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Abstract 

 

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Within CVDs, 

myocardial infarction (MI) is associated with a massive and irreversible loss of cardiomyocytes 

(CM). An in-depth comprehension of key cellular mechanisms and molecules involved in 

cardiogenesis is fundamental to improve cardiac therapies by exposing novel therapeutic targets. 

CCBE1, a collagen and calcium-EGF biding domain 1 protein, was identified to be expressed in 

mouse heart precursors. Mutations in CCBE1 have been associated with Hennekam syndrome, 

which is characterized by abnormal lymphatic system and congenital heart defects. However, the 

CCBE1 functional role in cardiac specification is still unknown. Therefore, the main aim of this 

thesis was to unveil CCBE1 role in CM and Endothelial cells (EC) specification. For this purpose, 

a modified hiPSC line displaying the CRISPR interference technology (CRISPRi) was used to 

selectively knockdown (KD) CCBE1 gene expression along CM and EC differentiation.  

We showed that CCBE1 downregulation did not affect hiPSCs growth, morphology and 

stemness. Nonetheless, a significant reduction on gene expression of cardiac troponin T2 gene 

(TNNT2) and lower gene expression ratios of cardiac troponin I isoforms (TNNI3:TNNI1) and 

myosin heavy chains (MYH7:MYH6) were detected in CMs derived from CRISPRi-CCBE1 KD 

cell line at day 15. Ultrastructural changes were also observed in this condition, CMs presented 

lower sarcomere length and alignment, indicating a more immature state. In contrast, EC 

differentiation was not affected by CCBE1 KD, with no impact on EC morphology or gene 

expression levels. Therefore, CCBE1 seems to have a key role on CM specification and 

maturation. Moreover, we successfully selected hiPSC clonal populations with higher level of 

CCBE1 KD for future studies. This work may contribute with new insights towards the 

development of CCBE1-mediated therapeutic strategies for cardiac regenerative medicine. 
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Resumo 

 

 As doenças cardiovasculares são das principais causas de morte, sendo o enfarte do 

miocárdio associado à perda excessiva e permanente de cardiomiócitos (CM). Uma melhor 

compreensão dos mecanismos celulares que desempenham um papel crucial na cardiogénese 

é fundamental para identificar novos alvos terapêuticos e melhorar as terapias cardiovasculares.  

A expressão da proteína CCBE1 (collagen and calcium-EGF binding domain 1) foi detetada nos 

percursores cardíacos durante o desenvolvimento embrionário em ratinhos. Para além disso, 

mutações nesta proteína estão associadas ao síndrome de Hennekam, apresentando 

deficiências no sistema linfático e defeitos congénitos no coração. Dado que, o papel funcional 

da CCBE1 na diferenciação cardíaca não é conhecido, o principal objetivo desta tese foi 

investigar a função desta proteína, utilizando células estaminais pluripotentes induzidas (hiPSC) 

e métodos de modificação génica (tecnologia de interferência CRISPR) para induzir a perda de 

função do gene em causa durante a diferenciação em CM e células endoteliais (CE). 

 A Inibição da expressão da CCBE1 não afetou o crescimento, morfologia nem a 

pluripotência das hiPSC. Por outro lado, durante a diferenciação em CMs observou-se um 

decréscimo da expressão do marcador cardíaco TNNT2 e diminuição dos rácios de expressão 

das isoformas de troponina I (TNNI3:TNNI1) e das cadeias pesadas de miosina (MYH7:MYH6). 

Estes CMs também apresentavam alterações ultraestruturais, nomeadamente no tamanho e 

alinhamento dos sarcómeros, indicadores de um fenótipo mais imaturo comparativamente com 

a cultura com níveis de CCBE1 normais. No entanto, durante a diferenciação em CE não foi 

observado qualquer efeito da diminuição da expressão da CCBE1, tanto a nível morfológico 

como na expressão génica. Estes dados sugerem que esta proteína pode ter uma função 

importante no fenótipo dos CM. Adicionalmente, foram selecionados clones com maior nível de 

inibição da expressão da CCBE1 para estudos futuros. Este trabalho poderá contribuir para o 

desenvolvimento de novas terapias cardíacas baseadas no papel da CCBE1. 
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1.Introduction 

1.1.Cardiovascular Diseases: Prevalence & Treatment  

Cardiovascular diseases (CVD), a group of disorders of the heart and blood vessels, 

persist as the leading cause of death worldwide, accounting for 17.7 million deaths per year, a 

number that is expected to grow even further, to 23.6 million deaths by 2030 [1]. In Europe CVDs 

were responsible for almost 45% of all deaths in 2016 (Figure 1.1). In particular, myocardial 

infarction (MI) or heart attack results in cardiac muscle loss, due to cardiomyocyte (CM) death 

either by apoptosis or necrosis. Moreover, the limited capability of the heart tissue to regenerate 

makes this loss largely irreversible and a scar tissue constituted by fibroblasts is formed, resulting 

in loss of contractility and decreased heart function. This consequently leads  to the development 

of heart failure (HF) [2]. Although adult CMs do not proliferate, evidences of a resident cardiac 

progenitors’ cells (CPC) population able to differentiate into CMs may provide some endogenous 

regenerative capacity in the adult heart, however at insufficient rates to compensate for the 

massive cell loss caused by MI [3].  

 

Figure 1.1 – Death causes of European population in 2016. Adapted from [4].  

 

Heart transplantation remains the best long-term solution for end-stage HF, however the 

limited number of donors available, the high costs and possible tissue rejection, makes it 

unrealistic to be considered a standard therapy. Current treatments can improve patient’s survival 

and well-being, yet they fail to regenerate or repair the damaged heart. For example, 

pharmacological approaches, such as inhibitors of renin-angiotensin system, aim to reduce 

myocardial fibrosis, hypertrophy and incidence of heart failure [5]. In addition, revascularization 

Cardiovascular 
diseases  (44,5%)

Cancer  (22%)

Respiratory diseases  
(6,5%)

Injuries and 
poisoning  (6,5%)

All other causes  
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approaches have also been widely used to improve blood flow after MI [6]. Even though these 

methods have successfully reduced the mortality rates, they are intrinsically non-curative and 

hence novel approaches capable to promote heart regeneration and repair are still required.  

1.2.Novel Therapies for heart regeneration and repair 

1.2.1.Stem cell-based therapy for Myocardial Regeneration 

Regeneration of the injured heart by replacing the lost CM population, is an attractive 

approach to repair the heart and avoid future HF. To date, clinical efforts towards cardiac repair 

and regeneration have largely focus on stem cell-based therapies. The first generation of cell-

based therapies used for this purpose included the transplantation of noncardiac stem cells, such 

as, mesenchymal stem cells (MSCs), bone marrow (BM)-derived cells and myoblast cells, as they 

were more easily obtained [7]. One of the first cell types to be tested, with the goal of 

remuscularization in mind, were the skeletal myoblasts (SMs), although they did not yield any 

improvements in the randomized phase-II MAGIC trial [8]. In addition, concerns about their 

arrhythmogenic potential led to the end of further development of cell therapies based on this cell 

type [9]. 

Other cell types used in cardiac regeneration trials were BM-derived cells, due to their 

safety,  easy isolation and encouraging initial results [10]. Early clinical trials, namely the BOOST 

[11] and REPAIR-AMI [12], have shown some beneficial effects in patients with MI through 

improvement of the ejection fraction in cell-treated groups compared to placebo. Nevertheless, 

other clinical trials with a wider number of patients, didn’t display any beneficial outcomes [13, 

14]. The ongoing investigations with these cells aim to end these controversies and to draw a 

conclusion about their beneficial effects for patients. 

The last major noncardiac cell source studied in regenerative therapies are the 

multipotent adult MSCs, which demonstrated a great potential for cardiac regeneration in 

preclinical studies, displaying an inherent capacity for self-renew and differentiation into 

adipocytes, chondrocytes, hepatocytes, osteoblasts, neurons and skeletal muscle cells [15]. 

When co-cultured with primary CMs or in the presence of the DNA methyltransferase inhibitor 5-

azacytidine these cells are also able to differentiate into CMs in vitro [16, 17]. Human MSCs can 

be isolated primarily from bone marrow, but also from other adult and fetal tissues, including 

adipose tissue, cord and peripheral blood, placental and umbilical tissues [18]. Their availability 

and high expansion rate, combined with successful cryopreservation and strong paracrine effects, 

namely their angiogenic, anti-inflammatory and immunomodulatory properties, makes them a 

very attractive source in autologous or allogenic therapies for heart regeneration [18]. However, 

in clinical trials such as POSEIDON [19] and MSC-HF [20], transplantation of MSCs resulted only 

in modest improvements for patients with ischemic heart failure. 

In conclusion, the transplantation of noncardiac stem cells has not shown consistent 

positive results in the treatment of heart diseases yet, and the few favorable effects were likely 
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due to paracrine mechanisms such as neovascularization and remodeling of the scar, rather than 

the formation of new CMs and the direct regeneration of the heart [21]. These heterogeneous 

outcomes could be due to low cell engraftment and limited differentiation potential, therefore, the 

research and clinical focus shifted to the second-generation of stem cells, comprising cardiac 

progenitors/stem cells (CPC/CSC) and pluripotent stem cells (PSC). 

CPCs/CSCs are a resident population of the heart with multipotent, self-renewal  and 

clonogenic capacity, possessing the ability to differentiate into multiple lineages of the heart: CMs, 

smooth muscle cells and endothelial cells, without the aptitude for teratoma formation, as 

observed in PSC [22]. Thus, they offer an appealing alternative for cell transplantation therapies 

since they can be widely propagated in vitro, transplanted into the diseased heart and then 

differentiated into cardiovascular cells. Furthermore, these CPC/CSC are considered to stimulate 

the regenerative capacity of the heart through secretion of growth factors involved in signaling 

pathways, activating the endogenous cardiac cells and/or paracrine mechanisms. The SCIPIO 

clinical trial, which was the pioneer in the treatment of ischemic cardiomyopathy using CSCs 

demonstrated an increased recovery of left ventricular (LV) function and decreased infarct size 

[23, 24]. A second clinical trial, CADUCEUS, also showed a reduction in infarct size, but failed to 

show an improvement in LV function [25]. However, the low engraftment rates shown in the 

preclinical trials and the questionable capacity to form functional CMs were still a major concern. 

Moreover, the recent CAREMI clinical trial demonstrated that allogenic CSCs can be safely 

administrated in patients with MI, with no deaths or adverse cardiac events reported. The absence 

of immune rejection events was also described in this study, with no differences found in terms 

of LV remodeling and infarct size reduction, between CSCs and placebo-treated groups [26]. 

Pluripotent stem cells, including embryonic stem cells (ESC) and induced pluripotent stem 

cells (iPSC) are non-specialized cells with the capacity to proliferate continuously and give rise to 

differentiated cells, under the presence or absence of specific signals [27], making them an 

extremely attractive cell source for cellular therapy, drug discovery and disease modeling [28]. A 

major breakthrough in the stem cell research field arose when mouse ESC were isolated from the 

inner cell mass of the blastocysts in 1981 [29], followed by isolation of their human counterparts 

in 1998 [30]. Despite the pluripotent potential of these cells (i.e. ability to differentiate into cells 

derived from the 3 germ layers: ectoderm, endoderm and mesoderm) and their high self-renewal 

capacity (i.e. they can proliferate continuously and give rise to undifferentiated cells), there are 

still major issues preventing the fulfilment of their great potential, namely the ethical issues due 

to the manipulation of embryos, immunological incompatibility and propension to teratoma 

formation [28, 31]. These drawbacks in ESCs urged the discovery of new cell alternatives with 

similar pluripotent phenotype. Thus, in 2006, Takashi and Yamanaka showed that reprogramming 

adult mouse fibroblasts, forcing the expression of four recombinant factors (OCT4, SOX2, KLF4 

and C-MYC), was enough to convert these cells into embryonic-like state and named them iPSCs 

[32]. A year later they were able to reproduce this accomplishment with human somatic cells [33]. 
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The first reprogramming protocols relied on the use of retroviral vectors to efficiently 

produce iPSCs. However, random transgene insertion could lead to insertional mutations, 

interrupting important genes which might result in tumorigenesis and disturb the pluripotent state 

of the cells. To overcome these risks, safer methods for reprogramming somatic cells have 

emerged, using non-integrative virus (e.g. adenoviruses, Sendai virus) or virus-free approaches 

(e.g. piggyBac transposon, microRNAs, plasmids, episomal and minicircle vectors) [34]. 

Nonetheless, a lower reprogramming efficiency is still observed when compared to the use of 

integrative vectors. Thus, new and more efficient approaches are still needed to promote the use 

of these cells in a safer and more efficient way in regenerative medicine. 

iPSCs are remarkably like ESC in many key aspects critical for their application in 

regenerative medicine. Nevertheless, differences in gene expression profile can be found, like 

distinct microRNA (miRNA) expression and epigenetic markers [35]. When reprogramming 

happens, a global epigenetic remodeling occurs which is necessary for the successfulness of the 

reprogramming, but genetic aberrations can also arise during this process [27]. Both of these 

PSCs are easily expandable and can be differentiated into functional CMs in vitro offering the 

opportunity to obtain sufficient number of CMs for transplantation to the damaged heart. However, 

preclinical trials were not able to draw a conclusion yet about the efficacy of PSCs-derived CM 

for heart regeneration showing mixed results depending on the animal model [36–38]. Even 

though in some of these cases there was an improvement in LV function and remuscularization 

of the heart, their ability to form teratomas and induce arrhythmias remains a major problem [39]. 

The recent ESCORT trial, testing hESC-derived CPC is an attempt to set aside these concerns 

with promising preliminary outcomes [40]. In the end iPSC still hold great potential not only for 

clinical applications and personalized medicine but for cell biology research too. Being ethically 

less controversial, avoiding the need of embryo use and presenting a lower probability of immune 

rejection when compared with ESCs, since iPSCs can carry the genome of the patient from whom 

it was derived [31, 41]. Therefore, they can turn out to be the “Gold Standard” for regenerative 

medicine in the future. 

To date the disappointing results obtained in the cell therapy clinical trials are assumed 

to be due to the poor engraftment an inadequate dosage of the cells regardless of the cell type 

used [42]. An emerging alternative approach for cardiac treatment is the repeated dose cell 

therapy, which already showed promising outcomes in rodent models, where one single dose of 

CPC was less efficient when giving the same number of cells divided into three smaller doses a 

few weeks apart [42, 43]. Nevertheless, new studies and clinical trials that incorporate these 

repeated treatments are still essential to test their truly safety and efficacy. Another emerging 

strategy is to develop genetically engineered cells to optimize their quality, functionality and 

performance, to serve as enhanced therapeutic agents for heart regeneration and repair [44]. 

However, the heart is one of the most challenging organs to repair, so an in-depth comprehension 

of how the heart develops and a better understanding of heart regeneration processes could 

improve the efficiency of therapies targeting cardiovascular regeneration after MI. 
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1.2.1.1.Understanding the human Cardiogenesis 

While human cardiogenesis is still not fully understood, cardiac development in animal 

models (e.g. mouse) has provided sufficient insights that allowed the improvement of CMs 

differentiation protocols from hiPSCs. To efficiently differentiate hiPSC into CMs, the most 

common and reproducible strategies involve replicating in culture the key steps along their natural 

development path in vivo (Figure 1.2), which require stage-specific activation and inhibition of 

different signaling pathways, such as Wingless/INT (WNTs), Nodal, bone morphogenic protein 

(BMP) and fibroblast growth factor (FGF) .Therefore, an in-depth knowledge of these pathways 

is crucial, as different differentiation protocols rely on their modulation by exposing hiPSC to 

several growth factors at specific times points and in precise doses to guide them towards cardiac 

fate. [45]. 

 

 

Figure 1.2 – Schematic representation of the expressed transcriptional factors along iPSCs cardiac 
differentiation. The five major stages in the differentiation of iPSC to cardiomyocytes: pluripotent stem cell, 
mesoderm, cardiac committed mesoderm, cardiac progenitor cells and cardiomyocyte, are characterized by 
the distinct expression of different transcription factors. Adapted from. [46]. 

 

Cardiac specification begins with Nodal signaling and gastrulation that prompt mesoderm 

formation. The Nodal signal also upregulates BMP4 expression, which in turn induces WNT3 

expression. Then WNT promotes the expression of mesoderm markers such as T (brachyury) 

and Eomes (eomesodermin) with the consequent activation of MESP1, the “master regulator” of 

cardiac progenitors specification [47, 48]. In this phase, cardiac differentiation will proceed with 

the inhibition of WNT/ β-catenin signaling. This pathway has a biphasic role during cardiogenesis, 

being important at the beginning to induce the primitive streak formation and after this stage, 

inhibition of this pathway is crucial to direct the progenitor cells into cardiac fate. At this point the 

cardiac mesoderm is formed and several transcription factors begin to be expressed, such as 

ISL1, GATA4, TBX5 and NKX2-5. This cardiac mesoderm gives rise to the endocardium, the first 

heart field (FHF) and the second heart field (SHF). While the FHF forms the left ventricle, the 

majority of the atria and part of the right ventricle, the SHF forms the majority of the right ventricle, 

outflow tract and  part of the atria [49]. The three major cellular lineages that compose the heart 

tissue, CMs, endothelial cell (EC) and vascular smooth muscle cells (SMC) are all derived from 

the mesoderm phase [50]. 

To obtain functional CMs from hPSCs, the cardiac progenitors still need to differentiate 

into beating CMs, which are identified by the expression of certain proteins involved in 
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morphogenic events leading to the formation of the heart, such as α-actinin, α-myosin or the 

cardiac isoform of Troponin-T (cTnT) [51]. However, generated CMs are still immature, to the 

point where their phenotype resembles more the fetal CMs in vivo than the adult CMs [52]. This 

lack of maturity in hPSC-derived CMs can be assessed by analyzing the structure, energy related 

characteristics and gene expression of cardiac specific markers (Table 1.1), like the myosin heavy 

(MYH6, MYH7) and light chains (MYL2, MYL7). For example, while the MYH7 and MYL2 are 

predominant in adult CMs, their isoforms, MYH6 and MYL7 respectively, predominate in immature 

related-CMs [53]. 

 

Table 1.1 – Structural, gene expression and energy related characteristics in adult and immature-
like CMs. Adapted from [53]. 

 Adult-CM Immature-CM 

Structure Rod-Shaped Round or polygonal 

Alignment Longitudinally aligned Poorly organized 

Nucleation ~30% cells bi- or poly-nuclear Very limited bi-nucleation 

Sarcomere organization Highly organized Disorganized 

Aspect ratio 5–9.5:1 2–3:1 

Banding Z-discs, I-, H-, A- and M-bands Mainly Z-discs and I-bands 

Sarcomere length 2.2 µm 1.6 µm 

Gene expression 

MYH7 (βMHC) > MYH6 (αMHC) 
TNNI3 > TNNI1 
MYL2 (MLC2v) > MYL7 (MLC2a) 
Titin isoform N2B predominates 
ADRA1A (α-adrenoceptor) 
expressed 

MYH6 (αMHC) > MYH7 (βMHC) 
TNNI1 > TNNI3 
MYL2:MYL7 ratio not determined 
Titin isoform N2BA predominates 

ADRA1A (α-adrenoceptor) not 

expressed 

Metabolism Mostly fatty acids 
Glucose and lactate but can use fatty 
acids 

Energy production Mainly oxidative phosphorylation Mainly oxidative phosphorylation 

Mitochondria Throughout cell; occupies 20–
40% of cell volume 

Near nuclei; numbers increase during 
differentiation 

Beating Quiescent Spontaneous 

 

Additionally, CMs populations derived from hiPSC are still heterogeneous. These 

populations include myocytes with nodal, atrial and ventricular properties [54]. This variability 

poses a challenge for the potential application of these cells in transplantation therapies, as it 

potentiate the risk of arrhythmia [55]. New approaches to generate homogenous populations of 

CMs from hiPSC in a reproducible way are still necessary. Alternatively, investigating how to 

efficiently purify a mixture of cells to select the desirable cell type could also be a promising 

approach.  The uncertain outcome in cell-based therapies urged the search for new methods to 

improve cell differentiation, retention, survival and coupling, by using miRNAs [56], biomaterials 

[57], 3D cell constructs [58], bispecific antibodies [59],and cytokines [60]. 
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1.2.2.Cell-Free Approaches for Myocardial Regeneration 

Based on the hypothesis that the small improvements observed in cell therapy were due 

to paracrine mechanisms, new strategies bypassing the use of cells as the transplanted agents 

have emerged. For example, the direct administration of paracrine factors, such as growth factors, 

non-coding RNAs and extracellular vesicles or direct reprogramming of fibroblast into CMs (Table 

1.2) [61, 62].  

 

Table 1.2 – Preclinical results from cardiac regeneration therapies for ischemic heart diseases. 
Adapted from [63, 64] 

Therapy Mechanism 
Disease 

Model 

Delivery 

method 
Outcome Comments Ref 

Allogenic 

iPSC-CMs Direct 

replacement of 

CMs 

IHF 

Surgical 

intramyocardial 

injection 

LVEF improvement 

(≈ 10%) at 12 weeks  

Ventricular 

arrhythmias in 

all cell 

transplanted 

animals 

[65] 

hECS-CMs 
No significative 

changes in LVEF 
[37] 

Microparticles 

loaded with 

FGF-1/NRG1 

Angiogenesis and  

Reversal of 

fibrosis 

IHF 
Intramyocardial 

injection 

LVEF improvement 

(≈ 9%) at 3 months 

Reduction in 

ventricular 

remodeling and 

increase in 

vascularization 

[66] 

miR-199a-3p 

miR-590-3p 

Promote 

endogenous CMs 

proliferation 

IHF 

MI 

Intramyocardial 

or with cationic 

lipid 

formulations 

LVEF improvement 

(≈ 10-20%) at 8 

weeks 

Higher number 

of positive CMs 

for the DNA 

synthesis 

marker EdU 

[67] 

MR-409 

(GHRH 

agonist) 

Pleiotropic effects 

and activation of 

GHRH 

IHF 
Subcutaneous 

injection 

Reduction in the 

scar size observed 

after 4 weeks 

Failed to 

improve the 

cardiac function 

[68] 

Recombinant 

FSTL1 in 

patch 

Pleiotropic effects 

Stimulation of 

CMs proliferation 

and 

arteriogenesis 

IHF 

Surgical 

implantation of 

a patch 

LVEF improvement 

(≈ 10%) 

 

[69] 

Retroviral 

GHMT 

Direct 

reprogramming of 

human fibroblasts 

towards the 

cardiac fate 

IHF 

MI 
Intramyocardial 

LVEF improvement 

(≈ 25%) after 12 

weeks 

Reduction in 

the scar size 

[70] 

IHF, ischemic heart failure; FGF-1, fibroblast growth factor 1; FSTL1, follistatin-related protein 1; GHRH, growth 
hormone-releasing hormone; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NRG1, neuregulin 1.  

 

Although these preclinical studies showed some level of LVEF enhancement, they are 

still far away from complete regeneration of the infarcted heart. These marginal improvements 

(9%-25%), in Table 1.2, help to establish the therapeutic value of these approaches, paving the 

way for other therapeutic targets. Namely, restauration of coronary vasculature after MI, to 
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improve heart repair and increase the chance of survival. Nevertheless, this field is still recent 

and major issues and optimizations still need to be addressed to draw a concrete conclusion 

about their efficacy in the clinics. 

1.2.2.1.Neovascularization and Lymphangiogenesis to augment heart 

repair 

Treatment of ischaemic heart disease has focused on protecting the heart from 

progression to HF. Even though coronary intervention can restore coronary blood flow after MI, 

microvasculature obstruction still persists, due to endothelial cell death, inflammation and 

thrombotic and plaque debris. This leads to poor wound healing and ventricular remodeling as 

well as increase HF  events, diminishing the patients’ chances of survival [71]. Therefore, the 

regeneration of coronary microcirculation is essential for effective heart repair. To achieve this 

goal, a better understanding of how coronary vasculature is formed during the heart development 

is crucial. These vessels are essentially composed by vascular endothelium, smooth muscle and 

fibroblasts, while endothelial cells arise primarily from the sinus venosus (SV) and endocardium 

(Endo), the epicardium (Epi) acts as a source of trophic factors and progenitors’ cells, which 

ultimately give rise to the smooth muscle cells and fibroblast [72, 73]. This different coronary 

progenitors’ populations can compensate for each other if one exhibits defects, providing 

robustness in heart development. This compensatory mechanism was recently reported 

demonstrating the regulation of distinct coronary progenitor pools by both genetic timing 

(ELABELA-APJ signaling) and the microenvironment (hypoxia) to ensure the establishment of the 

proper vasculature needed for heart physiology [74]. 

A crosstalk between the Epi and myocardium is vital for coronary vessel formation during 

heart development. Epicardial cells secrete essential growth factors that support the developing 

myocardium, which in turn secretes angiogenic factors to promote vasculogenesis in the 

developing heart. For example, through fibroblast growth factor (FGF) and vascular endothelial 

growth factor (VEGF) signaling pathways [75]. FGF, secreted by epicardium, is essential for 

normal formation of the coronary vasculature and stimulates the secretion of VEGF-A and VEGF-

B by the myocardium. Moreover, myocardial factor thymosin β4 promotes EC migration, 

proliferation and initiates the epicardial progenitors cells activation  [75]. After MI, quiescent 

epicardial cells reactivate to support heart repair and neovascularization [76]. One way to improve 

this neovascularization, is priming the epicardium before the injury with thymosin β4 [77]. Still, the 

precise mechanisms of coronary revascularization upon injury are uncertain and a better 

understanding of how epicardial response is modulated along the regeneration process would 

lead to more effective therapeutic approaches.  

Besides CM replacement discussed above (in section 1.2.1), other therapies are being 

studied to promote heart regeneration, namely the stimulation of CM proliferation, the activation 

of lymphangiogenesis and angiogenesis, immunomodulation and reversal and/or inhibition of 

fibrosis [64]. For example, the delivery of specific recombinant proteins, such as VEGF-A was 

shown to improve neovascularization in animal models, although it failed to show beneficial 
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effects in clinical trials (EUROINJECT-ONE and NORTHERN) [78]. However, other growth 

factors, such as follistatin-related protein 1 (FSTL1), were shown to improve myocardium 

regeneration after MI [69]. Nevertheless, by changing the strategy of delivery, resorting to 

intramyocardial injection of synthetic modified RNA encoding human VEGF-A in a mouse MI  

model, led to an improvement of heart function [79]. Thus, the poor outcomes observed in the 

growth factor-based approaches in clinical trials might be due to inappropriate dosages, 

inadequate delivery strategy and/or lack of organ selectivity.  

Another emerging strategy is the stimulation of lymphangiogenesis, which is required for 

clearance of edema and to reduce inflammation. One way to do this is through the stimulation of 

VEGF-C signaling [80], that is the key mediator of lymphangiogenesis during development and 

required for SV sprouting through its binding to VEGF receptor 3 (VEGFR3) following maturation 

process [81]. The vascular system consists of blood and lymphatic vessels; these lymphatic 

vessels are essential for tissue and body fluid homeostasis with vital role for the transport of 

macromolecules, immune system cells and absorption of lipids from the digestive system. During 

the differentiation process, lymphatic endothelial cells differ from the others due to the collective 

action of different transcriptional factors, thereby any defective mutation of these proteins may 

cause primary lymphedema [82, 83]. 

Genetic studies in zebrafish and mice models lacking lymphatic vessels development, as 

well as in rare individuals with Hennekam syndrome, have contributed to the identification of a 

secreted protein collagen and calcium-binding EGF domain 1 (CCBE1), that is required for proper 

lymphatic vascular development (Figure 1.3 A) [84, 85].  Moreover, over the last years reports 

suggested the requirement of this particular protein and a metalloproteinase (ADAMTS3) for the 

activation of VEGF-C [86]. 

1.2.3.The Role of CCBE1 as a potential modulator of cardiac function 

CCBE1 was identified to be expressed in heart precursors in mouse embryos from 

embryonic day (E)7.0 to (E)9.5 [87], particularly near the developing lymphatic vessels and in the 

developing heart [88]. Also, it was identified in early cardiac progenitors in chick embryos and in 

heart precursors of first and second heart field [87]. In humans, mutations on this protein were 

found to be associated with Hennekam syndrome, which is an autosomal recessive lymphatic 

disorder where about 25% of the patients exhibit mutations in CCBE1 [89]. This rare disease 

displays diverse pathological features like lymphedema, lymphangiectasias and intellectual 

disability [84]. Moreover, EGF protein family, which includes CCBE1 was identified in embryonic 

cardiac fibroblasts as a paracrine factor involved in the regulation of CMs proliferation [90]. Also, 

there are several reports suggesting the importance of this protein on cancer context, such as 

tumor suppressor gene in ovarian cancer and as a potential biomarker in the detection of lung 

[91] and gastrointestinal stromal tumors (Figure 1.3 B) [92]. 
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Figure 1.3 – Schematic representation of CCBE1 and its key roles. (A) CCBE1 protein domains. SP, 
signal peptide; EGF, epidermal growth factor domain; Ca-EGF, calcium binding EGF domain; ColA, collagen 
repeat A; ColB, collagen repeat B. (B) CCBE1 key roles suggested so far. Adapted from [93]. 

 

  As previously mentioned, CCBE1 is involved in the activation of the major 

lymphangiogenic growth factor VEGF-C, which is crucial for lymphatic development in mouse 

embryos and for the major part of the lymphangiogenesis process in adults [93, 94]. However, 

VEGF-C is synthesized as a precursor molecule, the pro-VEGF-C, and needs to be further 

activated to play its key role [95]. For this purpose, the ADAMTS3 (A Disintegrin And 

Metalloproteinase with Thrombospondin Motifs-3) protease in a complex with CCBE1, is 

responsible for the cleavage of pro-VEGF-C to generate a mature and activated version of this 

factor, which binds to and further activates the VEGFR-3 receptor (Figure 1.4 B) [82, 86]. The C-

terminal of CCBE1 is essential for an effective activation of  VEGF-C, whereas the N-terminal is 

important for the colocalization of pro-VEGF-C with CCBE1 and ADAMTS3 on the endothelial cell 

surface which may be necessary for an efficient cleavage of this factor by ADAMTS3, contributing 

to the VEGFR-3 signaling increase [93, 96].  

While mutations in CCBE1 C-terminal domain have shown to result in the absence of 

lymphatic structures in mice, mutations in the N-terminal resulted in incomplete and disorganized 

lymphatic vessels, suggesting a role in the organization and migration of lymphatic endothelial 

cells [93]. Recent studies also demonstrated the importance of CCBE1 in coronary vasculature 

development through the activation of VEGF-C during the embryonic development [74, 97]. In 

these studies, CCBE1 knockout in mouse models displayed similar heart defects as in VEGF-C 

mutants, exhibiting a stunted angiogenesis compared to the wildtype. Therefore, CCBE1 could 

also be used as a therapeutic factor to stimulate neovascularization after MI (Figure 1.4 B). 

However, obtaining sufficient amounts of stable recombinant full-length CCBE1 protein (49 kDa) 

remains a major hurdle, being an issue for functional and therapeutic studies using this protein 

[86, 98]. Alternatively, the use of precise gene editing tools (e.g. CRISPR/Cas9) in combination 



Introduction 

Disclosing CCBE1 role in Cardiac Differentiation of Human Pluripotent Stem Cells  11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – Lymphangiogenesis: VEGF-C activation by CCBE1 and ADAMTS3 complex and its role 
in myocardial infarction (MI). (A) MI is followed by adverse remodeling of epicardial collector lymphatics, 
with subsequent edema, severe inflammation and fibrosis. A therapeutic approach is based on VEGF-C 
administration to increase lymph flow and resolves inflammation, improving the cardiac function. (B) CCBE1 
secretion at sites of lymphatic vessel growth promotes the proteolytic cleavage of pro-VEGF-C form by the 
disintegrin/metalloprotease ADAMTS3. The mature form of VEGF-C can further activate VEGFR-3. Most of 
the VEGF-C cleavage may occur on lymphatic endothelial cell (LEC) surface mediated by CCBE1 and 
ADAMTS3. Adapted from [99, 100]. 
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with hiPSCs would greatly contribute for in vitro studies helping to uncover CCBE1 role in human 

cardiac repair. 

1.3.Gene editing tools 

To better understand the regulatory networks that drive specific cellular activities, in 

healthy or disease conditions, one can use precise and effective tools for gene manipulation. The 

capacity to manipulate the expression of desirable genes either by repression or activation 

facilitates the understanding of pathophysiological mechanisms in cardiovascular diseases. This 

manipulation can now be achieved with the emergence of genomic-editing systems which are 

getting more advanced, efficient and simpler to use. Advantages and disadvantages of the 

currently major gene editing tools are summarized in Table 1.3. 

 

Table 1.3 – Comparison of the major gene editing tools. Adapted from [101] 

Gene editing tool ZFN TALENs CRISPR/cas9 

Source Bacteria, Eukaryotes 
Bacteria 

(Xanthamonas sp.) 

Bacteria (Streptococcus 

sp). 

Easy of design Difficult Moderate Easy 

Specificity High High High 

Efficiency Low High High 

Multiplexing Low Moderately High High 

Sequence limitations 

Non-guanosine rich 

sequence hard to 

target 

5′targeted base 

must be thymine for 

each TALEN 

monomer 

PAM sequence must 

follow target site 

Cost High Moderate Cheap 

 

Nowadays, different systems for genome manipulation have already been described, 

such as RNA-mediated interference (RNAi) and customized classes of DNA binding-chimeric 

proteins for instance zinc-finger proteins (ZFs), Transcription activator-like effector nucleases 

(TALENs) and more recently, the promising guide RNA (gRNA)-driven Cas9 (CRISPR) system. 

These tools offer a great prospect for the future of cardiovascular field and for in vivo genome-

editing therapies. The RNAi was the first tool being explored [102]. In this system small interfering 

RNAs (siRNAs) or short hairpin RNAs (shRNAs) bind to the target endogenous mRNAs 

transcripts promoting their cleavage [102]. However, its low reported efficacy and non-specificity 

has limited its wide application [103, 104]. For precise genetic modifications, custom engineered 

and site-specific endonucleases were successfully developed, namely the ZF and TALENs.  

The ZFs consist of programable DNA-binding domains fused to a functional domain, 

which allows the manipulation of gene expression levels in a modular way by recruiting effectors 

into transcriptional sites of the target genes. For a better genomic specificity, a combination of at 
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least six ZFs in the DNA binding domain is recommended, as each one can recognize 

approximately only three bp of DNA [105]. This tool has already been applied for the genome-

editing of several living organisms [106–109] and to different cell lines [110, 111] in a successful 

way. 

TALENs system is similar to the ZFs in a way that both have a DNA-binding domain fused 

with a functional domain. However in this system the binding protein consists of highly conserved 

TALEN tandem repeats of 33-35 amino acids, that can be easily designed and with the potential 

to target any sequence with a high success rate [112]. 

An emerging alternative based on RNA-guided nuclease overcome the above limitations. 

The type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), derives from 

the adaptive immune system of Streptococcus pyogenes, which protects the bacteria from 

exogenous DNA-containing phages and plasmids, thanks to the combination of CRISPR loci and 

a Cas9 nuclease [113]. This loci together with short spacer sequences derived from past virus 

infections, are transcribed into long RNAs (crRNAs), which forms a complex with a small 

transactivating CRISPR RNA (tracrRNA), called guide RNA (gRNA) that will provide the capacity 

to search and guide the Cas9 nuclease to cleave the target viral DNA by creating a double strand 

break (DSB) [113]. The Cas9 has two nuclease like-domains, HNH and RuvC that will promote a 

DSB in the target sequence after binding to a short DNA sequence, named protospacer-adjacent 

motif (PAM) which flanks the RNA-binding site [114]. This DSB triggers the DNA repair 

mechanisms that sporadically introduces indel mutations in the target sequence, allowing the 

introduction, in a simple and easy manner, any desirable mutations in target genes [115, 116] 

One of the major drawbacks for the application of this technology is the off-target effects. It has 

already been reported that the Cas9 binds to off-target sites and although only a small subset of 

those are cleaved efficiently, they still represent a major concern, since other genes could be 

mutated with serious damage potential [117, 118].  

In addition to gene editing, CRISPR technology can be used for regulation of gene 

expression, without cleaving the target site. For this purpose, a nuclease-deficient Cas9, labeled 

as dead Cas9 (dCas9) has been developed by inserting mutations into the two nuclease domains 

of Cas9, the HNH and RuvC. The CRISPR-dCa9, also called CRISPR interference (CRISPRi) is 

still capable to specifically bind to the target sequence when guided by the gRNA either in the 

promotor or regulatory sequences and manipulate its transcription process without changing the 

genomic sequence (Figure 1.5) [114, 119]. It can prevent the transcription initiation or elongation 

by blocking the binding of important transcription factors in the transcription site or the RNA 

polymerase II [114, 119, 120]. Furthermore, the genetic regulation using CRISPR-dCas9 is not 

permanent and can be easily reversed. Moreover, grouping of dCas9 with a transcriptional 

repressor, like the Krüppel-associated box (KRAB) [121] or four concatenated mSin3 interaction 

domains (SID4X) [122] can improve the repression of endogenous genes, this was already 

demonstrated in eukaryotic models [121] and more recently in hiPSC [123]. In addition, coupling 
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the dCas9 with a transcriptional activation domain, such as VP64 or p65, termed CRISPR 

activation (CRISPRa) can increase the expression of endogenous genes [124, 125].  

 

Figure 1.5 – Differences in action method of Streptococcus pyogenes Cas9 and dCas9. (A) The single 
guide RNA (sgRNA) leads Cas9 to the target DNA sequences. This targeting is dependent on the presence 
of a 5′ protospacer-adjacent motif (PAM) in the DNA, which in S. pyogenes is usually NGG. After binding the 
two nuclease domains (RuvC1 and HNH) cleave the target sequence. (B) Mutations in the two nuclease 
domains deactivate the Cas9 protein (dCas9), inactivating its nuclease function (circles), but still retains the 
capacity to target specific sequences through sgRNA guidance and PAM. dCas9 binds near the transcription 
start site (TSS) and blocks transcription elongation by obstructing RNA polymerase II (Poll II) or blocking the 
binding of important transcription factors (Txn). Adapted from [126] 

 

In fact, genome editing has already been used to create more reliable cardiac disease 

models or correct genetic mutations  in IPSC-derived CMs by introducing genetic alterations [127]. 

One example, was a disease model for Barth syndrome (mitochondrial disorder caused by 

mutation of the gene encoding tafazzin) developed by Wang and colleagues, which combined 

patient-derived IPSC and genome editing tools, like CRISPR/cas9 to mimic the pathophysiology 

of this specific disorder in vitro [128]. 

For loss-of function studies, Mandegar and colleagues developed a versatile CRISPRi-

dCas9 inducible system for hiPSC lines. This repression system enables precise control of single 

or multiplexed gene expression upon doxycycline addition, making this CRISPRi-hiPSCs lines an 

attractive tool for identification of novel factors involved in cell differentiation and maturation. 

Moreover, this system was validated for multiple genes along cardiac differentiation, in hiPSC, 

CPC and CMs, demonstrating its efficacy and reliability (Figure 1.6) [123]. 

These current advances in gene editing tools and in iPSC technology offers a great 

opportunity to better understand the pathophysiological mechanism of cardiac diseases and to 

develop reliable differentiation protocols resulting in more homogenous cardiac populations and 

trustworthy cell models suitable to improve disease understanding and to propose novel cell 

therapies.  
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Figure 1.6 – Potential of CRISPRi hiPSC lines developed by Mandegar and colleagues. GEN1C cell 
line was generated by integration of CRISPRi construct into the AAVS1 locus of WTC. Posteriorly, a gRNA 
or gRNAs are selected and introduced in the cell line to specifically target a gene or genes of interest. After 
that, the targeted gene expression will be repressed upon Dox induction. This system is also validated for 
multiple genes specific in different stages of CM differentiation. Adapted from [123]. 
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2.Aim of the thesis 

 

CCBE1 has been studied as an important protein for lymphatic vessels development and 

despite the increasing evidence of a potential involvement in cardiac commitment, further 

investigation is still needed to validate this hypothesis. Therefore, the aim of this thesis was to 

unveil the role of CCBE1 on cardiovascular development exploring gene editing tools (Figure 

2.1). In this context, we performed CCBE1 loss-of-function studies using the CRISPRi technology 

in hiPSC to knockdown CCBE1 gene expression during CM and EC differentiation process.  

The first objective consisted on evaluating the CCBE1 knockdown efficiency and its 

impact on hiPSCs pluripotent phenotype. To accomplish this, CCBE1 knockdown hiPSC lines 

were generated. Additionally, their self-renewal capacity, differentiation potential and CCBE1 

gene expression were assessed. The second objective was to evaluate CCBE1 knockdown 

impact along hiPSC differentiation into CM and EC. We performed a detailed characterization of 

hiPSC-derived CM/EC phenotype in CCBE1 knockdown cell line. 

Overall this work provides new insights on CCBE1 role in cardiac development. The 

knowledge here described would help to identify CCBE1-modulatory pathways and explore 

CCBE1 as a therapeutic molecule for cardiovascular regenerative medicine. 

 

 

 

 

 

 

Figure 2.1 – Schematic representation of the major aims of this thesis and outlined strategy. The 
main aim of this thesis was to unveil the role of CCBE1 on cardiovascular commitment. hiPSC- human 
induced pluripotent stem cells; CCBE1- collagen and calcium-EGF biding domain; CPC- Cardiac 
Progenitor Cell; CM- Cardiomyocytes; EC- Endothelial Cells; KD- knockdown. 
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3.Material & Methods 

3.1.hiPSC culture & differentiation 

3.1.1.hiPSC lines  

In this study two human iPSCs lines with the same genetic background were used. Wild-

type C (hereafter designated as hiPSC-WT) and a modified cell line CRISPRi Gen1C (hereafter 

designated as hiPSC-CRISPRi), integrating a Tet-On inducible system that modulate the 

expression of a deactivated Cas9 (dCas9) fused with the repressor KRAB domain. mCherry 

reporter gene is under the control of the same inducible promoter (at downstream of dCas9-

KRAB, separated by p2A). These cell lines were derived by Mandegar MA and colleagues [123] 

and provided by The J. David Gladstone Institutes under a Material Transfer Agreement.  

3.1.2.hiPSC expansion 

hiPSC lines were routinely propagated in static culture systems, 6-well plates (Falcon™), 

coated with growth factor reduced (GFR) Matrigel®, Phenol Red Free (BD Biosciences) using 

mTeSR1TM  media (STEMCELL Technologies), according to the protocol described by Mandegar 

and colleagues [123]. Cells were maintained under humidified atmosphere with 5% CO2 at 37ºC. 

3.1.3.hiPSC cardiac differentiation 

hiPSC were differentiated into CM in monolayer culture systems, according to the recently 

published protocol [129]. hiPSC single cell suspensions were prepared by incubation with 

Accutase (STEMCELL Technologies) for 3 min at 37ºC and seeded at a density of 7-9 × 104 

cell/cm2 in Matrigel coated 6-well plates (Falcon™) or μ-Slide 4 well formats (ibidi®). Two days 

after cell seeding, the differentiation was induced by replacing the expansion media with RPMI 

1640 medium (Gibco®) supplemented with 2% (v/v) B27 minus insulin (Invitrogen), 12 µM 

CHIR99021 (Biogen Cientifica S.L), 80 ng/mL Activin A (PeproTech) and 50 µg/mL ascorbic acid 

(Sigma-Aldrich). Twenty-four hours later (day 1 of differentiation) the media was replaced by 

RPMI supplemented with 2% (v/v) B27 minus insulin, 5 µM IWR-1 (Sigma-Aldrich) and 50 µg/mL 

ascorbic acid. At day 3 of differentiation, cells were incubated with RPMI supplemented with 2% 

(v/v) B27 minus insulin, 5 µM IWR-1. From day 6 until day 15, the medium was changed 3 times 

per week with the RPMI supplemented with 2% (v/v) B27 minus insulin [129]. Cells were 

maintained under humified atmosphere with 5% CO2 at 37ºC. 

3.1.4.hiPSC endothelial differentiation 

 hiPSC were differentiated into endothelial cells according to the protocol described by 

Giacomelli and colleagues [130]. Cells were seeded at 1.25 × 104 cell/cm2 in 6-well plates coated 

in Matrigel 24 hours prior initiation of differentiation process. At day 0 of differentiation, the media 

was replaced by APEL-Li (STEMCELL Technologies) supplemented with Activin A (20 ng/ mL), 

BMP4 (20 ng/mL) and CHIR99021 (1.5 µM). Then medium was replaced every three days by 

APEL-Li supplemented with VEGF (50 ng/mL) until day 10 of differentiation. Cells were 
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maintained under humified atmosphere with 5% CO2 at 37ºC. All supplements were supplied by 

Peprotech. 

3.2. CCBE1 knockdown: gRNA design, cell electroporation and selection 

For CCBE1 knockdown, four gRNAs were designed to target near the transcription start 

site (TSS) of CCBE1 (between 150 bp upstream and 150 bp downstream). All gRNAs were 

phosphorylated, annealed and cloned into the pgRNA-CKB vector (kindly provided by Bruce 

Conklin; Addgene plasmid # 73501) at BsmBI restriction site. All the cloning steps were performed 

as described elsewhere [123]. gRNA oligo sequences are listed in Table 3.1.  

The pgRNA-CKB expression vector, containing mKate2 as reporter gene and blasticidin 

as antibiotic selection marker (mKate2-T2A-Bsd), was transfected into CRISPRi cells using the 

Neon Transfection System (Thermo Fisher Scientific) according to manufacturer’s instructions. 

Two conditions were tested (condition 1: 1400 V, 20 ms, 2 pulses and condition 2: 1100 V, 30ms, 

1 pulse). CRISPRi cells (2×106 cells) were transfected with 5 μg of vector carrying a CCBE1-

specific gRNA generating the CRISPRi-CCBE1 KD cell line or with empty pgRNA-CKB vector, 

without a gRNA to generate the CRISPRi-Ctrl cell line (control condition). 

 

Table 3.1 – List of gRNA oligo sequences. Each gRNA indicates the binding relative to the transcription 
start site (TSS) of CCBE1 gene, and whether they target the template (T) and non-template (NT) strand. 
Forward and reverse primers for cloning into the pgRNACKB gRNA-expression vector are listed from 5’ to 
3’.  

 

gRNA Name 
(Targeting Strand) 

Oligo Sequences 
5’ – Forward Primer – 3’ 
5’ – Reverse Primer – 3’ 

CCBE1 g-145 (NT) TTGGAAGGGGGTACCTGCGGTGTC 
AAACGACACCGCAGGTACCCCCTT 

CCBE1 g-82 (NT) TTGGCAGGGGTCCGGAATATTATG 
AAACCATAATATTCCGGACCCCTG 

CCBE1 g+22 (T) TTGGAGCAGGACGCTTGGTCCGGA 
AAACTCCGGACCAAGCGTCCTGCT 

CCBE1 g+37 (NT) TTGGTCCCAGCGCCGAGCTCCGTC 
AAACGACGGAGCTCGGCGCTGGGA 

 

Twenty-four hours post transfection, blasticidin selection was applied by culturing the cells 

in mTeSR1 supplemented with Y-27632 (10 μM) and blasticidin (10 µg/mL). Stable colonies were 

pooled and passaged five times to enrich for cells with integration into sites of active transcription. 

The percentage of nucleofected cells was evaluated by mKate2 expression using an inverted 

fluorescence microscope (Leica Microsystems GmbH).  

CRISPRi mediated gene knockdown studies, using CCBE1 g+37 (Table 3.1), were 

performed by supplementing the media with doxycycline (Dox; 2 µM). To allow CCBE1 

expression, cells were cultured in the absence of Dox. The gene knockdown efficiency was 

examined by RT-qPCR.  
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Both generated cells lines, CRISPRi-CCBE1 KD and control were also cloned by limiting 

dilution in 96-well plates (Falcon™) coated with Matrigel. Cells were seeded at a density of 0.5 

cells/well and 7/6 clones were isolated from CRISPRi-CCBE1 KD/ control populations 

respectively. 

3.3.hiPSC Characterization 

3.3.1.Cell concentration and viability determination 

Accutase (STEMCELL Technologies) and TrypLETM Select (Gibco Life Technologies) 

were used to enzymatically dissociate hiPSC and differentiated cells respectively into single cell 

suspensions, during 3 minutes at 37ºC. Cell suspensions were then diluted in 0.1 % (v/v) Trypan 

Blue (Life Technologies) in DPBS (Gibco®).  Trypan Blue cannot enter the viable cells membrane 

but enters in non-viable cells that exhibit damaged membranes [131], allowing the quantitative 

determination of cells viability and concentration after counting the cells in a hemocytometer 

counting chamber (Fuchs-Rosenthal). 

3.3.2.Cell proliferation 

The percentage of proliferating hiPSC cells was determined using Click-iT EdU (5-

ethynyl-2´-deoxyuridine) Flow Cytometry (FC) Assay Kit (Life Technologies) following 

manufacturer’s recommendations.  Edu is a thymine analog that can be incorporated into DNA 

during cellular replication to detect cell proliferation. Cell cultures were incubated with Edu (10 

μM) in culture media for 24 hours at 37ºC. After the incubation period, cells were fixed with the 

fixative solution (Life Technologies) provided in the Kit for 15 minutes and permeabilized with 

saponin-based working reagent for 15 minutes. Cells were then incubated with Click-iT 

AlexaFluor® 488 azide, for 30 minutes. All incubations periods were performed at RT and 

protected from the light. Samples were analyzed in a CyFlow® space instrument (Partec GmbH, 

Germany). At least 10,000 events were registered per sample.  

3.3.3.Immunocytochemistry 

The detection of CM markers in hiPSC-derived CM cultures (CRISPRi-Ctrl and CRISPRi-

CCBE1 KD) was performed as described elsewhere [132]. Preparations were visualized in point 

scan confocal microscope (SP5, Leica). Cells were fixed in 4% (v/v) paraformaldehyde in DPBS 

for 15 min and then blocked and permeabilized (for intracellular epitopes) in 0.2% (v/v) in fish skin 

gelatin (FSG) and 0.1% (v/v) Triton X-100 (Sigma-Aldrich) in DPBS for 30 min. Cells were 

incubated with primary antibodies diluted in 0.125% (v/v) in FSG and 0.1% (v/v) Triton X-100 at 

room temperature (RT) for 2 h. Then, cells were washed three times in DPBS and then incubated 

with secondary antibodies diluted in 0.125% (v/v) FSG and 0.1% (v/v) Triton X-100 in PBS at RT 

for 1 h. After three washing steps in PBS, cell nuclei were counterstained using DAPI (Life 

Technologies). Preparations were visualized in point scan confocal microscope (SP5, Leica). 

Primary and secondary antibodies used are listed in Table 3.2. 
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3.3.4.Flow Cytometry  

Cells along cardiac and endothelial differentiation were collected and dissociated by 

incubation with Accutase for 3 minutes at 37ºC, for undifferentiated cells, or TrypLETM Select 

(Gibco Life Technologies), for the differentiated cells for 5 minutes at 37ºC. 

For membrane markers detection, cells were washed with 2% (v/v) FBS in DPBS 

(washing buffer), and then incubated for 1 hour at 4°C with the primary antibody. After the 

incubation period, cells were washed twice with washing buffer. For non-conjugated primary 

antibodies, cells were further incubated with the suitable secondary antibody for 30 minutes at 

4ºC, followed by two washes with washing buffer.  

For intracellular markers detection, cells were detached and washed with Intra Buffer 

(phosphate buffered saline, pH 7.2, supplemented with 0.5% bovine serum albumin (BSA) and 

2mM EDTA), after which, cells were fixed using Inside Stain Kit (Miltenyi Biotec), according to the 

manufacturer’s instructions. Cells were incubated with primary antibodies for 30 minutes in the 

dark at room temperature (18-25ºC). After the incubation period cells were washed with Inside 

Perm reagent (Miltenyi Biotec), then re-suspended in Intra Buffer for analysis or incubated with 

the secondary antibody (30minutes in the dark at RT) if the primary antibody was non-conjugated. 

All samples were analyzed in a CyFlow® space instrument (Partec GmbH, Germany). At least 

10,000 events were registered per sample. Quantitative data was analyzed using FlowJo 

software.  Primary and secondary antibodies used are listed in Table 3.2.  

3.3.5.mRNA Extraction and RT-qPCR  

Cells were dissociated as previously described, collected and washed with DPBS. For 

storage these pellets were snap-freezed with liquid nitrogen and stored at -80ºC until mRNA 

extraction. 

mRNA was extracted using a High Pure RNA isolation Kit (Roche) according to 

manufacturer’s instructions and quantified in the NanoDrop 2000c (Thermo Fisher). cDNA 

synthesis was carried out using the Transcriptor High Fidelity cDNA Synthesis Kit (Roche). RT-

qPCR reactions were performed using the LightCycler 480 Instrument II 384-well block (Roche) 

and the program cycles as follow: pre-incubation for 10 minutes at 95ºC; 45 cycles of amplification 

with denaturation at 95ºC for 15 seconds and annealing at 60ºC for 1 minute; extension at 72ºC 

for 5 minutes. The primers and probes used in this work are listed in Table 3.3. The Cycle 

threshold (Ct) was determined using LightCycler 480 Software version 1.5 (Roche). The results 

were analyzed as described elsewhere (Livak & Schmittgen 2001), using the 2-ΔΔC
T method for 

relative gene expression analysis. The gene expression data was normalized using two 

housekeeping genes, RPLP0 and GADPH, and represented relative to a control sample (set at 

1).  
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Table 3.2 – List of all antibodies and dilutions used for immunocytochemistry and flow cytometry analysis. 

 Antibody Origin Supplier Catalog No. 
Dilution 

(Application) 
 

P
ri

m
a
ry

 

Col IV Rabbit Abcam ab6586 1:100 (IC)  

TroponinT Mouse Thermoscientific MS-295-P1 1:200 (FC, IC)  

TRA-1-60 Mouse Santa Cruz sc-21705  1:10 (FC)  

TRA-1-81 Mouse Santa Cruz sc-21706  1:10 (FC)  

S
e
c
o

n
d

a
ry

 

Alexa 488, anti-

mouse IgG1 
Goat 

Life 

Technologies 
A-21121 1:200 (FC)  

Alexa 488, anti-

mouse IgM 
Goat 

Life 

Technologies 
A-21042 1:200 (FC)  

Alexa 488, anti-

rabbit IgG1 
Goat 

Life 

Technologies 
A-11008 1:200 (FC)  

Alexa 594, anti-

mouse IgG1 
Goat 

Life 

Technologies 
A-11005 1:200 (FC, IC)  

C
o

n
ju

g
a
te

 

SSEA1-FITC Mouse BD Biosciences 560127 1:10 (FC)  

SIRPα/β 

(CD172) PE 
Mouse BioLegend 323805/323806 1:5 (FC)  

Is
o

ty
p

e
 FITC Mouse IgM BD Biosciences 553474 1:400 (FC)  

Mouse IgG1 Santa Cruz sc-2877 1:2.5 (FC)  

Mouse IgGƙ1-PE Santa Cruz sc-2878 1:5 (FC)  

 Note: FC, flow cytometry; IC, immunocytochemistry.  

 

3.3.6.Transmission electron microscopy (TEM) 

Monolayers of differentiated CRISPRi-Ctrl and CRISPRi-CCBE1 KD cultures (day 15 of 

differentiation) were fixed in 2% (v/v) paraformaldehyde and 2% (v/v) glutaraldehyde in 0.1 M 

phosphate buffer (pH 7.4) for 1 hour and subsequently washed four times in 0.1 M phosphate 

buffer before fixation with osmium tetroxide (1% (v/v) in 0.1 M phosphate buffer) for 30 minutes 

on ice in the dark under agitation. After two washes with 0.1 M phosphate buffer and two washes 

with water, samples were incubated with tannic acid (1% (w/v) in water) for 20 minutes, on ice. 

After five washes with water, the samples were contrasted with aqueous uranyl acetate (0.5% 

(w/v), 1 hour, on ice, in the dark), washed three times in distilled water and dehydrated in a graded 

series of ethanol (30%, 50%, 75%, 90%, 100% (v/v)). Finally, samples were embedded in epon 

resin. Ultrathin sections of cell monolayers were cut on a Leica UC6 ultramicrotome using a 

diamond knife. Sections were collected on formvar-coated slot grids, stained with lead citrate, and 

analyzed on a FEI Morgagni 268 at 80 kV. Images were taken with an Olympus MegaView III 

using the iTEM software. 
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Table 3.3 –  List of all Primers used in RT-qPCR. 
 

Gene Supplier Reference 

CCBE1 Hs99999905_m1 

Nanog Hs02387400_g1 

POU5F1 Hs00999632_g1 

T Hs00610080_m1 

KDR Hs00911700_m1 
MESP1 Hs00251489_m1 

GATA4 Hs00171403_m1 

Nkx2.5 Hs00231763_m1 

VCAM-1 Hs01003372_m1 

TNNT2 Hs00165960_m1 

MYL2 Hs00166405_m1 

MYL7 Hs00221909_m1 

MYH6 Hs01101425_m1 

MYH7 Hs01110632_m1 

TNNI1 Hs00913333_m1 

TNNI3 Hs00165957_m1 

PECAM-1 Hs01065279_m1 
CDH5 (VE-
cadherin) 

Hs00901463_m1 

RPLP0 Hs99999902_m1 

GAPDH Hs99999905_m1 

Note: Primers and Probe Mix were purchased from Life 

Technologies 

 

3.4.Statistical Analysis 

Statistical parameters including the exact value of n, precision measures (mean ± SEM) 

and statistical significance are reported in the Figures and the Figure Legends. Statistical analysis 

was performed by unpaired Multiple t tests using 0.5 % False Discovery Rate (FDR) approach to 

compare CRISPRi-CCBE1 KD with CRISPRi-Ctrl at different time points of differentiation. For all 

graphs, data are represented as mean ± SEM. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 

0.0001; were considered significant. PRISM software was used for analysis, graphing, and 

statistical analyses (www.graphpad.com/scientific-software/prism/). 

 

 

 

 

 

 

http://www.graphpad.com/scientific-software/prism/
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4.Results and Discussion 

 

4.1.CCBE1 expression is transiently upregulated at early stages of 

cardiomyocyte differentiation 

We aimed to assess CCBE1 expression and explore its functional role on cardiac 

commitment/differentiation of hiPSC. For this purpose, a modified and inducible hiPSC line with 

CRISPRi system, that harbors a deactivated Cas9 (dCas9) fused with a repressor domain (KRAB) 

was used. This approach enabled us to take advantage of this new genetic tool system (CRISPR) 

and avoid the complications related with mutated alleles, created by double-strand breaks which 

are induced by Cas9 in CRISPRn technology, that could cause unwanted partial loss-of-function 

or gain-of-function phenotypes.  

These cells, recently developed by Mandegar and colleagues [123], contain a Tet-On 

inducible system to control the expression of deactivated cas9 (dCas9) and a mCherry 

fluorescence marker, induced by the presence of doxycycline (Dox). These characteristics let us 

control the expression level of a target gene (inducible and reversible system) along expansion 

and at different stages of cardiac differentiation in hiPSCs lines, carrying the gene-specific gRNA. 

Fluorescence microscopy was used to monitor Dox responsiveness based on the intensity signal 

of mCherry, that works as a surrogate for dCas9-KRAB expression, allowing an easy monitoring 

in hiPSC and along the cardiac differentiation process over time. So, with this approach, we can 

easily generate loss-of-function phenotypes in this hiPSCs and their derivatives in a rapid and 

efficient manner. 

Initially, the modified hiPSC line (CRISPRi) and its wild type (WT), both with the same 

genetic background, were characterized according to their pluripotent phenotype and ability to 

differentiate into CMs.  Before initiating the differentiation process, undifferentiated state and 

pluripotency of hiPSC were assessed at gene and protein expression levels, by RT-qPCR and 

flow cytometry analysis, respectively (Figure 4.1). 

 

 
Figure 4.1 – Pluripotency of WTC and CRISPRi hiPSC lines. (A) Flow cytometry analysis of stemness 
markers (TRA-1-60, TRA-1-80, SSEA-4) and SSEA-1 in both CRISPRi-hiPSC and WTC-hiPSC lines along 
the expansion process. (B) Gene expression of stemness markers Oct-4 and Nanog relative to WTC line. 
Gene expression was quantified using the 2-ΔΔC

T method relatively to day 0 of differentiation of each cell line 
(housekeeping: RPLP0). Data are presented as mean ± SEM of 3 independent experiments. * p< 0.05, 
Unpaired t-test with Welch's correction. 
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High percentage of cells (≥ 95%) expressing stemness markers, such as TRA-1-60, TRA-

1-81, SSEA-4, and very low percentage of positive cells (≤ 0,5%) for SSEA-1 (early differentiation 

marker) were detected in both cell lines by flow cytometry (Figure 4.1 A). However, although both 

cells lines show gene expression of pluripotency marker Oct-4 (POU5F1) in a similar level, the 

modified CRISPRi cell line expressed higher levels of Nanog (3-fold increase), another 

pluripotency marker, when compared with WT line (Figure 4.1 B).  

We then differentiated CRISPRi and WT cell lines into CMs by modulation of stage-

specific pathways (Activin and Wnt/β-catenin-signaling) through sequential addition of growth 

factor and small molecules (CHIR99021, ascorbic Acid and IWR-1) essential for CM specification, 

following a protocol previously published by our group [132] (Figure 4.2 A). Both cultures were 

able to differentiate into beating CMs, showing a monolayer of cells with CM-like cell morphology 

at day 15 (Figure 4.2 B). The generated CMs were characterized based on their structural 

features using immunocytochemistry tools, where it was observed the presence of Col IV and 

cTnT markers (Figure 4.2 C). Moreover, differentiation progression was confirmed by the 

expression of stage-specific genes, namely of mesoderm formation at day 1, (expression of 

Brachyury T (T)), cardiac mesoderm differentiation at day 2-3 (expression of MESP1), cardiac 

progenitors cells (CPC) specification after day 4 (expression of GATA4), and CMs differentiation 

from day 6 onwards by expression of TNNT2 (Figure 4.2 D). Additionally, comparable percentage 

of differentiated cells expressing cardiac markers (SIRPα/β and cTnT) suggests that both cell 

lines have similar differentiation capacities (Figure 4.2 E). At day 15 of differentiation WTC and 

CRISPRi cell cultures were already 84.2 ± 0.5% and 88.2 ± 6.8% positive for cTnT and 61.3 ± 

1.1% and 77.8 ± 7.7% positive for SIRPα/β, respectively, indicating their commitment towards 

CM lineage. In summary, CMs obtained from both cell lines present morphologic and phenotypic 

properties typical of CMs, as showed by phase contrast microscopy, immunocytochemistry, flow 

cytometry and gene expression analysis (Figure 4.2). 

CCBE1 expression profile was also identical in both cultures, showing a downregulation 

at day 1/2 of differentiation and from day 3 expression start to increase, with a peak of expression 

in the cardiac progenitors’ phase (day 4), being downregulated again at day 15 (Figure 4.2 F). 

This indicates that genetic alteration of the WT line, did not affect CCBE1 expression pattern and 

that this protein is primarily expressed during CPC specification along the cardiac commitment. 

This result is consistent with what is described in the literature, namely, in chickens, CCBE1 was 

reported to be expressed in the bilateral cardiogenic mesoderm, in the  early cardiac progenitors 

[133]. In mice, CCBE1 was confirmed to be expressed in FHF, SHF and proepicardium [87], 

corresponding to the cardiac progenitors phase during heart organogenesis.  
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Figure 4.2 – human induced pluripotent stem cells efficiently differentiate into cardiomyocytes. (A) 
Schematic differentiation protocol using growth factors and small molecules for Wnt signaling modulation 
using hiPSC lines, as recently published [129]. Legend: Mes - mesoderm; Cardiac Mes - cardiac mesoderm. 
(B) Morphology of hiPSC-CRISPRi and hiPSC-WTC cells cultures at the beginning of differentiation and at 
day 15. Scale bar, 100 µm. (C) Detection of cardiomyocyte markers ColV (green) and cTnT (red) at day 15 
Nuclei were counterstained with DAPI (blue). Scale bar represent 20 µm. (D) Relative expression 
mesendoderm (T), cardiac mesoderm (MESP1), cardiac progenitor (GATA4) and cardiomyocyte (TNNT2) 
genes in hiPSC (CRISPRi & WT) lines along cardiac differentiation. Gene expression was quantified using 
the 2-ΔΔC

T method relatively to day 0 of differentiation (housekeeping: RPLP0 and GAPDH). (E) Flow 
cytometry analysis of cardiac markers, SIRPα/β and cardiac troponin T (cTnT) in both hiPSC-CRISPRi and 
hiPSC-WTC- lines at the last day of differentiation. (F) CCBE1 gene expression along cardiomyocyte 
differentiation in both WTC and CRISPRi hiPSC lines. Gene expression was quantified using the 2-ΔΔC

T 
method relatively to day 0 of differentiation of each cell line (housekeeping: RPLP0 and GAPDH). Data are 
presented as mean ± SEM of 3 independent experiments. * p< 0.05, Unpaired t-test with Welch's correction. 
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4.2.Generation of CCBE1 knockdown in iPSC cell line 

To accomplish CCBE1 knockdown (KD), for loss-of-function studies, a new cell line was 

generated by electroporation of the previously used hiPSC-CRISPRi with the selected CCBE1-

targeting gRNA, called CRISPRi-CCBE1 KD. Although CRISPRi technology is unquestionably 

effective, it only knocks down gene expression efficiently when gRNAs are targeted near the 

transcription site (TSS) of the gene of interest (between -250 to +250 bp) [123, 134]. Hence, we 

constructed four gRNAs to target near the TSS, yet only the gRNA targeting 37 bp downstream 

of CCBE1 TSS was selected for further experiments, since it was the only one without unwanted 

insertional mutations during the cloning process.  For the control culture CRISPRi cell line was 

electroporated with an empty pgRNA vector, without a gRNA, named CRISPRi-Ctrl. Therefore, in 

the control condition, dCas9 expression is induced by Dox presence, however without the aptitude 

for CCBE1 KD since the gene-specific gRNA is missing. Both plasmids used, with or without 

gRNA contain mKate2 fluorescence marker, that allows an easy monitoring of cells that 

successfully incorporated the plasmid (Figure 4.3 A). Higher electroporation efficiencies (60 ± 

4% using the pgRNA containing the gRNA4 and 52 ± 2% using the empty pgRNA) were attained 

using higher voltage condition (1400 V, Figure 4.3 B). 

 

 

Figure 4.3 – CRISPRi technology for CCBE1 knockdown. (A) Schematic representation of guideRNAs 
design (+/-150 bp from the transcription start site (TSS)) and selection (detailed information in Table 3.1); 
hiPSC-CRISPRi electroporation with the selected gRNA; and CCBE1 loss-of-function (LOF) studies by 
doxycycline (Dox) induction. (B) Electroporation efficiency of hiPSC-CRISPRi cell line with CCBE1-targeting 
gRNA (CRISPRi-CCBE1 KD) and empty pgRNA plasmid as control condition (CRISPRi-Ctrl) assessed by 
mKate2 expression. n.e., not evaluated. Condition 1: 1400 V, 20 ms, 2 pulses and Condition 2: 1100 V, 
30ms, 1 pulse (C) Detection of mKate2 reporter on cell nuclei of efficiently electroporated hiPSCs after 15 
days post-blasticidin selection. Scale bar, 100 µm. 



Results & Discussion 

Disclosing CCBE1 role in Cardiac Differentiation of Human Pluripotent Stem Cells  29 

 

Two different electroporation conditions were tested for this purpose (detailed in Materials 

and Methods section). Condition 1 showed superior efficiency compared to Condition 2 (≈60% vs 

≈30%, Figure 4.3 B). The plasmid transfection efficiency obtained for these hiPSCs is 

comparable with reported literature using an electroporator. These efficiencies are hiPSC line and 

electroporation condition (voltage and pulse number) dependent, ranging from 17% to 64% [135]. 

Afterwards, both newly generated cell lines went through a blasticidin selection step for a period 

of 15 days to increase the percentage of cells containing the pgRNA-CKB vector. Since the 

transfected plasmid allows constitutive expression of blasticidin resistance marker (bsd), after this 

step both polyclonal populations displayed higher than 90% of mKate2+ cells (Figure 4.3 C) 

To test the efficiency of the selected gRNA inserted in hiPSCs, we cultured CRISPRi-

CCBE1 KD polyclonal population with (+Dox) and without (-Dox) Dox addition for 8 days. Cells 

were counted daily, and the results obtained showed no significative differences between the two 

conditions; Both +Dox and -Dox cultures demonstrated a similar cell specific growth rate (0.038 

h-1 vs 0.042 h-1 respectively) (Figure 4.4 A) and corresponding doubling time of (≈ 18h vs ≈17h), 

which is close to the 18-20h described in the literature for iPSC [136]. Moreover, hiPSCs 

presented high proliferative capacity as demonstrated by the incorporation of Edu in 

approximately 99% of cells from both cultures (Figure 4.4 B). Cell pellets were also collected for 

gene expression analysis. Results showed approximately 80% downregulation of CCBE1 

expression after 6 days of Dox induction without changes in pluripotency markers such as Nanog 

(Figure 4.4 C-D). The knockdown level shows an efficient CCBE1 KD (80%) with the selected 

gRNA, consistent with the levels reported by Mandegar and colleagues for different genes that 

varied between 60%-99% of knockdown [123]. 

 In summary, we showed an efficient CCBE1 KD with no impact on hiPSC growth and 

stemness (Figure 4.4). In addition, with this experiment we can observe that to obtain a significant 

CCBE1 KD with the selected gRNA, these hiPSCs need to be cultured with Dox for at least 6 

days (Figure 4.4 D).  
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Figure 4.4 – Efficient CCBE1 knockdown with the selected gRNA in hiPSCs. (A) Determined cell 
specific growth rate (h-1) of CRISPRi-CCBE1 KD cell line with and without Dox addition. (B) Percentage of 
proliferative cells (CRISPRi-Ctrl and CRISPRi-CCBE1 KD) after 8 days under doxycycline induction. (C) 
Pluripotency marker (Nanog) gene expression was not affected along 8 days of doxycycline induction. (D) 
CCBE1 was knocked down by 80 % in polyclonal CRISPRi-CCBE1 KD after 8 days of Dox induction. Data 
are presented as mean ± SEM of three independent experiments. 

 

4.3.CCBE1 knockdown impacts cardiomyocytes differentiation 

The next step consisted on evaluating if CCBE1 is crucial for cardiac progenitors’ 

generation, proliferation and the impact along CM differentiation. Both CRISPRi-Ctrl and 

CRISPRi-CCBE1 KD generated cell lines were differentiated under Dox induction. Before the 

beginning of differentiation, these hiPSC were expanded for 7 days with Dox to ensure that 

CCBE1 was efficiently knocked down (at least 80 %), as previously shown by our results (Figure 

4.4 D). As demonstrated above in the gene expression profile of CCBE1 along the CM 

differentiation (Figure 4.2 F), the peak of its expression was at day 4 (Cardiac mesoderm), 

suggesting that it is at this stage that CCBE1 would play its major role in cardiac specification. 

Therefore, we differentiated these hiPSCs into CMs for a period of 15 days, where the Dox was 

present until day 3 of differentiation (cardiac mesoderm stage), aiming to induce CCBE1 KD only 

during this phase, after that, the differentiation protocol continued without Dox induction (Figure 

4.5 A). In parallel, daily Dox addition was also performed along the whole differentiation process 

with similar results obtained (data not shown). 

The gene expression analysis, of three independent experiments, revealed a lower 

expression of CCBE1 until day 3 in CRISPRi-CCBE1 KD, demonstrating an efficient CCBE1 KD 
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along differentiation. However, the expression of mesoderm and cardiac mesoderm genes (T and 

MESP1, respectively) was unaffected compared to the control condition, which did not have a 

gRNA and so, no CCBE1 knockdown (CRISPRi-Ctrl). Moreover, no significant differences were 

detected in cardiac progenitors’ gene expression levels (NKX2-5 and GATA4).  

Still, when we analyzed the CMs specific marker expression (TNN2), a significant 

reduction in the CRISPRi-CCBE1 KD culture can be observed (gene expression results) in 

comparison to the control condition (Figure 4.5 B), suggesting a potential impact of CCBE1 on 

cardiac differentiation. However, it did not affect the percentage of cardiac troponin T-positive 

cells at day 15, were we attained more than 95 % cTnT positive cells in both conditions (Figure 

4.5 D). Mutations in TNNT2 can alter cTnT function and lead to hypertrophic (HCM) and dilated 

(DCM) cardiomyopathies, where sarcomeres organization are severely affected [137, 138]. 

Similar spontaneous beating rates were also observed, 28 bpm vs 22 bpm for the CRISPRi-Ctrl 

and CRISPRI-CCBE1 KD cultures, respectively (Figure 4.5 E). The spontaneous beating rates 

were within the range of reported values for hPSC-CMs in vitro (21–84 bpm) [139].  Moreover, 

similar number of CMs (data not shown) and low percentage of proliferative cells (EdU+ cells) 

were also detected at day 15 in both cell lines (Figure 4.5 C). Besides that, no impact on the 

proliferative capacity of CPC at day 6 or CMs at day 15 was also observed (Figure 4.5 C). These 

results suggest that CCBE1 role may be more relevant for CM specification rather than cardiac 

progenitors’ generation and proliferation. 

To further investigate the effect of CCBE1 KD on CMs differentiation, we also evaluated 

the gene expression of other cardiac specific markers, such as TNN1, TNN3, MYL2 (MLC2v), 

MYL7 (MLC2a), MYH6 (αMHC) and MYH7 (βMHC), in both CRISPRi-CCBE1 KD and control cell 

lines. The ratio of cardiac troponin I isoforms gene expression (TNNI3:TNNI1) and α- and β-

cardiac myosin heavy chain genes (MYH7:MYH6) were lower in CCBE1 KD compared to the 

control condition at day 15 of differentiation (Figure 4.6 A-B). In addition, a lower expression ratio 

of light chain genes (MYL2:MYL7) was detected in CRISPRi-CCBE1 KD at day 6 although no 

significant impact of CCBE1 KD relative to this ratio was observed at day 15 (Figure 4.6 C). These 

results are in accordance with the literature and suggest a more immature phenotype in CRISPRi-

CCBE1 KD cell line. It is described that gene expression profile of immature CMs express 

predominantly the MYH6 and TNNI1 cardiac markers. Whereas, in adult CMs these cardiac genes 

isoforms (MYH7 and TNNI3) are expressed at higher levels and MYL2 expression is also more 

predominant than its isoform (MYL7) [53]. 

At the last day of differentiation (day 15), both CRISPRi-CCBE1 KD and control cultures 

contained beating CMs, with no impact at the morphological level (Figure 4.7 A). Although, well 

defined and aligned fibers stained for cardiac troponin T (cTnT) could be seen in both conditions, 

in CRISPRi-CCBE1 KD more areas with poorly aligned fibers were found (Figure 4.7 B). These 

results were consistent with the lower TNNT2 gene expression profiles in CCBE1 KD (Figure 4.5 

B) and gene expression ratios of others cardiac markers (Figure 4.6 A), these data suggest a 

more immature cardiac phenotype in CRISPRi-CCBE1 KD cultures. 
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Figure 4.5 – CCBE1 knockdown during cardiomyocyte differentiation. (A) Schematic representation of 
doxycycline supplementation mode (2 µM from Day -7 until Day 3 of differentiation) along cardiomyocyte 
(CM) differentiation using both control (CRISPRi-Ctrl) and CRISPRi-CCBE1 KD lines. (B) RT-qPCR 
analyses of the following genes in control (CRISPRi-Ctrl) and CRISPRi-CCBE1 KD cultures along CM 
differentiation: CCBE1, T, MESP1, NKX2-5, GATA4 and TNNT2. Gene expression was quantified using the 
2-ΔΔC

T method relatively to CRISPRi-Ctrl culture at day 0 (housekeeping: RPLP0 and GAPDH). (C) 
Percentage of proliferative cells in CRISPRi-Ctrl and CRISPRi-CCBE1 KD cultures at day 6 and 15. (D) 
Percentages of cTnT positive cells at day 15 of differentiated cultures. (E) Mean Beat Rate (beats/minute) 
in both cultures at day 15. Data presented as mean ± SEM of three independent experiments. * p< 0.05, 
Multiple t-test (FDR 0.05).  

 

In addition, using TEM analysis we observed that the CRISPRi-CCBE1 KD cultures 

displayed a poorly organized contractile machinery, characterized by low myofibril density and 

orientation, variable Z-disc alignment and few mitochondria close to the myofibrils (Figure 4.7 D-

E). As well, a higher density of mitochondria with more defined and prominent cristae were 

observed close to the sarcomeres in the CRISPRi-Ctrl (Figure 4.7 E). Furthermore, in the control 

condition cells presented a higher density of aligned myofibrils composed by sarcomeres with 

organized Z-disks, A- and I-bands, with lower angle dispersion (4.29 ± 3.49 in CRISPRi-CCBE1 
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KD versus 2.68 ± 2.40 in CRISPRi-Ctrl) and higher sarcomere length (1.58 µm in CRISPRi-

CCBE1 KD vs 1.72 µm in CRISPRi-Ctrl, Figure 4.7 C). 

 

Figure 4.6 – CCBE1 knockdown affects other cardiac specific markers gene expression. (A) Ratio of 
relative expression of TNNI3:TNNI1, MYH7:MYH6 and MYL2:MYL7 genes in both cultures at day 6 and 15. 
Gene expression was quantified using the 2-ΔΔC

T method relatively to CRISPRi-Ctrl culture at day 6 
(housekeeping: RPLP0 and GAPDH). Data are presented as mean ± SEM of three independent 
experiments. * p< 0.05, *** p< 0.001, **** p< 0.0001, Multiple t-test (FDR 0.05). 

 

It has already been described that in adult cardiomyocytes sarcomeres are longer (2.2 

μm), well organized (with defined Z-disks, I-, A-, M-bands), and show longitudinal alignment, while 

the more immature CMs have shorter (1.6 µm) and poorly aligned sarcomeres, mainly with Z-

disks and I-bands [53]. Also, the number and volume occupied by mitochondria in cells increase 

along differentiation. Thus, we can assume that CCBE1 can modulate the CMs at maturation level 

by regulating key mediators of cardiac development, since we can observe a more immature 

phenotype both at structural (Figure 4.7 A-E), and gene expression levels (Figure 4.6 A), when 

CCBE1 gene expression is knock downed. 

These results regarding CCBE1 role during CMs maturation might impact stem cell and 

cardiovascular research. It is known that one of the major problems delaying clinical progress in 

these areas is the lack of robustness and time-consuming in vitro methods that are used 

nowadays to obtain mature CMs, i.e cells able to mimic with reliability the behavior of CMs in adult 

hearts. The fact that hPSC-CMs experience structural and functional maturation process when 

transplanted into the functional myocardium of host species, shows that this cells can effectively 

mature, as long as they grow in the right environment [140]. This information led many scientists 

to investigate the physical, genetic and environmental cues that could facilitate the maturation 

process. Current protocols to differentiate hiPSCs into CMs can produce beating CMs by day 6 

of differentiation. However, the maturation status of hPSC-CMs is still not well defined. It is also 

known that longer culture times improve the maturation process, which may take up to 1 year to 

show molecular signatures similar to those seen in mature cardiac tissues in vivo [141]. Moreover, 

changes in sarcomeres ultrastructure, calcium handling and ion channel expression also occur 
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over long periods of time [142, 143], which makes this protocols impractical for biomedical 

applications due to this extensive culture periods.  

 

 

Figure 4.7 – Impact of CCBE1 knockdown on cardiomyocyte differentiation/maturation. (A) 
Morphology of CRISPRi cells from control and CCBE1 KD cultures at day 15. Scale bar, 100 µm. (B) 
Detection of cardiomyocyte marker cTnT at day 15. Scale bar, 50 µm and 10 µm in insight. (C-D) TEM 
images of CM from both cultures at day 15. Myofbrils (MF), Z-disks (Z), sarcomeric bands: A- and I-bands 
in panel D, intercalated disks (ID) and desmosomes (arrows) connecting adjacent CMs, and Mitochondria 
(M) in panel E are highlighted. Scale bars= 2μm (C), 500nm (D). (E-F) Sarcomeres length (nm) and 
sarcomeres alignment (determined by the standard deviation of the sarcomere angle in each taken image),in 
both conditions was assessed from TEM images using Fiji Image J software. 

 

Therefore, modulation of factors that are important during the maturation process can be 

useful to obtain consistent and mature CMs in a shorter period. One example already studied is 

the modulation of let-7 microRNA family, which was identified as the most highly up-regulated 

microRNA family in hESC-CMs culture [141]. In this study, gain- and loss-of-function analyses of 

let-7 in hESC-CMs demonstrate that these microRNAs are important for maturation, but not for 

early differentiation of CMs. Moreover, the overexpression of let-7 family members in hECS-CMs 

enhanced cell size, sarcomere length, force contraction and respiratory capacity of this cells [141]. 

This boosted maturation, was further suggested to be the result of down-regulation of the 

phosphoinositide 3 kinase (PI3K)/AKT protein kinase/insulin pathway and an up-regulation of fatty 

acid metabolism. Suggesting let-7 microRNA family as an important mediator in the maturation 

process of cardiomyocytes [141]. Given this, we may hypothesize that CCBE1 could play a similar 
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role during maturation process, where through the correct modulation of this protein, higher 

maturation levels of CMs in vitro could be obtained. 

4.4.CCBE1 knockdown has no impact on endothelial expression markers 

Next, we wanted to investigate the role of CCBE1 on other cardiac lineages. As CCBE1 

is known as an important factor for efficient formation of coronary vasculature [144], we evaluated 

its impact on cardiac endothelial cell differentiation (Figure 4.8).  

 

 

 

 

 

 

 

 

 

 

Figure 4.8 – Effect of CCBE1 knockdown on cardiac endothelial differentiation. (A) Schematic 
representation of cardiac endothelial differentiation with doxycycline induction (from day -7 until day 10). (B) 
Detection of mCherry+ cells (cytoplasmic staining) and mKate2+ cells (nuclear staining) in CRISPRi at day 
3, 6 and 10. Scale bar, 100 µm. (C) RT-PCR analyses of CCBE1, PECAM1, VCAM1, KDR and CDH5 (VE-
cadherin) genes in control (CRISPRi-Ctrl) and CRISPRi-CCBE1 KD cultures along cardiac endothelial 
differentiation. Gene expression was quantified using the 2-ΔΔC

T method relatively to CRISPRi-Ctrl culture at 
day 0 (housekeeping: RPLP0 and GAPDH). (D) Percentages of VE-cadherin positive cells at day 10 of 
differentiation in both cultures.  Data are presented as mean ± SEM of two independent experiments. * p< 
0.05, *** p< 0.001, **** p< 0.0001, Multiple t-test (FDR 0.05). 
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For this purpose, we  differentiated  both control and CRISRPi-CCBE1 KD polyclonal 

populations into endothelial cells following initial cardiac mesoderm induction, as reported in [130, 

145]. In this experiment we added Dox, to induce CCBE1 KD, every day until the last day of 

differentiation (day 10) (Figure 4.8 A). The normal CCBE1 gene expression profile along 

endothelial specification is different in comparison to CM differentiation (Figure 4.5 B). An 

upregulation is observed from day 4, with a peak of expression at day 6 and continues to be 

expressed until the last day of differentiation at day 10 (Figure 4.8 C).  

Both cultures were able to differentiate into cardiac endothelial cells, displaying a 

monolayer of cells with endothelial-like cell morphology (Figure 4.8 B) and despite the effective 

CCBE1 KD along the endothelial differentiation process, no changes on endothelial-related genes 

expression such as, PECAM1 and VE-cadherin (CDH5), were detected (Figure 4.8 C). In 

addition, no significative differences were observed on the percentage of VE-cadherin positive 

cells at the last day of differentiation in both populations (29.2 ± 2.8 % and 23.5 ± 0.3 % in 

CRISPRi-Ctrl and CRISPRi- CCBE1 KD differentiated cells, respectively). These results 

suggested no effect of CCBE1 KD on cardiac endothelial differentiation. 

In the future, alternative and more efficient protocols for EC differentiation could be 

explored to detect any changes on endothelial phenotype on CCBE1 KD populations, since a low 

percentage of endothelial cells were obtained (≈ 30% of VE-cadherin positive cells) with the 

reported protocol herein used (Figure 4.8 D).  

4.5.CCBE1 knockdown is more prominent in the selected clones compared to 

the polyclonal populations 

To further increase the level of CCBE1 KD obtained (80%, Figure 4.4 D), we selected 

clonal populations for each condition (CRISPRi-Ctrl and CRISPRi-CCBE1 KD) according to their 

pluripotent phenotype, by choosing the clones with higher percentage of TRA-1-60 positive cells 

and lower SSEA-1. All clones were obtained by limited dilutions method (described in Material 

and Methods section). Since, in the polyclonal population used until now there is a higher 

heterogeneity, we also assessed CCBE1 KD with the selected clones, performing the same kind 

of experiments already carried out for the polyclonal populations (Figure 4.9 A).  

In CCBE1 KD condition clone #25 was discarded due to lower TRA-1-60 positive cells, 

whereas clones #14 & #86 were selected for further analysis, since they expressed high levels of 

this pluripotency marker. In the control condition the same type of selection was performed, where 

clones #9 & #22 were chosen. After dox induction a higher percentage of CCBE1 KD was 

observed in both selected clones, #14 and #86, (>99%) when compared to the polyclonal 

population (80%), without significative changes in the expression of Nanog (Figure 4.9 B).  

In the future, we could also evaluate the impact of higher CCBE1 KD level in clones along 

CM/EC differentiation and compare with the polyclonal population results.  
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Figure 4.9 – Efficient CCBE1 knockdown with the selected CRISPRi-CCBE1 KD clones. (A) 
Percentages of TRA-1-60 and SSEA-1 positive cells in different clonal populations of both cultures by Flow 
cytometry analysis. (B) CCBE1 was knocked down by 100 % in the selected clonal populations without 
affecting and Nanog gene expression along 6 days of Dox induction. 
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5.  Conclusions and Future Perspectives 

 

In this work, a CCBE1 knockdown with the selected gRNA was successfully implemented 

on hiPSC cultures without affecting their growth rate, viability and stemness. A downregulation of 

CCBE1 gene expression resulted in sarcomeres with smaller length and poor alignment, that in 

combination with changes in gene expression of cardiac specific markers revealed a more 

immature phenotype in these differentiated CMs. Moreover, no differences in endothelial cells 

phenotype were found when CCBE1 gene was downregulated during the differentiation process. 

Additionally, we successfully selected hiPSC clonal populations that showed a significant higher 

level of CCBE1 knockdown when compared with the polyclonal populations. These clones could 

be used in the future to comprehend if different CCBE1 gene expression levels could modulate 

cardiogenesis in a different manner. 

Here, we showed for the first time that CCBE1 may exert a modulatory effect on hiPSC-

derived CMs phenotype. These new insights can contribute for the implementation of new 

knowledge-driven approaches for more efficient CMs differentiation and maturation protocols. 

Moreover, additional investigation on how CCBE1 modulates cardiogenesis may support the 

progress towards novel cardiac regenerative therapies. 

These data can be further validated in gain-of-function studies and/or in a hiPSC line with 

a different genetic background. Also, transcriptomics studies can be performed to unveil the 

signaling pathways and identify key regulators involved on CCBE1 modulation of cardiac 

phenotype, by revealing the cellular transcriptome changes caused by CCBE1 KD along the 

CM/EC differentiation process. Nevertheless, the assessment of oxidative metabolism and 

electrophysiological characteristics in the differentiated cultures under study would also be 

valuable readouts to further delineate the CM maturity in our system. 
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