
Nuno Castro Martins

Bachelor of Computer Science and Engineering

Loom: Unifying Client-Side Web Technologies in
a Single Programming Language

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: João Ricardo Viegas da Costa Seco,
Assistant Professor, NOVA University of Lisbon

Examination Committee

Chairperson: Jácome Cunha, NOVA University of Lisbon
Raporteur: Pedro Alves, Lusófona University

Member: João Costa Seco, NOVA University of Lisbon

July, 2017

Loom: Unifying Client-Side Web Technologies in a Single Programming Lan-
guage

Copyright © Nuno Castro Martins, Faculty of Sciences and Technology, NOVA University

of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Source: https://xkcd.com/927/

https://xkcd.com/927/

Acknowledgements

I would like to express my gratitude to everyone that supported me during the develop-

ment of this work.

To my family: my parents and sister; they are all amazing people that I can always

count on.

To João Costa Seco, my adviser, for supporting me when I proposed this project to

him and for the thereafter availability when it came to discussing ideas.

Finally, I would like to thank all my friends who dealt with the continuous nagging

that would typically sprout off my mouth as I worked through issues in the project; as well

as for the hours of company they provided me with whilst my work was being developed.

This work was partially funded by NOVA LINCS (UID/CEC/04516/2013) and CLAY

(PTDC/EEI-CTP/4293/2014).

vii

Abstract

Modern client-centred web applications typically depend on a set of complementary

languages to control different layers of abstraction in their interfaces: the behaviour,

structure, and presentation layers (in order, traditionally: JavaScript, HTML, and CSS).

Applications with dynamic interfaces whose structure and presentation depend on the

data and state of the application require tight links between such layers; however, com-

municating between them is often non-trivial or simply cumbersome, mainly because

they are effectively distinct languages—each with a specific way of being interacted with.

Numerous technologies have been introduced in an attempt to simplify the interaction

between the multiple layers; their main focus so far, however, regards the communica-

tion between structure and behaviour—leaving room for improvement in the field of

presentation.

This dissertation presents Loom: a novel reactive programming language that uni-

fies the enunciated abstraction layers of a client-side web application. Loom allows the

specification of an interface’s structure and presentation in a declarative, data-dependent,

and reactive manner by means of signals—values that change over time—inspired by the

field of functional reactive programming: reactive meaning that when the structure and

presentation of an interface depend on application-data, changes to said data cause an

automatic update of the application’s interface.

We provide an implementation of the language’s compiler that allows the creation of

interfaces with performance comparable to that of most existent frameworks.

Keywords: Web Programming Languages; Reactive Programming

ix

Resumo

Aplicações web modernas no lado do cliente tipicamente dependem de um conjunto

de linguagens e tecnologias para controlar diferentes camadas de abstração das suas

interfaces: nomeadamente, para controlar o comportamento, a estrutura e a apresentação

das mesmas (por ordem, tradicionalmente: JavaScript, HTML e CSS). Aplicações com

vistas dinâmicas cuja estrutura e apresentação dependem dos dados e estado da aplicação

requerem uma forte interligação entre as diferentes camadas; no entanto, a complexidade

inerente à comunicação entre elas é muitas vezes elevada, essencialmente pelo facto de

se tratarem de linguagens efetivamente distintas—sendo a interação com cada uma feita

de modo diferente.

Múltiplas tecnologias têm sido introduzidas com o intuito de simplificar a interação

entre as diferentes camadas; no entanto, tais tecnologias têm vindo a focar-se na comuni-

cação entre estrutura e comportamento—sendo ainda possível melhorar a interação com

a camada de apresentação.

Esta dissertação apresenta Loom: uma nova linguagem reativa que unifica as camadas

de abstração de uma aplicação web no lado do cliente acima especificadas. Loom per-

mite definir a estrutura e apresentação de uma interface de forma declarativa, reativa e

dependente de dados da aplicação através de sinais—valores que mudam ao longo do

tempo—com inspiração na área de programação funcional reativa: as interfaces são rea-

tivas no sentido em que, quando a estrutura ou apresentação da interface dependem de

dados da aplicação, tal estrutura ou apresentação é automaticamente atualizada sempre

que os dados se alteram.

Disponibilizamos uma implementação do compilador da linguagem que permite a

criação de interfaces gráficas com desempenho comparável ao da maioria das frameworks
atuais.

Palavras-chave: Linguagens de Programação para a Web; Programação Reativa

xi

Contents

Acronyms xv

1 Introduction 1

1.1 Client-Side Development of Web Applications 1

1.2 Reactive and Data-Dependent Presentation of Interfaces 4

1.3 A Language That Bridges Client-Side Web Technologies 6

1.4 Design Principles . 8

1.4.1 Interoperability With JavaScript . 9

1.4.2 Expressiveness of HTML and CSS Values 9

1.4.3 Simplicity and Consistency . 9

1.5 Introducing Loom . 10

1.5.1 Representing Data as Signals . 10

1.5.2 Specifying the Structure of the Application 11

1.5.3 Data-Dependent Presentations . 12

1.6 Contributions . 12

1.7 Structure of the Dissertation . 13

2 Programming Language 15

2.1 Core Language . 15

2.2 First-Class Reactivity . 18

2.3 Dynamic Interfaces With First-Class HTML 19

2.4 CSS as a First-Class Citizen . 20

2.5 Modules: Creating a Web Application in a Single Language 22

3 Implementation Details 25

3.1 Architecture . 25

3.2 Using Loom’s Compiler . 26

3.3 Implementing Signals . 27

3.4 HTML Values and the Virtual DOM . 29

3.5 Supporting CSS Values . 32

3.6 Loom’s Playground . 36

4 Related Work 39

xiii

CONTENTS

4.1 Background and Foundations . 39

4.1.1 Web Template Engines . 39

4.1.2 CSS Preprocessors . 40

4.1.3 CSS in JavaScript . 42

4.1.4 Bridging Web Technologies . 42

4.2 Methods and Techniques . 44

4.2.1 Gradual typing . 44

4.2.2 Reactive Programming . 45

4.2.3 Virtual DOM . 45

5 Validation 47

5.1 TodoMVC . 47

5.2 Benchmarks . 48

6 Conclusions 51

6.1 Future Directions . 51

Bibliography 55

Webography 57

A Full Examples 59

A.1 Simple Todo Application in Loom . 59

A.2 Simple Todo Application in Elm . 61

A.3 TodoMVC Application in Loom . 62

xiv

Acronyms

API Application Programming Interface.

AST Abstract Syntax Tree.

BEM Block, Element, Modifier.

CFG Context-Free Grammar.

CLI Command-Line Interface.

CSS Cascading Style Sheets.

DOM Document Object Model.

EJS Embedded JavaScript.

ES6 ECMAScript 6.

FRP Functional Reactive Programming.

GUI Graphical User Interface.

HTML Hypertext Markup Language.

PEG Parsing Expression Grammar.

REPL Read-Eval-Print-Loop.

SASS Syntactically Awesome Style Sheets.

SQL Structured Query Language.

XHTML Extensible Hypertext Markup Language.

XSS Cross-Site Scripting.

xv

C
h
a
p
t
e
r

1
Introduction

Today’s industry is increasingly concerned with the notion of user experience [Gar10]. In

the context of web applications, this causes developers to place a significant amount of

effort in determining what is shown in the screen—the client side of the application—as

well as how it is shown. As a result, and in contrast with the early days, web technolo-

gies are increasingly complex. Various technologies—from frameworks to programming

languages—have been created in order to ease the process of creating such client-focused

web applications; yet, throughout this chapter, we show that there is still room for im-

provement.

1.1 Client-Side Development of Web Applications

Modern web applications—those that benefit from placing a large part of their logic and

complexity in the client (typically the web browser)—often require a combination of

different languages and technologies to specify and control the structure, behaviour, and

presentation of their user interface components. With user experience in mind, these

applications are usually interactive and reactive, often depending on yet another set

of technologies and techniques. Given the number of technologies and the complexity

involved, how are these sort of applications effectively built?

Traditionally, the behaviour of user interfaces in such applications is specified by

means of JavaScript, the lingua franca of the web. However, as web applications become

increasingly more complex, and due to the shortcomings of JavaScript (e.g. lack of a static

type system), the importance of using languages with higher orders of abstraction that

compile to JavaScript has grown. There is a large number of languages that compile

to JavaScript [Com], each packed with a set of features that attempt on making web

development safer or simply easier (e.g. static typing; dealing with asynchronous code;

1

CHAPTER 1. INTRODUCTION

support for reactive computations).

Hypertext Markup Language (HTML) is the standard markup language for defining

an interface’s structure in a web context. As an example, we may define the structure for

a simple application that manages a list of tasks using HTML with:

1 <div id=" todo−app ">

2 <h1>Todos</h1>

3 <input c l a s s="new− task " placeholder="Add a task " />

4 <ul c l a s s=" tasks − l i s t ">

5 < l i c l a s s=" task ">

6 <input c l a s s=" task −done " type=" checkbox " checked/>

7 Learn HTML

8 </ l i>

9 < l i c l a s s=" task ">

10 <input c l a s s=" task −done " type=" checkbox " />

11 Read Introduct ion

12 </ l i>

13 </ ul>
14 </ div>

However, this structure is static. As HTML was originally designed to specify static docu-

ments, it is, by itself, unsuited to handle the full specification of the structure of modern

web applications—mainly due to their dynamic nature. This type of application is typ-

ically data-centred, with a structure that depends on such data. Dynamically changing

the structure of a given interface requires direct manipulation of the Document Object

Model (DOM), usually accessed via JavaScript. The following shows a possible (unsafe1)

way of adding new tasks to the view previously specified:2

1 const template = document . createElement (" template ")

2 function createTask (t e x t) {

3 template . innerHTML =

4 ‘< l i c l a s s =" task ">

5 <input c l a s s =" task −done " type =" checkbox"/>

6 $ { t e x t }

7 </ l i > ‘

8 return template . content . f i r s t C h i l d

9 }

10

11 const t a sks = document . querySe lec tor (" . tasks − l i s t ")

12 const newTask = document . querySe lec tor (" . new− task ")

13

14 newTask . addEventListener (" keydown " , evt => {

15 i f (evt . key === " Enter ") {

16 t a sks . appendChild (createTask (newTask . value))

17 newTask . value = " "

18 }

19 })

1User input is not escaped—which, in real applications, may lead to Cross-Site Scripting (XSS) attacks.
2Working example at: https://jsfiddle.net/YarnSphere/tvt61bzp.

2

https://jsfiddle.net/YarnSphere/tvt61bzp

1.1. CLIENT-SIDE DEVELOPMENT OF WEB APPLICATIONS

This type of ad hoc interaction with an application’s structure leads to the creation of

the so called “update logic”, commonly implemented with the aid of strategies such as

the observer pattern, where data changes are listened to and manipulations to the in-

terface’s structure via the DOM performed accordingly. The logic behind these patterns

is often complex, leading to errors being easily introduced by construction and main-

tenance operations [Mai+10]. For this reason, a set of libraries and languages such as

AngularJS [Anga]/Angular 2 [Angb], React [Rea], Vue.js [Vue], or Elm [Elm] have been

introduced to ease the creation of dynamic views, usually by allowing structures to be

defined declaratively whilst being reactive by design (more on this in section 4.2.2). The

same todo application’s structure using AngularJS3 may be defined with:

1 <div id=" todo−app " ng−app="TodoApp" ng− c o n t r o l l e r=" TodoController as Todos ">

2 <h1>Todos</h1>

3 <input c l a s s="new− task " placeholder="Add a task " ng−model=" Todos . newTask "

4 ng−keydown=" $event . key === ’ Enter ’ && Todos . addTask () " />

5 <ul c l a s s=" tasks − l i s t ">

6 < l i ng−repeat=" task in Todos . tasks ">

7 <input c l a s s=" task −done " type=" checkbox " ng−model=" task . done " />

8 { { task . t e x t } }

9 </ l i>

10 </ ul>
11 </ div>

Note that there is an implicit “binding” between the structure and the application data—

AngularJS is an example of a framework that allows the declarative definition of data-

dependent structures that are reactive (that update themselves when the data they depend

on changes).

When it comes to the presentation layer of a web interface, Cascading Style Sheets

(CSS) are the standard specification used by web browsers. As applications become large,

and because CSS was not initially developed with maintainability concerns in mind, CSS

development can be challenging: the size of the CSS applied to the interfaces of complex

web applications is often large, many times resulting in duplicated information [Maz16].

CSS preprocessors such as LESS [Les] or Syntactically Awesome Style Sheets (SASS) [Sas]

were introduced in order to solve this issue (see section 4.1.2) and have become widely

adopted by the industry [MT16]. However, as previously stated, modern web applications

are many times dynamic and data-centred; it is not uncommon for the presentation of an

interface (or at least of some of its elements) to depend on dynamic application-data. This

is a concern that CSS preprocessors do not tackle, as there are limited ways of accessing

the data of an application from within a style sheet;4 often forcing presentation-logic to

3Working example (using AngularJS v1.4.8) at: https://jsfiddle.net/YarnSphere/wknxwk8f. We
use AngularJS as an example framework for defining reactive interfaces because structures are defined using
an extended HTML vocabulary—which should be simple to understand; note that other frameworks such as
React could also be used in similar ways to achieve similar results.

4Recent CSS specifications allow element’s attributes to be used as values in CSS properties via an
attr() function; CSS custom properties may also be defined, possibly scoped to an element. This means
that application-data must be directly bound to DOM elements to become visible in CSS.

3

https://jsfiddle.net/YarnSphere/wknxwk8f

CHAPTER 1. INTRODUCTION

be specified in JavaScript, together with behaviour-logic. Knowing this, how can reactive

presentations that depend on application-data (dynamic presentations that automatically

update as the data they depend on changes) be specified? This is one of the major topics

of concern of this dissertation:

1.2 Reactive and Data-Dependent Presentation of Interfaces

Given the amount of complexity and number of technologies involved in the creation

of modern client-focused web applications, a number of frameworks and languages

have been created with the intent of bridging multiple client-side web technologies

(see section 4.1.4). The bridge between HTML and JavaScript—between structure and

behaviour—has been built in various languages such as Elm [Elm] or Ur/Web [Chl15]

and frameworks like Angular [Angb], Meteor [Met], or React [Rea]—allowing for reactive

and data-dependent interface structures to be built with relative ease.

These technologies typically support some sort of bridging with CSS—with the pre-

sentation. This is a feature that naturally reveals itself as a consequence of the already

existent connection between HTML and CSS:

a) HTML elements may change their presentation via their style attribute. Build-

ing on top of the previous AngularJS example, this could be done by setting the

ng-style attribute to "task.done ? {textDecoration: ’line-through’} : {}" in

the element with class "task-text"5: which would strikethrough each com-

pleted task;

b) CSS has access to attributes declared within HTML elements (typically classes are

used), allowing for the definition of dynamic styles—provided that the element has

the correct attributes set at each time. A possible way of defining the presentation

of a task in CSS depending on whether it is or is not done (whether it has or has not

the class done) is via:6

1 . task . done . ta sk− t ex t {

2 text−decoration : l ine−through ;

3 }

In AngularJS, this class could be set in the task’s structure with something such as:

<li class="task"... ng-class="{done: task.done}"> .

5It is often considered a bad practice to set "inline-styles"; however, note that this code could be refac-
tored by setting, for example, ng-style to "Todos.style(task)", whilst defining the style function as:
task => task.done ? {textDecoration: "line-through"} : {}.

6Working example at: https://jsfiddle.net/YarnSphere/q1xsyuq4; with AngularJS at: https://

jsfiddle.net/YarnSphere/vm670bdo

4

https://jsfiddle.net/YarnSphere/q1xsyuq4
https://jsfiddle.net/YarnSphere/vm670bdo
https://jsfiddle.net/YarnSphere/vm670bdo

1.2. REACTIVE AND DATA-DEPENDENT PRESENTATION OF INTERFACES

With this in mind, we can understand how technologies that support the creation of

reactive HTML values that depend on application-data, by extension, also support data-

dependent reactive presentations. However, we presented two distinct ways of defining

this bridge between structure/behaviour and presentation; which to use?

In late 2014, Christopher Chedeau—a member of Facebook’s front-end infrastructure

team—gave a presentation entitled “React: CSS in JS” [Che14] in which he proposes an

approach to specify the presentation of an interface by means of JavaScript, i.e. using the

strategy defined in item a); in this presentation Chedeau points out some of the problems

that result from using CSS at a large scale—which would be the case if using the strategy

in item b):

1. Global namespace: every identifier and class name is global in respect to CSS, mak-

ing name collisions easy to encounter over time; this issue gave rise to the appear-

ance of naming conventions such as those found in the Block, Element, Modifier

(BEM) methodology [Bem];

2. Dependencies: when working with multiple CSS sources, each file should be im-

ported only in pages where it is needed;

3. Dead code elimination: unused/redundant CSS rules output no errors; it is not

uncommon for applications to end up with such rules in production [Hag+15];

4. Minification: names found in CSS cannot be minified as they must match their

HTML counterpart (which may be dynamically set via JavaScript);

5. Sharing constants: as previously stated, it is common for CSS to depend on the

state or data of the application, in which case values in the CSS must match their

JavaScript counterparts—techniques must be used to keep these values synchro-

nised;

6. Non-deterministic resolution: when a certain view requires more than one CSS file

(and these files are loaded asynchronously), due to the way CSS works7, rules ap-

pearing latest in the document may have priority (possibly making CSS dependent

on the order the files are downloaded);

7. Isolation: Because all rules in CSS are global, rules defined with a certain element

in mind may end up “leaking” to other elements; i.e. by specifying the presentation

of a given view, one might inadvertently change the presentation of unrelated views.

This talk resulted in the creation of multiple libraries [Css] (e.g. Radium [Rad]) that

embrace the spirit of what was proposed—writing CSS in JavaScript (see section 4.1.3).

Yet, the proposed approach has some fatal flaws: there is no support for media queries; no

7When two rules have the same specificity—a numerical representation of the “importance” of a
selector—the one appearing latest in the document has precedence.

5

CHAPTER 1. INTRODUCTION

support for CSS animations (using keyframes); and no support for selectors in general—

resulting in no support for pseudo-classes (e.g. :hover, :focus). Whilst some of the

existing libraries attempt to implement part of the missing features in JavaScript, certain

aspects of CSS simply cannot be mimicked8; so the new question becomes: is it possible

to support all CSS features whilst avoiding the problems enunciated by Chedeau? Is it

possible to keep the mindset of the “CSS in JavaScript” philosophy and still support all

CSS features?

As it turns out, it is possible; the main idea being: treat style sheets as first-class

values defined in JavaScript and dynamically compile them to actual CSS. To avoid the

isolation issue above mentioned, apply the style sheets to specific elements, scoping them

to such elements in order to avoid leaks. This is the approach followed by libraries such

as Aphrodite [Aph]. We explain this method in detail in section 3.5—as well as some of

the issues with currently existent implementations.

1.3 A Language That Bridges Client-Side Web Technologies

So far we have given a broad description of the different layers of a web application, of

the different technologies used in each layer, and how they can be used to specify the

behaviour, structure, and presentation of user interfaces; yet, what is this dissertation all

about?

This dissertation provides an attempt at defining a language-based approach to the

problem of creating modern client-centred web applications. It presents Loom: a novel

language that enables the definition of the behaviour, structure, and presentation of an in-

terface whilst providing first-class support for reactivity. Loom supports HTML, CSS, and

reactive values (signals) as first-class citizens, allowing the definition of data-dependent

reactive interface structures and presentations by intermingling in a declarative manner

the different kinds of values—done in a way that should feel familiar to nowadays web de-

velopers whilst attempting to avoid the problems of CSS at scale enunciated by Chedeau.

Nevertheless, why another technology/language for the definition of web applications?

Loom was designed in response to certain flaws of state-of-the-art technologies:

• Whilst technologies have evolved in an attempt to bridge the different layers of what

composes a web application, support for first-class definition of presentations—

of style sheets—is still lacking, especially for reactive ones; in particular, current

approaches provide such style sheets as JavaScript objects, representing most CSS

syntax as strings; Loom provides CSS style sheets as first-class values with custom

syntax and explicit semantics for handling reactivity (see section 2.4);

8As an example, the CSS pseudo-class :visited—which allows styling links that have been visited—
cannot be mimicked in JavaScript. With privacy concerns in mind, there is no way of knowing, through
JavaScript, whether a link has been visited.

6

1.3. A LANGUAGE THAT BRIDGES CLIENT-SIDE WEB TECHNOLOGIES

• Many of the existent technologies that support the declarative definition of dynamic

structures do so by extending HTML with special syntax/attributes to cause the

structure to depend on data (e.g. ng-if or ng-repeat in AngularJS); Loom provides

HTML elements as first-order values, which can be easily composed with all the

expressivity of the programming language9—itself designed with the concern of

defining dynamic structures in mind (see section 1.4);

• Most existent technologies depend on certain conventions to support reactivity (e.g.
AngularJS’ controllers and React’s components: both with a notion of “state”). Loom

provides first-class reactive values (signals) which are understood by HTML and

CSS values alike: making Loom completely indifferent regarding how to structure

an application;

• The vast majority of nowadays technologies—even when attempting to bridge be-

haviour, structure, and presentation—still require explicit creation of files in mul-

tiple languages (typically, at least an HTML file to mark the initial structure of the

application is mandatory). Loom intends to allow the definition of a whole applica-

tion with no losses regarding expressivity and without the need for HTML or CSS

files to ever be (explicitly) created (see section 2.5).

Loom’s key concepts, as will be possible to infer from subsequent sections, are not, by

themselves, innovative—most of the concepts have already been studied; the innovation

arises from the way in which we allow these concepts to interact with each other, allowing

for what we argue to be an appropriate approach to the development of modern client-

centred web applications.

Loom’s main concepts—also first-class values in the language—are signals, HTML,

and CSS:

Signals In the context of Functional Reactive Programming (FRP)—a declarative pro-

gramming paradigm for working with mutable values—a signal is defined as “a value that

changes over time”; regarding user interfaces, the concept of signal is useful to represent

many values related to user interaction (e.g. the position of the cursor or the value in a

text box). Loom provides first-class support for two types of signals: mutables and signal

expressions. We name mutables the source for reactive computations; a mutable value

is defined with an initial value and may be updated over time. On the other hand, a

signal expression is a syntactical construct to declaratively combine and transform sig-

nals [Mai+10]—once defined, it may not be updated to a different expression. Signal

expressions are defined with an arbitrary expression of the language: which may refer-

ence other signals. The value of the signal expression value is the result of evaluating its

expression. Whilst evaluating, signal expressions create “dependencies” towards signals

9React’s approach with JSX is similar, although their syntax extends JavaScript, which was not tailored
to the task of building dynamic structures.

7

CHAPTER 1. INTRODUCTION

they access; conceptually, changes to these “dependencies” cause the signal’s value to be

updated—by reevaluating its expression.

HTML Loom supports HTML elements as first-class values: which may be composed to

define the structure of a user interface. HTML values, in conformity with actual HTML

elements, contain attributes and children: Loom allows them to be defined using the

full expressivity of the language—itself designed with this task in mind. In order to

support the declarative definition of reactive data-dependent structures, we extend the

semantics of HTML by allowing signals to be used in (or as) attributes and in (or as)

children. Conceptually, this may be seen as defining certain parts an interface’s structure

as dynamic, i.e. as changing over time. As previously mentioned, certain aspects of user

interaction integrate well with signals: the value of a text box (in which a user may write)

may be seen as a signal; Loom makes is possible for this kind of value to be two-way-

bound—meaning that user input causes the underlying signal to update and that signal

updates refresh the interface.

CSS To support the specification of the presentation of user interfaces, Loom provides

CSS values as first-class. CSS values in Loom follow the semantics of actual CSS in regard

to rules, selectors, and properties; however, and in similarity with CSS preprocessors, CSS

rules may be nested and composed. The presentation of an interface may be specified by

applying CSS values to HTML values—in contrast with the traditional approach, in Loom

a style sheet is applied (and scoped) to an HTML element. In parallel with HTML values,

CSS values may be used to define reactive data-dependent presentations by extending

their semantics with support for signals. As such, Loom allows signals to be used as the

value of CSS properties or as the body of CSS rules.

1.4 Design Principles

In this section, we present some of the principles that guided our design of the pro-

gramming language. The first principle states that Loom ought to be interoperable with

JavaScript, meaning that Loom should be able to easily access any value exported by

a JavaScript module. The second principle concerns Loom’s expressiveness in regard to

HTML and CSS—which says that it should be possible to specify in the language anything

that may be specified in its counterparts. The third and final design principle regards

simplicity and consistency: Loom is a programming language that bridges multiple lan-

guages, each with its own specific syntax; however, it intends to make this integration

whilst keeping the number of distinct concepts small and consistent with each other.

8

1.4. DESIGN PRINCIPLES

1.4.1 Interoperability With JavaScript

It is undeniable that most of the existent developer-oriented packages and frameworks in

the web are targeted for the JavaScript language: npm—the default package manager for

Node.js—at the time of this writing, contains over 400 thousand packages available, with

over 8 billion downloads in the previous month, being the largest package ecosystem

ever [Mod]. This makes interoperability with JavaScript a necessity for most developers

using a new language. As such, Loom strives to be fully compatible with JavaScript:

which implies being able to import JavaScript modules, as well as interact with any of

their exported values with ease. With this in mind, our language was designed “around”

JavaScript—in an attempt at exposing its good parts—which has the added benefit of

making Loom feel similar to JavaScript for those familiar with it.

1.4.2 Expressiveness of HTML and CSS Values

Regarding the development of client-centred web applications, Loom’s slogan may read as:

“a language to rule them all”. As conspicuous as it may sound, all it means is that Loom

should be able to take care of the whole stack of technologies in an interface: structure,

presentation, and behaviour. Whilst it should be possible to integrate Loom with existent

technologies—as an example, an interface defined in Loom may use an external CSS style

sheet—it should also be strictly optional. With this in mind, it is important that Loom

be as expressive as the already existent solutions: this entails following HTML and CSS

specifications to ensure that all functionality is kept, even if by different means; which

brings us to:

1.4.3 Simplicity and Consistency

Loom was created in an attempt to bridge multiple client-side technologies in a single

language—languages which are very distinct from one another, as they were built for

altogether different purposes. As such, one of Loom’s main concerns is in making this

intermingling between technologies as smooth as possible. As an example, think of

“conditional logic”: Loom, as a programming language, should definitely have support for

expressing conditionals; so how to go about defining conditional elements in an interface’s

structure (i.e. a part of an interface that should or should not be visible depending on

some data)? Should HTML values have a specific way of expressing conditional logic, or

should Loom provide the same construct for all kinds of conditional logic? It is here that

we apply our principle of simplicity and consistency and opt for the latter option. Where

possible, Loom should strive for keeping its number of core concepts small; as explained

further ahead, this principle leads us to the adoption of expressions as the main building

block of the language.

9

CHAPTER 1. INTRODUCTION

1.5 Introducing Loom

This section illustrates the core features of our language by means of an example: a simple

task manager application where tasks may be added, deleted, set as done or active, and

filtered depending on their completion status. We go over the example by defining the

(mutable) data, the structure, and finally the presentation of the application. The full

example may found in appendix A.1.

1.5.1 Representing Data as Signals

When declaring the variables that will contain the data of the application, a few concerns

should be taken into account: is the data going to change over time? And if so, should

an interface be updated depending on these changes? If the answer is positive, then this

kind of data is a candidate in Loom to be defined as a signal.

Regarding the task manager application being defined, the main application data—

the data that represents the state of the application—is: the list of tasks; and the “state” of
the filter (which tasks to filter). Note that both of these may be seen as values that vary

over time; in Loom we may define them as mutables using the mut keyword:

1 var t a sks = mut [] / / S t a r t with an empty l i s t o f t a s k s
2 var toShow = mut " a l l " / / One o f " a l l " , " done " , or " a c t i v e "

We previously mentioned that signals in Loom may be one of two kinds: mutables and

signal expressions. Mutables are the source for reactive computations: we explicitly

change their values on the occurrence of events. In this example, when a new task is

added, tasks should be changed to a list containing the newly added task, together with

all previous tasks.

So how can we define a task? A task may be seen as a record that contains some state:

its text; and the status of its completion. To be able to distinguish between tasks, each task

should also have a unique identifier. Note that whilst the identifier and text of a task are

static, its completion status may change over time. We may create a function that—given

the task’s text and initial completion status—outputs a record representation of the task

with:

1 var l a s t I d = 0 / / Generate unique i d e n t i f i e r s
2 function task (text , done)

3 ({ id : l a s t I d ++, t e x t : text , done : mut done })

A mutable’s value may be accessed and assigned via a pointer-like syntax. A task may

thus be added to or removed from the list of all tasks with the following functions:

1 function addTask (task)

2 * t a sks = * t a sks . concat ([task])

3

4 function removeTask (id)

5 * t a sks = * t a sks . f i l t e r (task => task . id != id)

10

1.5. INTRODUCING LOOM

The only missing piece of data before we may define the interface of the application is

the list of tasks filtered by their completion status. Note that this is also a value that changes

over time; however, this time, it may be expressed from its relation with the list of tasks,

with the completion status of each task, and with the current value of the filter. The list

of filtered tasks may thus be defined as a signal expression, using the sig keyword:

1 var f i l t e r e d T a s k s = sig * ta sks . f i l t e r (task =>

2 i f (* toShow == " done ") * (task . done) / / Show comple t ed t a s k
3 e l s e i f (* toShow == " a c t i v e ") ! * (task . done) / / Show uncompleted t a s k
4 e l s e t rue / / Show t a s k r e g a r d l e s s
5)

This signal expression creates dependencies with all signals it accesses when it evaluates:

tasks, toShow, and each accessed task.done. Updates to the dependencies cause the

signal expression to reevaluate—always keeping the list of filtered tasks up-to-date.

1.5.2 Specifying the Structure of the Application

Now that we have specified the data of the application and some functions that mutate

it, it’s time to define its structure. We start by defining the structure of a single task by

creating a function that—given the task’s record representation—outputs its structure:

1 function t a s k S t r u c t u r e (task)

2 < l i . task > [

3 <input . task −done { type : " checkbox " , checked : task . done}/>

4 task . t e x t

5 <button . task −remove { onClick : () => removeTask (task . id)} > " Delete "

6]

This example outlines some of the functionality we have previously mentioned regarding

two-way bound values: task.done—a mutable—is applied to the checked attribute of

a checkbox; this causes the task.done value to be updated whenever the user interacts

with the check box. Further notice that we define an onClick event handler: causing the

task to be removed from the list of all tasks when the <button> is pressed. The syntax

and semantics of HTML values are explained in detail in section 2.3.

The remaining structure of the application may be specified with:

1 var newTaskText = mut " " / / Text o f t h e new t a s k input box
2 var todoApp = <div#todo−app> [

3 <h1> " Todos "

4 <input . new− task { placeholder : "Add a task " , value : newTaskText ,

5 onKeyDown : evt => i f (evt . key == " Enter ") {

6 addTask (task (* newTaskText , f a l s e))

7 *newTaskText = " "

8 } }/ >

9 <s e l e c t . f i l t e r − ta sks { value : toShow}>

10 for (var f i l t e r in [" a l l " , " done " , " a c t i v e "])

11 <option { value : f i l t e r }> "Show $ { f i l t e r } "

12 <ul . tasks − l i s t >

11

CHAPTER 1. INTRODUCTION

13 sig for (var task in * f i l t e r e d T a s k s)

14 t a s k S t r u c t u r e (task)

15]

The most interesting aspect of the presented structure is arguably the usage of a signal to

represent the children of the list of tasks—note that, in Loom, the for is a comprehension

over a list that evaluates to a list (thus acting as a map). As we have previously mentioned,

Loom allows for signals to be used virtually anywhere inside of an HTML value: in this

example the signal expression maps each task of the list of filtered tasks to its HTML

representation; updates to the this list cause the children of the element to be updated.

1.5.3 Data-Dependent Presentations

Finally, we change the presentation of tasks by applying a style sheet to each task. In

this example, we intend to format the text of the task as strikethrough when the task is

marked as complete; we may achieve this by defining a function that—given the task’s

record representation—outputs its desired style sheet:

1 function t a s k P r e s e n t a t i o n (task)

2 css {

3 | . task − t e x t | {

4 textDecorat ion : sig i f (* (task . done)) " l ine −through " e l s e " none "

5 }

6 }

These style sheets may then be applied to tasks with:

1 function t a s k S t r u c t u r e (task)

2 < l i . task { css : t a s k P r e s e n t a t i o n (task)} > . . .

As we can see, Loom allows for signals to be used in CSS values with ease—making it

possible to define style sheets that depend on application data and react to the changes

on such data.

The presented example, as a whole, illustrates how Loom may be used to specify in a

declarative manner the full structure, behaviour, and presentation of a web application.

1.6 Contributions

The contributions of this dissertation may seen as an attempt at solving each of the flaws

enunciated in section 1.3 using a language-based approach, whilst being concerned with

performance and with the issues raised in section 1.2 regarding the usage of CSS. We may

thus summarise the contributions of our work as follows:

• We present Loom: a programming language built with the intent of easing the

development of client-focused web applications. We define the three core first-class

values of our language: signals, HTML, and CSS values;

12

1.7. STRUCTURE OF THE DISSERTATION

• We explain how these three core building blocks may be composed in order to

declaratively specify reactive and data-dependent interfaces—both structurally and

in terms of presentation;

• We detail how we can take advantage of the modules of the language so that a web

application may be specified in nothing but Loom;

• We explain how to efficiently render and mutate HTML values explicitly defined

with dynamic parts—with signals—by taking advantage of the concept of virtual

DOM;

• We propose a way of implementing scoped CSS values, attempting to mitigate the

issues raised by Chedeau, whilst maintaing all the expressivity of CSS;

• We provide an initial implementation of the language’s compiler (available at:

https://gitlab.com/loom-lang/loom) which may be experimented with at: https:

//loom-lang.gitlab.io/loom-playground.

1.7 Structure of the Dissertation

The remainder of this document is structured to expand on the concepts introduced by

this chapter. The content of the following chapters is thus as follows:

• Chapter 2 describes Loom: we explain the syntax and semantics of Loom’s main

features—informally addressed in this chapter—and relate them to existent relevant

technologies;

• Chapter 3 focuses on some important implementation details, explaining the un-

derlying technologies and how we built Loom on top of them—highlighting certain

design decisions and limitations;

• Chapter 4 expands on the foundations on top of which our work was built: the

current state-of-the-art in respect to technologies, techniques, and various key con-

cepts related to this dissertation—possibly already briefly introduced in previous

chapters;

• In chapter 5 we validate Loom by providing a comparison against alternatives using

the TodoMVC [Tod] project as a base; we further benchmark Loom against popular

frameworks—showing that Loom should work well in practice;

• Finally, in chapter 6 we reflect on our proposed language and describe the direction

we expect it to follow;

• Appendix A lists the complete code for examples referenced in the dissertation.

13

https://gitlab.com/loom-lang/loom
https://loom-lang.gitlab.io/loom-playground
https://loom-lang.gitlab.io/loom-playground

C
h
a
p
t
e
r

2
Programming Language

This chapter expands on the introductory one by presenting Loom in detail. Throughout

this chapter we expand on the language’s main features and the principles and founda-

tions on top of which they were built. In particular, we explain the core of our program-

ming language; detail the semantics and inspirations for Loom’s reactive values (signals);

go over Loom’s first-class HTML values and their semantics; introduce important design

decisions regarding CSS values; and finally, we explain how Loom’s modules can be used

to create fully working web applications.

Disclaimer Before we move on with the description of the core language, we would like

to make a harsh observation regarding Loom: as stated previously, Loom was specified

and developed with the main intent of mixing client-side web technologies—the key

concepts for integrating these technologies being the notion of signals, HTML, and CSS

values as first-class citizens. Most of the effort so far went into implementing such an

integration in an efficient manner (more on this in chapter 3), effectively making this

dissertation more of a practical rather than theoretical contribution. We expand on the

consequences of this in more detail in chapter 6; however, in the context of this chapter,

this means that Loom does not yet have a defined type system or set-in-stone operational

semantics—something we believe to be of great importance in a programming language.

2.1 Core Language

Loom’s main goal as a programming language is in aiding the creation of client-centred

web applications. Targeting the web entails having JavaScript be output by Loom’s

compiler. Whilst the target compilation language shouldn’t have a great influence on

15

CHAPTER 2. PROGRAMMING LANGUAGE

Loom’s design choices—with interoperability with JavaScript being one of our core de-

sign principles—the language became somewhat influenced by JavaScript. A few other

influences to Loom were Scala [Scaa] and CoffeeScript [Cof].

Loom is thus a multi-paradigm programming language with support for imperative

and functional programming styles. Figure 2.1 showcases a simplified version of Loom’s

concrete syntax where separator symbols, syntactic sugar, and certain non-relevant con-

structs are omitted.1

Although most of the keywords in Loom match their JavaScript counterparts, as we

may observe—in similarity with languages such as Scala or CoffeeScript—Loom attempts

to allow, when possible, constructs to be used as expressions. This brings us the benefit of

being able to easily compose complex expressions—often desired when defining the struc-

ture of a user interface. Because the operational semantics of some of these expressions

may not be obvious, we’ll informally go over them:

• if (e1) e2 else e3 is a typical if then else expression that, depending on the result

of evaluating e1, evaluates to the evaluation of e2 or e3. Note that if (e1) e2 is a

valid Loom expression and is equivalent to if (e1) e2 else undefined;

• All loops defined in Loom evaluate to an array where each element is the result of

evaluating the loop’s body in the respective step of the iteration. As an example,

for (var i in [1, 2, 3]) i * i evaluates to [1, 4, 9];

• try e1 catch(err) e2 finally e3 is an expression that evaluates to the result of

evaluating e1 or e2 depending on whether an error occurs during the evaluation of

e1; the finally portion of the expression is only meaningful for side-effects. Simi-

larly to the if then else expression, try e1 is a valid Loom expression that is equiva-

lent to try e1 catch(err) undefined. As an example, try 1 catch(err) err eval-

uates to 1 and try throw "Error"catch(err) err evaluates to the string "Error";

• A block is an expression in Loom that evaluates to the result of evaluating its last

statement after evaluating all previous statements. Note that variable declarations

evaluate to undefined; function declarations evaluate to a value representing the

function itself; and expression statements evaluate to the result of evaluating the

expression. This means that do {var x = 1; x;} evaluates to 1;

• The ... operator that may be used in arrays and objects is called a spread operator

and has the same semantics as the JavaScript counterpart2: it expands an expres-

sion where multiple elements (for arrays) or multiple properties (for objects) are

1The most notable syntactic sugar omitted from the grammar—used throughout the document in
examples—regards the usage of block expressions after many of Loom’s constructs. Such block expres-
sions may have the do keyword omitted: which has the side effect of forcing extra parenthesis when an object
is instead desired. Note that the same is done for the css keyword when nesting CSS values.

2In fact, spread object properties are, at the time of this writing, a stage 3 proposal for ECMAScript, see:
https://github.com/sebmarkbage/ecmascript-rest-spread.

16

https://github.com/sebmarkbage/ecmascript-rest-spread

2.1. CORE LANGUAGE

prog ::= topStat* Program (sequence of top-level statements)

topStat ::= import ID from STRING Import default
| import { (ID (as ID)?)* } from STRING Named import
| export default exp Export default
| export decl Export declaration
| stat Statement

stat ::= decl Declaration
| exp Expression statement

decl ::= varDecl Variable declaration
| function ID (ID*) exp Function declaration

varDecl ::= (var | const) (ID = exp)+ Variable declaration

exp ::= if (exp) exp (else exp)? Conditional expression
| for (varDecl in exp) exp Array comprehension
| for (varDecl of exp) exp Object comprehension
| while (exp) exp While expression
| try exp (catch (ID?) exp)? (finally exp)? Try expression
| throw exp Throw expression
| do { stat* } Block expression
| assig = exp Assignment
| 	 exp | exp ⊕ exp Unary/binary expression
| [(exp | ... exp)*] Array value
| { (ID : exp | ... exp)* } Object value
| exp . ID | exp [exp] Selection
| (ID*) => exp Function expression
| exp (exp*) Function application
| mut exp Mutable signal
| sig exp Signal expression
| * exp Signal dereferenciation
| < ID (# ID)? (. ID)* exp? (/> | > exp) HTML value
| css { (ID : exp | ... exp | | sel* | exp)* } CSS value
| ID Identifier
| STRING | NUMBER | true | false | null | undefined Literal

assig ::= ID | exp . ID | exp [exp] | * exp Assignable

sel ::= simpSel ((� | > | +) simpSel)* CSS selector

simpSel ::= (* | & | ID)? (# ID | . ID | : ID ((ID))?)* Simple CSS selector

Figure 2.1: Simplified syntax of Loom in EBNF notation

17

CHAPTER 2. PROGRAMMING LANGUAGE

expected. As an example, [1, ...[2, 3], 4] evaluates to the array [1, 2, 3, 4];

{a: 1, ...{b: 2, c: 3}, c: 4} evaluates to the object{a: 1, b: 2, c: 4} . This op-

erator is useful as it enables a functional style of updating arrays/objects.

The semantics for other relevant expressions such as signal, HTML, and CSS values are

explained in subsequent sections.

2.2 First-Class Reactivity

As previously mentioned in chapter 1, Loom supports signals as first-class values; but

what are signals? Signals—initially introduced as behaviours—are a term used in the con-

text of FRP to capture the temporal aspect of value mutability; they thus represent values

that change over time (we go over the topic of reactive programming in more detail in sec-

tion 4.2.2). Loom’s signal values were heavily influenced by those of Scala.React [Mai+10]

and Scala.Rx [Scab] and may be defined as one of two types: mutables (similar to Vars in

Scala.React and React.Rx) and signal expressions (conceptually equivalent to Signals in

Scala.React and Rx in React.Rx). Let us look at each type in more detail:

Signal A signal in Loom may be seen as the common interface for both mutable val-

ues and signal expressions. All signals share the same core functionality: signals hold a

current value (which in Loom may be accessed through the *e expression); signals may

be subscribed to by other signals; and signals may be observed. Note that subscribing to a

signal and observing a signal are two conceptually distinct actions: subscriptions define a

dependency graph between signals—shortly, we will see that signal expressions implic-

itly subscribe to other signals; observing a signal implies running an arbitrary function

whenever a signal’s value changes—which may produce side-effects.

Mutable A mut e expression in Loom creates a mutable value—a value that may be

seen as the source of a reactive computation. Changing the currently held value of a

mutable may be done in Loom with a *e1 = e2 expression (similarly to the e1() = e2

expression in Scala.React and Scala.Rx). As previously mentioned, signals may subscribe

to other signals; a mutable value is always a source in the dependency graph that such

subscriptions represent: this means that an update to a mutable value conceptually causes

all dependent signals to update.3

Signal expression Loom supports the composition of signals via signal expressions: us-

ing a sig e syntax. A signal expression, during the evaluation of its expression, implicitly

and dynamically subscribes to signals whose values are accessed inside of its static scope.

As an example, consider the declarations var x = mut 1 and var y = sig *x + 1: y is a

3Note that we say conceptually because this behaviour is, in fact, implementation dependent (push vs.
pull based propagation; see section 3.3)—it should, however, be transparent to the user.

18

2.3. DYNAMIC INTERFACES WITH FIRST-CLASS HTML

signal expression whose value is 2 (*y evaluates to 2) and whose expression accesses the

value of x—becoming dependent of it. This means that an update to x such as *x = 5

causes*y to evaluate to 6. As another example, admit the same x and consider the func-

tion var f = n => *x + n: a signal such as sig f(3) will not subscribe to x—because x is

not accessed in the signal’s static scope. This behaviour is important in order to prevent

the risk of adding unwanted dependencies to the signal expression. For a third example,

and considering the same x definition, the signal sig if (true) 5 else *x does not de-

pend on x—the signal never accesses the value of x during the evaluation of its expression:

showcasing the dynamic detection of signal dependencies. Signal expressions are thus

a powerful mechanism that allows a declarative composition of dependencies by taking

advantage of all language constructs.

2.3 Dynamic Interfaces With First-Class HTML

Recall Loom’s syntax for defining HTML values—which may more naturally be specified

as:

html ::= < ID (# ID)? (. ID)* exp? /> HTML value with no children

| < ID (# ID)? (. ID)* exp? > exp HTML value with children

The expression <t#i.c.d e1> e2 represents an HTML element with tag t, identifier i,

and classes c and d; the result of evaluating e1 represents the attributes of the element

and of evaluating e2 its children. As an example, consider:

1 <button#foo . bar . baz { type : " submit " }> [

2 " Press me"

3]

This HTML value represents the following HTML element:

1 <button id=" foo " c l a s s=" bar baz " type=" submit ">Press me</button>

Note that defining an HTML value with no children such as <div/> is equivalent, in

Loom, to defining it with an empty array of children: <div> [] .

Loom’s semantics regarding HTML values are, as far as we are aware, unique in

relation to other technologies due to the kind of values its inner expressions are allowed

to evaluate to. In particular, HTML allows signals to be used virtually anywhere; fig. 2.2

showcases a possible simplified schema for the representation of an HTML value and the

kind of values it expects in each of its fields.4

Though we have seen how HTML values may be defined in Loom—as well as what

values they support—how are they effectively rendered to the screen? This is explained in

detail in section 3.4 and briefly exposed in section 2.5; for now, let us assume that HTML

values are applied to the DOM—making the DOM’s structure match that of the applied

4Note that, as previously mentioned, Loom does not yet have a defined type system—being as dynamic
as its target compilation language: JavaScript. However, we may see how future work involving the develop-
ment of such a type system may force Loom’s HTML values to follow this schema.

19

CHAPTER 2. PROGRAMMING LANGUAGE

HTML ::= {tag: string, id: string?, classes: List[string], attrs: Attrs?, childr: Childr}

Attrs ::= Map[string, Attr] | Signal[Map[string, Attr]]

Attr ::= string | boolean | Function | Signal[string | boolean | Function]

Childr ::= List[Child] | Signal[List[Child]]

Child ::= (HTML | string)? | Signal[(HTML | string)?]

Figure 2.2: Possible simplified representation of the schema of an HTML value; the “?”
notation indicates that the value may be undefined

HTML value. With this in mind, we can now dive into what it means for a signal to be

part of an HTML value:

Conceptually, as signals are seen as values that change over time, signals used inside

of HTML represent parts of the structure that change over time. This means that when

a signal’s value is updated, the part of the structure containing such signal is updated; if

such structure is in fact being rendered on the screen, then the DOM consequently updates

to match the signal’s most recent value.

This updating of the DOM to make it match the structure of a signal’s value effectively

causes the state of the DOM to become consistent with that of the signal. Yet, are they

always consistent? What about user interaction? In fact, user interaction (e.g. a user

writing in a text box) produces changes to the state of the DOM—causing the interface’s

structure to get out of sync in respect to the one specified with Loom’s HTML values. For

this reason, Loom allows certain attributes of an element—those that may change due to

user interaction (e.g. the value attribute of an <input/> element)—to be aware of user

input: this can be done by setting the value of such attributes as a mutable signal—causing

the signal to update whenever user input occurs. As an example, consider:

1 var t e x t = mut " I n i t i a l value "

2 var elem = <input { value : t e x t }/>

If elem is rendered on the screen, user interaction with the text box will propagate to

the text mutable signal: conceptually keeping the DOM and the HTML value’s state

consistent at all times. This behaviour is typically defined as a two-way binding between

the DOM and its virtual representation—in Loom’s case, the HTML value.

2.4 CSS as a First-Class Citizen

CSS style sheets are, in Loom, first-class values that may be defined using the following

(previously mentioned) syntax:

css ::= css { (ID : exp | ... exp | | sel* | exp)* } CSS value

20

2.4. CSS AS A FIRST-CLASS CITIZEN

sel ::= simpSel ((� | > | +) simpSel)* CSS selector

simpSel ::= (* | & | ID)? (# ID | . ID | : ID ((ID))?)* Simple CSS selector

Note that, for the sake of simplicity, the above grammar does not support all existent CSS

selectors—supporting only a subset of them; however, Loom’s actual grammar does.

As may be inferred from the grammar, Loom supports nesting of CSS rules; with

semantics similar to those provided by CSS preprocessors (this is explained in more

detail in section 4.1.2). As an example, consider:

1 css {

2 c o l o r : " blue "

3 | a > i , a : hover > b | {

4 c o l o r : " green "

5 }

6 | &: focus | {

7 c o l o r : " purple "

8 | div | {

9 c o l o r : " yellow "

10 }

11 }

12 }

This CSS value represents the following CSS style sheet, where [scoped] conceptually

represents the element the CSS value was applied to (more on this below):

1 [scoped] {

2 color : blue ;

3 }

4 [scoped] a > i , [scoped] a : hover > b {

5 color : green ;

6 }

7 [scoped] : focus {

8 color : purple ;

9 }

10 [scoped] : focus div {

11 color : yellow ;

12 }

Another feature supported by Loom’s CSS values is the ability to import other CSS

values: the ...e syntax, inspired by JavaScript’s spread operator, expects e to be a CSS

value and imports all of its properties and rules. This makes it possible to easily share

common CSS properties by defining them elsewhere and importing them where needed.

As a simple example, consider:

1 var red = css {

2 backgroundColor : " red "

3 border : " 1px s o l i d black "

4 }

5 var s t y l e S h e e t = css {

6 display : " block "

21

CHAPTER 2. PROGRAMMING LANGUAGE

CSS ::= {props: SortedMap[string, Val], rules: SortedMap[List[Selector], Body]}

Val ::= number | string | Signal[number | string]

Body ::= CSS | Signal[CSS]

Figure 2.3: Possible representation of the schema of a CSS value; selectors’ schema is not
shown as it could get too complex—each type of selector would have its own schema;
Sorted maps are used to represent insertion order

7 . . . red / / Import p r o p e r t i e s
8 border : " 2px s o l i d blue " / / Overr ide t h e p r o p e r t y
9 }

This example showcases an important property of CSS: the order in which properties are

defined matters—which allows for properties to be overridden.

Now that we have seen how CSS values are defined in Loom, how can they actually

be used? In contrast with typical CSS style sheets, Loom’s style sheets are applied (and

scoped) to elements—thus avoiding the leakage of certain styles to unwanted parts of an

interface (explained in more detail in section 3.5). CSS values may be applied to a given

HTML value by using their css attribute. The above styleSheet may thus be applied to

some<div/> HTML value with: <div {css: styleSheet}/> .

The final—and arguably most important—feature of Loom’s style sheets lies in their

ability to, in conformity with HTML values, support reactivity: allowing for the definition

of dynamic data-dependent presentations. Figure 2.3 displays a simplified schema for

the representation of a CSS value, highlighting the kind of values it expects in each of its

fields. As shown, signals may be used as values of CSS properties and as the body for CSS

rules—their semantics being as expected: they represent the parts of a style sheet that

may change over time. HTML values rendered on the DOM that have CSS values applied
to them will thus be able to have dynamic presentations, so long as their CSS contains

such signals.

2.5 Modules: Creating a Web Application in a Single Language

A recent specification for JavaScript—ECMAScript 6 (ES6)—introduced the notion of

modules in the language; with the principle of interoperability in mind, Loom’s module

system was designed with the same semantics as those defined in the specification. As

such, Loom supports all of the available import and export syntactical constructs in ES6,

even though fig. 2.1 only showcases the most useful ones.

Briefly, a file in Loom (also in ES6) is seen as a module; both names and a default value
may be imported or exported by modules. As an example, consider a file containing the

following:

1 import { foo , bar as baz } from " some−module "

22

2.5. MODULES: CREATING A WEB APPLICATION IN A SINGLE LANGUAGE

2 import defaultValue from " other−module "

3 export var aNumber = 10

4 export default " some s t r i n g "

This file imports foo—bound to local name foo—and bar—bound to local name baz—

from "some-module"; as well as the default value—assigned to local name defaultValue—

from "other-module". The file further exposes the aNumber name and a default value

containing the string "some string".

In order for a web application to be launched, an HTML file has to be rendered by the

browser: this typically forces users of a language or framework to create a “main” HTML

file—commonly named index.html—to launch the application. Loom intends to allow

the full specification of a web application in a single language; as such, we extend the

semantics of our module system to allow the generation of these “main” HTML files.

This is done in Loom by exporting a default HTML value with an html tag. As an

example, the following listing should generate an HTML file that may be launched:

1 var x = 10

2 export default <html> [

3 <head> [

4 < t i t l e > " Example "

5]

6 <body> [

7 x

8]

9]

Note Although intended as a core feature of the language, the current implementation

of the Loom compiler does not yet generate HTML files as a result of exporting HTML

values. This is due to Loom’s mentioned lack of a type system: without which it is not

possible to understand whether an exported value is indeed of type HTML value with an

html tag.

23

C
h
a
p
t
e
r

3
Implementation Details

Now that we have defined the language, it is time to detail how it was, in practice, imple-

mented. This chapter showcases the implementation of Loom’s compiler: we provide a

JavaScript implementation of the compiler—making it possible to use it from within a

web browser: Loom’s playground takes advantage of this.

The compiler’s source code may be found at: https://gitlab.com/loom-lang/loom.

Throughout the chapter, we detail how the main concepts of our language were imple-

mented and the advantages of our approach over alternatives—as well as some of their

limitations. In particular, we briefly introduce the architecture of our implementation; we

expose our implementation of signals; we detail our implementation of HTML values—

including how to efficiently integrate them with signals: allowing for performant DOM

mutations; and finally, we explain our implementation of CSS values—including how

they, in similarity with HTML, integrate with signals.

3.1 Architecture

In the general case, Loom’s compiler is a tool that, when receiving a Loom program as

input, transforms it into a JavaScript program. The compiler was implemented taking into

consideration proper compiler design principles; fig. 3.1 displays the typical compilation

process for a Loom program.

Such process may be described as follows: given a Loom program, we parse it into its

Abstract Syntax Tree (AST) representation; we then compile it to an AST representation

of JavaScript; this AST representation is then possibly transformed into an equivalent

JavaScript AST; JavaScript source code is finally generated from the latest AST.

Note that, as previously mentioned, the compiler does not yet produce HTML files

from exported HTML values; we expect this behaviour to be implemented after defining

25

https://gitlab.com/loom-lang/loom

CHAPTER 3. IMPLEMENTATION DETAILS

Figure 3.1: Loom’s typical compilation process

and implementing a type system for the language.

The two final steps of the compilation are handled by Babel [Bab]. Babel is, in simple

terms, a compiler from JavaScript to JavaScript: it is able to “understand” the most recent

JavaScript syntax and compiles it to equivalent constructs using widely supported syntax.

Babel further exposes its AST representation for JavaScript. From Loom’s perspective,

Babel is a useful library for two main reasons: we do not have to be concerned with the

generation of actual JavaScript code—which is handled by Babel—only having to com-

pile to Babel’s AST representation of JavaScript; and we may compile Loom’s constructs

against the latest JavaScript specification without having to worry about platform support

for it. In fact, because Babel’s transformations work with the notion of plugins, users of

Loom—by defining which plugins to use—may specify their programs to be compatible

with whichever version of JavaScript they desire.

Regarding the parsing step of the compilation, the Loom compiler uses PEG.js [Maj]

for the definition of Loom’s grammar. PEG.js is a parser generator that, given a Parsing

Expression Grammar (PEG), outputs a JavaScript parser. We define our grammar as a PEG

instead of a more common Context-Free Grammar (CFG)—which, for example, Jison [Jis]

understands—because some constructs in Loom would be difficult to express in a CFG

without being ambiguous: PEGs just make them easier to specify.

In order to compile complex values such as signals, HTML, or CSS—whilst keeping

the semantics defined in chapter 2—Loom’s compiler uses modules: JavaScript files that

we import from the generated JavaScript. These modules contain the logic required to

implement Loom’s semantics regarding these complex values.

3.2 Using Loom’s Compiler

Before moving on with the details on how most of the language’s concepts are imple-

mented, let us first show how Loom’s compiler may be used.

As previously mentioned, the source code for Loom’s compiler may be found at

https://gitlab.com/loom-lang/loom; it is also available for installation in npm via

the loom-lang package (installed with npm install -g loom-lang).

Loom provides two ways of being interacted with: through a Command-Line Interface

(CLI) and through a JavaScript Application Programming Interface (API).

26

https://gitlab.com/loom-lang/loom

3.3. IMPLEMENTING SIGNALS

The JavaScript API mainly exposes two functions: parse and compile. The first one

receives a JavaScript string representing a Loom program and outputs the AST represen-

tation of said program; the second function takes a Loom program’s AST as input as well

as a set of options (e.g. Babel plugins to use; whether to output the JavaScript AST) and

outputs the compiled JavaScript. Loom’s playground (see section 3.6) takes advantage of

this API in order to compile Loom programs in a browser, on the fly.

The CLI uses the JavaScript API to allow the compilation of files. At the time of this

writing, Loom’s CLI makes available the following options:

−c , −−compile output compiled code [boolean]

−e , −−eval evaluate compiled code [boolean]

−h , −−help display help message [boolean]

− i , −−input f i l e used as input ins tead of STDIN [s t r i n g]

−o , −−output f i l e used for output ins tead of STDOUT [s t r i n g]

−p , −−parse output parsed Loom AST [boolean]

−v , −−vers ion display vers ion number [boolean]

−− c l i pass s t r i n g from the command l i n e as input [s t r i n g]

−− j s −a s t output compiled J a v a S c r i p t AST (Babylon) [boolean]

−−repl run an i n t e r a c t i v e Loom REPL [boolean]

−−babel−p r e s e t s s p e c i f y Babel p r e s e t s to use in compilation [array]

−−babel−plugins s p e c i f y Babel plugins to use in compilation [array]

As shown, Loom’s compiler may be ran in interactive Read-Eval-Print-Loop (REPL)

mode using the--repl flag.1 This was implemented using Node.js’ REPL module: each

line of input is compiled as a Loom program; the generated JavaScript code is immediately

evaluated and its value printed on the screen.

3.3 Implementing Signals

To honour the semantics specified in section 2.2, we provide signals as modules for Loom:

this means that the generated JavaScript obtained from compiling a Loom program using

signals will import the signals’ module. In fact, we provide two distinct modules: one

exporting a JavaScript class that represents mutable values; the other representing signal

expressions. As an example, consider the following program in Loom:

1 var x = mut 10

2 var y = sig *x + 5

3 *x = 20

4 *y

The Loom compiler compiles the above program to the following (prettified) JavaScript:

1 import Mut from " loom−lang /mutable " ;

2 import Sig from " loom−lang / s ignal −express ion " ;

3 l e t x = new Mut (1 0) ;

4 l e t y = new Sig (s i g => {

5 return x . subscr ibe (s i g) + 5 ;

1Running Loom’s compiler with no arguments also starts the interactive REPL mode.

27

CHAPTER 3. IMPLEMENTATION DETAILS

6 }) ;

7 x . setValue (2 0) ;

8 y . getValue () ;

The above mentioned modules are the ones imported in the JavaScript listing: Mut is a

JavaScript class that represents a mutable value in Loom; Sig a JavaScript class represent-

ing signal expressions.

To understand the remaining generated code, let us first reveal some inner concepts

regarding the signals’ implementation. Recall the signals’ core functionality: signals

hold a current value; signals may be subscribed to by other signals; and signals may be

observed. Furthermore: mutable values may be assigned new values over time; and a

signal expression—during the evaluation of its expression—implicitly and dynamically

subscribes to signals whose values are accessed inside its static scope. With this, we define

the following pseudo-interfaces (with pseudo-types) for signals:

1 Signal [T] {

2 subscr ibe : S ignal [?] => T ,

3 observe : (T => Void) => { stop : () => Void } ,

4 getValue : () => T

5 }

6

7 Mutable [T] <: S ignal [T] {

8 cons t ruc tor : T => Mutable [T] ,

9 setValue : T => T

10 }

11

12 SignalExpress ion [T] <: S ignal [T] {

13 cons t ruc tor : (S ignalExpress ion [T] => T) => SignalExpress ion [T]

14 }

Notice how signals may subscribe to other signals: the subscribe method on a signal

receives the signal performing the subscription as an argument and returns the current

value of the signal being subscribed.

A signal expression is constructed by providing a function whose body represents

the actual expression of the signal and which receives the signal expression itself as an

argument, i.e. the constructor calls the received function with this as argument.

Now we can understand the example showcased above for the compilation of y: the

signal’s expression, when executed, subscribes to x—who becomes responsible for notify-

ing y whenever it changes.

However, we are yet to answer an important question regarding our implementa-

tion (previously raised in section 2.2): when x changes, y is notified; yet, when is y’s

expression reevaluated? Two typical approaches follow from this question: a push-based

approach would update y immediately; a pull-based approach updates y only when its

value is effectively requested (in the example, y would only be reevaluated when calling

y.getValue()). Both solutions have advantages and disadvantages (they both avoid/re-

quire needless recomputations in different situations); Loom opted for the pull-based

28

3.4. HTML VALUES AND THE VIRTUAL DOM

approach—the reason being that it allows us, as we will see in the following section, to

define reactive HTML values that are only updated when actually being rendered in the

DOM.

For the sake of completeness, there is yet another caveat in Loom’s implementation

of signals. Consider the following example with a signal expression z whose value is a

function that returns the value of a signal it receives:

1 var w = mut 3

2 var z = sig a => *a
3 * z (w)

Loom will compile the above program to (omitting the imports):

1 l e t w = new Mut (3) ;

2 l e t z = new Sig (s i g => {

3 return a => {

4 return a . subscr ibe (s i g) ;

5 } ;

6 }) ;

7 z . getValue () (w) ;

If implemented naïvely, this example would cause z to subscribe to arbitrary signals

whenever the function obtained from evaluating its expression is called with a new sig-

nal: we call this leaking. Yet again, recall our defined semantics for signal expressions: a

signal expression—during the evaluation of its expression—implicitly and dynamically sub-

scribes to signals whose values are accessed inside its static scope. This means that signal

expressions should only ever subscribe to signals whilst their expressions are evaluating.

This is why our implementation keeps track of whether the signal expression is currently

being evaluated; if it is not, calling the subscribe method is innocuous, behaving as a

getValue call.

3.4 HTML Values and the Virtual DOM

In similarity with signals, Loom compiles HTML values that follow the semantics speci-

fied in section 2.3 with the aid of modules. As an example, consider the following Loom

program:

1 var x = mut " Hello world ! "

2 var elem = <div#foo> [

3 [x]

4

5]

6 elem . renderTo (document . getElementById (" foo "))

7 *x = " Goodbye ! "

Which Loom’s compiler transforms into:

1 import Mut from " loom−lang /mutable " ;

2 import VElem from " loom−lang / v i r t u a l −element " ;

29

CHAPTER 3. IMPLEMENTATION DETAILS

3 l e t x = new Mut(" Hello world ! ") ;

4 l e t elem = new VElem (" div " , " foo " , [] , { } , [

5 new VElem (" span " , null , [" bar "] , { t i t l e : " baz " } , [x]) ,

6 new VElem (" img " , null , [] , { s r c : " http : / / ur l . com/image . jpg " } , [])

7]) ;

8 elem . renderTo (document . getElementById (" foo ")) ;

9 x . setValue (" Goodbye ! ") ;

As shown, Loom’s HTML values are compiled into VElems—virtual elements—that take

the tag name, identifier, list of classes, attributes, and children of the respective HTML

value as constructing arguments. We will go over virtual elements and the meaning of

virtual shortly; let us first explain the renderTo portion of the code:

We have previously left in the open how exactly HTML values render on the screen.

Rendering an element on the screen is the premise behind renderTo which—given an

actual DOM node2—renders the virtual element on top of the given node. Assuming

that the previous example was compiled into an “example.js” file and that we have the

following HTML document:

1 < !DOCTYPE html>
2 <html>
3 <head></head>

4 <body>

5 <div id=" foo "></ div>

6 <s c r i p t src=" . / example . j s "></ s c r i p t>

7 </body>

8 </html>

Then, the<div id="foo"> element rendered from the HTML document would be mu-

tated to match the structure that elem represents: in this case, two new DOM elements—a

 and an—would be created and appended to the<div> with all respective at-

tributes and children. Note that, although the contains a signal as a child, it would

render to: Hello world! , i.e. the signal’s value

is accessed when rendering the element.

The main questions that arise when implementing HTML values—bound by the pre-

viously introduced semantics—involve how to update a structure. In the example, x is

a signal whose value mutates at some point; how can changes to a signal affect what is

displayed? And how can it be done efficiently?

Before answering these questions, it is worth pointing out a few facts: in practice, a

signal inside an HTML value may evaluate to an arbitrarily complex structure (as opposed

to the simple text in this example); DOM mutations are expensive, rerendering the whole

interface or even a given section of it whenever a value that is part of such a section changes

is impractical (see section 4.2.3): DOM manipulations should thus be kept to a minimum.

2It might appear like we are using the words element and node interchangeably; although not very
important to the explanation, note that a DOM element (e.g. a <div>) is a type of DOM node; other types
include DOM text nodes and comment nodes.

30

3.4. HTML VALUES AND THE VIRTUAL DOM

Figure 3.2: Patching of virtual trees

This is a problem that many other technologies have solved by introducing the notion

of a virtual DOM: a structure that is a representation of the actual DOM and that allows

efficient manipulation of its components. Conceptually, when an update is made to the

virtual DOM, it is diffed against its older representation: updating the actual DOM only

where this diffing detects changes. As one might infer, Loom’s VElems represent virtual

elements in a virtual DOM representation.

Internally, Loom uses a library that goes by the name of Snabbdom [Sna]—a perfor-

mant virtual DOM library which was low-level enough for us to adapt it to our needs:

integrating it with signals. We actually fork Snabbdom to make it compatible with our

implementation of virtual nodes but, at its core, Snabbdom still provides us a single

API function: patch. This function takes two virtual nodes, the first one already ren-
dered on the actual DOM (i.e. its structure represents an actual DOM structure) and a

second one with the expected structure for the DOM (the representation of what the DOM

should become) and patches the actual DOM by diffing both virtual nodes and updating

it accordingly.

Figure 3.2 showcases a patching between two arbitrary virtual trees where the coloured

sections of the figure represent the DOM manipulations performed by the algorithm to

go from the first tree to the second. As shown, the algorithm attempts to minimise the

number of DOM mutations by only updating what effectively changed.

However, how does Loom allow signals to be used within HTML values? Conceptually,

our virtual elements (when rendered) observe any signals they may contain (in attributes

or children); patching them against their previous value whenever the signals update.

This approach allows us to only patch the sub-trees affected by a signal mutation.

As an example, consider the following Loom program and assume that elem has been

rendered on the screen:

1 var person = <i > " Al ice "

2 var elem = <div> [

3 " Hello "

4 mut person

31

CHAPTER 3. IMPLEMENTATION DETAILS

Figure 3.3: Sub-tree patching with signals

5]

6 elem . renderTo (document . getElementById (" foo "))

7 *person = <i > " Bob "

As shown in fig. 3.3, the signal update causes the sub-tree contained within the signal

to be rerendered (using the patch function).

3.5 Supporting CSS Values

This section goes over the last topic left to discuss: the implementation of CSS values that

follow the semantics defined in section 2.4. With this in mind, consider the following

example which showcases the creation of an interface with a reactive style sheet:

1 var foo = mut " yellow "

2 var bar = css { d isplay : " i n l i n e −block " }

3 var baz = css {

4 c o l o r : foo

5 backgroundColor : " green "

6 |&#x > div . y : hover | {

7 c o l o r : " blue "

8 }

9 . . . bar

10 }

11 var x = <div#x { css : baz}> [

12 " Hello " ,

13 <div . y> [" World ! "]

14]

15 x . renderTo (document . getElementById (" x "))

16 * foo = " purple "

This example creates and renders a<div> element with some children; the element has

a style sheet applied to it. Note that this style sheet contains a signal (foo) within, asso-

ciated with the color property. Loom’s compiler, given the above input, will output the

following (prettified) JavaScript code:

1 import Mut from " loom−lang /mutable "

32

3.5. SUPPORTING CSS VALUES

2 import CSS from " loom−lang / c s s " ;

3 import CompSel from " loom−lang / composite− s e l e c t o r " ;

4 import SimpSel from " loom−lang / simple− s e l e c t o r " ;

5 import VElem from " loom−lang / v i r t u a l −element " ;

6 l e t foo = new Mut(" yellow ") ;

7 l e t bar = new CSS ({ kind : " p r o p e r t i e s " ,

8 p r o p e r t i e s : [[" d isplay " , " i n l i n e −block "]] }) ;

9 l e t baz = new CSS (

10 { kind : " p r o p e r t i e s " , p r o p e r t i e s : [[" c o l o r " , foo] ,

11 [" backgroundColor " , " green "]] } ,

12 { kind : " ru le " , s e l e c t o r s : [

13 new CompSel (">" ,

14 new SimpSel ({ kind : " parent " } , { kind : " id " , name : " x " }) ,

15 new SimpSel ({ kind : " tag " , name : " div " } , { kind : " c l a s s " , name : " y " } ,

16 { kind : " pseudoClass " , name : " hover " , argument : null }))] ,

17 body : new CSS ({ kind : " p r o p e r t i e s " , p r o p e r t i e s : [[" c o l o r " , " blue "]] }) } ,

18 { kind : " import " , imported : bar }

19) ;

20 l e t x = new VElem (" div " , " x " , [] , { c s s : baz } , [

21 " Hello "

22 new VElem (" div " , null , [" y "] , { } , [" World ! "]) ,

23]) ;

24 x . renderTo (document . getElementById (" x ")) ;

25 foo . setValue (" purple ") ;

Although this example is a bit harder to digest, it should not be difficult to map each of

Loom’s constructs to their JavaScript counterpart. Once again, we use modules to aid

with the compilation: in particular, we define classes for representing CSS values and

selectors.

SimpSel represents a simple selector—a selector without combinators; CompSel repre-

sents a composite selector—a composition of two selectors (the left one always simple) via

a combinator (in the example, the > combinator).

From this example, a few important questions arise: how to apply a style sheet to an

element so that it becomes scoped to it? How to handle signals inside style sheets?

Typically, regarding the first question, frameworks that support the dynamic creation

of style sheets render the whole style sheet in the global scope—though first prefixing

each selector with a custom class (this is the case for frameworks such as Fela [Fel] and

Aphrodite [Aph]). They then add said class to each element against which the style sheet

should be applied. If not being careful with the specificity of certain selectors, this may

lead to an unwanted behaviour where rules of parent style sheets override more locally

defined rules. As an example, consider the following Loom program:

1 var outerCSS = css {

2 | #red , #blue | {

3 c o l o r : " blue "

4 }

5 }

6 var innerCSS = css {

33

CHAPTER 3. IMPLEMENTATION DETAILS

7 c o l o r : " red "

8 }

9 var elem = <div#z { css : outerCSS}> [

10 <div#red { css : innerCSS}> " Red "

11 <div#blue> " Blue "

12]

13 elem . renderTo (document . getElementById (" z "))

If both outerCSS and innerCSS are rendered in the global scope, then the DOM would

look something like the following, where both<div>s will be blue (because the outer rule

is more specific than the inner one):

1 < !DOCTYPE html>
2 <html>
3 <head>

4 <s t y l e>

5 . outer #red , . outer #blue {

6 c o l o r : blue ;

7 }

8 . inner {

9 c o l o r : red ;

10 }

11 </ s t y l e>

12 </head>

13 <body>

14 <div id=" z " c l a s s=" outer ">

15 <div id=" red " c l a s s=" inner ">Red</ div>

16 <div id=" blue ">Blue</ div>

17 </ div>

18 </body>

19 </html>

These frameworks usually work around this issue by limiting the kind of selectors

that may be used in their style sheets—at the expense of expressivity. Typically, they do

not allow descendant selectors to be used.

In order to abide by the semantics designed in the previous chapter—which were pur-

posely defined in a way that avoids any expressivity losses—in Loom, we reuse the idea

of prefixing each selector with a class (though we use an attribute selector) together with

an experimental technology named scoped styles: which automatically have the scoping

properties we desire.

In terms of the second question—how to handle signals inside style sheets—we take

advantage of a recent CSS feature called custom properties, often referenced as CSS vari-

ables. This feature enables the usage of variables within CSS—variables whose values

may be defined in elements. Most other existent frameworks require the rendering of

CSS to handle this sort of dynamism within their style sheets.

As such, the following is how the element identified by x in the first example should

appear in the DOM after being rendered:

34

3.5. SUPPORTING CSS VALUES

1 <div id=" x " data−loom−css −0 s t y l e="−−loom−prop−0−0: yellow ; ">

2 <s t y l e scoped>

3 [data−loom−css −0] {

4 c o l o r : var (−−loom−prop−0−0);

5 background−c o l o r : green ;

6 display : i n l i n e −block ;

7 }

8 [data−loom−css −0]#x > div . y : hover {

9 c o l o r : blue ;

10 }

11 </ s t y l e>

12 Hello

13 <div c l a s s=" y ">World !</ div>

14 </ div>

A mutation of the signal’s value only requires the update of the--loom-prop-0-0 custom

attribute.

However, there are some issues with the proposed approach (which we intend to work

on in the future; see also section 6.1):

• Scoped styles are currently only supported in Firefox—with most other browsers

seemingly not interested in implementing the feature—this means that scoped style

sheets become available globally. The web is moving in the direction of supporting

web components which do support the scoping of styles—in the future, Loom may

try to use this approach. Note that, whilst other browsers don’t support the scoping

of styles, most style sheets defined in Loom will still work properly: only certain

rules with high-specificity selectors (such as the previously shown example) may

override rules defined more locally (this makes Loom behave alike to most existent

solutions);

• We place a<style> element on the children of HTML elements with applied style

sheets: this ruins the behaviour of certain CSS selectors such as: :first-child,

:nth-child, etc.;

• Custom properties need to be polyfilled for compatibility with older browsers;

• We have no efficient way of dealing with whole rules that are themselves signals

such as css {|div|someSignal}: the mutation of this signal causes the rerendering

of the whole style sheet.

However, there are common situations where such rules are useful. As an example,

think of the task manager application from chapter 1. We intend to style the text

of a task if it is done; doing nothing when it is not done. This can be achieved via a

CSS value such as the following:

1 css {

2 | . task − t e x t | sig
3 i f (* (task . done))

35

CHAPTER 3. IMPLEMENTATION DETAILS

4 css {

5 textDecorat ion : " l ine −through "

6 c o l o r : " gray "

7 }

8 e l s e
9 css { }

10 }

Yet, as we have explained, the toggling of the done status of a task will cause the

whole style sheet to rerender—which may be highly inefficient. Because this is such

a common pattern, we introduce a syntactical construct for expressing the above

showcased example—we introduce an :if() pseudo-selector:

1 css {

2 | . task − t e x t : i f (task . done) | {

3 textDecorat ion : " l ine −through "

4 c o l o r : " gray "

5 }

6 }

This pseudo-selector accepts either a boolean or a signal that evaluates to a boolean;

its semantics are equivalent to those of the original formulation. However, this

construct can be implemented efficiently. The following shows the structure of a

done task, showcasing how the if() pseudo-selector translates to CSS:

1 < l i c l a s s=" task " data−loom−css −0 data−loom− i f −1−0>

2 <s t y l e scoped>

3 [data−loom− i f −1−0][data−loom−css −0] . task − t e x t {

4 text −decorat ion : l ine −through ;

5 c o l o r : gray ;

6 }

7 </ s t y l e>

8 <input c l a s s=" task −done " type=" checkbox ">

9 Understand Loom’ s CSS values

10 </ l i>

Toggling the done status of the task simply requires toggling the data-loom-if-1-0

attribute of the element in order to update its presentation.

3.6 Loom’s Playground

So that users may easily experiment with our language, we make available a playground to

interact with Loom. This playground, itself implemented in Loom—with a few examples

to choose from—may be found at: https://loom-lang.gitlab.io/loom-playground.

Its source code may be found at: https://gitlab.com/loom-lang/loom-playground.

Figure 3.4 displays the Graphical User Interface (GUI) of the playground. Note that

the playground does not support the usage of multiple files; as such, examples which

would normally be spread across multiple files are listed as a single one.

36

https://loom-lang.gitlab.io/loom-playground
https://gitlab.com/loom-lang/loom-playground

3.6. LOOM’S PLAYGROUND

Figure 3.4: Loom’s Playground GUI

Further note that the page rendered on the right side is the result of an export default

in the Loom program on the left.

37

C
h
a
p
t
e
r

4
Related Work

Throughout this chapter we expose some of the technologies, techniques and overall work

that is related, in one way or another, to the creation of a unified web language focused on

client-centred applications. In specific, we dive into the realm of web template engines,

which provide useful insight on how HTML values that depend on data can be specified;

we look into CSS preprocessors, which provide an extension to CSS style sheets with

interesting useful semantics; we explore already existent languages and frameworks that

bridge different web technologies, explaining how these bridges are built; we discuss

modularity in the context of the web and its implications; and finally, we present the

notion of reactive programming, discussing why it is being adopted in the web, and what

techniques are used to make some of its aspects more efficient.

4.1 Background and Foundations

4.1.1 Web Template Engines

HTML was created with the idea of static documents in mind; as such, it is not suited for

the definition of the structure of nowadays interfaces that, more often than not, depend

on some sort of external data. In order to work around the limitations of HTML, web

template engines were created: they use a processor that allows them to generate HTML

documents, whilst possibly being parametrised. These engines have been widely used on

the server side of applications in order to generate server-side dynamic structures that

depend on some external data, such as content from an HTML form or from the state of

the server. More recently, they began being applied in the client-side, thus being able to

produce client-side dynamic structures.

Client-side dynamic structures change their content on the occurrence of some event,

such as time or user interaction (e.g. click of a button). These sort of changes occur

39

CHAPTER 4. RELATED WORK

by means of DOM manipulation, only made possible with the aid of a programming

language with access to the DOM API (typically JavaScript). Template engines started to

be adopted on the client side of applications in order to avoid the specification of a web

page’s dynamic elements in nothing but JavaScript, which is often either verbose, or based

on the creation of HTML elements via strings.1 As such, engines must typically offer ways

of being integrated with JavaScript—providing functions such as render, which typically

receive data as arguments and produce the rendered template as an HTML string.

Embedded JavaScript (EJS) [Ejs], Pug [Pug], and Handlebars [Han] are examples of

popular template engines that integrate well with JavaScript; the study of these engines

was useful in order to understand the main features of languages tailored to allow the

definition of dynamic structures—which Loom supports. Bellow we find an example of

how a template may look like (using Pug):

1 #todo−app

2 h1 Todos

3 input . new− task (placeholder="Add a task ")

4 i f t a sks . length > 0

5 ul . tasks − l i s t

6 each task in t a sks

7 l i . task

8 input . task −done (type=" checkbox " checked=task . done)

9 span . task − t e x t=task . t e x t

10 e l s e
11 #no− ta sks No tasks to show .

Other engines typically support a similar set of features. The presented example

shows some of the most common features of these engines: the usage of data variables

(tasks array in the example) allows the definition of templates that vary depending on

the application’s data; loops and conditionals allow the specification of the template logic,

where what is shown depends on the data of the application.

Other common features of template engines include syntax simplifications for com-

mon operations (in the Pug example #todo-app is equivalent to div(id="todo-app")

and li.task to li(class="task"); as previously seen, Loom borrowed this idea); and

inheritance, where a template may extend another.

4.1.2 CSS Preprocessors

CSS preprocessors are tools that, provided code written in some specified language, com-

pile it to CSS — they have become widely popular among web developers as a way of

bypassing some of the limitations of plain CSS [MT16]. SASS [Sas], Less [Les], and Sty-

lus [Sty] are examples of popular CSS preprocessors [Mar14].

The study of existent CSS preprocessors was important, in our context, in order to un-

derstand what a language that features CSS values as first-class citizens is able to provide

1With this being said, there are still some viable alternatives based solely on JavaScript, of which Hyper-
Script [Hyp] is a prime example.

40

4.1. BACKGROUND AND FOUNDATIONS

“out-of-the-box”, as well as what constructs must be added to the language in order to

support some of the most useful/popular features of current preprocessors; as such, this

section provides a concise description of the main capabilities of current popular CSS

preprocessors.

One of the main reasons behind developers’ use of CSS preprocessors instead of plain

CSS is the ability to declare identifiers. Identifiers naturally eliminate the common need

for repeating CSS literal values throughout a style sheet—such as colours, paddings, or

widths; they are the simplest example of a feature that is automatically available in a

programming language that supports CSS values.

CSS preprocessors further allow arithmetic and the use/definition of other functions.

They often support multiple data types: from numbers (e.g. 17, 4em, 18px), strings, and

colours (e.g. red, #ccc, rgb(0,0,100)) to lists of values, separated by spaces or commas

(e.g. 10px 0 5px 1px, Arial, Helvetica, sans-serif). These functionalities should also

appear naturally in a programming language containing CSS values, although it might

not be trivial to determine appropriate ways of specifying the values of CSS properties

(due to the nature of CSS syntax, e.g. some lists of values are represented with commas,

whilst others have spaces)—Loom currently requires strings to be used to represent most

CSS values; in the future, more thinking has to go into how to better integrate CSS with

the language. As an example, consider the following style sheet written in SASS:

1 $fontColor : black ;

2 #content {

3 color : $fontColor ;

4 a {

5 color : l i g h t e n ($fontColor , 20%);

6 &: hover { color : l i g h t e n ($fontColor , 10%); }

7 }

8 }

Other preprocessors typically support a similar set of features, albeit with different syntax.

In addition to allowing the usage of identifiers ($fontColor in the example) and functions

(in the example, lighten is a function that takes a colour and a percentage as arguments

and produces a new lighter colour), most preprocessors offer the ability to nest rules.

The example presents such a nesting: the styles for a are applied when a is a child of

#content. Furthermore, since & references the parent selector, &:hover represents the

selector a:hover. The usage of nested rules when writing style sheets has become popular

due to its intrinsic resemblance to the way in which HTML is specified. Indeed, by looking

at style sheets written in such a way, developers are more easily able to discern a rough

approximation of the structure of an interface. In Loom’s case, it is also arguably the most

natural way of composing a style sheet—compare it with the scoped CSS style sheets

exposed in section 3.5.

Other useful features of popular CSS preprocessors include the ability to extend rules,

to deal with imports, and to interpolate selectors and property names. Rule extension

makes it possible for a rule to extend all properties of another rule, whilst adding new

41

CHAPTER 4. RELATED WORK

properties; Loom supports this via the splats operator (...) in CSS values. Imports

are supported natively by CSS; preprocessors, however, extend their functionality in

order to import other files written within the same preprocessor language. In Loom,

importing in unrelated with CSS; it is a concern of the module system which allows

any value in Loom to be imported or exported (obviously including CSS values). In-

terpolating selectors and property names refers to the usage of variables inside them

(e.g. p.#{$name}{margin-#{$dir}:10px;}). Although not introduced in section 2.4,

Loom supports the interpolation of property names but not of selectors: selectors are

parsed by Loom and syntactically checked by its parser (see section 6.1 as to why this

may be of importance in the future).

4.1.3 CSS in JavaScript

Christopher Chedeau’s talk—“React: CSS in JS”—introduced in section 1.2, enunciates

a set of problems encountered when dealing with CSS in a large scale: problems which

aren’t solved by the adoption of CSS preprocessors.

Chedeau thus proposes an approach where JavaScript is used to define the presenta-

tion of elements of an interface. This proposal gave rise to the appearance of a plethora

of JavaScript libraries [Css]: Radium [Rad] and Aphrodite [Aph] being two commonly

mentioned ones.

Most of the created libraries attempt to provide an easy way for styles to be defined in

JavaScript, whilst avoiding some of the issues with Chedeau’s approach: it is hard/impos-

sible to support certain CSS features with inline styles. Some of these features include:

media queries, browser states (CSS pseudo-classes such as :hover, :focus, :visited),

and keyframes.

As far as we are aware, there are two main types of “CSS in JS” libraries, in regard to

their implementation: those that attempt to follow Chedeau’s proposal and implement

most styles as inline (this is the case for Radium); and those that, keeping the idea of

inline-styles in mind, compile the styles generated in JavaScript to actual CSS: this is what

Aphrodite and Fela [Fel] do behind the scenes—from where Loom got its inspiration.

The latter approach has the advantage of having no limits regarding what may be

supported from CSS: since the JavaScript compiles down do CSS, all CSS functionality

should be available to the user.

4.1.4 Bridging Web Technologies

Creating a bridge between some of the technologies that are common on web applications

is something that has already been done, and is still being done by a number of different

languages and frameworks. This section presents some of them, explaining their concerns

and what can be learned (in the context of this dissertation) from what they provide. We

also show that none of them attempt to offer first-class support for style sheets in order

to support reactive data-dependent presentations.

42

4.1. BACKGROUND AND FOUNDATIONS

Opa [Opa; RT10] is a statically typed unified web programming language whose main

intent is in providing a framework suited for rapid and secure web development. It

allows the specification of a whole application in a single language, with automation of

client/server calls. This language has a clearly distinct goal from Loom’s: it is mainly

concerned with closing the gap between client, server, and database—focusing on aspects

such as security and transparency. As such, they do not offer, for instance, built-in support

for reactive computations. Yet, there are some shared concerns, namely in the unification

of multiple languages into one: the Opa language provides Extensible Hypertext Markup

Language (XHTML) as a data-type, with special syntax support; similarly, it also provides

CSS as a data-type.

An example of a function in Opa that produces an XHTML paragraph (adapted

from [Bin+13]) is as follows:

1 function helloWorld () {

2 s t y l e = css { c o l o r : white ; background : blue ; padding : 10px ; }

3 <p s t y l e ={ s t y l e }> Hello world</>

4 }

This example showcases Opa’s syntax for XHTML and CSS, which are intended to look

just like the real thing.

CSS in Opa, however, is a data-structure that is either registered and served to the

clients, becoming immutable, or is applied to XHTML values through their style at-

tribute, as shown in the example. This means that, aside from manipulating the style

attributes of XHTML elements, there is no way of creating dynamic presentations of an

interface using CSS as a data-structure.

Another language recently developed for the web is Elm [CC13; Elm] — an increas-

ingly popular strict functional programming language that compiles to JavaScript. Unlike

Opa, and similarly to our language, Elm is mainly concerned with the development of

client-side reactive applications. Elm supports both HTML and CSS as data-types: values

of such types are produced via functions offered by the language.

A fully working example of a tasks-manager application using Elm may be found in

appendix A.2. For a simpler example, the following code shows how a simple HTML

element representing a user profile (with the user’s picture and name) may be built using

Elm (adapted from [Cza14]):

1 p r o f i l e : User −> Html

2 p r o f i l e user =

3 div [c l a s s " p r o f i l e "]

4 [img [s r c user . p i c ture] []

5 , span [s t y l e [(" c o l o r " , " red ")]] [t e x t user . name]

6]

div, img, and span are functions that take a list of attributes and a list of HTML elements

and produce a new HTML element. Similar functions exist for all the tags defined in

the HTML5 specification. All of these are actually helpers that use the node function:

43

CHAPTER 4. RELATED WORK

a function of type String -> List Attribute -> List Html -> Html (e.g. the div func-

tion is implemented as div = node "div"). HTML attributes are themselves specified via

functions; style is an example of such a function and takes a list of pairs of strings as

argument. This is the typical way of using CSS directly in the Elm language: by being ap-

plied to an element’s style attribute. Thanks to the language’s reactive nature (explained

in 4.2.2) these styles may be dynamically updated on the event of some data-change:

causing the presentation of a page to consequently update.

In contrast with Loom, Elm does not support the creation of style sheets that allow

the full expressivity of CSS: at least not first-class ones with support for reactivity.

A third language that attempts to close the gap between multiple web technologies

is Ur/Web [Chl15]. Ur/Web is a unified web language, resembling Opa, that supports

HTML and Structured Query Language (SQL) queries as first-class values, whilst support-

ing reactivity in a way similar to Elm. However, it seems to lack support for primitive CSS

values (again, reactivity in terms of presentation is still possible through HTML element’s

style attribute).

Angular [Angb], Meteor [Met], Ractive [Rac], and React [Rea] are examples of frame-

works built with the intent of bridging web technologies. What these frameworks have in

common is that, instead of defining a new language that supports values such as HTML

or CSS, they offer ways of better integrating already existent technologies.

Angular, for instance, extends HTML with a set of directives that allows it to work as a

template engine with reactive properties. In fact, a similarity between these frameworks

is their concern with the definition of reactive structures (see section 4.2.2).

4.2 Methods and Techniques

4.2.1 Gradual typing

Gradual typing is a type system that supports both static and dynamic typing. It is a type

system commonly applied on top of languages that were originally designed to be dy-

namic. This is the case for JavaScript, on top of which extensions such as TypeScript [Typ]

or Flow [Flo], with support for gradual typing, were defined.

As previously mentioned, this methodology for adding (optional) static typing to

JavaScript comes with the advantage of not losing support for already available packages

(e.g. obtained through npm). This is not the case for other languages that compile to

JavaScript whilst forcing static typing, such as Opa or Elm. In fact, in order to use external

(JavaScript) packages in these languages, communication with the language must be

performed through a provided API.

Even though not yet implemented in Loom, this provides us with insight on how we

may, in the future, benefit from type systems whilst keeping the principle of interoper-

ability with JavaScript in mind.

44

4.2. METHODS AND TECHNIQUES

4.2.2 Reactive Programming

A common problem encountered when writing client-side web applications is the mon-

itoring of a certain value (e.g. the width of the browser’s window; some text input in a

form field; or the current time) with the intent of updating some other value whenever

the first one changes. Multiple patterns express this idea: polling and comparing, where

the value is checked periodically and an update occurs when a change in the value is

found; events, where an event is emitted every time the value changes and whoever is

interested listens for such events in order to update; bindings, where values are repre-

sented by an object of some interface that allows the binding between such objects, thus

forming a dependency graph that causes values to be automatically updated when a value

they depend on changes. A different approach, that has become increasingly popular, is

reactive programming.

Reactive programming is a declarative style of programming: this means that the

programmer specifies what is supposed to happen, rather than how. Modern spreadsheet

programs provide an example of reactive programming: cells that contain formulae such

as =A1+B1 that depend on other cells are updated whenever the values of those other cells

change. This approach abstracts away the inner propagation of changes through the data

flow.

Technologies such as Angular, Meteor, React, and Elm have popularised the usage

of this technique on the web in order to create reactive interfaces. However, whilst

frameworks such as Angular, Meteor, or React often force a set of conventions such as

models, views, controllers, or components to be adopted, languages like Elm or Ur/Web

offer an approach based on FRP.

FRP is a declarative programming paradigm for working with time-varying values,

known as signals [Wan+01]. A survey on the existent set of libraries that work with

signals [Mog] separates the usage of signals in two distinct categories: with combinators,

or as signal expressions. Combinator libraries, such as Flapjax [Mey+09] or Elm, combine

signals via functions, in order to produce new signals. Signal expressions allow the

definition of signals as arbitrary expressions of the host language. These expression may

depend on other signals, automatically updating whenever their value changes. This is

the approach followed by Loom; also worth noting is the fact that combinator functions

may still be built on top of mutable values and signal expressions.

4.2.3 Virtual DOM

Regarding the usage of reactive techniques, an important observation must be made when

updating interfaces in the context of the web: DOM updates are not cheap. This is true

for reactive structures specified as signals, or in any other ways. This means that it is

not wise to update a whole page whenever some value that the page depends on changes.

In fact, not only is it not cheap, it may compromise user experience (e.g. if the user has

some text box selected, an update to the DOM causes the mentioned text box to lose

45

CHAPTER 4. RELATED WORK

focus). A popular approach to work around these issues lies in the usage of a virtual

DOM structure: virtual DOMs allow for lightweight updates of the structure of a page

by calculating the difference between two virtual structures, and patching the real DOM

with only the elements that actually changed [Cza14; Vir].

Yet, why the need for a virtual DOM? The above problems could be solved using

tradicional DOM manipulations; likely, even more efficiently. The real benefit of a virtual

DOM is that the DOM manipulations are automated and abstracted whilst still being

performant. Doing this sort of manual management requires keeping track of what has

changed and what has not, in order to avoid updating large portions of a structure that

do not require an update—a process typically error prone. This is why most of nowadays

frameworks that provide some way of defining reactive structures in a declarative manner

use the virtual DOM techniques: this includes Elm, React, Vue.js, and many others.

Loom’s virtual DOM implementation, as previously mentioned, is built on top of

Snabbdom—a lightweight low-level library which has been shown to be performant in

practice (see section 5.2).

46

C
h
a
p
t
e
r

5
Validation

In this chapter we enunciate some of the ways with which we validate Loom: we im-

plement the TodoMVC application, making it possible to compare Loom against other

technologies; and we explain how our underlying technologies have been shown perfor-

mant in practice.

5.1 TodoMVC

The TodoMVC is a project that offers the same tasks-manager application implemented

in a plethora of different languages and frameworks [Tod]. Thanks to this project, it is

possible to effectively compare multiple technologies by having a common background

application. Figure 5.1 displays the expected interface of a TodoMVC application; our

working version is available online at: https://loom-lang.gitlab.io/loom-todomvc.

In order to be able to compare Loom against other technologies, we implement the

TodoMVC application with all required specifications.1 Appendix A.3 contains the main

code for our implementation of the application. It is worth noting that, as opposed

to all other TodoMVC applications, all of the interface’s presentation has been speci-

fied in Loom. The full source code may be found at: https://gitlab.com/loom-lang/

loom-todomvc.

We leave to the reader the task of comparing our implementation with other imple-

mentations of the application. It is our belief that Loom’s implementation is both concise

and intuitive—though we might be biased. Regarding performance, we found that our

application performs as well as all others for a small number of tasks; however, at about

1The full list of specifications may be found at: https://github.com/tastejs/todomvc/blob/master/
app-spec.md

47

https://loom-lang.gitlab.io/loom-todomvc
https://gitlab.com/loom-lang/loom-todomvc
https://gitlab.com/loom-lang/loom-todomvc
https://github.com/tastejs/todomvc/blob/master/app-spec.md
https://github.com/tastejs/todomvc/blob/master/app-spec.md

CHAPTER 5. VALIDATION

Figure 5.1: TodoMVC application (the displayed one was implemented in Loom—thought
all of them look alike)

two hundred tasks, it starts to lag: this is due to our functional approach to the implemen-

tation of the application without having decent underlying data structures to support

it, as well as currently unoptimised CSS support. This can be solved in two ways: ei-

ther rethink Loom with native support for immutable data-structures tailored for a more

functional-style of programming; or change the implementation of the application so that

it does not create a new HTML value for each task every time the list of tasks is updated.

In chapter 6 we see that this is an issue we intend to work on in the future.

5.2 Benchmarks

In order to benchmark our implementation of Loom’s patching algorithm, we extend an

already existent “JS Framework Benchmark” [Js]. This project contains implementations

of multiple benchmarks for a plethora of different frameworks; as such, we provide an

implementation of the benchmarks in Loom, for comparison.

The benchmarks in question consist on the creation of a large table with randomized

entries and measuring the duration of various operations:

• Create rows: duration of creating 1000 rows;

• Replace all rows: duration of updating all 1000 rows of the table (with 5 warm-up

iterations);

48

5.2. BENCHMARKS

• Partial update: duration of updating the text of every 10th row (with 5 warm-up

iterations);

• Select row: duration of highlighting a row in response to a click on it (with 5 warm-

up iterations);

• Swap rows: duration of swapping 2 rows on a 1000 rows’ table (with 5 warm-up

iterations);

• Remove row: duration of removing a row (with 5 warm-up iterations);

• Create many rows: duration of creating 10000 rows;

• Append rows to large table: duration of adding 1000 rows to a table of 10000 rows;

• Clear rows: duration of clearing the table filled with 10000 rows;

• Startup time: duration for loading and parsing the JavaScript code and rendering

the page;

• Ready memory: memory usage after page load;

• Run memory: memory usage after adding 1000 rows.

For all benchmarks, the duration was measured with the rendering time included. Fig-

ure 5.2 shows a comparison between Loom’s results and those of two of the most popular

frameworks for the client-side development of web applications: React and Angular.

As may be seen, Loom is currently not as optimised as the frameworks we are compar-

ing it with; yet, the results also show that Loom performs very well at certain benchmarks:

this is especially the case for the benchmarks where Loom takes advantage of its sub-tree

patching (benchmarks 3 and 4).

We believe that Loom’s poor results in benchmarks 5 and 6 are not a consequence of

the employed patching algorithm, but rather of the fact that Loom requires an extra step

to perform the actions: to swap two rows, Loom requires the creation of a new list that is

a copy of the initial one with both rows swapped; to remove a row, Loom creates a new

list that is a copy of the first one without the row to remove. Both Angular and React

simply mutate the already existent list without creating a new one.

Benchmark 8, on the other hand, likely showcases the differences in terms of opti-

mizations between Loom and the remaining libraries: which become apparent for very

large structures.

With these results in mind, we can still say that Loom is currently performant enough

in practice—though there is obviously still room for improvement. In all fairness, how-

ever, the presented benchmarks do not take into account the patching of CSS values—

which will likely cause yet another drop in performace; as we mention in the following

chapter, measuring and minimising this impact will be left for future work.

49

CHAPTER 5. VALIDATION

Figure 5.2: Loom’s benchmarks compared with React and Angular; each value is followed
by: ± standard deviation (slowdown = duration / fastest)

50

C
h
a
p
t
e
r

6
Conclusions

The idea for Loom originated during the development of the client-side of some ap-

plication in which many (dynamic) parts of the interface’s presentation depended on

application-data. We were, at the time, working with JavaScript on the client-side and

Node.js on the server-side, both using the same base language—we wondered whether

it would be possible to do the same for HTML and CSS: keeping all the functionality of

each language whilst benefitting from the expressivity of JavaScript.

As such, so far our efforts were put into making Loom work (we followed a very end-

oriented approach): we wanted to validate our idea by having a working compiler for the

language that allowed us to specify performant reactive interfaces in an easy manner—

this is what we believe we have achieved. We consider our implementation of the Loom

compiler a very good start towards the premise of this dissertation: bridging client-side

web technologies in a single programming language. Our work will thus function as

ground work for the many possible improvements that we follow up by enumerating.

6.1 Future Directions

However complete our implementation of the language’s compiler may be, time was

limited and, as such, there are plenty of improvements to be made (both to the compiler

and to the language itself). The following list showcases what we believe will be part of

Loom’s future:

• We intend to formally define the language: its basic constructs and behaviour re-

garding signals, HTML and CSS values, and the way they interact should be properly

specified;

• We will explore the usage of immutable data-types for representing lists, records,

and other structures of importance—we are currently compiling them to JavaScript

51

CHAPTER 6. CONCLUSIONS

arrays and objects; with interoperability with JavaScript being one of our principles,

this requires understanding how the JavaScript counterparts will be supported;

• We believe that a type system greatly improves the reliability of a language; as

such, we intend to incorporate one in Loom: this includes a more in-depth study of

existent type systems currently used in the context of the web to guarantee interop-

erability with JavaScript;

• The server-side rendering of web pages is important; we will likely explore the usage

of Loom in the server-side of an application—which would be possible by using

Node.js. This involves providing means for generating HTML and CSS documents

on the fly from Loom’s HTML and CSS values. Other interesting ideas in this area

involve the creation of seamless connections between client and server by means of

signals and web sockets, achieving similar results to those of Meteor [Met].

• Signals in Loom currently follow a pull-based approach with regard to when they up-

date. It is possible to optimise these updates—avoiding needless recomputations—

by mixing both push and pull philosophies in a push-pull-based approach.

• CSS in Loom requires some tweaking: although it works, its performance should

be further optimised for the case where we declare the body of a rule as a signal.

Another concern regards browser compatibility: currently, as previously mentioned,

CSS only works properly in Firefox—albeit it’s current behaviour is not exactly disas-
trous in other browsers. Obvious improvements to CSS involve the straightforward

implementation of certain features that are not currently in Loom simply because

we did not have the time to do it: key-frame support and media queries being the

two main ones.

• Still in the topic of CSS, we intend to explore better ways of integrating Loom with

value-types supported by CSS, i.e. support specifying units in numbers: such as px,

%, em, etc. Once again, this is something that involves rethinking the language itself.

• Regarding CSS and type systems, because we have both HTML and CSS values as

first-class citizens in Loom, we may explore ways of identifying unused styles in

style sheets—a problem in nowadays applications [Hag+15].

• Although Loom’s virtual DOM implementation should work well in practice, as

shown in the benchmarks, there are still ways of making it better—especially be-

cause we have the freedom of compiling HTML values in any way we see fit. Li-

braries such as Inferno [Inf]—possibly the fastest currently existent virtual DOM

library—take advantage of these kind of optimisations to achieve high levels of

performance.

• At last (but not least), we intend to benchmark Loom’s CSS values against both:

virtual DOM libraries (to understand the impact of using “CSS in JS” vs. normal

52

6.1. FUTURE DIRECTIONS

CSS documents) and against other “CSS in JS” libraries (e.g. Fela—to compare im-

plementation performance).

53

Bibliography

[Bin+13] H. Binsztok, A. Koprowski, and I. Swarczewskaja. Opa: Up and Running.

"O’Reilly Media, Inc.", 2013. isbn: 978-1449328856.

[Chl15] A. Chlipala. “Ur/Web: A Simple Model for Programming the Web”. In:

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015. 2015, pp. 153–165. doi: 10.1145/2676726.2677004. url: http:

//doi.acm.org/10.1145/2676726.2677004.

[CC13] E. Czaplicki and S. Chong. “Asynchronous functional reactive programming

for GUIs”. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. 2013,

pp. 411–422. doi: 10.1145/2462156.2462161. url: http://doi.acm.org/

10.1145/2462156.2462161.

[Gar10] J. J. Garrett. Elements of user experience, the: user-centered design for the web
and beyond. Pearson Education, 2010.

[Hag+15] M. Hague, A. W. Lin, and C.-H. L. Ong. “Detecting Redundant CSS Rules in

HTML5 Applications: A Tree Rewriting Approach”. In: SIGPLAN Not. 50.10

(Oct. 2015), pp. 1–19. issn: 0362-1340. doi: 10.1145/2858965.2814288.

[Mai+10] I. Maier, T. Rompf, and M. Odersky. Deprecating the Observer Pattern. Tech.

rep. 2010.

[Mar14] A. Mardan. “Applying Stylus, Less, and Sass”. In: Pro Express. js. Springer,

2014, pp. 181–183.

[Maz16] D. Mazinanian. “Refactoring and migration of cascading style sheets: to-

wards optimization and improved maintainability”. In: Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 2016, pp. 1057–

1059. doi: 10.1145/2950290.2983943. url: http://doi.acm.org/10.

1145/2950290.2983943.

[MT16] D. Mazinanian and N. Tsantalis. “An empirical study on the use of CSS

preprocessors”. In: Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on. Vol. 1. IEEE. 2016, pp. 168–178.

55

https://doi.org/10.1145/2676726.2677004
http://doi.acm.org/10.1145/2676726.2677004
http://doi.acm.org/10.1145/2676726.2677004
https://doi.org/10.1145/2462156.2462161
http://doi.acm.org/10.1145/2462156.2462161
http://doi.acm.org/10.1145/2462156.2462161
https://doi.org/10.1145/2858965.2814288
https://doi.org/10.1145/2950290.2983943
http://doi.acm.org/10.1145/2950290.2983943
http://doi.acm.org/10.1145/2950290.2983943

BIBLIOGRAPHY

[Mey+09] L. A. Meyerovich, A. Guha, J. P. Baskin, G. H. Cooper, M. Greenberg, A.

Bromfield, and S. Krishnamurthi. “Flapjax: a programming language for Ajax

applications”. In: Proceedings of the 24th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2009, October 25-29, 2009, Orlando, Florida, USA. 2009, pp. 1–20. doi: 10.

1145/1640089.1640091. url: http://doi.acm.org/10.1145/1640089.

1640091.

[Mog] R. Mogk. “Reactive Interfaces: Combining Events and Expressing Signals”.

[RT10] D. Rajchenbach-Teller. “Opa: Language support for a sane, safe and secure

web”. In: Proceedings of the OWASP AppSec Research 2010 (2010).

[Wan+01] Z. Wan, W. Taha, and P. Hudak. “Real-time FRP”. In: Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming. ICFP

’01. Florence, Italy: ACM, 2001, pp. 146–156. isbn: 1-58113-415-0. doi:

10.1145/507635.507654. url: http://doi.acm.org/10.1145/507635.

507654.

56

https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/1640089.1640091
http://doi.acm.org/10.1145/1640089.1640091
http://doi.acm.org/10.1145/1640089.1640091
https://doi.org/10.1145/507635.507654
http://doi.acm.org/10.1145/507635.507654
http://doi.acm.org/10.1145/507635.507654

Webography

[Anga] Angular webpage. url: https://angularjs.org (visited on 03/24/2017).

[Angb] Angular webpage. url: https://angular.io (visited on 03/24/2017).

[Aph] Aphrodite repository. url: https://github.com/Khan/aphrodite (visited

on 03/24/2017).

[Bab] Babel webpage. url: http://babeljs.io (visited on 03/24/2017).

[Bem] BEM naming convention. url: https://en.bem.info/methodology/naming-

convention (visited on 03/24/2017).

[Che14] C. Chedeau. React: CSS in JS. Nov. 2014. url: https://speakerdeck.com/

vjeux/react-css-in-js (visited on 03/24/2017).

[Cof] CoffeeScript webpage. url: http://coffeescript.org (visited on 03/24/2017).

[Cza14] E. Czaplicki. Blazing Fast HTML, Virtual DOM in Elm. July 2014. url: http:

//elm-lang.org/blog/blazing-fast-html (visited on 03/24/2017).

[Ejs] EJS webpage. url: http://stylus-lang.com (visited on 03/24/2017).

[Elm] Elm webpage. url: http://elm-lang.org (visited on 03/24/2017).

[Fel] Fela webpage. url: http://fela.js.org (visited on 03/24/2017).

[Flo] Flow webpage. url: http://flowtype.org (visited on 03/24/2017).

[Han] Handlebars webpage. url: http://handlebarsjs.com (visited on 03/24/2017).

[Hyp] HyperScript repository. url: https://github.com/dominictarr/hyperscript

(visited on 03/24/2017).

[Inf] Inferno webpage. url: https://infernojs.org (visited on 03/24/2017).

[Jis] Jison webpage. url: http://zaa.ch/jison (visited on 03/24/2017).

[Js] JS framework benchmark. url: https://github.com/krausest/js-framework-

benchmark (visited on 06/12/2017).

[Les] Less webpage. url: http://lesscss.org (visited on 03/24/2017).

[Com] List of languages that compile to JS. url: https://github.com/jashkenas/

coffeescript/wiki/List-of-languages-that-compile-to-JS (visited

on 03/24/2017).

[Maj] D. Majda. PEG.js webpage. url: https://pegjs.org (visited on 03/24/2017).

57

https://angularjs.org
https://angular.io
https://github.com/Khan/aphrodite
http://babeljs.io
https://en.bem.info/methodology/naming-convention
https://en.bem.info/methodology/naming-convention
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
http://coffeescript.org
http://elm-lang.org/blog/blazing-fast-html
http://elm-lang.org/blog/blazing-fast-html
http://stylus-lang.com
http://elm-lang.org
http://fela.js.org
http://flowtype.org
http://handlebarsjs.com
https://github.com/dominictarr/hyperscript
https://infernojs.org
http://zaa.ch/jison
https://github.com/krausest/js-framework-benchmark
https://github.com/krausest/js-framework-benchmark
http://lesscss.org
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://pegjs.org

WEBOGRAPHY

[Met] Meteor webpage. url: https://www.meteor.com (visited on 03/24/2017).

[Mod] Module Counts. url: http://www.modulecounts.com (visited on 03/24/2017).

[Opa] Opa webpage. url: http://opalang.org (visited on 03/24/2017).

[Pug] Pug webpage. url: https://pugjs.org (visited on 03/24/2017).

[Rac] Ractive.js webpage. url: http://www.ractivejs.org (visited on 03/24/2017).

[Rad] Radium webpage. url: http://formidable.com/open- source/radium

(visited on 03/24/2017).

[Css] React: CSS in JS techniques comparison. url: https://github.com/MicheleBertoli/

css-in-js (visited on 03/24/2017).

[Rea] React webpage. url: https : / / facebook . github . io / react (visited on

03/24/2017).

[Sas] SASS webpage. url: http://sass-lang.com (visited on 03/24/2017).

[Scaa] Scala webpage. url: http://www.scala-lang.org (visited on 03/24/2017).

[Scab] Scala.Rx repository. url: https://github.com/lihaoyi/scala.rx (visited

on 03/24/2017).

[Sna] Snabbdom repository. url: https://github.com/snabbdom/snabbdom (vis-

ited on 03/24/2017).

[Sty] Stylus webpage. url: http://stylus-lang.com (visited on 03/24/2017).

[Tod] TodoMVC webpage. url: http://todomvc.com (visited on 03/24/2017).

[Typ] TypeScript webpage. url: http://www.typescriptlang.org (visited on

03/24/2017).

[Vir] virtual-dom repository. url: https://github.com/Matt-Esch/virtual-dom

(visited on 03/24/2017).

[Vue] Vue.js webpage. url: https://vuejs.org (visited on 03/24/2017).

58

https://www.meteor.com
http://www.modulecounts.com
http://opalang.org
https://pugjs.org
http://www.ractivejs.org
http://formidable.com/open-source/radium
https://github.com/MicheleBertoli/css-in-js
https://github.com/MicheleBertoli/css-in-js
https://facebook.github.io/react
http://sass-lang.com
http://www.scala-lang.org
https://github.com/lihaoyi/scala.rx
https://github.com/snabbdom/snabbdom
http://stylus-lang.com
http://todomvc.com
http://www.typescriptlang.org
https://github.com/Matt-Esch/virtual-dom
https://vuejs.org

A
p
p
e
n
d
i
x

A
Full Examples

A.1 Simple Todo Application in Loom

This section showcases the full code for the example presented in section 1.5. This exam-

ple creates a tasks-manager application that allows adding, removing, and filtering tasks

by their completion status; as well as toggling each task’s status. The interface may be

observed in fig. A.1 with the full code for specifying it being:

1 var l a s t I d = 0 / / Unique i d e n t i f i e r g e n e r a t o r
2

3 / / I n i t i a l l i s t o f t a s k s
4 var t a sks = mut [task (" Read the Introduct ion " , t rue) ,

5 task (" Learn Loom" , true) ,

6 task (" Learn EVERYTHING" , f a l s e)]

7

8 var toShow = mut " a l l " / / One o f " a l l " , " done " , or " a c t i v e "

Figure A.1: Interface for the simple tasks-manager application defined in Loom as ren-
dered by Firefox

59

APPENDIX A. FULL EXAMPLES

9

10 / / Tasks f i l t e r e d by what shou ld be shown
11 var f i l t e r e d T a s k s = sig * ta sks . f i l t e r (task =>

12 i f (* toShow == " done ") * (task . done) / / Show comple t ed t a s k
13 e l s e i f (* toShow == " a c t i v e ") ! * (task . done) / / Show uncompleted t a s k
14 e l s e t rue / / Show t a s k r e g a r d l e s s
15)

16

17 var newTaskText = mut " " / / Text o f t h e new t a s k input box
18

19 function task (text , done)

20 ({ id : l a s t I d ++, t e x t : text , done : mut done })

21

22 function addTask (task)

23 * t a sks = * t a sks . concat ([task])

24

25 function removeTask (id)

26 * t a sks = * t a sks . f i l t e r (task => task . id != id)

27

28 function t a s k P r e s e n t a t i o n (task)

29 css {

30 | . task − t e x t | {

31 textDecorat ion : sig i f (* (task . done)) " l ine −through " e l s e " none "

32 }

33 }

34

35 function t a s k S t r u c t u r e (task)

36 < l i . task { key : task . id , css : t a s k P r e s e n t a t i o n (task)} > [

37 <input . task −done { type : " checkbox " , checked : task . done}/>

38 task . t e x t

39 <button . task −remove { onClick : () => removeTask (task . id)} > " Delete "

40]

41

42 var todoApp = <div#todo−app> [

43 <h1> " Todos "

44 <input . new− task { placeholder : "Add a task " , value : newTaskText ,

45 onKeyDown : evt => i f (evt . key == " Enter ") {

46 addTask (task (* newTaskText , f a l s e))

47 *newTaskText = " "

48 } }/ >

49 <s e l e c t . f i l t e r − ta sks { value : toShow}>

50 for (var f i l t e r in [" a l l " , " done " , " a c t i v e "])

51 <option { value : f i l t e r }> "Show $ { f i l t e r } "

52 <ul . tasks − l i s t >

53 sig for (var task in * f i l t e r e d T a s k s)

54 t a s k S t r u c t u r e (task)

55]

56

57 / / Crea t e an HTML f i l e with t h e a p p l i c a t i o n
58 export default <html> [

60

A.2. SIMPLE TODO APPLICATION IN ELM

59 <head>

60 < t i t l e > " Simple todo a p p l i c a t i o n "

61 <body>

62 todoApp

63]

A.2 Simple Todo Application in Elm

In this section we list the code required to build a simple tasks-manager application in

Elm. The application allows the creation of new tasks and the toggling of their completion

status:

1 import Html exposing (. .)

2 import Html . A t t r i b u t e s exposing (. .)

3 import Html . Events exposing (. .)

4 import Json . Decode as Json

5

6 main : Program Never Model Msg

7 main = Html . beginnerProgram { model = { nextId = 0 , tasks = [] ,

8 newTaskText = " " } ,

9 view = view , update = update }

10

11 −− MODEL
12 type a l i a s Model = { nextId : Int , t a sks : L i s t Task , newTaskText : S t r i n g }

13 type a l i a s Task = { id : Int , t e x t : Str ing , done : Bool }

14

15 newTask : Int −> St r i ng −> Bool −> Task

16 newTask id t e x t done = { id = id , t e x t = text , done = done }

17

18 −− UPDATE
19 type Msg = UpdateNewTaskText S t r i n g | AddTask | ToggleDone Int Bool

20

21 update : Msg −> Model −> Model

22 update msg model = case msg of
23 UpdateNewTaskText t e x t −> { model | newTaskText = t e x t }

24 AddTask −> { model | nextId = model . nextId + 1 ,

25 t a sks = model . t a sks ++

26 [newTask model . nextId model . newTaskText Fa l se] ,

27 newTaskText = " " }

28 ToggleDone id done −>

29 l e t updateTask task = i f task . id == id then { task | done = done } e l s e task

30 in { model | ta sks = L i s t . map updateTask model . ta sks }

31

32 −− VIEW
33 view : Model −> Html Msg

34 view model =

35 div [id " todo−app "] [

36 h1 [] [t e x t " Todos "] ,

37 input [c l a s s "new− task " , placeholder "Add a task " ,

61

APPENDIX A. FULL EXAMPLES

38 value model . newTaskText , onInput UpdateNewTaskText ,

39 onEnter AddTask] [] ,

40 ul [c l a s s " tasks − l i s t "] <|

41 L i s t . map taskView model . ta sks

42]

43

44 taskView : Task −> Html Msg

45 taskView task =

46 l i [c l a s s " task "] [

47 input [c l a s s " task −done " , type_ " checkbox " , checked task . done ,

48 onClick (ToggleDone task . id (not task . done))] [] ,

49 span [c l a s s " task − t e x t " , s t y l e [(" text −decorat ion " ,

50 i f task . done then " l ine −through " e l s e " none ")]]

51 [t e x t task . t e x t]

52]

53

54 onEnter msg = l e t i s E n t e r code = i f code == 13 then Json . succeed msg

55 e l s e Json . f a i l " Not enter "

56 in on " keydown " (Json . andThen i s E n t e r keyCode)

A.3 TodoMVC Application in Loom

This section showcases the main code for the implementation of the TodoMVC tasks-

manager application in Loom. It implements all of the project’s required features whilst

having all style sheets specified in Loom.

To avoid filling too many pages, we hide the CSS specification from the listing (as

it was mostly a translation from the original CSS to Loom’s syntax); we also omit the

implementation details for the router and web storage modules. In any case, as pre-

viously mentioned, the complete source code may be found at: https://gitlab.com/

loom-lang/loom-todomvc.

An observation: as future work, we will update the web storage module to support

arbitrary data structures that may hold signals—making the example even simpler to

understand and the usage of web storage a lot more straightforward.

This being said; the example follows:

1 import appStyle from " . / s t y l e s /app− s t y l e "

2 import todoSty le from " . / s t y l e s / todo− s t y l e "

3 import l o c a t i o n from " . / u t i l s / router "

4 import { getItem , setI tem } from " . / u t i l s /web−s torage "

5

6 / / Text o f t h e new todo
7 var newTodoText = mut " "

8 / / What i s showing (one o f ‘" a l l " ‘ , ‘" a c t i v e " ‘ , ‘" comple t ed " ‘)
9 var showing = sig i f (* l o c a t i o n == " a c t i v e ") " a c t i v e "

10 e l s e i f (* l o c a t i o n == " completed ") " completed "

11 e l s e " a l l "

12

62

https://gitlab.com/loom-lang/loom-todomvc
https://gitlab.com/loom-lang/loom-todomvc

A.3. TODOMVC APPLICATION IN LOOM

13 / / L i s t o f todo i d e n t i f i e r s − a mutable va lue (k e p t in l o c a l s t o r e)
14 var todoIds = getItem (" todos " , [])

15 / / Current maximum i d e n t i f i e r (‘ −1 ‘ i f t h e r e a r e no t o d o s)
16 var maxId = sig i f (* todoIds . length == 0) −1 e l s e Math . max (. . . * todoIds)

17 / / L i s t o f todo o b j e c t s
18 var todos = sig * todoIds .map(id => todoObject (id))

19

20 / / Todos f i l t e r e d by what i s showing
21 var f i l t e r e d T o d o s = sig * todos . f i l t e r (todo =>

22 i f (* showing == " a c t i v e ") ! * (todo . completed)

23 e l s e i f (* showing == " completed ") * (todo . completed)

24 e l s e t rue

25)

26

27 / / Number o f t o d o s l e f t t o do
28 var nLeft = sig * todos . f i l t e r (todo => ! * (todo . completed)) . length

29 / / Number o f t o d o s comple t ed
30 var nCompleted = sig * todos . length − * nLeft

31 / / Whether a l l t o d o s ar e done
32 var allDone = sig * nLeft == 0

33

34 / / Ob j e c t r e p r e s e n t a t i o n o f a todo (t h e ‘ completed ‘ and ‘ t e x t ‘ a r e s t o r e d in
35 / / t h e l o c a l s t o r e) , i t k e e p s t r a c k o f t h e t e x t be ing c u r r e n t l y e d i t e d :
36 / / i n i t i a l l y s e t t o t h e todo ’ s t e x t
37 function todoObject (id) {

38 var t e x t = getItem (" todo−$ { id }− t e x t ")

39 var completed = getItem (" todo−$ { id }− completed ")

40 { id , completed , text , e d i t i n g : mut f a l s e , ed i t ingText : mut * t e x t }

41 }

42

43 / / C r e a t e s a new todo in t h e l o c a l s t o r e and r e t u r n s t h e ‘ id ‘ o f t h e c r e a t e d
44 / / todo
45 function createTodo (t e x t) {

46 var newId = *maxId + 1

47 setI tem (" todo−$ { newId}− completed " , f a l s e) ,

48 setI tem (" todo−$ { newId}− t e x t " , t e x t) ,

49 newId

50 }

51

52 / / T o g g l e s t h e e d i t i n g s t a t u s o f a todo
53 function t o g g l e E d i t (todo)

54 * (todo . e d i t i n g) = ! * (todo . e d i t i n g)

55

56 / / F i n i s h e s e d i t i n g a todo ; i f t h e new t e x t i s empty , removes t h e todo
57 function f i n i s h E d i t (todo) {

58 var newText = * (todo . ed i t ingText) . trim ()

59 i f (newText == " ")

60 removeTodo (todo)

61 e l s e {

62 * (todo . t e x t) = newText

63

APPENDIX A. FULL EXAMPLES

63 t o g g l e E d i t (todo)

64 }

65 }

66

67 / / Cance l s t h e e d i t (t h e e d i t i n g t e x t i s r e s e t t o t h e todo ’ s t e x t)
68 function cance lEdi t (todo) {

69 * (todo . ed i t ingText) = * (todo . t e x t)

70 t o g g l e E d i t (todo)

71 }

72

73 / / Adds a new todo t o t h e l i s t o f t o d o s when t h e t e x t i sn ’ t empty
74 function addTodo () {

75 var t e x t = *newTodoText . trim ()

76 i f (t e x t != " ") {

77 * todoIds = [. . . * todoIds , createTodo (t e x t)]

78 *newTodoText = " "

79 }

80 }

81

82 / / Removes a todo from t h e l i s t o f t o d o s
83 function removeTodo (todo)

84 * todoIds = * todoIds . f i l t e r (id => id != todo . id)

85

86 / / S e t s a l l t o d o s t o e i t h e r comple t ed or not completed , depending on t h e
87 / / s t a t u s o f ‘ al lDone ‘
88 function t o g g l e A l l () {

89 var s t a t u s = ! * allDone

90 for (var todo in * todos)

91 * (todo . completed) = s t a t u s

92 }

93

94 / / Removes a l l comple t ed t o d o s from t h e l i s t o f t o d o s
95 function clearCompleted ()

96 * todoIds = * todos . f i l t e r ((todo) => ! * (todo . completed)) . map(todo => todo . id)

97

98 / / Conver t s a todo o b j e c t t o i t s HTML r e p r e s e n t a t i o n
99 function todoHtml (todo)

100 < l i { key : todo . id , css : todoSty le (todo)} > [

101 <div . view> [

102 <input . t ogg le { type : " checkbox " , checked : todo . completed } />

103 <label { onDblClick : () => t o g g l e E d i t (todo)} > todo . t e x t

104 <button . destroy { onClick : () => removeTodo (todo) } />

105]

106 sig i f (* (todo . e d i t i n g)) / / Show input box when t h e todo i s be ing e d i t e d
107 <input . e d i t { value : todo . ed i t ingText

108 onBlur : () => f i n i s h E d i t (todo)

109 onKeyDown : e => i f (e . key == " Enter ") f i n i s h E d i t (todo)

110 e l s e i f (e . key == " Escape ") cance lEdi t (todo)

111 onInser t : (e l) => e l . focus () } />

112]

64

A.3. TODOMVC APPLICATION IN LOOM

113

114 / / Main view o f t h e a p p l i c a t i o n
115 var todoApp = <div> [

116 <header . header> [

117 <h1> " todos "

118 / / Add a new todo
119 <input . new−todo { value : newTodoText , autoFocus : t rue

120 placeholder : "What needs to be done ? "

121 onKeyDown : e => i f (e . key == " Enter ") addTodo () } />

122]

123 <sect ion . main> [

124 / / Checkbox t o t o g g l e a l l (shown only when t h e r e a r e t o d o s)
125 sig i f (* todos . length > 0)

126 <input . toggle − a l l { type : " checkbox " , checked : allDone

127 onClick : t o g g l e A l l } />

128 / / L i s t o f t o d o s
129 <ul . todo− l i s t > sig * f i l t e r e d T o d o s .map(todoHtml)

130]

131 / / Show f o o t e r only when t h e r e a r e t o d o s
132 sig i f (* todos . length > 0)

133 <footer . footer > [

134 [/ / Number o f t o d o s l e f t t o do
135 nLeft

136 sig " item$ { i f (* nLeft == 1) " " e l s e " s " } l e f t "

137]

138 <ul . f i l t e r s > {

139 / / We are us ing c l a s s e s t o s t y l e each button , we cou ld i n s t e a d have a
140 / / s t y l e s h e e t f o r them
141 var s e t S e l e c t e d = s => ({ c l a s s : sig i f (* showing == s) " s e l e c t e d " })

142 [

143 <l i > <a { href : " # " , . . . s e t S e l e c t e d (" a l l ") }> " All "

144 <l i > <a { href : " # a c t i v e " , . . . s e t S e l e c t e d (" a c t i v e ") }> " Active "

145 <l i > <a { href : " #completed " , . . . s e t S e l e c t e d (" completed ")} > " Completed "

146]

147 }

148 / / Show button t o c l e a r comple t ed only when t h e r e i s a comple t ed todo
149 sig i f (* nCompleted > 0)

150 <button . c l ear −completed { onClick : clearCompleted }> " Clear completed "

151]

152]

153

154 / / Expor t s t h e "main" page
155 export default <html { lang : " en " }> [

156 <head> [

157 <meta { c h a r s e t : " utf −8" } />

158 < t i t l e > "Loom − TodoMVC"

159]

160 <body { css : appStyle }> [

161 <sect ion . todoapp> todoApp

162 <footer . info > [

65

APPENDIX A. FULL EXAMPLES

163 <p> " Double− c l i c k to e d i t a todo "

164 <p> [" Created by "

165 <a { href : " ht tps : / / g i t l a b . com/ nunocastromartins " }> "Nuno Martins "]

166 <p> ["To be part of " , <a { href : " http : / / todomvc . com" }> "TodoMVC"]

167]

168]

169]

66

	Acronyms
	Introduction
	Client-Side Development of Web Applications
	Reactive and Data-Dependent Presentation of Interfaces
	A Language That Bridges Client-Side Web Technologies
	Design Principles
	Interoperability With JavaScript
	Expressiveness of HTML and CSS Values
	Simplicity and Consistency

	Introducing Loom
	Representing Data as Signals
	Specifying the Structure of the Application
	Data-Dependent Presentations

	Contributions
	Structure of the Dissertation

	Programming Language
	Core Language
	First-Class Reactivity
	Dynamic Interfaces With First-Class HTML
	CSS as a First-Class Citizen
	Modules: Creating a Web Application in a Single Language

	Implementation Details
	Architecture
	Using Loom's Compiler
	Implementing Signals
	HTML Values and the Virtual DOM
	Supporting CSS Values
	Loom's Playground

	Related Work
	Background and Foundations
	Web Template Engines
	CSS Preprocessors
	CSS in JavaScript
	Bridging Web Technologies

	Methods and Techniques
	Gradual typing
	Reactive Programming
	Virtual DOM

	Validation
	TodoMVC
	Benchmarks

	Conclusions
	Future Directions

	Bibliography
	Webography
	Full Examples
	Simple Todo Application in Loom
	Simple Todo Application in Elm
	TodoMVC Application in Loom

