the induction

mechanism of STDP (Markram, Gerstner, & Sjöström, 2012). Original

model was based on the timing difference between one pre-synaptic and

one post-synaptic spike. Repeated activation of this pre→post firing or-

der induced LTP at excitatory synapses of pyramidal neurons as long as
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timing difference was smaller 50 msec (Bi & Poo, 1998). This finding was

in strong agreement with Hebb’s original proposal (see section 1.2). Ad-

ditionally, reversing the order of pre→post firing induced LTD (Markram

et al., 1997; Bi & Poo, 1998). This simple two-spike interaction model

shown be explaining cortical development and remapping of visual cor-

tical maps through competition (Song, Miller, & Abbott, 2000; Song &

Abbott, 2001) and hippocampal receptive fields (Mehta et al., 2000).

Further research showed that this two-spike model is not sufficient to

explain a large body of the experimental data which lead to the develop-

ment of three- and four- spike models (Froemke & Dan, 2002; Froemke,

Tsay, Raad, Long, & Dan, 2006; Pfister & Gerstner, 2006). In these mod-

els instead of pre→post or post→pre spike interactions, higher order sta-

tistical interactions between multiple inter-spike intervals were taken into

consideration such as pre→post→pre, post→pre→post (Pfister & Gerst-

ner, 2006), pre→post→pre→post or post→pre→post→pre (Froemke &

Dan, 2002). These models were shown to be better at explaining the

experimental data which shows the importance of complex spike-timing

interactions.

1.7 Naturalistic Patterns, Synaptic Responses

and Plasticity

The induction of LTP was discovered by high frequency electrical stim-

ulation (HFS) and variations of HFS trains are used to induce LTP in

the hippocampus and other brain regions. Although these constant high

frequency protocols are effective at inducing potentiation, they do not

represent the breadth of activity patterns that can be observed in vivo.

The existence of both temporal and rate coding in neural networks has

been well established (Ferster & Spruston, 1995; Christopher deCharms &

Merzenich, 1996; Prut, Slovin, & Aertsen, 1995; Bienenstock et al., 1982;
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Tsodyks & Markram, 1997) yet how such parameters influence plasticity

at single inputs has not been addressed yet. A number of computational

and experimental studies have been conducted, investigating the effects

of naturalistic stimulation patterns on the induction of plasticity. Here,

we are going to review these studies briefly and try to summarize how

different groups approached this problem.

Migliore and Lanski (Migliore & Lansky, 1999) made a computational

model of synaptic transmission to test to what extent the temporal vari-

ations at the stimulation train can change the state of a synapse. Their

results showed that, even if the mean stimulation frequency is maintained

constant, the probability of inducing LTP and LTD can be a function of

the temporal variation of the stimulation train. Such temporal variations

of the input train has not taken into account in the experiments discussed

earlier.

The first study to use naturalistic stimulus patterns (NSP) to study

short and long term plasticity showed that NSPs induce LTP in hippocam-

pal slices (Dobrunz & Stevens, 1999), whereas they found no relation-

ship between the instantaneous frequency and the response magnitude for

NSPs. The NSPs were taken from the timing of action potentials recorded

in vivo from hippocampal place cells of awake, freely moving rats. They

showed that NSPs show highly variable timing. The interspike intervals

measured in vivo were multiplied by 3 to account for the temperature

difference between the in vivo measurements (37 oC) and slice recordings

(24 oC) (Dobrunz & Stevens, 1999).

This study mostly focused on short term plasticity, such as the re-

sponse size variations with respect to stimulus number and inter-stimulus

intervals (ISI) within the stimulation train. The authors investigated LTP

using natural stimulus pattern, and they tested field EPSP slopes for two

independent pathways in the same hippocampal slice. A 256-point natu-

ral stimulus pattern was applied for 12 min, which caused a long lasting
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potentiation (1.5 times more compared with the baseline) of the response

to constant frequency (0.17 Hz) stimulation. The control pathway, which

was not stimulated with the natural pattern, was not potentiated.

Another study investigated the plasticity concequences of naturalistic

patterns in spike-timing dependent plasticity (STDP) setting (Froemke &

Dan, 2002). Using the firing patterns of two cortical pyramidal neurons

that have overlapping visual fields as pre- and post-synaptic trains, it

has been shown that the activity-induced synaptic modifications do not

depend only on the relative spike timing between the neurons, but also on

the inter-spike intervals within each neuron (Froemke & Dan, 2002).

In neocortical slices, stimulation patterns derived from slow wave sleep

(SWS) induced LTP (Rosanova & Ulrich, 2005) or LTD (Czarnecki, Bir-

toli, & Ulrich, 2007) depending on the pattern of stimulation (Rhyth-

mic burst or spindle-like trains, respectively). deKay et al. compared

naturalistic patterns with constant frequency stimulation in a compara-

tive study between young adult (P28-P35) and juvenile (P12-P18) rats

(deKay, Chang, Mills, Speed, & Dobrunz, 2006). They showed that the

average responses to naturalistic stimuli and constant frequency stimu-

lus both showed modest depression in young adults, but juveniles showed

facilitation for NSPs but short-term depression after constant frequency

stimulation. Tunstall et al. (Tunstall, Agnew, Panzeri, & Gigg, 2010)

used two different naturalistic stimulus patterns to stimulate neurons in

subiculum. First pattern included bursts of activity, whereas second pat-

tern was spaced more evenly. Differences in the short term responses to

two different patterns were reported, and they concluded that dynamic

interactions between rate and temporal coding exist between input spikes

and stimulus response but they have not observed any LTP for either class.

Gundfinger et al. used irregular stimulus trains resembling the natural

spike statistics from DG neurons to study short and long term plasticity

mechanisms at mossy fiber synapses in acute hippocampal slice prepa-
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rations (Gundlfinger et al., 2007; Gundlfinger, Breustedt, Sullivan, &

Schmitz, 2010). They used in vitro electrophysiology and computational

modeling to study the interactions between LTP and STP at mossy fiber

synapses and showed that LTP occluded the frequency facilitation by re-

ducing the dynamic range of the synapse. They concluded that phenomena

such as alterations in the place field size and speed could be explained by

mechanism related to experience-dependent changes in the properties of

short-term facilitation.

In another study combining electrophysiological recordings with real-

istic modeling of STP in excitatory hippocampal synapses, Kandaswamy

et al. showed that STP increases the information transfer in a time and

frequency dependent fashion. The study showed that STP in Schaffer col-

lateral synapses increased the information transfer in a wide range of input

frequencies from 2 to 40 Hz. Moreover, time dependent analysis of mu-

tual information predicted that in low-release probability synapses, STP

acts to maximize information transfer specifically for short high frequency

bursts. They concluded that since many types of synapses are not likely

to experience extensive periods of high-frequency activity under natural

conditions, these synapses do not reach a steady state in vivo.

In summary, the studies discussed above found that the short term

responses are very sensitive to the temporal variations of the input pat-

terns. Transient bursting patterns are necessary for LTP to occur in the

hippocampus (Pike, Meredith, Olding, & Paulsen, 1999) but not sufficient,

since not all naturalistic patterns induce LTP. Finally, in the light of these

experiments, a biophysical modeling study, Migliore et al. concluded that

the state of the synapse at the time of plasticity induction is a key factor

in determining whether a pattern will lead to the induction of LTP or

LTD (Migliore, De Simone, & Migliore, 2015).
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1.8 Contribution of this Dissertation

The work in this dissertation investigates the functional and structural

consequences of non-regular patterns of activity at single inputs. The aim

of the study was to understand how more naturalistic stimulation scenarios

encode information at single synapses, and is built around the idea that

the transmission of information does not occur through regularly spaced

neurotransmitter release in vivo (Zador & Dobrunz, 1997).

In chapter 2 we listed the materials that we used in our experiments

and explained the methods that have been used.

We introduce a dendritic spine analysis toolbox named SpineS in chap-

ter 3. Studies addressing structural dendritic modifications require the

collection of large scale dendritic spine images which requires laborious

manual analysis. Manual analysis of vast number of dendritic spines is

not only time consuming and tiresome, it also is prone to subjective blun-

ders. Therefore, we developed SpineS for the automatic quantification of

dendritic features. SpineS is Matlab based and open-source.

In chapters 4 and 5, we present the investigations of long- and short-

term structural spine dynamics comparing regular and Poisson distributed

stimulation patterns. This is the first study using naturalistic patterns to

understand structural plasticity mechanisms at single dendritic spines.

In chapter 6 we discuss the implications of the findings and consider

potential mechanisms underlying the obtained results. Further, we will

reflect upon the implications of these findings to the study of synaptic

plasticity and how this work may contribute to the understanding of plas-

ticity within neural circuits.
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Chapter 2

Materials and Methods
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2.1 Materials

2.1.1 Dissection Solution

First, we prepared 10× concentrated Krebs-Ringer solution (Table 2.1)

and we kept this stock solution at 4oC. Later, we prepared 1× solution

(Table 2.2) by adding CaCl2 and MgCl2 while the solution was bubbled

using 95% O2 and 5% CO2 for 30 min. The solution was afforated using

distilled water to 250 mL, sterilized with vacuum filter, aliquoted in 40

mL volumes and stored at −20oC until dissection.

Table 2.1. 10× Krebs Ringer Dissection Solution.

10× Krebs Ringer mM M.W. in 250 mL

KCl 25 74.55 0.465 g

NaHCO3 260 84.01 5.460 g

NaH2PO4 11.5 mM 119.98 0.344 g

D −Glucose 110 mM 180.16 4.95 g

Table 2.2. 1× Krebs-Ringer Dissection Solution.

1× Krebs-Ringer mM in 250 mL

10× Krebs-Ringer 100 25 mL

MiliQWater - 300 mL

Sucrose 238 20.36 g

CaCl2 1 0.25 mL (1M CaCl2)

MgCl2 5 1.25 mL (1M MgCl2)

2.1.2 Dissection Equipment

Brains were dissected using surgical tools (Figure 2.1.1). During the pro-

cedure, the extracted brain and hippocampal slices were kept in ice-cold

Krebs-Ringer solution. Following the extraction, hippocampi were placed

on a filter paper with Krebs-Ringer solution and fixed on the chopper
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(Figure 2.1.2) plate. Afterward, they were sliced 350µm-thick transverse

slices and kept in an incubator in six-well plates (Figure 2.1.3).

Figure 2.1.1. Surgical Dissection Set. Brain is extracted out of skull
using the surgical set to be sliced using tissue slicer.

Figure 2.1.2. Tissue Slicer. Hippocampi were sliced into 350 µm thick
slices for culturing.
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Figure 2.1.3. Cultures in Six-Well Plate. Hippocampal slices are
incubated in six well plates in the incubator. We placed three to four
slices per well sitting on inserts with the culture media underneath them.
Medium was changed every two to three days.

2.1.3 Biolistic Gene Transfer

Hippocampal neurons from organotypic slice cultures were transfected us-

ing a Helios gene gun (Bio-Rad) after four to seven days in vitro (DIV).

Gold beads (10 mg, 1.6 µm diameter, Bio-Rad) were coated with 100 µg

of pCAGGS-AFP (Fig. 2.1.4) plasmid DNA (Ogawa & Umesono, 1998),

according to the Bio-Rad protocol1, and delivered biolistically into the

slices at 180-200 psi (Woods & Zito, 2008).

1http://www.bio-rad.com/LifeScience/pdf/Bulletin 9541.pdf
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Figure 2.1.4. pCAGGS-AFP Vector. pCAGGS-AFP plasmid was used
for the sparse transfection of hippocampal neurons. Plasmid size: 5.54 Kb,
constructed by Hidesato Ogawa (Ogawa & Umesono, 1998).

2.1.4 Internal Solution for Patch Pipette

Whole cell recordings were performed at room temperature, with glass

pipettes (access resistance 6 to 10 MΩ) filled with internal solution con-
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Table 2.3. Artificial Cerebrospinal Fluid (ACSF).

ACSF (2X) mM M.W. in 1 L

NaCl 127 58.44 14.84 g

KCl 2.5 74.55 0.372 g

NaHCO3 25 84.01 4.2 g

NaH2PO4 1.25 119.98 0.299 g

taining: 115 mM potassium gluconate, 10 mM HEPES, 20 mM KCl, 4

mM Mg-ATP, 0.3 mM Na-GTP, 10 mM Na-phosphocreatine and 1 µM

CaCl2. pH was adjusted to 7.4 using KOH. In some recordings, ALEXA

488 Fluor (30µM, Invitrogen, Germany) was added to the internal solution

(Edelmann & Lessmann, 2011).

2.1.5 Artificial Cerebro-Spinal Fluid (ACSF)

During the experiments, the slices were perfused with carbogenated (95%

O2 and 5% CO2) artificial cerebral spinal fluid (ACSF) containing the

following (in mM): 127 NaCl, 25 NaHCO3, 25 D-glucose, 2.5 KCl, 1

MgCl2, 2 CaCl2 and 1.25 NaH2PO4 and TTX, delivered with a peri-

staltic pump at 1.5 ml/min (Table 2.3). Uncaging ACSF (uACSF) was

the same as ACSF except for 4 mM CaCl2, 0 mM MgCl2, MNI-glutamate

and 0 TTX. Anisomycin (50 mM), cycloheximide (60 mM), APV (50 µM)

or different [Mg2+] was added to the solution when specified as well (Fig-

ure 2.2.2).
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Table 2.4. Organotypic Slice Culture Media.

mM in 500 mL

NaHCO3 6 0.252 g

HEPES 30 3.57 g

D-Glucose 27 2.43 g

1X MEM 394 mL

Horse Serum 100 mL

CaCl2 1 mM

MgSO4 1 mM

Ascorbic Acid 25% 24 µL

Insulin (10 mg/mL) 50 µL

GlutaMax 2.5 mL

2.2 Methods

2.2.1 Organotypic Slice Cultures

Cultured hippocampal slices were prepared from C57BL/6J mice (postna-

tal day 7 to 10) (Gähwiler, 1981; Stoppini, Buchs, & Muller, 1991). Briefly,

350 µm thick slices were obtained with a chopper in ice-cold ACSF con-

taining 2.5 mM KCl, 26 mM NaHCO3, 1.15 mM NaH2PO4, 11 mM

D-glucose, 24 mM sucrose, 1 mM CaCl2 and 5 mM MgCl2, and cultured

on membranes (Millipore). The slices were maintained in an interface

configuration with the following media: 1× MEM (Invitrogen), 20% horse

serum (Invitrogen), GlutaMAX 1 mM (Invitrogen), 27 mM D-glucose, 30

mM HEPES, 6 mM NaHCO3, 1 M CaCl2, 1 M MgSO4, 1.2% ascorbic

acid, and 1 µg per mL insulin (Table 2.4). The pH was adjusted to 7.3,

and osmolarity adjusted to 300-310 mOsm. All chemicals were purchased

from Sigma unless otherwise indicated.
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2.2.2 Two Photon Laser Scanning Microscopy

Two photon excitation microscopy is an imaging technique that was de-

veloped by Winfried Denk as a side project during his doctorate (Denk,

Strickler, & Webb, 1990; Svoboda & Yasuda, 2006). This technique uses

femto-second laser pulses to excite fluorophores. Femto-second pulses en-

able pseudo-synchronous excitation of a fluorophore by two-near coinci-

dent photons hitting them so that the second photon creates a non-linear

jump at the energy level of the excited particles, allowing fluorophores to

be imaged using lower laser pulses than in one-photon based techniques.

In our experiments, two-photon imaging and uncaging was performed

using a galvanometer-based scanning system (Prairie Technologies, ac-

quired by Bruker recently) on a BX61WI Olympus microscope, using a

Ti:sapphire laser (Coherent) controlled by PrairieView software.

Imaging

Slices were perfused with oxygenated ACSF (Section 2.1.5. Imaging was

started 15 to 30 min after the initiation of slice incubation. Secondary or

tertiary dendrites of CA1 neurons were imaged using a water immersion

objective (60×, 0.9 NA, Olympus) with a zoom of 10×. Image stacks

(0.3 µm per section) were collected once every 5 min for up to 4 h at

a resolution of 1024 × 1024 pixels, resulting in a field of view measuring

approximately 19.8µm × 19.8µm. Z-stacks were used to quantify spine

volumes (see Chapter 3 for details) in all experimental conditions, and all

images in one experiment were acquired under the same imaging conditions

maintaining equal laser power and PMT gain settings. We monitored

imaging laser power fluctuations throughout experiments using a laser

power meter (Thor Labs).

One dendritic segment was analyzed per neuron per experiment.
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Figure 2.2.1. Two Photon Imaging and Uncaging of Single Den-
dritic Spines. Left: A CA1 pyramidal neuron expression AFP, Right
Top: Branch of Interest, Right Bottom: Stimulated Spine. Scale Bar:
1µm

Glutamate Uncaging

Glutamate is the major neurotransmitter operating at excitatory synapses.

MNI-caged-L-glutamate (4-methoxy-7-nitroindolinyl-caged-L-glutamate)

is a compound that is inert in cells in the initial form. Two photon

laser pulses at 720 nm wavelength are able to break the cage hence

enabling spatio-temporally controlled simulation patterns for the mimicry

of synaptic activation.
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Objective
60X / 0.9NA

Pump
1.5ml/min

ACSF
2Ca/1Mg

uACSF
4Ca/0Mg

Trash

Chamber

Switch Valve

Tubing

CO2/O2

Figure 2.2.2. ACSF Circulation. During imaging and uncaging, slices
were perfused using artificial cerebro-spinal fluid (ACSF). Two different
ACSFs were used with different concentrations of Ca2+, Mg2+ and MNI-
L-Glutamate. Normal ACSF was used during incubation, baseline, and
post-stimulus periods, whereas uncaging-ACSF (uACSF) was used only
during the stimulation period which starts with the completion of the last
baseline image stack and ends with stimulus delivery (6 min in total).

Before using a new batch of MNI-L-glutamate (Tocris), we performed

whole-cell patch-clamp recordings of pyramidal neurons to monitor

uncaging-evoked mini EPSCs (mEPCSs). We located the laser pulse

approximately 0.5 µm away from the spine head perimeter (Figure 2.2.1).

First, we recorded spontaneous mEPSCs for 5 to 10 min and attempted

the application of different laser power values under physiological Ca and
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Mg concentrations (2 mM CaCl2, 1 mM MgCl2) to obtain an uncaging-

evoked mEPSC similar in size to the spontaneously occurring mEPSCs

on average.

Experimental Design

We incubated slices 20 to 30 min as they are perfused with ACSF (0.5µM

TTX, 2 mM Ca, 1 mM Mg) at room temperature before the beginning of

the experiment. Experiments are initiated with baseline Z-stack imaging

of a secondary or tertiary dendritic branch of a CA1 neuron (Figure 2.2.1).

The dendritic branch was imaged every 5 min for 15 to 30 min before

glutamate uncaging. After the collection of baseline images, we switched

to uncaging-ACSF (uACSF), containing 2.5 mM MNI-Glutamate, 0 mM

Mg and 4 mM Ca. Uncaging Pattern (Figure 2.2.3) delivered 0.5µm away

from the tip of the spine.

We switched back to the use of normal ACSF after uncaging, and take

the first image was obtained 2 min after the stimulation and, afterward,

every 5 min during the following 4 h.

2.2.3 Pulse Train Modeling using a Poisson Process

We designed uncaging pulse trains using a homogeneous Poisson process

to generate irregular uncaging patterns that we call naturalistic trains

to stimulate single dendritic spines.

There are two ways of generating homogeneous Poisson spike trains.

The first approach is based on subdividing total spike train length into a

series of non-overlapping time intervals, each of duration δt. Afterward,

a sequence of uniformly distributed random numbers between 0 and 1

can be used to generate a spike for each interval as long as the random

number x ≤ rδt. Here r is the instantaneous firing rate, which is constant

over time for homogeneous Poisson train. This means that the probability
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Figure 2.2.3. Schematic Illustration of the Experiment. Following
the incubation, baseline images were collected. uACSF circulation started
immediately after the acquisition of last baseline image stack. At the 5th

min of uACSF circulation, one of four uncaging patterns was delivered for
1 min and structural imaging was continued up to 4 h post-stimulation in
order to follow uncaging-evoked spine volume changes.

of a spike occurring during a time interval δt is equal to the value of

the instantaneous firing rate during that interval times the length of the

interval (Equation 2.1).

P{1 spike during (t− δt, t+ δt)} = rδt (2.1)

In the second approach exponential distribution is used to derive in-

terspike intervals for a Poisson spike train. Poisson process provides a

description of the number of events in a given time period (Equation 2.2).

P(n spikes during ∆t) =
e−r∆t(r∆t)n

n!
(2.2)
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The exponential distribution, which can be obtained by taking the

derivative of the cumulative distribution function of the Poisson distribu-

tion, will provide the length of time between events (Equation 2.3).

f(∆t) = r∆te−r∆t (2.3)

Once the exponentially distributed random spike times are generated,

successive spike times can be obtained by adding the previous spike time

with the randomly drawn interspike interval.

2.2.4 Statistical Analysis

All statistical analyses were performed using custom code written in Mat-

lab. Permutation (Shuffle) test was used for the analysis presented in

Figure 5.3.7. Nonparametric MannWhitney-U test was used to compare

spine volumes at any time bin versus baseline or different condition. Time

series were compared using repeated-measures ANOVA.

In order to compare the error between different volume estimation

methods and volume differences that might introduced due to fluorescence

fluctuations over time, we used a symmetric mean absolute percentage er-

ror (sMAPE) based similarity score (SS). The sMAPE is a common mea-

sure for trend comparisons between time series data (Makridakis, 1993).

sMAPEspine
method1−method2

= 100× 1

n

n∑
i=1

|method1
i −method2

i |
|method1

i +method2
i |

(2.4)

Here, n is the number of time points for the analyzed spine. sMAPE

is used in sections 3.3 and 3.7.
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Chapter 3

Spines: A Tool for

Automatic Dendritic Spine

Analysis
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3.1 Abstract

Two photon-imaging experiments have begun to elucidate the dynamic na-

ture of dendritic spines, showing that they undergo changes in shape both

during development and in response to synaptic stimulation. The experi-

ments which track such changes require the collection of multi-dimensional

data over prolonged periods of time, generating large amounts of informa-

tion which requires tedious manual labor in order to be analyzed. In addi-

tion to involving lengthy analysis periods, manual analysis may introduce

operant bias which may alter the accuracy of quantification. Therefore, we

developed an open source image-processing toolbox called SpineS for the

automatic quantification of dendritic features such as spine head volume,

spine neck length, and inter spine distances, from imaging data collected

with confocal and two-photon fluorescence microscopy. This toolbox al-

lows for the rapid quantification of many spines within the field of view, as

it increases estimation precision and eliminates inter-operant estimation

differences.

3.2 Introduction

The efficacy of excitatory synapses changes with activity (Bliss & Lømo,

1973) as well as during learning (Whitlock et al., 2006), and these changes

correlate with the morphological alterations of dendritic spines (Asrican

et al., 2007; Matsuzaki et al., 2004). In particular, the linear relationship

between spine volume and current amplitude of a spine (as discussed in

section 1.4), and bidirectional changes in spine volume correspond to the

induced plasticity (Asrican et al., 2007; Matsuzaki et al., 2004; Ramiro-

Cortés & Israely, 2013; Tonnesen et al., 2014). These changes in efficacy

and structure reflect activity at a synapse, and can impact subsequent in-

formation transmission between inputs across the dendritic arbor (Magee,
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2000; London & Häusser, 2005; Bartol et al., 2015). Understanding how

such changes are physically maintained in the cell is key to elucidating

the mechanisms whereby information is stored in the brain. Activity-

dependent structural changes at spines can last from several minutes to

hours, and are visualized through multi time point sampling of Z-stack im-

ages, often collected for many hours. For example, in an experiment that

addresses structural LTP or LTD mechanisms at a single dendritic spine

using two photon glutamate uncaging and imaging, researchers image a

dendritic branch every 5 min up to 4 h (48 Z-stacks). Given the image

acquisition conditions and the type of neuron that dendritic segment im-

ages are collected from, one branch may have up to 50 spines. Analyzing

2400 spines is not only laborious and time-consuming but also prone to

operant subjectivity.

Therefore, we developed a Matlab based toolbox called SpineS for rapid

and robust quantification of spine head volumes and neck lengths. Z-stacks

from multiple time points can be analyzed using SpineS. The process starts

with importing Z-stacks and registering them over time. Maximum inten-

sity projections (MIPs) of Z-stacks are computed after the registration

and filtered using a median filter. Filtering is followed by segmentation of

head of dendritic spines and spine volumes are estimated using integrated

fluorescence intensity (IFI) method. Afterward, neck paths are computed

using a fast-marching algorithm for the estimation of spine neck lengths.

Detailed description of these steps is presented below.

The first step performed by the SpineS package is to load data. Since

each lab uses a different imaging system, and data formats and specifica-

tion can be very different, we used bio-formats library provided by Open

Microscopy Environment (OME) Project (Goldberg et al., 2005). Bio-

formats library provides tools for importing various image formats. The

algorithm computes maximum intensity projected (MIP) images (Figures

3.2.1 and 3.2.3), for each time point as it loads image stacks and performs
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Figure 3.2.1. Workflow of SpineS. Z-stack from multiple time points
are analyzed. Each Z-stack is imported and registered after Z-projections
computed and filtered using median filtering. Dendritic spines are seg-
mented using a watershed based algorithm and each spine volume is es-
timated using IFI method and normalized with the median fluorescence
intensity of the dendrite at the corresponding time point. Neck paths are
computed using a fast-marching algorithm from spine head center to the
closest geodesic point on the dendrite by imposing some constraints.

an initial translation correction (Figure 3.4.1). Users select the spines

to be analyzed by clicking on the center of the spine head at the first

time point (Figure 3.2.2). Next, the registered MIP images are filtered

using a simple median filter during the segmentation process. The me-

dian filter has just one parameter in order to determine the number of

neighboring pixels that are used for the calculations of the median value,
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Figure 3.2.2. Spine Selection for Analysis. User clicks at the center
of every spine at the first time point. These spines will be tracked in the
next time points by the algorithm.

which is set by the user. The filtered image is then binarized using Otsu

thresholding (Otsu, 1975), which results in a rough segmentation of the

dendritic branch including spines. Further, the medial axis of the dendrite

is computed by applying a fast marching distance transform (Kimmel &

Sethian, 1996) on the dendritic segment, then we apply a locally adaptive

sized disk-shaped structuring element around the medial axis of the den-

drite to remove spines for dendrite segmentation. To further refine the

segmentation, we use the assumption that the dendrite diameter remains

consistent in the local field of view after the initial registration. We com-
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pute the diameter of the dendrite at all locations and consider the median

value to be the true dendrite diameter and remove all pixels beyond the

diameter. This gives us a clear segmentation of the dendrite.

Figure 3.2.3. SpineS Graphical User Interface (GUI). GUI provides
filtering, automatic segmentation, segmentation correction, manual seg-
mentation and manual FWHM estimation tools. The big plot on the left
is the MIP image of the analyzed dendrite. Smaller plot on the right show
one of the 32 spines that are analyzed in this example.

In order to define the spine head, we use a multilevel segmentation

algorithm. First, we obtain a coarse segmentation of the spine-head using

a watershed-based technique. Since the spine head boundaries found in

this step are generally larger than the expected boundaries, we segment the

interior of this region for refinement. A graph-based image segmentation

algorithm followed by hierarchical agglomerative clustering is applied to

obtain refined spine head segmentation (Figure 3.5.1). Spine volumes can

be computed using IFI of the segmented spine head image. Once the spine

of interest has been segmented, a fast marching algorithm computes the
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spine neck path in 3D from the centre of the head of the segmented spine

to some candidate neck base points that are found using morphological

operations. Further, we apply three constraints to select the neck path

from these candidate paths. These constraints are neck path length, path

complexity (L1-norm of path derivatives), and path smoothness (L1-norm

of image intensities along the path). We select the neck path that has

collectively lowest value for these three constraints.

In order to compute inter-spine distance, the nearest point from the

neck base point to the dendrite medial axis is found for each spine in 3D.

The distance between these points computed through dendrite medial axis

is called the inter-spine distance.

3.3 Spine Head Volume Estimation Methods

The main focus of structural studies of dendritic spines has thus far been

centered on estimating the volume of the spine head through one of two

predominant methods: 1) integrated fluorescence intensity (IFI) and 2)

full-width at half maximum (FWHM) (Figure 3.3.1). IFI is based on

summing all of the fluorescence values in a z-stack within a region of in-

terest (ROI) drawn around the spine head of interest (Nimchinsky, Yasuda,

Oertner, & Svoboda, 2004; Holtmaat et al., 2005) (Figure 3.3.1a). In the

second method, an intensity profile over a line passing through the spine

head center is used to fit a Gaussian (Figure 3.3.1b-3.3.1d and 3.3.2). The

maximum FWHM value is used as an approximation of the diameter of

a sphere representing the spine head, which is insensitive to fluorescence

fluctuations. Each of these methods has certain limitations. IFI is sen-

sitive to the dramatic fluctuations of intensity that could be caused by

the imaging system (Figure 3.3.3e), whereas FWHM suffers from over or

under estimations of volume as the spine head deviates from a perfectly

spherical shape, which can be quite often (Harris & Stevens, 1989). We
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(a) (b)

(c)

Pixels

(d)

Figure 3.3.1. Integrated Fluorescence Intensity (IFI) and Full-
Width at Half Maximum (FWHM) Volume Estimation Meth-
ods. a) A segmented spine. IFI is calculated within the segmentation
boundary after background subtraction and normalization to dendrite flu-
orescence. b) ROI of a dendritic spine, c) A line passing through the spine
head center, d) Intensity profile of the line in c and the fitted Gaussian.
FWHM is estimated using the Gaussian Fit (in blue). One pixel is 0.0198
µm
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Figure 3.3.2. Manual FWHM Quantification. An intensity profile
over a line passing through the spine head center is used to fit a Gaussian.
FWHM value of the estimated Gaussian fit is used as the diameter of a
hypothetical sphere representing the spine head. Numbers on the right
represent spine diameter in pixels (top) and micrometers (bottom).

imaged a dendritic branch by fixing photo-multiplier tube (PMT) gain

and imaging laser dwell times and systematically changing laser power

under physiological Ca and Mg concentrations as well as adding 1 µM
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Figure 3.3.3. Fluorescence Sensitivity of Spine Head Volume Es-
timation Methods. a-d) Two photon images of a dendritic segment
collected using four different laser powers (relative power normalized to
the power at (a): 1, 0.82, 0.67, 0.54) under 2 mM Ca, 1 mM Mg and
1µM TTX conditions. Photomultiplier tube (PMT) gain and dwell time
are fixed. e) Spine head segmentations were not affected by laser power
drop but IFI drop as power drops. f) FWHM values do not represent a
function of imaging laser power. Scale bar in (d) is 2µm

TTX. Under these conditions, spine volumes should not change due to the

lack of activity. Therefore the only reason of the change in fluorescence

should be due to imaging laser power alterations (see Figure 3.3.3a-d).

In order to overcome this intensity variations that might happen during

image acquisition, IFI volume estimations can be corrected by normaliz-

ing with the intensity of the nearby dendrite after background subtraction
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Figure 3.3.4. IFI Volume Normalization. Two photon images of a
dendritic segment collected using four different laser powers (relatively:
1, 0.82, 0.67, 0.54) under 2 mM Ca, 1 mM Mg and 1µM TTX condi-
tions (as in figure 3.3.3 but without segmentations). a) IFI based volume
before normalization, b) IFI based volume after linear normalization, c)
Normalization error vs parameter, d) IFI based volume after non-linear
normalization.
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(Nimchinsky et al., 2004; Holtmaat et al., 2005) (Figure 3.3.4a-b). Since

the over or under estimation of spine head volumes with FWHM are un-

biased, this limitation becomes less problematic when large numbers of

spines are analyzed. However, our analysis revealed that volume esti-

mation errors increase non-linearly as the acquisition fluorescence levels

change, and linear normalization to the dendrite intensity under-estimates

the spine head volume (Figure 3.3.4).

Below, we will present the algorithmic details of the analysis steps.

3.4 Dendritic Segment Registration

Input: A set of time-series images, {ft0 , ft1 , . . . , ftN−1}
1 movingImage = ft0 ;
// Pick each region (spine) of interest (ROI) manually

2 setOfROI = SelectROI(movingImage) ;
3 Segment(movingImage, setOfROI) ;
4 foreach tj = tj−1 +4t do
5 fixedImage = ftj ;
6 transformation = Register(fixedImage, movingImage) ;
7 setOfROI = transform(setOfROI, transformation) ;

// Segment fixed image with new setOfROI

8 Segment(fixedImage, setOfROI) ;
9 movingImage = fixedImage ;

10 end

Algorithm 1: Dendritic Spine Tracking in Image Time-
Series.

The imaged sample is fixed in a chamber which is constantly perfused

with ACSF at a rate of 1.5 mL/min. Due to this fluidic current (mechan-

ical movement), every image is slightly off-registered from each other. We

propose a solution for the spine registration problem in Algorithm 1. We

apply an image registration approach together with the segmentation of
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local regions of interest. Details of registration are given in this section,

while those of the segmentation are provided in the next section.

Once a spine is marked at time, t0, its location can be registered au-

tomatically through time and reported with 4t intervals.

The registration function takes two dendrite images, ftj and ftj+4t, as

inputs and finds a transformation to align the two images (Figure 3.4.1).

We call these images moving image and fixed image, respectively. At

time t0, a set of ROIs is initiated. Once the automatic segmentation is

performed on the moving image, it is registered to the fixed image, i.e.,

the next image in time-series. The transformation vector is applied to the

set of ROIs automatically to find their locations in the fixed image. The

algorithm iterates until all time-series images are processed.

a b

Figure 3.4.1. Dendritic Segment Registration. Due to the mechan-
ical movement cause by ACSF perfusion process, images from different
time points might be slightly off registered. Translational registration of
dendritic segments over time is a necessary step for spine identity track-
ing. White and yellow are two MIP images of a dendrite at two different
times points. a) Before registration. b) After registration. Due to spine
motility, registration is not perfect.
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After studying the image time-series, we find it sufficient to use rigid

transformation in 2D, i.e. translation and rotation as degrees of freedom.

The registration algorithm optimizes a cost function to find the best

alignment between fixed and moving images. In our approach, we imple-

mented functions based on correlation, F-score, and information-theoretic

mutual information (MI). The best results were obtained using MI as the

cost function. An interpretation of MI can be stated as finding as much

of the complexity in the two subsequent images preserving their own spe-

cific information by maximizing sum of marginal entropies such that at

the same time they explain each other well by minimizing joint entropy

(see equation 3.1). This formulation is somewhat tolerant to changes in

spine morphologies in successive images as the images approach to align-

ment. MI is maximized at optimal alignment. All of the values needed

to calculate MI, can be obtained from the normalized joint histogram of

the intensity images which simply represents the joint probability density

function (PDF) of the intensities of two images as random variables. We

implemented a normalized version of MI (NMI) which facilitates compar-

ison of different values.

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (3.1)

We usually observed tight translation and rotation limits in the image

time-series. Therefore, it is possible to design a brute force registration

algorithm to check every possible transformation within these limits and

choose the best with respect to the metric. Although this approach is

more computationally overwhelming, it is more robust compared to an

approximate algorithm like (Wells, Viola, Atsumi, Nakajima, & Kikinis,

1996). We designed a 2-pass registration algorithm where in the first pass,

a coarser alignment is achieved by keeping the step sizes in translational

dimensions large. This is compensated in the second pass with 1-pixel

iterations in both dimensions and appropriate rotational increments.

50



3.5 Dendritic Spine Head Segmentation

a b c

h

e f

g

d

Figure 3.5.1. Automatic Spine Head Segmentation Steps. a) Spine
ROI, b) Binarization using Otsu thresholding, c) EMT detects local max-
ima regions, d) Watershed segmentation of EMT regions, e) Graph-based
intensity clustering, f) Hierarchical clustering merges over segmented re-
gions, g) Magnified version of f, h) Final segmentation.
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Figure 3.5.2. Manual Segmentation of Spine Head. If the final
spine segmentation is erroneous, it is possible to segment a spine manually
by clicking spine head borders in SpineS GUI, either for the purpose of
correction or just for the purpose of manual quantification.

User clicks in the centre of every spine to be analyzed at the first time

point to start the analysis. We hold the assumption that dendritic spine

head includes a maxima region. Morphological image processing (Soille,

2013) provides a powerful reconstruction algorithm called extended max-

ima transform (EMT) to extract such regions with a versatile contrast

criterion, h. Red blobs in feature image given in figure 3.5.1c shows max-

ima regions found by extended maxima transform (HMAX, see equation

3.2). Finding maxima regions provides a perfect basis to run watershed

algorithm as an initial spine segmentation process.

HMAXh(f) = Rf (f − h) (3.2)
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Here f is the image function, h is a contrast criterion and the trans-

formation R suppresses all maxima whose depth is lower than or equal to

h.

Figure 3.5.3. Reviewing Spine Head Segmentation. Segmentation
results for three spines for three time points. After the segmentation ends,
user can go through all segmentations to check if they look good. If they do
not appear good, users clicks the center of the spines to be corrected and
segmentations runs with the new spine center coordinates. This procedure
often corrects problematic segmentations. If problem persist, it is possible
to correct segmentation manually.

We invert the cropped region of interest and then impose all the de-

tected maxima regions as well as the image background as minima. Here,

image background refers to the region outside the detected dendrite seg-
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ment boundary. We defined the boundary as difference of binarized region

of interest from its eroded version where binarization is achieved using

Otsu’s method (Otsu, 1975). The outside of the borderlines shown in

Figure 3.5.1c shows the estimated background. Eventually, all minima

regions become the deep regions of all possible basins in the image so

that watershed algorithm can start filling them. Dams are constructed

at the object boundaries. As is, watershed algorithm usually finds larger

boundaries than the expert results show, as presented in Figure 3.5.1d.

Therefore, a second level of segmentation is necessary to further refine the

results of watershed segmentation. The second level of segmentation takes

each previously found component in the ROI and refines it using a mod-

ified version of a graph theoretic algorithm for arbitrary shape detection

(Mimaroglu & Erdil, 2011) together with hierarchical clustering, in order

to improve segmentation results.

Each component C in figure 3.5.1e can be represented as a graph using

K-neighborhood where similarity between two pixels is defined as;

s(pi, pj) = exp(
−(f(pi)− f(pj))

2

σ2
c

) (3.3)

Here, σ2
c refers to the variance of intensity levels within the compo-

nent. This definition produces a good transient similarity function. An

undirected graph, G = (V ;E), is constructed so that its vertices corre-

spond with pixels in C and edges represent the abovementioned similarities

between vertices. The original algorithm (Mimaroglu & Erdil, 2011) de-

fines a property called attachment. An unlabeled vertex with the highest

attachment is considered a good starting point (seed) for region growing,

since it may be the center of a homogeneous region. Starting with the seed

vertex, the algorithm automatically finds regions in a breadth-first search

fashion. A vertex is included in the region if it has no stronger connection

to another vertex than its neighboring vertex in the region. Furthermore,
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if a region cannot be enlarged further, then the next unlabeled vertex with

the highest attachment is selected as a seed to start a new region. The

segmentation process terminates when all pixels are labelled. As is, this

graph-theoretic algorithm creates over-segmentation, which can be tack-

led with to some level, by using a relaxation criterion (Erdil et al., 2012).

Since the relaxation factor is very sensitive and proved hard to tune in

our experiments, we instead used hierarchical clustering (Mimaroglu &

Erdil, 2011) to merge over-segmented regions by defining an inter-cluster

similarity measure. We define the cluster similarity as absolute differences

of average intensities in the clusters. Hierarchical clustering merges over-

segmented regions until an expected number of clusters, k, is obtained.

Hierarchical clustering facilitates the elimination of over-segmentation

by forming quasi-concentric connected components. In most cases, the

intuitive idea of providing k = 2 and separating the region as foreground

and background does not work well and creates under-segmentations. In-

stead, choosing larger k values provides the algorithm with the ability to

slowly shrink the region into a more refined segmentation. We formed

final segmentation by assigning the outermost component to background

and the other components to the foreground. Once the components are

found and refined, the spine is automatically detected among them using

the assumption that the spine lies at the center of the ROI. Figure 3.5.1h

shows the resulting segmentation of the spine of interest.

Spine segmentations can manually be checked (Figure 3.5.3) or cor-

rected (Figure 3.5.2) following the automatic segmentation.

3.6 Spine Neck Path and Length

Further studies revealed that spine neck features such as neck width and

neck length are also important structural modifications correlated with

activity (Kasai, Fukuda, Watanabe, Hayashi-Takagi, & Noguchi, 2010).
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It has been shown that spine neck gets shorter and thicker as spine head

gets bigger following LTP(Tonnesen et al., 2014).

Neck length computation is a challenging task due to spine shape varia-

tions and neck motility. We begin with partial segmentation of spine head

by applying watershed segmentation using k = 1. This is further used to

compute the center of spine head by finding its center of mass. Further,

dendrite skeleton and segmentation is computed in 2D. In order to map

the dendrite on z-axis, we construct a vector with intensity values for all

slices on z-axis at each skeleton point and fit a Gaussian. The mean value

of fitted Gaussian corresponds to coordinate of dendrite in z-direction.

These observations are noisy due to the fact that often there are spines

on dendrites (along z-direction). To cope with this noise, median of all

z-coordinate values is computed. Although this assumption is not always

true globally (for entire dendritic branch), however, this approximation

holds locally (in the region of interest). Similar approach is used to map

center of spine head on z-axis.

Each slice of dendritic branch image is eroded with a disk-structuring

element to reduce the spurious paths. Multi stencil fast marching (MSFM)

method (Hassouna & Farag, 2007) is applied to compute the 3D distance

map using spine head center as source point. The Runge-Kutta algorithm

is applied on 3D distance map to compute the shortest paths (geodesic)

from N point on dendrite perimeter to the spine head center. These N

points are selected by finding N nearest points from spine head center to

dendrite perimeter (using Euclidean distance as metric).

LP =

∫
P
dS (3.4)

CP =

∥∥∥∥δPδx
∥∥∥∥

1

+

∥∥∥∥δPδy
∥∥∥∥

1

+

∥∥∥∥δPδz
∥∥∥∥

1

(3.5)
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SP =

∥∥∥∥dV (xP , yP , zP )

dI

∥∥∥∥
1

(3.6)

NeckPath = argmin
P

(
LP

max(LP )
+

CP

max(CP )
+

SP
max(SP )

)
(3.7)

NeckLength = Lp − SpineNeckPortionInHead (3.8)

Finally, selection of the correct neck path is the crucial step. A simple

approach would be to select the path with minimum length (Equation 3.4),

but it would fail in this scenario because of motile nature of spine necks.

Therefore, path length constraint alone is not sufficient. We introduced

two additional constraints to select the path with best geodesic approxi-
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Figure 3.6.1. Spine Neck Length Calculation. A dendritic branch
with five spine neck paths in blue (left). Closer look at four of those
spines (middle). After the spine neck path from the center of the spine
to dendrite perimeter (green) found, spine neck length is computed using
equation 3.8, by subtracting full neck length (blue+red) from neck portion
in spine head perimeter (red). Scale bar is 1µm.
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mation. The first additional constraint is path complexity (Equation 3.5),

i.e. path should be as simple as possible. Other constraint is smoothness

of image intensities on the path (Equation 3.6), i.e. intensity changes on

the path should be as minimal as possible. Equation 3.7 is applied to find

the correct neck path (Figure 3.6.1).

Equation 3.5 corresponds to the path length from the dendrite surface

to spine head center. To compute neck length, we first compute the radius

of spine head by fitting a circle using Hough Circle Transform on watershed

segmented spine head with k = 10 and then use Equation 3.8.

3.7 Results and Conclusions

In order to compare the quality of the proposed automatic analysis with

expert’s results, we used a symmetric mean absolute percentage error

(sMAPE) based similarity score (SS) (Makridakis, 1993) (see Section

2.2.4).

SSspine
method1−method2

= 100− sMAPEspine
method1−method2

(3.9)

Here, n is the number of time points for the analyzed spine. Compar-

isons of our results produced by SpineS with expert’s manual computations

(manual segmentation based IFI and manual FWHM) are given in table

3.1 for 27 spines from 9 different dendrites.

Similarity scores of estimated intensity based volumes from manually

segmented spine heads and SpineS output suggest automatic segmenta-

tion yields very similar (µ = 87.75%;σ = 8.15%) spine head segmenta-

tions with the expert’s since both used intensity-based volume estimation

method. We also compared our results with manual FWHM volume es-

timation results to see how much overlap we get between two volume

estimation methods used in the field. SpineS: IFI based volume using

automatic segmentations; M-I: IFI based volume using manual segmen-
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tations by an expert; M-FWHM: FWHM based volume quantified by a

different expert.

In figure 3.7.2, we present a comparative analysis for a single spine over

time along with corresponding spine ROI images for seven time points.

Normalized spine volume changes over time seems to agree with visual

inspection for all three methods. As one would expect, SpineS and M-I

(blue and yellow lines) seem to correlate more which indicates the prox-

imity between automatic and manual segmentations.

Figure 3.7.1 shows that on average, all three methods converged to the

same statistical distribution (all pairwise t-tests, p > 0.99).

SpineS reports similar spine head volume results compared to volume

quantification based on manually segmented spine heads and on average
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Figure 3.7.1. Performance of SpineS Compared to Manual Seg-
mentation based IFI and FWHM. Here is the average of 27 spines
from 9 dendrites from 9 chemical LTD experiments. First six points are
baseline. DHPG applied after baseline for 5 min. Red: IFI using SpineS,
Black: IFI based on manual segmentations, Blue: manual FWHM
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Table 3.1. Performance of SpineS Compared to Manual Segmen-
tation based IFI and FWHM.

Similarity Scores (% )

Dendrite Spine
SpineS

vs
M-I

SpineS
vs

M-FWHM

M-I
vs

FWHM

1

1 94.3589 77.4508 77.8126
2 91.7690 67.0097 69.2701
3 89.9466 87.1170 87.8953
4 94.6821 78.2715 78.5801

2
5 91.1221 77.4064 79.3692
6 89.4878 79.8868 82.8800
7 82.3776 55.5188 55.8325

3

8 94.7981 80.7409 77.5585
9 93.3184 84.1880 86.3130
10 93.4738 73.7198 78.6996
11 84.6000 76.8546 81.7697
12 93.9778 81.8241 80.3675
13 94.2463 84.8752 84.7990

4
14 92.0029 88.5253 88.3591
15 75.6294 78.8051 84.9315

5
16 87.2726 73.0195 75.7853
17 84.7986 57.1934 59.2845

6
18 86.0672 82.1992 78.9639
19 62.7521 62.4207 62.7810
20 73.5343 58.1966 73.1153

7
21 93.0215 92.8845 91.4917
22 73.0984 69.2588 94.1526

8
23 89.3805 91.7864 91.1700
24 95.1736 78.8624 78.3193

9
25 83.4779 33.2023 34.3038
26 93.5946 55.8149 58.0175
27 91.2172 78.6321 78.9491

Mean All 87.75 74.28 76.70

StdDev All 8.15 13.42 13.12
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Figure 3.7.2. Comparison of Volume Quantification Methods for
a Spine. This spine fluctuated between ×0.5−×1.5 during the course of
the experiment. All methods seem to capture the change.

Table 3.2. Image Analysis Speed Comparison. Here we compare
manual and automatic processing times between previous tools developed
for manual analysis of dendritic spines and manual and automatic analy-
sis tools in SpineS toolbox for the analysis of 1000 dendritic spines. Tools
provided by SpineS makes the analysis faster for both manual and auto-
matic assesment of the data (Computer used for these analysis has 3.4
GHz Intel Quad-core processor, 16GB RAM, Windows 7 OS and Matlab
version 2011a).

ImageJ SpineS

Manual
Segmentation

Manual
FWHM

Manual
FWHM

Tool

Manual
Segmentation

Tool

Automatic
Segmentation

5h 30h 3.4h 2.7h 1.2h

61



1000 2000 3000 4000 5000 6000 7000 8000 9000

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

Fluorescence (A.U.)

F
W

H
M

 (
µ

m
)

FWHM vs Intensity

Fit

95% Conf. Interval

Figure 3.7.3. Volume Conversion: Arbitrary to mm3.

IFI and FWHM based volume results (Figure 3.7.1). It is possible to

convert arbitrary IFI units into absolute units (µm3). User can either

estimate the diameter of a spherical-looking spine using FWHM and find

a conversion factor using IFI and FWHM-based volume result by simple

division (Figure 3.7.3) or estimate the volume of the PSF of the imaging

system using fluorescence beads, and IFI multiplied by this value will give

spine volume in µm3 (Nimchinsky et al., 2004; Holtmaat et al., 2005).

We developed an image-processing tool for the segmentation of den-

dritic spines. The proposed tool yields good results in terms of accuracy

and run times for spine segmentation. Results suggest that the proposed

tool can be a reasonable choice over manual segmentation-based volume

estimation, due to good similarity scores in comparison to the field ex-

perts, faster processing (see Table 3.2), and objectivity. Furthermore, the

obtained results suggest that the intensity-based and FWHM-based meth-

ods can be used interchangeably for individual volume trend assessment,

given that the spine keeps its circular-like shape at every time point or can
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be used interchangeably when pooled data is the key to research. SpineS

does not provide good segmentation results when the spine of interest has

very similar neck and head intensities, however, the tool provides inter-

active segmented spine head boundaries and spine neck paths for post

quality assessment, which gives users the flexibility to manually reject or

correct segmentations and neck paths at any particular time point.
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Chapter 4

Single Spine Structural

Plasticity Induced by

Naturalistic-like Trains
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experiments and analyzed the data.

Affiliations: Champalimaud Neuroscience Programme, Lisbon,

Portugal.

Support: This work was supported by Fundação para a Ciência e a

Techologia (FCT), Fundação Champalimaud (FC) and Instituto

Gulbenkian de Ciência (IGC).

65



4.1 Abstract

Synaptic plasticity has predominantly been studied through the applica-

tion of either high or low frequency regularly spaced stimulations, patterns

which do not occur commonly in the brain. In order to understand how

the diverse activity patterns more frequently observed in the brain encode

information at single inputs, we designed single spine stimulation proto-

cols sampled from a Poisson process, in order to mimic the firing patterns

that are observed in vivo. Using two-photon glutamate uncaging and flu-

orescence imaging, we were able to precisely deliver various patterns of

activity to individual dendritic spines located on CA1 pyramidal neurons

in the mouse hippocampus, and observe the resulting structural plasticity.

We selected representative patterns in which the stimulations were either

homogeneously distributed across the stimulation period, or in which their

distribution was skewed towards either the beginning or the end of the ac-

tivity period. We found that the timing structure of the uncaging patterns

leads to diverse long-term structural plasticity outcomes. During natu-

ralistic stimulations, which contain a more or less uniformly distributed

number of stimuli, long lasting potentiation is achieved, as measured by

the sustained structural growth of spines over the course of many hours.

We showed that this form of plasticity is NMDAR and protein-synthesis

dependent. In contrast to this, patterns in which the majority of the stim-

ulation events occur either early or late during the train are less competent

at inducing long lasting plasticity at individual spines. Interestingly, while

the structure of the delivered stimulations varied, the overall length of the

activity period and the total amount of glutamate that was delivered re-

mained constant. Therefore, our experiments demonstrate that diverse

forms of activity can have significantly different plasticity consequences

for individual inputs.
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4.2 Introduction

Synaptic plasticity is considered the basis for learning and memory for-

mation in the brain. Therefore, the characterization of how plasticity is

induced by different patterns of activity is necessary in order to understand

how information is encoded at synapses. In general, the types of stimuli

used in synaptic plasticity studies have been very stereotypical; in other

words, the pattern of activity that is delivered usually follows a repetitive,

regular pattern. Examples of commonly used stimulation paradigms are a

100 Hz stimulation delivered for 1 min or a theta burst stimulation which

consists of short bursts at 100 Hz repeated at 5 Hz in order to induce LTP,

while a 15 min long 1 Hz stimulation protocol is commonly applied for the

induction of LTD (Figurov et al., 1996; Staubli & Lynch, 1987; Mulkey,

Endo, Shenolikar, Malenka, et al., 1994; Malenka & Bear, 2004).

When a bundle of axons are stimulated using an electrode as it occurs

during high frequency stimulation during field recordings, synchronous ac-

tivation of many synapses depolarizes the neuron. In order to study synap-

tic plasticity at the single synapse level, two-photon glutamate uncaging

has been utilized to stimulate single dendritic spines because of the high

spatial resolution of this approach (Matsuzaki et al., 2004). However, in

order to induce plasticity at single synapses, it is necessary to activate the

receptors which in turn allow for the appropriate downstream signaling to

occur. In order to depolarize the neuron to high enough levels to remove

the Mg block from the NMDAR, glutamate uncaging at single spines is

performed is he absence of Mg, a manipulation which produces similar

levels of plasticity compared to what is observed with a 100 Hz electrical

stimulation paradigm (for example, 60 pulses of 0.6 msec length deliv-

ered in 60 sec, see Figure 4.2.1a). By applying this uncaging protocol,

significant spine growth was observed which strongly correlated with the

increased electrophysiologically recorded EPSC sizes, thus demonstrating
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for the first time that potentiation of a single input leads to the growth

of the associated spine (Matsuzaki et al., 2004). Importantly, the ob-

served structural plasticity was restricted to the stimulated spines, and

immediately adjacent neighbors remained stable in size, highlighting the

specificity of this methodology.

Following this, additional protocols were characterized, in which LTP

could be induced at single spines, such as by applying fewer pulses of

longer glutamate uncaging duration (30 pulses of 4 msec length, Figure

4.2.1b) (Harvey & Svoboda, 2007). This method has subsequently become

a widely used paradigm for the induction of single spine plasticity (Harvey,

Yasuda, Zhong, & Svoboda, 2008; Hill & Zito, 2013; Govindarajan et al.,

2011). One adaptation of this protocol involves the strengthening of the

stimulation, for example by applying a pharmacological agent to activate

the cAMP pathway, which leading to a longer lasting form of plasticity at

single spines (Govindarajan et al., 2011). Importantly, this study demon-

strated that structural plasticity at single spines can be either short lasting

or long lasting, depending on the presence of the cAMP agonist, matching

what has been observed in electrophysiological studies in which functional

plasticity can be either short or long lasting, the latter being protein syn-

thesis dependent and maintained for many hours (Govindarajan et al.,

2011). Therefore, in our studies, we take advantage of this well charac-

terized protocol in which 30 pulses of glutamate are uncaged at 0.5 Hz in

order to robustly induce LTP at single dendritic spines over 1 min, and

we will refer to this protocol as the ”regular train”, and this form of LTP

is protein synthesis-dependent.

We aimed to determine whether irregular patterns of activity induce

plasticity at single dendritic spines, and if so, how this plasticity compares

to the one that results from the regular stimulation train described above.

In order to address this question, we aimed to identify a means by which

to stimulate single inputs in a manner that more closely mimics the activ-
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Figure 4.2.1. Regular Glutamate Uncaging Protocols for the In-
duction of LTP. a) 60 evenly-spaced pulses in 60 s, b) 30 evenly-spaced
pulses in 60 s.

ity structures observed endogenously. Many studies have concluded that

spiking statistics of neurons are compatible with Poisson or Poisson-like

processes. A Poisson process is a random process in which the events oc-

cur independently from each other over time with some probability and

the intervals between these events are shown to follow an exponential dis-

tribution. The Poisson process does not characterize neural spike trains

completely, however it is proven to be a good approximation (Leon-Garcia,

2008; Wallisch et al., 2014). Spiking patterns of CA3 neurons revealed the

irregular nature of inter-spike intervals (ISIs) of these neurons (Dobrunz

& Stevens, 1999). Although ISIs of individual CA3 cells are highly hetero-

geneous, on average they fit exponential distributions (Frerking, Schulte,

Wiebe, & Stäubli, 2005). In the case of retinal ganglion cells, the inter-

val statistics of spike trains within these neurons are accurately modeled

with gamma-distributed intervals (Troy & Robson, 1992), which corre-
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spond to the non-homogeneous Poisson distributed firing patterns. Bair

et al. found that one-third of the neurons are compatible with a Poisson

process, and that the rest of the neurons fire in bursts, which are then

spaced in a Poisson fashion, with a burst-dependent refractory period

(Bair, Koch, Newsome, & Britten, 1994). Given these data, we decided to

test the plasticity consequences of Poisson structured forms of activity at

single spines, hypothesizing that stimulation patterns which follow such

distribution more accurately reflect the nature of endogenous activity. In

order to achieve this, it was important to derive pulse trains that could be

compared to known paradigms for inducing plasticity, in particular, the

previously described regular protocol.

4.3 Generation of Naturalistic-like Trains

We wanted to identify the types of activity generated endogenously at CA3

pyramidal neurons in the mouse hippocampus, as these are the inputs

to the synapses that we were studying on CA1 pyramidal neurons. In

particular, we wanted to examine patterns correlated with the encoding

of information, and thus we performed simultaneous recordings from CA3

and CA1 during a behavioral task where mice explored a linear track back

and forth1 (Figure 4.3.1). As animals explore the linear track, refinement

of place fields has been proposed to occur at Schaffer collateral synapses

through LTP (Mehta et al., 2000).

We used a homogeneous Poisson process to generate irregular patterns

that we call naturalistic-like trains. Homogeneous in this application refers

to the instantaneous firing rate which is constant over time, while the inter

spike intervals (ISIs) of homogeneous Poisson processes are exponentially

distributed. We chose homogeneous over non-homogeneous because this

1Data is collected at Circuit and Behavioral Physiology Lab. of Thomas J. McHugh
in Riken BSI and extended information can be found in (Middleton & McHugh, 2016)
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Figure 4.3.1. Inter Spike Intervals (ISIs) of CA3 Neurons are
Exponentially Distributed. Here we plotted an example CA3 place
cell firing pattern over the course of an experiment. Recordings were
made using tetrode drives. Spike trains were obtained after spike sorting
and velocity filtering (> 5cm/s)
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matched the ISI distributions that we obtained in our recordings from

CA3 neurons (Figure 4.3.1 and Figure 4.3.3a).
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Figure 4.3.2. Instantaneous Pulse Frequencies of Generated
Naturalistic-like Trains. Regular train has a constant frequency which
is 0.5 Hz (gray), NT-Uniform trains have instantaneous frequencies fluc-
tuating around 0.5 Hz (blue), NT-Beginning trains have higher instanta-
neous frequencies in the first 20 sec (yellow), NT-End trains have higher
instantaneous frequencies in the last 20 sec (green). Red represent the in-
stantaneous frequencies of all generated Naturalistic-like trains combined.

We chose the instantaneous frequency (IF) of 0.5 Hz for our homoge-

neous Poisson trains in order to compare it with the previously established

regular train paradigm (Figure 4.3.2 and Figure 4.3.3a). We first gener-

ated 10000 naturalistic-like trains using the equation 2.3, as explained in

section 2.2.3. Of the10000 generated patterns, only 780 of them had ex-
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actly 30 pulses (Figure 4.3.4). As explained earlier, the plasticity inducing

regular train delivers 30 pulses in 60 sec, and therefore IF is 0.5 Hz (Figure

4.3.2). In contrast to this, a Poisson distribution with a rate of 0.5 Hz

does not necessarily contain exactly 30 pulses in 60 sec (Figure 4.3.3b).

Since we wanted to keep the number of pulses fixed to 30 in 60 sec in or-

der to reduce variability and equate the amount of glutamate that would

be released at a given synapse between between protocols, we selected

the subset of Poisson patterns with this same number of events. After-

ward, we selected three representative patterns in which the stimulations

were either pseudo-uniformly distributed across the stimulation period,

or in which the timing structure was skewed to occur either towards the

beginning or the end of the activity period. We named these patterns

NT-Uniform (NT-UNI) (Figure 4.3.3c), NT-Beginning (NT-BEG) (Fig-

ure 4.3.3d) and NT-End (NT-END) (Figure 4.3.3e), respectively, where

NT stands for naturalistic-like train. For each of these patterns, 30 pulses

are differentially distributed over the 60 sec stimulation period. In the case

of the NT-UNI pattern, there are 10 pulses per 20 sec bin. In the case

of both the NT-BEG and NT-END patterns, each have half of the total

pulses occurring either at the beginning or in the last 20 s bin, respec-

tively, while the remaining 15 pulses are distributed across the remaining

40 sec. Although the distribution of events within these trains varies, the

total number and the total time in which they are delivered is constant.

Thus, the amount of glutamate that is delivered to the synapse is equal

in all conditions.

As the vast majority of electrophysiological studies addressed LTP us-

ing high frequency regular stimulation trains, glutamate uncaging based

studies as well used regularly spaced uncaging laser pulse trains to in-

duce LTP (Figure 4.3.4). It has been reported that regular glutamate

uncaging stimulation at single dendritic spines induces LTP (Matsuzaki

et al., 2004; Harvey & Svoboda, 2007; Govindarajan et al., 2011) and the
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Figure 4.3.3. Naturalistic-like Trains and Inter Pulse Intervals.
a) Inter pulse intervals (IPI) of Poisson distributed trains exponentially
distributed (red), gray line represents deterministic IPI interval value of
Regular Train, b) Out of all 10000 generated NTs only 740 of them had ex-
actly 30 pulses. Number of pulse distribution is Gaussian, c) NT-Uniform
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
REG 0 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

NTU 0 2589 2014 3596 711 862 515 1880 543 3306 3157 1564 430 683 1504 1050 4373 281 2003 5996 2532 1504 813 240 4519 2098 1531 80 2424 4001

NTB 0 1544 166 2221 116 155 335 2221 579 585 352 821 476 848 3603 3723 1120 34 9043 632 3029 5171 176 6803 1692 2302 1778 1968 2371 2571

NTE 0 6444 2749 6630 3917 805 6557 2529 3065 1400 472 1266 1152 375 1955 2930 816 236 1438 1293 76 246 199 719 118 1306 2689 920 1687 2683

a

b

c

d

Figure 4.3.4. Visual Comparison of Uncaging Patterns. We com-
pared plasticity consequences of previously described Regular pattern in
(a) with three different NTs: NT-Uniform in (b), NT-BEG in (c) and
NT-END in (d). Table shows the inter-pulse-intervals (in msec) for each
interval2.

late-phase of this regular-train induced LTP is protein synthesis dependent

(Govindarajan et al., 2011).
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4.4 Results

We first wanted to establish a baseline level of plasticity through gluta-

mate uncaging at single spines using the Regular (REG) protocol of 30

uncaging pulses that are 4msec-long at 0.5 Hz, with a laser power of 30

mW as measured at the back aperture, described above in section 2.2.2.

This serves to validate that structural plasticity at single inputs can be

expressed in our system, given the uncertainty of the stimulation with the

naturalistic based paradigm results. Consistent with the published work,

we found that glutamate uncaging with the Regular pattern of activity

leads to robust growth of the stimulated spine compared with the baseline

(∆VREG = 157± 10.3%, P = 2.39−12, last 60 min, mean± s.e.m.), while

unstimulated neighbors remained unchanged (∆VREGneigh
= 107 ± 4.7%,

P = 0.16, last 60 min) (Figure 4.4.2). In all time series plots, we re-

port IFI-based spine volumes of stimulated and un-stimulated neighboring

spines (Figure 4.4.1) over time.
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Figure 4.4.1. Representative Two-Photon Microscopy Images of
a Dendritic Branch Before and After Uncaging Stimulation. Red
triangle indicates the stimulated spine. Upper panel shows spines before
segmentation. Lower panel shows segmentations used for volume quantifi-
cation. Spine is stimulated at time 0.
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We found that such stimulation led to the induction of long lasting

potentiation and growth of the spine for up to 225 min post-stimulation,

which was significantly greater than the initial size of that spine (∆VREG =

189 ± 22.4%, P = 3.16−9, 0-15 min; ∆VREG = 135 ± 8.4%, P = 4.38−8,

45-75 min; ∆VREG = 160± 9.8%, P = 6.66−9, last 30 min) (Figure 4.4.2).
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Figure 4.4.2. Regular Pattern Induces Long-Lasting Spine
Growth. Regular train induced LTP that lasts 4 h. (nstim = 17,
nneigh = 200)

4.4.1 Timing Structure of the Naturalistic-like Train De-

termines the Longevity of the Plasticity

We next tested whether the homogeneously distributed Poisson train, NT-

UNI, was capable of inducing plasticity at a single input. Stimulation

with the NT-UNI activity pattern led to the long-lasting induction of

potentiation at single inputs (∆VNT−UNI = 158 ± 21.6%, P = 1.92−9,

last 60 min) which was similar to the plasticity induced with the REG

train (PREG−NTUNI = 0.75 , 0-15 min; PREG−NTUNI = 0.97 , 45-75
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min; PREG−NTUNI = 0.123 , last 30 min) (Figures 4.4.3b and 4.4.4b).

In stark contrast to this finding, while stimulations with either the NT-

BEG or the NT-END patterns elicited short term potentiation during the

first 15 min which was similar to that seen with the REG stimulation
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(c) NT-Beginning
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Figure 4.4.3. Activity Dynamics Determine the Structure of the
Induced LTP. a) Evenly-spaced (regular train) 30 pulses in 60 sec in-
duced LTP that lasted 4 h. (nstim = 17, nneigh = 200) b) NT-UNI
train induced long lasting LTP. (nstim = 16, nneigh = 200) c) NT-BEG
train induced short lasting LTP. (nstim = 16, nneigh = 192) d) NT-END
train induced short lasting LTP with an upward trend towards the end.
(nstim = 18, nneigh = 264)
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Figure 4.4.4. Temporal Dynamics of Uncaging Stimulus Deter-
mines the Longevity of Single Spine Plasticity. In the first 15
min after the stimulation, all protocols were shown to induce statisti-
cally similar plasticity. However, this initial induction did not lead to
the long-lasting plasticity for every case. While NT-UNI train induced
long-lasting LTP similar to the Regular train, NT-BEG and NT-END
trains did not maintain the initial plasticity. Normalized spine volumes
at 3 time bins (0′ − 15′, 45′ − 75′, 195′ − 225′) were compared to baseline.
(mean + s.e.m, statistical comparisons were done with Mann-Whitney-U
test,*<0.05, **<0.01, ***<0.001).

paradigm (∆VNT−BEG = 197± 31.5%, P = 1.45−9; ∆VNT−END = 194±
37.6%, P = 1.4−9; PREG−NTBEG = 0.986; PREG−NTEND = 0.584), this

plasticity was short lived, returning to baseline levels after less than two

hours post stimulation (∆VNT−BEG = 123 ± 15.2%, P = 0.11, 45-75

min; ∆VNT−BEG = 108 ± 9.4%, P = 0.54, 195-225 min; ∆VNT−END =

103± 11.7%, P = 0.08, 45-75 min; ∆VNT−END = 119± 14.4%, P = 0.12,

195-225 min) (Figures 4.4.3c-d, 4.4.3c-d).
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4.4.2 NT-Uniform Induced Plasticity is NMDAR-Dependent

We wanted to characterize the plasticity elicited by the NT-UNI uncaging

paradigm. Previous studies had showed that the REG stimulation in-

duces NMDAR-dependent LTP (Matsuzaki et al., 2004; Govindarajan et

al., 2011). In order to determine whether the plasticity induced by the

NT-UNI train is also NMDAR-dependent, we used a selective NMDAR an-

tagonist (2R)-amino-5-phosphonopentanoate (APV) in the ACSF during

the uncaging stimulation.
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Figure 4.4.5. NT-Uniform LTP Requires NMDA Receptors. APV
blocks NT-UNI induced LTP (nstim = 5, nneigh = 73) Mann-Whitney-U
test, ***<0.001).

We found that this manipulation blocked the induction of plastic-

ity, eliciting only a transient potentiation in the presence of APV which

was not significantly different from baseline 30 min after the stimulation

(∆VAPV = 99± 15.6%, P = 0.43, 20-30 min)(Figure 4.4.5).

To further validate the requirement for NMDA receptor activation by

the NT-UNI train, we stimulated individual spines in the presence of

0.25 mM Mg2+ (Figure 4.4.6). As the induction of plasticity through
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(a) Regular Train, 0.25mM Mg2+,
nstim = 7, nneigh = 82
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(c) Black: Regular Train, 0 and 0.25 mM Mg2+, respectively,
Blue: NT-Uniform Train, 0 and 0.25 mM Mg2+, respectively.

Figure 4.4.6. NT-Uniform LTP Requires the Removal of Mg
Blockade. Partial blockage of NMDARs using 0.25 mM Mg2+ in ACSF
during uncaging delivery significantly reduces the LTP induced by Regular
and NT-UNI trains.

the NMDA receptor requires removing magnesium blockade, glutamate

uncaging mediated plasticity at single spines is carried out in the pres-

ence of 0 mM Mg2+ in the uncaging ACSF. We tested both REG and
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NT-UNI train in the presence of 0.25 mM Mg2+ and found that delivery

of the NT-UNI stimulation to single inputs in the presence of 0.25 mM

Mg2+ significantly reduced the induction of plasticity similarly to the

case following REG stimulation (∆VREGMg
= 114 ± 20.4%, P = 1.6−5;

∆VREGMg
= 133 ± 29.7%, P = 0.0022; ∆VNT−UNIMg

= 123 ± 14.5%,

P = 0.0051; ∆VNT−UNIMg
= 115± 21%, P = 2.62−4, compared to 0 Mg,

60-150 or 60-210 min for REG and NT-UNI, respectively)(Figure 4.4.6).

4.4.3 Longevity of the NT-Uniform Induced Plasticity is

Protein-Synthesis Dependent

As described previously, long lasting functional plasticity that recruits

new protein synthesis also leads to long lasting structural changes

(Govindarajan et al., 2011). As we observed that the plasticity elicited

at single spines leads to structural changes that last for many hours, we

hypothesized that the induced plasticity requires new protein synthesis.

Therefore, we performed both the REG and NT-UNI stimulations in the

presence of the protein synthesis inhibitors anisomycin or cycloheximide

(Figure 4.4.7a-c), and observed that this manipulation blocked the late-

phase of uncaging induced LTP (∆VREGAniso
= 103 ± 13.91%, P = 0.49,

60-90 min, compared with the baseline; ∆VREGCyclo
= 120 ± 26.5%,

P = 0.89, 60-90 min, compared with the baseline) as reported for the

regular train (Govindarajan et al., 2011). We have seen a similar blockage

for NT-UNI induced LTP (∆VNT−UNIAniso
= 108 ± 10.34%, P = 0.06,

60-90 min, compared with the baseline; ∆VNT−UNICyclo
= 115 ± 7.4%,

P = 0.02, 60-90 min, compared with the baseline) (Figure 4.4.7d-4.4.7f).
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(d) NTuniform-Aniso
(nstim = 9, nneigh = 126)
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Figure 4.4.7. Late Phase of the Plasticity is Protein Synthesis
Dependent. Protein synthesis blockers anisomycin and cycloheximide
blocks the late phase of REG and NT-UNI induced plasticity. Mann-
Whitney-U test,*<0.05, **<0.01, ***<0.001).

4.4.4 Plasticity Levels do not Depend on the Initial Spine

Size

Matsuzaki et al. showed that spines that are larger than 0.1 µm3 ex-

hibit only the transient structural LTP that goes back to baseline after

40 min (Matsuzaki et al., 2004). Although we did not stimulate any

spines that are bigger than 0.1 µm3 (a post-hoc realization, µspineV olume =

0.0515µm3, σspineV olume = 0.0136µm3, Figure 4.4.9), we attempted to de-

termine the existence of a volume difference conditional to the initial

spine size. We grouped spines depending on their initial baseline sizes

into two groups using k -means clustering. We did not see any statis-
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tically significant differences between the amount of plasticity expressed

at small or large spines (PREG = 0.79, PNT−UNI = 0.54, PNT−BEG =

0.41, PNT−END = 0.44, all big vs small comparisons, repeated-measures

ANOVA from 0 to 225 min). Big and Small cluster averages are given in

Figure 4.4.8 legend for comparison.
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Figure 4.4.8. Initial Spine Size does not Correlate with the
Amount of Structural Plasticity Expressed. Average initial sizes (in
µm) for big and small spines after k-means clustering for each condition
are as follows: a) µbig = 0.70, µsmall = 0.47, b) µbig = 0.67, µsmall = 0.42
, c) µbig = 0.77, µsmall = 0.42, d) µbig = 0.59, µsmall = 0.42
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Figure 4.4.9. Initial Spine Size Distributionss. Distribution density
for each group estimated using a Gaussian smoothing kernel. (Bishop,
2007)

4.5 Conclusions

Here, using two-photon fluorescence imaging and glutamate uncaging, we

studied single spine plasticity of CA1 pyramidal neurons using stimulation

trains sampled from a Poisson process resembling firing patterns of CA3

neurons.

We found that the late phase of LTP, but not the early phase, is

determined by the timing structure of the uncaging train. It should be

re-emphasized that all three NTs are composed of 30 pulses in 60 sec,

just like the REG train which induced long lasting LTP. Out of the three

NTs we tested, the NT-UNI train was the only one that induced long-

lasting LTP that was protein synthesis-dependent. This result may not

be too surprising, due to its relatively closer proximity to the regular train,
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compared to NT-BEG and NT-END. This suggests that the regularity or

stationarity of the stimulation train plays a role in the induction of long-

lasting LTP. However, previous studies showed that when regular 30-pulse

protocol were used with 1 msec long uncaging laser pulse-widths instead

of 4 msec (subthreshold protocol), stimulated spines did not express long

lasting LTP (Harvey & Svoboda, 2007; Govindarajan et al., 2011) (see

Section 1.5). Shorter uncaging laser pulses leads less glutamate to be

uncaged. Hence, given the total amount of uncaged glutamate is fixed,

regularity seems to be necessary for the induction of long-lasting LTP

but it is not sufficient, and the level of irregularity (here represented by

instantaneous pulse frequency fluctuations over time (see Figure 4.3.2))

is apparently responsible for the determination of the threshold for LTP

induction.

In conclusion, we suggest that given that the number of stimulation

pulses and total stimulation time are fixed, stationarity is necessary but

not sufficient for a train to induce long-lasting LTP at single dendritic

spines.
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Chapter 5

Rapid Structural Spine

Dynamics and Long-Term

Consequences
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5.1 Abstract

Structural changes of dendritic spines can be used as a proxy for synaptic

plasticity. Studies that address single-spine plasticity have often been con-

ducted by structural imaging before and after the induction of plasticity.

Here we extended this approach by imaging the stimulated spines during

the course of uncaging delivery. We found that the timing structure of the

uncaging patterns did not lead to significant structural differences. How-

ever, using correlation and clustering analysis, we showed that these rapid

structural spine growth dynamics have differential predictive powers in

terms of explaining the longevity of the induced plasticity for regular and

naturalistic-like trains. While rapid structural spine growth during the

course of 60 sec-long regular train delivery did not show any correlation

with the longevity of the induced plasticity, spines that were stimulated

using naturalistic-like trains were positively correlated to various degrees.

Thus, these experiments suggest that dendritic spines have the capacity

of translating the timing structure of the stimulus differentially.

5.2 Introduction

The time delay between the stimulation and structural spine changes has

been debated in the field. It has been argued that there is a 2 to 3 sec delay

between the electrical stimulation and the initiation of NMDA dependent

LTP, while the additional 20 to 30 sec are needed for the potentiation to

reach peak levels (Gustafsson & Wigström, 1990). The potentiation sub-

sequently decays to a degree which depends primarily on tetanus length.

Matsuzaki et al. interpreted these results as an evidence of a time de-

lay between spine enlargement and synaptic stimulation (Matsuzaki et

al., 2004). In contrast, conflicting evidence suggested that filopodium or

spine formation requires at least 20 min following the induction of LTP
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and hence cannot explain the rapid onset of LTP (Engert & Bonhoeffer,

1999; Maletic-Savatic, Malinow, & Svoboda, 1999). All three of studies

used electrical stimulation for the induction of plasticity, and therefore,

the results are not very clear from the perspective of single spines.

In another set of studies that used an uncaging stimulation approach,

the spatiotemporal dynamics of various fluorescence tagged proteins, such

as Ras (Harvey et al., 2008), CaMKII (Lee, Escobedo-Lozoya, Szatmari,

& Yasuda, 2009) and actin (Bosch et al., 2014) have been investigated.

They all concluded that structural changes are instantaneous rather than

time delayed.

In this section, we will present the results of the rapid structural

dynamics of dendritic spines conditional to regular and naturalistic-like

trains, as well as the results showing how these rapid structural changes

affect the longevity of the induced plasticity.

5.3 Results

During our experiments, we realized that the spine structure begins to

change already during the course of stimulation. In order to capture

structural spine dynamics during uncaging stimulus, we made time-lapse

images (videos) of the region of interest of the stimulated spine (Figure

5.3.1) in XY-plane starting before the onset of the stimulation until up to

5 sec after the delivery of the last uncaging pulse.

5.3.1 Stimulation Pattern does not Cause Significant Spine

Growth Differences During the Course of Stimulation

First, we wanted to determine if there are significant differences in the

rapid structural growth of individual spines that are stimulated using dif-

ferent stimulation trains. The stimulated spine, presented in Figure 5.3.1

grew to almost four times its initial size during the course of stimulation.
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Figure 5.3.1. Rapid Structural Growth During Stimulation. Upper
panel shows the dendrite of interest and the stimulated spine is indicated
in the yellow box. Lower panel shows how the spine structure changes
during the course of stimulation (in seconds). Scale bar is 2µm.

So, for each stimulated spine, we quantified the IFI of the spine head flu-

orescence over time from the two-photon time lapse images we collected

during the uncaging delivery. Figures 5.3.2A shows the normalized spine

volume changes during the course of stimulation with four different stim-

ulation trains. Each line represents a different spine.

We found that on average all four stimulation conditions induced sim-

ilar levels of structural plasticity during the course of uncaging deliv-

ery (∆VREG = 226 ± 37%; ∆VNT−UNI = 190 ± 19%; ∆VNT−BEG =

195 ± 19.8%; ∆VREG = 236 ± 37%, at 60 sec, normalized to baseline),

and we have not observed any statistically significant differences between

different conditions (p>0.5, repeated-measures ANOVA) (Figure 5.3.2B).
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Figure 5.3.2. Rapid Normalized Spine Growth for All Conditions.
A) Individual rapid structural dynamics for each condition, B) Statistical
comparison of rapid growth data for different condition reveals that there is
no statistical differences between these growth curves in [0,60] sec interval.
The only observed difference is between NT-BEG and NT-END in [0,40]
sec interval (p = 0.033, repeated measures-ANOVA).

92



5.3.2 Rapid Spine Growth During the Course of Stimula-

tion Signals Longevity

Following this, we aimed to determine if there are any relationship between

the rapid structural changes occurring during the course of stimulation

and long-term structural dynamics. In order to do that, we computed the

correlation coefficient (Leon-Garcia, 2008) between the area under each

growth curve (integral) and the long-term normalized volume for every

time bin (Figure 5.3.3).

ρ(IRapid, VL(t)) =
COV (IRapid, VL(t))

σ(IRapid)σ(VL(t))
(5.1)
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Figure 5.3.3. Correlating Short Term Growth with Long-Term
Dynamics. In order to correlate rapid short term volume dynamics with
long-term volume dynamics (post-uncaging delivery imaging), we com-
puted the area under each growth curve during the course of stimulation
as shown in a, and correlated this vector with post-stim volumes for every
time bin in b, which gave us time series progression of correlations.
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Figure 5.3.4. Correlations Between Short-Term Growth with
Long-Term Dynamics Shows Stimulus Dependency. In order to
check the relationship between the rapid spine growth during the course
of stimulation and the post-stimulus spine volume over time, we computed
the correlation between the area under each rapid growth curve for a given
stimulus pattern and the normalized spine volume at ay time point after
the stimulation. Black lines represent the correlation for each time bin.
Red lines are the significance of that correlation estimated using permu-
tation (shuffle) test. Green represents p=0.05, Blue represents p=0.01.

Correlation analysis revealed very interesting differences between

spines that are stimulated using the Regular and Naturalistic-like trains.

Although both of these uncaging trains have 30 pulses spread over 60

sec and both are NMDAR and protein-synthesis dependent, while no

significant correlations were observed between the rapid dynamics and
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long-term changes for spines that are stimulated using REG train (Figure

5.3.4a), we have obtained strong and significant correlations for the spines

stimulated using NT-UNI (Figure 5.3.4b). Significant correlations were

obtained for NT-BEG and NT-END trains as well, but to a lesser extent.

Additionally, when we pooled all the naturalistic-like trains together,

correlation structure held up (Figure 5.3.5).
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Figure 5.3.5. Correlations Between Short-Term Growth with
Long-Term Dynamics for All Naturalistic Trains Combined. Cor-
relations are computed using the same methods described previously.
Black represent the correlation for each time bin. Red is the significance
of that correlation estimated using shuffle test. Green represents p=0.05,
Blue represents p=0.01.

To further test the short-term vs long-term relationship, we performed

a second analysis. We clustered rapid structural growth dynamics for each
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Figure 5.3.6. Clustering Rapid Dynamics. As a secondary confir-
mation, we divided rapid growth curves into two classes using k -means
algorithm and grouped the corresponding long-term dynamics according
to the classes. Those that grow more were designated, High class, while
those that grew less were Low class.

condition into two clusters using the k -means algorithm (Figure 5.3.6). K-

means partitions the data into k groups so that the sum of squares from

points to the assigned cluster centers is minimized (Bishop, 2007). Briefly,

the k -means algorithm is described as follows:

1. Start with initial guesses for cluster centers (randomly assign two

cluster centers known as centroids).
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2. For each data point, find closest cluster center (partitioning step).

3. Replace each centroid by average of data points in its partition.

4. Iterate step-1 and step-2 until convergence.

We named the obtained clusters high and low. Afterward, we grouped

the long-term results into two with respect to the cluster they belong to.

Figure 5.3.7 shows long term normalized spine volume change for high and

low clusters for all tested conditions.

As the correlation analysis showed, spines that were stimulated using

REG train did not show any significant plasticity differences conditional

to clustered rapid structural dynamics (Figure 5.3.7a). In contrast to this,

all naturalistic-like train stimulated spines showed differences conditional

to rapid dynamics clusters to a certain extent.

Clustering analysis supported the correlation analysis, which can be

seen in Figures 5.3.7 and 5.3.8. Spines that fell under high- or low-

clusters according to their rapid-growth curves did not exhibit significant

volume differences in long-term (PREGhigh−low
= 0.56, repeated-measures

ANOVA)(Figure5.3.7a-5.3.7c). However, all NT induced rapid growth had

some predictive value in term of long-term plasticity levels (Figure 5.3.7d-

5.3.7l).
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Figure 5.3.7. Cluster-Dependent Long-Term Dynamics. Natural-
istic trains exhibit rapid growth-dependent long-term dynamics, whereas
the regular train does not. (∗ < 0.05, ∗∗ < 0.01, ∗ ∗ ∗ < 0.001) Time bins
for boxplots are as follows (ordered left to right): Baseline / 0-15 min /
45-75 min / Last 30 min. 98
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Figure 5.3.8. Naturalistic Train Induced Rapid Growth Predicts
the Longevity of the Plasticity. a) We pooled all rapid structural
growth dynamics for Naturalistic-like trains and separate into 2 clusters
using the k -means algorithm,b) Two distinct long-term dynamics emerged
from these clusters (PNTHigh−Low

< 0.001, repeated-measures ANOVA), c)
Post-clustering long-term dynamics have statistically different plasticity
levels over time.
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5.4 Conclusions

As two-photon time lapse imaging of dendritic spines during glutamate

uncaging stimulation showed, spine structure can change on the timescale

of seconds. Although it seems that for all conditions the stimulated spines

exhibit similar growth dynamics, it appears that there is a slight differ-

ence between NT-BEG and NT-END induced spine growth in the first 40

sec from the onset of the first pulse of the corresponding train delivered

(Figure 5.3.2B). This difference can be interpreted as the instantaneous

rate of the stimulation train that affects the rapid spine growth (Figure

5.3.2).

Correlation (Figure 5.3.5) and k -means clustering (Figure 5.3.8) anal-

yses showed that the rapid structural changes caused by naturalistic trains

signal the longevity of induced LTP. This is not the case for LTP that is

induced by Regular train, which shows that dendritic spines have the ca-

pacity to interpret instantaneous rate changes within 60 sec differentially

for deterministic (regular) and random (naturalistic) trains. This may

mean that plasticity induced by regular trains is fundamentally different

than plasticity induced by naturalistic trains.

As demonstrated in Sections 1.7 and 4.3, naturalistic stimulation trains

studied by electrophysiological and computational techniques elicit STP

dynamics that have different properties than tetanic stimulation. These

studies concluded that the state of a synapse at the time of stimulation

is crucial for the induction of plasticity, and that the tetanic stimulation

may be driving synapses to a steady-state regime, making synapses unable

to respond to stimulation within a dynamic range. In Chapter 4.3, we

showed that, on average, only NT-UNI train stimulated spines expressed

long-lasting LTP. However, post k -means analysis showed that 6 out 17

NT-BEG train stimulated and 6 out of 18 NT-END train stimulated spines
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showed relatively longer lasting LTP compared to group averages. There

results may reflect state dependency.
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Chapter 6

Discussion

Synaptic plasticity is traditionally studied using high or low frequency,

regularly spaced stimulation trains. However, although activity seen by a

particular dendritic spine can have varying frequencies over time in vivo,

inter-spike intervals of this incoming activity is not regularly spaced (Zador

& Dobrunz, 1997; Dobrunz & Stevens, 1999; Paulsen & Sejnowski, 2000).

In order to study plasticity in a relatively more naturalistic setting, we gen-

erated pulse trains resembling in vivo spiking activity of CA3 neurons. We

used these generated naturalistic-like activation patterns to study short-

and long-term structural plasticity at single dendritic spines using two-

photon fluorescence imaging and glutamate uncaging. We found that the

longevity of induced plasticity is activation pattern dependent and the

structural changes that are induced by naturalistic-like trains during stim-

ulations correlates with the long-term plasticity levels of the stimulated

spine.

As we concluded earlier, stationarity seems to be necessary for a train

to induce long-lasting LTP in single dendritic spines. However, previous

studies had showed that regularity itself is not sufficient to induce long-

lasting LTP (Harvey & Svoboda, 2007; Govindarajan et al., 2011) (see
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Section 1.5). When researchers used a regular uncaging protocol with a

1 msec pulse- width instead of a 4 msec one, stimulated single spines did

not express LTP. Therefore, stationarity is necessary but not sufficient to

induce long-lasting plasticity in single spines. We know that the shorter

the uncaging laser pulse is, the smaller the amount of glutamate that is

released during uncaging. This difference between glutamate levels will

affect the number of NMDARs that are activated. Ca2+ entry through

NMDARs is necessary for the induction of plasticity and the level and

duration of this Ca2+ entry determines the direction of the induced plas-

ticity. Where high concentration of Ca2+ entering into the cell in a short

time frame induces LTP, low concentration of Ca2+ entering over pro-

longed periods of time induces LTD (Lisman & McIntyre, 2001; Lisman

& Spruston, 2005). This differential level of [Ca2+] leads to activation of

different kinase/phosphatase pathways and the kinase/phosphatase bal-

ance determine the direction of plasticity (Otmakhov et al., 1997; Asrican

et al., 2007; Cooper & Bear, 2012). Hence, stimulation pattern structure

and the micro-domains within the pattern should be dynamically modu-

lating the kinase/phosphatase balance over time and determining the type

of plasticity.

In our experiments, NT-UNI was the only naturalistic-like stimulation

pattern that induced long-lasting structural changes and we have shown

that this plasticity is NMDAR-dependent. Therefore, the Ca2+ should be

the main player for the induction of the observed plasticity. Moreover,

we have shown that the longevity of this plasticity is protein-synthesis de-

pendent. These results imply that downstream processes following Ca2+

entry through NMDARs triggered a cascade of protein-protein interac-

tions that ended up in pushing the kinase/phosphatase balance in favor

kinases that eventually ended up activating translation machinery that

provided proteins that are necessary for the long-lasting structural mod-

ifications. Although sampled from the same Poisson distribution, other
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two naturalistic-like patterns NT-BEG and NT-END did not induce long-

lasting plasticity. As we pointed out earlier, the main difference between

NT-UNI with NT-BEG and NT-END is the instantaneous frequencies of

these patterns over time. Therefore, we believe that the stationary nature

of NT-UNI is the reason for the long-lasting changes. As shown previously,

REG pattern has a similar stationary structure and this pattern leads

to protein-synthesis dependent long-lasting potentiation (Govindarajan et

al., 2011). If we assume that kinases are more active during the high-

frequency portion of the stimulation pattern and phosphatases are more

during the lower-frequency portion, this might explain why NT-UNI is in-

ducing a different form of plasticity than NT-BEG and NT-END. NT-UNI

pattern has a 0.5 Hz stationary glutamate delivery during the course of 60

sec stimulation, while NT-BEG has approximately 0.75 Hz for first 20 sec

and 0.375 Hz for following 40 sec and NT-END has 0.375 Hz for first 40

sec and 0.75 Hz for the following 20 sec. These time-frequency structures

should be determining the Ca2+ dynamics, hence governing the dynamic

kinase-phosphatase interactions. A good follow up study would be Ca2+

imaging of single spines during the delivery of different naturalistic-like

trains to see to what extend stimulation pattern timing structure affecting

the Ca dynamics. Additionally, kinases such as CaMKII and phospatases

like calcineurin could be tagged with fluorescence proteins and imaged

during the stimulus delivery. If our hypothesis is true, one should see a

difference in cumulative CaMKII/calcineurin ratios over time for station-

ary and non-stationary portions of the stimulation patterns.

Following the analysis of the effects of different uncaging stimulation

patterns on the long-lasting structural plasticity of single dendritic spines,

we focused on effects or these trains on the structure during the stimulus

delivery. It has previously being shown that dendritic spine structure can

change rapidly upon activation (Van Harreveld & Fifkova, 1975; Fifková

et al., 1982; Harvey et al., 2008; Lee et al., 2009). So, we wanted to test if
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stimulation pattern structure is evoking different structural changes during

the course of stimulation and if so, if there is any relationship between

short- and long-term structural modifications.

We haven’t seen any differences between four different conditions

when we compared the stimulation induced structural changes during the

coarse of stimulation. However, when we investigated individual struc-

tural growth traces, we noticed variability within conditions. In order to

test if this variability has any long-term consequences, we performed two

separate analyses: correlation-based and clustering-based.

Correlation analysis showed that the relationship between short- and

long-term dynamics is stimulation pattern dependent for naturalistic-like

patterns. While when pooled, naturalistic-like trains exhibit a positive cor-

relation between short- and long- dynamics on average, correlation holds

longer for NT-UNI in comparison to NT-BEG and NT-END. Moreover,

although on average NT-BEG and NT-ENG induced plasticity has very

similar structural plasticity dynamics over time, the correlation structures

are very different. NT-BEG induced spines show positive correlation be-

tween short- and long- term structure starting from the first point after

the stimulation until the 60th min when the correlation structure disap-

pears, whereas NT-END induced spines do not exhibit any correlations

until the 45th min and this correlation lasts following 80 mins. It ap-

pears that correlation structure over time has some commonalities with

the instantaneous pulse frequencies (IPF) within naturalistic-like stimula-

tion patterns. NT-BEG starts with relatively higher IPF at the beginning

and correlations between short- and long- term dynamics are positive at

the beginning, as starting point being the end of stimulation. NT-END

does not show significant correlations at the beginning as it has lower IPF

at the beginning of its pattern.

Interestingly, while all naturalistic-like trains showed significant pos-

itive correlations between short- and long-term dynamics to a degree,
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REG pattern did not show any significant correlations, positive or neg-

ative. Since the closest pattern to REG in terms of temporal structure

is NT-UNI which showed the longest correlation structure, the difference

between these two results should be introduced due to the respective levels

of irregularities. REG pattern is completely regular with fixed IPI of 0.5

Hz. This level of saliency might either be too extreme to be experienced

by dendritic spine in vivo or very high saliency might have some sort of

physiological meaning like emergency or high-priority information to be

stored. Both cases might be forcing a type of plasticity into a spine that

activates a separate pathway for plasticity compared to naturalistic-like

patterns. Similar imaging studies we proposed earlier might be helpful for

understanding these differences.

Clustering analysis supported the results we found using correlation

analysis. Additionally, it has revealed that although on average they did

not, both NT-BEG and NT-END have the capacity to induce long-lasting

plasticity but to a lesser extend, if these patterns induced strong short-

term structural changes during stimulation. This might mean that all

naturalistic-like pattern can potentially induce long-lasting LTP but the

probability of this induction is pattern structure dependent, most probably

due to the stationarity over time as we discussed earlier.

Additionally, previous studies revealed that the activity of neurons in

single cells (Mainen & Sejnowski, 1995) and local circuits (Vinje & Gallant,

2002; Herikstad, Baker, Lachaux, Gray, & Yen, 2011) are fundamentally

different for regularly spaced stimuli compared to naturalistic - or noisier

- stimuli ((Faisal, Selen, & Wolpert, 2008). Mainen and Sejnowski showed

that noisy current injection into a single pyramidal neuron evokes tempo-

rally precise spiking responses whereas non-noisy constant current injec-

tions evokes strong, but temporally variable, neuronal responses (Mainen

& Sejnowski, 1995). Circuit level studies in the primary visual cortex

have revealed similar characteristics, where artificial stimuli evoke strong
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but temporally variable neuronal responses, while responses to natural

stimuli are weak but temporally precise. It has been suggested that the

precise interplay of excitatory and inhibitory synaptic inputs in the re-

ceptive fields of neurons in the visual cortex might play a significant role

in modulating these responses (Kremkow et al., 2016). It is hypothesized

that the stochastic nature of receptor activation kinetics is responsible for

regulating firing at the level of single neurons. In addition to this elec-

trically coupled parameter, biochemical interactions, such as the balance

between protein phosphatases and kinases, are believed to regulate the

direction and longevity of synaptic plasticity (Wang & Kelly, 1996; Ot-

makhov et al., 1997; Winder, Mansuy, Osman, Moallem, & Kandel, 1998).

Moreover, information theory suggest that a train with a completely deter-

ministic inter-spike/pulse intervals carries less information compared with

a random counterpart (Touretzky, 1996; Stevens & Zador, 1996). This

may speak to a sort of information content depending encoding at single

spines.

Our results seem to combine components from both electrical and bio-

physical interactions. During the stimulation period, receptor activation

dynamics are determined by the ionic interactions within the various sub-

units of the receptors, and therefore it is likely that electro-chemical pro-

cesses govern the rapid structural growth dynamics. These are believed to

be effected by the remodeling of the actin cytoskeleton (Okamoto, Nagai,

Miyawaki, & Hayashi, 2004; Fonseca, 2012). The late phase of LTP has

been shown to be maintained by newly synthesized proteins (Otmakhova

& Lisman, 1996; Sutton & Schuman, 2006), and our results support

the finding that this also holds true for long lasting structural plasticity

(Govindarajan et al., 2011). What we do not know is how the short-term

temporal dynamics determine the engagement of downstream processes

such as the protein synthesis machinery of the neuron.
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Many studies attempted to determine the relationship between time

and frequency dependence of pre-synaptic activity, post-synaptic firing

and induced plasticity (Bienenstock et al., 1982; Markram et al., 1997;

Bi & Poo, 1998; Froemke & Dan, 2002; Izhikevich & Desai, 2003; Pfis-

ter & Gerstner, 2006). While they were able to describe some rules by

which synaptic plasticity is induced, none of them hypothesized potential

mechanisms for how the longevity of plasticity is maintained once it is in-

duced. Our results suggest that in vivo activity patterns that are received

by a particular spine might contribute to that spines future structural re-

organization. This may be particularly interesting in terms of predicting

in vivolong-term structural dynamics of a synapse, based on short-term

structural imaging observations.

These results show how different patterns of activity can elicit plas-

ticity processes at synapses, presenting a window into understanding how

neural activity patterns in vivo might have long-term consequences for

synaptic strength and circuit organization.

Our results also showed that, on contrary to previous research

(Matsuzaki et al., 2004), initial spine sizes do not modulate the plasticity

levels for different stimulation conditions. Matsuzaki et al. reported

that dendritic spines that are larger than 1µm3 did not show long-lasting

enlargement following a regular glutamate uncaging stimulation which in-

duced long-lasting enlargement in smaller spines (Matsuzaki et al., 2004).

However, axonal bouton volumes and active zone areas of hippocampal

CA3 neurons are highly heterogeneous and this heterogeneity reflects the

probability and amount of glutamate that is released by those terminals

(Holderith et al., 2012). These results suggest that the smaller the

axonal terminal, the harder is to induce LTP at the corresponding spine.

Furthermore, axonal bouton- and dendritic spine- volumes are shown

to be positively correlated (Holderith et al., 2012; Meyer, Bonhoeffer,

& Scheuss, 2014). Hence, evidence supported by previously conducted
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research in combination with our results suggest that dendritic spine sizes

should not present neither an advantage or disadvantage for the spine in

terms of ease of potentiation. Therefore, the idea of spine size dependency

for potentiation should be revisited.
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tion of the number of synapses in the cerebral cortex: methodological

considerations. Cerebral Cortex , 9 (7), 722–732.

deKay, J. G., Chang, T. C., Mills, N., Speed, H. E., & Dobrunz, L. E.

(2006). Responses of excitatory hippocampal synapses to natural

stimulus patterns reveal a decrease in short-term facilitation and in-

crease in short-term depression during postnatal development. Hip-

pocampus, 16 (1), 66–79.

Deng, W., Aimone, J. B., & Gage, F. H. (2010). New neurons and new

memories: how does adult hippocampal neurogenesis affect learning

and memory? Nature Reviews Neuroscience, 11 (5), 339–350.

Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser

scanning fluorescence microscopy. Science, 248 (4951), 73–76.

De Robertis, E. D., & Bennett, H. S. (1955). Some features of the sub-

microscopic morphology of synapses in frog and earthworm. The

Journal of biophysical and biochemical cytology , 1 (1), 47–58.

Dobrunz, L. E., & Stevens, C. F. (1999). Response of hippocampal

synapses to natural stimulation patterns. Neuron, 22 (1), 157–166.

Edelmann, E., & Lessmann, V. (2011). Dopamine modulates spike timing-

113



dependent plasticity and action potential properties in ca1 pyramidal

neurons of acute rat hippocampal slices. Front Synaptic Neurosci ,

3 (6).

Eichenbaum, H. (1997). Declarative memory: Insights from cognitive

neurobiology. Annual review of psychology , 48 (1), 547–572.

Ellis-Davies, G. C. (2007). Caged compounds: photorelease technology

for control of cellular chemistry and physiology. Nature methods,

4 (8), 619–628.

Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated

with hippocampal long-term synaptic plasticity. Nature, 399 (6731),

66–70.
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Markram, H., Gerstner, W., & Sjöström, P. (2012). Spike-timing-

dependent plasticity: a comprehensive overview. Front Synaptic

Neurosci , 4 , 8.
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