

Setembro, 2018

João Cabaço Antunes

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

Licenciado em Ciências de Engenharia Química e Bioquímica

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

Programming and Control of a Single-Column Analog

Simulated Moving Bed Process

[Título da Tese]

Dissertação para obtenção do Grau de Mestre em

Engenharia Química e Bioquímica

Dissertação para obtenção do Grau de Mestre em

[Engenharia Informática]

Orientador: José Paulo Barbosa Mota, Professor Catedrático, FCT-UNL

Co-orientadores: Tiago Santos, Doutorando, FCT-UNL

 Júri:

Presidente: Dr. Joaquim Silvério Marques Vital

Arguentes: Dr. Mário Fernando José Eusébio

Vogais: Dr. José Paulo Barbosa Mota

Programming and Control of a Single-Column

Analog Simulated Moving Bed Process

Copyright © João Cabaço Antunes, Faculdade de Ciências e Tecnologia, Universidade

Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de in-

vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

i

"Those who brave the thorn may eat the rare fruit."

-Conclave Master Tesshin.

iii

Acknowledgements

I would like to express my sincere gratitude to my Prof. Paulo Mota for the contin-

uous support of my study and work, for his patience and immense knowledge. I’d also

like to extend this thanks to Tiago Santos and Abimaelle Chibério for aiding me in the

development and use of my developed work. Furthermore, I’d also like to show appreci-

ation towards my colleague Gonçalo Policarpo, who has worked with me along with his

own master thesis.

Finally, I’d like to give thanks to my family, my parents for their immense patience

and my brother for helping me with the writing of this thesis.

v

Abstract

With the advancements in technology, the development of tools for the control and

testing of the progress in different fields, such as chromatography, has become essential

in concerns to lab work and prototyping. As such, many programming languages have

been adapted and developed with the objective to make the development of such tools

easier.

As our group built the Single-Column Analog Simulated Moving Bed chromatog-

raphy process, the need for a versatile program to ease and simplify the procedure of tests

and adjustments was met with the development of a tool written in the Julia and Python

programming languages. The use of the aforementioned languages enabled us to speed

up the processes of testing and modifying the system built, helping us to get more accurate

results and meet deadlines for reports and presentations.

With this it can be summarized that the development of easy-to-use programs aided

by effective programming languages for the purpose of technological and scientific re-

search is of the interest of various different fields as it allows them to hasten the develop-

ment of the processes in study.

Keywords: Programming, Computer Science, Chromatography, Simulated Mov-

ing Bed

vii

Resumo

Com os avanços em tecnologia, o desenvolvimento de ferramentas para o controlo

e teste no progresso em diferentes áreas, como a cromatografia, tem sido essencial em

termos de trabalho laboratorial e criação de protótipos. Com isto, várias linguagens de

programação foram adaptadas e desenvolvidas com o objetivo de facilitar o desenvolvi-

mento de tais ferramentas.

À medida que o nosso grupo construiu o processo de cromatografia de Leito Móvel

Simulado de Coluna Única, a necessidade de um programa versátil para facilitar e sim-

plificar o procedimento de testes e ajustes foi satisfeita no desenvolvimento de uma fer-

ramenta escrita nas linguagens de programação Julia e Python. O uso das linguagens

acima mencionadas permitiu-nos acelerar os processos de teste e modificação do sistema

construído, ajudando-nos a obter resultados mais precisos e cumprir prazos para relatórios

e apresentações.

Com isto, pode-se sumarizar que o desenvolvimento de programas fáceis de usar

com auxílio a linguagens de programação eficazes para fins de pesquisa científica e tec-

nológica é do interesse de vários campos diferentes, pois permite acelerar o desenvolvi-

mento dos processos em estudo.

Palavras-chave: Programação, Informática, Cromatografia, Leito Móvel Simulado

ix

Contents

1- INTRODUCTION TO CHROMATOGRAPHY... 1

1.1 Development of the Simulated Moving Bed process .. 2

1.2 Development of the Single Column Analog process ... 4

2- PROGRAMMING LANGUAGES .. 7

2.1 High-level programming languages .. 7

2.2 Programming Languages Used .. 7

Julia .. 7

Python .. 9

2.3 Programming Paradigms Followed ... 9

3- INSTRUMENTS AND SETUP .. 11

3.1 Instruments used in the process .. 11

3.2 The Setup .. 12

4- DEVELOPMENT OF INDIVIDUAL DRIVERS ... 15

4.1 Controlling the different instruments .. 15

Pumps ...15

Weight Scale ...17

2-position Valves ...18

Relay Boards ..20

Spectrometer ...22

4.2 The Drivers .. 24

K501.jl ..26

sartorius_balance.jl ...34

vici.jl ..35

Opto-rly88.jl ...36

oo_spectrometer.jl ..37

x

5- CHROMATOGRAPHYSTUDIO.JL AND ITS MACROS .. 39

5.1 ChromStudio.jl ... 39

5.2 ChromStudioHook.jl .. 41

The macros ... 42

5.3 ChromatographyStudio.jl .. 43

6- GUI.JL – THE GRAPHICAL INTERFACE ... 45

7- RESULTS ... 47

8- CONCLUSION ... 51

BIBLIOGRAPHY ... 53

ANNEXES ... 55

xi

List of Figures

Figure 1 - Priciple of Elution Chromatography. ... 1

Figure 2 - Diagram of a True Moving Bed. .. 2

Figure 3 - Diagram of a Simulated Moving Bed. ... 3

Figure 4 - Schematic diagram of the Single Column Setup. ... 4

Figure 5 - Schematic of the Single Column chromatographic process with recycle lag, analogous to a

four-zone SMB. .. 5

Figure 6 - Logo for the Julia language. .. 8

Figure 7 - Logo for the Python language.. 9

Figure 8 - Diagram of the setup with pumps, seven two-way valves, the two 2 position valves and

spectrometer connected (although the image shows two only the UV2 spectrometer is

connected). .. 12

Figure 9 - The Valco 2-position valve (right) with and actuator module (top left) and a manual

controller (bottom left). .. 13

Figure 10 - Example of the graph obtained through the use of python's matplotlib package using

data from oo_spectrometer.jl, the top graph represents the intensity (in red) and absorbance

(in blue) measured by the spectrometer moment to moment while the bottom graph presents

the absorbance of the selected wavelength along time. ... 38

Figure 11 - Hierarchical diagram of each developed program. ... 43

Figure 12 - Mockup of the user interface designed for the ChromatographyStudio.jl program. 45

Figure 13 - Example of a graph obtained from the treated data after an experiment. 49

file:///C:/Users/jcant/Desktop/Dissertação.docx%23_Toc530843021

xiii

List of Tables

Table 1 - The different commands to set the pump's parameters and values and examples of their

usage. ... 16

Table 2 - The different commands to get information from the pump's parameters and examples of

their usage. .. 17

Table 3 - The different commands to use the scale through serial connection.. 18

Table 4 - The different commands to set the valve's parameters and values. .. 19

Table 5 - The different commands to get information from the valve's parameters................................. 19

Table 6 - The different commands and their respective decimal and hexadecimal values to set the

relay states on each board. .. 20

Table 7 - The different commands and their respective decimal and hexadecimal values to get

information about the relay states on each board. ... 21

Table 8 - List of Python-Seabreeze commands. .. 22

1

1- Introduction to Chromatography

Chromatography is a separation and analytical technique initially developed by

chemists with the goal of extraction and purification of mixtures of plant origin. Its name

originates from the Greek, to write colors.

Chromatography is a separation method in which a mixture of solutes is eluted

through a stationary phase (usually a solid inside a column), with each compound inter-

acting with the solid. The affinity that each solute has with the stationary phase will de-

termine their migration speeds, enabling the collection of separated compounds based on

how strongly they interact with the stationary phase. A strong affinity towards this phase

will lead towards slower migration speeds of compounds, while compounds with lower

affinities elute more quickly, as can be seen in Figure 1.

Figure 1 - Priciple of Elution Chromatography.

1

2

1.1 Development of the Simulated Moving Bed process

In an attempt to improve the described process, the True Moving Bed process was

developed, employing unique operating principles and conferring a number of valuable

benefits to the chromatographic separation process. The process changes how the solid

phase operates, no longer being immovable, it starts to have a continuous movement,

countercurrent to the flow of the fluid and with an intermediate velocity in relation to the

migration speed of the two solutes to be separated. As the compound that interacts most

strongly with the phase (named the extract) will be dragged by the solid, the other (named

the raffinate) continues to migrate with the fluid but at a lower speed. With this, it is

possible to collect each pure compound in each end of the column, allowing for the con-

tinuous feed of mixture to be separated [1], as can be understood with Figure 2.

Figure 2 - Diagram of a True Moving Bed.

However, the True Moving Bed process has been difficult to implement, as it relies

on a continuous flow of eluent in one direction being recycled back into the column filled

with a chromatographic medium, and a continuous flow of said medium circulating in

countercurrent to the eluent and also being recycled. This results in problems such as

friction of particles in the bed and not being economically viable.

3

As a mean to overcome some of the True Moving Bed process’s shortcomings,

Universal Oil Products developed the Simulated Moving Bed process in 1961. Essentially

being the discretization of the True Moving Bed in several columns (the higher the num-

ber of columns, the closer the Simulated Moving Bed process becomes to the True Mov-

ing Bed process), simulating the opposing currents by periodically shifting the inlets/out-

lets ports in the direction of the fluid flow [2], as demonstrated in Figure 3.

Figure 3 - Diagram of a Simulated Moving Bed.

In its conventional operating mode, at regular time intervals, the designated injec-

tion and withdrawal ports all move one section ahead in the direction of the fluid flow.

When the initial injection/collection port of all the streams is reached, we have completed

one cycle. In this way, during one cycle the same column is being used towards different

roles in the separation process.

4

With this and the interest of adapting this process to other industries and applica-

tions, the Simulated Moving Bed technology was advanced upon and scaled down, with

more versatile configurations with reduced size and number of columns being preferred,

creating an alternative to the use of the initial process arrangement where several columns

with large dimensions were employed.

This developmental trend is supported by an increase in complexity, which in most

cases requires highly versatile equipment, advanced optimization and modelling tools and

robust control methods, although still presenting the advantages of having an increased

throughput, purity, and yield relative to batch chromatography and reduction in eluent

consumption.

1.2 Development of the Single Column Analog process

The Single Column Analog process, illustrated in Figure 4, was developed with the

increased efficiency of methods to model the periodic state of the analogous multi-col-

umn process in mind, reducing the set of equations needed to describe the process from

various columns to a single one [1].

Figure 4 - Schematic diagram of the Single Column Setup.

This process has been shown to substantially decrease the amount of solute and

mobile phase needed to proceed with the Simulated Moving Bed process, as well as being

an economic and optimal method of testing a set of operating conditions for new multi-

column chromatographic separation procedures [3].

5

Figure 5 - Schematic of the Single Column chromatographic process with recycle lag,

analogous to a four-zone SMB.

In this sense, the present thesis presents the development of a custom program,

denominated ChromatographyStudio.jl, for control, testing and data acquisition of the

Single Column Analog setup illustrated in Figure 5, simplifying its operation and facili-

tating the adjustment of several setup parameters.

7

2- Programming Languages

2.1 High-level programming languages

A high-level programming language is a type of programming language that has strong

degree of abstraction from the basis of the computer, in contrast to low-level programming

languages. It is usually composed of more natural language use and terms, easy to use and may

automate significant areas of computing systems, making the process of developing a program

simpler and more understandable than when using a lower-level language at the cost of effi-

ciency. Some examples of high-level programming languages include Fortran, Visual Basic

and C#.

2.2 Programming Languages Used

Julia

Julia, identified by its logo in Figure 6, is a free high-level dynamic programming lan-

guage developed by Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman and

first made available in 2012. Originally designed to address the needs of high-performance

numerical analysis and computational science, it was developed for the use in scientific pur-

poses as it includes a differential equations ecosystem, optimization tools, iterative linear solv-

ers and simplification and aid with data interaction and interpretation. All this contained in

efficient libraries for floating-point calculations and linear algebra[4].

2

8

Of note is the existence of JuliaCon, an academic conference for Julia users and devel-

opers, held annually since 2014, furthering denoting the commitment of developing the lan-

guages towards academia and the use of the Julia language by the Federal Reserve Bank of

New York to model the United States economy, achieving a model estimation time nearly 10

times faster than the previously used language, MATLAB [5].

Figure 6 - Logo for the Julia language.

Of the multitude of tools offered by the Julia library, this thesis focuses on the use of the

following packages:

• PyCall.jl - This package provides the ability to directly call and operate with the

Python language from the Julia language, enabling the arbitrary import of Python

modules from Julia, call of Python functions, definition of Python classes from

Julia methods and sharing large data structures between Julia and Python without

copying them [6].

• PyPlot.jl - Used with the PyCall package, this module provides a Julia interface

to the Matplotlib plotting library from Python [7].

• PySerial.jl - Used with the PyCall package, this module provides a Julia interface

to the PySerial module from Python, enabling access for the serial ports present

on the computer [8].

• SerialPorts.jl - Used with the PySerial package, this module simplifies the serial

communication with different devices through Julia, mimicking regular file in-

put/output as in the Base Julia library [9].

• Gtk.jl – This module is an iteration of the GIMP Toolkit, designed for the creation

graphical user interfaces, implemented in Julia [10].

9

Python

Python, with its logo represented in Figure 7, is a free high-level programming language

developed for general-purpose programming by Guido van Rossum and released in 1991. Its

design philosophy accentuates code readability as it provides constructs that enable clear pro-

gramming on both small and large scales, featuring automatic memory management and sup-

porting various programming paradigms. Due to its longevity and widespread use, the Python

language has also developed a vast and wide-ranging library.

Figure 7 - Logo for the Python language.

This thesis focuses on the use of the following packages:

• Matplotlib - A Python 2D and 3D plotting library which produces publication

quality figures heavily inspired and based on MATLAB’s plotting functions.

• PySerial – This module encapsulates the access to the serial ports present [11].

• Python-seabreeze – A SeaBreeze library wrapper developed independently from

Ocean Optics, used to communicate with the spectrometer [12].

2.3 Programming Paradigms Followed

To develop this program the Julia language was used as the main programming envi-

ronment due to its flexible and versatile implementation of object-oriented programming and

parallel computing.

The main structure of the program is composed of a central module that calls upon other

different modules to define the functions needed for the automation of the Single-Column An-

alog Simulated Moving Bed process, with the lowest level of modules being composed of driv-

ers designed to facilitate the interaction between each instrument and the computer in parallel

with each other.

10

To achieve this, the base drivers are composed of two main parts:(1) defining a new

data type for the instrument it’s controlling and (2) defining the functions that will control said

instrument according to its manual or protocol. By doing this each instrument is represented

by a data type with its own attributes and functions.

In general, the mentioned functions will be used to either get information from the in-

strument, for example reading the weight measured by a scale, or set the instrument’s operating

parameters, such as the flowrate of a pump.

This approach allows for the program to be highly customizable to adaptive to the in-

struments implemented in the setup as, when adding new instruments, there is only a need to

certify that said instrument works with the same protocol previously implemented and then

represent it with the data type created for this purpose. For example, pumps from the same

manufacturer might use the same means of communication with the computer and, as such,

adding several pumps with the same communication protocol would only need to add a few

lines of code to represent the additions as variables ready to be controlled.

11

3- Instruments and Setup

3.1 Instruments used in the process

To proceed with the Single-Column Analog setup, the instruments needed for the digital

control of the process are the following:

• A Knauer V5010 S100 Smartline pump;

• Two Knauer WellChrom HPLC K501 pumps;

• Two Robot Electronics OptoRLY88 relay boards;

• Two VICI Valco 2-position valves;

• A Sartorius TE3102S weight scale;

• An OceanOptics USB2000 Spectrometer.

All these instruments are connected to a single computer running the custom software

developed by this thesis and make up the system necessary for the Single-Column Analog pro-

cess, shown in Figure 8 and in Annexes 2 through 8.

The three pumps present (the single Smartline pump and the two K501 pumps) are used

to run the process, with the Smartline pump, denominated Pump F, used for the feeding of the

process, one of the K501 pumps, denominated Pump E, responsible for the elution of the sep-

arating mixture and the last K501 pump, denominated Pump G, used for developing concen-

tration gradients in the process. Worth mentioning is that, although it was not used during ex-

perimental tests, Pump G is still capable of being controlled through the developed software.

The two OptoRLY88 relay boards are used to signal the pneumatic actuators of the dif-

ferent valves of the setup.

3

12

The two Valco 2-position valves are used in the port switching action needed for the

execution of the Simulated Moving Bed process.

A TE3102S weight scale is used to measure the amount of raffinate and extract yielded

during the separation process.

The OceanOptics USB2000 Spectrometer is used to measure the purity of the flowing

fluid.

Figure 8 - Diagram of the setup with pumps, seven two-way valves, the two 2 position valves

and spectrometer connected (although the image shows two only the UV2 spectrometer is

connected).

3.2 The Setup

The various instruments in the setup require different types of connectors.

The pumps and the scale use a RS232 type connector to connect directly to the computer,

with the Valco 2-position valves needing an actuator control module to be connected in the

same way (the computer being connected to the actuator through a RS232 serial port connec-

tion and the actuator being connected to the 2-position valve via a VICI proprietary motor

driver output cable), as can be seen in Figure 9.

13

Figure 9 - The Valco 2-position valve (right) with and actuator module (top left) and a

manual controller (bottom left).

Worth mentioning is the use of a MOXA 8 Ports Serial PCI Express controller card PCI-

e to multi RS232 DB9 Ports converter I/O card installed on the computer to enable the com-

munication with the five RS232 connectors.

The rest of the instruments, the two OptoRLY88 relay boards and the USB2000 Spec-

trometer, are connected via a USB 2.0 B connector.

15

4- Development of individual drivers

4.1 Controlling the different instruments

The first step in the development of the controlling software is the creation of preliminary

drivers for each type of instrument. In the case of most of the equipment in use, the writing of

such drivers can occur based on the device’s manual information on external control via serial

communication, however, in the case of the OceanOptics Spectrometer, the independently de-

veloped Python-seabreeze python package is used, as the only method of use for this instrument

made available by the manufacturer is through a C/C++ based device driver or through their

proprietary OOIBase32 Spectrometer Operating Software.

Pumps

The Knauer V5010 S100 Smartline and WellChrom HPLC K501 pumps’ share identical

external control protocols, which are as follows:

The specifications for data transfer are a baud rate of 9600, 8 bits of data with 1 stop-bit

and no parity check.

A list of simple ASCII codes is able to control the pump, encoding the different com-

mands available to the user.

After each successful command transfer, the message “OK” will be sent back from the

pump. Inadmissible commands are answered by a question mark “?”. Each command and each

answer must be confirmed using a carriage return (ending the command string in “\r”).

4

16

Table 1 - The different commands to set the pump's parameters and values and examples of

their usage.

ASCII

Command
Description Example of the command

Fxxxx Sets the flow rate to xxxx μL/min. “F200\r” Sets the pump flow rate to 200 μL/min.

M1
Starts the pump, using the cur-

rently selected flow rate.
“M1\r”

The pump starts pumping fluid at the

set flow rate (this can include 0

μL/min.

M0 Stops the pump. “M0\r” Stops the pump from pumping.

S1
Enables both manual (with the

keypad) and serial control.
“S1\r”

The pump can be controlled via its

keypad or through commands given

through a serial connection.

S0

Disables manual control (only the

STOP key is active), while still

permitting serial control.

“S0\r”

The pump can only be controlled

through the serial connection, with the

only key being active being the STOP

in case of the need to the pump.

Pxxx.xxx

Set maximum pressure threshold ,

in MPa, for automatic pump cut-

off.

“P200.000\r

”

Sets the maximum pressure threshold

to 20 MPa.

pxxx.xxx

Set minimum pressure threshold ,

in MPa, for automatic pump cut-

off.

“p010.000\r

”

Sets the minimum pressure threshold

to 10 MPa, the pump cuts-off, if this

threshold is not attained for a period of

60 seconds.

17

Table 2 - The different commands to get information from the pump's parameters and exam-

ples of their usage.

ASCII Command Description Example of the command

P?

Current system pressure in-

quiry replied with

“Pxx.xxx”.

“P?\r”

The pump replies with

“P15.000”, indicating a pressure

of 15 MPa.

S? Pump status inquiry. “S?\r”

The reply will contain two bytes

in binary form. The first is the

status byte and shows the motor

status in bit 4 (1=ON; 0=OFF).

The second one shows the last er-

ror code (0=no error; 1=motor

blocked; 2=stop via the keypad),

which will then be automatically

deleted.

T? Pump model inquiry. “T?\r”

The pump replies with 16 charac-

ters identifying the pump model,

e.g. KNAUER MICROPUMP

V? Program version inquiry. “V?\r”

The pump replies with the current

version of the program its run-

ning, e.g. V1.24F

Weight Scale

The Sartorius TE3102S weight scale’s external control protocols are as follows:

The specifications for data transfer can be defined in the scale’s menu, with the specifi-

cations in use for this project being a baud rate of 9600, 7 bits of data with 1 stop-bit and an

odd parity.

A list of simple ASCII codes is able to control the scale, encoding the different commands

available to the user.

Each command sent and must be must start with the ESC character (starting each com-

mand string with”\x1b”) and optionally end with a carriage return and line feed (ending the

command string in “\r” or “\n” respectively, or “\r\n” using both).

The total length of a command is anywhere from 4 total characters (with 1 command character

between the start and end described above) to 7 total characters (with a maximum of 4 com-

mand characters).

18

Table 3 - The different commands to use the scale through serial connection.

Command Character Function Example of the command

K
Changes the scale’s weighing mode

to mode 1.
”\x1bK\r”

L
Changes the scale’s weighing mode

to mode 2.
”\x1bL\r”

M
Changes the scale’s weighing mode

to mode 3.
”\x1bM\r”

N
Changes the scale’s weighing mode

to mode 4.
”\x1bN\r”

O Blocks the use of the keys. ”\x1bO\r”

P

The scale replies with a reading ac-

cording to the output format (see

Annex I) to the serial port.

”\x1bP\r”

R Enables the use of the keys. ”\x1bR\r”

S Restarts the scale. ”\x1bS\r”

T Tares and zeros the scale. ”\x1bT\r”

U Only tares the scale. ”\x1bU\r”

V Only zeros the scale. ”\x1bV\r”

W
Provide external calibration (de-

pending on menu settings).
”\x1bW\r”

2-position Valves

The VICI Valco 2-position valves are controlled via a connection to a proprietary actua-

tor. Its external control protocols are as follows:

The specifications for data transfer are a baud rate of 9600, 8 bits of data with 1 stop-bit

and no parity check.

A list of simple ASCII codes is able to control the actuator, defining the commands the

actuator will send to the valve.

19

Each command sent and must be terminated with a carriage return (ending the command

string in “\r”). Of note is that line feed characters (“\n”) sent to the device will be ignored.

Table 4 - The different commands to set the valve's parameters and values.

Commands Function

GOa Sends actuator to position a, where a is either position A or B.

CW Sends actuator to position A.

CC Sends actuator to position B.

TO Toggles actuator to the opposite position.

TT
Toggles actuator to the opposite position, waits a set delay time, then tog-

gles it back to the original position.

DTx
Sets the delay time, in milliseconds, where x can be an integer between 0

and 65 535.

IDx Sets the device ID to x, where x can be an integer between 0 and 9.

SBx
Sets the baud rate to x, where x can be between 2 400 and 115 220, with a

default setting of 9600.

SMx
Sets the digital input mode to x, where x can be an integer between 1 and

4.

SOx

Sets the delay time before the position outputs are turned off to the closest

5 millisecond interval to x, where x can be an integer between 0 and 30

000. The outputs are always on (SO=0) by default.

CNTx Sets the move count to x, where x can be an integer between 0 and 65 000.

IN Starts an initialization sequence.

Table 5 - The different commands to get information from the valve's parameters.

Commands Function

20

VR The actuator replies with the part number and date of the firmware.

CP The actuator replies with the current actuator position.

GV The actuator replies with the measured DC input voltage.

GVD
The actuator replies with the measured DC input voltage drop while

moving.

? The actuator replies with a list of valid commands.

Relay Boards

The two Robot Electronics OptoRLY88 relay boards are both connected via a USB 2.0

B connector. However, because it is connected directly to the processor, the relay boards do

not need specific settings for data transfer.

The relay boards operate with an easy-to-use command set based on the decimal/hexa-

decimal value of the character sent.

Most commands are composed only of a singular byte and, if applicable, with an auto-

mated response. The only exception to this being the "Set relay states" command which re-

quires an additional desired states byte to be sent immediately after the command byte.

Table 6 - The different commands and their respective decimal and hexadecimal values

to set the relay states on each board.

Command
Action

ASCII DEC value HEX value

\ 92 5C
Set relay states: the next single byte will set all relays

states. All on = 255 (11111111) and all off = 0.

d 100 64 All relays turn on.

e 101 65 Turn relay 1 on.

f 102 66 Turn relay 2 on.

g 103 67 Turn relay 3 on.

h 104 68 Turn relay 4 on.

i 105 69 Turn relay 5 on.

j 106 6A Turn relay 6 on.

21

Table 6 (continued) - The different commands and their respective decimal and hexadec-

imal values to set the relay states on each board.

Command
Action

ASCII DEC value HEX value

k 107 6B Turn relay 7 on.

l 108 6C Turn relay 8 on.

n 110 6E All relays turn off.

o 111 6F Turn relay 1 off.

p 112 70 Turn relay 2 off.

q 113 71 Turn relay 3 off.

r 114 72 Turn relay 4 off.

s 115 73 Turn relay 5 off.

t 116 74 Turn relay 6 off.

u 117 75 Turn relay 7 off.

v 118 76 Turn relay 8 off.

Table 7 - The different commands and their respective decimal and hexadecimal values

to get information about the relay states on each board.

Command

Function
ASCII DEC value

HEX

value

DC1 17 11
Returns channel 1 state as 1 byte, where 255 indicates in-

put is powered and 0 indicates it is not.

DC2 18 12
Returns channel 2 state as 1 byte, where 255 indicates in-

put is powered and 0 indicates it is not.

DC3 19 13
Returns channel 3 state as 1 byte, where 255 indicates in-

put is powered and 0 indicates it is not.

DC4 20 14
Returns channel 4 state as 1 byte, where 255 indicates in-

put is powered and 0 indicates it is not.

NAK 21 15
Returns channel 5 state as 1 byte, where 255 indicates in-

put is powered and 0 indicates it is not.

SYN 22 16
Returns channel 6 state as 1 byte, where 255 indicates in-

put is powered and 0 indicates it is not.

22

Table 7 (continued) - The different commands and their respective decimal and hexadec-

imal values to get information about the relay states on each board.

Command

Function
ASCII DEC value

HEX

value

ETB 23 17
Returns channel 7 state as 1 byte, where 255 indicates in-

put is powered and 0 indicates it is not.

CAN 24 18
Returns channel 8 state as 1 byte, where 255 indicates in-

put is powered and 0 indicates it is not.

EM 25 19
Sends 1 byte back. Individual bits indicate input status of

each channel, a 1 indicating powered input.

SUB 26 1A
Sends 8 bytes back. First byte is channel 1 as per com-

mand DC1 above. Last byte is channel 8.

8 56 38
Returns 8 ASCII characters. This is an 8-digit globally

unique identifier.

Z 90 5A

Get the software version: returns 2 bytes, the first being

the Module ID which is 12, followed by the software ver-

sion.

[91 5B
Get relay states - sends a single byte back to the control-

ler, bit high meaning the corresponding relay is powered.

Spectrometer

The OceanOptics USB2000 Spectrometer connected via a USB 2.0 B connector and its

settings for data transfer are handled by the Python-seabreeze package using OceanOptics’s

Seabreeze library.

With this, the Python-seabreeze package provides a number of functions that can be

called using python to send commands to the Spectrometer.

Table 8 - List of Python-Seabreeze commands.

Command Description

list_devices()
Returns a list of OceanOptics compatible spec-

trometers connected to the computer.

Spectrometer(object)
Python class used to interface with the spec-

trometer.

23

Table 8 (continued) - List of Python-Seabreeze commands.

Command Description

serial_number()
Returns an ASCII string with the selected spec-

trometer’s serial number.

model()
Returns an ASCII string with the selected spec-

trometer’s model.

pixels()
Returns a 64-bit integer with the number of pix-

els.

minimum_integration_time_micros()
Returns a 64-bit integer with the minimum inte-

gration time in microseconds.

integration_time_micros(x) Sets the integration time to x microseconds.

wavelengths()
Returns a 64x1 float array with the measured

wavelengths.

intensities()
Returns a 64x1 float array with the measured in-

tensities.

spectrum()
Returns a 64x2 float array with the pair of meas-

ured wavelengths and intensities.

24

4.2 The Drivers

To begin with the development of the individual drivers, the function open_port is

defined to automate the process of initializing the communication between the computer and

the different instruments:

function open_port(port ::AbstractString,

 baud_rate ::Integer ,

 dev_name ::AbstractString)

Create a variable sp, later used to interface with the device

local sp ::SerialPort

Try to Open the serial port with the SerialPorts.jl’s package

SerialPort() function using the provided part and baud rate

try

sp = SerialPort(port, baud_rate)

If it fails, inform the user of the error and prepare to retry

catch

print_with_color(:red,

 "ERROR: Unable to open port " * port * ".\n")

while true

print_with_color(:red, "Connect the " * dev_name *

" and press [enter] to retry: ")

 # the function readline() is used to

know when user presses [enter]

str = readline()

try

sp = SerialPort(port, baud_rate)

break

catch

nothing

end # catch

end # while

end # catch

Return the sp variable

return sp

end # function

25

With this preliminary function defined we can more easily proceed to the creation of the

drivers for each device. However, the devices send replies through the serial connection to

communicate with the computer and, as such, the function str_from_serialport is defined

to read these replies:

With these two functions defined, all the preemptive functions needed to communicate

with each device are fulfilled.

It is important to note the definition of the ChromatographyStudio.jl module (the working

title for the program developed by this thesis) as a central program that calls all the other pro-

grams needed for this project, helping with the coordination between devices and different

functions, as well as creating a log file to record everything needed each time the program is

used.

function str_from_serialport(sp ::SerialPort)

Create a str variable that will hold the string reply

str = ""

Start a while loop to read the reply character by character

Most devices’ reply end with a carriage return or '\r'

while (c = read(sp, 1); length(c) > 0 && c[1] != '\r')

Concatnate the characters read to form the reply

str *= c

end # while

return str

end # function

26

K501.jl

The K501.jl Julia program is developed as the driver for the Knauer V5010 S100 Smart-

line and WellChrom HPLC K501 pumps.

Starting by defining a new type of variable in Julia:

This K501_Pump variable type will keep track of each pump’s most important parame-

ters: the cs variable identifies which ChromatographyStudio instance the pump belongs to for

the purposes of writing to the log file, the sp variable defines which serial port the pump in

connected to, the id variable identifies each pump, the head variable states what kind of pump

head the pump is using, the pmax variable defines the pump’s maximum operating pressure,

the Q variable defines the flow rate at which the pump is operating, the calib, der_calib

and inv_calib variables are used to determine the calibration function used to calibrate the

pump through the program, the sig variable defines the event channel for each pump and the

auto variable defines the pump’s operation mode.

type K501_Pump

 cs ::ChromStudio # ChromatographyStudio instance

 sp ::SerialPort # Port address

 id ::Char # Character identifier

 head ::Int # Pump head (ml/min) = 10, 50

 pmax ::Float # Max operating pressure (bar)

 Q ::Float # Current set flow rate (ml/min)

 calib ::Function # External calibration function

 der_calib ::Function # Derivative of calibration function

 inv_calib ::Function # Inverse of calibration function

 auto ::Bool # false -> Manual, true -> Automatic

 # The constructor function is defined inside the type definition

 # with the inner constructor method

end # type

27

With this type we can create a constructor function to create variables of this kind, de-

fined inside the type definition with the inner constructor method:

From here on we create the K501_Pump object and define its attributes:

function K501_Pump(cs ::ChromStudio ,

 port ::AbstractString ,

 id ::Char ,

 head ::Integer ,

 calib ::Function = (x) -> x ,

 der_calib ::Function = (x) -> 1 ,

 inv_calib ::Function = (x) -> x)

pump = new() # create new object

pump.cs = cs # save ChromatographyStudio instance

pump.head = head # and pump head

pump.pmax = 10.0 # define desired pmax = 10 bar

 # The desired pmax is simply placeholder as

 # during testing we may want to change this value

const dev_name = "Kanuer K501 HPLC pump"

pump.sp = open_port(port, 9600, dev_name)

by default SerialPort sets: bytesize = 8, parity = "N", stopbits = 1,

which happen to be the correct settings for the K501 pump.

pump.sp.python_ptr[:timeout] = 0.1 # set the reading timeout to 0.1 sec

pump.id = id # save ID

pump.calib = calib # save calibration function

pump.der_calib = der_calib # save derivative

pump.inv_calib = inv_calib # save inverse calibration function

pump.auto = false # pump is not under automatic control

28

To confirm if the pump is turned on and connected, we proceed to test its responsiveness

while informing the user if there is an error and prepare to retry the connection with the fol-

lowing commands:

write(pump.sp, "T?\r") # ask for pump model to check if

str = str_from_serialport(pump.sp) # pump is turned on & connected.

if str == "" # pump did not respond

 print_with_color(:red,

 " ERROR: " * dev_name * " attached to " * port *

 " is disconnected or turned off.\n" *

 " Connect the device and press [enter] to retry: ")

 while true # Keep testing until response

 str = readline()

 write(pump.sp, "T?\r")

 str = str_from_serialport(pump.sp)

 if str == ""

 print_with_color(:red,

 " Connect the " * dev_name *

 "and press [enter] to retry: ")

 else

 break

 end

 end # while

end # if

29

With the pump now connected and responsive, we now set its parameters to make sure

no previous instructions set may compromise its initial operation as well as add the pump to a

list of devices being handled by ChromatographyStudio.jl:

With the K501_Pump type and its constructor defined we can now control each pump in

an organized fashion, as each pump will interface through this new type and its attributes. With

this we can begin defining functions in the driver to automate the process of communicating

with the pumps.

Now we will define a set of functions to handle basic communication with the pumps,

the will be:

• check_K501_msg, a function used to read and check the replies made by the

pump and record any errors in the log file according to the error codes provided

in the pump’s manual;

• get_pump, a function used to retrieve information from the pump about its pa-

rameters;

• set_pump, a function used to set the values for the pump’s operating parameters.

set max operating pressure, flow rate = 0, turn on motor

set_pump(pump; Q = 0.0, M = true)

this set_pump() function is defined later on within

the driver program as the main function to set parameters

 try # add pump to cs's list of pumps

 push!(cs.pumps, pump)

 catch # if push! failed, add the pump to list “manually”

 cs.pumps = K501_Pump[pump]

 end # catch

 return pump # return created object

end # function K501_Pump()

30

Of note is the fact that the functions add_err and new_msg will be defined later when

we create the program that handles the recording of messages in the log file.

function check_K501_msg(pump ::K501_Pump)

reply = str_from_serialport(pump.sp)

if reply == "OK"

return true

elseif reply == ""

add_err(pump.cs, "Pump is disconnected or turned off.")

elseif reply == "?"

add_err(pump.cs, "Last command not understood and/or executed.")

elseif reply == "E1"

add_err(pump.cs, "Motor blockage.")

elseif reply == "E3"

add_err(pump.cs, "Max pressure exceeded, pump has stopped.")

elseif reply == "E4"

add_err(pump.cs,

"Min pressure not attained for 60 s, pump has stopped.")

else

add_err(pump.cs, "Unknown error.")

end # if

return false

end # function

function get_pump(pump ::K501_Pump, key ::Symbol)

 const msg_head = "get_pump (Knauer HPLC-pump K501), " * string(pump.id)

 # We define the info function to write to the log file

 function info(msg ::AbstractString)

 if !pump.cs.auto

 new_msg(pump.cs, msg_head * msg)

 end

 nothing

 end # function info

31

For the get_pump function we simply create a list of simple symbols (e.g. “:Q”) and

words (e.g. “:model”) to use as parameters for the function to obtain the information we want,

with the function parsing the instruction and sending the corresponding command.

 if key in (:P, :pressure, :PRESSURE)

 write(pump.sp, "P?\r")

 P = 10.0 * float(str_from_serialport(pump.sp)[2:end])

 info("P = $P bar")

 return P

 elseif key in (:S, :status, :STATUS)

 write(pump.sp, "S?\r")

 ans = read(pump.sp, 2)

 # Replies with a tuple:

 # 1st value = motor status, 2nd value = last error code

 # 6th bit of ans[1]: MOTOR = ON/OFF (T/F)

 # ans[2]: 0, no err; 1, motor blocked; 2, stop via keyboard

 mst = UInt8(ans[1])

 lec = Int(ans[2])

 info("Motor Status = $mst, Last Error Code = $lec")

 return (mst, lec)

 elseif key in (:T, :model, :MODEL)

 write(pump.sp, "T?\r")

 str = str_from_serialport(pump.sp)

 info("Model = " * str)

 return str

 elseif key in (:V, :version, :VERSION)

 write(pump.sp, "V?\r")

 str = str_from_serialport(pump.sp)

 info("Version = " * str)

 return str

 elseif key in (:Q, :flowrate, :FLOWRATE)

 return pump.Q

 else

 add_err(pump.cs, msg_head, "Unknown query option $key")

 return false

 end # if

end # function get_pump

32

For the set_pump function we similarly create a list of simple symbols (e.g. :Q) and

words (e.g. :Flowrate) to use as parameters for the function but format the parameters in the

following way: “:MOTOR = True”. This allows the function to determine which of the pump’s

parameters are going to change and to which value. For example:

function set_pump(pump ::K501_Pump, id ::Char = Char(0); args...)

 const msg_head = "set_pump (Knauer HPLC-pump K501), " *

 string(pump.id) * " : "

 function info(msg ::AbstractString)

 if !pump.cs.auto

 new_msg(pump.cs, msg_head * msg)

 end

 return nothing

 end

 function err(msg ::AbstractString)

 add_err(pump.cs, msg_head, msg)

 return nothing

 end

for (key, val) in args

 if key in (:M, :motor, :MOTOR)

 if typeof(val) != Bool # Check if the value used is appropriate

 err("Option $key must be assigned true or false")

 return false

 end # if

 if val && pump.Q == -1000.0

 err("The flow rate must be set before turning on the motor")

 return false

 end # if

 write(pump.sp, val ? "M1\r" : "M0\r") # M1/M0 start/stop

 check_K501_msg(pump) # Read reply from pump

33

It is important to note the need to perform different checks to make sure the function is

being used correctly and no erroneous commands are sent to the pump. These checks are:

• When setting a flowrate (e.g. “:FLOWRATE = 4.5”) we must first check that the

value provided is at least a real number, then we have to compare it with the

values allowed to be set by the pump, this depending on the pump head installed

(with a 10 ml pump head the maximum flowrate is that of 9.99 ml/min and with

a 50 ml head the maximum flowrate is that of 50.00 ml/min) and finally check if

the value is negative (if it is, the pump should simply be set to a flowrate of 0).

• When setting a control method (manual and serial or serial only e.g. “:SE-

RIAL_ONLY = True”) we must make the same check as with the example (the

setting the motor status) and check if the value used is appropriate to the param-

eter being set (in this case accepting only values of the Boolean type)

• When setting a maximum or minimum pressure threshold (e.g. “:PMAX = 20”)

first we must check that the value provided is at least a real number higher than

10 bar, then we have compare it with the values allowed to be set by the pump,

this depending on the pump head installed (with a 10 ml pump head the thresholds

are that of 400 bar and with a 50 ml head the thresholds are that of 150 bar).

We finish our pump driver program with a final function, denominated cali-

brate_pump to proceed with the calibration of the pump by using the scale, making sure the

pump is only pumping a single compound, ethanol in the case of this project, and fitting the

resulting volume being pumped to a fourth-degree polynomial function. This function will then

be used to correct the input of the flowrate to the pump to make sure we are pumping the correct

amount.

34

sartorius_balance.jl

The sartorius_balance.jl Julia program is created as the driver for the Sartorius TE3102S

weight scale.

Similarly, with the K501.jl driver, we start by defining a new type of variable, Sarto-

riusBalance, and its constructor, although since the scale’s main function is to measure

weight and has no values needed to be set (unlike the pumps who need to set the value for the

flowrate), we only define three basic attributes:

• cs, the attribute that defines the ChromatographyStudio.jl instance;

• sp, the attribute that determines which port the scale is connected to;

• And id, a string that provides an identification for the scale.

With this, we then define the set of functions to handle basic communication with the

pumps in the same fashion as with the pumps, these functions will be: (1) get_scale, a func-

tion used to retrieve information from the scale about its measurements and (2) set_scale, a

function used to set the values for the scale’s operating parameters, using the commands pro-

vided.

Of note is the absence of a function to check the scale’s reply as this function can be

defined in the function get_scale as it is the only instance the scale will provide a reply, and

its only reply is a reading according to its output format.

The distinction with the pump’s driver comes with the creation of a BalancePlot type

and a monitor_balance function. With the BalancePlot type being created with the pur-

pose of organizing and plotting the values being read from the scale, the monitor_balance

function writes these values to a tab-separated values (.tsv) file to automate data acquisition

and recording.

35

vici.jl

The vici.jl Julia program is developed as the driver for the VICI Valco 2-position valves.

Like with the sartorius_balance.jl driver, we start by defining a new type of variable along

with its constructor, the VICI_2PValve, with the following attributes:

• cs, the attribute that defines the ChromatographyStudio.jl instance;

• sp, the attribute that determines which port the valve’s actuator is connected to;

• id, a string that provides an identification for the valve;

• pos, a symbol indicating the valve’s current position;

• And auto, a boolean indicating if the valve is operating in manual or automatic

mode, depending on the actuator.

We proceed by defining the functions get_vici_2pvalve and set_vici_2pvalve,

still having the need to program a way to handle replies within the get_vici_2pvalve func-

tion.

36

Opto-rly88.jl

The Opto-rly88.jl Julia program is developed as the driver for the Robot Electronics

OptoRLY88 relay boards that operate the actuator for the two-way valves.

Like with the other drivers, we start by defining a new type of variable, the OptoRLY88,

and a new constructor with the following attributes:

• cs, the attribute that defines the ChromatographyStudio.jl instance;

• sp, the attribute that determines which serial port the relay board is connected to;

• id, a string that provides an identification for the relay board;

• And active_relays, an unsigned 8-bit integer indicating the state of each relay

in the board.

Again, we define the functions get_relay and set_relay, also needing to program

a way to handle replies within the get_relay function to get information from the relay

boards.

Worth mentioning is the use of the “\” command that allows the user to define the state

of the relays using a single byte sent immediately after the command. With this method, we

can perform operations to the state of the relays by simply adding the values needed for each

relay to activate/deactivate and performing simple or/xor/and logic operations bit by bit from

the current state of relays to the desired state.

37

oo_spectrometer.jl

The oo_spectrometer.jl Julia program is developed as the driver for the OceanOptics

USB2000 Spectrometer derived from the use of the third-party developed Python-seabreeze

package.

Starting by defining a new type of variable, the UVCell, and its constructor with the

attributes:

• cs, the attribute that defines the ChromatographyStudio.jl instance;

• uv, a Python object called in Julia that will serve as the interface between the

computer and the spectrometer;

• id, a string that provides an identification for the spectrometer;

• lcut and rcut, two integers that determine the number of pixels excluded from

the left and right side respectfully of the spectrometer’s graph to make it more

readable, in case we are interested in only a narrow set of values for wavelengths.

• inttime, an integer setting the integration time of the spectrometer;

• average, an integer that denotes number of points used in a time average when

acquiring data;

• boxcar, an integer that denotes the half-width of pixels used for a boxcar average

when acquiring data;

• ref and dark, two vectors of floating-point numbers used to correct in the treat-

ment of data acquired to produce more accurate measurements. We correspond-

ingly create the t_ref and t_dark attributes to know when these measurements

were made;

• nabs and wabs, an integer and vector of integers indicating the number of wave-

lengths and which wavelengths respectfully are of interest to the work being done.

Distinctly from the previous drivers, the oo_spectrometer.jl program does not need a

function to handle replies because they are processed by the Python-seabreeze package. How-

ever, there is the need to create functions to set which wavelengths there is interest in (setAb-

sorbanceWavelengths!), get the data from the spectrometer (measureUV!) to set the dark

(measureUVdark!) and reference (measureUVref!) spectrums, get the measurements with

both time and boxcar averages included in the data acquisition process (measureUVinten-

sities!) and treat the measurements obtained to get the absorbance measured rather than the

intensities using the Lambert-Beer Law (measureUVabsorbance!).

38

The functions monitorIntensitySpectrum! and monitorAbsorbanceSpec-

trum! are made so that we can plot the data acquired (the intensities spectrum) and its treated

counterpart (the absorbances spectrum), along with the creation of a monitorUVCell function

that will, simultaneously, plot the intensity and absorbance of the wavelengths in study in sep-

arate graphs.

Figure 10 - Example of the graph obtained through the use of python's matplotlib pack-

age using data from oo_spectrometer.jl, the top graph represents the intensity (in red) and ab-

sorbance (in blue) measured by the spectrometer moment to moment while the bottom graph

presents the absorbance of the selected wavelength along time.

Of note is also the creation of the function uvc and wabs_to_mon. This first function,

uvc, provides a similar way to interface with the spectrometer as with the get and set func-

tions on the other drivers, utilizing simplified symbols and words to quickly be able to get or

set information in the spectrometer. The second function, wabs_to_mon, is used to write the

measured absorbances to a data file.

39

5- ChromatographyStudio.jl and its macros

With all the necessary drivers coded and prepared, we then tackle the need to create a log

of the program’s use (recording any relevant messages, warning and errors) and for the pur-

poses of detailing the operation of each instrument (recording when they were used by the user)

by creating another program, ChromStudio.jl.

5.1 ChromStudio.jl

The ChromStudio.jl program is responsible for defining the different functions used in

other programs for the purposes of writing a log file of the use of the ChromatographyStudio.jl

module, allowing for an assessment of what has occurred during its operation, as well as a

monitor file to record the necessary data.

For this purpose, we define a new type of variable called ChromStudio with attributes

designed to organize the act of creating and inputting data to different files:

• logname and monname are text strings that give the names for the log and data

files respectively;

• logfile and monfile are the IOStream objects responsible with interfacing

between the write function to input messages to these files;

• logctr is a simple number counter that indicates how many messages were writ-

ten to the logfile;

• t_ref is the reference time, measured when this type is first defined by the pro-

gram;

• And an attribute for each type of instrument in use.

5

40

With the ChromStudio type and its constructor defined we then create the basic function

for inputting messages to the log file:

And based on this function we proceed to create others to write different types of mes-

sages to the log file:

• add_msg writes a simple message to the logfile.

• add_warn writes a warning to the logfile to inform the user of some kind of

occurrence in the system.

• add_error writes an error message to the logfile to inform the user of some kind

of occurrence in the system that prevents its proper operation.

Also note that the basic function for inputting messages to the monitor file will be defined

in a later program to facilitate the interaction between user and program.

function new_msg(cs ::ChromStudio ,

 caller ::AbstractString)

 d = string(now()) ; ms = d[21:end] # Getting the time at which

 # the message is being written

 # and formatting it appropriately

 d = d[1:20] * (length(ms) == 1 ? "00" : length(ms) == 2 ? "0" : "") * ms

 if cs.logcntr >= 99999

 cs.logcntr = 0

 write(cs.logfile, "00000 @ " * d * " : " * caller * "\n")

 write(cs.logfile, "Reset message counter to 0.\n")

 end # if

 cs.logcntr += 1

 msg = @sprintf("%05d @ ", cs.logcntr) * d * " : " * caller * "\n"

 write(cs.logfile, msg)

 return nothing

end # function

41

5.2 ChromStudioHook.jl

With all of the functions and programs defined, there is the need to simplify the interac-

tion between each useful function and the user. This feature is developed in the ChromStudio-

Hook.jl program that, along with defining some base variables, also creates macros to simplify

the use of functions by the user.

In the case of the variables defined, these consist in equating certain terms or words to

defined values to make the macros take a more familiar syntax. For example:

We also proceed to define the external calibration values for each pump, as can be seen

done for the feed pump, Pump F:

Additionally, we proceed to define the str_to_mon function, responsible for handling

the writing of data to the monitor file.

const ON = true # Defining words such as ON and OFF

const OFF = false # to be a Boolean value. E.g. MOTOR = OFF

const V1 = UInt16(2^15) # Giving values to each valve

const V2 = UInt16(2^13) # to make it easier to proceed

const V3 = UInt16(2^11) # with or/xor/and operations

const V4 = UInt16(2^9) # simplifying the interface with

const V5 = UInt8(2^7) # the Opto-rly88.jl program

const V6 = UInt8(2^5) # and its functions

const V7 = UInt8(2^3)

const pump_F = K501_Pump("COM5", 'F', 10);

pump_F.calib = (x) -> (0.977421 + (0.0381827 +

(-0.0152616 + 0.00190055 * x) * x) * x) * x ;

pump_F.der_calib = (x) -> 0.977421 + (0.0381827 * 2 +

(-0.0152616 * 3 + 0.00190055 * 4 * x) * x) * x ;

pump_F.inv_calib = (x) -> (1.0187 + (-0.0320373 +

(0.012605 - 0.00155857 * x) * x) * x) * x ;

42

The macros

To finalize the ChromStudioHook.jl program we define a series of macros with the pur-

pose of simplifying the user’s experience in function calling and the syntax used.

These macros will function with the get and set functions in the drivers, receiving the

parameters in coded symbols or words to define what the macro should do, with the main dif-

ference being that the macros will be able to execute several commands with a simplified syn-

tax, e.g. @valve +V4 +V5 -V1 -V3 will tell the Opto-rly88.jl program to open valves 4 and

5 and close valves 1 and 3.

The macros are:

• @pump handles the commands interfacing with the K501.jl program, with the user

being able to easily set commands for each pump such as: @pump F Q=4.5

PMAX=5.0 which sets the feeding pump’s flowrate to 4.5 milliliters/minute and

setting its maximum pressure threshold to 5.0 bar.

• @valve is responsible for interfacing with the Opto-rly88.jl program as seen in a

previous example.

• @step is a macro that uses functions from K501.jl, Opto-rly88.jl and vici.jl to set

the flow path for the process with a simple command such as: @step

F=>COL=>W setting the flow path starting with the feed, then going through the

column and finally ending in the waste.

• @monitor is used by the user to start collecting data from either the scale or the

spectrometer by calling functions from sartorius_balance.jl or oo_spectrometer.jl

accordingly.

This allows the user to format a series of instructions in a simple text file and run it with

the Julia language, automating the process of switching ports and phases through which the

One-Column Analog Simulated Moving Bed process goes through.

43

5.3 ChromatographyStudio.jl

Finally, ChromatographyStudio.jl is the main module, calling all of the developed driv-

ers to define their functions and types, allowing for the condensation of all of the created pro-

grams in one single easy-to-call program.

Figure 11 - Hierarchical diagram of each developed program.

ChromatographyStudio.jl

ChromStudio.jl

ChromStudioHook.jl

K501.jl

sartorius_balance.jl

vici.jl

Opto-rly88.jl

oo_spectrometer.jl

45

6- Gui.jl – The graphical interface

After the ChromatographyStudio.jl program is operational and working, an additional

effort to ease its use was developed, proceeding with the design of a user interface using the

Gtk.jl Julia package.

This interface, although still in development, exists to expedite the process of testing and

adjusting parameters and pieces of the setup for the process.

6

Figure 12 - Mockup of the user interface designed for the ChromatographyStudio.jl program.

47

7- Results

As mentioned before, in its implementation, the ChromatographyStudio.jl program

generates a series of files to record what is happening with the setup (in a log file). An exam-

ple of the log file can be seen as follows:

7

00000 @ 2018-06-04T11:19:49.931 : ChromStudio: Created Log file.

00001 @ 2018-06-04T11:19:50.555 : K501_Pump (Kanuer K501 HPLC

pump), PORT = COM5, ID = F

00002 @ 2018-06-04T11:19:51.381 : K501_Pump (Kanuer K501 HPLC

pump), PORT = COM7, ID = E

00003 @ 2018-06-04T11:19:51.459 : K501_Pump (Kanuer K501 HPLC

pump), PORT = COM6, ID = G

00004 @ 2018-06-04T11:19:51.553 : OptoRLY88 (USB-OPTO-RLY88

board), PORT = COM3, ID = RLY1

00005 @ 2018-06-04T11:19:51.678 : OptoRLY88 (USB-OPTO-RLY88

board), PORT = COM4, ID = RLY2

00006 @ 2018-06-04T11:19:51.818 : VICI_2PValve (6-port, 2-posi-

tion valve), PORT = COM2, ID = VICI2

00007 @ 2018-06-04T11:19:51.849 : VICI_2PValve (6-port, 2-posi-

tion valve), PORT = COM8, ID = VICI8

00008 @ 2018-06-04T11:19:51.927 : SartoriusBalance (Sartorius

Balance), PORT = COM10, ID = A

00009 @ 2018-06-04T11:19:52.099 : UVcell (OceanOptics spectrome-

ter, SN = USB2G12446), ID = A

00010 @ 2018-06-04T11:19:53.113 : @step E => COL => W

00011 @ 2018-06-04T11:20:14.821 : @uvc A set : ref

00012 @ 2018-06-04T11:20:23.354 : @uvc A set : dark

48

This type of file allows us to troubleshoot any situation or problem that might arise

during the function of the setup and thus expediate the process of fixing any malfunctioning

component.

Additionally, the ChromatographyStudio.jl program also creates a monitor file in

which the data acquired during experiments is recorded.

The data in the monitor file is arranged as:

As can be seen, the measurements are arranged in sets of roughly 0.2 seconds of alter-

nating absorbance and weight data, with an interval of 5 seconds between each set (this inter-

val can also be changed according to the user’s necessities).

This file also notes whenever the setup changes its flow path, denoting the change in

operating section in the Simulated Moving Bed process.

"ChromStudio monitor file (ver. 1.0) @ 2018-07-25T09:24:26.914"

668.280 "t_ref" 1532506368.000

668.280 "Flow path" "E => COL => P"

668.280 "Pump" "F" 3.999

668.280 "Pump" "E" 4.001

668.280 "Pump" "G" 0.000

668.280 "UV WLs" "A" 260.01

669.013 "UV Abs" "A" -0.000

669.200 "Bal" "A" 40.33

671.524 "Pump" "E" 0.000

672.538 "@step" "F => COL => P"

672.570 "Pump" "E" 4.001

674.192 "UV Abs" "A" -0.001

674.379 "Bal" "A" 40.63

679.358 "UV Abs" "A" 0.001

679.538 "Bal" "A" 40.97

684.530 "UV Abs" "A" -0.000

684.717 "Bal" "A" 41.32

689.709 "UV Abs" "A" -0.001

689.896 "Bal" "A" 41.67

49

After we proceed to the treatment of this data, as exemplified in figure 13, we can

then assess whether the setup in function properly and make any adjustments, and also draw

any conclusions from the data acquired during test or experiments.

Figure 13 - Example of a graph obtained from the treated data after an experiment.

0

0.5

1

1.5

2

2.5

30 35 40 45 50

A
b

so
rb

an
ce

Time [sec]

51

8- Conclusion

In conclusion, the ChromatographyStudio.jl program developed by this thesis has re-

vealed to be a good investment of time and work as it has allowed for the increased speed in

developing and testing the Single-Column Analog Simulated Moving Bed Process, aiding in

the authoring of an article [13], as well as another master thesis by a colleague [14]. It is a

versatile program allowing for the adjustment of various variables in the process’s automation

and data acquisition.

With this result it can be summarized that the development of a custom-made program

with the use of versatile programming languages, although a bit time consuming, can help in

the fields of scientific research especially in long running projects or complex systems being

made easier to test and maintain, as well as simplifying its interface with its users.

8

53

Bibliography

[1] J. Araújo, “Compact SMB Chromatography for Binary Separation,” 2009.

[2] A. Rodrigues et al., Simulated moving Bed Technology: Priciples, Design and Process

Applications. 2015.

[3] J. Araújo, R. Rodrigues, and J. Mota, “Optimal design and operation of a certain class

of asynchronous simulated moving bed processes,” 2006.

[4] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia.” [Online]. Available:

https://julialang.org/. [Accessed: 06-Sep-2018].

[5] M. Del Negro, M. Giannoni, P. Li, E. Moszkowski, and M. Smith, “The FRBNY DSGE

Model Meets Julia,” 2015. [Online]. Available:

http://libertystreeteconomics.newyorkfed.org/2015/12/the-frbny-dsge-model-meets-

julia.html. [Accessed: 03-Sep-2018].

[6] “PyCall.jl.” [Online]. Available: https://github.com/JuliaPy/PyCall.jl. [Accessed: 06-

Sep-2018].

[7] “PyPlot.jl.” [Online]. Available: https://github.com/JuliaPy/PyPlot.jl. [Accessed: 06-

Sep-2018].

[8] “PySerial.jl.” [Online]. Available: https://github.com/hcgraf/PySerial.jl. [Accessed: 06-

Sep-2018].

[9] “SerialPorts.jl.” [Online]. Available: https://github.com/JuliaIO/SerialPorts.jl.

[Accessed: 06-Sep-2018].

[10] “Gtk.jl.” [Online]. Available: https://github.com/JuliaGraphics/Gtk.jl. [Accessed: 06-

Sep-2018].

[11] “pySerial.” [Online]. Available: https://github.com/pyserial/pyserial. [Accessed: 06-

Sep-2018].

[12] “Python module for Ocean Optics spectrometers.” [Online]. Available:

https://github.com/ap--/python-seabreeze. [Accessed: 06-Sep-2018].

[13] A. Chibério, T. P. Santos, G. Policarpo, J. Antunes, and J. Paulo, “Novel Single-Column

54

Simulated Moving-Bed Chromatography for Quasi-Continuous Purification of

Biomolecules,” pp. 1–12, 2018.

[14] G. Policarpo, “Nucleosides Separation by Reversed-Phase, Single-column

Chromatography with Recycle Lag,” 2018.

55

Annexes

56

Annex 1 - Diagram of the different components allowing for the connection of the VICI

Valco 2-position valves present in its manual.

57

Annex 2 - Photo of the Knauer V5010 S100 Smartline pump (Pump F) and one of the

Knauer WellChrom HPLC K501 pump (Pump E) along with the VICI Valco 2-position valves in

the setup.

Annex 3 - Photo of the Robot Electronics OptoRLY88 relay boards.

58

Annex 4 - Photo of the Robot Electronics OptoRLY88 relay boards connected to the

pneumatic actuator for the valves.

Annex 5 - Photo of the two-way valves used in the project.

59

Annex 6 - Photo of the Sartorius TE3102S weight scale.

Annex 7 - Image of the OceanOptics USB2000 Spectrometer connected through a USB

2.0 Type B cable.

60

Annex 8 - Photo of the finished setup of the Single-Column Analog Simulated Moving

Bed process.

61

Annex 9 - Output format protocol for the Sartorius TE3102S weight scale present in its

manual.

62

Annex 9 (continued) - Output format protocol for the Sartorius TE3102S weight scale

present in its manual.

63

Annex 9 (continued) - Output format protocol for the Sartorius TE3102S weight scale

present in its manual.

