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2  A B S T R A C T  

This work applies additive manufacturing technology to fabricate bi-dimensional 

lightweight composite anepectic meshes capable of demonstrating auxetic properties (negative 

Poisson’s ratio (NPR)) in combination with negative thermal expansion (NTE) behaviour, using 

as constituent materials polymers that do not exhibit NTE behaviour. Each mesh, obtained from 

varying either the material combination or the design parameter, was tested on a heated silicone 

bath to study the effects of the different combinations on the coefficient of thermal expansion 

(CTE). Photographs were taken at different stages during the heating process and were analysed 

to determine the CTE of each mesh. It was found that all composite meshes studied demonstrated 

a successful combination of NPR and NTE behaviours, and it was revealed that there is a 

possibility to tailor the meshes to activate the NTE behaviour within a chosen range of 

temperatures. For an extreme case, a Poisson’s ratio of −0.06, along with a CTE of −1568  10-6 

(ºC-1) has been achieved. These meshes may be applied to structures and equipment in which the 

disparity in thermal stress has be carefully managed to extend the life of the device, and also to 

produce biomedical devices such as stents, surgical hernia meshes (SHM), compression garments 

and others, with many advantages over current designs, namely the ability to counteract any 

relaxation effects resulting from increases in the service temperature. 

 

Keywords: 3-D printing, Anepectic, Auxetic, Negative thermal expansion, Negative 

Poisson’s ratio, Tuneable thermal expansion 
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3  R E S U M O  

Este trabalho aplica tecnologia de fabricação aditiva para fabricar malhas anepécticas 

bidimensionais, compósitas e leves capazes de demonstrar propriedades auxéticas (Coeficiente 

de Poisson negativo (NPR)) em combinação com o comportamento de negativa expansão térmica 

(NTE), usando como materiais constituintes polímeros que não apresentam NTE. Cada malha, 

obtida pela variação da combinação de material ou do parâmetro de design, foi testada num banho 

de silicone aquecido para estudar os efeitos das diferentes combinações no coeficiente de 

expansão térmica (CTE). Foram tiradas fotografias em diferentes etapas do processo de 

aquecimento e foram analisadas para determinar o CTE de cada malha. Verificou-se que todas as 

malhas estudadas demonstraram uma combinação bem-sucedida dos comportamentos NPR e 

NTE, e foi revelado que existe a possibilidade de ajustar as malhas para ativarem o 

comportamento NTE dentro de uma faixa de temperatura escolhida. Para um caso extremo, um 

coeficiente de Poisson de -0.06, juntamente com um CTE de −1568  10-6 (ºC-1) foi alcançado. 

Essas malhas podem ser aplicadas a estruturas e equipamentos nos quais a disparidade do stress 

térmico tem de ser cuidadosamente gerida para prolongar a vida útil do dispositivo, e também 

para produzir dispositivos biomédicos, como stents coronários, malhas de contenção de hérnias 

(SHM), vestuário funcional de compressão vascular e outros, com muitas vantagens sobre os 

designs atuais, nomeadamente a capacidade de neutralizar quaisquer efeitos de relaxamento 

resultantes de aumentos na temperatura de serviço. 

 

Palavras-chave: Impressão 3-D, Anepéctica, Auxética, Expansão térmica negativa, 

Coeficiente de Poisson negativo, Expansão térmica ajustável 
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combinations chosen for the present work. These combinations were chosen as the 

requirement for achieving anepectic behaviour was that these materials must be of 

similar (albeit different) stiffness but widely differing thermal expansion, i. e., must be 

close but not equal to the X=1 axis and must be as far away from the Y=1 axis as 

possible. Finding a combination which followed this relation proved fruitful as the 

resulting combinations Nylon-PVA and PP-CPE+ resulted in anepectic meshes. ........... 25 
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7  A C R O N Y M S  

2-D Two dimensional 

3-D Three dimensional 

ABS Acrylonitrile butadiene styrene 

CPE Copolyester 

CPE+ Copolyester + 

CTE Coefficient of thermal expansion 

DSC Differential scanning calorimetry 

GPa gigapascal 

NPR Negative Poisson’s ratio 

NTE Negative thermal expansion 

PC Polycarbonate 

PLA Polylactic acid 

PP Polypropylene 

PVA Polyvinyl alcohol 

TPU Thermoplastic polyurethane 95A 
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8  S Y M B O L S  

H1 Length parameter 

H2 Length parameter 

min minute 

mm millimetre 

ºC degrees Celsius 

s seconds 

t Length parameter 

Tg Glass transition temperature in ºC 

θ Angle parameter 

ν Poisson’s Ratio 
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9  M O T I V A T I O N  A N D  

O B J E C T I V E S  

For several biomedical applications, bidimensional anepectic meshes capable of 

demonstrating a negative Poisson’s ratio (NPR), in conjunction with a negative thermal expansion 

(NTE), present new possibilities capable of improving upon current solutions, thanks to a relative 

dimensional insensibility to mechanical and thermal stimuli on a chosen magnitude of thermal 

expansion. There have been discussions of 2-D lattice-based metamaterials with simultaneous 

NPR and NTE behaviour. The approach used in most studies has been to develop metamaterials 

with the desired behaviours through finite element modelling, discussing the laser-based 

“printability” of 3-D metallic metamaterials. However, little research has been conducted to show 

the physical realisation of the aforementioned finite element models, and this circumstance 

provided motivation for the current work. 

This dissertation is focused on two main objectives: to fabricate the first non-virtual 

polymer-based anepectic mesh and to characterize the composite’s behaviour.   

For the fabrication of the mesh a focus on the use of polymeric constituent materials which 

do not exhibit NTE is proposed. A stiffer constituent material that simultaneously undergoes the 

smallest dilation upon heating, should enforce a deformation on the other constituent material, 

characterized by being more flexible but having a higher CTE. By changing the relation between 

the Young’s moduli and the CTE of the constituent materials, as well as the geometrical 

parameters of the mesh, it is hypothesised that it is possible to tune the behaviour of the resulting 

structure in order to trigger the simultaneous NPR plus NTE behaviour – for which the 

“anepectic” designation is being suggested throughout this document – in a chosen range of 

temperatures. Therefore, a select range of polymers is studied, in order to stablish a material 

combination which better suites the criterion needed to achieve controlled deformation.  

The structures are fabricated via additive manufacturing. Doing so may allow the for an in-

situ fabrication of several biomedical devices (stents, surgical hernia meshes (SHM), compression 

garments), presenting many advantages over current designs such as resorting to inexpensive 

constituent materials and a readily available possibility to produce patient-specific biomedical 

devices whenever needed. With this work we also intend to begin to understand how the structures 

can be tuned, by controlling the meshes’ geometry and material composition.  
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1 1  I N T R O D U C T I O N   

 

Within the context of the present work, the author proposes the designation “Anepectic”, from 

the Greek root 'Επέκταση' ('Epéktasi'), meaning expansion, for materials capable of simultaneously 

demonstrating negative values for the Poisson’s ratio (NPR) and, the thermal expansion (NTE). 

Metamaterials – materials that are artificially engineered to gain emerging properties and functionalities 

otherwise unattainable in natural materials – with such behaviour are starting to be explored by the 

scientific community [1]–[3].  

Such metamaterials have the potential to be utilized in the dental area (as fillings), as the buccal 

cavity is normally subjected to temperature variations and needs to resist chewing forces [4]. Sensors 

and electronics may be devised by utilizing such metamaterials and tailoring them to be responsive to 

both temperature changes and mechanical forces [5]. Aerospace and defence applications, such as, 

deployable structures like antennas, solar panels and sturdier structures, which are required to maintain 

a certain thermal stability in the cryogenic environment of space, could also be designed using 

metamaterials with tuneable thermal expansion and Poisson’s ratio [6]. Additionally, such materials 

would allow the production of several biomedical devices such as stents, surgical hernia meshes (SHM), 

compression garments and other applications. 

The Poisson’s ratio is defined as the ratio of transverse strain to longitudinal strain under applied 

loading. The Poisson’s ratio is confined within the range from −1 to 0.5 for linear elastic isotropic 

materials [7]. 

Materials with NPR get shorter (longer) in transverse direction when compressed (tensioned) 

along the longitudinal direction. Negative values of Poisson’s ratio are not just hypothetical, but they 

can be achieved in man-made materials, designated auxetic materials. These structures exist in many 

different scales: from the micro-structural and molecular to the macroscopic scale. Materials with this 

unusual behaviour are gaining interest in multiple areas [8]. They have potential applications in the 

medical field, in athletics, sensors, molecular sieves, energy absorbers, etc. These areas of application, 

with high success potential, may be expanded through the addition, to the auxetic material, of a tuneable 

negative thermal expansion. 

When subject to thermal change, most materials contract when cooled and expand when heated, 

because the rising temperature induces the elongation of interatomic bonds that manifests itself at the 

macro-scale as volume expansion. Nonetheless, some solids contract with raising temperatures, 

exhibiting NTE [9]–[11]. The behaviour these solids present is especially useful for applications where 

the disparity in thermal stress should be carefully managed, such as microchip devices  [5], [12], 

adhesive fillers, dental composites [4], and high precision optical devices [12], [13], which undergo 

environmental conditions with variable temperatures and it will allow for the tailoring of thermal 

expansivity on a wider range of applications and operating temperatures. 

Inspired by the molecular NTE behaviour in bulk solids, there have been attempts to design NTE 

structures with flexible micro- or macro-architectures of periodic lattice units, by integrating 

components with distinct coefficients of thermal expansion (CTE) within its structures. The structural 

interaction between these constituents’ prompt part of the structure to rotate or bend, to accommodate 

their varied thermal expansion within the internal free space available inducing overall volume 

contraction, thus leading to designed deformation. NTE structures can be tuned for a broad range of 



2 

 

temperature by controlling the CTE of the constituent materials and the geometric layout of the structure 

[14].  

 

1.1. Auxetic behaviour 

The pioneer researcher in the field of negative Poisson’s ratio materials was Lakes, who published 

in 1987 one of the earliest known publications about this topic [15]. The term auxetic, however, first 

appeared in a 1991 paper by  Evans et al. [16]. It comes from the Greek αὐξητικός (auxetikos), translated 

to “which tends to increase” and having its root in the word αὔξησις, or auxesis, signifying “an increase”.  

Auxetics can be considered metamaterials. Their performance and behaviour are a direct 

consequence of the design of their inherent and specific spatial arrangement, rather than material 

composition, therefore they are organized in patterns structured with precise shape, geometry, size and 

orientation. The deformation mechanisms of auxetics depend on their hinge-like structure, which bends 

outwards when stretched. Their spatial organization in particularly-shaped patterns allows the hinge-

like areas of the auxetic structures to bend. Due to this complex structure, auxetics cannot be adequately 

fabricated with traditional processes. Consequently, steps are being taken to produce these structures 

via additive fabrication.  

Additive fabrication, also known as additive manufacturing or 3-D printing, allows the assembly, 

usually layer upon layer of material in accordance with a 3-D virtual model, allowing the fabrication of 

more complex geometries. It is an emerging technological field as predictions indicate that this market 

will reach a high new growth in the coming years [17].  

To create lightweight micro-architectured systems with interesting mechanical properties, the 

auxetic behaviour has been studied in cellular structures, and 2-D and 3-D architectures have been 

showed to possess auxetic behaviour in micro- and macro-scale [18]–[23].  Many approaches have been 

explored to design auxetic metamaterials (e.g. two-fold Miura-Ori [24], elastic buckling [25]) and 

auxetic behaviour has been reported in crumpled aluminium thin foils [26], three-dimensional chiral 

lattices [27], entangled single wire materials [28], and slitted sheets with perforations patterned 

according to a hexagonal periodicity [29]. 

Previously mentioned cellular auxetic structures are fabricated using advanced 3-D 

printing/additive manufacturing techniques. The complexity of the aforementioned structures 

inexorably leads to the use of polymeric 3-D printers that now feature the possibility of printing with 

multiple materials, giving way to fairly accessible, more complex structures with remarkable properties. 

An auxetic dual metamaterial was manufactured with a new polymeric 3-D printer, capable of dual-

material fabrication [30]. It was concluded that the material selection and fraction of stiff regions can 

serve as important parameters in tuning auxetic response: by tailoring the relative stiffness of the 

component beams within the structure, it is possible to design an auxetic truss structure with the desired 

values of Poisson’s ratio, shear modulus, and tensile modulus. 

 

1.2. Negative thermal expansion 

Thermal expansion is the general increase in the volume of a material as its temperature is 

increased. Materials with NTE have potential applications in fields where precise control of the thermal 

expansion is indispensable, compensating for the positive thermal expansion of conventional materials 

used concurrently, e.g. to avoid thermally-induced vibrations in temperature-sensitive structures or 

equipment, such as precision instruments, satellite antennas, space telescope mirrors [5], [6], to insure 
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high performance levels from thermal sensors and to minimize thermal deformation in high accuracy 

components dimensions such as high quality optics [12], [13], fuel cells [12], electronics [5], [12], dental 

filling composites [4],  fibre optics [13],  bridges, and space vehicles [31]. For such applications, 

materials with NTE characteristics offer a possibility for tailoring thermal expansion, thus moderating 

thermomechanical stresses, mitigating thermal damage and consequently enhancing equipment 

reliability and prolonging its lifetime over a wider range of operating temperatures.  

Existing metamaterials with NTE results, using micro-architectured structures, have been mostly 

limited to structures with two-dimensional layouts [1], [32]–[38]. Only a few 3-D micro-structures have 

been developed for such metamaterials [14], [31], [33], [37], [39], [40]. The inherent difficulty is mainly 

due to the limitations in fabricating three-dimensional multi-material structures with highly complex 

geometric patterns. In addition, existing NTE structures were built with only limited material choices, 

therefore NTE could not be tuned within a pre-selected range of temperatures [41]–[43].  

Metallic structures can be fabricated from metal powders using electron beam melting (EBM), 

selective laser sintering, laser ablation methods, and lithography [14], [44]. However, the literature also 

suggests that materials based on polymer bi-layers can deliver higher thermal expansion than those 

based on metallic bi-layers [35], a consideration which provided motivation for the current work. 

 

1.3. Anepectic meshes 

There have been discussions of 2-D lattice-based metamaterials with simultaneous NPR and NTE 

behaviour [45]. However, prior studies have failed to deliver such structures physically, even though 

the researchers discuss the laser-based “printability” of 3-D metallic metamaterials. The solution for 

most studies has been to simulate metamaterials with the desired behaviours through finite element 

modelling, concluding the study with a virtual solution which, if fabricated, may achieve both NPR and 

NTE while maintaining a high stiffness and a low relative density (making it lightweight). 

In most cases, meshes made from two different types of materials are proposed. The requirement 

for these materials is that they must be of similar stiffness but widely differing thermal expansion [46]. 

In this manner, combining an inherently auxetic structure with a dual-material NTE mesh design, it has 

been suggested that an anepectic metamaterial may be achievable. 

However, little research has been conducted to achieve the physical embodiment of such 

solutions, and this circumstance provided further motivation for the current work, through the 

opportunity to fabricate the first non-virtual anepectic meshes. Polymer constituent materials, with 

positive intrinsic CTE, were used for the fabrication of the meshes. In accordance with criteria based on 

those proposed for metallic materials [45], in the case of similar (yet different) stiffness but widely 

differing thermal expansion, a stiffer constituent material that simultaneously undergoes the smallest 

dilation upon heating, should enforce a deformation on the other constituent material, characterized by 

being more flexible but having a higher CTE. By changing the relation between the Young’s modulus 

and the CTE of the constituent materials, as well as the geometrical parameters of the mesh, it is 

hypothesised that it is possible to tune the behaviour of the resulting structure in order to trigger the 

anepectic behaviour in a chosen range of temperatures. 

The meshes studied are based in a star-shaped re-entrant structure; such re-entrant structures are 

characterised by being inherently auxetic [22], [47], [48]. Combining an inherently auxetic structure 

with a dual-material NTE mesh design it is possible to create an anepectic metamaterial. 
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Figure 1-1 shows the main design used as a base for all meshes studied in the current work. The 

blue beams represent the material with the lower CTE and higher Young’s modulus, while the red beams 

correspond to the material with higher CTE and therefore, lower Young’s modulus, as for the above 

stated criteria based on [45]. Each mesh structure is characterized by being star-shaped and of re-entrant 

design, with the same repeating unit cell throughout the entire mesh. The unit cells are defined by four 

geometrical parameters that retain the same meaning in every mesh:  three length parameters (H1 and 

H2, and t, the latter simultaneously representing the beams’ thickness and width) and one angle 

parameter (θ). The re-entrant geometry of the meshes, responsible for the auxetic behaviour, was left 

undisturbed. 

 

Three main bi-dimensional meshes were designed, printed and tested. Their fabrication did not 

involve pins, adhesives, welding or pressure-fit joins. No alterations were done to the structures after 

their fabrication and they were tested as recovered from the printer. A commercially available 3-D 

printer has been used to print polymeric filaments, also available commercially. Combinations of four 

constituent materials were considered, copolyester (CPE+), Nylon, polypropylene (PP) and polyvinyl 

alcohol (PVA). The meshes were evaluated to determine their CTE and Poisson’s ratio.  

To the author’s knowledge, the current work presents for the first time the production of a 

polymer-based composite mesh exhibiting anepectic behaviour, created from constituents with positive 

thermal expansion. These meshes may be applied to the Biomaterials field and shall be tuned to function 

at the working temperature range of the human body. From the current thesis resulted an article which 

has been submitted to “Smart Materials and Structures”. 

 

t 

Figure 1-1 Unit cell that is repeated for the 

entirety of the mesh. Variation of the four 

geometrical parameters offers the possibility 

to modify the geometry of the meshes.  



5 

 

2 2  M A T E R I A L S  A N D  

M E T H O D S   

In this work, three main bi-dimensional polymeric meshes were designed, printed and tested. 

Comparative studies about each mesh were performed, regarding their CTE and Poisson’s ratio to 

understand the relation between each variable. The following sections describe in detail the 

characteristics of the meshes designed and examined, together with the methods used to test the 

filaments and the meshes.  

2.1. Mesh Design 

Figure 2-1 shows the five periodic mesh structures designed and studied. The meshes were 

modelled utilizing the 3-D modelling software 123D Design and were fabricated with a commercial 

Ultimaker 3™ fused filament 3-D printing-system which utilized the temperature profiles provided 

by Ultimaker. The cross-section of the beams is 1 mm  1mm thick for every main mesh design 

(mesh #1, mesh #2 and mesh #3) and of 0.5 mm  0.5 mm for the secondary meshes (mesh #2 50% 

and mesh #3 50%). Each mesh is symmetrical, and their geometrical parameters vary slightly form 

one mesh to the other, according to Table 2–1. The blue beams represent the material with the lower 

CTE and higher Young’s modulus, while the red beams correspond to the material with higher CTE 

and lower Young’s modulus.  

 

Table 2–1 Parameters used in the design of the meshes.  

Parameters 
H1 

(mm) 

H2 

(mm) 

θ 

(º) 

t 

(mm) 

Mesh #1 10 10 15 1.0 

Mesh #2 10 10 25 1.0 

Mesh #2 50 % 5.0 5.0 25 0.5 

Mesh #3 10 10 35 1.0 

Mesh #3 50% 5.0 5.0 35 0.5 

 

2.2.  Printing equipment and filament characterization 

The fabrication of the specimens is performed with a commercial Ultimaker 3™ fused 

filament 3-D printing-system, utilizing temperature profiles provided by Ultimaker. The materials 

used are commercially available Ultimaker™ filaments. Dogbone specimens for the mechanical 

characterization (elastic modulus) of 3-D printed samples of such materials were designed. All the 

specimens were printed horizontally, on the X-Y axis, directly on the heating plate without any 

supports. The filling density of the specimens was set to 100%, which means that all the specimens 

are solid structures.  

(a) Mesh #1 (b) Mesh #2 (c) Mesh #2 50% (d) Mesh #3 (e) Mesh #3 50% 

     
Figure 2-1 Five metamaterial meshes designed: (a) mesh #1, (b) mesh #2, (c) mesh obtained by scaling mesh 

#2 down by 50%, (d) mesh #3, (e) mesh obtained by scaling mesh #3 down by 50%. A common scale was used 

for all the above representations.  
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Tensile strength tests of different samples were carried out, the specimens were loaded to 

fracture (0.5 mm/min) by using a universal testing machine (AG-50kNG, Shimadzu, Japan).  

The glass transition temperatures were obtained by differential scanning calorimetry (DSC 

204 F1 Phoenix, Netzsch, Germany) extending from the temperature range of -50 to 250ºC at a rate 

of 3 K/min, with a protective atmosphere using nitrogen gas and cooled with liquid nitrogen.  

The CTE of the materials was determined by thermo-mechanical analysis (TMA PT 1600, 

Linseis, Germany), the initial length of the specimens was of 10 mm and the analysis temperature 

range was from −10 ºC to 65 ºC at a rate of 1 K/min, with no protective atmosphere.  

All of the polymers were tested on their CTE, and a portion, that showed promising results, 

were tested on their Young’s Modulus, and by differential scanning calorimetry.  

2.3. Evaluation of thermo-mechanical characteristics of meshes 

The fabrication of the meshes was performed with a commercial Ultimaker 3™ fused filament 

3-D printing-system, with the ability to simultaneously process two different materials. Subsequent 

mesh testing was performed without the need for further finishing techniques, such as cleaning or 

polishing. For testing and analysis purposes small white marker dots were made on strategic locations 

on the mesh with white paint followed by a dot of black permanent marker in the centre of each white 

dot, as a way of contrast so as to appear clearer in the photographs. 

The auxetic capabilities of the meshes were evaluated at room temperature, through a tensile 

effort applied to induce a constant elongation rate of 1 mm/s up to 10 mm overall elongation. 

Supplementary information concerning these tests is presented in section a. 1 of the Appendix,  the 

resulting values being determined as explained in section a. 3 of the Appendix 

To determine the CTE of the meshes, the set-up shown in Figure 2-2 was used. For the thermal 

experiment the mesh was contained between two parallel glass plates, to limit out-of-plane 

deformation, and submerged in silicone oil (Baysilone M350). It was then allowed to stabilise for 10 

minutes, after which the silicone oil was heated, with the help of a hot plate, at a rate of 3 ºC/min, 

until a temperature of 85 ºC was reached. Some meshes were subject to consecutive heating and 

cooling cycles. In those cases, the CTE values were determined at the high temperature at the end of 

each cycle; the resulting overall permanent deformation, however, could only be measured at the end 

of the last cycle. CTE testing is explained in full detail in section a. 2 of the Appendix, the resulting 

values being determined as explained in section a. 3 of the Appendix. 

In the next chapter, the relation between each mesh parameter and the expansion behaviour of 

the mesh when undergoing mechanical or thermal inputs will be discussed.

Silicone oil 

Gridded top glass 

Metallic spacer 

Sample 

Bottom glass plate 

Vat/container 

Hot plate 

Thermocouple 

Figure 2-2 Schematic representation and description of 

the testing structure performed. 
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3 3 .  R E S U L T S  A N D  

D I S C U S S I O N   

As discussed in the introduction, the constituent materials of the meshes must follow a 

specific criterion, the constituent materials must be of similar (albeit different) stiffness but widely 

differing thermal expansion. In order to attain anepectic behaviour the constituents must be studied 

in order to choose polymers which better suit the criteria.  

The meshes were characterized on their CTE, and different mesh designs and mesh materials 

were used. By changing the materials (therefore changing the relation between the Young’s modulus 

and the CTE of the mesh constituents) as well as the geometrical parameters of the mesh, it is 

hypothesised that it is possible to tune the behaviour of the resulting structure in order to trigger the 

anepectic behaviour in a chosen range of temperatures. 

 

3.1. Filament characterization 

The materials used are commercially available Ultimaker™ polymer filaments. All were tested 

by thermos-mechanical analysis (TMA) for their CTE (see Figure a - 1 of the Appendix), some being 

also tested to determine their Young’s Modulus (see Figure a - 2 of the Appendix). Additionally, the 

materials were subjected to differential scanning calorimetry (see Figure a - 3 to Figure a - 6 of the 

Appendix) to establish their thermal stability. The complete set of results are listed in Table a - 1 of 

the Appendix. The materials which were ultimately chosen for the mesh fabrication were CPE+ 

(copolyester; black), Nylon (polyamide (grade based on PA6/PA66); black), PP (polypropylene; 

undyed) and PVA (polyvinyl alcohol compound; undyed). The two combinations selected for the 

current study were Nylon-PVA, and PP-CPE+, since their combination better suited the relation 

needed to achieve anepectic behaviour, of similar (albeit different) stiffness with widely differing 

thermal expansion, as shown in Figure a - 7 of the Appendix. The individual constituents of the 

meshes all have positive coefficients of thermal expansion. The values for the chosen materials are 

listed in Table 3–1.  

Table 3–1 Material properties for CPE+, Nylon, PP and PVA.  

Material 
Young’s modulus 

(GPa) 

CTE 

( 10−6 ºC−1) 

Tg 

(ºC) 

CPE+ 1.031 71 105 

Nylon 0.889 166 35 

PP 0.152 248 -25 

PVA 2.328 21 35 

 

In possession of the data from Table 3–1, a set of sample meshes was selected for the study, 

as per Table 3–2, which summarizes the meshes studied. The material selection was performed 

within the constraints set by the available set of printable filaments. Mesh #2 50% was studied in 

two different material combinations on account of the larger number of unit cells simultaneously 

available for observation during characterization of the mesh behaviour. 

As mentioned in the introduction, the constituent materials must be of similar stiffness but 

widely differing thermal expansion, which occurs on the combination Nylon-PVA and PP-CPE+. 

The Nylon-PVA pair has been chosen to comply with the previously mentioned criteria (stiffer and 

less thermally expansive blue struts vs. more flexible and more thermally expansive red struts), with 
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the PP-CPE+ pair standing for a similar situation, yet with a more dissimilar stiffness and a closer 

thermal expansion between the two materials (when compared to the Nylon-PVA relation, Figure a 

- 7 of the Appendix). 

Table 3–2 Summary of meshes considered for the present work. , not tested. ✓, tested. 

 

3.2. Auxetic behaviour 

To confirm that the auxetic behaviour is indeed inherent to the mesh geometry, depending 

merely on the structure’s re-entrant architecture and not on the material or the materials combinations 

which constitute it, elongation tests were performed for some cases, the results being indicated in 

Table 3–3. During the tests, the selected meshes were imparted an overall elongation of 10 mm at 

room temperature, with a constant elongation rate of 1 mm/s.  

 

Table 3–3 Poisson’s ratios for each mesh. 

Mesh identification 
Poisson’s ratio 

ν 

Mesh #2 Nylon −0.37 

Mesh #2 Nylon-PVA −0.06 

 

The tensile test results confirmed the auxetic nature of all meshes, regardless of being single- 

or dual-material; this was expected, since the auxetic behaviour rests essentially in the structure’s re-

entrant geometry. The comparison between the values exhibited by the two #2 meshes seem 

attributable to the introduction, in the dual-material case, of a larger proportion of a more rigid 

material (PVA), which limits the extent of free deformation occurring along the transverse direction 

while the mesh is being forcefully deformed along the longitudinal direction. 

 

 

 

 

 

 

 

 

 Material 
Mesh type 

Mesh #1 Mesh #2 Mesh #2 50% Mesh #3 Mesh #3 50% 

Dual-

material 

meshes 

Nylon-PVA ✓ ✓ ✓ ✓ ✓ 
PP-CPE+   ✓   

Single-

material 

meshes 

Nylon ✓ ✓ ✓ ✓ ✓ 
PP   ✓   
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3.3. Coefficient of thermal expansion  

Figure 3-1 shows a portion of the meshes subjected to CTE testing. The full spectrum of meshes 

analysed include mesh #1, #2, #2 50%, #3 and #3 50%, in two dual-material combinations (Nylon-

PVA and PP-CPE+) and in single-material meshes (Nylon and PP), in accordance with Table 3–2. 

(a) Mesh #1 

Nylon-PVA 

(b) Mesh #2 

Nylon-PVA 

(c) Mesh #2 

Nylon 

   
(d) Mesh #2 50% 

Nylon-PVA 

(e) Mesh #2 50% 

Nylon 

(f) Mesh #2 50% 

PP-CPE+ 

   
(g) Mesh #3 

Nylon 

(h) Mesh #3 50% 

Nylon-PVA 

(i) Mesh #3 50% 

Nylon 

   
Figure 3-1 Examples of the meshes tested in the present work. The mesh #2 50% in PP is omitted from this 

representation due to the transparent nature of the material, thus leading to a lack of contrast of the 

corresponding photographic record. 
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3.3.1. Effect of the out-of-plane motion 

To determine the influence of the out-of-plane motion, the meshes displayed in Figure 3-1 (c, 

d and g) were tested. Figure 3-2 presents the measured CTE value for all the meshes considered, at 

85 ºC. The results represented by plain-coloured columns in the figure correspond to tests performed 

without containment of the meshes. In such cases, the meshes were submerged in the oil and the 

upper glass plate (see detailed schematic of the experiment in Figure 2-2 and the fully detailed 

explanation in a. 2 of the Appendix) was omitted, the mesh therefore being allowed to deform in the 

Z direction. These results are compared to those concerning equal meshes tested according to the 

original constrained experiment configuration, with the meshes contained between two glass plates; 

the results from the constrained experiments are represented by the patterned columns in Figure 3-2 

(b, d, f).  

The results in Figure 3-2 (e and f) provide the first evidence of effective anepectic behaviour.  

According to the data in Figure 3-2 (a) and (b), when testing mesh #2 made from a single-

material, the CTE value is positive and comparable for both experiments (186  10−6 ºC−1 and 192  

10−6 ºC−1). The observed difference corresponding to a 3% change for this case. 

Similar results were achieved for the dual-material mesh #2 50% (Figure 3-2 (e) and (f)) and 

the single-material mesh #3 (Figure 3-2 (c) and (d)): comparing the results obtained in the 

unconstrained and constrained tests, the measured CTE maintained its sign, either negative or 

positive, respectively. The observed differences correspond to a 29% change for mesh #2 50% in 

Nylon-PVA, and 37% change for mesh #3 in Nylon. 

 

Figure 3-2 CTE of mesh #2, #2 50% and #3 at 85 ºC, in the material combinations of 

Nylon-PVA and in the single-material mesh of Nylon. The patterned columns represent 

the meshes which were tested with contro l of the out-of-plane motion, this was achieved 

by placing the meshes between two stationary glass plates upon testing. The un -patterned 

columns represent the meshes tested without control of the mesh deformation in the Z 

direction, tested without the upper glass plate. 



11 

 

3.3.2. Effect of material combination  

To elucidate how the different material combinations reacted to a temperature change, the 

meshes displayed in Figure 3-1 were tested. As previously mentioned, the different material 

combinations selected for this studied were chosen with reference to the criteria predicted by L. Ai 

et al.[45], as most conducive to an effective NTE behaviour, combining a stiffer and less thermally 

expansive material with another of more flexible and more thermally expansive behaviour. 

Figure 3-3 presents the measured CTE value for all the meshes considered, measured after 

heating from room temperature to 85 ºC. The results in Figure 3-3 (b), (d), (f), (j) and (l) provide 

evidence of effective anepectic behaviour. This result was never attained in any previous research, 

being the first non-virtual example of a polymer-based composite material exhibiting this type 

behaviour. 

In order to ascertain whether the anepectic behaviour was indeed due to the nature of the dual-

material combinations or if it simply resulted from geometric effects of the structures, there was a 

need to test the single-material version of the studied meshes, Figure 3-3 (a), (c), (e), (g), (i) and (k),  

and compare its behaviour with the corresponding dual-material.  

According to the data in Figure 3-3 (a), when testing mesh #1 with a single-material CTE is 

positive (97  10−6 ºC−1), whereas when testing a dual-material mesh (in Nylon-PVA) the CTE 

becomes negative (−920  10−6 ºC−1), which confirms the previously reported observations. 

Similarly, in Figure 3-3 (c), when testing mesh #2 with a single-material CTE is positive (192  10−6 

ºC−1), whereas when testing a dual-material mesh (in Nylon-PVA) the CTE becomes negative (−1568 

 10−6 ºC−1), which confirms the previously reported observations. Similar results occurred with 

mesh #2 50%: for Nylon the measured CTE (Figure 3-3 (e)) is positive (341  10−6 ºC−1) but becomes 

negative for the equivalent dual-material (Nylon-PVA) mesh (−279  10−6 ºC−1), showing that the 

anepectic behaviour is confined to the composite meshes. The results in Figure 3-3 (i), (j), (k) and (l) 

illustrate a similar effect, for mesh #3 and mesh #3 50%. When testing the single-material mesh #3 

Figure 3-3 CTE of mesh #2, #2 50%, #3 and #3 50% at 85 ºC, in the material 

combinations of Nylon-PVA and PP-CPE+ and in the single-material mesh of 

Nylon and PP.  
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(in Nylon) the CTE is positive for both the full-size #3 mesh (190  10−6 ºC−1) and the halved, #3 

50% mesh in Nylon (226  10−6 ºC−1) and negative for the equivalent dual-material (Nylon-PVA) 

mesh (−130  10−6 ºC−1 and −73  10−6 ºC−1, respectively). Consequently, when studying the single-

material versions of the aforementioned meshes the CTE values were all positive, and the equivalent 

dual-material meshes all reached negative CTE values, providing evidence of the success in 

fabricating anepectic dual-material meshes, from constituent materials with positive coefficients of 

thermal expansion. 

By way of contrast, Figure 3-3 (g) shows, that testing mesh #2 50% with a single-material (in 

PP) the CTE was positive, at 498  10−6 ºC−1 but when testing the dual-material mesh (in PP-CPE+) 

the CTE remained positive, albeit with a smaller value of 62  10−6 ºC−1 (Figure 3-3 (h)), showing 

that the combination of PP-CPE+ did not succeed in having an anepectic behaviour, and as such 

wasn’t a combination worth pursuing for further testing.  

This shows that the anepectic behaviour is only achieved through the adequate material 

combination in the designed mesh. The relation between the CTE and the Young’s modulus of the 

constituent materials in the composite mesh must be precise in order to result in the effective 

deformation of the more flexible constituent, by the stiffer constituent, when both dilate during 

heating, resulting in the overall mesh contraction by way of its particular geometry. For the case 

under analysis, while the stiffness ratios are similar (ENylon / EPVA = 0.38 vs. EPP / ECPE+ = 0.15) the 

ratio of the CTE values is much larger (8.1) for the Nylon-PVA combination than for PP-CPE+ (for 

which it presents a value of 3.5). Thus, the requirement to anepectic behaviour seems to be that the 

combined materials exhibit similar (but different) stiffness but widely differing thermal expansion. 

Provided this requirement is respected, a choice of materials conducive to slight changes of the exact 

values of the stiffness and CTE ratios should allow fine tuning of the resulting anepectic behaviour. 

 

3.3.3. Effect of mesh architecture  

After ascertaining the importance of the adequate material combination to the emergence of 

the anepectic behaviour, the effectiveness of each geometry needed to be elucidated. This 

comparison is performed for meshes #1, # 2 and #3 in Nylon-PVA, the resulting CTE values being 

presented in Figure 3-4. A portion of meshes tested are displayed in Figure 3-1 (a) and (b). 

Figure 3-4 CTE of mesh #1, #2 and #3 at 85 ºC, in the material 

combinations of Nylon-PVA.  
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As can be observed, all chosen dual-material meshes attained a negative coefficient of thermal 

expansion, mesh #2 being the extreme case, showing an extreme value of −1568  10−6 ºC−1 when 

the temperature varied between room temperature and 85 ºC, (Figure 3-4 (b)).  In Figure 3-4 (a) mesh 

#1, in the same constituent materials, showed a CTE of −920  10-6 ºC-1. The same material 

combination also displayed NTE with configuration in mesh #3, Figure 3-4 (c), with CTE showing 

a value of −130  10−6 ºC−1. Overall, the results in Figure 3-4 provide evidence of tuneable anepectic 

behaviour through mesh design. 

Furthermore, the results in Figure 3-4 show that, for the same material combination, a 

maximum value (in magnitude) of CTE is reached with mesh #2.  The CTE value first decreases 

significantly with the increase of the angle θ, which changes from 15º in mesh #1 to 25º again 

increases mesh #2, (showed in Table 2–1), reaching an extreme value (in mesh #2), after which the 

CTE increases as θ progresses to 35º in mesh #3. This implies that an angle of 25º (or around this 

value) is more beneficial in attaining a more negative CTE, in agreement with predictions by L. Ai 

et al. [45]. Once more, the observed behaviour reveals the possibility of tuning the magnitude of the 

anepectic behaviour. 

 

3.3.4. Effect of mesh scale  

In order to identify how the anepectic effect is influenced by the mesh size, meshes #2 and #3, 

either single-material (Nylon) and dual-material (Nylon-PVA), were compared, in Figure 3-5, for 

both the full- and half-scale sizes. 

Sensitivity differences between the two designs are already evident from the single-material 

meshes: while the CTE for #2 Nylon mesh changes from a full-size (Figure 3-5 (a)) 192  10−6 ºC−1 

to a half-size (Figure 3-5 (c)) 341  10−6 ºC−1, which corresponds to a 78% change, for mesh #3 the 

Figure 3-5 CTE of mesh #2, #2 50%, 33 and #3 50% at 85 ºC, in the material 

combinations of Nylon-PVA and in the single-material mesh of Nylon.  
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values are respectively 190  10−6 ºC−1 (full-size, Figure 3-5 (e)) and 226  10−6 ºC−1 (half-size, 

Figure 3-5 (g)), resulting in a 19% variation. 

Such differences are exacerbated for the dual-meshes, where a size reduction of 50% led to 

negative CTE values for all dual-material meshes, although no generalized improvement could be 

observed: compared to the full size meshes, the size reduction led to a less markedly negative CTE. 

Again, this offers a different choice to fine-tune the anepectic behaviour. Peering over the CTE values 

measured for the different cases of Nylon-PVA meshes, one is also led to conclude that mesh #2, 

which at full-size scale (Figure 3-5 (b)) exhibits the highest magnitude negative CTE, at −1568  

10−6 ºC−1, is the most sensitive to scale of the two geometries under comparison, CTE changing to 

−279  10−6 ºC−1 when the mesh is halved (Figure 3-5 (d)), corresponding to a 82% change. By 

comparison, the relative change in CTE for mesh #3 is smaller, from a full-size mesh (Figure 3-5 (f)) 

−130  10−6 ºC−1 (result attained without out-of-plane control) to a half-sized mesh (Figure 3-5 (h)) 

−73  10−6 ºC−1, a 44% change. 

The above observations show that a larger value of length parameter (for values around 10 

mm for H1 and H2 and 1 mm for t, corresponding to the full size meshes) is more beneficial for 

attaining a more negative CTE. The results in Figure 3-5, on the effect of scaling on a unit cell, 

provide evidence in achieving and tuning anepectic behaviour through mesh design. 

 

3.3.5. Effect of plastic flow during heating 

Mechanical properties of polymeric materials are highly sensitive to temperature; particularly 

above the glass transition temperature (Tg) all polymers will show plastic deformation. Therefore, 

the influence of this type of deformation on the response of the anepectic meshes must be clarified. 

For that purpose, two different material combinations were tested, using half-size mesh #2. Whilst 

the Nylon-PVA pair was chosen due to having close Tg values, PP-CPE+ was selected because the 

two materials exhibit widely differing Tg values, as shown in Table 3–1 above. For the sake of 

Figure 3-6  CTE of mesh #2 50% from the variation of 27 ºC until 120 ºC, in 

the single-material mesh of PP (a) and in the material combination of PP-CPE+ 

(b) and Nylon-PVA (c). 
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comparison, the single-material case, based on PP, was also tested. The CTE values for these meshes 

are presented in Figure 3-6.  

The observation of these results firstly confirms that, irrespective of being below or above Tg, 

single-material meshes never exhibit anepectic behaviour. On the other hand, for the dual-material 

cases, anepectic behaviour only manifests itself above the Tg level of both constituents. 

After completing the tests above, the meshes were examined and found to have undergone 

plastic deformation, due to the polymer flow occurring above Tg. This prompted the execution of 

sequential heating and cooling tests, which were performed on mesh #2 50% in Nylon-PVA, to 

elucidate the effect on the anepectic behaviour of the plastic deformation of the elementary struts; 

the relevant results are shown in Figure 3-7. 

 

The trend exhibited by the results shows that the anepectic effect becomes progressively less 

pronounced, probably due to the accumulation of irreversible deformation. This effect is most 

noticeable already after the first heating and cooling sequence, so that when the mesh undergoes 

subsequent heating the anepectic behaviour becomes negligible. 

Ultimately the anepectic effect and its possible tuneability stems from an adequate design of 

the mesh, accurate selection and combination of material and the synergy of the plastic flow of the 

constituents occurring above Tg, which will bring about the desired designed deformation. 

Figure 3-7 Variation of the measured value of the 

coefficient of thermal expansion for the Nylon-PVA #2 

50% mesh, as the plastic deformation increases during 

consecutive heating and cooling cycles; the initial 

dimensions of the mesh (before heating) were taken as 

reference for the calculation of the average plastic 

deformation. 
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4  

4  C O N C L U S I O N S  A N D  

F U T U R E  P E R S P E C T I V E S  

A series of polymeric metamaterials with tuneable mechanical properties were designed, 

using star-shaped re-entrant bi-dimensional structures, utilizing constituents with positive thermal 

expansion, and were subsequently fabricated with a 3-D printing system, being tested so as to 

simultaneously display negative values of Poisson ratio and CTE, configuring an anepectic 

behaviour. Thus, to the author’s knowledge, the present work provides the first non-virtual 

example of a polymer-based composite material exhibiting anepectic behaviour. As such, an 

article on the current thesis has been submitted to “Smart Materials and Structures”. 

Design variables for each mesh consisted of constituent materials properties and 

combinations, three different length parameters and one angular parameter. The effects of these 

geometrical parameters and material combinations on the CTE and Poisson’s ratio were studied 

through a series of room temperature active deformation and controlled heating passive 

deformation tests. 

The anepectic behaviour could only be observed when the combined materials presented 

similar, yet different, stiffness values, together with widely different intrinsic CTE, the stiffer and 

less thermally expansive material forming a continuous re-entrant network, with connecting struts 

between contiguous stars made from the second material. Provided this requirement is respected, 

a choice of materials conducive to slight changes of the exact values of the stiffness and CTE 

ratios should allow fine tuning of the resulting anepectic behaviour. Furthermore, the anepectic 

behaviour was only observed above the glass transition temperature of both constituent materials. 

Due to the irreversible nature of the deformation occurring at such temperature ranges, when 

subjected to consecutive heating and cooling cycles, the anepectic effect displayed by the meshes 

became progressively less pronounced. 

Geometry-wise, the observed CTE showed a marked dependence on the angular parameter, 

attaining a more negative value for an intermediate angle around 25º. Concerning the length 

parameters, the CTE became more negative for larger sized meshes. Future studies must optimize 

the mesh design. Regarding the length parameters, different values of H1 and H2 must be studied 

(as this thesis focused on equal length values of H1 and H2) a value of H2 smaller by approximately 

15 mm than H1 should be studied [45]. Several θ angular values, of around 25º, must also be 

studied. Considering that when H2 is larger than H1 the main influence on the exhibited CTE is 

due to the angle θ, whereas if H2 is smaller than H1 then it is H2 that most influences the mesh’s 

CTE [45], the H1/H2 ratio deserves further investigation. Finally, changing parameter values may 

not lead to a linear change of CTE, as the ratios and relations between each parameter must be 

considered and a full parametric study on the relation that each parameter maintains with every 

other parameter should be developed. Considering that when H2 is larger than H1 the main 

influence on the exhibited CTE is due to the angle θ, whereas if H2 is smaller than H1 then it is 

H2 that most influences the mesh’s CTE [45], the H1/H2 ratio deserves further investigation. 

Finally, changing parameter values may not lead to a linear change of CTE, as the ratios and 

relations between each parameter must be considered and a full parametric study on the relation 

that each parameter maintains with every other parameter should be developed. 

Ultimately the anepectic effect and the possibility for fine tuning stems from an adequate 

design of the mesh, accurate selection and combination of materials and the synergy of the plastic 

flow of the constituents occurring above Tg, which will bring about the desired designed 

deformation. To understand if the anepectic effect could be achieved without plastic flow of the 
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constituent materials, a future work should be developed, studying and utilizing different 

combinations of constituent materials with different Tg temperatures; if feasible, and maintaining 

biomedical applications in mind, such studies should focus on polymers which possess a glass 

transition temperature higher than 40 ºC. Therefore, future meshes should manifest their anepectic 

behaviour below the Tg of the constituents (proving that the effect does not rely upon the plastic 

flow of the constituents) and more, work in the temperature range of the human body (allowing 

them to be applied as devices in the Biomaterial field). 

 Regarding currently printable, filament-ready polymers, materials such as polyamides, 

ionomers [49] (thermoplastic) and cellulose polymers [50], fulfil the request of 40 ºC for Tg and 

current commercial availability (see Figure 4-1). Apart from adequate Tg, the selectable materials 

must also interact with each other in a synchronized combination that respects the base criteria (a 

combination of polymers with similar (albeit different) stiffness and widely differing thermal 

expansion). By way of illustration, several types of polyamides are currently available 

commercially, manufacturers offer slightly different variations of filament with slightly different 

material composition, as each chooses to stabilize and extrude their filament differently; therefore, 

not all 3-D printing polyamides possess the same mechanical and thermal properties.  

Design and optimization of anepectic structures, with appropriately selected geometrical 

parameters and material combination, deserve further investigation. The models, materials and 

printing technology are expected to evolve further, and a great deal of work and research needs 

to be done by the scientific community on this matter. This work should open a path into further 

studies concerning polymer-based anepectic structures, mainly for the biomedical field, but the 

creation of metallic anepectic structures, e.g. for the aerospace and defence industry, also becomes 

a foreseeable prospect.  

Figure 4-1 CTE-Young’s Modulus map of known materials. Represented in the solid green 

colours are the polymers which, according to the program (CES Edupack 2015), can currently 

be used to fabricate products via addictive manufacturing methods:  

By deposition techniques: ionomer, polyethylene terephthalate (PET), polyvinylchloride 

(tpPVC), PLA, polyetheretherketone (PEEK), Nylons, PC, cellulose polymers (CA), 

polyurethane (tpPUR) and ABS.  

By laser-based techniques: polytetrafluoroenthylene (PTFE), polystyrene (PS), 

polymethyl methacrylate (PMMA) and epoxies.  

Not all 3-D printable polymers are represented in the graph, due to the constant 

developments in materials engineering.  
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6  A P P E N D I X  

a. 1 - Mechanical mesh test 

To insure homogenous gripping at both ends of the mesh, a 10 mm wide support was 

printed to allow mounting the sample to a metallic support for mechanical testing. The metallic 

support at both ends was friction fastened to the tension grips of a Hounsfield H5K-W; during 

these tests the applied force was not recorded. Each sample was tested in a horizontal setup, to 

facilitate the measuring process. Each mesh was monitored using a digital SLR camera (12.2 M 

Pixel Canon 1100 D with an EF-S 18-55mm lens) and photographs were taken at a rate of 1 

photograph/mm. To limit parallax errors, the camera was mounted at a 90º angle, directly above 

the testing assembly, in order to capture the results. The photographs were analysed with ImageJ 

and the distances (measured in pixels), between the white dots on the meshes, led to the 

determination of the Poisson ratio. 

 

a. 2 - CTE mesh test 

CTE testing was conducted in a vat filled with silicone oil (Baysilone M350), in which a 

plate of 3 mm thick glass lined the bottom. The meshes were first submerged in room temperature 

silicone oil, after which a gridded (3 mm thick) glass plate was placed on top of the meshes. The 

gridded glass plate possessed 3 mm metallic spacers in the corners, to contain the out-of-plane 

motion of the mesh being tested.  

The mesh was allowed to stabilise for 10 minutes, after which the silicone oil was heated, 

with the help of a hot plate, at a rate of 3 ºC/min, until a temperature of 85 ºC was reached (or in 

some selected cases, 120 ºC). Some meshes were subject to consecutive heating and cooling 

cycles. In those cases, the CTE values were determined at the high temperature at the end of each 

cycle. 

Each mesh was monitored using a digital SLR camera (12.2 M Pixel Canon 1100 D with 

an EF-S 18-55mm lens) and photographs were taken at a rate of 1 photograph/ºC. To limit parallax 

errors, the camera was mounted at a 90º angle, directly above the thermal testing assembly. The 

temperature of the silicone immersion was monitored through an external thermocouple and data 

logger (Pico TC-08 with a Type K thermocouple). The photographs were subsequently analysed 

with ImageJ and the distances (measured in pixels), between the aforementioned white dots on 

the meshes, led to the determination of the CTE, for the studied temperature range.  
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Table a - 1 The materials’ properties used in the current work. These polymers are 

commercially available Ultimaker™ filaments and all the polymers were tested regarding 

their CTE, their Young’s Modulus and glass transition temperature. This was done in order 

to determine the combination which best fitted the need for the meshes to become anepectic.  

To note is the disperse values regarding the CTE of PVA, which reflect the unstable reaction 

of the PVA polymer when subject to the 3-D printing process. 

 

 
Young’s Modulus 

(MPa) 

CTE  

( 10-6 ºC-1) 

Tg 

(ºC) 

CPE+ 

1049 

1043 

1002 

79.3 

62.1 
105 

NYLON 

947 

753 

966 

157.2 

175.5 

166.7 

35 

PP 

192 

171 

137 

129 

133 

247.4 

256.4 

241 

-25 

PVA 

2662 

2533 

1495 

2622 

20.7 

4.73 

36 

35 
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Figure a - 1 Coefficient of thermal expansion of the polymers studied in the present. The 

materials used are commercially available Ultimaker™ filaments and all of the polymers 

were tested on their CTE. The CTE of the materials was determined by thermo-mechanical 

analysis (TMA PT 1600, Linseis, Germany); the initial length of the specimens was of 10 

mm and the analysis temperature range was from −10 ºC to 65 ºC, with no protective 

atmosphere. To note, the individual constituents of the meshes all have positive coefficients  

of thermal expansion. 
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Figure a - 2 Tensile curves for several polymeric materials used in the present work 

as constituents of the printed meshes.  The materials used were commercially available 

Ultimaker™ filaments. The specimens were loaded to fracture (0.5 mm/min) by using a 

universal testing machine (AG-50kNG, Shimadzu, Japan).  
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Figure a - 4 DSC curves of a sample of virgin Nylon polymer, studied in 

the present work. The filaments used are commercially available Ultimaker™ 

filaments. 

Figure a - 3 DSC curves of a sample of virgin CPE+ polymer, studied in 

the present work. The filaments used are commercially available Ultimaker™ 

filaments. 
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Figure a - 5 DSC curves of a sample of virgin PP polymer, studied in the 

present work. The filaments used are commercially available Ultimaker™ 

filaments.  

Figure a - 6 DSC curves of a sample of virgin PVA polymer, studied in 

the present work. The filaments used are commercially available Ultimaker™ 

filaments.  
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a.3 Calculation of the experimental value of coefficient  of thermal expansion and Poisson ratio  

The values of the Poisson ratio were calculated in accordance with the following equation: 

ν𝓍𝓎 = −
ln (1 +

∆𝓎
𝓎0

)

ln (1 +
∆𝓍
𝓍0
)

 

where ∆𝓎  means elongation in the transverse direction, 𝓎0means original length, ∆𝓍  means 

elongation in the axial direction, 𝓍0means original length.  Similarly, the values of CTE for the 

different meshes were determined from the length parameters measured by image analysis 

methods in accordance with the following equation: 

α =
∆L

l0
×

1

∆T
 

where ∆L  means the change in length, l0  means original length and ∆T  means change in 

temperature. 

Figure a - 7 Correlation between the relation of the polymers’ coefficient of thermal expansion and 

the relation of the polymers’ Young’s modulus. Highlighted in green are the material combinations 

chosen for the present work. These combinations were chosen as the requirement for achieving 

anepectic behaviour was that these materials must be of similar (albeit different) stiffness but widely 

differing thermal expansion, i. e., must be close but not equal to the X=1 axis and must  be as far away 

from the Y=1 axis as possible. Finding a combination which followed this relation proved fruitful as 

the resulting combinations Nylon-PVA and PP-CPE+ resulted in anepectic meshes.  

(Equation 1) 

(Equation 2) 


