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Abstract 

 

 Curcumin is the main phenolic pigment extracted from turmeric, the powdered rhizome of 

Curcuma longa. It has been shown to exhibit antioxidant, antimicrobial, anti-inflammatory and 

anticarcinogenic activities however as health promoting agent, curcumin, is limited by its poor solubility 

in aqueous solution and its low bioavailability and therefore cannot be widely used in food and 

pharmaceutical processing industry. 

 The challenge addressed in this work was to produce curcumin formulations to enhance its 

characteristics and evaluate its permeability, transport and cytotoxicity on a stablished in vitro cell co-

culture model that mimics the intestinal epithelium. 

 Solid lipid nanoparticles (SLN) and microparticles (SLM) have been visualised as a promising 

platform on development of formulations for food applications. Since traditional production methods 

possess a series of limitations, the processing by “green technologies” like supercritical carbon dioxide 

(scCO2) has been widely investigated. Through Particles from Gas Saturated Solutions (PGSS®) 

process, beeswax microparticles loaded with curcumin (9:1 (w/w)) were produced and characterized in 

terms of physicochemical properties: size, morphology, curcumin content and particles dispersion index. 

Operation process parameters were optimized and defined via response surface methodology and the 

best response was achieved at 160 bar, 73°C and 10% curcumin load. Under these conditions, 

encapsulation efficiency was 89.75 ± 2.23 % with a curcumin load of 8.98 % (w/w). Curcumin 

formulations underwent a digestive process and were tested for their cytotoxicity in Caco-2 monolayer.  

 A triple co-culture has been established and characterized for use as an in vitro intestinal model. 

To closely mimic the intestinal epithelium the production of mucus by the HT29-MTX-E12 cell line 

cultured together with the Caco-2 enterocytes and M-cells like phenotype was observed. The model 

was used to evaluate the transport and permeability of free and encapsulated curcumin and its 

permeability was stablished as a value of 1.0 x 10-7 cm/s. 
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Resumo 

 

A curcumina, o principal pigmento fenólico extraído da curcuma apresenta diversas 

propriedades antioxidantes, antimicrobianas, anti-inflamatórias e anticarcinogénicas, no entanto a sua 

utilização é limitada pela sua fraca solubilidade e biodisponibilidade no epitélio intestinal humano, o que 

consequentemente provoca a sua limitada utilização na indústria alimentar e farmacêutica. 

O desafio abordado neste trabalho foi produzir formulações de curcumina para despoletar as 

suas características e avaliar a sua permeabilidade, transporte e citotoxicidade num modelo de co-

cultura celular estabelecido para mimetizar o epitélio intestinal. 

Partículas lipídicas solidas (SLP) têm sido visualizadas como uma plataforma promissora no 

desenvolvimento de formulações para aplicações alimentares. Como os métodos tradicionais de 

produção possuem uma série de limitações, o processamento por “tecnologias verdes” como o dióxido 

de carbono supercrítico (scCO2) tem sido amplamente investigado. Através do processo Particles from 

Gas Saturated Solutions (PGSS®), micropartículas de cera de abelha carregadas com curcumina (9:1 

(m/m)) foram produzidas e caracterizadas em termos das suas qualidades físico-químicas: morfologia, 

tamanho, quantidade de curcumina e índice de polidispersão. O processo de produção foi otimizado e 

definido através da metodologia de superfície de resposta sendo que a melhor resposta foi obtida a 

160 bar, 73 °C e 10 % de curcumina. Nestas condições, a eficiência de encapsulação foi de 89,75 ± 

2,23 % com uma encapsulação de 8,98 %. As micropartículas foram submetidas a um processo 

digestivo e testadas quanto à sua citotoxicidade em monocamada de células Caco-2. 

Para mimetizar o epitélio intestinal uma co-cultura tripla foi estabelecida e caracterizada 

observando-se a produção de muco pela linha celular HT29-MTX-E12 cultivada em conjunto com os 

enterócitos Caco-2 e o fenótipo das células M. O modelo foi utilizado para avaliar o transporte e a 

permeabilidade da curcumina livre e encapsulada sendo o transporte estabelecido nesta co-cultura 

como 1,0 x 10-7 cm/s. 
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Figure 7.3| TEER values from curcumin permeation assay. The tests occurred for 24 hours and the 

values presented were a mean of 3 measurements per well. The permeability was tested on inserts 

with differentiated Caco-2 cells, as well as on the triple co-culture implemented. ........................ 51 
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1. Introduction 

 

1.1. Food industry – Functional foods and Nutraceuticals 

 Nowadays, the world population are understandably more interested in the potential benefits of 

nutritional support for disease control or prevention and tends to eat more nutritional foods.1 These diets 

are known to have a lower incidence of cardiovascular diseases and certain types of cancer. With the 

increase of this concern and through epidemiological and clinical studies an evident relationship 

between diet and health is observed. 1,2 In the past few years, many food bioactive constituents, 

functional ingredients (vitamins, antimicrobials, antioxidants, colorants, etc.), have been commercialized 

in form food supplements that incorporate food extracts to obtain a product with a beneficial 

physiological function attributed.3 With these modifications these resulting products cannot be classified 

as ‘food’ and in in 1989 the term ‘‘nutraceutical’’ was formed by the Foundation for Innovation in Medicine 

(New York, US). A new hybrid term that represents both nutrients and pharmaceuticals to designate the 

new foods created. The term ‘‘functional food’’ are known by the Institute of Medicine of the National 

Academy of Sciences (1994) as any food or food ingredient that, when consumed regularly, may provide 

a health benefit beyond their nutritional properties.4  

 The concepts of nutraceuticals, functional foods, or dietary supplements are confusing and most 

often they can be used interchangeably. Dietary supplements which, through a bioactive agent, are 

presented as a non-food matrix and used with the function of improving health through dosages that 

exceed those that could be obtained from of normal food.2,3,5,6  

 The aim of nutraceuticals is significantly different from functional food, with emphasis on 

prevention and treatment of diseases. Various nutraceuticals are used in nutritional therapy, which is 

mainly based on scientific research and with more clear information about chemical structures, biological 

functions and clinical information.7 Therefore, these characteristics attracted the attention of people to 

seek a better diet and the production of new functional foods meeting the needs of growing Human 

population.  

 

1.1.1. Bioactive Compounds 

Across cultures there are many different dietary patterns, some of which promote health and 

others that increase risk of chronic disease. Despite cultural differences there are some shared 

characteristics of healthy dietary patterns. These compounds are extra nutritional constituents that 

typically occur in small quantities in foods. 3 

 

1.1.1.1. Curcumin as a nutraceutical 

Curcumin [(E,E)-1,7-bis(4-hydroxy-3-methoxy-phenyl)-1,6-heptadiene-3,5-ione] (Figure 1.1), a 

hydrophobic polyphenol, is the main phenolic pigment extracted from turmeric, the powdered rhizome 

of Curcuma longa (Figure 1.2), widely cultivated in several tropical areas in Asia and despite the use in 

medicine, cosmetics and pharmaceutical preparations is mainly utilized as spice.8–12 
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The medicinal importance of powdered coloured extracts of dried roots, often called turmeric, is 

well documented. It has been used for many diets in particularly as an anti-inflammatory agent, however 

curcumin, identified as the active principle, has been shown to exhibit antioxidant, antimicrobial, anti-

inflammatory, anticarcinogenic activities, etc. 8,13–15  

Curcumin and turmeric products have been characterized as safe by health authorities such as 

the Food and Drug Administration in United States of America, the Natural Health Products Directorate 

of Canada, and the Expert Joint Commit- tee of the Food and Agriculture Organization/World Health 

Organization on food additives.11 While in EU it bears a status of food ingredient (E100) and is present 

in many food additives. 16,17 

The turmeric contains three principal curcuminoids: 75-80% curcumin, 15-20% 

demethoxycurcumin, 3-5% bis-demethoxycurcumin. In recent studies cyclocurcumin appears as the 

fourth most abundant curcuminoid in turmeric (Figure 1.3). 18–20 Curcumin, first isolated in 1815, is found 

as a crystalline powder insoluble in water under acidic or neutral conditions but soluble in ethanol, alkali, 

ketone, acetic acid and chloroform. Is unstable undergoing rapid hydrolytic degradation in neutral or 

alkaline conditions to feruloyl methane and ferulic acid. Since it is insoluble in aqueous medium and has 

poor stability towards light, alkalinity, enzymes and heat, it cannot really be widely used in food and 

pharmaceutical processing industry. 10,19,21 

As health promoting agent, curcumin, is limited by its poor solubility in aqueous solution and its 

low bioavailability. 13 Due to these limitations, studies have been developed with the aim to reduce the 

rapid degradation and increase curcumin’s bioavailability. These studies are based on encapsulation 

techniques and nanotechnological approaches, however the increased bioavailability of curcumin will 

depend mainly on the physicochemical properties of the carrier.  

Figure 1.1| Chemical structures of curcuminoids. Adapted from Shiyou Li et al. 19 
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1.2. Bioactives formulation 

Particle formation and encapsulation technologies are widely employed in the pharmaceutical, 

cosmetic and food industries. However, the development of suitable delivery systems is fundamental to 

overcome barriers to bioactive usefulness.  

Many formulations consist in comprising a core material (the active component) surrounded by 

a coating material (typically a bio-polymer) (Figure 1.3). The resulting materials and systems can be 

designed to exhibit novel and significantly improved chemical and biological properties. 22,23  

In the field of particulate delivery systems, the ability to control size, morphology and release of 

encapsulated compounds is fundamental to good targeting but is often held back by severe processing 

conditions or inadequate methods. These methods presuppose two important requirements:  the 

encapsulation system must preserve stability of the bioactive compounds during processing and storage 

and to prevent undesirable interactions with food matrix, which should be depends on the type of 

molecule and carrier.22,24 There is a multitude of possible ways to encapsulate bioactives. 22,23,25  

Triglycerides based-nanoemulsions and supercritical fluids encapsulation techniques are the one type 

of formulations explored in this work.  

 

 

 

 

Turmeric

(powdered rhizome of 
Curcuma longa )

Carbohydrates 65-70%

Moisture 10%

Proteins 6%

Volatil 
(exencial) Oils

4-5%
Aromatic 

properties

Fat 1.7-3.3%

Curcuminoids 0.3-5.4%

Resines 1%

Figure 1.2| Turmeric constitution. Approximate ranges are shown based on supporting references 8, 10 and 11. The 

focus it’s curcuminoids composition that include curcumin, demethoxycurcumin, bis-demethoxycurcumin, and 
cyclocurcumin. 
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1.2.1. Nanoemulsion-based delivery systems 

Emulsions of O/W are regarded as useful tools with a great potential in the food sector to 

incorporate food ingredients. 26 

In general, nanoemulsions can be produced using a variety of methods within two different 

approaches: high energy or low energy approaches. High energy methods result from the application of 

high disruptive forces through mechanical devices, with the aim of causing the rupture of oil droplets 

dispersing them in the aqueous phase. The second approach, low energy, depends on the spontaneous 

formation of tiny oil droplets within mixed oil-water-emulsifier systems when changing the solution or 

ambient conditions, such as composition or temperature. 27–29 

The formulation of nanoemulsions consist of a mixture of immiscible liquids. Briefly, a lipid 

phase, that generally acts as a carrier of lipophilic active compounds, is dispersed in an aqueous phase 

in the form of nanometric scaled droplets (<100nm). 27 The oil phase can be constituted by different non-

polar compounds, normally triglycerides are used. Besides the lipid and aqueous phases, the 

formulation of nanoemulsions requires the use of stabilizers such as emulsifiers to prevent the 

breakdown of the nanoemulsion structure. 28,30 

 

1.2.2. Solid lipid particles 

 Solid lipid particles have emerged in the last two decades as an alternative to liposomes, 

emulsions or polymer particles as potential release vehicles (Figure 1.3). 31 Usually comprised of 

biodegradable and non-toxic lipids, solid at room and body temperature, promote the release of the 

incorporated compound through a prolonged profile after administration at a constant concentration of 

the molecule of interest in the blood stream. 32,33 In addition, these vehicles have the advantage of 

increasing particle uptake by epithelial cells and can promote sustained drug release.  

 

1.3. Supercritical fluid technology 

Solvents are used in large amounts in the chemical, pharmaceutical, food, and natural product 

industries. The call for new products with singular features and design of new environmentally friendly 

Figure 1.3| Structures of solid lipid particles according to the distribution of drug molecules (pink dots) in 
the lipid matrix (brown filling). The grouped pink dots symbolize drug molecules not soluble in the matrix but 

dispersed in other hand the dispersed ones represent drug dispersed on molecular form. (A-D) capsules; (E-F) 

spheres. Adapted from A. Sao Pedro. 126  
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and sustainable technologies is emerging in society and shifting the technological processes towards 

high pressure. 32 

A pure component is considered to be in a supercritical state if its temperature and its pressure 

are higher than the critical values. The critical point represents the end of the vaporization curve in the 

PT phase diagram (Figure 1.4). These types of fluids add a new important property to conventional 

(liquid) solvents: their density; liquid-like densities and, therefore, solvating characteristics equivalents 

that can be easily tuned to the process needs. But, at the same time, they present gas-like properties 

such as very low surface tensions, low viscosities, and moderately high diffusion coefficients. In general, 

the physical properties in the critical region enhance mass and heat transfer processes. 34–37 

The most widely used SCF is scCO2, which is nontoxic, non-flammable, cheap, widely available 

and easy recyclable. Once its critical properties can be achieved at moderate pressures and near-

ambient temperatures (Table 1), is one of the most fluid used as “green solvent” for bioactives 

encapsulation. Furthermore, the use of ScCO2 eliminates or reduces the use of toxic organic solvents, 

in the process, and allows to obtain solvent-free products due to the high solubility of most organic 

solvents in the fluid. 36,38,39 

 

1.3.1. Supercritical-based precipitation methods 

The use of scCO2 provides several advantages in comparison with conventional techniques or 

even comparing with other supercritical fluids. It can be used as a solvent, antisolvent, as extracting 

agent or even to improve the spraying process in different techniques. The solvent properties of scCO2, 

i.e. the solubility of polymers in scCO2 and the solubility of CO2 in the polymers, are two key fundamental 

subjects in this field. 

The solvent power of supercritical scCO2 can be used to dissolves non-polar or slightly polar 

compounds and decreases with the increase of compounds molecular weight. Has high affinity with 

oxygenated organic compounds and exhibit low solubilities for free fatty acids, glycerides and water 

(<0.5 wt%), at temperatures below 100 °C. One of the most interesting characteristic is the capability to 

Figure 1.4| Phase diagram of a compound (PT). 37 
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separate compound that are less volatile, have a higher molecular weight and/or are more polar, as 

pressure increases. However, proteins, polysaccharides, sugars and mineral salts are insoluble. 34,36,37 

 

1.3.1.1. Particles from Gas Saturated Solutions  

The PGSS® technique was patented by Weidner et al 40–42 and allows to form particles from 

substances that are non-soluble in supercritical fluid. Briefly, compounds mixture absorb a large amount 

of CO2 that cause a decrease of melting point (glass transition temperature for amorphous polymers) or 

a swelling effect on the substance.40,43,44 The major advantages of this process, in comparison with other 

supercritical-based precipitation methods, is the low intake of carbon dioxide and the possibility to 

process thermolabile substances. 

The polymeric or lipidic solution formed, which can contain between 5-50 wt% of the 

compressed gas, is expanded through a nozzle causing the release of CO2 with large cooling effect, 

due to the energy consumption, leading to a quasi-instantaneous solidification of the droplets. This rapid 

cooling of the gas during the expansion process is due to the Joule-Thomson effect. In few words, since 

an expansion of a gas from high to low pressure through a throttle valve is an isenthalpic process, it 

leads to a significant temperature drop. 45–47 

The morphology, size and apparent density of the produced particles may depend on several 

parameters such as the structure and viscosity of the compounds to be precipitated, the operating 

conditions, and even the equipment used to perform the PGSS® process. 36,44,48,49  

 

1.4. Concepts and models for bioactives permeability studies 

Prediction of human intestinal absorption, bioavailability and compounds cytotoxicity is a major 

goal in the optimization and production of drugs and formulated products intended for non-invasive 

delivery. Oral bioavailability is a highly desirable property for molecules of particulate interest 

nonetheless poor permeability and/or absorption make a molecule unsuitable for further development, 

and there is interest in finding ways to avoid the situation of having a potent, yet impermeable molecule. 

50,51 The determination of oral bioavailability is as important as identifying the potential therapeutic uses 

of nutraceuticals. Consequently, various techniques have been currently employed to predict bioactive 

compounds absorption in the different phases of discovery and development. 52 

 

1.4.1. Bioactive compounds oral administration 

Over recent years, a major challenge in compounds delivery has been the design of appropriate 

vehicles for the oral administration of bioactives. Bioavailability represents both the quantity of the active 

component absorbed through the blood circulation and the rate of this phenomenon. However, is 

extremely conditioned for enzymatic degradation and poor penetration of the intestinal membrane. 53 

Not all concentration of the active compounds is absorbed by the epithelium being that the quantity of 
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drug reaching the general circulation depends on many different factors and is mostly determined by its 

physicochemical properties. To predict the compounds intestinal behaviour strategies for modulating 

tight-junction permeability increasing paracellular transport of molecules has been implemented. 54,55  

 

1.4.2. Intestinal composition and permeability 

In oral administration absorption of compounds by passive diffusion in the intestinal epithelium 

(Figure 1.5) is the major transport mechanism presented. Nonetheless to be absorbed, the molecules 

must diffuse across a series of separate barriers. Some of them includes the mucosal side, the mucus 

gel layer, the intestinal epithelial cells, the lamina propria and the endothelium of the capillaries. 

However, only the epithelial cells barrier is the most significant to compounds absorption. 56–59 Now, 

several in vitro experimental models with high-throughput capacity and adequate predictability of 

absorption potential in human epithelial are available for evaluating intestinal permeability and transport. 

60,61  

Because the oral route is the most commonly administration route used, the intestinal barrier 

has received much attention. In order to simulate the intestinal barrier, Caco-2 cell line have gained 

massive approval as a reliable and high throughput in vitro model for evaluating a large number of 

candidates for their intestinal absorption potential. 55,62,63 

 

Figure 1.5| Representation of the organization of the small intestine epithelium. Adapted 

from Maria T. Abreu. 127 
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1.4.2.1. Caco-2 cell model 

Caco-2 cells, a human colon adenocarcinoma, has been used extensively for the high 

throughput screening of compounds permeability. Allows effective in vitro prediction of compound 

permeability and absorption while considering all the physical, chemical, and biological events during 

intestinal transportation. 64 

They undergo spontaneous enterocytic differentiation in culture and when they reach 

confluency, on a semipermeable porous filter, express many primary-like qualities of enterocytes, both 

functional and morphological, and can fully polarize into differentiated monolayers displaying brush 

border regions (microvilli) and cell-cell (tight junctions).65–68 Still, this system presents some limitations 

when compared to the human intestinal epithelium, specifically the overexpression of P-gp, an efflux 

pump, and the formation of strong tight junctions that could lead to a decrease in the paracellular 

permeability. Nevertheless, these monocultures only characterize absorptive cells, which do not mimic 

completely the human intestinal epithelium as it is a combination of different cell types: absorptive cells 

or enterocytes, goblet cells (mucus producer cells), endocrine cells and M cells. Being the enterocytes 

the most abundant cells, followed by goblet cells. 55,69–71 

Studies regarding membrane transport are still present as inconsistent due to the high 

requirement on the quality of the monolayer. Factors such as cell condition, passage number, length of 

cultivation and circumstance under which the study is performed diverge among laboratories and affects 

the viability of the results. 65  

 

1.4.2.2. M Cells 

In the intestine, PPs are the major sites of antigen and microorganism sampling. M cells (Figure 

1.6) are responsible for the transepithelial transport of foreign material and microorganisms from the 

external environment to the lymphoid follicles. 72,73 These cells typically contain a small number of 

microvilli in the apical zone and a basolateral cytoplasmic invagination in which the lymphocytes and 

macrophages are located. Passage of antigens and microorganisms through M cells is an essential step 

for the development of mucosal immune responses and the pathology of many infectious diseases. 

Particle delivery vehicles are largely prevented from passing between epithelial cells by tight junctions. 

However, since M cells have a relatively high transcytotic capacity compared to enterocytes, can 

represent an efficient route for the transport of nutraceuticals carried by particulate carriers through the 

intestinal epithelial barrier. Kernéis et al.74 constructed the first intestinal in vitro co-culture model based 

on Caco-2 cells and mouse Peyer’s patch lymphocytes. The interaction of the epithelial cell line Caco-

2 with lymphocytes triggered the formation of cells-like M cells that resemble intestinal M cells functions 

and morphology. 75 Later, to overcome the use of primary murine lymphocytes, Gullberg et al. 75 

developed a similar model based on a co-culture of Caco-2 cells and human Raji B lymphocytes, a cell 

line that is originated from a human Burkitt’s linfoma, since Raji cells exhibit B cell markers, which are 

major inductive of M cells phenotype. 76 Results based on the work of des Rieux et al. 54,77 exhibited that 

particle transport through the M cell model was 50-fold higher compared to a pure Caco-2 monolayer. 
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Like described for Antunes et al. 60 to obtain the phenotype M-cell like, one common approach 

is to use a 21 days in vitro model that consists in a co-culture of Caco-2 cells seeded on Transwell® 

membranes inserts (normal oriented) (Figure 1.7) and human Raji B lymphocytes added, to the 

basolateral chamber of the insert, after 14 days. Whit this method it was possible to detect that some 

cells developed M-cell like morphology.  

 

1.4.2.3. Caco-2/HT29-MTX/Raji B Model 

The mucus layer covering GI tract, represents a significant barrier to particles absorption. Mucus 

is a viscoelastic adhesive gel that coats all exposed epithelial surfaces not covered by skin.78 Mucus 

protects the underlying epithelium by both lubricating the surface and trapping and removing foreign 

particulates. Has been shown to be highly adhesive to pathogens and particulate systems, offering many 

opportunities for the development of adhesive interactions with small polymeric particles. 79,80  

Figure 1.6| Schematic sections of Peyer's lymphoid follicle and follicle-associated epithelium (FAE), 
showing the transport of particulate delivery vehicles by M cells. The lymphoid follicle is situated under the 

projecting area in the intestinal lumen between the villi. Covered by FAE, this epithelium is characterized by the 
presence of specialized antigen-sampling M cells (Fig. B). Adapted from Clark et al, 2001. 72 

Figure 1.7| Schematic representation of a Transwell® co-culture model. Caco-2/HT29-

MTX cells are seeded on the polycarbonate inserts at the apical side while Raji B are added 
later to the basolateral compartment. Image adapted from Hubatsch et al, 2007.128 
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Since the early 1980s, several methods have been developed to differentiate the 

adenocarcinoma cell line HT29 into mature intestinal cells under appropriate culturing conditions. 81 

Through selective pressure with MTX a distinct subpopulation of mucus-secreting HT29 cells that 

maintain their ability to differentiate under normal culture conditions were isolated by Lesuffleur et al. 82 

At late confluence, HT29-MTX monolayers show a dense mucus layer on their apical surface and a 

morphology identical to human intestinal goblet cells. However, as opposed to Caco-2 cells, does not 

express P-gp and do not form TJs as tight which promotes the increase in paracellular transport 

pathways. These mucus layers is labile and could be removed by extensive and rough washings. 81,83,84 

Considering the above-mentioned culture models all their advantages and drawbacks, a cell-based 

model based on the combination of Caco-2, mucus-producing HT29 cells and Raji B lymphocytes was 

stablished resulting in a more promising experimental results reproducing the intestinal epithelium in a 

more complete way like illustrated in figure 8. 55,61 

 

 

Figure 1.8| Illustration of A) Caco-2 monolayer and B) Caco-2/HT29-MTX/Raji 

B co-culture model setup. Adapted from C.Pereira et al.52 

B 

A 



11 

 

1.5. Aim and rational of the thesis 

The challenge addressed in this work was using an in vitro cell co-culture model that mimics the 

intestinal epithelium to evaluate the bioavailability and safety of curcumin delivery systems. 

 

To achieve this goal, an integrated approach was developed by two distinct tasks:  

1. Development of different types of curcumin formulations to maximize its bioavailability and stability. 

2. Implementation of an in vitro model system that closely mimics the human intestinal epithelium 

monolayer to evaluate the formulated curcumin systems in terms of toxicity and bioavailability. 

 

 

  

 

 

 

 

 

 

 

In task 1: Curcumin delivery systems 

The general aim of this first task was the investigation of curcumin entrapment into solid lipid 

microparticles, using a green technology, on assisted CO2 precipitation method and compare this 

formulation whit particles prepared by conventional approaches. The PGSS® process was chosen and 

a response surface methodology was used to model and optimize the encapsulation conditions.  

Different techniques were applied to characterize the formulations in terms of morphology, size 

and thermal behaviour along with the quantification of encapsulated curcumin. After total 

characterization these particles underwent an in vitro digestion process used to evaluate the changes 

in curcumin formulations throughout the gastrointestinal tract.  

 

In task 2: In vitro cell co-culture model 

A triple co-culture has been established and characterized for use as an in vitro tool for transport 

and permeability studies. Viability and cytotoxicity profiles tests of free and encapsulated curcumin were 

evaluated for different dosages and times of exposure. The integrity of the monolayer and the quality of 

tight junctions were controlled during the transport studies by monitoring transepithelial electrical 

Goblet cell-like 
model: HT29 

MTX-E12 

M cell-like 
model: Caco-2 + 

Raji B 

Enterocyte-like 
model: Caco-2  

Nanoemulsions 

Solid lipid particles 
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resistance and by microscopic observation of cell morphology. The amounts of permeated curcumin 

were quantified, and apparent permeability coefficients were determined. 
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2. Materials 

 For curcumin encapsulation through PGSS® technique, curcumin (95%) was purchased from 

Alfa Aesar (Karlsruhe, Germany), beeswax from QUIMIND (Portugal), CO2 (99.95 and 99.998 mol% 

purity) was delivered by Air Liquide (Portugal) and methanol absolute 99.99% from Fisher Scientific 

(Waltham, MA, USA). Curcumin (65%) encapsulated in nanoformulations was purchased from Sigma-

Aldrich. An analysis and comparison of its purity is shown in attachment. 

 To perform the In vitro digestion, digestion fluids were produced: SSF (KCl, 15.09 mM; KH2PO4, 

1.35 mM; NaHCO3, 13.68 mM; MgCl2(H2O)6, 0.15 mM; NH4(CO3)2, 0.06 mM; CaCl2(H2O)2, 1.5 mM; 

HCl, 1.1 mM; pH 7), SGF (KCl, 6.9 mM; KH2PO4, 0.9 mM; NaHCO3, 25 mM; NaCl, 47.2 mM; 

MgCl2(H2O)6, 0.12 mM; NH4(CO3)2, 0.5 mM; CaCl2(H2O)2, 0.15 mM; HCl, 15.6 mM; pH 3) and SIF 

(KCl, 6.8 mM; KH2PO4, 0.8 mM; NaHCO3, 85 mM; NaCl, 38.4 mM; MgCl2(H2O)6, 0.33 mM; CaCl2(H2O)2, 

0.6 mM; HCl, 8.4 mM; pH 7). Still in the digestion procedure the following enzymes were used: α-

Amylase (A1031-1KU, Sigma, USA), pepsin (EC 3.4.23.1) from porcine gastric mucosa (Sigma, USA), 

bile extract porcine (Sigma, USA) and porcine pancreas (Sigma-Aldrich, USA). To stop enzymatic action 

Pefabloc®) from Sigma-Aldrich and Amicon® Ultra-4 Centrifugal Filter Units from Merck (Millipore, 

Germany) was used. 

 All cell culture media and supplements, namely FBS, DMEM, MEM NEAA, PS, trypsin/EDTA 

and HBSS were obtained from Invitrogen (Gibco, Invitrogen Corporation, Paisley, UK). Corning® 

Transwell® polyester membrane cell culture inserts (12 mm with 0.4 μm pore polyester membrane insert 

and 1.12 cm2) were purchased from Merck (CLS3460-48EA) to monolayer culture. 

 To perform cells cytotoxicity assays, MTS (G3582) from Promega was used and in assays with 

necessary cellular lysis the utilized reagents were: inhibitor of Proteases cocktail (Protease inhibitor 

cocktail set III ANIM #535140-1 Calbiochem) and Cell Lytic (M Cell Lysis reagent, Sigma C2978-50 ml). 

 Whenever it was necessary to perform sterility tests were performed on tryptone soy broth (TSB, 

Scharlau, Spain). 

 

 

 

 

 

 

 

 

 

  



14 

 

  



15 

 

3. Methods 

 

3.1. Curcumin formulation process 

 

3.1.1. Curcumin Nanoformulations 

 

3.1.1.1. Nanoemulsions preparation 

Curcumin nanoemulsions were prepared through high pressure homogenization according to 

other authors (Pinheiro et al., 2016). The lipid phase constituted by MCT or LCT and 0.1 % of curcumin 

was homogenized with the aqueous phase (with lecithin 2.5 %) at room temperature and a volume ratio 

of 1:9. First, both solutions were pre-mixed using an Ultra-Turrax homogenizer (T 25, Ika-Werke, 

Germany) during 2 min and thereafter the resulting emulsion were passed through a high-pressure 

homogenizer (NanoDeBee, Bee International, South Easton, Massachusetts, USA) at 20 000 psi (137.9 

MPa) during 20 cycles. The nanoemulsion were kept at 4 ˚C in the dark. 

3.1.1.2. Solid lipid nanoparticles preparation 

SLN were prepared according with Kheradmandnia et al.85. Beeswax (3 %), lecithin (1.5 %) and 

curcumin (0.1 %) were melted in a water bath at 85 ˚C. Tween 80 (1.5 %) was solubilized in distilled 

water at 85 ˚C in an Ultra-Turrax homogenizer (T 25, Ika-Werke, Germany) during 2 min at 3400 rpm. 

The aqueous solution was added to the lipid solution and mixed in an Ultra-Turrax homogenizer (T25, 

Ika-Werke, Germany) at 22000 rpm during 10 min. Then the resulting nanoemulsion was gradually 

dispersed at a volume ratio of 1:10 in cold water at 2 ˚C under stirring at 2000 rpm. The SLN were kept 

at 4 ˚C in the dark. 

Both formulations at the nanoscale were developed and prepared out by Universidade do Minho 

(Portugal) within the framework of the NanoMaxiSafe project (PTDC / AGRTEC / 5215/2014), in which 

some of the results produced in this master thesis are also included.  

 

3.1.2. Curcumin microparticles 

 

3.1.2.1. Melting point measurements 

 The melting point of solids can be considerably decreased by using supercritical fluids which 

are highly soluble in the melt. Knowledge of the solid-liquid transitions of lipids under pressurized CO2 

is essential for their precipitation through the PGSS® process. Since beeswax data of melting point 

depression, as a result of CO2 dissolution in the matrix, is not a topic presented in the literature the 

melting point depression was measured within this work using a visual method. 86,87 

For performing the melting point determination experiments, a stainless steel high-pressure 

visual cell with an internal volume of approximately 5 cm3 with two sapphire windows was used. Briefly, 

the lipid was placed inside a glass (1 cm3) and inserted in the visual cell. The pressure in the cell was 
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measured with a pressure transducer Digibar II calibrated between 0 and 250 bar (accuracy: 0.15 %) 

and the CO2 was pumped, using a Haskel pump (model 29723-71), until the desired pressure was 

reached.  The temperature was then gradually increased until it was possible to visually observe the 

complete melting of the lipid. The heating system was composed of a heating cable (Horst), a controller 

(Ero Electronic LMS) and a high accuracy thermometer (Omega HH 501 AT, 0.1 %). Measurements 

were performed in a pressure range up to 200 bar. To confirm the reproducibility of the results some 

points were repeated resulting in a 0.15 % of error.  

 

3.1.2.2. Particles from gas saturated solutions 

 Beeswax particles unloaded and loaded with 10 wt % of curcumin were produced by PGSS® in 

batch mode. The schematic representation of the modified PGSS® equipment (FAME UNIT, Separex, 

France) used to produce the particles is shown in figure 3.1 previously described in the work of 

Rodríguez-Rojo et al. with some modifications. 88 Briefly, CO2 was fed by a pneumatic pump (29723-71, 

Haskel International Inc.,CA, USA)  to a 50 cm3 high pressure stirred vessel, electrically thermostated, 

at the selected operation temperature until the desired working pressure was reached. Then, the stirred 

mixture is depressurized through a nozzle (250 μm) by an automated depressurization valve to a 

cyclone, where it was externally mixed with compressed air (7 bar). The mixture and the supercritical 

carbon dioxide are brought into contact during 15 min. Finally, the particles were recovered into a 

collector vessel of 18 L at atmospheric pressure. The operating conditions (T and P) were chosen 

according to the measurements of melting point depression of the lipid in the presence of compressed 

CO2 and varied to see their effect on the particles’ morphology and size.  

 

 

 

 

 

 

 

 

 

Figure 3.1| PGSS® experimental setup: (1) CO2 cylinder, (2) cryostate, (3) pneumatic piston pump, (4) stirred 

vessel (electrically thermostated), (5) automated depressurization valve, (6) recovery vessel, (7) nozzle. 
Adapted from V.S.S. Gonçalves et al. 89 
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3.1.2.3. Experimental design (Process Optimization)  

 RSM was used to model and optimize encapsulation conditions. RSM consists of a set of 

mathematical and statistical methods developed for modelling phenomena and finding combinations of 

several experimental factors (variables) that will lead to optimum responses. With RSM, several 

variables are tested simultaneously with a minimum number of trials, using special experimental designs 

that enable to find interactions between the variables which cannot be identified with classical 

approaches. The encapsulation of curcumin through PGSS® was carried out following a CCFC, as a 

function of three factors: pressure, temperature and curcumin load in mixture. The design consisted of 

seventeen randomized runs with three replicates at the central point described in table 3.1. To normalize 

parameters, each of the coded variables was forced to range from -1 to 1, so that they all affect the 

response more evenly (Table 3.2). The repetitions of the centre points are used to determine the 

experimental error, which is assumed to be constant along the experimental domains. The fit of the 

models was evaluated by the R2 and Radj
2. 

 

Table 3.1| Three-factor, three-level face-centered cube design used for RSM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 No randomized 

2 Randomized 

 

  Independent variables 

Standard1 

Order 

Run2 

Order 

Pressure 

(bar) 

Temperature 

(ºC) 

Curcumin 

load (%) 

1 5 80 (-1) 63 (-1) 1 (-1) 

2 2 160 (1) 63 (-1) 1 (-1) 

3 1 80 (-1) 73 (1) 1 (-1) 

4 7 160 (1) 73 (1) 1 (-1) 

5 8 80 (-1) 63 (-1) 10 (1) 

6 11 160 (1) 63 (-1) 10 (1) 

7 4 80 (-1) 73 (1) 10 (1) 

8 15 160 (1) 73 (1) 10 (1) 

9 9 80 (-1) 68 (0) 5.5 (0) 

10 16 160 (1) 68 (0) 5.5 (0) 

11 13 120 (0) 63 (-1) 5.5 (0) 

12 12 120 (0) 73 (1) 5.5 (0) 

13 17 120 (0) 68 (0) 1 (-1) 

14 6 120 (0) 68 (0) 10 (1) 

15 3 120 (0) 68 (0) 5.5 (0) 

16 10 120 (0) 68 (0) 5.5 (0) 

17 14 120 (0) 68 (0) 5.5 (0) 
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Table 3.2| Real values of the variables for the coded ones. 

 

 

 

 

3.2. Particles’ characterization 

 

3.2.1. DSC measurements 

DSC was performed using a TA instruments Q200 (module MDSC) with the aim of studying the 

thermal behaviour of the particle’s components. An amount of 5-10 mg of curcumin or pure lipid 

(beeswax) was weighted into an aluminium pan and sealed in the calorimeter. The samples were heated 

from 0 °C to 220 °C at a rate of 10 °C/min under nitrogen atmosphere. After encapsulation procedure 

an amount of 0.4-1 mg of lipid particles were tested to in the same conditions.  

 

3.2.2. Encapsulation efficiency 

 To measure the total curcumin encapsulated in PGSS produced microparticles, curcumin (an 

amount of 5 and 7 mg of particles) was extracted from the lipidic matrix with 30 mL of methanol in an 

ultrasound bath during 30 min. The result of this disruption was later analysed by a UV/Vis 

spectrophotometer (model EPOCH, 219 Bio-Tek, USA) wavelength of 420 nm.  To eliminate non-

dissolved solids before the quantification the solution was filtered (25 mm - 0.20 µm).  

 The determined absorbance is proportional to the amount of curcumin in solution. The amount 

of curcumin in the solution is reported in this work as the percentage of encapsulated curcumin. 

Standard solutions of curcumin to be used in the calibration was obtained by using standard samples in 

methanol with concentrations between 1 and 25 µg/mL (R2 =0.9992). For reproducibility purposes 

average and standard deviation were calculated from 3-4 replicates. On the other hand, the 

encapsulation efficiency (Eq. 1) was obtained comparing the final and initial load of curcumin in the 

experiment.  

𝐸𝐸 (%) =
𝐹𝑖𝑛𝑎𝑙 𝑐𝑢𝑟𝑐𝑢𝑚𝑖𝑛 𝑙𝑜𝑎𝑑

𝐼𝑛𝑖𝑐𝑖𝑎𝑙 𝑐𝑢𝑟𝑐𝑢𝑚𝑖𝑛 𝑎𝑚𝑜𝑢𝑛𝑡
× 100 (𝐄𝐪. 𝟏) 

3.2.3. Particle size and morphology 

 The morphology of the particles was analyzed and imaged by SEM (Jeol, JSM-5310 model, 

Japan). Samples were prepared for observation by covering with gold/palladium (Au/Pd), approximately 

300 ˚A of gold, in a sputter coater (Quorum Technologies, model Q150TES). Micrographs of the 

prepared aliquots were taken at an acceleration voltage of 20 kV. 

Independent variable 
Factor levels 

-1 0 1 

Pressure (bar) 80 120 160 

Temperature (ºC) 63 68 73 

Curcumin load (wt %) 1 5.5 10 
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 The particle size of the samples was measured by a LD equipment model Malvern Mastersizer 

2000. The particle size measurements are defined as d0.5 (known as the median particle size by 

volume) being the result the average from 3 measurements. The span value is also reported, that is, the 

ratio between d0.5 and (d0.9-d0.1); span values near to 1 represent narrow PDI. 

 

3.2.4. Curcumin formulations sterilization 

 Briefly, microparticles were put directly in contact with UV irradiation during 30 min at room 

temperature in laminar flux chamber and to further confirm sterility, microparticles were incubated in 

tryptone soya broth at 37 °C in a humidified atmosphere of 5 % CO2 to ensure the absence of bacterial 

contamination (data not shown). 

 

3.3. In Vitro Release of Curcumin 

 The in vitro curcumin release assays were performed in two different environments: simulated 

intestinal fluid and simulated gastric fluid, both without the presence of enzymes. This test had three 

different approaches: solubility in SIF, SGF and SIF plus SGF. For each fluid 5 mg of PGSS 

microparticles were deposited in a sealed flask with 30 ml of SIF or SGF. The system was kept under 

constant agitation (50 rpm) at 37 °C during 48 h. In the last-mentioned approach, the compound was 

subjected to two hours of incubation with SGF to which a volume of SIF (1: 2 respectively) was added 

over the remaining assay time. At a desired time interval, an aliquot of 1 mL was removed, with 

replacement with fresh fluid, from each flask to quantify through UV/Vis measurements like described 

in 3.2.2. The aliquots were filtered (25 mm - 0.20 µm) before the UV/Vis analysis to avoid the interference 

of microparticles. The same procedure was repeated to free curcumin, where 1 mg of curcumin (95 %) 

was submitted to 40 mL of digestion fluids. 

 

3.4. In vitro Digestion  

An in vitro digestion procedure, as described by Minekus et al. 90 was used to evaluate the 

transformation that encapsulated curcumin suffer throughout the gastrointestinal tract. These methods 

try to mimic physiological conditions in vivo, considering the presence of digestive enzymes and their 

concentrations, pH, digestion time, and salt concentrations, among other factors, to mimic closely the 

oral, gastric an intestinal phase property.  

 

3.4.1. Oral Phase  

First, the oral phase, 5 mL of microparticles were added to 4 mL of Simulated Salivary Fluid. 

Since microparticles are in solid state 0.5 mL α-Amylase (150 U/mL in fluid) were required. To adjust 

the pH to 7 was add 6 M NaOH and Milli-Q water to a final volume of 10 mL. The mixture was incubated 

for 2 minutes at 37°C, under constant agitation. 
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3.4.2. Gastric Phase  

The mixture resulting from the oral phase was submitted to a gastric phase by adding 8 mL of 

Simulated Gastric Fluid and 1 mL of pepsin (2000 U/mL in fluid) from porcine gastric mucosa. In this 

phase, 1M HCl was added until pH 3 was stablished and Milli-Q water to perform a final volume of 20 

mL. The gastric digestion step was conducted for 2 hours at 37°C, under constant agitation.  

 

3.4.3. Small Intestine Phase  

To the gastric digestion mixture were added 11 mL of Simulated Intestinal Fluid, 2.5 mL of bile 

extract porcine and 5 mL pancreatin from porcine pancreas (200 U/mL in the fluid). Finally, the mixture 

was brought to pH 7 by addition of 6 M NaOH and Milli-Q water added to a final volume of 40 mL. Like 

gastric phase incubation of intestinal digestion mixture occurred for 2 hours at 37 °C, under constant 

agitation.  

To stop enzymatic action on the intestinal digestion sample proceeded the addition of 10 μL of 

Pefabloc® per millilitre of digested sample. The mixture was transferred to Amicon® Filter and centrifuged 

(Mikro 220R, Hettich, Germany) at the maximal velocity, normally 4000 G, for 40 minutes. All collected 

samples were stored at -20 °C until further use. 

 

3.5. In vitro cell-based assays 

 

3.5.1. Cell Culture and sub culturing 

To determine cellular viability as used a standard trypan blue staining procedure followed by 

cell counting in hemocytometer. Every time complete medium or trypsin was needed, to cell culturing, 

were pre-warmed at 37 °C.   

 

3.5.1.1. Adherent cells culture 

The human colon adenocarcinoma Caco-2 cells, purchased from Deutsche Sammlung von 

Microorganismen und Zellkulturen (Braunschweig, Germany) and HT29-MTX-E12 (12040401), 

European Collection of Authenticated Cell Cultures, were grown in a standard medium Dulbecco's 

DMEM supplemented with 10 % heat-inactivated FBS, 1 % MEM NEAA and 1 % PST and maintained 

at 37 °C in a humidified atmosphere of 5 % CO2. The stock cells were maintained as monolayers in 175 

cm2 culture flasks regularly sub-cultured when reaching 70-80 % of confluence with medium change 

every two or three days. To detach them a 0.25 % (w/v) Trypsin-EDTA solution was used for 5-7 minutes 

at 37 °C. 
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3.5.1.2. Non-adherent cells culture 

 Human Burkitt's lymphoma Raji B (85011429) from European Collection of Authenticated Cell 

Cultures were grown in a standard DMEM medium supplemented with 10 % heat-inactivated FBS, 1 % 

MEM NEAA and 1 % PST and maintained at 37 °C in a humidified atmosphere of 5 % CO2. The stock 

cells were maintained as monolayers in 175 cm2 culture flasks with medium change every three days.  

 

3.5.2. In vitro cell models 

The techniques employed to obtain the models used for the in vitro experiments were described 

in Araújo et al. paper 55. Monocultures of Caco-2 cells and a triple co-culture of Caco-2:HT29-MTX-

E12:Raji B with a proportion of 90:10 between Caco-2 and HT29-MTX-E12 cells, respectively, to reach 

a monolayer with a final density of 1x105 cells/cm2 were grown in the apical compartment of Transwell® 

inserts and were maintained for 21 days under a 5 % CO2 humidified atmosphere at 37 °C.  

Caco-2 monolayer and a co-culture of Caco-2 cells with HT29-MTX-E12 were maintained under 

standard incubation conditions for 14−16 days, with medium change on both, apical (0.5 mL) and 

basolateral sides (1.5 mL) every other day. To reach the triple culture model, 1×106 Raji B cells were 

added to the basolateral compartment, after the co-culture grew for 16 days, and maintained during 21 

days of culture. 62,91 Until the day of the experiment the basolateral medium, containing the non-adherent 

cells, was never changed. 

 

3.5.2.1. Cytotoxicity assay - MTS 

Toxicity assays were performed using completely differentiated Caco-2 cells. When cultured in 

special conditions, suffer spontaneous differentiation expressing a morphological and functional 

resemblance to mature enterocytes monolayer. 66 

Cells were seeded in 96-well culture plates at a density of 2 x 104 cells/well, and the medium 

changed every 48 hours. The cells were allowed to grow for 5-7 days, until confluence and differentiation 

were reached. Testing samples were diluted in DMEM culture medium with 0.5 % FBS, and then added 

to the wells, except to the control cells which contained the solvent alone. The incubation with the 

different formulations was carried out for 24 hours and in a 5 % CO2 humidified atmosphere at 37 °C. 

The experiments were done in triplicates with cells between passages 40 and 45. 92 

Cytotoxicity evaluation was performed by colorimetric MTS assay. This assay is based on the 

conversion of a tetrazolium salt into a coloured, aqueous soluble formazan product by mitochondrial 

activity of viable cells at 37 °C. Following the incubation period (24 h at 37 °C in a 5 % CO2 humidified 

atmosphere) samples were removed, cells were rinsed with PBS and 100 μL MTS was added to each 

well reacting for 3 hours. The viability reagent was diluted according to the manufacturer information, 

16 % v/v of MTS in cell culture media (DMEM supplemented with 0.5 % FBS). After incubation, the 
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quantity of formazan produced was measured in a spectrophotometer (EPOCH, 219 Bio-Tek, USA) at 

490 nm and is directly proportional to the number of living cells in culture. 

The results were expressed as percentage (%) of cell viability relative to the control. The plates 

were also examined under the microscope to assess the degree of cell survival.  

 

3.6. Triple co-culture validation and morphology 

After 21 days in culture, Transwell® membranes were washed twice in PBS, following primary 

fixation with 3 % (v/v) glutaraldehyde (AGAR Scientific, AGAR cientific) during 45 min at room 

temperature. After the incubation period the glutaraldehyde was discarded, and membranes were 

washed with 0.1 M sodium-cacodylate buffer, following a dehydration step through a graded series of 

ethanol. In this step the cells were not long in touch with the different concentrations of ethanol and a 

solution of 75 % (v/v) HMDS was added to culture during 10 min at room temperature. After this time, 

inserts were air drier and membrane were analysed and imaged by SEM (Jeol, JSM-5310 model, 

Japan).  

Samples were prepared for observation by covering with gold/palladium (Au/Pd), approximately 

300 ˚A of gold, in a sputter coater (Quorum Technologies, model Q150TES) and micrographs of the 

prepared membranes were taken at an acceleration voltage of 15 kV. All reagents used in this fixation 

protocol were purchased from Sigma-Aldrich. 

 

3.6.1. Alcian Blue assay 

Alcian Blue 8GX obtained from Sigma-Aldrich (St. Louis, USA) was used to stain mucus 

secretion on the surface of monolayer of HT29-MTX-E12 cells. The confluent culture was washed twice 

with 200 μL PBS and fixed using 10 % (v/v) paraformaldehyde (contains 4 % (w/v) formaldehyde) for 20 

minutes. To remove paraformaldehyde cells were rinsed again with PBS and then stained using 100 μL 

alcian blue stain (1 % (w/v) alcian blue in 3 % (v/v) acetic acid/water at pH 2.5) for 15 minutes. The 

inserts were washed several times with PBS to remove the excess marker solution and then air-dried. 

 

3.7. Curcumin transport assay 

 

3.7.1. Cell monolayer integrity  

With medium change (every 48 h) the TEER of Caco-2 and co-culture monolayers was 

measured with EVOM epithelial voltohmmeter equipped with chopstick electrodes (World Precision 

Instruments, Sarasota, FL, USA to monitor cellular integrity before the permeability studies. To ensure 

integrity and confluence of entirely differentiated monolayers only inserts with TEER value higher than 

600 Ω were used for the characterization experiments. 65,91 
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3.7.2. Co-culture permeation assay 

Culture of Caco-2 cells and triple co-culture were cultivated on permeable supports like 

described in 2.6.2. 93 After 20 days in culture, Caco-2 cells express several features of the mature small 

intestine enterocyte. 94 

After 21 days of culture, cell medium was carefully discarded from apical and basal 

compartments and both compartments were washed twice with HBSS pre-warm (pH 7.4) to 37 °C. Then, 

HBSS solution was replaced by 500 μL of the test sample appropriately diluted in culture medium. The 

plate was incubated at 37 °C under a 5 % CO2 humidified atmosphere for 24 hours. At 15, 30, 60, 120, 

180, 240 minutes after initiation the incubation with test samples, 200 μL, from basolateral compartment, 

were collected for chromatographic analyses of curcumin. TEER was measured to monitor cells 

monolayers integrity after samples collection. 

The amount of curcumin (µg) in each compartment was determined using curcumin as an 

external standard for the calibration curve (0-25 ug/mL). Dose-response curves were plotted with 

GraphPad Prism® (version 6.01, GraphPad Software Inc., USA) and the results were expressed as 

means of at least duplicates of µg/mL of curcumin ± standard deviation. Papp was calculated from the 

measurement of the flow rate of curcumin from the donor to the acceptor chambers:  

Papp (cm/s) =
dQ

dt(A × CO)
 (𝐄𝐪. 𝟐) 

Where dQ is the total amount of permeated curcumin (µg), A is the diffusion area (cm2), C0 is the initial 

concentration of curcumin (µg/mL) and dt is the time of experiment (s). The coefficient (
dQ

dt
) represents 

the steady-state flux of curcumin across the co-culture monolayer. 

Membranes were washed twice with ice-cold 0.01 M PBS (Sigma-Aldrich, USA) to stop 

curcumin uptake. Afterwards, cells were lysed by the addition of 1 % inhibitor of Proteases cocktail for 

200 μL of Cell Lytic. The plate was stirred for 15 minutes at 500 rpm and the lysate centrifuged for 15 

minutes at 20 000 xg. The supernatant was stored and analysed by chromatography to determine the 

amount of curcumin in cell fraction. 

 

3.7.3. Curcumin measurements 

The analyses were performed on a Dionex Ultimate 3000 HPLC, equipped with a C-18 

LiChrospher® 100 RP-18 (5 μm) column, at 35 °C, and with a DAD-3000 detector. The injection volume 

was 20 μl and the HPLC method used was as follows: 
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 Table 3.3| HPLC method used to curcumin quantification. Flow = 0.3mL / min. 

 

 

 

 

 

 

 

A calibration curve was prepared with standard solutions containing 0.016 to 25 μg/mL of 

curcumin in methanol (Sigma-Aldrich). Curcumin, demethoxycurcumin, and bisdemethoxycurcumin 

were quantified by comparing the peak areas with the calibration curve and results are expressed in 

order to curcumin concentration. 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (min) 
% B Eluent 

(90%ACN+0.5%HCOOH+H2O) 

0.100 25 

5 50 

10 100 

18 100 

20 50 

25 25 
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4. Results and discussion 

 

4.1. Curcumin formulations 

 

4.1.1. Particles from gas saturated solutions 

 

4.1.1.1. Melting point measurements 

Beeswax is a natural raw material used in pharmaceutical and cosmetics, suitable for food use 

(E-901) and other industries. It is highly crystalline and is frequently used in the preparation of controlled 

release drug preparations. 95 The one used in this work was obtained by melting the walls of 

honeycombs produced by Apis mellifera L bees with hot water and removal of foreign matter resulting 

in blocks or granules of non-crystalline structure, of yellowish colour, with a pleasant aroma of honey.  

The melting point of solid substances can be depressed considerably by using supercritical 

fluids that are highly dissolvable in the molten substance. This fact can be used in micronization 

processes where thermo-labile materials are liquefied at a temperature lower than their normal. 86 A 

quantitative, predictive knowledge of the polymer melting point as a function of process conditions could 

support in the selection of materials and operating conditions for processes involving compressed fluids. 

96 

The melting point depression of Beeswax under compressed CO2 was studied in this work and 

the experimental data for solid-liquid transition of the lipid are presented in Figure 4.1. 

The system Beeswax/CO2 showed an initial melting point depression as the pressure increased 

due to the incorporation of CO2 into the lipid matrix. The maximum reduction was 6.5 °C and was 

reached at a pressure of 141 bar. Above this range, the hydrostatic pressure takes place and leads to 

an increase in melting temperature. The same general behaviour has been observed with many 

substances. 45–47,86 However the melting point reduction depends on lipid characteristics. 

 

Figure 4.1| Melting points of Beeswax in the presence of CO2. 
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4.1.1.2. Modelling of curcumin precipitation through PGSS® 

In this study, three factors with three level CCFC design was employed to optimize curcumin 

entrapment process variables (temperature (T, 63-73 ºC), pressure (P, 80-160 bar) and curcumin 

amount (C%, 1-10 (w/w))) and to study the effect of process variables on the particle size, encapsulation 

efficiency and span value. A total number of 17 experiments including three center points (used to 

determine the experimental error) were carried out to find out the optimal process conditions (Figure 

4.2). The various combinations of experimental conditions (coded and uncoded) with their respective 

experimental responses (mean response data) are presented in Table 4. All parameters to be used were 

chosen according to the melting point depression in the presence of CO2 to ensure the liquid state of 

the lipids prior to atomization of the mixture. The obtained modelling results, i.e. encapsulation efficiency, 

particle size and span are shown in table 4.1 and were used to estimate both, linear and quadratic 

effects of the variables and their linear interactions.  

 For span a lack of fit of the polynomial models exhibited by low values of R2 and Radj
2 was 

observed. The response surfaces (Figure 4.3) fitted to EE and PS can be described by second-order 

polynomial models as a function of curcumin load, pressure and temperature (Table 4.2). In these 

response surface models, the significant effects (p<0.05) and those having confidence range smaller 

than the value of the effect, or smaller than the standard deviation (data not shown), were included in 

the model equations of these surfaces to avoid missing an important factor. 97 Once, no optimum 

conditions were observed in the response surface for both EE and PS only the identification of the region 

corresponding to the best response can be achieved.  

 The analysis of the figure 4.3 showed that there was a significant positive linear effect of P 

and T on the PS values meaning that when the encapsulation process was conducted at higher 

temperatures and higher pressure, the PS of the systems increased. 98–100 These results may be 

explained by the temperature dependent CO2 solubility in beeswax mass. 87 101 It is also observed that 

curcumin load and P have a positive effect on the EE, represented by an increase of EE with the increase 

of these two factors. 

Figure 4.2| Curcumin solid lipid particles produced by PGSS® whit different curcumin load. A) 1% 
Curcumin; B) 5,5% Curcumin; C) 10% Curcumin. 
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 The best response can be achieved at 160 bar, 73 ºC and 10 % curcumin amount (wt%). 

Under these conditions the 65.4 µm resulting particles had a final curcumin load of 8.9 % with a span 

value of 1.7.  

 

Table 4.1| Summary of The CCFC design for the three independent variables and experimental results. 

 

 

 independent variables  Process responses   

 Pressure 
(bar) 

Temperature 
(ºC) 

%Curcumin  
Encapsulation 
efficiency (%) 

Particle size (0,5) Span 
Average 
(% Load) 

Error 
(%) 

1 80 63 1  72,61 ± 1,74 65,604 1,866 0,73 2,40 

2 160 63 1  62,33 ± 2,20 65,595 1,775 0,62 3,53 

3 80 73 1  63,60 ± 0,98 66,386 1,773 0,64 1,53 

4 160 73 1  82,43 ± 1,13 78,135 1,598 0,82 1,37 

5 80 63 10  74,98 ± 1,78 59,154 1,794 7,50 2,37 

6 160 63 10  87,93 ± 2,25 55,658 1,824 8,79 2,56 

7 80 73 10  73,48 ± 3,68 60,827 1,782 7,35 5,01 

8 160 73 10  89,75 ± 2,23 65,441 1,722 8,98 2,49 

9 80 68 5,5  84,05 ± 2,88 67,052 1,773 4,62 3,42 

10 160 68 5,5  85,76 ± 3,08 66,657 2,048 4,72 3,59 

11 120 63 5,5  90,28 ± 1,78 62,439 2,009 4,97 1,97 

12 120 73 5,5  77,51 ± 3,40 69,820 1,829 4,26 4,39 

13 120 68 1  83,05 ± 1,05 82,293 1,755 0,83 1,26 

14 120 68 10  82,51 ± 2,59 65,207 1,751 8,25 3,14 

15 120 68 5,5  79,86 ± 2,47 58,150 1,999 4,39 3,10 

16 120 68 5,5  85,07 ± 4,14 66,973 1,684 4,68 4,87 

17 120 68 5,5  82,46 ± 1,57 70,185 1,757 4,54 1,91 

Figure 4.3| Fitted response surfaces to the A) EE, as a function of curcumin load and pressure and B) 
PS, as a function of temperature and pressure. Response surfaces plotted for two variables with the other 
fixed at middle settings. 
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Table 4.2| Model equations for the response profiles fitted to the values of EE and PS as a function P, T and 

%C, and respective R2 and Radj
2. 

 

 

 

4.1.2. Solid lipid nanoparticles and nanoemulsions 

Both formulations at the nanoscale were produced and characterized by Universidade do Minho 

(Portugal) within the project PTDC/AGRTEC/5215/2014 financed by Fundação para a Ciência e 

Tecnologia.  

To produce curcumin nanoemulsions prepared through high pressure homogenization, see 

3.1.1.1, several biosurfactants were tested. Therefore, nanoemulsions produced with 0.1% of curcumin, 

LCT / MCT and 2.5% of Tween® 80 were selected for the next tasks. Beeswax (3%) SLP were prepared 

by ultra-homogenization with lecithin (1.5 %) and curcumin (0.1 %). 

 

4.1.3. Physical chemical characterization 

 

4.1.3.1. Size and morphology 

As mentioned above, after the parameter optimization an amount of 5g of beeswax and 

curcumin (90:10 (w/w)) were precipitated through PGSS® (Figure 4.4) according to the best conditions 

obtained in the modelling. Microparticles characterisation are present in table 4.3. 

Particle size is a critical factor for all drug delivery systems being one of the factors that control 

the kinetics of drug release. Ideally, to oral application, it is desired to obtained particles as smaller as 

possible to obtain a higher surface area used to enhance the dissolution rate.27,102,103 Microparticulate 

curcumin system produced by PGSS® showed an average size of 65.44 μm measured by DLS with little 

Polynomial model equation R2 Radj
2  

EE = 83,57 - 6,821 [%C]2 0,465 0,342 

PS = 68,0739 + 3,2159 T - 5,1726 [%C] 0,699 0,518 

Figure 4.4| Final particles resulting from the use of optimized production 
parameters through RSM. A) Empty beeswax particles; B) Curcumin loaded 

microparticles produced with 10% curcumin (w/w). 
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narrow size distribution pattern represented by the span value and confirmed in the SEM images (Figure 

4.5). According to other studies of encapsulation using PGSS®, the mean particle sizes ranged between 

4 and 100 µm. with the aim to reduce particle size were obtained positive results in relation to the 

literature. 45,104,105 

Table 4.3| Microparticles characterisation. 

 

 

 

 

 

As pressure is increased, larger amounts of CO2 are dissolved in the melted carrier. Therefore, 

due to higher-pressure drop across the nozzle, more CO2 gas bubbles are formed increasing the cooling 

rate which originates porous particles as the gas cannot diffuse out of the particles perforating particle 

surface. 45,99 The micrographs show porous particles, of which are agglomerated forming aggregates. 

the non-exposure of curcumin crystals corroborates with the result obtained for the efficiency of 

encapsulation (89%) showing that it is encapsulated in its entirety. 

System: Beeswax/Curcumin 

EE 89,75 ± 2,23 

Final Load (%) 8,98 ± 0,22 

PS (μm) 65,44 

Span 1,72 

Figure 4.5| SEM micrographs of blank and loaded curcumin particles produced by PGSS® 
(nozzle diameter d=250μm); A) blank SLM at 1000x and B) 1500x magnification; C) curcumin 
loaded SLM at 1000x and D) 1500x magnification; Effect of operating conditions. 
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To emulsions-based curcumin particulate system, minimal average diameter obtained was 

approximately 150 nm obtained through SLN and MCT emulsions. The monodispersity of the 

nanoemulsions can be evaluated by its PDI, which can range from 0 to 1 (being 0 monodisperse and 1, 

polydisperse). The standard deviation of the average size measured was very small which presuppose 

a small variation in the particles size distribution. A large particle size distribution, also observed by the 

span value, is an important factor for the release kinetics of the compound. A higher dispersion value 

represents distinct values of release kinetics. This type of distribution is usual in SLN obtained by high 

shear homogenization method 106.  

 

4.1.3.2. Zeta potential  

 The surface charge (zeta potential) of the droplet, as well as the interfacial free energy 

interaction, are the parameters which determine the electrostatic repulsive interactions between 

particles. The zeta potential values more electronegative than -30 mV and more positive than +30 mV 

generally represent sufficient electrostatic repulsion for stability. 107,108 By the analysis of table 4.4, it is 

possible to settle that the MCT based emulsion would be the only one formulation considered stable 

once features a -32.5 mV surface charge. 

 

Table 4.4| Characterization of the emulsion-based curcumin nanoparticles.  

 

 

 

 

4.1.3.3. Thermal behaviour – DSC measurements 

 After obtaining the solid lipid microparticles, DSC measurements were performed on 

curcumin structures and its isolated compounds. The melting point of the beeswax determined by 

melting point depression was confirmed by DSC analysis, on the other hand native curcumin 

endothermic peak was found approximately at 178 ºC, like reported in literature. 109,110 

 Regarding the samples obtained by PGSS® processing, the most significant result is the 

maintenance of the characteristic melting peaks of the pure compounds in the mixture. That suggests a 

maintenance of physical properties which may be indicative of a phase separation. This confirms that 

the solid lipid matrix is heterogeneous, with an evident phase separation or crystallization of the two 

components, probably due to the saturation of the solid lipid matrix with curcumin. The presence of the 

bioactive compound in crystalline form within SLM hinders its solubilization. However, if the drug is in 

the amorphous state or in the disordered crystalline phase, easy diffusion of the drug molecules may 

occur through the polymer matrix, leading to sustained release of the encapsulated drug (Figure 4.6). 

Formulation PS (nm) Zeta potential (mV) PDI 

SLN 150,0 -20,5 0,27 

LCT emulsion 184,1 -0,9 0,23 

MCT emulsion 152,3 -32,5 0,20 
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4.1.3.4. Dissolution study 

 At the end of 72 h close to 6 % (w/w) of the total concentration of encapsulated curcumin was 

released into the digestive fluids. However, this value is found to be 1.6x higher than the solubility of 

free curcumin in the same fluids. This results are supported by work of C. Jantarat et al. 111 The two-

fluid test was performed to mimic the conditions of an IVD (2h of SGF action followed by 2h more with 

SIF). Once again the dissolution of curcumin of the particulate system was superior to free form, with 

this release being sharped at 72h.112 All results are expressed in figure 4.7. 

 

4.1.3.5. In vitro digestion: impact on SLM and emulsions 

To better mimic the intestinal process, microparticles loaded with curcumin underwent an in vitro 

digestion described in 3.4. In this process an initial amount of 400 mg of microparticles with 35.92 mg 

Figure 4.6| DSC thermographs of pure compounds and Solid lipid microparticles. Products 

of supercritical encapsulation of curcumin, loaded and not loaded with curcumin. 

Figure 4.7| Dissolution profiles of curcumin (C) and curcumin encapsulated microparticles (P). A) in SIF, 

SGF and B) SGF plus SIF at 37 ± 0.2 °C during 72h at constant agitation (50 rpm). 

A B 
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of encapsulated curcumin were used. After digestion the final concentration of 3.5 ± 0.35 µg/mL of 

curcumin was quantified in solution, corresponding a total of 140 µg in final digested solution. 

After the digestion assay the quantified curcumin concentration was much lower than the initial 

amount. In gastric digestion process the synergistic interactions between enzymes and acidic alkaline 

conditions result in a significant breakdown of solid lipid microparticles. These oscillation of pH values 

from the gastric phase to the end of the intestinal phase can cause hydrolysis of free and encapsulated 

curcumin resulting in compound degradation. Literature show that curcumin is unstable in phosphate 

buffer at pH 7.4 and stabilizes strongly with the decrease of pH. 106,108,113 

Curcumin, which is soluble only in the organic solvents, remained encapsulated in the separated 

hydrophobic particles, and with this reduced surface area, the digestive enzymes will not have acted to 

enable mixed micelle formation, thus reducing bioavailability. In general, the formulation was able to 

promote a strong enzymatic protection to the bioactive compound evidenced by the low amount of 

released in solution. However, the quantification is preceded by a filtration step which may have 

promoted the retention of part of the compound to be detected in the filter together with the debris and 

digestion compounds.  

Emulsion based nanoparticles after subjected to IVD were characterized through the effective 

bioavailability, stability and nanostructure behavior (size, ζ-potential and FFA). All nanostructures 

presented to be stable until gastric phase, where it was observed an increase of the nanostructures 

size. Although all nanostructures, excepting SLN, presented a decrease of size in the intestinal phase, 

the polydispersity index was too high (i.e., >0.4). 

 

Table 4.5| Characterization of solid lipid nanoparticles before and after IVD. 

 

 

All three formulations presented a negative or close to zero ζ-potential value before digestion 

process and after oral phase. However, at gastric phase, they showed a positive or close to zero ζ-

potential value, probably due to pH and ionic strength changes. At intestinal phase, they presented a 

negative ζ-potential value due to pH increase. (Data not show) 

  PS (nm) PDI Curcumin (µg/mL) 

SLN curcumin loaded 

Non-Digested 137.7 0.264 99.90 

Digested 392.4 0.589 6.71 

Blank SLN 

Non-Digested 141.7 0.254  

Digested 528.1 0.554  
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Considering FFA determination, the nanoemulsions presented a higher curcumin concentration 

than the SLN, showing that the oil physical state can influence the curcumin bioaccessibility. Once the 

nanoemulsions are composed by the liquid lipid, the lipase can break the lipid chains more easily than 

the solid lipid used in the SLN. Comparing the different triglyceride’s chains size, it was possible to 

observe that the nanoemulsions produced with MCT, NE-MCT, showed a higher FFA concentration 

than nanoemulsions produced with LCT, NE-LCT, showing that triglyceride’s chain size can also 

influence the curcumin bioaccessibility. NE-LCT showed a higher curcumin bioaccessibility when 

compared to SLN and NE-MCT. However, NE-LCT presented a lower curcumin’s stability than NE-MCT, 

showing that the NE-MCT better protected the curcumin against degradation and consequently, it 

showed a higher effective bioavailability 

 

4.1.3.6. Cytotoxicity assay 

Before carrying out the curcumin permeation study the best formulation were subjected to 

several tests of cellular cytotoxicity by the MTS method described in 3.5.2.1. To evaluate the toxicity of 

the compounds, curcumin and curcumin loaded-particles were tested as “solution” and “dispersion”, 

respectively. The curcumin solution to be tested was prepared by pre-dissolving the pure compound in 

ethanol p.a and then applied to the cell monolayer. The particles, in turn, were tested by "dispersion". 

That consisted of pouring the compound directly into the cell culture medium. All assays disclosed were 

performed on Caco-2 confluent cells. 

First, the cytotoxicity study of free curcumin was carried out to compare the results with curcumin 

particulate systems and to observe the impact of the different formulations on their cytotoxicity.  

The results of the cytotoxicity experiments revealed that the dispersion test for curcumin 

microparticles did not show toxicity in the range of concentrations tested relatively to control (100% cell 

viability, culture medium) after 24h incubation. However, the samples of curcumin floated and formed 

aggregates into the wells which prevented a direct contact with the cellular monolayer. Still 

Figure 4.8| Cytotoxicity assay using MTS reagent. Incubation of curcumin formulations in Caco-2 cell line during 24h at 

37 ºC and 5% CO2 humidified atmosphere. Solution of 100 % (v/v) of culture medium in cell culture was used as a positive, 
none cytotoxic, control. A) Free curcumin; B) Curcumin solid lipid microparticles blank and loaded produced by PGSS® 
technique. 
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microparticles unload caused slight cell death and decreased cell viability, at the maximal concentrations 

tested, for 90%. On the other hand, the pure compound in a concentration of 25 μg/mL decreased cell 

viability by 88.5% and was therefore considered toxic to cells (Figure 4.8). Although MTS results are 

influenced not only by the incubation time but also by the cell type, the cell number and the ratio of MTS 

detection reagents to cells in culture 114, these native curcumin toxicity values are in agreement with the 

values found in the literature for different cell lines. 115  

 To determine changes in curcumin microparticle cytotoxicity after IVD and to estimate a non-

toxic concentration for following permeation studies, differentiated Caco-2 cells were exposed for 24 h 

to the digested particles. The results for cell viability after 24 h exposure are presented in Figure 4.9. 

This procedure was performed as a function of the amount of curcumin in solution after IVD and resulted 

in a strong cell death at concentrations above 1 µg/ml. So, a non-toxic concentration of 0.5 and 1 μg/ml 

was chosen for the subsequent studies. 

 A first nanoemulsion formulation, composed of lecithin (2.25%), MCT oil (10%), curcumin 

(0.01%) and water was tested before and after undergoing the in vitro digestion process. Cytotoxicity 

assays have shown that before the in vitro digestion the nanoemulsion loaded and unloaded does not 

Figure 4.10| Cytotoxicity assay using MTS reagent: incubation in Caco-2 cell line during 24h at 37 ºC and 5% 

CO2 humidified atmosphere. Solution of 100 % (v/v) of culture medium in cell culture was used as a positive, 
none cytotoxic, control. A) MCT based emulsions; B)LCT based emulsions. 

Figure 4.9| Cytotoxicity assay using MTS reagent. incubation of all digested microparticles, loaded and empty, in 

Caco-2 cell line during 24h at 37 ºC and 5% CO2 humidified atmosphere. Solution of 100 % (v/v) of culture medium in 
cell culture was used as a positive, none cytotoxic, control. 
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present cell cytotoxicity (Figure 4.10). In contrast, the nanoemulsion after in vitro digestion process 

showed high cytotoxicity from 40 μg/mL of curcumin equivalents leading to the destruction of the cellular 

monolayer. Since this cytotoxicity was only observed in the digested ones, the isolated excipients used 

in the formulations were tested also before and after in vitro digestion to determine which would be 

contributing to the cytotoxic effect. The results showed that the digested MCT oil, in percentages used 

in the formulation, was cytotoxic to Caco-2 cells, while lecithin retains its non-cytotoxic profile in both 

conditions (Figure 4.11). Thus, in the search for an alternative to this excipient LCT oil was selected and 

tested, resulting in a non-cytotoxic profile to the cells (Figure 4.11). However, this new formulation, 

prepared with the LCT excipient, showed a decrease in cell viability at the highest tested concentrations 

(Figure 4.10). These results may, not indicate direct cytotoxicity of the formulation and be the result of 

the deposition of the nanostructures on the cell monolayer, preventing the correct gas exchanges, since 

the nanoemulsion showed a high opacity at higher concentrations.  

Figure 4.11| Cytotoxicity assay using MTS reagent: incubation in Caco-2 cell line during 24h at 37 ºC and 5% CO2 humidified 

atmosphere. Solution of 100 % (v/v) of culture medium in cell culture was used as a positive, none cytotoxic, control. A) MCT 
and B) LCT oil excipient. 

Figure 4.12| Cytotoxicity assay using MTS reagent: incubation of all nanoemulsions compounds in Caco-

2 cell line during 24h at 37 ºC and 5% CO2 humidified atmosphere. Solution of 100 % (v/v) of culture medium 
in cell culture was used as a positive, non-cytotoxic, control. A) SLM non-digested and B) digested ones. 
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 The results referent to non-digested particles are in full agreement with the literature where the 

cytotoxicity of SLN prepared with triglycerides and containing lecithin was tested on various cell lines 

and does not express any of cellular toxicity. 115–118.  

 Next, cytotoxicity tests were started with SLN (beeswax (3%), lecithin (1.5%), Tween 80 (1.5%), 

curcumin (0.1%)) and the results showed that both SLN before and after in vitro digestion were not 

cytotoxic for Caco-2 cells at all concentrations tested with only a slight decrease of the cellular viability 

to 90% at the higher concentration of the digest one, 3.5 µg/mL of curcumin (Figure 4.12). 
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4.2. Validation and characterization of the in vitro model of human intestinal epithelium 

 

4.2.1. Mucus identification 

In this study with the aim of elaborating a co-culture to mimic the intestinal epithelium the 

production of mucus by the HT29-MTX-E12 cell line cultured together with the Caco-2 enterocytes was 

stablished. The cells were characterized regarding the formation of a confluent monolayer, since it is 

known that mucus strongly impacts the mobility of nanoparticles. To detect the production of mucus 

alcian blue staining of the mucins produced by the cells was carried out (Figure 4.13). 55 Transwell® 

plates were inoculated and TEER was measured every time before the staining to prevent cell viability. 

 

 

The proportion between Caco-2 and HT29-MTX cells, like the in vivo situation, is one of the 

most important details for co-culture implementation. According to the work of Araújo et al. 55, the ratio 

used was 9:1 respectively. Caco-2 cells co-cultured displayed slight variability in microvilli density which 

did not allow the undoubted confirmation of the presence of HT29-MTX cells. Nonetheless, HT29-MTX 
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Figure 4.13| Staining of mucus present in Caco-2 and HT29-MTX monolayer and co-culture. Staining at 7, 14 and 21 
days on a Transwell® plate. 
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cells contain intracellular mucin granules that allowed its identification due to residual evidences of 

mucus retained over the surface of microvilli by SEM. 

Alcian blue is a basic dye that allows the detection of cellular acidic mucin glycoproteins. When 

it binds whit, affinity provides a strong blue color.119 To perform mucus staining duly differentiated cells 

were used once it is necessary the production of cellular markers characteristic for the characterization 

of the model. 

The mucus secretion by the HT29-MTX cells, both in mono or in the co-culture was confirmed 

and compared to Caco-2 monolayer since due to the lack of goblet cells these do not express the mucus 

layer. (Figure 4.14) Therefore, it was observed experimentally that HT29-MTX cells can maintain their 

intrinsic properties, producing mucus not only when in monocultures but also when grown together with 

Caco-2. 

4.2.2. Morphological features of M-like cells  

To complete the characterization of the in vitro human intestinal epithelium it was essential to 

detect evidence of the presence of the M cell phenotype within the cell monolayers. In the absence of 

any specific human M-cell marker discrimination of M cells within cell monolayers was based on 

morphological criteria. The microvilli-free morphology of M cells was used to identify them by SEM 

(Figure 4.15). 120 54 

 

Figure 4.14|SEM analysis of the triple culture. (H) Mucus-secreting HT29-MTX cells were observed in the triple 

culture and were properly identified through the layer of mucus they produced. Compared with the caco-2 cells (C) 
with its characteristics tight junctions and microvilli. 
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4.3. Curcumin permeability studies 

 Initial studies on the passive absorption of a series of compounds across Caco-2 cells indicated 

that Caco-2 monolayers may be a useful model for drug absorption studies. After the entire process of 

implementation and characterization of the co-culture, as well as all the cytotoxicity assays of all the 

compounds used, permeability tests were performed. These were designed to compare the transport 

through the monolayer of free curcumin and encapsulated in micro solid lipid microparticles, digested 

and undigested. The assay was performed simultaneously on a differentiated Caco-2 and a triple co-

culture monolayer. 

 The low particle size confirmed that, all tree formulations, are suitable for enabling 

gastrointestinal absorption by M-cells on Peyer’s patches. The transport by M-cells is size dependent 

and are able to transport nanoparticles with sizes in the range of 200 nm. 113 The measurement of TEER 

values was employed as an integrity evaluator of the monolayer formed and it was monitored during the 

assay.  The intrinsic resistance of the cell layer is influenced by the cell culture medium in the apical and 

basolateral compartment, by the membrane of the filter inserts and by the electrode interface. Since 

transport experiments are performed in HBSS, TEER values typically decreased in result of the 

adjustment of the experiment conditions even so the values, before the experiment, for all wells were 

above 700 Ω cm2 (n=4) (Figure 7.3). 

 During the assay a difference in TEER values between the monolayer of caco-2 and the triple 

co-culture was observed. Since the decrease of this value presupposes the existence of cellular 

transport, this fact may be related to the increase in the transepithelial transport promoted by the M cells 

in the co-culture as well as the diminution of tight junctions due to the conversion of Caco-2 cell into M 

cells. 54,121,122  

Figure 4.15| SEM analysis of the triple culture. M cells (M) 

were identified due to their lack of microvilli in contrast to Caco-
2 cells. 
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 The maximum nontoxic amount of free curcumin, 20 µg/mL, was added to the apical site of the 

Transwell® plate and a 0.1008 x 10-6 cm/s value of Papp (eq.2) was calculated from apical to basolateral 

site. 123–125 As for the analysis of encapsulated curcumin permeability, the results obtained by HPLC 

were below detection limits. However, a small peak appears at the same retention time of the curcumin. 

18 Drugs that are completely absorbed in humans have permeability coefficients >1x10-6 cm/s. while 

compounds that are less absorved, > 1% but < 100%, have permeability coefficients of 0.1 - 1.0x10-6 

cm/s. One the other hand the ones that are absorbed to < 1% had permeability coefficients of 11 x 10-

7 cm/s. 57 

 Many incompletely absorbed compounds are not absorbed across the cell membranes, i.e. they 

are excluded from the transcellular pathway, Instead, they are absorbed by the alternative paracellular 

pathway (across the tight junctions between the cells). The paracellular pathways in colonic epithelium 

are tighter than in small intestinal epithelium. The area of the peaks was determined, and it was evident 

that in the co-culture due to the presence of M cells the curcumin transport through the membrane was 

5.6x larger than in Caco-2 model (Figure 7.2). This result is due to the role of the mucus layer, expressed 

in the co-culture, with the uptake of the particulate systems. Confirming the support and protection for 

the intestinal epithelium. This uptake may also be responsible for the release of the compounds over 

time and increase their cellular bioavailability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

5. Conclusions 

 In this study, several formulations were tested with the aim of increasing the cellular availability 

and stability of curcumin. Microformulations were produced using supercritical CO2 technique, particles 

from gas saturated solutions, and nanoformulations were based on triglyceride emulsions (LCT and 

MCT). These formulations underwent a digestive enzymatic process to mimic the digestion process that 

occurs in the intestinal epithelium. Subsequent cellular tests were performed on a validated triple co-

culture based on Caco-2, HT29-MTX-E12, and Raji B lymphocytes, to closely mimic the monolayer of 

the human intestinal epithelium. 

Beeswax solid lipid microparticles entrapping curcumin were successfully produced by PGSS 

process with an encapsulation efficiency of 89.75 ± 2.23 % and a curcumin load of 8.98 % (w/w). 

Curcumin loading values were obtain as high as those obtained by traditional SLN®/SLM emulsions-

based methods, but with all advantages of supercritical fluid technology. This process assigned 

curcumin protection, represented in IVD, as well as increased cell availability. Although the formulation 

presented some curcumin concentration dependent toxicity in Caco-2 monolayer assay.  

A triple co-culture model validation took place, using the human colon adenocarcinoma Caco-2 

cells cultivated with HT29-MTX-E12 epithelial cells in a 9:1 ratio to produce the intestinal epithelium 

mucus layer to which Raji B lymphocytes added M-cells like phenotype. 

Results demonstrate that Caco-2/HT29/Raji B triple co-culture may be used in the future to 

obtain a simulated intestinal barrier, with mucus-producing properties and M cells of Peyer’s patches to 

study bioactives absorption, both in solution or associated with carriers. Furthermore, we confirmed that 

nanoparticle uptake is strongly impacted by the mucus interaction with particulate systems, with the 

higher uptake amounts attributed to the presence of M cells compared to single Caco-2 monolayers. 

This result confirms the importance of an in vitro culture that express the epithelial mucus layer for 

compounds oral administration study of bioavailability and stability.  
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7. Appendix 

Appendix A – Supercritical fluids properties.  

 

Table 7.1| Critical Properties of Fluids of Interest in Supercritical Processes. 35 

 

 

 

 

 

 

 

 

Table 7.2| physicochemical 

properties of fluids and supercritical fluids. 37 

 

 

 

 

 

 

 

 

 

 

 

 
Fluid 

 

Critical Temperature 
(°C) 

 

Critical Pressure 
(bar) 

 

Critical Volume 
(cm3·mol–1) 

CO2 30.97 73.7 94.07 
Ethane 32.15 48.7 145.5 
Propane 96.65 42.5 200.0 
Water 373.95 220.6 55.95 
Ammonia 132.25 113.5 72.47 
n-Hexane 234.35 30.2 368.0 
Methanol 239.45 80.9 118.0 

 
Density 

(Kg.m-3) 

Viscosity 

(mPa.s) 

Diffusivity 

(cm2.s-1) 

Gas 0.8-1.3 0.01-0.03 0.1-0.2 

Liquid 800-1200 0.4-1.1 0.00001-0.0001 

SCF 300-1000 0.05-0.01 0.0001-0.001 
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Appendix B – High-performance liquid chromatography

Figure 7.1| Curcumin samples of two distinct suppliers: Alfa Aesar (black) and Sigma 
(blue). The peaks represent the different curcuminoids present in curcumin moisture: 1) 
bisdemethoxycurcumin; 2) desmethoxycurcumin; and 3) curcumin. 

Figure 7.2| Curcumin permeation studies at 420 nm. A) Permeated curcumin in a Co-

culture model and B) in a Caco-2 model, after 4 h incubation at 37 °C in a humidified 
atmosphere of 5 % CO2.  
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Appendix C – Curcumin permeability studies – TEER values 

 

Figure 7.3| TEER values from curcumin permeation assay. The tests occurred for 24 hours and the values presented were a mean of 3 
measurements per well. The permeability was tested on inserts with differentiated Caco-2 cells, as well as on the triple co-culture implemented. 


