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Abstract

The Software-Defined Networking (SDN) approach has the goal of simplifying net-

work management. SDN uses a logically centralized approach to enable simpler network

programmability and simplify the network architecture. SDN is in general associated

with the OpenFlow protocol, which standardizes communication between a controller

and network devices. Alternatively, a database approach could be used to tackle data

exchange between controller and network devices. This solution requires the installation

of a database server inside each switch, and replicas of those local switches databases, in

the controller. The database approach offers several potential advantages over OpenFlow

such as higher level of abstraction, flexibility and the use of mature implementations of

standardised database protocols to propagate information events and commands.

The purpose of this work is to apply a Database-Based Control Plane (DBCP) for SDN

networks on a wide area environment. The objective is to implement a replacement of

the control plane of a wide area network, currently achieved using a link-state protocol

such as OSPF or IS-IS, by an SDN approach based on similar techniques as the ones used

in [4].

We conducted an experiment, which we called IP-DBCP, that consisted of the defini-

tion of data models and the construction of an SDN network with database replication as

the means of communication between one controller and multiple switches. To this end,

a switch was developed, using OpenSwitch software as a logical hardware layer, that is ca-

pable of executing a MySQL database management system, load it with its characteristics

and collect data related to its network neighbourhood. A controller was also developed

that executes a MySQL database management system with the replicated databases of all

switches. The controller uses those replicated databases to construct routing rules, using

a shortest-path algorithm. Ultimately we tested the correct functioning of the solution

and evaluated the convergence time by performing network state changes and compared

the results with the ones found in traditional link state protocols.

Keywords: Software-Defined Networking, Databases, Wide area networks
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Resumo

Uma abordagem Software-Defined Networking (SDN) tem como objetivo simplificar a

gestão da rede. SDN utiliza uma abordagem logicamente centralizada de forma a permitir

a programação da rede de forma mais simples e simplificar a sua arquitetura.

SDN é geralmente associado ao protocolo OpenFlow, que padroniza a comunicação

entre o controlador e os dispositivos da rede. Em alternativa, uma abordagem de base

de dados pode ser usada para lidar com a troca de dados entre um controlador e os

dispositivos da rede. Esta solução necessita da instalação de um servidor de base de

dados dentro de cada switch e réplicas dessas bases de dados locais, no controlador. A

abordagem com bases de dados oferece diversas potenciais vantagens como um maior

nível de abstração, flexibilidade e o uso de implementações maduras e padronizadas de

protocolos de bases de dados para propagar eventos e comandos.

O propósito deste trabalho é de aplicar Database-Based Control Plane (DBCP) para re-

des SDN de grande âmbito. O objetivo é implementar um substituto de um control plane
numa rede de computadores de grande âmbito, atualmente conseguido utilizando proto-

colos como o OSPF ou IS-IS, por uma abordagem SDN baseada em técnicas semelhantes

às usadas em [4]. Realizámos uma experiência, que chamámos de IP-DBCP, que consistiu

na definição dos modelos de dados e na construção de uma rede SDN com replicação de

base de dados como o meio de comunicação entre um controlador e vários switches. Um

switch foi desenvolvido, usando o software OpenSwitch como uma camada de hardware

lógico, que é capaz de executar um sistema de gestão de base de dados MySQL, carregá-lo

com suas características e recolher dados relacionados com sua vizinhança de rede. Um

controlador também foi desenvolvido sendo que executa um sistema de gestão de base

de dados MySQL com as bases de dados replicados de todos os switches. O controlador

usa essas bases de dados replicadas para construir regras de roteamento, usando um

algoritmo de caminho mais curto. Testámos o funcionamento correto da solução e avalia-

mos o tempo de convergência, realizando alterações no estado da rede e comparando os

resultados com os encontrados em protocolos tradicionais de link state.

Palavras-chave: Software-Defined Networking, Bases de dados, Redes de computadores

de grande âmbito
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1
Introduction

Management of traditional networks can be complex, time consuming and error prone.

This is due to the fact that networks can consist of a large number of vendor-specific

devices which are usually closed systems with limited interfaces. Often, policy enforce-

ment and system management must be done directly on the infrastructure, device by

device. Additionally, with traditional network protocols, the control plane is distributed

and scattered by all devices, therefore, managers have difficulty achieving a coherent and

logical view of the network.

The Software-Defined Networking (SDN) approach has the goal of simplifying net-

work management [5]. SDN uses a logically centralized approach to enable simpler

network management and simplify its control plane.

In an SDN controlled network, the control plane functions are concentrated in one or

more control servers, known as SDN controllers. Switches have only flow tables (the data

plane) and no other intelligence besides a control module, that fills the tables entries as

ordered by the controller. The usage of SDN approaches are being widely tested and the

success of its application is clear in a data centre, where hundreds of switches (with no

control plane functionality) are controlled by logically centralized controllers.

Outside this natural setting, an SDN approach faces additional challenges related to

the extra latency between controller and switches, heterogeneity of the system compo-

nents and greater difficulty in setting up a logically centralized view at scale.

SDN is in general associated with the OpenFlow protocol, which standardizes com-

munication between a controller and network devices in an SDN environment. An SDN

architecture approach doesn’t necessarily need to use OpenFlow, other solutions are pos-

sible to setup the dialogue between switches and controllers.

Alternatively, a database approach can be used to tackle data exchange between con-

trollers and network devices as described in [4]. This solution requires the installation of a

1



CHAPTER 1. INTRODUCTION

database server inside each switch, and replicas of those local switches’ databases, in con-

trollers. The controller drives the switches by making updates to its replica databases, and

the switch transmits information or its state the other way around. Control algorithms

executions are triggered by the switches’ database updates. This database approach has

several potential advantages over OpenFlow: higher level of abstraction; higher flexibil-

ity since device enhancements are translated into database models’ modifications; low

level custom communication protocols are replaced by standardised database protocols

(query, updates and replication); well defined semantics in the dialogue between the

different systems components (Eg. transactions can be used); the protocols, model and

mechanisms are well understood and mature implementations are available. This kind

of system architecture has yet to be tested in a wide area network because of its intrinsic

challenges.

The purpose of this work is to test and assess a database approach to implement a

replacement of the control plane of a wide area network, currently achieved using a link-

state protocol such as OSPF or IS-IS, by an SDN approach based on similar techniques as

the ones used in [4].

In a data centre, dialogue and state synchronization among switches and controllers

is easier since latency is very low. In the wide area we will face an extra challenge re-

lated to higher and heterogeneous latencies, harder to implement controller availability

requirements and higher scalability.

The main contributions of this work are:

• The definition of the data model required to implement the approach

• Study the implementation challenges

• Make a preliminary assessment of the performance challenges brought by this ap-

proach.

• Highlight its advantages and drawbacks.

This document is structured this way:

• Chapter 2 will introduce Software-Defined networking, by giving the motivations

for its creation and explaining its main principles. It also introduces the main

components and views of an SDN and after, design approaches are discussed such

as controller policies, scalability concerns and SDN applications.

• Chapter 3 presents Database-Based Control Plane approach (DBCP). It describes

the DBCP model as well the data models it requires.

• Chapter 4 describes the IP Network Database-based Control Plane (IP-DBCP) which

is an experiment based on the DBCP approach. This chapter also describes the

implementation of this prototype.

2



• Chapter 5 presents the tests and results measured with the IP-DBCP prototype.

• Finally, Chapter 6 presents the conclusions of this work and discusses future work.

3





C
h
a
p
t
e
r

2
Related work

2.1 Introduction

Traditional computer networks can be characterized as a layered architecture composed

of three planes: the data, control and management planes. The management plane may in-

clude software services which allow for functionality control, configuration and network

policy definition. The control plane enforces those polices. It represents the protocols

used to generate the network topology and data plane forwarding tables. The data plane

represents the network devices and is responsible for implementing the policy by for-

warding data accordingly.

In traditional networks, the data and control planes are coupled and embedded in the

same devices, allowing them to take decisions on their own. This highly decentralized ar-

chitecture contributed to the success of the Internet as it is today, assuring a fundamental

requirement for operability: network resilience [11].

However, this comes at a cost of increased complexity: the tight coupling of data and

control planes (vertically integrated) means that decisions about data flows are made

onboard the device. The deployment of new functionality and policy enforcement must

be done directly on the infrastructure which, together with the fact that there is a lack of

a common interface to all devices and the presence of dynamic environments, requires a

huge amount of time and can be error prone.

To cope with the lack of functionality, and the increased control requirements, spe-

cialized devices such as firewalls, middle boxes and intrusion detection systems may be

inserted into the networks which may further increase network design and operation

complexity [11][16].

Networks can be composed of a large number of different, vendor-specific, routers,

switches and other devices, usually being closed systems and with limited interfaces.

5



CHAPTER 2. RELATED WORK

The need for interoperability between different devices leads to the creation of specific

protocols which may take years to develop and to evolve to new functionality [11][4].

2.2 Software-Defined Networking

Software-Defined Networking (SDN) is a proposal for a “programmable network”, break-

ing the vertical integration of network devices by decoupling the control from the data

planes, with the goal of simplifying network management and enabling innovation and

evolution [11][16].

The Open Networking Foundation (ONF) defines SDN as follows: “Software-Defined

Networking (SDN) is an emerging architecture that is dynamic, manageable, cost-effective,

and adaptable, making it ideal for the high-bandwidth, dynamic nature of today’s applica-

tions. This architecture decouples the network control and forwarding functions enabling

the network control to become directly programmable and the underlying infrastructure

to be abstracted for applications and network services.” [5]. The SDN architecture is

based on three principles [7]:

The decoupling of traffic from control: As described before, an SDN characteristic

is the decoupling of the data and control planes which is a precondition for logically

centralized network control. Network devices become simple forwarding elements. This

decoupling also allows for separated evolution and software life cycles.

Logically centralized control: An SDN major characteristic is the logical centraliza-

tion of control. As followed by the decoupling of the data and control planes, a single

entity (which could be distributed) called an SDN controller or a Network Operating

System (NOS), orchestrates resources and provides abstractions to facilitate the program-

ming of forwarding devices.

Programmability of network services: This principal goal is to provide agility through-

out information exchange between a client and a SDN controller allowing configurations

before and during the lifetime of a service.

These principles are subject to interpretation and may lead to different implemen-

tations. As a traditional network, an SDN network can still be viewed as a layered ar-

chitecture with three planes, the data, control and management planes, each layer with

its specific functions as shown in Figure 4.2. A general description of each layer will be

presented.

6
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Data PlaneData Plane

Management plane

Network 
applications

Network 
applications

Management plane

Network 
applications

Network 
applications

Control PlaneControl Plane

Figure 2.1: Plane oriented view of the SDN architecture

2.2.1 Data plane

The data plane, also considered a forwarding abstraction, is the first layer of an SDN

network and is directly associated with the network infrastructure. It is represented by

several interconnected forwarding devices, each containing a set of traffic forwarding and

processing instructions. Its main role is to implement the forwarding decisions made

by the control plane. A characteristic that differentiates it from traditional networks is

the removal of intelligence from the devices. They become simple forwarding devices

and must receive instructions from the controller plane through an open interface called

the southbound interface. The SDN data plane can be described by two layers: Network

infrastructures and Southbound interface [11][6][7].

Network infrastructure

Network infrastructure is the composition of interconnected hardware and software

forwarding devices such as routers, switches and virtual switches. The centralization of

intelligence on the controller transforms these network devices in simple packet forward-

ing entities that must receive instruction from the controller on how to operate. Network

devices may still contain a minimal set of management and control functions allowing the

necessary configurations to establish communication between devices and the controller

[11][6].

Southbound interface

The southbound interfaces are a crucial element of a clear separation from controller

and data planes as it bridges communication between both. By means of an API, it stan-

dardizes communications promoting interoperability between devices and the controllers.

7



CHAPTER 2. RELATED WORK

There are several approaches such as OpenFlow, ForCes and database. [11][16][7][4].

We will only refer the first one because it is the most known and the last because it

plays a crucial role in this work.

Openflow

OpenFlow, managed by the Open Networking Foundation (ONF), is a communica-

tion protocol which standardizes information exchange between controllers and data

plane devices. OpenFlow requires a compatible switch or router which may exist as two

variations: a pure or a hybrid device. A pure device has no intelligence outside the bound-

aries of OpenFlow, a hybrid has both support for OpenFlow protocol but maintains other

traditional protocols allowing it to function outside an SDN environment.

The OpenFlow implementation has two abstractions: the controller communication

and the flow tables. The flow tables consist of flow entries defining how packets from a

flow should be forwarded in a switch and are composed of three parts: 1) Matching rules;

2) Actions for matching packets; 3) Statistical counters. Using the arrival of a packet to a

switch as an example, the header fields are extracted and compared to the matching rules.

If the result is a match, the appropriate actions for that match are taken for the packet. If

the lookup process returns a miss, which could mean the switch is facing a new flow, it

should use a default rule which is usually set to send the packet to the controller to be

processed. The communication between the controller and data plane are made using

the OpenFlow protocol which sets a number of messages, understood by both parties.

[16][6][7].

Database approach

Alternatively, OpenFlow can be replaced by a replicated and distributed database

approach as described in [4]. The principal characteristic of this alternative is to install

a database server inside each switch and maintain replicas of those databases in the

controller. Database techniques and protocols are then used to update both switches’

and controllers’ databases. A controller may force new rules on to a switch by making

updates in its corresponding database replica. A switch may also transmit information

or its state the other way around. Control algorithms executions are triggered by the

switches’ database updates.

This database approach has several potential advantages over OpenFlow [4]:

• The use of standard database synchronization protocols, abstracts the details of

data transfer between entities and conceals the low-level protocol details from the

developers, who use an higher level of abstraction;

• This approach increases flexibility because there is no need to evolve the communi-

cation protocol to support new features which can be made directly on the database

schema;

8



2.2. SOFTWARE-DEFINED NETWORKING

• Well defined semantics in the dialogue between the different systems components

(e.g. transactions can be used...);

• Low level custom communication protocols are replaced by standardised database

protocols (query, updates and replication);

• The protocols, model and mechanisms are well understood and mature implemen-

tations are available.

• Low level details of packet processing are left to the switch control software, which

increases separation of concerns.

This approach has only been tried in a data centre environment, which means there is

an incomplete understanding of how this may behave in a different environment such as

a wide area network. It needs to be taken into account that every switch on the network

must maintain a database in order to be able to communicate and maintain configura-

tions.

2.2.2 Control Plane

The control plane, considered the brain of the network, implements what is also known as

the Network Operating System (NOS), solves the networking problems, provides services

and creates abstractions to lower-level interconnecting devices. It facilitates network

management by means of a logically centralized control and programmatic interfaces to

the network.

The controller must understand the network topology under its domain and take

decisions accordingly, based on policies defined by the management plane. Example of

those are: through which switches and links should a packet be forward or is the packet

authorized to go to the requested destination.

Controllers don’t require special hardware equipment as they can be deployed on

traditional servers and platforms using traditional software. They have three commu-

nication layers: the southbound interface, already described before, which standardizes

communication between the controller and data planes and the Northbound and East-

bound/Westbound interfaces [11][16][6].

2.2.2.1 Northbound

Northbound communications allow for communication between the controller plane and

the management plane, exposing interfaces through which the controller may receive in-

structions. It creates an abstraction from concrete controller implementations promoting

applications portability and interoperability [11][16].

9
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2.2.2.2 Eastbound/Westbound

Some SDN implementations may require the deployment of multiple distributed con-

trollers across the network. The Eastbound/westbound is a horizontal layer of communi-

cation providing the means for inter-controller communication. Such layer may be used

for controller state synchronization and may vary depending on the implementation.

There are no standards for Northbound, Eastbound and Westbound communications

[11].

2.2.3 Management plane

The management plane uses the abstractions provided by the controller plane and is

composed by services and applications. An application can be perceived as instructions

that controls a set of resources provided by the controller [11][7].

2.3 Design approaches and challenges

As part of the description of the SDN architecture, there are some architectural design

aspects that should be considered.

2.3.1 Reactive vs Proactive Controller Policies

When a network device receives a packet and gets a miss from the lookup process on the

flow tables, a decision has to be made by the controller about that packet. The point is

to forward that packet through the network until it reaches its destination or it leaves

the network on the controller domain. In this scenario, the controller may adopt one of

two policies: Reactive or Proactive. With a reactive policy, the controller installs a new

flow entry on the network devices allowing the packets on that flow to be forward. With

each new flow, setup time has to be considered and can be lengthened by geographically

dispersed remote controllers. Also, with this policy, the controller becomes a bottleneck

because the network work rate depends on the controller response performance. The

proactive policy tries to anticipate the arrival of new flows and pre-installs multiple

generic rules on all devices. Although this may cause a loss of precision, this approach

may significantly reduce the number of new flow requests to the controller [16].

2.3.2 Scalability concerns

An important aspect of an SDN is how design choices cope with scalability. The most

obvious is that the control plane is now the centre of the control. With the increasing load

on, and complexity of the network, a single controller could rapidly become overloaded

by network device requests and stall the network. One solution may reside in scaling-

in the controller, increasing the hardware power. Another is to reduce the number of

10
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requests to the controller by implementing proactive policies with the cost of loss of

precision and flexibility.

A distributed set of controllers can be seen as an alternative to mitigate this problem.

Although it might seem beneficial, those controllers now require synchronization to allow

the same view of the network. Consistency algorithms imposes design trade-offs. As the

network grows, the use of strong consistency may lead to the reduction of throughput

and increased response time. Alternatively, one could use weak consistency with the

cost of possible loss of precision during synchronization periods. On flow based architec-

tures, the initial flow setup delay may impose some scalability concerns. The constant

appearance of new short lived flows, plus the use of a reactive policy by the controller,

could mean a constant network device-to-controller communication overhead. Also, the

memory available inside the switches is limited which raises scalability concerns with the

increase of flow entries [16][25].

2.3.3 SDN applications

Data centres are an agglomerate of a large number of servers and network devices, usually

inside a large building, where latency is small. Most data centres are shared among several

different customers and constitute a multi-tenant environment.

Data centres have to cope with constantly changing environments, requirements and

the need to enforce multiple network policies. Data centres also face challenges such

as the need for optimization of resources, definition of QoS, power saving, provisioning,

security and flexibility.

The low latency environment in a data centre provides a realistic environment for the

deployment of a Software-defined Network. One of the pillars of an SDN is logically cen-

tralized control. In a data centre, a controller or cluster of controllers, could be installed

in the network connected to all network devices. This allows the controller to obtain a

global view of the network topology. Such an approach enables the programmability of

policies and configurations at a single point, avoiding the application of those policies

directly to the infrastructure, which could be expensive and error prone due to the large

number of different devices. With an SDN approach, network devices would become sim-

ple forwarding entities orchestrated by the controller. The controller may push new flow

entries on to devices to deal with incoming traffic through proactive or reactive policies.

The global view of the controller enables it to optimize resources when needed, such as

power saving.

SDN might also be implemented on other environments such as enterprise networks.

Those usually have multiple devices connected to the network, some not controlled by

the company, such as mobile devices. An SDN implementation might help to simplify

the network design by removing devices such as middle-boxes and firewalls, centralizing

resources on the controller, allowing a centralized management and policy enforcement

[16].
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2.3.3.1 SDN in the wide area environment

Wide area networks interconnect multiple local area networks and are characterized by

its geographical span. Therefore, a characteristic of this kind of network is the increased

latency of communication between network devices. Also, due to its role, it has a require-

ment of a high availability since down time could be costly. Wide area networks must

also be able to scale to withstand increased demands from its edges.

An SDN approach could be used in the wide area, just like other environments such

as data centres, to enable simpler network management and simplifying its control plane.

In a data centre, dialogue and state synchronization among switches and controllers is

easer since latency is very low. In the wide area we will face extra challenges related

to the higher and heterogeneous latencies. The switch to controller communication has

increased latency, consequence of it geographical position, which has to be considered.

Also it is harder to implement controller availability and higher scalability requirements.

Moreover, in order to deal with the challenges and avoid a central point of failure, the

logicically centralized control of the network requires a hierarchical and recursive view

of the control plane [13].

A production SDN for the wide area environment, was designed by Google and de-

scribed in [10]. This work shows an SDN deployment for a wide area network (WAN) that

connects Google’s data centres across the planet. Consisted on an hybrid approach with

support for existing routing protocols and OpenFlow.

2.4 Database approach versus OpenFlow

A database approach for controller and switch communication was considered in the

work [4]. This work discussed the construction of an SDN environment for data centres

context, that achieved interoperability of different vendor network hardware devices. The

work focussed on the controller and switch communication.

For the design of the architecture, they considered that the OpenFlow protocol wasn’t

sufficient enough to answer their requisitions and the need for interoperability. They

stated that because OpenFlow is a low level protocol, only devices that support it, can

be inserted on the system. Also, different vendor switches require special OpenFlow

protocol adaptation in order to integrally make available all the features supported by

switches’ ASICs to the controller. As this process of adaptation becomes complicated, the

need for a higher level of abstraction arises. OpenFlow was also considered not flexible

enough to freely evolve to new features.

The alternate solution proposed was to achieve interoperability on southbound com-

munication by treating the problem as a generic database synchronization problem us-

ing databases replication protocols. According to the authors, this solution avoids the

creation of a specific protocol, by using already implemented database protocols, and
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also separates the replication mechanisms from the network services. This approach ab-

stracted the implementation details of data synchronizing from the network operations

and presented a clear state consistency model that could be used by the whole system.

With this database approach, the challenge resided on constructing a data model that

could be generic enough to be supported by all vendors and still allow the implementation

of their specific hardware optimizations.

The flow definition processes was left to the switches themselves. The controller

computes the control plane details and shares them with the switches using the Open

vSwitch Database (OVSDB)[21] protocol. By doing so, they considered an higher level of

abstraction.

A reference is made to a constraint of the database approach. Although new fea-

tures could be expressed as a change to the data model, the controller and switch still

require new code to consolidate the new capabilities. Also there is the case where dif-

ferent switches could be running different data model versions, which requires further

consideration.

2.5 Open Shortest Path First

Open Shortest Path First (OSPF) is a routing protocol for IP networks, based on link-state

technologies, that distributes network state information between routers belonging to the

same Autonomous System (AS) [14].

The OSPF protocol produces, in a decentralized way, the routing rules that routers use

to forward IP packets. Each router running OSPF contains a global view of the network

and produce its own routing rules using a shortest path algorithm.

The global view of the network is built by the combined effort of every router. Routers

use the Hello Protocol to periodically send announcement packets to it’s neighbours

through all router’s interfaces. The Hello protocol establishes and maintains neighbour

relationships between routers and probes bidirectional communication between neigh-

bours. This way neighbours may form an adjacency. It also allows the detection of

router/link failures.

Each router contains a database, referred to as the Link-State Database, that describes

the autonomous system topology. This database is composed by the router’s local hard-

ware state and it’s neighbour relationships. The database is complemented with link-state

advertisements (LSAs), produced by every router, consisting of each router’s local hard-

ware state and it’s neighbour relationships and thus fully describing the network.

The link-state database of every router is kept updated by flooding reliable updates.

When a change occurs in a router’s sate, it begins a flooding process to propagate it to

all routers in the same AS. Every router’s link-state database, after the synchronizing

period, is identical. It is important that the link-state database is kept updated to ensure

a common vision on the network topology.
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Based on the link-state database each router creates a shortest path tree with it self as

root. This tree gives a path to every other reachable router and their locally associated IP

prefixes and defines the best next-hop. When a topology change occurs, the changes are

flooded and every router computes new shortest path trees based on the newly updated

link-state database.

An Autonomous System can be dived in special groups called areas. These areas

were conceived to break down the scale of the AS into multiple groups, reducing the

convergence time and scale of the traditional routing protocols and creating isolation

between different regions. Areas may be composed by multiple networks interconnected

by routers. At the edge of these areas, special routers called “Area Border Routers” work

on forwarding traffic outside the area when needed. To maintain multiple areas in a

single AS, a backbone area exists composed by multiple interconnected routers that

communicate with the areas border routers. This backbone is called the area 0. Each area

runs an independent version of OSPF assuring the convergence of routers inside the area.

The backbone also runs an independent version of the algorithm.

There is another link-state protocol, on which OSPF got inspiration, the IS-IS protocol,

which is popular among ISPs.

Although the notion of areas makes part of both protocol definition, most large scale

ISPs, only use one area since the introduction of areas introduces constraints and extra

complexity on the network management processes.

2.6 Conclusion

In this chapter we introduced the main concepts behind Software-Defined Network as

well as the most complex issues brought by this approach. We also analysed and compared

two southbound protocols, namely OpenFlow and database-based approaches.

We also showed that some IGP protocols, namely OSPF and IS-IS, also rely on cen-

tralized visions, replicated in each router, to create its own forwarding rules. In order to

extend the information flooded, or to change the way forwarding rules are computed, it

would require a new version of the protocol and its deployment in every router of each

vendor.

In the next chapter we will address how this goal can be reached using a southbound

approach based on a databases.
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Database-Based Control Plane

In this chapter we start by introducing the Database-Based Control Plane (DBCP) ap-

proach and compare it with other southbound protocols such as OpenFlow. We present

the reasons for the construction of DBCP and discuss its’ components and models. We

also present a particular experiment based on the implementation of this model, the

IP Network Database-Based Control Plane (IP-DBCP). Finally, the chapter defines the

conceptual data model and logical data model that we introduced in the IP-DBCP.

3.1 Database-Based Control Plane

SDN was introduced with the promise of simplifying network management. To achieve

this goal, it centralizes the control and network management on a central controller. This

is in contrast with the traditional approaches where network control is decentralized and

scattered across all switches. The communication between controller and switch in SDN

is an essential part of the network operation. It’s through this communication layer, also

called southbound communication, that controllers and switches exchange data required

for the network operation. The importance of this communication layer raised the need

for definition of new protocols in response to this requirement.

One popular southbound protocol is OpenFlow. For SDN networks, it strictly defines

the information exchange between controller and switch. OpenFlow changes the way

switches work by stripping it off any intelligence and requires the controller to define all

the operations a switch can execute. OpenFlow switches work on per flow level by imple-

menting low level flow processing tables. Switch and controller dialogue is bidirectional

and achieved using OpenFlow semantics. Those semantics define low level messages,

supported by both switches and controllers, and consist of network packets, flow details,

configurations and statistics. Dialogue is essentially composed of downcalls from the
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controller to the switch and upcalls from the switch to the controller.

The controller implements a distributed flow management service that defines the

appropriate flow entries for each switch it controls. These flows entries are constructed

based on the controllers global view of the network topology. The network topology

discovery and setup is fully enforced by the controller. The controller may also collect

statistics about the functioning of the network. Figure 3.1 shows an example of an Open-

Flow network.

OpenFlow is widely used but still presents some limitations. As the work in [4] states,

the use of low level semantics for the definitions of data exchange makes OpenFlow

inflexible, over-specified in low level details and hard to evolve, not allowing for a clear

separation of concerns and abstractions.

As a consequence, an OpenFlow switch is completely dependent on a controller to

leverage any hardware optimization. Moreover, OpenFlow lacks a synchronization model

when involving multiple switches. There is a lack of specification that guarantees the

ordering and consistency of the data exchange operations across multiples switches.

In this work, we attempt to test a different approach to controller and switch com-

munication by dealing with some of the OpenFlow challenges, using databases concepts

inspired in [4]. In this work we also consider this database approach on a wide area

(WAN) environment as opposed to the work presented in [4] that is applied inside a data

centre.

To assess both challenges, we started with the definition of Database-Based Control

Plane (DBCP), to replace a traditional shortest-path IP routing algorithm, with a central-

ized approach using SDN and database techniques.

The DBCP approach aims to elevate the level of abstraction by using databases schemas,

models and replication protocols as the way of sharing data among controllers and

switches. The use of standard database techniques, abstracts the details of data transfer

between entities and conceals the low-level protocol details from the developers, who use

an higher level of abstraction. This approach increases flexibility because there is no need

to evolve the communication protocol to support new features, which can be now made

directly available on the database schema. Also, database replication protocols models

and mechanisms are well understood and mature implementations are available. Those

protocols offer a well defined distributed semantics.

DBCP is an approach to change the way switches work and how data is shared among

controllers and switches on an SDN environment. The ultimate goal of this experiment

is to replace the control plane of switches in a wide area network, currently achieved

using link state protocols such as OSPF or IS-IS, by an SDN approach that uses SQL data

models and databases and is based on techniques similar to the ones used in [4]. In more

detail, this approach aims to insert a database management system on each switch and

controller, which will be used to orchestrate them on a wide area network. The objective

is to use those databases and related protocols to synchronize state and configuration

updates among network devices over the network. Figure 3.2 shows a DBCP network.
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Figure 3.2: DBCP network.

In order to demonstrate that the DBCP approach is realistic in the wide area network,

it is necessary to define the adequate data models to build the abstractions required for

the necessary network control goals. However, it is also necessary to demonstrate that

the database protocols used to replicate data among the different components are able to

converge in a timely manner at least as good as, if not better, than the ones implemented

by traditional purpose-built network protocols. On top of the paradigm change, the

DBCP architecture must still be designed to support essential WAN requirements such

as packet routing and network management.

To explain in more detail and to give a more general perspective about how DBCP

is characterized, DBCP is composed of switches and controllers. Switches communicate

between themselves using links connected by their interfaces, and also communicate

with the controllers through its local database. State and configurations changes are con-

verted to database operations locally, which are then synchronized with the controllers.

Switches maintain a local view of their directly connected neighbours and forward pack-

ets based on decisions received from the controller. Controllers are independent entities

that use information from their local database to produce routing decisions and enforce

configurations.

An SDN characteristic is the removal of intelligence from the switches. OpenFlow

completely removes the intelligence from switches. As opposed to OpenFlow, in DBCP

this removal is considered only partial. Switches lose the capability of reacting to con-

figuration changes and knowledge of a global view of the network. On the other hand,

switches still maintain a local vision of the neighbourhood, so the topology gathering pro-

cess in DBCP is considered distributed on the switches as opposed to being centralized

in OpenFlow, since this approach is still essentially a local one.

The switches outsource the capabilities of producing routing rules, to the controller.

The controller produces routing data based on the network topology and propagates it to

the switches.

This work focuses on a first assessment of the DBCP approach designated by "IP
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Network Database-Based Control Plane"(IP-DBCP). The objective is to define and develop

a first approach of an SDN setting, having controllers and switches communicate through

their individual databases. We focus on the essential aspects of the wide area routing

that enable its functioning, leaving more specialised components, such as QoS and traffic

engineering, for future developments.

3.2 Components of the DBCP architecture

DBCP has two main components: switch and controller. Controller and switches commu-

nicate through database replication techniques over the network. This communication

layer is called southbound communication. The rest of the chapter describes DBCP in

more detail as well as the components and what was taken into consideration for the

implementation.

Switch

In DBCP a switch is characterized by the partial removal of the control plane. As

opposed to the OpenFlow definition, in DBCP the switches still conserve a part of their

control plane. As will be clearer below, all distributed control plane functions are, as with

OpenFlow, under the responsibility of the controller, however most centralized control

plane functions are still with switches in DBCP. Some of the control plane responsibilities

are delegated to the controller using a database management engine. Figure 3.3 presents

DBCP view of switches and controllers. A switch can be modularized by three compo-

nents: a database, the switch control software and the logical and physical hardware.

The database is the divergent element on switches, as compared to other SDN ap-

proaches. As stated before, this database is used as the base element of communication

with the controller. For that reason, it is essential that the switch has the knowledge to

be able to populate that database with the required data. Additionally, it must be able

to drive its hardware, on the basis of information received from the controller. This

database component is part of a database management system and requires mechanisms

for database replication.

The control software is an essential component of switches. This software has the

responsibility of bridging hardware data and database operations by sitting as the inter-

mediary between database and hardware changes. The control software in the switch

is based on downcalls and upcalls to the switch logical hardware layer, and queries and

updates to its database. The switch control software is able to interpret hardware con-

figurations, state and capabilities and transform those into database updates. Also, it

transform database updates into low level hardware changes. A switch control software

requirement is to react quickly to both hardware configuration changes and database

updates. This requirement is important to increase the speed at which those updates

reach the controller in order to reduce convergence time. The same requirement applies

to the database changes and consequent downcalls to the hardware.
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Figure 3.3: DBCP view of switches and controller

The hardware components are the low level mechanisms that enable packet forward-

ing, flow creation and capability configurations such as interfaces states. It can be further

distributed in a logical hardware layer and the real hardware.

A switch may be connected to multiple other switches and hosts through its existing

interfaces and links. The switch’s main role is to receive and forward incoming packets

to the requested destination or next-hop. To achieve this, while not relaying on a spe-

cific control plane, it operates on the base of the controller’s commands which arrive to

the switch as database updates. For the purpose of this experiment, the data models

used to implement routing include the routing information base (RIBs) and should also

encompass interfaces, their state and neighbourhood.

To implement IP routing it is assumed that there is a level of abstraction on the switch

that knows how to interpret the routing table, in order to generate a corresponding flow

table. Also, packet forwarding mechanisms components and interface management are

also assumed to be present.

An essential requirement for link state protocols is the knowledge of the network

topology. This information is essential for the creation of routing rules that enable traffic
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on networks to be forward to the destination. The creation of new routing rules is de-

pendent on a complete view of the network, in order to make them precise and efficient.

To create a global view, protocols like OSPF detect state changes through purpose-build

protocols that periodically monitor all interfaces on switches and flood the changes to all

other switches.

We could adopt a solution similar to the one available in most OpenFlow controller/switches.

In general, OpenFlow upcalls signal to the controller the available interfaces, their sta-

tus and state change. However, discovering which neighbours are available via each

interface is implemented by the controller, in general using a process identical to the

implementation of Link Layer Discovery Protocol(LLDP) [9].

We decided that switches in DBCP should be in charge of discovering their neighbours

by reason of separation of concerns. It is possible to implement at the switch level, this

discovery process almost in a centralized process. Therefore we decided to consider this

a low level requirement the controller may ignore. This neighbour information collected

by switches is considered for the database model of controller and switches.

A switch view of the world can be summarized to its database and directly connected

neighbours. The switch view of the controller is abstracted by the database. Instead

of communicating directly with a controller, a switch sees the database as repository of

knowledge that enables its operation.

Controller

In DBCP, a controller, just like in other SDN approaches, is the central pillar of the

architecture. The controller has the purpose of orchestrating the switches’ activity and

maintaining a global view of the network based on information originated from switches.

Figure 3.3 also shows the role played by the controller on the network. A controller is

characterised as containing the replicated state of all switches’ databases and a Network

Control Services module. The controller’s goal is to use those databases to build a global

view of the network and apply configuration rules to all switches that enable the appro-

priate routing of packets. The Network Control Services are able to query the replicated

databases to build a global view of the topology, configure switches and execute shortest

path algorithms using the database’s information. Those services must also be able to

react to database changes and apply corresponding solutions. This reaction is critical for

the convergence time.

For routing, we opted for the implementation of a pro-active approach. The controller

creates beforehand the necessary routes based on the current knowledge of the network

topology and inserts those new routes on the database. Compared to a specific approach

this does not require that, when a new packet arrives, that packet is sent to the controller

to be analysed. We opted for this approach to follow what’s already done with link-state

protocol and to essentially simplify the routing procedure.

The controller’s view of the world is restricted to its database. It is able to build a

global view of the network based on the individual vision of the switches.
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Southbound communication

As stated before, the action of communicating between controllers and switches and

vice-versa is reduced to local databases updates. The communication is abstracted by mak-

ing all operations seem local. The databases then use replication protocols to synchronize

any update that occurs.

3.3 Network model and other assumptions

The implementation presented in this dissertation focuses on wide area network environ-

ments. Since these networks are complex, some assumptions about the implementation

were made in order to scale down this experiment.

The solution at this phase will only consider IPv4 routing and neighbour discovery,

leaving IPv6 for future implementations. Also, unlike OSPF or IS-IS which supports the

creation of multiple areas [14], it was decided that in the context of this work, an area

free environment would only be considered.

To facilitate the construction of the experiment, we opted for the implementation of

two separate networks: the management and production networks. The production net-

work corresponds to all the links interconnecting all switches and focuses on transporting

production packets. The management network is a private network, connecting switches

and controllers, with the purpose of only being used for management data.

For switch-to-switch connectivity of the production network, we assumed only point-

to-point links. Point-to-point links are characterized by connecting only two nodes.

Link and switch failures may occur on a network, which must be dealt with in order

to maintain the network resilience. For this experiment, we assume only link and switch

failures.

SDN implementations usually deploy more then one controller. On this experiment

only one controller is considered.

3.4 Data model

This section presents the DBCP data model. A data model is a design model that describes

data, data relationships, data semantics, and consistency constraints. It provides the

means to describe the design of a database.

The data model plays an important role since it serves as the base for controller and

switch southbound communication. The main objective of the data model is to define

the rules for a database that can support the insertion of data, by both a switch and a

controller, required for the functioning of the network. A same base data model will be

used by both the controller and the switch.
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3.4.1 Conceptual Data model

A conceptual data model is an abstract view of the data model. It describes the semantics

and main concepts within certain subjects.

For the definition of the data model it is important to first consider the requirements.

These requirements are critical to build the data model since they define the rules and

conditions necessary to achieve the defined objectives. At this phase, only the base data

model is discussed. The base data model is composed by essential information that is

common to the controller and switch.

The essential goal of the data model in DBCP is to be the base that supports the

communication from switch to controller and vice-versa. For this reason, the base data

model must support the distributed insertion and retrieval of data by both a controller

and switches.

This base data model must be designed in such a way that the same model can be

deployed on both a controller and a switch. It must also be generic enough to support

basic IP routing in the network functioning and still allow different configurations to be

enforced by the controller. Also, the base data model must take into consideration the

network model and the assumption previously presented.

So, for the definition of the base data model, we must first analyse what data is re-

quired to be exchange between controllers and switches. This data will drive the base

data model design.

Controller

Distributed Network 
database

Switch 

Switch local database

Switch hardware characteristics
Switch hardware configuration
Switch neighbourhood data updates

Routing data updates
Switch hardware configuration.

Figure 3.4: Data flow view between controller and switches.

To discuss the required data exchange, we will look at what a controller and a switch

require from one another in order to achieve their individual goals. For the definition of

data exchange, we will look at the controller’s and switch’s perspective. The question is,

what data does a switch require from the controller and the controller from the switch,

in order for both to operate as established.
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Switch

As discussed before, the vision of a switch became restricted to their lower level func-

tioning and direct neighbourhood, which consequently leads to the need for intervention

by the controller in the definition of the guidelines for the switch functioning. Namely,

in what concerns all data deployment of the network (as a whole). In this sense, for the

functioning of a switch we can group data into two groups:

• Switch hardware configuration.

• IP Routing data

These two data groups essentially answer the lack of intelligence caused by the SDN

design. A switch expects a controller to decide about its configuration. The hardware

configuration group composes all the data produced by the controller that changes the

hardware status of the switch.

The routing data group, considers all the data related to packet forwarding. A switch

expects to receive, from a controller, all routing related data since it has no global network

view.

Controller

From the controller’s perspective, the network is constituted by a set of distributed

switches. To fulfil this vision of the network, the controller needs to understand the

characteristics and capabilities of each switch as well as their neighbourhood status. This

way, we can group the data required by the controller as follows:

• Switch hardware characteristics

• Switch hardware configuration.

• Switch neighbourhood data

One of the key and fundamental roles of the controller is to produce routing data. To

this end, it requires a global view of the network topology. In DBCP the network view

acquisition is distributed across every switch. A controller constructs a global view by

collecting the individual neighbourhood view of each switch.

The controller also needs a view of the characteristics of every switch. This neces-

sity is based on the vision that individual capabilities of each switch must be taken into

consideration for the creation of routing rules. In this context, these characteristics are

followed by related configurations and statistics that enable knowledge of the current

state of the switch.

A modular view

Based on the data requirements by both controller and switches, the base data model

can be grouped as follows: the switch characteristics/configuration, the neighbourhood and
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the routing base, often called the Routing Information Base or RIB. Figure 3.5 shows a

modular view of the base data model.

Switch characteristics/configuration

Neighbourhood

Routing

Figure 3.5: Modular view of the data model

The switch characteristics/configurations: this module makes reference to all switches’

available characteristics and possible configurations. The Characteristics of a switch can

be grouped by all the information that describes a switch, or as its features and capa-

bilities. An example of this kind is the physical address of a switch or the number of

interfaces available, followed by all their individual characteristics. The Configuration
part corresponds to all the values that map to possible configurations that may impact

switch operations. Such status changes can be a change of an interface’s state or name.

This information is important to the controller to enable better knowledge of all features

supported by network devices and to allow possible state configurations changes to the

switch. This module also includes statistics.

Routing: this module corresponds to the routing data. It would contain all informa-

tion relevant to routing, produced by the controller and used as the guiding map for the

switches forwarding mechanisms.

Neighbourhood: this module’s main function is to gather all neighbour related in-

formation that was collected by the switches. Such information is important for the

controller to create the global view of the network.
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3.4.2 Logical data model

A logical data model is an implementation of a conceptual data model, presenting a

more detailed view of a data model. It describes entities, attributes and relationships but

abstracts implementations details.

For DBCP we start by defining an Entity-Relationship Model (ER). The Entity-Relationship

Model is composed of entities, relationships and attributes that represent a description

of interrelated things of interest.

For the definition of the ER model we consider the assumptions and requirements

defined in the conceptual model. The base data model is divided into three groups: The
switch characteristics/configuration, Routing, Neighbourhood . We started by defining the

entities and relationships that play a role inside each of those groups. An entity is an

object that is distinguishable from other objects.

Switch characteristics/configurations encompasses entities that support the switch char-

acteristics and configurations. First of all, we defined an entity called switch. Other pillar

of switch management are the interfaces configurations. Although an interface is a char-

acteristic of a switch, we consider it as an independent entity. In this sense we add a

new entity called interfaces. This entity serves as the repository for all data related to

interfaces in a switch. This entity needs to maintain a relationship with the switch entity.

This relationship is expressed as one-to-many. It is considered that an interface has to

necessarily be associated with one switch, but a switch has more than one interface.

The routing module hosts data related to routing and the forwarding of packets in

DBCP. It is assumed there is only one entity called routing. This entity hosts data related

to several routes. Because the network model defines the network connections as being

point-to-point, it can be assumed that there exists only one other switch behind an inter-

face. So it is possible to define routing rules based only on the exiting interfaces. This

originates a relationship between the interfaces and the routing entity. This relationship is

mandatory for the routing entity and can be expressed as one-to-many. One interface can

be associated with many routing entries but one route can only be associated with one

interface. Also, every route must be associated with a switch, representing the switch it

belongs to. So, a one-to-many relation is the solution, where one switch can have multiple

routes and one route belongs to one switch.

The next module is the Neighbourhood one. The goal of this container is to store

all data related to the topology view. For the logical data model we consider only one

entity: The neighbour switch. The entity represents a switch that is a neighbour of another

switch. In a relational way, the neighbour switch is related to the switch with a one-to-

many relation. A switch can have multiple neighbour switches but a neighbour switch is

only associated with a switch. This first relation aims to create a first relational link view

between a local switch and a remote switch directly connected. The Neighbour switch also

maintains a relation with the interfaces. This association is important to further specify

how a neighbour switch relates to another switch, in this case, through which interface.
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This is a one-to-many relation where a neighbour switch can be associated with many

interfaces, assuming that two switches can be connected through two different links and

interfaces, and an interface can only be associated with a neighbour switch, as for the

limitation of point-to-point interfaces.
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Figure 3.6: An entity–relationship diagram for the base data model.

Entities can have attributes. An attribute is a property of an entity. In the following

list we will describe those attributes, reason to its introduction and their importance to

the data model.

Figure 3.6 shows an ER diagram with entities, relationships and attributes.

Switch

Identifier - Each switch has an identifier. This identifier allows the unique identifi-

cation of a switch on the network and the data model.

Name - The name of the switch. The objective of this attribute is to assign a human

readable name to identify the switch.

Chassis Physical address - This attribute relates to the chassis’s MAC address of a

switch.
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Management IP - The management IP is the IP address assigned to the switch on

the management network.

Interface

Identifier - Each interface has an identifier. It allows the unique identification of an

interface on the network.

Name - A name of the interface. The objective of this attribute is to assign a human

readable name to identify the interface.

Type - The type of interface.

Description - A textual description of the interface.

Administrative Link State - The administrative link state relates to the configured

desired state of the interface. Its purpose is to enable the configuration of an

interface’s state. This is the state that controller imposes.

Observed Link state - The observed link state is the actual state of the interface

reported by the switch.

Physical address - The MAC address of an interface.

Link Speed - The link speed of with an interface.

MTU - The Maximum Transmission Unit (MTU) of the interface.

statistics - Encompasses data produced by the switch that characterizes the function-

ing of the interface.

Routing

Identifier - Each routing entry has an identifier. This identifier will be unique for

each route entry and allows unique identification of an route on the network.

Route Prefix - The network destination IP address.

Prefix Length - The IP prefix length of the network destination.

Weight - A weight associated with this route entry.

Neighbourhood

Chassis Physical address - Represents the MAC address of the neighbour switch.

Remote interface name - Represents the name of the remote neighbour interface.
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Remote interface physical address - Represents the physical address of the remote

neighbour interface.

The above presented model has been established in an iterative way, being influenced

by the implementation options presented in the next chapter. It is worth noting that this

model has been established after the analysis of available RFC [2] [3].

3.5 Conclusions

This closes the presentation of the global model of DBCP as well as the base data model

used to support DBCP in a network. We left for future work the separation of the data

model in two parts: one specific to the DBCP approach in general, and the other contain-

ing the parts specific to the IP-DBCP experiment. Its centralization as well as a description

of the implemented prototype are the object of next chapter.
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IP Network Database-based Control Plane

implementation

4.1 Introduction

This implementation is an experiment, based on the DBCP model discussed in the pre-

vious chapter, and consists of the development of a system that is capable of testing

database protocols as the means for communication between a controller and switches

and, at the same time, support the implementation of real IP packet forward and network

management mechanisms on a wide area network.

The implementation of this experiment consisted of the development of a controller

that contains a local database and is able to produce routing rules, and a switch that also

contains a local database. Both implement all the necessary tools that enables the opera-

tion of the network by using their installed databases as the means of communications.

Figure 4.1 shows an overview of the completed system architecture.

Switches were implemented as devices running OpenSwitch OPX operating system as

a logical hardware abstraction on a virtual machine environment. OpenSwitch OPX offers

programmability interfaces that allow the control of a network device and the extraction

of configuration, lower level hardware details and network details. The implemented

switches are able to forward IP packets, and collect their neighbourhood state using the

LLDP protocol.

Switches execute a database management system using a pre-defined data model that

stores data related to its underneath capabilities, statistics and also data inserted by the

controller. Switches run a control software called SwitchDBCP that intermediates the

flow of data between OpenSwitch OPX services and the database.

The controller runs a database containing the replicated state of all switches’ databases
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and the Network Control Services software that manages data from the database and pro-

duces routing rules based on the network topology. These routing rules are inserted in

the controller’s database and propagated to the switches by the replication protocols.

Switches and the controller communicate with each other using the management

network emulated in a virtual machine environment. The communication is achieved

through the insertion of data into their local database and the use of SymmetricDS

software, deployed on both controller and switch, that enables the replication of the

database’s state. SymmetricDS is orthogonal to the database to separate, as much as pos-

sible, the implementation of the switch and controller from the replication mechanisms

since we think that an alternative replication substrate will be necessary in the future and

is being designed right now.

Switches use the production network to forward packets to their destination.

To achieve the implementation of the purposed solutions the following tasks were

pursued:

• Preparing an OpenSwitch OPX image based on one from [19].

• Integration of OPX virtual machines with VMware and the creation of custom vir-

tual networks.

• Implementation of SwitchDBCP control software.

• Implementation of the data model schema based on OpenSwitch data model and

launching of MySQL databases on switches and controller.

• Integration of SymmetricDS software, on switches and controller, with MySQL

databases and a replication model.

• Implementation of the Network Control Services software on the controller.

Each of these tasks, as well as the related implemented solutions, will be described on

the following sections.

4.2 Switch

4.2.1 OpenSwitch

To represent a switch we opted to use OpenSwitch OPX[18]. OpenSwitch OPX is a Linux-

based Network Operating System (NOS) which aims to allow the direct control and ab-

straction of a network device based on custom made network hardware(e.g. a chassis

with ASICs and NICs) or a general purpose server with conventional NICs. It uses an un-

modified Linux Kernel and is based on Linux Debian, providing the features of standard

Linux IP stack, tools and open source software available for the platform [20].
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OpenSwitch OPX provides to this experiment an abstraction of hardware details,

allowing us to focus on the implementation and testing of the mechanisms supporting

communication between controller and switches.

OpenSwitch, being a conventional Linux operation system, enables the execution

of custom-made applications and the use of a wide range of software that is suitable

for this implementation. These features are essential to deploy a database management

system and related protocols. Furthermore, the use of OPX services helped us use already

implemented and tested Linux IP stack network features for packet forwarding.

OpenSwitch OPX has several layers, starting with the hardware. It is currently avail-

able in Linux platforms as well as in a range of Dell switches[20]. Thus it is easy to build

virtual network devices in a virtual machine or container-based environment. Although

OPX OpenSwitch allows testing by virtualization, a similar result is possible on a concrete

hardware switch as well as using software-based routers.

On top of the hardware, a standard Linux distribution runs alongside OPX services.

The Control Plane Services (CPS) [17] is an object-centric API, provided by OPX, that

enables an interaction between client applications and the OPX platform control and

network abstractions. This API was crucial for the implementation, since it provided

a way of interacting with OPX services by enabling the retrieval of switch network and

hardware details and also the enforcement of configurations. Alternately, networking

features could be accessed using the Linux standard API. However, with the former

approach, the IP-DBCP software stack can run directly on any hardware platform based

on OPX.

The CPS API uses YANG. YANG is a modular data modelling language created to

standardize the definition and configuration of the network device characteristics. The

YANG language is defined in [1]. Each attribute is represented by a tree path over the

YANG model. The YANG model used by the CPS API influenced the design considerations

and the definition of the physical data model.

The neighbourhood search and acquisition process was achieved using the Link Layer

Discovery Protocol (LLDP) [9]. The LLDP protocol was used to fulfil the requirement for

searching and constant updating of the neighbourhood state for the purpose of building

the network topology.

LLDP is a vendor-neutral layer 2 discovery protocol used by network devices to ad-

vertise their capabilities and identify neighbours. It periodically sends LLDP frames to

neighbour devices. Those frames contain information, such as the switch’s chassis MAC

address or management IP address. Receiving devices collect and store those frames on

a management information database (MIB) and complete the received data with local

information such as the interface from which the frame arrived.

LLDP is a protocol that is implemented by almost all network devices and servers.

Openflow-based SDN environments also use LLDP but the protocol, in those cases, is in

general implemented by the controllers.
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In our opinion, the right place to implement LLDP in our environment is at the switch

level, since it deals with details that only concerns the switch itself and doesn’t require

any distributed coordination. OpenSwitch OPX includes an implementation of the LLDP

protocol.

4.2.2 Switch deployment

For the deployment of switches we opted for the use of VMware virtual environment[23].

This option allowed a faster development of the software modules and offers flexibility

in testing and evaluating the developed components on a larger scale. We decided to

use independent virtual machines to represent each device. Each virtual machine runs

OpenSwitch OPX operating system.

OpenSwitch OPX has support for hardware virtualization. The OpenSwitch commu-

nity provides an OPX version that simulates basic hardware functionality. For the devel-

opment of this experiment an image was used, that is available on [19], as a starting point.

This image is composed of a base Linux(Debian) operating system with pre-installed

OPX services and software modules and their requirements, such as Python for example.

Several updates were made to the base image in order to support the dependencies of the

experiment. The following software was installed:

Python 2.7.9

Python is used by the CPS API and was also used for the implementation of

SwitchDBCP and the Network Control Services.

MySQL Server 5.7.2

This version(or higher) is required in order to support the creation of multiple

triggers with the same action on the same table. This is a requirement to support

both SwitchDBCP and SymmetricDS triggers that monitor the database.

Python MySQL connector 2.1.7

The MySQL Python connector that supports MySQL and Python versions.

SymmetricDS 3.9.2

The latest version available at the time of implementation was installed.

Java 8

Java 8 is a requirement of SymmetricDS version 3.9.2 .

LLDP 0.95-1

LLDP comes already installed with the OPX base image. Even so, LLDP was

updated to version 0.95-1 to enable the output of the results in JSON format.
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Switches’ interfaces are created and managed by VMware virtualization. Each virtual

interface is mapped by the OPX operating system. Each switch is connected to other

switches and hosts through links abstracted by VMware networks.

To implement the production and management networks described in the previous

chapter, private virtual networks were created on VMWare. These private networks are

composed of a virtual switch that connects every interface to that network.

The production network was implemented by setting the interfaces destined for pro-

duction traffic as part of a specific private network. A link between two switches is

characterized by the involved interfaces being on the same private network. Every link

is represented by a new private network, exclusive to that link. The network model de-

scribed before, states that in IP-DBCP we only assume point-to-point connections. To

access the existence of a real point-to-point connection all interfaces had to be assigned

IP addresses. We decided that for this experiment, the numbering of interfaces would be

a manual process.

Switch 

Virtual machine

Switch 

Virtual machine

Virtual network 
switch

Private network 1

Switch 

Virtual machine

Virtual network 
switch

Private network 2

Virtual network 
switch

Private network 3

Figure 4.2: Production network: Virtual networks created to connect switches running
on virtual environments

4.2.3 SwitchDBCP implementation

SwitchDBCP is the control software that sits between the switch logical hardware abstrac-

tion (OPX) and the database management system (MySQL). Its function is to guarantee

that both the database and OPX are in an equivalent state. The state of the database must

reflect the underneath hardware abstraction and vice-versa. SwitchDBCP reacts to both

database and OPX state changes and applies updates in accordance with these changes.

Figure 4.3 shows the architecture of SwitchDBCP. It shows the developed modules, their
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Figure 4.3: A modular view of SwitchDBCP

interactions between them and with the external components. SwitchDBCP was com-

pletely implemented in Python to satisfy the CPS API dependency. This control software

is composed of listeners that continuously monitor: the MySQL database, OPX services

and LLDP events. SwitchDBCP uses the CPS API exposed by the OPX services to update

configurations. SwitchDBCP is composed by the following classes:

DB operations

DB operations class is used to communicate with the MySQL database using the

MySQL Python connector. This class imports the database access data from a file named

"database_config.txt" that exists on the same package. This file is structured has follows:

1. The user name used to authenticate with the MySQL server.

2. The password to authenticate the user with the MySQL server.

3. The IP address or the host name of the MySQL server (e.g localhost).

4. The name of the database to use when connecting to MySQL server.
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DB Monitor

DB Monitor is a listener that constantly monitors the database for changes. Those

changes occur only when the database is updated by the remote synchronization process.

Database changes are collected by triggers and placed inside a queue to maintain the order

of those updates. DB Monitor periodically retrieves those updates from the database.

On this implementation we assumed that a controller could only update the interfaces
and ipv4-rib tables. DB monitor constantly queries the ipv4-rib-changes-log table and

interfaces-changes-log table.

The complete process of acquiring the new updates works as follows: triggers were

created and inserted on the database that monitor the interfaces and ipv4-rib tables. Any

updates made on the interfaces table are registered on the interfaces-changes-log using the

identifier attribute of the updated interfaces entry and a reference to the attribute that was

updated. Three more triggers were created to detect the creation, update and removal of

new ipv4-rib entries. They store on ipv4-rib-changes-log the identifier of ipv4-rib and the

type of operation.

When DB monitor detects new updates, it collects those and individually sends them

to the Data Handler. Their entries are then deleted from the log tables. It is assumed that

the switch update process, after deleting the logs, never fails. DB Monitor is executed in

a separate thread. The rate at which the DB Monitor consults the database is controlled

using a variable. This variable is configured by default to 50 milliseconds. In future

implementations this process should be optimized.

LLDP Monitor

The LLDP monitor is a listener that monitors the LLDP daemon. It detects any neigh-

bourhood changes and transforms those into database updates. LLDP Monitor works

as follows: the listener is executed in an independent thread that executes the Linux

Command Line (CLI) command "lldpcli watch -f json". This command monitors any neigh-

bourhood changes and returns a report immediately after the change. When a neighbour

change occurs, LLDP Monitor collects the result in JSON format and parses it in order to

transform it into a database update operation. LLDP Monitor sends those results to the

Data Handler. The rate of neighbour detection is exclusively controlled by lldpcli config-

uration. The interval between LLDP packets sent to other switches and the time to live

(TTL) of already discovered neighbours values can be modified using this configuration.

CPS Monitor

The CPS monitor is a listener that monitors data changes from OPX. Its purpose is

to transform lower level changes into database updates. Currently the implementation

only reflects interfaces changes, more precisely, updates to the attribute oper-status. The

listener works as follows: it starts by registering it self to the CPS API event libraries

using the YANG key "dell-base-if-cmn/if/interfaces-state/interface". Whenever there is

an update, CPS API reports back to the CPS Monitor with an CPSObject. CPS Monitor
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collects the interface name and current state of the oper-status field and sends it to the

Data Handler.

Event Handler

The Event Handler class has the purpose of handling the execution of the CPS Moni-
tor, LLDP Monitor and DB monitor listeners. It controls the launch of their threads and

forwarding of their updates. Every update produced by the listeners is placed in a queue,

that is constantly being emptied.

Data Handler

Data Handler is a class that centralizes all data processing logic and defines how data

is forwarded. It adapts data collected by the listeners and decides which way it is for-

warded, either placed on the database or deployed on OPX.

Listing 4.1: An example of a downcall using CPS API (changing the administrative link

state)

1

2 @staticmethod

3 def setInterfaceAdminLinkState(if_name, state):

4

5 cps_obj = cps_object.CPSObject(’dell-base-if-cmn/if/interfaces/interface’)

6 cps_obj.add_attr(’if/interfaces/interface/name’, if_name)

7 cps_obj.add_attr(’if/interfaces/interface/enabled’, state)

8

9 cps_update = {’change’: cps_obj.get(), ’operation’: ’set’}

10 transaction = cps.transaction([cps_update])

11

12 if not transaction:

13 raise RuntimeError("Error�change�the�interface�state")

CPS Operations

CPS operations is the class used to implement all methods that communicate with the

CPS API. This is the class used to query the YANG model and to propagate changes from

the database to OPX. The listing 4.1 shows a sample method of a downcall using the CPS

API. The methods implemented are the following:

def setInterfaceIpAddress(if_name, ip_addr, pfix_len):

This method allows the assignment of an IP address to an interface. It uses the

name of the interface which uniquely identifies an interface on the YANG model.

The interface assignment is completed with the IP address to assign and the prefix

length associated. This update is usually triggered by a database update to the IP

address of an interface.

def addIpv4RouteEntry(route_prefix, prefix_len, if_name, weight,next_hop):
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This method adds a new routing entry to OPX routing table. This method requires

the destination IP address and the prefix length. Also, we set new routes as having

both a next-hop IP address and outgoing interface. In a scenario where a controller

creates a new route and places it on the database, this method would be called to

process that update on the concerned switch.

def deleteIpv4RouteEntry(route_prefix, prefix_len):

This method removes a routing entry from OPX routing table. OPX routes are

identified by its IP prefix and length, so this method only requires those in order

to delete the entry. This method is called in a scenario where a controller deletes a

route from the database.

def getAllInterfacesData():

This method method is used to obtain all data from OPX that relates to the device

interfaces. This includes its attributes and statistics. This method is used during

the bootstrapping process of the switch.

def getChassisMac():

This method obtains the physical address of the switch chassis. This is the address

that identifies the switch and is collected during the bootstrapping process.

External Operations

The External Operations class is used for methods that interact with the outside world

of SwitchDBCP. On this implementation this class is used to obtain the initial neighbour-

hood state from LLDP and the IP address of the management network interface of the

switch, assigned by an external DHCP server, during the bootstrapping phase.

We now turn to the description of the controller implementation.

4.3 Controller

A simple controller was implemented based on the DBCP model defined on the previous

chapter. The implemented controller consists of a set of software modules designated

altogether by Network Control Services. The implemented controller is capable of con-

structing a network topology view based on the local database state and use that data to

compute the routing rules for all switches of the network. The implemented controller

also allows the configuration of some of the switch’s characteristics.

The controller executes a MySQL database management system with the same base

data model as switches. This database, after the bootstrapping process, contains the

replicated state of every other switch database that it controls. The controller also reacts

to database updates and applies the corresponding modification to the switches’ state.
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The implemented system only supports the execution of a single controller, leaving

the inherent problems such as controller failure, out of this implementation. At this

moment, the implemented controller only reacts to changes to interface’s state or the

formation of new neighbour relations.

The controller, just like switches, runs on a virtual machine environment. Switches

communicate with the controller through a management network using an outbound

approach. Outbound communication is characterized by all switches being directly con-

nected to the controller over dedicated links. Management interfaces exist on every switch

and are used to support communication between switches and the controller. Although

not realistic in a real wide area network, for this experiment, we took this alternative to

simplify the implementation and bootstrapping processes.

The management network was built using a single private network that connects every

switch to the controller. Figure 4.4 shows a management network.
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Figure 4.4: Management network: A Virtual network connecting switches and the con-
troller

4.3.1 Network Control Services implementation

Network Control Services is the software that composes the brain of the controller. Its

function is to produce new routing rules, based on information shared by the switches,

and enable the configuration of the switches it controls. This software reacts to the

controller’s database changes and produces updates in accordance. It was implemented

in Python and has no special hardware or operating system requirement. The architecture
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of the implemented modules is similar to SwitchDBCP. Figure 4.5 shows the architecture

of Network Control Services.
The DB operations class is used to communicate with the controller’s MySQL database

and has the same characteristics as the implemented class on switches. The Data Handler
class is used for data processing logic. The Event Handler class shares the same imple-

mentation characteristics as SwitchDBCP, but in this case it only deploys a single listener:

DB Monitor. DB Monitor is a listener that shares the same characteristics of the already

mentioned SwitchDBCP’s DB Monitor listener. For the controller’s implementation, this

listener monitors the interface_neighbour-changes-log and interfaces-changes-log tables. It

checks for changes to the operational state of interfaces (oper-status) and for the formation

of new neighbour relations. The rate at which the DB Monitor consults the database is

also controlled using a local variable configured by default to 50 milliseconds.
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Data Handler
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DB 
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Data

Python Connector

Network Control Services

Controller’s database
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Figure 4.5: A modular view of SwitchDBCP

Network Control

The network routing information is computed by the Convergence class. This class

simultaneously constructs a network topology view and the routing rules for all switches.

The controller builds a network topology graph from the various pieces of data pro-

duced and shared by all switches through database replication. To build the network

graph, the controller first defines the nodes of the graph. Nodes consist of every switch
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known by the controller. The controller extracts switch information from the switch
table. The edges of the graph are the point-to-point links that connect the switches.

This information was previously constructed by the switches using the LLDP protocol.

When switches discover new neighbours, they create a neighbour relationship expressed

through a database insertion on both the neighbours and interface_neighbour tables. This

database insertion is made on both neighbours and on each neighbour it expresses a uni-

directional path to the other. To complete bidirectional connectivity, the information of

both neighbour switches is used. A link is only considered functional when at least two

operational interfaces are connected to it.

A query is made to the interface_neighbour table to extract all unidirectional neighbour

relations. Those relations are translated into weighed oriented edges on the graph. The

weight of each is edge is calculated as shown in Equation 4.1. The network topology build

is showed on algorithm 1.

Weight =
Ref erence Bandwidth

Interf ace Bandwidth
(4.1)

where:

Ref erenceBandwidth = A reference value that was set to 1Gbps;

Interf aceBandwidth = The interface bandwidth is extracted from the database’s table interfaces,
attribute speed.

Algorithm 1 Topology graph creation

1: procedure BuildNetworkTopologyGraph

2: SwitchList = Database.getAllSwitches()
3: for all Switch in SwitchList do
4: NetworkGraph.addNode(Switch)
5: end for
6: NeighbourList = Database.getInterfaceNeighbourRelationships()
7: for all NeighbourRelation in NeighbourList do
8: weight = NeighbourRelation.calculateWeight()
9: NetworkGraph.addOrientedEdge(NeighbourRelation.originSwitch,

NeighbourRelation.destinationSwitch,weight)
10: end for

return NetworkGraph
11: end procedure

The route creation computation can be broken into five steps: acquiring reachable

available IP prefixes and associated switches; the creation of individual switch view of

reachable IP prefixes and associated switches; for each switch, the execution of shortest

path algorithm; the election of next-hops switches; and the creation and filtering of new

routing table entries.

The algorithm starts by querying all interfaces with configured IP addresses and a UP
operational state(oper-status=1). The algorithm then extracts the IP prefixes reached by
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each interface and for each of these IP prefixes, registers the switches to whom they are

connected. After the network is build, the next step is to list all the IP prefixes connected

to the different switches, see algorithm 2.

Algorithm 2 IP prefixes acquisition

1: procedure IP prefixes Acquisition

2: Interf aceList = Database.getAllInterfacesWith(ip != Null and oper-status = 1)
3: for all Interf ace in Interf aceList do
4: ipP ref ixes = Extract IPv4 network from (Interf ace)
5: if ipP ref ixes not in IpP ref ixesList then
6: IpP ref ixesList.addIpPrefix(ipP ref ixes)
7: end if
8: switchId = Interf ace.ownerSwitchId
9: if switchId not in IpP ref ixesList[ipP ref ixes] then

10: IpP ref ixesList[ipP ref ixes].addSwitch(switchId)
11: end if
12: end for

return IpP ref ixesList
13: end procedure

The next steps is to associate all IP prefixes known with each switch, in order to

compute how each switch gets there. Moreover, all local switch’s prefixes are locally

available. The algorithm 3 shows this process.

Algorithm 3 Create each switch view of the reachable networks

1: procedure BuildNetworkSwitchView

2: SwitchList = Database.getAllSwitches();
3: IpP ref ixesList = IpPrefixesAcquisition() . Algorithm 2
4: for all Switch in SwitchList do
5: SwitchIpP ref ixesV iewList.addSwitch(Switch)
6: tmpIpP ref ixesList = IpP ref ixesList
7: for all IpP ref ixes in tmpIpP ref ixesList do
8: if IpP ref ixes is reached by Switch then
9: tmpIpP ref ixesList[IpP ref ixes] = Switch

10: end if
11: end for
12: SwitchIpP ref ixesV iewList[Switch].addNetworkList(tmpIpP ref ixesList)
13: end for

return SwitchIpP ref ixesV iewList
14: end procedure

The next step consists of executing a shortest-path algorithm for each switch of the

network topology graph. This process results on the creation of a path list for every switch

containing the paths to every other switch. It makes use of shortest path algorithm from

package [15]. Algorithm 4 shows this process.
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For each switch it is now possible to determine the next-hop for each destination

switch.

Algorithm 4 Path creation from every switch to other switches

1: procedure BuildNetworkPath

2: SwitchList = Database.getAllSwitches();
3: NetworkGraph = BuildNetworkTopologyGraph() . Algorithm 1
4: for all originSwitch in SwitchList do
5: for all destinationSwitch in SwitchList do
6: path = shortestPath(NetworkGraph,originSwitch,destinationSwitch)
7: pathList[originSwitch,destinationSwitch] = path
8: end for
9: end for

return pathList
10: end procedure

The next step is the election of next-hop switches. Routing rules must be created for

every switch on the network, therefore for each IP prefixes, next-hops must be calculated.

So, using the IP prefixes list and associated switches from algorithm 3, for each switch

and for each individual IP prefixes list, the associated switches list is extracted. They

serve as the destination point for a IP prefixes. For each of these switches, the paths

generated in algorithm 4 are used to elect the switches (more than one if they have the

same cost) that has the least cost to reach that IP prefixes. Finally, for each of the selected

switches, the next-hop is extracted from the path that terminates on the elected switch.

Algorithm 5 shows this process.

The last step is to construct the routing rules that are later deployed to the switches.

This process starts by creating the new routing rules. The output of algorithm 5 is used.

For every switch and for every associated network and associated next-hops, a new routing

rule is created. Finally, the new routing rules are filtered. If a new route is already present

on the database, it is ignored. If there is a routing rule present on the database but not

on the new routing list, that route is deleted from the database. The remaining routes are

then insert on the controller’s database. Algorithm 6 shows this process.
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Algorithm 5 Next-hop acquisition

1: procedure BuildRoutingNextHop

2: pathList = BuildNetworkPath() . Algorithm 4
3: SwitchIpP ref ixesV iewList = BuildIpPrefixesSwitchView() . Algorithm 3
4: for all SwitchV iew in SwitchIpP ref ixesV iewList do
5: for all IpP ref ixes in SwitchV iew do
6: candidateSwitchList = IpP ref ixes.associatedSwitches()
7: f inalCandidateSwitchList = []
8: for all candidateSwitch in candidateSwitchList do
9: for all path in pathList[SwitchV iew.switch] do

10: if path reaches candidateSwitch then
11: cost = path.cost
12: if cost is the first one the be calculated then
13: f inalCandidateSwitchList.add(candidateSwitch)
14: end if
15: if cost is the smallest then
16: f inalCandidateSwitchList = []
17: f inalCandidateSwitchList.add(candidateSwitch)
18: end if
19: if cost is equal to the smallest then
20: f inalCandidateSwitchList.add(candidateSwitch)
21: end if
22: end if
23: end for
24: end for
25: nextHopList = []
26: for all path in pathList[SwitchV iew.switch] do
27: for all candidateSwitch in f inalCandidateSwitchList do
28: if path reaches candidateSwitch then
29: nextHopList.addNextHop(path.getNextHop())
30: end if
31: end for
32: end for
33: SwitchNetworkV iewList[SwitchV iew][Network] = nextHopList
34: end for
35: end for

return SwitchNetworkV iewList
36: end procedure
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Algorithm 6 Routing build and filtering

1: procedure BuildFinalRoutingRules

2: SwitchIpP ref ixesV iewList = BuildIpPrefixesSwitchView() . Algorithm 5
3: NewRouteList = []
4: for all SwitchV iew in SwitchIpP ref ixesV iewList do
5: for all IpP ref ixes in SwitchV iew do
6: for all NextHop in IpP ref ixes do
7: NewRouteList.newRoute(SwitchV iew.switchid,IpP ref ixes,NextHop)
8: end for
9: end for

10: end for
11: DatabaseRoutelist = Database.getAllRoutes()
12: for all DatabaseRoute in DatabaseRoutelist do
13: for all NewRoute in NewRouteList do
14: if NewRoute exists in DatabaseRoutelist then
15: NewRouteList.delete(NewRoute)
16: end if
17: end for
18: if DatabaseRoute not in NewRouteList then
19: Delete from the database’s table ipv4-rib: DatabaseRoute
20: end if
21: end for
22: Insert all routes on the database’s table ipv4-rib: NewRouteList
23: end procedure

4.4 Physical data model

The physical model deals with the concrete implementation of the database tables and

attributes. The implemented data model is based on DBCP and its logical data model.

It was also been influenced by the YANG model supported by OpenSwitch OPX. The

same base data model was implemented and deployed on switches and controller. In

addition to the base data model, some tables have been added to address some of the

implementation requirements which were different on controller and switches.

Five tables were implemented that compose the base data model: switch, interfaces,
interface _neighbour, neighbours and ipv4-rib. The direct mapping between some attributes

of DBCP base data model and those of the OPX YANG model lead us to use as much as

possible the names and types in both modules. RFC [2] was used to define the interfaces
table, and RFC [3] to define the ipv4-rib table.

These tables are used by switches to store their local information and to receive up-

dates from the controller. On the controller there is a replica of all the switches’ tables.

Each switch is uniquely identified on the network with a Universally Unique Identifier

(UUID). This decision allows each switch to generate its own identifier, without the need

for distributed coordination, thus avoiding collisions. Likewise, all switchs’ interfaces and

routes created are also identified by UUIDs generated by each switch and the controller.
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Some modifications in terms of attributes were made from the logical model, in order

to overcome some of the limitations of the implementation environment used.

The virtual network environment used to deploy the production network could not

support a real point-to-point connection since it deploys a virtual switch to connect every

interface. This resulted in a change to the data model since a route could no longer use the

outgoing interface as a next-hop. The solution was to add a new attribute to the ipv4-rib
table called Next-hop that contains the address of the destination interface.

For switches, the data model contains three complementary tables: controller, interfaces-
changes-log and ipv4-rib-changes-log. The controller table is used to store data related to

the controllers associated with a switch . This table stores the IP address of the con-

troller on the management network. The controller has the interfaces-changes-log table

and interface_neighbour-changes-log table.

4.5 Database replication

Database replication among controller and switches is the key part of this experiment.

The focus on delivering data from switches to controller and back using their local

databases, without the intervention of the control modules, lead us to use Symmet-

ricDS[22] software. At the time of development, it was considered flexible and dynamic

enough to be rapidly deployed on switches and controllers and satisfied the requirements

for this experiment. Also, the reason behind the choice of using an orthogonal solution

to the database is due to the need to separate as far as possible the database replication

mechanisms from the software being developed. On the other hand, SymmetricDS is a

temporary alternative which may not fulfil all the timing requirements for data synchro-

nizing on DBCP.

SymmetricDS is an open source Java software that supports the replication of rela-

tional database tables between multiple nodes over the network. It has support for one-

way and multi-master replication and can replicate data asynchronously at scheduled

moments or periodically. Also, it is agnostic of the database management system.

SymmetricDS installs triggers on a target database and constantly monitors its ta-

bles for local changes. Any changes detected are sent over the network, using HTTP, to

pre-defined destinations. Also, it applies remote data changes that may have occurred

on a remote database, to the local tables. Configuration of each running instance of

SymmetricDS is made using a properties file.

SymmetricDS allows the definition of a replication model enabling the definition of

the tables and columns of the database that should be synchronized (also defined as ver-

tical filtering) and also to which replica should specific rows go (also called horizontal

filtering). Synchronization can also be defined as going on one direction or both direc-

tions.

On SymmetricDS a node is considered an instance of SymmetricDS. Nodes exchange

46



4.5. DATABASE REPLICATION

data through pushes and pulls. A central node, or master node orchestrates other in-

stances and allows their registration. A push sends changes to nodes and pulls are peri-

odical checks for available changes.

For this experiment we used standalone installations of SymmetricDS version 3.9.2[22],

that were deployed on the controller and switches. The role of SymmetricDS in this exper-

iment is to replicate the state of every switch database to the controller and vice-versa. In

this implementation every switch executes an instance of SymmetricDS with connection

to its local MySQL database. This instance is started during the bootstrapping process

and uses a properties file that is built during the bootstrapping process. The controller

runs a single SymmetricDS instance connected to its MySQL database.

When switches start, SymmetricDS installs on the MySQL database, the tables and

relations required for its execution. Then it attempts to register their instances with the

master instance on the controller, using the IP address and the name of the SymmetricDS

instance defined on the properties file. When a switch is registered, it receives from

the controller instance the synchronizing model defined for that database. The model is

translated into triggers and insertions to SymmetricDS tables.

The controller’s properties file is static and pre-created.

Listing 4.2: A sample of the controller’s SymmetricDS properties file

1 engine.name=controller -000

2 db.driver=org.h2.Driver

3 db.url=jdbc:mysql://localhost/dbcp-controller

4 db.user=root

5 db.password=XXXXXX

6 registration.url=

7 sync.url=http://192.168.1.15:31415/sync/controller -000

8 group.id=controller

9 external.id=000

10 auto.reload.reverse=true

11 job.purge.period.time.ms=72000

12 job.routing.period.time.ms=500

13 job.push.period.time.ms=1000

14 job.pull.period.time.ms=1000

15 initial.load.create.first=true

Listing 4.3: A sample of a switch SymmetricDS properties file

1 engine.name=123e4567-e89b-12d3-a456-426655440000

2 db.driver=org.h2.Driver

3 db.url=jdbc:mysql://localhost/switch_control_database

4 db.user=root

5 db.password=XXXXXX

6 registration.url=http://192.168.1.15:31415/sync/controller -000

7 group.id=switch

8 external.id=123e4567-e89b-12d3-a456-426655440000

9 job.routing.period.time.ms=500

10 job.push.period.time.ms=1000
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11 job.pull.period.time.ms=1000

The SymmetricDS properties files are composed of instructions for the local database

connections, remote connection to other SymmetricDS, synchronization time definitions

and identifiers that uniquely identify the instance. Listings 4.2 and 4.3 show a configu-

ration example used for the controller and the switches respectively. In both examples,

synchronizing periods were chosen just for illustration purposes. For the controllers’

properties file, the name and external ID are arbitrary. Database connection is set to its

local database. The controller instance is set as a master and to accept the initial database

load from other registering switches.

The switch properties file is similar to the controllers’ but differs in its external ID

and group. The database connection is similar to controller. The switch instance uses

the tag registration.url to define the IP address of SymmetricDS master instance. The

switch uses this address to first register itself on the controller and then to check for pulls.

The external.ID and engine.name for switches are unique. They are equal to the switch

identifier attribute defined on the switch table. This is an important aspect that enables the

horizontal filtering of database updates on the controller. This properties file is created

during the bootstrapping process.

The replication model is defined on the controller and then replicated to all switches

when they register. This models is inserted through database updates on the local con-

troller’s database. For this experiment the following model was defined: SymmetricDS

triggers were defined that target the tables switch, interfaces, neighbour, interfaces_neighbours
and ipv4-rib. Those triggers signal SymmetricDS to monitor those tables for changes, that

will be later replicated. The replication model then defines which kind of data from the

tables is replicated and to which node. Data can be sent from a switch to the controller,

from the controller to all switches and from the controller to a single switch. Data replica-

tion from a controller to a single switch is based on the switch’s identifier and the defined

external_ID on the SymmetricDS properties file.

4.6 The Bootstrapping sequence

The complete process of system bootstrapping starts with the controller. An instance

of SymmetricDS, connected to a previously created MySQL database with the aforemen-

tioned data model, is started to prepare for future switch connections. Before starting it

is assumed that the properties file for the SymmetricDS instance is already present and

configured. Also, for the lunch of SymmetricDS, we assume that the SymmetricDS tables

are created and the replication model was defined.

The controller’s Network Control Services are then initiated. Bootstrapping these pro-

cesses consist of first initiating the DB Monitor listener and then executing the conver-

gence algorithm to the current state of the database.
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Switches can then be initiated. The switch bootstrapping process initiates with

SwitchDBCP. Before starting it is assumed that OpenSwitch OPX services are operational.

SwitchDBCP first starts a connection with the local MySQL database. The database is as-

sumed to be already created and with the switch data model. All data is cleared from the

database. SwitchDBCP then fills the switch and interfaces tables on the database, retriev-

ing its data from the CPS API, and is followed by retrieving the current neighbourhood

state of the switch from the LLDP protocol. This initial data acquisition process enables

the database to start with an updated view of the underneath hardware layer.

When the database has been filled, SwitchDBCP starts its listeners: the DB Monitor,

LLDP Monitor and CPS Event Monitor. As described before, those listeners will assure

that the previously inserted view of the switch is kept updated. Next, SwitchDBCP creates

a properties file for SymmetricDS. This file is created based on a template. Currently

SwitchDBCP creates this properties file by configuring it with the current IP address and

name of the controller but also by setting the switch external_ID equal to its identifier on

the database. The IP address of the controller was previously transmitted to SwitchDBCP
as an initial argument when starting. SwitchDBCP then starts an instance of SymmetricDS.

SymmetricDS immediately synchronizes the current state of the database. Figure 4.6

represents a switch bootstrapping process.

Start
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Fill Interface 
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Fill 
Neighbourhood 
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Start DB 
Monitor

Start LLDP 
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Start CPS Event 
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Create 
SymmetricDS 

properties files

Start 
SymmetricDS

Clear database 
data

Figure 4.6: The bootstrapping sequence of a switch

4.7 Conclusions

This ends the description of the prototype IP Database-based Control Plane. As is easily

recognizable, the prototype is organized in modules and functions that fulfil the DBCP

model.

However, it lacks several optimizations that will be addressed later, namely what

concerns the LLDP and the neighbourhood discovery process.

The optimizations that concern the database replication process will be subject of

later research. This justifies why we only adopted an orthogonal solution that must be

considered provisional.
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5
Prototype evaluation

5.1 Introduction

In this chapter, we present the results of the experimental evaluation which was carried

out to assess the implementation of the system presented in the previous chapter. The

test environment and the characteristics of the tests are first detailed. Then follows the

presentation of the tests that were performed. Finally, the conclusions of the tests are

discussed.

5.2 Evaluation methodologies and environment

In order to carry out the evaluation of the developed components, the environment in

which they were executed is presented. As described in the previous chapter, the switch

and controller were implemented as virtual machines. As such, to perform the tests, a

virtual environment provided by VMware Workstation 14 [24] was used.

Each switch corresponds to an independent virtual machine. The hardware charac-

teristics of each virtual machine corresponding to a switch are described in Table 5.1.

Each switch is composed of the OpenSwitch OPX operating system, SwitchDBCP soft-

ware, presented in the previous chapter, SymmetricDS software with version 3.9.2 and

MySQL version 5.7.2. Also Java 8 and Python 2.7 were used to support the execution of

the different software modules.

Table 5.1: Virtual machines configuration

Virtual CPUs 8
RAM 1.5GB
Storage 16GB
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For the controller, a Debian operating system was used to support the execution of the

Network Control Services, also described in the previous chapter. Alongside those services,

the controller also contains a MySQL Server version 5.7.2, SymmetricDS software with

version 3.9.2, Java 8 and Python 2.7. The controller uses the same hardware configuration

as the switches, as described in Table 5.1.

The tests were performed using a single host machine which supported the execution

of multiple virtual machines and virtual networks. The hardware and operating system

of the host machine is described in table 5.2. The hardware of the host machine limited

the size of the emulated network, mainly due to the limited RAM available to execute a

larger number of virtual machines.

Table 5.2: Host hardware characteristics and operating system

Operating System Windows 10 64-bit
Motherboard Asus P8Z68-V PRO
CPU Intel core i7 2600k 3.90GHz
RAM Kingston 12.0GB
Storage HDD WDC 5400RPM

The same network topology was used for all the tests. This network is composed of five

switches, one controller and seventeen IP prefixes. Figure 5.1 shows a representation of

the network topology. The number of switches used was limited to 5 due to the limitation

of the host’s available RAM. The configuration of the switches’ interfaces was a manual

process accomplished using the Linux API for interface management. This process could

be enforced by the controller but this option was not considered due to lack of time. Since

the network was built on a single host machine, links latency are negligible, therefore for

this evaluation the impact of latency was not considered. Also, there was no packet-loss

introduced in any of the links.

The evaluation of the system had a substantial focus on observing the execution times

of the various elements composing the network. The times, extracted from logs and

created by software, use the local clock of each operating system. A need to make several

timing comparisons between switches and the controller, lead to use the Network Time

Protocol[12] for all virtual machines.

Several Python scripts were developed to support the testing process. These scripts

provide automation for the execution of the tests and support for the process of collecting

and processing of the obtained samples.

5.3 Evaluation

5.3.1 Evaluating the system

The evaluation of the system consisted of the measurement of the execution times of its

various components. The main focus was on the network convergence time and how the
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Figure 5.1: The production network topology

developed software and data replication utility impacts the convergence time of switches

in the presence of a link or interface state change. This analysis allowed us to determine

which components have a greater impact on the convergence time and thus understand

the advantages and limitations of this IP-DBCP approach.

A state change of an interface or link causes the reaction of switches which in turn

propagate this change to the controller. The controller is in charge of making decisions

(building new routes) and consequently updating all the switches in response to those

changes. In these tests, we considered two possible changes to the network’s state: the

change of interfaces’ and link’s state.

The event of an interface state change leads to the following sequence of operations:

this event is first detected by the kernel of the switch where it occurred. OPX services,

running on the switch, detect the change and trigger an CPS event that is detected by

SwitchDBCP. SwitchDBCP collects and processes the event information. It then updates

its local database, namely changes the oper-status field on the interfaces table. Symmet-

ricDS, running on the switch, senses the change in the local database and replicates those

changes to the local controller’s database.

In the controller, the DB Listener detects the modification in the database. As the

modification corresponds to the state change of an interface, this causes the execution

of the convergence algorithm, causing the computation of new routing rules. At the end

of the algorithm execution, the ipv4-rib table of the local controller database is updated
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to reflect the new defined routes. SymmetricDS, running on the controller, detects these

updates and replicates those to the switches’ databases. On each switch, SwitchDBCP de-

tects the change in the local database through the DB Listener, processes the new updates

and executes a downcall to the CPS OPX services. The OPX services then update the RIB

table.

Based on the previously described sequence of operations, the convergence time of

the switches, after a state change of an interface in the production network, can be char-

acterized as follows:

NetworkConverganceT ime = F +FE + SR+C + (CR+ SD +RIB)lastSwitch (5.1)

where:

F = Elapsed time since the occurrence of the state change up to the creation of an

event by the OPX CPS API by the switch where the state change occurred;

FE = Elapsed time since the CPS API event until the last insertion in the switch’s local

database;

SR = The database replication time from switch to the controller’s local database;

C = The total time the controller took to react to the database changes and deploy

new configuration back to the database;

CR = The time the database replication process took from the controller to a local

switch’s database;

SD = Interval since the end of the replication process and the downcall to OPX CPS

API;

RIB = OPX time to update the RIB.

In a different scenario, where the creation of a new link exists, the process is similar

to the previous one discussed. However, initially this process is triggered by SwitchDBCP
due to the execution of the LLDP protocol. When the LLDP protocol detects the existence

of a new neighbour, SwitchDBCP collects this change and updates the switch’s local

database.

We can then characterize the convergence time when a new neighbour relation forms,

as such:

NetworkConverganceT ime = N +NE + SR+C + (CR+ SD +RIB)lastSwitch (5.2)

where:

N = Elapsed time since the creation of the link up to the detection of the new neigh-

bour by the LLDP protocol and creation of the event by SwitchDBCP;

NE = Elapsed time since the creation of the event up to the last insertion in the switch’s

local database.
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5.3.2 Results

First, a test was performed to understand the impact of the data replication software on

the time it takes to replicate data between the switch’s and controller’s databases. In

addition, this test made it possible to compare 3 distinct SymmetricDS configurations

(the batch creation and push intervals).

The test consisted of executing a script that, at 5 second intervals, performed an

insertion on the switch’s local database. The time when that operation took place was

noted. On the controller side, another script collected the time at the end of the replication

operation. The same data flow was applied in reverse order from the local controller’s

database, to a target database of a switch. 100 samples were collected for both cases and

the mean value in milliseconds is shown in Table 5.3. Figure 5.2, shows the minimum,

average and maximum values obtained in this test.

Table 5.3: Database replication time using different SymmetricDS software configurations

switch to controller (SR) controller to switch (CR)
batch creation: 200ms
batch push: 500ms

390ms 390ms

batch creation: 100ms
batch push: 250ms

190ms 187ms

batch creation: 50ms
batch push: 100ms

70ms 75ms
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Figure 5.2: Database replication time using different SymmetricDS software configura-
tions

A second test was carried out in order to understand the impact of the remaining

components on the convergence time. This test was based on an interface’s state change

and consisted of automatically setting an interface to a Down state and measuring the

elapsed time in each component.

In this test, a script was used to automatically, at intervals of 5 seconds, change the

state of interface I2 from switch S2 between Up and Down, see Figure 5.1.

At the same time several other scripts were placed on switches and on the controller
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in order to collect the moments of execution of the various components. For this test,

100 samples were collected. SymmetricDS was used with the best configuration obtained

in the previous test (batch creation: 50ms; batch push: 100ms). The DB listeners in the

controller and in the switches were both configured with the value of 50 milliseconds.

Data was collected along the entire flow that makes up the convergence process in

the presence of an interface state change. Using Equation 5.1 as reference, the values

of F, FE, SD, C and SD were repeatedly collected. The value of F was calculated from

the difference between the time of the interface state change, extracted from the script

that caused it, and the time SwitchDBCP received the CPS Event. The value of FE is the

difference between the time of the last insertion on the database, provided by MySQL,

and the CPS event. The value of C1, from the end of the replication process to the start

of the convergence algorithm. C2, from the total time of execution of the algorithm. C3,

from the end of the algorithm’s execution to the last inserted update on the database.

Figure 5.3 shows the average results obtained in milliseconds. The image also shows

the values of SR and CR obtained on the previous test. The value of the variable RIB on

this test was not measured and was assumed to be similar to the value of F.

Another test was conducted to measure the impact of the LLDP protocol used to

detect and acquire neighbourhood data from switches. The objective of this test was to

understand the impact of the protocol when detecting neighbourhood relation changes,

which is a fundamental process in the creation of a network graph. In this test we also

considered different configurations’ parameters supported by the protocol.

For this test, the failure of a link and the creation of a new link were considered. The

test consisted of executing a script that, at intervals of 5 seconds, changed the state of

interface I2 of switch S2 between Down and Up states. In switch S4, another script was

also placed to collects the logs related to the generation of new events by SwitchDBCP,

related to LLDP Monitor. In this test, the times in S2 and S4 were collected and compared

in order to extract the elapsed time. Three different types of configurations of the LLDP

protocol were used, namely for the attribute transmit delay, which controls the interval

between sending of LLDP packets, and transmit hold (TTL) the number of failures made

to trigger an event. These were configured with values to the second so the smallest

configurable value was 1 second. In this test, 100 samples were collected. Table 5.4 shows

the results obtained.

Table 5.4: Test results from the LLDP protocol.

Link down Link Up
Transmit delay: 4
Transmit hold: 30

97.185s 3.782s

Transmit delay: 2
Transmit hold: 10

13.645s 1.567s

Transmit delay: 1
Transmit hold: 2

2.118s 0.932s
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Figure 5.3: Network convergence events flow after an interface state change
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Another more general test was carried out in order to better understand the real

convergence time of the network. This test consisted of the analysis of the convergence

time of the network in the presence of changes at any point in the network. The objective

of this test was to obtain the mean total convergence time by analysing several possible

cases of network state changes.

A script was developed that in a pseudo-random way selects a switch and one of its

interfaces, and changes its state. This test started with a complete and fully operational

network as described in Figure 5.1. The selected interface’s state is changed to a Down
state, and after 5 seconds, its changed back to an Up state.

To get the actual convergence time, only the time of the last switch to apply the new

routes created by the controller is considered.

In this test the following configurations were used: SymmetricDS was used with the

best configuration obtained (batch creation: 50ms; batch push: 100ms); DB listener on

controller and switches were configured with a value of 50ms; and finally, the LLDP

protocol was configured with the values of Transmit delay: 1 Transmit hold: 2.

500 samples were obtained and the results are presented in the Figure 5.4. The first

column of the table shows the average time elapsed since the change in the network until

the update is replicated to the controller database (N + NE + SR or F + FE + SR). The

second column represents the mean time since the end of replication to the end of the

processing of the routes by the controller, and their insertion in the database (C). The

third column shows the average last switch update time (CR + SD + RIB). Finally, the last

column shows the total observed average time, that is, the exact elapsed time since the

network state change took place and the last switch was updated.
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Table 5.5: Test results from the total convergence time of the network

State change
reaching the

controller database

Controller
reaction

(C)

Last switch
convergence

Total convergence
time

(Observed)
New link 1.145s (N+NE+SR) 0.068s (C) 0.361s (CR+SD+RIB) 1.575s

Interface Down 0.297s (F+FE+SR) 0.089s (C) 0.398s (CR+SD+RIB) 0.785s
Total average 0.720s 0.077s 0.368s 1.160s

Another more general test was carried out in order to better understand the real

convergence time of the network. This test consisted of the analysis of the convergence

time of the network in the presence of changes at any point in the network. The objective

of this test was to obtain the mean total convergence time by analysing several possible

cases of network state changes.

A script was developed that in a pseudo-random way selects a switch and one of its

interfaces, and changes its state. This test started with a complete and fully operational

network as described in Figure 5.1. The selected interface’s state is changed to a Down
state, and after 5 seconds, its changed back to an Up state.

To get the actual convergence time, only the time of the last switch to apply the new

routes created by the controller is considered.

In this test the following configurations were used: SymmetricDS was used with the

best configuration obtained (batch creation: 50ms; batch push: 100ms); DB listener on

controller and switches were configured with a value of 50ms; and finally, the LLDP

protocol was configured with the values of Transmit delay: 1 Transmit hold: 2.

500 samples were obtained and the results are presented in the Figure 5.4. The first

column of the table shows the average time elapsed since the change in the network until

the update is replicated to the controller database (N + NE + SR or F + FE + SR). The

second column represents the mean time since the end of replication to the end of the

processing of the routes by the controller, and their insertion in the database (C). The

third column shows the average last switch update time (CR + SD + RIB). Finally, the last

column shows the total observed average time, that is, the exact elapsed time since the

network state change took place and the last switch was updated.
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Table 5.5: Test results from the total convergence time of the network

State change
reaching the

controller database

Controller
reaction

(C)

Last switch
convergence

Total convergence
time

(Observed)
New link 1.145s (N+NE+SR) 0.068s (C) 0.361s (CR+SD+RIB) 1.575s

Interface Down/UP 0.297s (F+FE+SR) 0.089s (C) 0.398s (CR+SD+RIB) 0.785s
Total average 0.720s 0.077s 0.368s 1.160s

network as described in 5.1. The script, after selecting a switch and an interface, seconds

changes the interface from Up state and 5 seconds later does the reverse.

To get the actual convergence time, only the time of the last switch to apply the new

routes created by the controller is considered.

In this test the following configurations were used: SymmetricDS was used with the

best configuration obtained (batch creation: 50ms; batch push: 100ms); DB listener on

controller and switches were configured with a value of 50ms; and finally, the LLDP
protocol was configured with the values of Transmit delay: 1 Transmit hold: 2.

500 samples were obtained and the results are presented in the Table ??. The first

column of the table shows the average time elapsed since the change in the network until

the update is replicated to the controller database (N + NE + SR or F + FE + SR). The

second column represents the mean time since the end of replication to the end of the

processing of the routes by the controller, and their insertion in the database (C). The

third column shows the average last switch update time (CR + SD + RIB). Finally, the last

column shows the total observed average time, that is, the exact elapsed time since the

network state change took place and the last switch was update.

5.3.3 Evaluation Conclusions

The observation of the values obtained with these tests allowed the drawing of several

conclusions regarding the performance of each component as well as the whole system.

The various implementation options had an significant impact on performance.

First, it was possible to conclude that SymmetricDS, based on the best tested con-

figuration, introduces an average delay of about 70 milliseconds from the switch to the

controller and 75 milliseconds from the controller to the switch. Given the lack of latency

in the tested environment, this value can be justified by the way SymmetricDS oper-

ates. Since data replication is not immediate, SymmetricDS operates based on periodic

database queries. There is, therefore, a time interval between each batch creation and

push that has to be taken into account. It was also possible to observe some fluctuations

of the obtained results in relation to the mean value. As the chart ?? shows, cases were

observed where the replication time reached 120 milliseconds. These fluctuations were

expected given that in the worst case it is expected to reach 150 milliseconds.

Given that latency is negligle, this figure composes ppoorly with the time reported
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The observation of the values obtained from these tests allows the drawing of several

conclusions regarding the performance of each component as well as the whole system.

The various implementation options had a significant impact on performance.

First, it is possible to conclude that SymmetricDS, based on the best tested config-

uration, introduces an average delay of about 70 milliseconds from the switch to the

controller and 75 milliseconds from the controller to the switch. Given the lack of latency
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in the tested environment, this value can be justified by the way SymmetricDS oper-

ates. Since data replication is not immediate, SymmetricDS operates based on periodic

database queries. There is, therefore, a time interval between each batch creation and

push that has to be taken into account. It was also possible to observe some fluctuations

of the obtained results in relation to the mean value. As Figure 5.2 shows, cases were ob-

served where the replication time reached 120 milliseconds (batch creation: 50ms, batch

push: 100). These fluctuations were expected given that in the worst case it is expected

to reach 150 milliseconds.

Given that latency is negligible, this figure composes poorly with the times reported

in [8] for the same propagation. However there is ample space for optimisations in these

implementation.

In the second test, the various times that compose the network convergence process

were registered. First, this test showed that there is a delay of 120 milliseconds from

changing the interface’s state until the creation of the CPS event by the OPX services

(F). Compared with the remaining values obtained in this test, this value is significantly

higher and has a greater impact on the total time. The reason for this obtained value

is dependent on the kernel itself and the OPX services which is the reason why, in the

context of this work it was not possible to justify this result. After the creation of the CPS

event, up to the end of the database insertion (FE) an average value of 21 milliseconds

was obtained. This value essentially consists of the time taken by the database update. It

has been observed that the average execution time of updates to the database of a switch,

during the operation of the network, is in average of 18 milliseconds. This value can also

be justified by the fact that a persistent database was used which could be improved since

persistence is not required. This figure also compares poorly with the 10 ms reported in

[8] but can also be improved.

In the controller, the value of (C) was divided into three separate times. The average

time of C1 is 32 milliseconds. This is essentially composed by the delay introduced by

the DB Listener. It works on the basis of periodic database queries to detect and obtain

modifications. In this test the DB Listener was configured with a 50 millisecond value.

This result is also influenced by the database query time. The mean time of C2 obtained

was 20 milliseconds and corresponds exclusively to the execution time of the convergence

algorithm. The average value of C3 is 20 milliseconds and is related to the cost of inserting

into the database the results obtained from the execution of the convergence algorithm.

These values seem reasonable and hard to compare with those reported in [8].

The average elapsed time from the switch’s database update, up to the downcall of

an update to the OPX (SD), was 67 milliseconds. Again, this time is affected by the DB
Listener configured with the 50 millisecond interval. To the listener time, the collection

of the database updates and their processing time is added.

As stated before, the value of (RIB) on this test was not measured and was assumed to

be similar to the value of (F).

The last test performed, allows us to conclude that the total time of the network
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convergence is in average 0.795 seconds when the status of an interface goes down, and

is 1.575 seconds when a new link is introduced.

This test shows that there is a noticeable difference between the network convergence

time, when there is a change in the interface’s state, and when a new link is created. As

observed in the Figure 5.4, the convergence time in the case of a new link is on average

0.790 seconds longer than the state change of an interface.

This difference can be justified by the way the network topology acquisition model was

implemented. While the interface state change is detected locally on the switch and sent

directly to the controller, the detection of a new link is dependent on the LLDP protocol

and its probe execution process. The timings are similar to the ones found with the Hello

protocol of OSPF, and are better than the ones that would have been observed if the LLDP

functionality had been implemented by the controller. As shown in the Table 5.4, link

formation takes an average of 0.932 seconds to be detected with the configuration used

in this test. This delay is shown in the first column of the Figure 5.4. After the creation of

a new link, updates take an average of 1.145 seconds to arrive at the controller database,

whereas the change of state of an interface takes 0.297 seconds.

Still in the context of this test, it is important to refer the results obtained from the

test of the LLDP protocol, namely the values shown in Table 5.4, referring to a link

failure event. These values are not reflected in the results of Figure 5.4. This is because

the implementation of the switch does not use the LLDP protocol to detect link failures.

Instead, the interface’s state change is used.

Still in Figure 5.4, the values of the second column referring to the total reaction time

of the controller were on average 77 milliseconds. This is a value that we can consider

good, though, the number of network prefixes and switches is small. However, as noted

earlier, this value could be improved by opting for another method of detecting local

database changes.

The IP-DBCP model here tested and implemented, can only be partially compared to

the traditional model. Firstly, in the traditional model, the network state change detection

is done locally by the switches using hardware mechanisms or protocols such as the Hello

protocol [8]. This can in fact be compared to IP-DBCP which also implements a local

switch network state detection model. However, in the traditional model the network

state change is flooded, which differs from the IP-DBCP model where this change is

only sent to the controller. Therefore, it’s difficult to compare both. The processing of

network convergence also differs in both cases. In the traditional model the processing

is sequential and repeated on all switches. In IP-DBCP this processing is done only by

the controller. After the updates processing, the IP-DBCP model performs an additional

step, not performed by the traditional model, which consists of sending the updates

from controller to each switch. In the traditional model, as the computation was done

locally, the updates can immediately be applied. Finally, we considered that the process

of local application of the new updates can be made similar in the two models. We still

do not know if the times obtained with IP-DBCP are unbearable, given potential future
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improvements.

However, we believe that the most relevant differences between the two approaches

is in fact concentrated in the state update and propagation process now in charge of the

database. In the next chapter we will return to this analysis.
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6
Conclusions

6.1 Concluding Remarks

In this dissertation we described a work performed with the goal of analysing if a database

approach would be suitable to replace OpenFlow in an SDN wide area environment,

with the sub-goals of increasing the semantic level of the coordination model between

controllers and switches, in terms of data description and also in terms of the coordination

semantics among the different parts of this distributed system.

The first chapter introduced the motivations for this work as well as the description

of the document structure and its contents.

The second chapter introduced the concept of Software-Defined Network, its archi-

tecture, applications and challenges. The OpenFlow protocol was also discussed as well

as how it relates to this work. Next, the OSPF protocol was discussed and finally, other

works were described which served as the basis for this work.

In the third chapter, the DBCP model was introduced. This chapter described the

architecture of DBCP, namely its components, operation and the associated data model,

but also the problems that the DBCP propose to solve. A comparison was also made

between the DBCP model and others using OpenFlow.

In the fourth chapter, the prototype implementation, called IP-DBCP and based on

DBCP, was described. This chapter described the implementation made, the technologies

used and the replication model chosen.

Finally, in chapter five, the tests performed and the corresponding environment, were

described. Finally, the test conclusions were presented based on the results obtained.

The first conclusion of this work is that it shows it is possible to make an SDN con-

trolled network where the semantics of the data shared between switches and the con-

troller are of an higher level then OpenFlow and can be easily modified and extended,
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since it is based on a relational data model, a popular framework in all information

systems settings.

This approach has been tested with the problem of routing by the shortest path in

an IPv4 network, but can be easily extended to more sophisticated forms of routing

and network management (e.g. traffic engineering). It is also suitable to acquire the

status of the network since it is derived from already defined YANG data models for

network management. However, it doesn’t rely on the introduction of any new description

language.

The second conclusion is related with the fact that we do not need to introduce any

new protocol for data, events and commands sent among the different components of the

system. Again, these features were implemented using database replication protocols.

Although the ones used are only suitable for a proof of concept, the implementation is

agnostic to the introduction of more realistic and sophisticated ones since those protocols

are under the responsibility of the database engine replication mechanism. They can be

changed without the need of any change in the definition of the network protocols details.

Also, the semantics of that coordination can be clearly improved in the future.

In what concerns the performance of this proof of concept implementation, it is hard

to compare a preliminary experience with the current fully engineered and optimized

solutions used in bullet-proof implementations of OSPF or IS-IS. However, the same

optimizations that are used in those implementations can also be introduced in this one

(fault detection, event propagation, status changes, incremental algorithms, ...) but the

following: route computation and communication protocols among the switches and the

controller and vice-versa.

All route computations are centralized in the controller instead of being done in

parallel in the different switches. However, this is exactly the price of the SDN approach.

Current high-end servers configurations seem suitable to deal with this difference.

In what concerns the higher overhead of the coordination protocols, which will never

be comparable to the tailor-made fault-tolerant floods used by most network protocols,

it is yet too soon to evaluate the trade-offs of both approaches since the DBCP approach

is competing, in this regard, with a tailor made reliable flooding protocol. The full

evaluation of the trade-offs requires the analysis of case studies where an SDN approach

can excel and where more sophisticated data and coordination models are required.

6.2 Future Work

In what concerns the future work, there are many avenues to explore:

• A more sophisticated and optimized implementation of this proof of concept case

study.

• The introduction of different database replication protocols
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• More demanding case studies where this approach would pay since traditional

available flooding protocols wouldn’t be enough.

• Further development of the prototype to support more network functionalities.

• Extending the data models to support more network functionalities, devices config-

uration and statistics.
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