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Abstract

In recent years, the discovery of the excellent optical and electrical properties of per-

ovskite materials made them one of focus of research in the area of photovoltaics, with

its efficiency increasing significantly since its inception, in 2009. However, problems

associated with the stability of these materials have hindered their widescale market ap-

plication, with two examples being the UV degradation of the absorber material and the

photoactivity, under 400 nm wavelengths, of TiO2 which is one of the main materials

used as an electron transport layer in these cells. Consequently, different methods were

studied to minimize this degradation. One example consists in using down-shifting ma-

terials that change the harmful UV radiation to higher wavelengths that have no effect on

the cell stability. Thus, this work is focused in the theoretical study of the photocurrent

gains that can be attained by emulating the changed spectrum resulting from applying

these materials, as well as the reduction in the harmful effects of UV radiation on per-

ovskite solar cells. This first case analyzed resulted in gains of around 1% for planar cells

and around 2% for cells with photonic structures. For the second optimized case, one

was able to obtain a general reduction in generation in TiO2 of one order of magnitude,

coupled with a 80% reduction of perovskite’s UV absorption.

Keywords: Photovoltaics, Photonic-enhanced Perovskite Solar Cells, Ultraviolet Stability,

Down-shifting, Light Trapping

ix





Resumo

A recente descoberta das excelentes propriedades óticas e elétricas das perovskites, para

aplicações em células solares, fez com que se tornassem num dos principais alvos de

estudo na área dos fotovoltaicos, levando ao rápido aumento da sua eficiência desde que

foram introduzidas. Contudo, problemas associados com a estabilidade destes materiais

tem limitado a sua implementação à larga escala. Alguns exemplos são a degradação do

material fotoativo quando exposto a radiação UV, assim como a fotoatividade do TiO2,

para comprimentos de onda inferiores a 400 nm, uma vez que este se trata de um dos

materiais mais usados como camada de transporte de eletrões nestas células. Consequen-

temente, diferentes métodos estão a ser estudados, de forma a minimizar esta degradação.

Um exemplo, consiste em fazer down-shifting da radiação solar de forma a mudar a nefasta

radiação UV para comprimentos de onda que não impactem a perovskite negativamente.

Desta forma, este trabalho foca-se no estudo teórico dos ganhos de corrente gerada na

célula devido à aplicação de down-shifting, em conjunto com os efeitos na nefasta geração

no TiO2. No primeiro caso, ganhos de cerca de 1% foram obtidos para células planares e

cerca de 2% para células com estruturas fotónicas. Para o segundo caso otimizado obteve-

se uma redução de uma ordem de grandeza na geração no TiO2 e uma redução de 80%

para a radiação UV absorvida pela perovskite.

Palavras-chave: Fotovoltaicos, Células Solares de Perovskite com Estruturas Fotónicas,

Estabilidade à Radiação Ultravioleta, Down-shifting, Aprisionamento de Luz
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Motivation and Objectives

The ever-growing demand for clean energy has been one of the main proponents of

research in the area of photovoltaics, with special focus on increasing the solar cells W/$

ratio to achieve a more competitive position in the market, when compared with other

energy sources, such as fossil fuels and hydro-energy. The first steps taken to increase

this ratio consisted in the optical and electrical optimization of the layers composing the

solar cell. The former case relates to the trade-off between the solar cell thickness and

the amount of material used in order to get best absorption using less materials, while

the latter case is associated with the improvements in the electrical contact between

the different solar cell layers as well as optimized material structure, leading to lower

recombination. This way is then possible to get better solar cell performance, leading to

an increase in the sunlight-to-electricity power conversion efficiency, coupled with lower

material usage, i.e. lower g/W ratio.

In recent years, new research has started to emerge in the area of materials science

centered in novel materials, such as perovskite and CIGS, with better electrical and optical

properties, such as diffusion length and absorption coefficient - allowing for thin-film

implementation of solar cells - when compared with the older, more conventional ones,

such as silicon used in wafer-based photovoltaics. Thin-film technologies benefits from

lower material usage, i.e. increased g/W ratio, when compared with wafer-based solar

cells. Although these new materials have proven many times to come close or even

surpass older materials conversion efficiencies, they still have many shortcomings that

must be solved before they can be implemented into the market.

The need of overcoming these obstacles has been a big research driver in the field and

has led to the work that will be presented in this thesis. By trying to emulate the effects of

down-shifting in the solar spectrum, one will create a process that relates this mechanism

with the solar cell absorption. Therefore, it will then be possible to optimize the relevant

down-shifting parameters to get maximum photocurrent in the device as well as to test

the effects of this process in the solar cell generation and UV absorption.

xxv





Work Strategy

The results obtained in this work were part of a three-step process:

1. The first step was the implementation of the code necessary to make the emula-

tion of a shifted illumination spectrum. Afterwards, spectrums were obtained and

compared with other similar results reported in the literature, to test the accuracy

of the implemented method. Then, simulations were made to test if the change in

spectrum would affect the simulation results in a predictable manner.

2. The next step consisted in designing the different perovskite solar cells in the sim-

ulation environment followed by extended validation to verify the accuracy of the

simulation setup. Here, the base results, i.e. results with an unaltered spectrum,

were also obtained

3. In the last step, the code implemented in the first point was used, together with the

cells from the second point, with the objective of optimizing the relevant physical

parameters of the DS mechanism in order to get maximum photocurrent density

provided by the solar cell. These optimized parameters were then used to analyze

the UV absorption of perovskite and the generation in TiO2, allowing for a study of

the effects of down-shifting in the device.

xxvii
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1
Introduction

1.1 Solar Cell Market

Total global photovoltaic (PV) installed capacity increased over 600% from 2010 to 2016,

going from under 50 GW to above 300 GW [1–3]. In 2015, the annual PV installed

capacity was around 50 GW, matching the total global PV installed capacity until 2010 [1,

3, 4], illustrating the fast growth rate of this technology. One of the main reasons for this

accelerated growth is the ever-increasing cost-competitiveness of solar power [3, 5]. To

take an example, during the last 12 years, the material usage for crystalline and poly-

crystalline solar cells (c-Si and poly-Si, respectively) decreased from around 16 g/Wp to

6 g/Wp [2]. These major improvements in material usage of silicon solar cells are one

of the main reasons for its dominance in the market, leading to an increase in market

share in the past years, going from around 80% to 90% [2, 5], while the remaining part is

attributed to thin-film technologies. These emergent - thin-film - technologies aren’t only

based on silicon but use other materials like CdTe [5, 6], and CuInxGa1−xSe2 (CIGS) [5–

9], that can achieve c/poly-Si conversion efficiencies while still maintaining a reduced

thickness. Photovoltaics are still an area of active research, to keep increasing the cost-

competitiveness of solar cells either by incremental improvements of current technologies

or by investigating novel materials.

1.2 Perovskite Solar Cells

Materials based on the perovskite structure have received considerable attention from the

photovoltaic comunity due to their exceptional optical and electrical properties, leading

to a rapid increase in their conversion efficiency [10–15]. These reached a record efficiency

higher than 22% in just a few years [16].
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CHAPTER 1. INTRODUCTION

Perovskite compounds are based on an ABX3 structure, where A and B represent

cations of different sizes and X represents an anion [15, 17]. Figure 1.1 shows the uni-

tary cell for perovskite, where the different circle colors and sizes represent the different

ions and relative ion sizes, respectively. The most studied perovskites for solar cell ap-

plications are the hybrid organic inorganic perovskite (HOIP), where A is an organic

or inorganic cation (methylammonium, CH3NH+
3 ; ethylammonium, CH3CH2NH+

3 ; for-

mamidinium, NH2CH=NH+
2 , Cs and Rb), B is a divalent metal cation (Ge2+, Sn2+, Pb2+)

and X is a monovalent halogen anion (F−, Cl−, Br−, I−) [15, 17, 18]. In particular, the

lead halide HOIPs have been one of the main perovskites studied due to their excellent

optoelectronic properties [10, 11, 19–21].

Figure 1.1: Unit cell for the basic ABX3 perovskite structure. The circle sizes represent
the different ion radius, meaning the A ion is the largest and the X ion the smallest.
The colors refer to the different ions used. MA, EA and FA stand for methylammonium,
ethylammonium and formamidinium, respectively.

Perovskite compounds show bandgap tunability by making composites of the various

ions referred before [18, 22–24]. As an example, tuning the composition of the HOIP

MAPb(IxBr1−x) allows for a bandgap variation from around 1.5 to 2.3 eV (with x = 1 and

x = 0, respectively) [17, 21]. These bandgap variations can be combined with early theo-

retical studies for solar cell conversion efficiencies, to correlate the perovskite bandgap

with the maximum conversion efficiency attainable. These studies use detailed balance

arguments, where only radiative recombination is considered [25–27], to calculate the

maximum theoretical conversion efficiencies as a function of the material bandgap for

single junction pn cell [26], multiple junction cells [27, 28] and multiple junctions with

solar concentration higher than unity [27–29].

Three typical architectures exist for Perovskite solar cells (PSCs) [15, 30, 31], as shown

in Figure 1.2. The earliest configuration is based on mesoporous TiO2 (mp-TiO2) (Figure

1.2 a)). Here, the cell is made of transparent conductive oxide (TCO)/compact TiO2/mp-

TiO2/perovskite absorber/hole transport layer (HTL)/metal contact layers. In the other 2,

2



1.3. LUMINESCENT DOWN-SHIFTING

the mesoporous layer is omitted and replaced by a compact electron transport layer (ETL).

Both these cells only differ in the location of the HTL and ETL. In the n-i-p configuration

the ETL is above the perovskite layer, while in the p-i-n configuration ETL changes place

with the HTL. In the ETL, the most used material is TiO2. However other materials,

like ZnO and SnO2, have also been studied [31]. On the other hand, the most relevant

materials for the HTL are Spiro and PEDOT:PSS [31]. Recently, tandem applications have

risen in popularity, where the HOIP is paired with CIGS [32] or silicon [33, 34].

Figure 1.2: Schematic of the main PSCs architectures. a) cell with n-i-p configuration and
mesoporous layer, b) cell with n-i-p configuration and c) cell with p-i-n configuration.

1.3 Luminescent Down-Shifting

Luminescent down-shifting (LDS) is the optical process of converting high energy pho-

tons into lower energy ones [35, 36]. The main LDS materials are dyes [37–39], quantum

dots (QD) [40–43] and rare earth elements (RE) [44–46]. Initial research of these mate-

rials was mainly centered in the application to luminescent solar concentrators (LSCs),

where the luminescent species would be added to a highly transparent plastic, which, by

virtue of total internal reflection, could allow for inexpensive solar concentration spec-

trally matched with the solar cell [44, 45, 47–50]. In recent years, however, different

type of applications, namely in PSCs, organic solar cells and dye sensitized solar cells

have started to appear [51–54]. It has been shown that these cells suffer from stability

problems associated with incident UV radiation [51, 55] and, for the first and latter cells,

the presence of TiO2, used as an ETL, due to the photocatalytic induced degradation of

perovskite under 400 nm [56–59]. As a result, LDS materials have been applied to PSCs

as a UV protection coating [52, 60–62]. This technology allows for the absorption of

UV radiation, when compared with UV filters, that entirely block this radiation. These

materials can also be applied to other types of solar cells, like CIGS and silicon, because

of their small spectral response for lower wavelengths [36, 63].
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CHAPTER 1. INTRODUCTION

1.4 Dielectric Photonic Structures

As stated earlier, the search for highly efficient solar cell technology at low costs is one

of the main drivers for research, with many studies converging in technologies that al-

low smaller cell thickness - less material usage - without compromising optical perfor-

mance. Some examples are the use of light trapping methods, such as metallic or dielectric

nanoparticles on the rear side of the cell [64–66], texturing of the front or rear side of

the cell [67–69] and the use of dielectric structures on top of solar cells [70–73], with the

latter being the one used in this work. This method leads to the enhancement of the cell

absorption due to 2 main reasons. Firstly, by forward scattering light, one can increase

its travel path and, therefore, the likelihood of absorption. Secondly, one can also create

resonant modes, related with the properties of the structures, that can significantly boost

the absorption and, for periodic structures, even surpass the theoretical limit - the Tiedje-

Yablonowitch limit - for specific wavelengths related with the structures’ pitch [67, 74,

75].

1.5 Finite-Difference Time-Domain Simulation

The need for 3D simulation of solar cells with arbitrary geometries has led to the adoption

of the finite-difference time-domain (FDTD) method, that was used in this work. As such,

a brief description of the simulation methodology, based on references [76–78], will be

presented next.

The FDTD method is based on an algorithm derived by Yee in 1966 [78], where

the central difference approximation was applied to both space and time derivatives of

Maxwell’s curl equations to, with a discretization of space and time, create an iterative

process to solve electromagnetic problems, such as the interaction between light and the

solar cell, as used in this work.

The Yee algorithm is based on the Yee cell, shown in Figure 1.3, used to discretize the

simulation space. Each cell has dimensions ∆x, ∆y and ∆z and has its coordinates defined

by the position in the simulation region. Similarly, time is also uniformly discretized as

t = n∆t. As a result, one can express the field functions at any node within the discrete

space. Using the discretization shown in Figure 1.3, it is then possible to approximate

Faraday’s equation via central differences, resulting in Equation 1.1 for the face shown

in the right side of Figure 1.3, representing the approximation for the z component

projection.

µ
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Figure 1.3: Schematic representation of the Yee algorithm. On the left is shown the Yee
cell with the various corresponding fields. The direction of the fields in each face is
chosen to satisfy Faraday’s law. On the right, is shown the field with the full notation,
including the spatial coordinates for the top face of the cube.

Using a similar procedure, it is also possible to obtain equivalent equations for the

y and x-projections of Faraday’s law (shown in Annex I). For the next step, one must

create a secondary cell, where the electric and magnetic fields change position, allowing

for a central difference approximation of Ampere’s law, leading to equivalent equations

to that of Equation 1.1. The equation for the x component of Ampere’s law is also shown

in Annex I, with the remaining components obtained in the similar manner to the ones

from Faraday’s law. Lastly, by combining the resulting equations from the last steps, one

ends up with six equations that can be used, together with information of the field at an

initial time, to create a recursive solution scheme to advance the fields through time. In

Annex I these equations, used for the iterative process, are shown, assuming that En+1/2
y ,

En+1/2
z and Hn

x are known. The Yee algorithm allows for the approximations used to be

second order accurate, meaning the error decreases quadratically with decreasing size of

the Yee cell, allowing for high accuracy results.

When applying this method, one always needs to satisfy the stability criterion, to

avoid divergence of the fields during the calculation. This criterion relates the sizes of

both time and space steps used as shown in Equation 1.2.

∆t <
1

vmax

1√
1

∆x2 + 1
∆y2 + 1

∆z2

(1.2)

The FDTD method is especially suited for this work, since it is a fast and simple

method, that allows the simulation of arbitrarily shaped media, which is of particular

importance when considering photonic structures, as well as inhomogeneous and lossy

media. Lastly, it also allows for broadband frequency simulations, that reduce the simu-

lation time required [67, 70, 76, 77]. In this work, a commercial-grade simulator based

on this method was used [77].
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2
Simulation Setup

2.1 Solar Cell Structure

As stated in the previous chapter, this work uses the FDTD method, implemented in the

commercial tool provided by Lumerical Solutions Inc. [77], to study the effects of LDS

on the photo-generated current and generation profiles of PSCs. The schematic for the

cells used in these simulations are shown in Figure 2.1 and the sizes summarized in Table

2.1. The various simulation parameters are described in Annex II. These cells are based

on PSCs optimized to reach maximum photo-generated current. From Chapter 1, one

can see that the materials used are some of the most common in the literature [31]. The

relevant material properties are shown in Annex II.

This work is centered in 2 different cells. First, one will study planar cells, from now

on referred to as PC, shown in Figure 2.1 a) and, secondly, a cell with TiO2 hexagonally

packed voids acting as light trapping structures, from now on called LTC, shown in Fig-

ure 2.1 b). The LTC uses TiO2 since its properties, such as high dielectric constant and low

absorption under 400 nm, make it a promising material for light trapping purposes [70].

For each architecture, 250 nm and 500 nm perovskite thicknesses were considered. The

latter value represents a common optimized thickness for improved trade-off between

opto-electrical performance and the solar cell degradation [15], while the second repre-

sents a common value when considering flexible applications [71, 79]. The LDS material

is generally added to the cell by incorporating it into an encapsulation matrix [52, 60,

63] or by mixing it with the mp-TiO2 used as ETL [54, 61]. For this purpose, only the

first case is considered as it is the easier to simulate. The materials used as encapsulation

are generally highly transparent polymers such as PMMA [52], EVA [63], PVB [63] and

PS [60] with thicknesses in the order of micrometers. As a result, because the FDTD

method is optimized for nanophotonic simulations, an approximation is used where the
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CHAPTER 2. SIMULATION SETUP

air/encapsulation material reflection was neglected, since it wouldn’t affect the main re-

sults in any meaningful way, and the background index of the simulation was changed to

1.5, which is a common value for these materials [80], case referred from now on as PBI

- polymer background index. For the PC, a simulation with vacuum background index,

from now on referred to as VBI, was still made as a reference.

Table 2.1: PC and LTC parameters. Ag, Spiro and ITO represent the respective material
thicknesses. TiO2, for the PC, represents the TiO2 thickness and for the LTC is the TiO2
thickness between perovskite and the structures beginning. tV oids is the structures’ TiO2
thickness. R is the voids x and y radius, while Rz is the z radius. tV oids is the distance
between the center of 2 consecutive void structures, being given in function of R.

Planar Cell (PC) Light Trapping Cell (LTC)

Perovskite thickness (nm) 250 500 250 500

R (nm) - - 401.2 388

Rz (nm) - - 1792 820.8

Pitch (×R) - - 2.2 2.3

ITO (nm) 50 76 63.6 62.3

TiO2 (nm) 20 20 20 93.2

tVoids (nm) - - 656.2 404.6

Spiro (nm) 150 150 150 150

Ag (nm) 80 80 80 80

Figure 2.1: Schematic of the solar cells used in the simulations. a) Cell with planar
structure, PC, used as reference and b) Cell with light trapping structures, LTC. The
dimensions of the cell on the right refer to their respective counterparts in Table 2.1. The
different layers properties are shown in Annex II.
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3
Results and Discussion

3.1 Optical simulation

The most important parameters for this work are the absorption, optical photocurrent,

Jph (mA/cm2), and generation rate per unit volume, G (cm−3s−1). The second represents

the maximum current obtainable by the cell, being also a figure of merit related with the

cell’s absorption. The latter represents the generated electrons per unit time through the

entire volume. Considering the electromagnetic theory, one can relate these parameters

with the fields resulting from the simulation and the respective material’s properties [77].

The material’s properties used in this work are provided by reference [80] and are also

ploted in Annex II. Consequently, the absorption per unit volume, Abs (cm−3), can be

calculated using [77]:

Abs = −0.5ω|E|2imag(ε) (3.1)

Where ω is the angular frequency, ε is the material permittivity and |E|2 is the square

modulus of the electric field at the given point in the simulation region. By integrating

the absorption per unit volume to calculate the cell absorption, A(ω), one can then use

the solar spectrum to calculate Jph by the following integral.

Jph =
∫
A(ω)AM1.5Gdω (3.2)

Where AM1.5G represents the solar spectrum based on the ASTM G-173 global irradi-

ance spectra [16]. This integral is of paramount importance, since the effect of the LDS

layer is considered by changing the spectrum used in the integration, i.e. change AM1.5G.

The generation rate, G, is obtained by the integration of the number of photons per unit

volume, g (J−1cm−3), over the simualtion spectrum. The latter is given by the following

equation: g = Abs
~ω
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CHAPTER 3. RESULTS AND DISCUSSION

3.2 Down Shifted Spectrum

The main objective of this work is to assess the optical effects of using LDS materials

on PSCs by calculating Jph and generation profiles when the cell is shined with a down-

shifted (DS) spectrum. Consequently, the first step is to create a spectrum that would

result from the interaction of the normal AM 1.5G spectrum with the LDS particles. Since

this work does not focus on a particular type of LDS material, but instead, tries to study

the general effect of DS, the setup used to create the shifted spectrum will be an ideal

case that incorporates the main aspects of this process.

Based on emission and absorption profiles measured experimentally from various

research groups for QDs [62, 81], dyes [38, 52, 82] and RE [44, 51], a gaussian profile

was chosen to emulate those spectra as it is the closest shape to the experimental mea-

surements. These gaussian profiles were considered to have unitary amplitude – this

parameter will represent the percentage of photons that are absorbed – a dispersion of 50

nm and the gaussian center, λC , was left as an adjustable parameter for sweeps that will

be shown in a later section. Following the choice of absorption and emission profiles, the

AM1.5G spectrum photon flux, based on ASTM G-173, was employed, together with the

gaussian profile, representing the absorption, to calculate the absorbed flux (blue plot in

Figure 3.1 a)).

The absorbed flux was then shifted to create the emission flux (red plot in Figure 3.1).

The value of this shift was left as a variable for future sweeps. Finally, to simulate the effect

of DS, the AM1.5G spectrum was modified by adding the emission flux and subtracting

the absorption flux. For simplicity, both absorption and emission plots were considered

to be equal and no losses due to effects like isotropic emission of radiation, reabsorption

and non-unitary photoluminescent quantum yield (PLQY) were considered.

Two examples of the resulting power profiles are shown in Figure 3.2. The plot on

the left shows the AM 1.5G spectrum and 2 cases where λC was changed. For lower

wavelengths a reduction of the overall power is observed, depending on the center of

the gaussian profile used. It is also evident that there is a power increase in the region

corresponding to λC plus the shift. On the right, the plot shows the effect of a change

in the shifting parameter, ∆λ, value. Where it can be seen that as ∆λ increases the

peak is redshifted. The irradiance spectra obtained attend to the most important aspects

resulting from the DS process, like lower power for lower wavelengths and analogously

for higher wavelengths as observed by modelled results from Lesyuk et. al. [40, 41], also

shown in Figure 3.1 b).

3.3 Planar Perovskite Solar Cells

Planar cells, introduced in Chapter 2, with different background indexes were first sim-

ulated. The index change represents the switch from the most common simulation en-

vironment – with vacuum background index, VBI – to a background with an index that

10



3.3. PLANAR PEROVSKITE SOLAR CELLS

Figure 3.1: a) In solid line are the absorbed and emitted fluxes for λC of 350 nm and ∆λ
of 200 nm. In dash line is the gaussian profile used to calculate the absorbed and emitted
fluxes; b) Modelled spectra transmitted through a window prototype with varying QD
properties and quantum yield of 50%. Adapted from reference [40]; c) Schematic of the
DS process, where higher wavelength radiation is redshifted.

represents the presence of a matrix layer where the LDS particles can be embedded -

polymer background index, PBI. In this second case, the reflection in the interface be-

tween the LDS material matrix and vacuum are not considered, given that these layers

are generally several micrometers thick and, therefore the simulation methodology is

not suited as it would require prohibitive amounts of computer memory. On the other

hand, this reflection effect is ∼4%, which is minimal and thus would not affect the main

results in any significant way. These structures will also allow, due to the lack of photonic

structures that lower the amount of UV absorbing materials, such as TiO2 and ITO, to

check the optical gains of the DS spectrum on a case where there is not a significant UV

parasitic absorption.

3.3.1 Reflection Profiles

Initially, the total reflection and transmission profiles were calculated using the FDTD

method, representing the numerical approximation to the theoretical results, and the

transfer matrix method, obtained from the Fresnel equations for a 1D multistack, repre-

senting the analytical solution. By comparing both these results it is possible to verify the
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Figure 3.2: Resulting irradiance plots of the DS process used to simulate the effect of a
LDS layer. a) AM1.5G spectrum, in black, and 2 examples of resulting spectrums when
the ∆λ remains constant as 310 nm and λC changes from 300 nm to 400 nm, in red
and blue, respectively, b) AM1.5G spectrum, in black, and 2 examples of the resulting
spectrums when λC remains constant at 300 nm and ∆λ varies from 205 nm to 400 nm,
in red and blue, respectively.

accuracy of these numerical results.

Reflection profiles have 2 main components, specular reflection, Rs, and difuse reflec-

tion, Rd . The method used for these results calculates the total reflection meaning both

components are considered. However, because the results shown here are for PCs, there

is no Rp, and thus the profiles for the PCs only have a specular component.

The reflection profiles for the 4 simulated PCs are shown in Figure 3.3. The equivalent

transmission results are included in Annex III. From these plots, one can clearly see that

the numerical simulation results make an excellent fit to theoretical curves over the entire

simulation bandwidth. The inset profiles show the difference between the reflection

values of the numerical simulation and theoretical results, validating the simulation

method used as the difference is always inferior to 9× 10−3.

Considering the optical information shown in these graphs, one notices immediately

the high reflection for wavelengths above 700 nm. When the cell thickness is increased,

this effect is attenuated, as shown in Figure 3.3 b) and d) by the small dip around 900 nm.

This effect results from Fabry Perot-like interference patterns arising from constructive

interference of the propagating light [70]. However, the reflection, for the most part is

still significative, reaching values up to 80%. Consequently, there is a need to create

mechanisms to trap light and improve these losses, as will be further expanded later.

On the other side of the spectrum, under 700 nm, one can see the considerable low

reflection, mainly attributed to the use of ITO as an anti-reflection coating. From Fresnel’s

equations it is known that smaller differences in material’s refractive index, on an inter-

face, leads to lower reflection. Considering ITO’s index of 1.9, together with perovskite
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Figure 3.3: Reflection profiles with the results from the numerical simulation, in black,
and the results from the theoretical simulation, in red. Inset is represented the modulus
of the difference between the two methods. a) PC with 250 nm perovskite, b) PC with
500 nm perovskite, c) PC with background index of 1.5 and 250 nm perovskite, d) PC
with background index of 1.5 and 500 nm perovskite.

or TiO2’s index of 2.5 (under 700 nm) [80], a lower reflection would indeed be expected,

when compared with the vacuum index. This optical matching effect also explains the

difference between the reflection under 700 nm for the VBI case (Figure 3.3 a) and b)) and

the PBI case (Figure 3.3 c) and d)), since the latter provides a smaller index difference,

when compared to ITO. In fact, due to the similar refractive index of the background and

ITO, there are some points where the observed reflection is nearing 0% (ideal matching

case).

3.3.2 Absorption Profiles

The absorption profiles were calculated as described in Section 3.1, by integrating the

absorbed power per unit volume, and are displayed in Figure 3.4. These plots have 4

main components: the absorption due to the perovskite layer, curve in black; the TiO2

layer, represented by the red shaded part; the remaining materials in the cell (ITO and

Spiro), illustrated by the green shaded part. The last components are the inset profiles

showing the absorbed power density throughout the cell for specific wavelengths, namely

350 and 900 nm. The first component is of paramount importance, as it represents the
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absorption that will lead to the production of energy. The second component, due to

TiO2 being the main UV absorber in the cell, will also be very important to analyze the

optical gains from the shifted spectrum. The third simply represents the general parasitic

absorption. However, it should be noted that ITO also has parasitic absorption leading

to photocurrent gains. The last component, the inset profiles, exhibit the absorption

behavior for different wavelengths.

Because the transmition values, shown in Annex III, are negligeable, the absorption

can be calculated from the reflection using A = 1 − R, where R is the reflection from

the previous subsection, meaning that both these parameters are intimately related. For

most of the simulation bandwidth the 500 nm cells – Figure 3.4 b) and d) – show higher

absorption than its 250 nm counterpart – Figure 3.4 a) and c) – since in the former light

will have a higher travel path. In the last subsection it was discussed that the PBI cells’

reflection for wavelengths under 700 nm lowered around 10%, when compared with

the VBI cells. This effect is also enhanced in these plots where the cell has better index

matching. Also present in these graphs is the lower absorption for wavelengths above

800 nm, that will be further analyzed in a later section, when the LTCs are introduced.

A relevant aspect present is the TiO2’s parasitic UV absorption - reaching values

between 10-20% under 400 nm - where the TiO2 is optically active. Despite the TiO2

reduced thickness, these values are still significant and impact perovskite’s absorption

in these wavelengths. As will be shown in a later section, the increase in TiO2 thickness

will lead to a further decrease in perovskite absorption due to higher absorption of this

material, completely blocking the UV radiation from reaching the absorber.

For the remaining materials, in the most energetic section of the spectrum, the ab-

sorption is mainly attributed to the ITO layer, as it is the first one in the cell, reaching

values up to 20%. These absorption figures are corroborated by the inset profiles with the

absorbed power for 350 nm, where it can be seen that Spiro’s absorption is almost negli-

gible, being ITO and TiO2 the second higher absorbers, after perovskite. Consequently,

it is expected that, with the use of a LDS material to change the incident spectrum, one

will be able to mitigate the unwanted electron generation in these layers, shifting the

photo-generation to the absorber layer.

For higher wavelength photons, there is parasitic absorption from both Spiro and

ITO. From the inset profiles on the right, that show the absorbed power for 900 nm, one

can see that these materials can reach similar absorption values to those of perovskite.

Although this study is not the main focus of this work, it is also important to note that by

reducing these parasitic absorptions and, therefore, increasing perovskite’s absorption,

one can increase the cell’s Jph, as shown in recent works by Mendes et.al. [70, 71]. From

the standard AM 1.5G spectrum, shown in Section 3.2, it can be seen that there is still

some relevant radiation for wavelengths above 800 nm.

Considering the absorption values above 80% for wavelengths ranging from 400 to

750 nm, the excellent absorption properties of perovskite are seen. Several equivalent

studies, for amorphous silicon (a-Si) solar cells [70, 74], crystalline silicon cells [70], CIGS
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3.3. PLANAR PEROVSKITE SOLAR CELLS

cells [64] and even GaAs cells [68], show lower absorption for an equivalent wavelength

range, when compared with perovskite’s. These outstanding absorption properties make

perovskite a very compelling material for solar cells and this is, to some extent, part of

the reason they are so widely studied.
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Figure 3.4: Absorption profiles with the absorption on the perovskite layer, in black; the
TiO2 layer, in red; and the total cell absorption, in green. The inset profiles show the
plots for the absorbed power density through the cell volume for specific wavelengths,
indicated by the arrows. The leftmost graph is the absorbed power for 350 nm and the
rightmost graph is the absorbed power for 900 nm. a) and b) PC with VBI for 250 nm and
500 nm perovskite, respectively; c) and d) PC with PBI for 250 nm and 500 nm perovskite,
respectively.

3.3.3 Photocurrent Shifts

Together with the solar spectrum, the calculated absorption profiles, can be employed to

obtain the maximum value of photocurrent in the cell, as described in Section 3.1. These

values act as a figure of merit of the optical performance of the cell and, therefore can be

used to compare different cell architectures.

By integrating different spectrums, using the process shown earlier in Figure 3.1, one

can emulate the effect on Jph of having an LDS material on top of the cell. Consequently,

a sweep was made, where λC was varied between 300 and 400 nm and ∆λ between 100
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Figure 3.5: Contour plots for the sweeps where λC and ∆λ were varied from 300 nm
to 400 nm and 100 nm to 400 nm, respectively. a) PC with VBI for 500 nm perovskite
layer and b) PC with VBI for 250 nm perovskite layer. The thicker line represents the
contour corresponding to the photocurrent value obtained for the pristine spectrum. The
indicated values represent the respective contour photocurrent value. The topmost value
refers to the contour representing the pristine value, while the bottommost refers to the
highest value contour in the plot.
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to 400 nm and 100 nm to 400 nm, respectively. a) PC with PBI for 500 nm perovskite
layer, b) PC with PBI for 250 nm perovskite. The thicker line represents the contour cor-
responding to the photocurrent value obtained for the pristine spectrum. The indicated
values represent the respective contour photocurrent value. The topmost value refers to
the contour representing the pristine value, while the bottommost refers to the highest
value contour in the plot.
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and 400 nm. The resulting plots are shown in Figure 3.5 for the VBI cell and in Figure

3.6 for PBI cell.

In all cases, the trend when both parameters change is similar and give a general idea

of how the changing spectrum can influence the maximum current output. When con-

sidering ∆λ above 250 nm, Jph drops steadily to a minimum, reaching values 2 mA/cm2

lower than the pristine value, shown by the thicker line in the different plots. The absorp-

tion profiles from the last section show that, above 800 nm there is a significant reduction

in the cell absorption, associated with the perovskite bandgap, ∼1.55 eV, used for these

simulations. Consequently, when the ∆λ is significantly increased, the spectrum gets

redshifted, Figure 3.1, to where the cell has lower performance negatively impacting its

optical response.

In Table 3.1 the Jph for the pristine and optimized spectrums are summarized, to-

gether with their absolute and relative differences. Here it is seen that the differences are

small, with a maximum of 0.35 mA/cm2(1.3%) for the VBI cell with 500 nm perovskite.

The thin TiO2 layer used in these cells is the main factor inhibiting this increase as it

is the main UV absorber before perovskite. This lower parasitic absorption is optically

advantageous, as it allows for an increase in perovskite’s absorption. However, practi-

cally, it has some issues related with the UV degradation of MAPbI3. Several reports

have studied the degradation mechanisms, but the full picture hasn’t yet been totally

understood. Nonetheless, one of the points of focus has been the creation of I2 that leads

to the structural decomposition of perovskite’s crystal [55, 57]. This can appear at the

TiO2/perovskite interface from TiO2’s catalytic effects [57] and from the known photol-

ysis of PbI2 present in the perovskite’s structure [55]. Therefore, on one side, the UV

shading of the cell produced by a thicker layer of TiO2 could be seen as beneficial, reduc-

ing this degradation in detriment of the photocurrent that would be generated otherwise.

However, considering TiO2’s photocatalytic effects under 400 nm the use of either a UV

filter or LDS are preferred to avoid perovskite’s degradation, with the latter enabling the

reabsorption of the otherwise lost radiation [52].

The optimized ∆λ and λC values for the Jph from Table 3.1 are summarized in Table

3.2. Adding these values, the result varies between 400 to 500 nm, representing the

wavelengths to where the spectrum is shifted. Given that these values depend heavily

on the device absorption, which is more prevalent in the 400-700 nm range (Figure 3.4),

these results were expected.

3.3.4 Generation Profiles and UV absorption

The generation profiles were calculated, as explained in Section 3.1, for the pristine

spectrum and the one corresponding to the optimized ∆λ and λC values, shown in Section

3.3.3. The results for the PCs with VBI are shown in Figure 3.7 and, for the cells with PBI,

in Figure 3.8. For all cases in study, the main difference is the reduction of the harmful

photo-generation in the TiO2 layer. This value varied from around 2 × 1026cm−3s−1 to
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Table 3.1: Summary of the optimized results obtained for the different PCs simulated.
AM1.5G Jph represents the values obtained in the pristine case and Shifted Jph represents
the optimized values resulting from the sweeps for each individual case. It is also shown
the absolute and relative difference between the two.

Background refractive index 1 1.5

Perovskite thickness (nm) 250 500 250 500

AM1.5G Jph (mA/cm2) 22.87 25.94 24.32 26.96

Shifted Jph (mA/cm2) 23.03 26.29 24.45 27.20

∆Jph (mA/cm2) 0.16 0.35 0.13 0.24

∆Jph (%) 0.7 1.3 0.5 0.9

Table 3.2: ∆λ and λC values corresponding to the optimized values of Jph obtained from
the sweeps.

Background refractive index Perovskite thickness (nm) λC(nm) ∆λ(nm)

1 250 387.5 145

500 400.0 205

1.5 250 337.5 115

500 350.0 205

1×1026cm−3s−1 for both 250 and 500 nm cells with VBI, and from around 3×1026cm−3s−1

to 0.2×1026cm−3s−1 for the PBI case. Thus, the photo-generation changes to 50% and 7%

of the original value, deriving from the lower UV radiation irradiated onto the cell.

As a result of the TiO2’s reduced absorption, an increase in the perovskite’s photo-

generation is observed as indicated in Figure 3.7 and 3.8. Equivalently, an increase in

Spiro’s parasitic absorption was also obtained. One can attribute this latter addition to

the increase in higher wavelength radiation, which has a higher penetration depth on the

cell.

Perovskite’s UV absorption was considered by calculating Jph for wavelengths between

300 nm and 400 nm, because, as was explained earlier, this parameter is intimately related

with the solar cell’s absorption. For the PC with 250 nm and VBI, these values were 1.00

mA/cm2, with the pristine spectrum, and 0.15 mA/cm2, with the optimized spectrum. In

the 500 nm perovskite layer case, the same values were 1.00 mA/cm2 and 0.20 mA/cm2.

Considering now the PBI cases, one obtained for the 250 nm cell 1.17 mA/cm2 and 0.27

mA/cm2 for the optimized and pristine spectrums, respectively, and, for the 500 nm cell,

1.09 mA/cm2 and 0.16 mA/cm2. The corresponding percentual differences range from

75-85%, suggesting a significant reduction in the material UV absorption.

From these results, it can be inferred that either the TiO2’s photoactivity and per-

ovskite’s degradation under UV radiation would be reduced, even when one takes into

account the non-ideal DS effects here suppressed, allowing these cells to maintain their
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performance figures for a longer time period. Later, this point will be further expanded

for the LTC. It can also be added that a small reduction in the ITO layer photo-generation

was also achieved.
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Figure 3.7: Generation profiles for the PCs with VBI. a) cell with 250 nm perovskite; b)
cell with 250 nm perovskite and optimized spectrum; c) cell with 500 nm perovskite; d)
cell with 500 nm perovskite and optimized spectrum. The arrows and ellipse mark the
biggest changes in the plots.

3.4 Solar Cells with Dielectric Photonic Structures

In this section, the focus is in the cells with photonic structures. As stated earlier, PC

performance suffers from significant losses associated with lower absorption for higher

wavelengths, paving the way for the development of different methods to mitigate these

losses.

In this work, high dielectric constant structures are considered for use on top of solar

cells to act as forward scatterers of light, causing an increase of its travel path, and,

consequently, their chance of being absorbed [72, 74]. The use of these structures can also

lead to the creation of localized modes in the absorber material that will then increase
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the absorption due to the high intensity electric fields generated [72].

For this method, the format of the structures is rather important given that, according

to the Fresnel’s equations, the reflection increases for steeper refractive index changes.

As a result, various studies were conducted, where different structures were tested to

assess which one had the best optical performance [71]. The material used for these

structures was TiO2, because of its low parasitic absorption for wavelengths above 400

nm and its high dielectric constant (around 2.5) [70]. The use of this material in silicon

solar cells does not result in any significant photocurrent losses as, in TiO2 photoactive

zone, silicon has a low absorption so TiO2’s parasitic absorption does not impact the cell

performance. However, when considering perovskite, the degrading effects of TiO2’s

photoactivity should be taken into account. As such, part of this section is centered in

the effects of using an LDS material to minimize the absorption in the TiO2 layer, that, in

practice, should result in a lower degradation of the perovskite material.
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3.4.1 Reflection Profiles

In Figure 3.9 are shown the plots for the simulated reflection of both PC with PBI, and

LTC for 250 nm and 500 nm perovskite layers. Contrary to the PCs, this reflection is

composed of a specular and a diffuse part due to the photonic structures envolved.

For the low wavelengths part of the spectrum, there is no significant change in the

reflection, due to the good index matching between the background and ITO layer. It

should be noted that, under 350 nm, a spike in reflection occurs, related with an increase

in ITO’s refractive index that reaches values up to 2.4 [80]. This spike is somewhat

mitigated by employing photonic structures as they provide a better matching between

the background and ITO.

The focal point to take into account here is the lower reflection for higher wavelengths,

stemming from the use of photonic structures. It should be noted that the dips occurring

above 800 nm, evidenced in the reflection profiles, arise from localized modes that are

created inside the absorber material leading to a significant increase in the cell absorption.

These modes are observed and discussed in the following section.
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Figure 3.9: a) Reflection profile for the LTC, in black; and for the PC, in red; where both
have a 250 nm layer of perovskite absorber material. b) Reflection profile for the LTC, in
black; and for the PC, in red; where both have a 500 nm perovskite absorber material.

3.4.2 Absorption Profiles

Similarly to the last section, the next step consists in the calculation of the absorption

profiles due to their important relation with the photocurrent parameter, used to char-

acterize the optical performance of the cell. Again, the A = 1 − R relation is seen. In

Figure 3.10 are shown the absorption profiles obtained for LTC with the absorption of

the perovskite absorber, TiO2 and remaining materials distinguished by color. Inset are

also shown 2 contour plots of the absorbed power density for 350 nm, bottom graph and

900 nm, top graph.
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At a first glance, comparing with the previous PC results (Figure 3.4), one immedi-

ately notices the significant increase in TiO2’s absorption. Previously, for wavelengths

ranging from 300 nm to 400 nm, results were around 10-20%, while, in this case, they

rose to values between 60-80%, representing a shading of the absorber material for this

wavelengths range. The main reason leading to this change is the thicker TiO2 layer used,

as predicted by the Beer-Lambert law. Considering the absorbed power density plots

for 350 nm, one can also see this effect, since TiO2 represents the majority of absorbed

power by the cell. Consequently, one will expect that the effect of changing the incident

spectrum will lead to an overall increase in the photocurrent generated by the cell.

An increased absorption of low energy photons is observed, reminiscent of the local-

ized modes created inside the absorber material, consequence of the photonic structures

employed. An example of these modes can be seen in the 900 nm wavelengths inset

plots (top plots) in Figure 3.10, deriving from the different interferences generated by the

interaction of light with the structures, consequently leading to the significant increase

of the cell absorption.

Comparing the absorption of the remaining materials, namely ITO and Spiro, shown

by the green shaded zone in the plots, with their equivalent absorption for the PCs. For

wavelengths between 400 and 700 nm the absorption increases minimally from 1-3% to

3-4%. Under 400 nm this absorption went from 10-20% to 20-30%. While, above 700

nm it increased from 4-5% to 8-10%. These overall trends are related with the structures

employed, as the increased surface area to improve the index matching between the

background and the cell, also leads to higher overall parasitic absorption.

3.4.3 Photocurrent Shifts

Analogous to the PCs, sweeps were performed, where the λC and ∆λ, for the LDS ma-

terials, were varied between 300 nm to 400 nm and 100 nm to 400 nm, respectively,

to emulate the shifted spectrum as described in Figure 3.1. The results are shown in

Figure 3.11 and the optimized values, along with their corresponding ∆λ and λC , are

summarized in Table 3.3 and 3.4, respectively.

The main aspect resulting from these plots, when compared to the PCs, is the higher

increase in Jph when the DS spectrum is applied. The PCs saw increases shy of 1% while,

in this case, the increase was ∼2%. This improvement is linked to the higher TiO2 ab-

sorption, associated with the increased thickness, as evidenced by the absorption plots

from Figure 3.4, for the PC, and Figure 3.10, for the LTC. While a 2% increase may seem

as small, it should be noted that, the maximum gain attainable, by absorbing the entire

AM1.5G spectrum for wavelengths between 300 nm and 400 nm, is 1.35 mA/cm2 (value

calculated from the integration of the solar flux for the indicated range). Considering

the different absorption plots shown throughout this work, the outstanding perovskite

absorption under 700 nm is one of its most eye-catching features. As such, and under-

standably, introducing LDS as a manner to significantly increase Jph, ends up falling short
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Figure 3.10: a) Absorption profile for the LTC with 250 nm perovskite layer, b) absorp-
tion profiles for the LTC with 500 nm perovskite layer. The shaded areas represent the
absorption of the TiO2, in red; and the remaining materials absorption, in green. The
black curve is the perovskite absorption. The inset plots represent the absorbed power
density for each respective cell for a wavelength of 350 nm, bottom graph, and 900 nm,
top graph.

on major performance improvements, even when considering the ideal case here used for

the shifting process. It should be noted that, the main objective of this method is to avoid

the stability hindering TiO2 photo-generation and harmful perovskite UV absorption

without negatively impacting these cell’s optical performance. Furthermore, given the

optical nature of these studies, electrical phenomenon such as recombination are not con-

sidered which, in their own terms, can also benefit from lower UV radiation and higher

visible radiation [53].

Table 3.3: Optimized Jph results of the λC and ∆λ sweep done. It’s shown the pristine
results, AM1.5G Jph; the results corresponding to the maximum value obtained from the
sweep, Jph; and the absolute and relative difference between both values ∆Jph.

Perovskite thickness (nm) 250 500

AM1.5G Jph (mA/cm2) 26.09 28.07

Shifted Jph (mA/cm2) 26.66 28.62

∆Jph (mA/cm2) 0.57 0.55

∆Jph (%) 2.2 2.0

Similarly, to the PC, for higher ∆λ and λC , the cell’s optical current suffers a steep

decrease. Taking the example of the 250 nm cell (Figure 3.11 b)), the pristine value, shown

in the plots by a thicker line, is 26.09 mA/cm2. For a ∆λ and λC of 400 nm a Jph value

under 24.3 mA/cm2 is observed, representing a decrease of almost 7%. Consequently,
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Figure 3.11: Contour plots for the sweeps where λC and ∆λ were changed from 300 nm
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the use of suboptimal shifting and absorption properties of DS materials can significantly

hinder the cell performance, as evidenced by the redshifting (Figure 3.1 a)) to wavelengths

where the cell shows worse absorption (Figure 3.10).

Considering the optimal ∆λ and λC values. One can see that the λC leading to im-

proved optical performance is 350 nm for both cases, which resembles the behavior pre-

viously verified for the PCs with PBI. This result is expected, as these photonic structures

mainly affect the absorption for higher wavelength photons, that are not significantly

affected by LDS particles. On the other hand, ∆λ tends to fluctuate between each case.

For these cells, ∆λ changes from 130 nm for the 250 nm cell to 190 nm for the 500 nm

cell. However, when considering the photocurrent shift plots, the difference is mainly

irrelevant as it represents changes under 0.1%. One should also note that the maximum

photocurrent is obtained when the spectrum is shifted to around 500 nm, which is of

particular importance, as electrically, the external quantum efficiency measured for these

cells tends to have a maximum near this point [13, 52, 53, 61].

Table 3.4: ∆λ and λC , values corresponding to the optimum Jph values. The values on the
left represent the thickness of the perovskite used in the cell simulation.

Perovskite thickness (nm) λC (nm) ∆λ (nm)

250 350 130

500 350 190

3.4.4 Generation Profiles

This study was finalized by calculating the generation profile for the LTC, whose plots

are shown in Figure 3.12. The left plots represent the pristine generation profiles, while

the right plots represent the generation with the optimized spectrum discussed in the

last subsection. The most notable aspect is the significant reduction in the TiO2 photo-

generation with the spectral change. For the 250 nm cell, in the evidenced part of the

plot, the photo-generation decreased from 0.42× 1026 to 0.03× 1026 mA/cm2. The 500

nm cell, suffered a similar decrease from 0.16 × 1026 mA/cm2 to 0.03 × 1026 mA/cm2,

representing reductions of one order of magnitude in the harmful TiO2 photo-generation.

These results are equivalent to those of the PC, although in this case the higher TiO2

thickness helps understand the reduction better.

As pointed out in the generation profiles of Figure 3.12, a small decrease in the gen-

eration peak, located in the perovskite’s top corners, is observed. This reduction is a

consequence of the UV spectrum redshift, where light has a higher penetration depth

and, therefore, instead of highly concentrated absorption near the absorber material top

interface, there is a more delocalized absorption throughout the absorber volume. This

effect can be electrically favorable for the cell as there is less surface absorption and,

consequently, less recombination.
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Figure 3.12: Generation profiles for the LTC. a) cell with 250 nm perovskite; b) cell with
250 nm perovskite and optimized spectrum; c) cell with 500 nm perovskite; d) cell with
500 nm perovskite and optimized spectrum. The arrows point to the biggest plot changes.

Similar to Subsection 3.3.4, an evaluation of the perovskite’s UV absorption was made

by calculating Jph for these different cases. The values obtained for the LTC with 250 nm

perovskite were 0.68 mA/cm2 and 0.13 mA/cm2 for the pristine and optimized spectra,

respectively, while the LTC with 500 nm perovskite saw a reduction from 0.73 mA/cm2

to 0.13 mA/cm2. The above-mentioned values represent reductions ∼80%, which is

very similar to those of the previously studied PCs. Therefore, an important decrease

in perovskite’s UV absorption was obtained. Granted, the simulation methodology here

employed does not attend to all intricacies of the DS process, however, these results

demonstrate some interesting general results coming from the adoption of these materials

on PSCs that could improve the device’s life-span. In fact, recent studies from different

research groups, have used LDS materials on PSC’s to achieve a better life-span [60–62].

One example, by Anizelli et. al., even compared the results against a UV filter obtaining

equivalent long-term values for the cell parameters [52].

3.5 Final Thoughts
To summarize the fundamental results from this work, a bar chart was made, where the

Jph improvements and UV absorption reductions are shown (Figure 3.13).
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Starting with the photocurrent chart (Figure 3.13 a)). A first point to be made is the

higher current for the 500 nm cells, resulting from the thicker absorber. This difference

is reminiscent of higher VIS-NIR radiation absorption, as demonstrated in Figure 3.4 for

the PC and Figure 3.10 for the LTC. Secondly, the higher for the PBI PC, when compared

with VBI PC, that stems from better index matching between the background and the

first material in the cell (ITO), as seen in Figure 3.4. The 500 nm cell, for the PBI case, can

even come close to the LTC with 250 nm. However, it should be noted that the dimensions

here used for the LTC were based on optimizations done for a VBI case. Consequently,

the VIS-NIR absorption improvements are not as high as they should be in its optimized

application.

A last analysis of this graph also indicates small current increases when using the

optimized spectrum. Considering these studies were made without any losses, Figure 3.1

a), it can be inferred that these materials do not show a pronounced increase in optical

performance. However, electrical effects, that were not considered in this work, like bulk

instead of surface absorption and lower thermal losses that come with higher energy

transitions, can be deciding factors leading to improved cell current.

Considering now the bar chart analyzing the UV Jph. As referred in earlier sections,

this parameter is indicative of the overall cell absorption for the selected range. Con-

sequently, by calculating this value between 300 nm and 400 nm, one can assess the

UV absorption of these cells. From the chart, a reduction around 80% is observed for

all cases. This constitutes a major reduction in the perovskite’s absorption, even when

one considers the idealized DS case here employed. Therefore, by maintaining a similar

optical current, while significantly reducing the harmful effects of UV radiation in these

cells, one would expect an increased long-term performance.
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Figure 3.13: a) Bar chart summarizing the pristine (red) and optimized (blue) Jph values
obtained from the photocurrent sweeps; b) Bar chart summarizing the Jph for wavelengths
ranging from 300 nm to 400 nm for the for the pristine (red) and optimized spectrum
(blue).
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Conclusion and Future Perspectives

A theoretical study on the viability of applying LDS particles to reduce PSC’s UV degrada-

tion was made. The findings here discussed are in accordance with those experimentally

accomplished in recent literature.

The use of these materials did not reveal a pronounced increase in photocurrent, as

was seen by the photocurrent sweeps done (subsections 3.3.3 and 3.4.3). Here, the max-

imum change is ∼2% for the cells with photonic structures and 1% for the planar cells,

with the main difference being attributed to the lower TiO2 thickness of the latter. On

the other hand, the use of unoptimized ∆λ and λC can severely impact the optical perfor-

mance of the cell, reducing the photocurrent by 7%, for the worst cases simulated. The

optimum ∆λ and λC implied a spectrum shift to wavelengths around 500 nm, blending

well with the PSC’s electrical performance peak.

Importantly, from the performed analysis related with perovskite stability, one ob-

tained a significant reduction in TiO2 harmful photo-generation of one order of magni-

tude, coupled with an increase in perovskite bulk generation (Figure 3.7, 3.8 and 3.12).

By assessing the perovskite UV photocurrent for the different simulated cells, reductions

∼80% were obtained when comparing Jph values for the pristine and changed spectrum

(subsection 3.3.4 and 3.4.4). Therefore, from these analyses, one can infer that the use

of LDS avoids the unwanted effects of UV radiation on the perovskite, demonstrated by

the hefty decrease in UV absorption coupled with the diminished TiO2 photoactivity

resulting from lower photo-generation.

This work establishes a generalized optical analysis of using luminescent down-shifting

materials to reduce TiO2 generation and perovskite’s UV absorption. Here, optimized

light trapping structures for a vacuum index background were used, while the employed

background was 1.5 to accommodate an encapsulation with luminescent down-shifting

materials. Therefore, an optimization, following this work, for a 1.5 background index
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case is expected. Furthermore, a study on the uncertanty propagation on the FDTD

method should also be done for improved analysis when comparing different photocur-

rent values.

Following this work, one also expects that further studies will be centered in the

different luminescent down-shifting materials to assess which are the most beneficial

for photocurrent gains and long-term performance of these cells, guided by the results

attained here. Although there’s already several studies where these materials are used

to achieve the previously mentioned gains, there is still no study, at least to the author’s

knowledge, where all LDS materials are compared to each other. Therefore, by knowing

the ones that offer best performance, one can optimize their benefits and, consequently,

they can then be used as a helping factor in overcoming the major problems that still

plague perovskite-based photovoltaic technology.
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I
Equations for the FDTD method

In Chapter 1, one example equation was used to show the effect of applying the central

differences to the Maxwell’s equations, namely, for the z component projection of Fara-

day’s law. Consequently, here are shown the remaining equations resulting from the

application of the central difference to the other components of Faradays’s law, Equation

I.1 and I.2 for the x and y component, respectively.
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The next step consists in calculating equivalent equations for the Ampere’s law. Equa-

tion I.3 shows the x-projection of Ampere’s law, when central difference is applied.
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As a result, the discrete forms of both Ampere and Faraday’s law, when combined, lead

to six different equations (Equation I.4 to Equation I.9) that can be used, together with

some initial parameters, to create an iterative process to solve electromagnetic problems

by calculating the evolution of the electric and magnetic fields through time. These

equations establish the foundation for the application of the FDTD method.
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II
Simulation Parameters

In this annex is provided the material data, in specific the refractive index, n, and the

extinction coefficient, k, used for the simulations shown in this work, Figure II.1. The

most important simulation parameters used for these simulations are also summarized

in Table II.1.
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Figure II.1: Refractive index, n, and extinction coeficient, k, for the different material
used in the simulations. These values are provided by reference [80].
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III
Simulated Transmissions

Figure III.1 shows both the theoretical and simulated transmission for the planar cells

with vacuum background, Figure III.2 shows the same results for the planar cells with a

background index of 1.5 and Figure III.3 shows the simulated transmission for the cells

with photonics structures. Firstly, it should be highlighted that the obtained transmissions

∼0 were expected, due to the metallic back contact used in the simulated solar cells. For

the first two graphs, the variation between the theoretical and simulated results derives

from the iterative process used for the simulations. Because these transmission values

are so low, they are more prone to be affected by simulation errors that come from using

a numerical simulation method. However, one can still see that the FDTD simulation

results perform an admirable fit to the theoretical results.
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Figure III.1: Simulated and theoretical transmission for the planar cells. a) 250 nm
perovskite and b) 500 nm perovskite.
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Figure III.2: Simulated and theoretical transmission for the planar cells with a back-
ground index of 1.5. a) 250 nm perovskite and b) 500 nm perovskite.
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Figure III.3: Simulated transmission for the cells with photonic structures and a back-
ground index of 1.5. a) 500 nm perovskite and b) 250 nm perovskite.
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