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“Fall in love with some activity, and do it! Nobody ever figures
out what life is all about, and it doesn’t matter. Explore the

world. Nearly everything is really interesting if you go into it
deeply enough. Work as hard and as much as you want to on

the things you like to do the best. Don’t think about what you
want to be, but what you want to do. Keep up some kind of a

minimum with other things so that society doesn’t stop you
from doing anything at all.”

— Richard Feynman
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Abstract

Amorphous indium-gallium-zinc oxide (a-IGZO) is the most used semiconductor in metal

oxide-based thin-film transistors (TFTs) for flat-panel displays (FPDs) applications due to

its superior electrical characteristics. However, its properties are not yet optimised and are

far away from the intended when produced by solution, and their development is crucial

to implement in plastic flexible substrates and decrease the associated costs. This work

aimed to evaluate a-IGZO thin films produced by solution by varying the metallic cations

molar ratio and the number of deposited layers, to apply as active channel layer in TFTs and

study their performance. To make TFTs compatible with flexible substrates, the chemical

method solution combustion synthesis (SCS) with urea as fuel was used to reduce the high-

temperature annealing during the process. Optimised films were obtained for three-layer

a-IGZO with metallic cations molar ratio of In2O3:Ga2O3:ZnO = 3:1:1. After this, a-IGZO

TFTs showing the best results were optimised by patterning the semiconductor. Optimised

TFTs show good reproducibility with an average on-off ratio of (4.19± 6.42)× 107, mobility

of (1.75± 0.83)× 10−2 cm2 V−1 s−1, subthreshold slope of 0.63± 0.11 V/dec, turn-on voltage

of 0.58± 0.79 V and threshold voltage of 3.83± 0.87 V.

Keywords: Amorphous indium-gallium-zinc oxide, solution combustion synthesis, multi-

layer active channel, solution TFTs, transparent semiconductor oxides.
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Resumo

O óxido de índio-gálio-zinco amorfo (a-IGZO) é o semicondutor mais usado nos transístores

de filme fino (TFTs) baseados em óxidos metálicos para aplicações de displays de tela plana,

devido à suas características eléctricas superiores. No entanto, quando produzido por solu-

ção, as propriedados de filmes finos de a-IGZO não estão optimizadas e aquém do desejado, e

o seu melhoramento é crucial para implementar em substratos flexíveis e diminuir os custos

associados. Este trabalho destinou-se avaliar filmes finos de a-IGZO produzidos por solução,

variando a proporção molar de catiões metálicos e o número de camadas depositadas de

a-IGZO, para aplicar como camada activa do canal em TFTs e estudar a sua performance.

De forma a tornar os TFTs compatíveis com substratos flexíveis, o método químico de sín-

tese de solução por combustão com ureia como fuel foi usado para reduzir a temperatura

elevada de recozimento durante o processo. Os filmes optimizados foram obtidos para a-

IGZO de 3 camadas, com a proporção molar de In2O3:Ga2O3:ZnO = 3:1:1. Após isto, TFTs

de a-IGZO com os melhores resultados foram optimizados através de padronização do se-

micondutor. Os TFTs optimizados apresentam uma boa reprodutibilidade com uma razão

on-off de (4.19±6.42)×107, mobilidade de (1.75±0.83)×10−2 cm2 V−1 s−1, subthreshold slope
de 0.63± 0.11 V/dec, tensão on de 0.58± 0.79 e tensão limiar de 3.83± 0.87 V.

Palavras-chave: Óxido de índio-gálio-zinco amorfo, síntese de solução por combustão, canal

activo multicamada, TFTs por solução, óxidos semicondutores transparentes.
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Motivation and Objectives

Printed electronics is an expanding research area due to the potential applications in tech-

nology and their impact in society. Therefore, the development of solution-based materials

is crucial for electronic applications, namely transparent flexible electronics. Metal oxide-

based Thin Film Transistors (TFTs) produced by solution must have good properties such

as high electrical performance, reproducibility, low cost and need to be processed at low

temperatures to enable their application in plastic flexible substrates.

Since it is required a semiconductor material for the active channel layer of the TFTs,

the synthesis of Transparent Amorphous Oxide Semiconductors (TAOSs) is essential to the

development of solution-based electronics. Amorphous Indium-Gallium-Zinc Oxide (a-

IGZO) is by far the most used semiconductor for oxide-based Flat-Panel Displays (FPDs)

industry, due to its high electrical performance. However, when produced by solution, its

electrical properties are not yet optimised, which is the main motive to the study of solution-

processed a-IGZO thin films in this work.

The main objective of this work is the study, production and optimisation of solution-

based a-IGZO thin films with the benefits of Solution Combustion Synthesis (SCS), by using

solutions with metallic salts for their application as active channel layer in TFTs. To achieve

this, several tasks will be employed:

• Production and characterisation of solutions with different metallic cations molar ra-

tios;

• Production and characterisation of single and multilayer-active channel TFTs.

xxiii





Chapter 1

Introduction

1.1 Metal oxide semiconductors

Over the recent years, research in electronic circuits fabricated on flexible transparent sub-

strates led to the emergence of transparent flexible electronics, which is expected to meet

emerging technological demands of most of microelectronics devices in the next years, in

particularly displays [1, 2]. Although FPDs have been developed using Amorphous Silicon

(a-Si) TFTs [3, 4], they have low field-effect mobility [1, 2, 5–7], and do not have high trans-

parency and mechanical flexibility, the fundamental pillars of emerging flexible transparent

electronics [6, 8]. Organic semiconductors have been intensively studied as a-Si substitute,

however they have low mobility and are less stable [1, 6, 9]; moreover, polycrystalline Si has

better mobility compared to a-Si, but it has poor area uniformity due to grain boundaries

and processing issues [10, 11].

Metal oxides materials have emerged as an alternative to Si technology, due to their per-

formance as (semi)conductive materials, with excellent optical transparency and electrical

properties [12–15]. Among devices, transparent TFTs with metal oxide semiconductors as

active layer have been extensively reported over the last years, with the development and

optimisation of such materials being the key to the emergence of backplane TFTs for the

next generation of FPDs [16–18]. Also, TFTs can be fabricated on flexible substrates if metal

oxides are used for all components, including the active, dielectric and the electrodes layers

[2, 19]. Metal oxides such as ZnO, Zinc Tin Oxide (ZTO) and Indium-Gallium-Zinc Oxide

(IGZO) have been reported to various applications, including Active-Matrix Organic Light-

Emitting Diode (AMOLED) displays, wearable sensor arrays, flexible displays and flexible

solar cells [6, 8, 20–24].

Despite crystalline oxide semiconductors have been reported, they require very high

annealing temperatures, incompatible with most flexible substrates [2, 5]. TAOSs have been

intensively studied and reported since Hosono et al. proposed that oxides composed by post-

transition-metal cations with an electron configuration of (n− 1)d10ns0 (for n ≥ 5) create a

large overlap of their spherical isotropic ns-orbitals. These are the main elements of the

conduction band, forming a conduction pathway with electron mobilities > 10 cm2 V−1 s−1,

comparable to those of the corresponding crystalline phases [2, 25–29].

TAOSs are the most used class of materials as TFTs channel layers due to their superior

electrical characteristics compared to Si-based and organic devices, and their development

is essential for transparent electronic applications; their advantages include: high mobilities,

excellent environmental/thermal stability, high optical transparency, low processing tem-

perature, wide processing temperature window, low operation voltage, good uniformity and

surface flatness, low leakage current, and ease of fabrication [17, 30, 31].
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1.2 Amorphous indium-gallium-zinc oxide

IGZO is by far the most studied and used TAOS in different applications, mainly as semi-

conducting n-channel layer for FPD applications, due to the high field-effect mobility, small

subthreshold slope (SS) and good uniformity. In addition, solution-processing of IGZO can

be used to print TFTs, allowing to be used on flexible substrates [14, 32–36].

Structurally, a-IGZO is a multicomponent TAOS composed by three binary systems:

In2O3, Ga2O3 and ZnO. The In3+ cations are the main constituent of the conduction band

and the only with n ≥ 5, meaning that their ns orbitals overlap and lead to high mobilities

[26]. The incorporation of Zn2+ is fundamental to form stable amorphous structures, and

while Indium Zinc Oxide (IZO) films have been reported with good properties to apply

as Transparent Conducting Oxide (TCO), their application as Transparent Semiconducting

Oxide (TSO) is not ideal due to the difficult in decreasing N below 1017 cm−3 [37]. In IGZO

system, Ga3+ cation can form strong bonds with oxygen due to its high ionic potential and

a small radius, therefore prevents excessive free carrier generation due to oxygen vacancies,

although the lack of oxygen vacancies will prevent the prefilling the trapping states, reduc-

ing mobility [5, 26]. Furthermore, a quaternary system composed by cations with different

sizes promotes the amorphous character and hence electrical uniformity, smooth surfaces

and flexibility due to the lack of grain boundaries. [6, 27]. Given this, the electrical prop-

erties of a-IGZO can be easily tuned for specific functions by varying cations proportions,

therefore an understanding of composition influence on electrical performance is crucial for

developing a-IGZO-based TFTs [38].

1.3 Solution-based electronics

There are many deposition methods for metal oxide films; most of them are vacuum-based

techniques, such as Atomic Layer Deposition (ALD), Chemical Vapor Deposition (CVD),

Pulsed Laser Deposition (PLD) and radio frequency sputtering [2, 39–43]. Although they

have been the most used and allow high-quality devices to be produced with reasonable

performance and reliability, the high costs, temperature processing, need of vacuum sources

and slow processing time are the major problems of these techniques [8, 44–46]. Therefore,

solution-processing of metal oxides has become an attractive alternative due to the low-

cost, high-throughput, roll-to-roll processing scalability and compositional control. Solution

processes have lower equipment costs compared with vacuum-based processes [16, 46–48].

Typical solution deposition methods are spin-coating, spray pyrolysis, dip-coating, inkjet

printing, and chemical bath deposition [49–53].

Research on solution-TAOSs has recently earned a lot of attention in large-scale fabrica-

tion of large-area electronics, because they are easily processed and have high transparency,

opening new horizons for low-cost printable and transparent electronics on flexible sub-

strates [9, 32]. Excellent films with ZnO, ZTO, IZO and IGZO grown by solution processes

have been reported for the application of FPDs [13, 24, 30, 53] .
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1.4 Solution combustion synthesis

One of the major drawbacks concerning solution-based routes for metal oxides is the need of

an annealing step at relatively high temperatures to promote condensation and densification

by the degradation of impurities, which adversely affect the device performance [25, 33, 48].

High annealing temperatures restrict the compatibility of TFTs with flexible substrates used

in transparent flexible electronics [32, 44, 54, 55].

Given the emergence of flexible electronics, a general approach to low temperature solu-

tion processing of metal oxide films called SCS has been developed in the last years [8, 22, 56,

57]. In this method, the introduction of an oxidising agent (in the form of a metal nitrate salt)

and a fuel as reducing agent (typically urea) into the precursor solution leads to the enhance-

ment of the oxide precursor potential (Figure 1.1a). When the solution is spin-coated and

annealed, a local highly exothermic chemical reaction occurs within the film, which leads

to the formation of Metal-Oxide-Metal (M-O-M) lattice and a rapid efficient condensation.

The required processing temperature (usually 250-300 ◦C) acts only as exothermic redox

reaction initiator rather than a temperature that must be applied to achieve and to maintain

decomposition and phase formation (Figure 1.1b) [58–60].

a) b)

Figure 1.1: a) Schematic reaction coordinate comparing the energetics for SCS and conven-
tional sol-gel solution processing; b) comparison of SCS and conventional reactions to form
metal oxides. Adapted from [8].

1.5 Thin film transistors

TFTs are the fundamental building blocks of thin film electronics, because they are mostly

used as on-off switches of the pixels in FPDs. They are the key devices for the application of

TAOSs in transparent electronics.

A TFT is a Field Effect Transistor (FET) comprising three electrodes (gate, source and

drain), a semiconductor placed between the source and drain electrodes, and an insulator (or

dielectric) material inserted between the semiconductor and the gate electrode. By applying

an electric field between source and drain electrodes, a current (IDS) may flow between these

electrodes, being modulated by a voltage applied in the gate electrode, which allows to turn

on or off the device, acting as a switch. The semiconductor layer allows the formation of

the conduction channel, while the dielectric layer blocks the flow of current between the

semiconductor and the gate electrode (Figure 1.2) [37, 61]. TFTs can be classified according
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two structures: in a coplanar structure, the electrodes are all on the same side, while in a

staggered structure the gate is opposite to the side of drain and source electrodes. For each

structure, two configurations are possible: top-gate (or normal) or bottom-gate (or inverted),

depending on whether if the gate electrode is on top or bottom of the structure [62].

Dielectric
SemiconductorDrain Source

p-Si (substrate/gate)

VDS

VGS

Figure 1.2: Structure of a staggered bottom-gate TFT.

Considering n-type TFTs, they can be classified as enhancement or depletion-mode,

whether if the threshold voltage (VT) is positive or negative. When VGS>VT, for a given

applied positive VDS a significant density of electrons is accumulated in semiconductor/di-

electric interface, enough to have a current IDS flowing between drain and source, which

corresponds to the on-state of the TFT. In contrast, for VGS<VT, the device is off-state, for

any given VDS applied. There are two different operation regimes in the on-state, depending

of VDS value: linear and saturation regimes. The first one is described by Equation 1.1, when

VDS < VGS −VT [62]:

IDS =
W
L
CiµFE

[
(VGS −VT )VDS −

1
2
V 2
DS

]
(1.1)

where W and L are the channel width and length, respectively. Ci is the gate capacity

per unit area and µFE is the field-effect mobility. When VDS�VGS-VT, by neglecting the

quadratic term, a linear relation between IDS and VDS is obtained, maintaining an uniform

channel charge density across the channel from source to drain.

The saturation regime is described by Equation 1.2, when VDS > VGS −VT :

IDS =
W
2L
Ciµsat (VGS −VT )2 (1.2)

where µsat is the saturation mobility. In this regime, the region near the drain is com-

pletely depleted (pinch-off effect), leading to a constant and saturated IDS [62].

By analysing the transfer and output curves of TFTs, the static characteristics can be

obtained, depicted in Figure 1.3. Quantitative parameters such as mobility, on-off ratio

current (Ion/Ioff), VT and turn-on voltage (Von) can be extracted by the transfer characteristics

(Figure 1.3a) [37, 62].

The mobility is the facility that carriers have to move through the material [5]; in the

linear region the mobility is defined as µFE and is given by Equation 1.3:

4



1.5. THIN FILM TRANSISTORS

µFE =

∂
√
ID

∂VGS
W
L CiVDS

(1.3)

For saturation regime mobility is defined as saturation mobility (µsat), given by Equation

1.4:

µsat =

(
∂
√
ID

∂VGS

)2

1
2Ci

W
L

(1.4)

The SS is the minimum VGS to increase IDS by one decade, and is obtained by Equation

1.5:

SS =

dlogIDSdVGS

∣∣∣∣∣∣
max

−1

(1.5)

The Ion/Ioff is given by the ratio of the maximum and minimum IDS; for typical electronic

applications, it is usually required values above 106. VT can be determined by different

methodologies, such as linear extrapolation of
√

IDS-VGS plot for high VDS; it gives the VGS

value at which the conductive channel is formed close to the semiconductor/dielectric inter-

face. Von corresponds to the VGS value at which IDS starts to increase. Output curves are

plotted for different VGS values, allowing to distinguish linear and saturation regimes, in

function of VDS for a fixed VGS (Figure 1.3b) [37].

(a) Transfer (b) Output

Figure 1.3: Typical transfer and output characteristics of a TFT.
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Chapter 2

Materials and Methods

This section summarises the main procedures and techniques used during this work, con-

cerning the production of IGZO solutions, as well as their characterisation, and fabrication

and electrical characterisation of IGZO TFTs.

IGZO TFTs were studied by varying the molar ratio of metallic cations and the number

of active layers, to determine the best condition to apply as TFT channel. Finally, TFTs with

the best performing conditions were produced and patterned.

2.1 Precursor solutions preparation and characterisation

The metallic oxide precursor solutions were prepared by dissolving individually indium (III)

nitrate hydrate (In(NO3)3 ·xH2O, Sigma, 99.9%), gallium (III) nitrate hydrate (Ga(NO3)3 ·xH2O,

Sigma, 99.9%) and zinc nitrate hexahydrate (Zn(NO3)2 ·6H2O, ACROS Organics, 98%) in

2-Methoxyethahol (2-ME) (C3H8O2, ACROS Organics, >99.5%), to yield solutions with a

concentration of 0.2 M. For the combustion reaction, urea (CO(NH2)2, Sigma, 98%) was

added as fuel to each precursor solution, with molar ratios between urea and indium nitrate,

gallium nitrate, and zinc nitrate of 2.5:1, 2.5:1 and 1.67:1 respectively, to guarantee the redox

stoichiometry of the reaction (see Appendix A). All precursor solutions were magnetically

stirred at 430 rpm for 1 h at room temperature in air environment.

The IGZO semiconductor precursor solutions were prepared by mixing indium nitrate,

gallium nitrate and zinc nitrate precursor solutions to obtain In2O3:Ga2O3:ZnO molar ratios

of of 1:1:1, 2:1:1, 2:1:2 and 3:1:1, all with a 0.2 M concentration. IGZO solutions were

magnetically stirred at 430 rpm for at least 24 h at room temperature in air environment.

All IGZO precursor solutions were filtrated through 0.2 µm hydrophilic filters.

Thermal and chemical characterisation of precursor solutions were performed by Differ-

ential Scanning Calorimetry (DSC) and Thermogravimetry (TG), Fourier Transform-Infrared

Spectroscopy (FT-IR) and viscometer. DSC and TG analysis were performed under air atmo-

sphere up to 500 ◦C with a 10 ◦C/min heating rate in an aluminium crucible with a punc-

tured lid using a simultaneous thermal analyser, Netzsch (TG-DSC - STA 449 F3 Jupiter).

FT-IR spectroscopy characterisation of IGZO solutions was performed using an Atenuated

Total Reflectance (ATR) sampling accessory (Smart iTR) equipped with a single bounce di-

amond crystal on a Thermo Nicolet 6700 Spectrometer. The spectra were acquired with a

45◦ incident angle in the range of 4500-525 cm−1 and with a 3 cm−1 resolution. Viscosity

measurements were performed by a BROOKFIELD Cap 2000+ with a rotation of 500 rpm,

with the temperature increased up to 30 ◦C using a Cap01 spindle (see Appendix B).
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2.2 Thin films deposition and characterisation

Prior to deposition all substrates (p+Si with a 100 nm thermally grown SiO2 layer, Si wafer

and soda-lime glass, each one with an area of 2.5x2.5 cm2) were cleaned in an ultrasonic bath

at 60 ◦C in acetone for 15 min, then in Isopropyl Alcohol (IPA) for 15 min. Subsequently,

the substrates were cleaned with Deionised Water (DIW) and dried under N2, followed by a

15 min Ultraviolet (UV)/Ozone surface activation step for a distance lamp of 7 cm using a

PSD-UV Novascan system.

To study the effect of the number of active layers, IGZO thin films were deposited onto

SiO2 substrates by sequentially spin coating 1 to 3 layers of IGZO precursor solution for

35 s at 3000 rpm (Laurell Technologies), followed by an immediate hot plate annealing at

300 ◦C for 30 min after each layer, in ambient conditions, to ensure the exothermic reaction.

The structure of the films was assessed by Grazing Angle X-Ray Diffraction (GAXRD) ,

using a X’Pert PRO PANalytical diffractometer with Cu Kα line radiation (λ = 1.540598

Å) and an angle of incidence of the X-ray beam fixed at 0.75◦, in the range of 20◦ to 50◦

(2θ). The films’ surface morphology was studied by Scanning Electron Microscopy (SEM)

Zeiss Auriga Crossbeam electron microscope and Atomic Force Microscopy (AFM) Asylum

MFP3D. Electron Dispersive X-Ray Spectroscopy (EDS) was performed to study the chemical

composition of the thin films. Spectroscopic ellipsometry was used to measure the thin films

thickness deposited on Si substrates, with an energy range from 1.5 to 5.5 eV and an incident

angle of 45◦ using a Jobin Yvon Uvisel system. The acquired data were modulated using

the DELTAPSI software, and the fitting procedure was done pursuing the minimisation of

the error function (χ2). FT-IR spectroscopy characterisation of thin films deposited in Si

substrates was performed the same way as used for IGZO precursor solutions. The optical

properties were obtained by a Perkin Elmer lambda 950 UV/Visible (Vis)/Near Infrared

(NIR) spectrophotometer. The transmittance (T) and reflectance (R) were obtained in a

wavelength range from 200 to 2500 nm.

2.3 Electronic devices fabrication and characterisation

Non-patterned TFTs were produced in a staggered bottom-gate, top-contact structure by

spin coating IGZO thin films (see section 2.2) onto 100-nm-thick SiO2 thermally oxidised

on p+Si wafer (Ci = 35× 10−9 F/m2). Aluminium source and drain electrodes (80 nm thick)

were deposited on IGZO films via a shadow mask by thermal evaporation. The channel

length and width of the IGZO TFTs were 1400 µm and 100 µm, respectively (W/L=14). A

post-annealing step was performed on a hot plate for 1 h at 120 ◦C in air environment.

Regarding the semiconductor patterning of TFTs, positive Photoresist (PR) AZ ECL 3012

was spin-coated onto the IGZO thin films (Headway Research PWM32), firstly at 3000 rpm

for 10 s and then at 4000 rpm for 20 s. After that, substrates were soft-baked in a hot-plate at

115 ◦C for 1 min and 15 s. Lithography mask with semiconductor patterns was aligned with

the substrate in a mask aligner (Karl-Suss MA6); then, UV exposure in soft-contact mode

was proceeded for 2.5 s. Substrates were dipped in a developer solution (AZ 726 MIF) to

8
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obtain the PR pattern, and immersed in etching solution (HCl ·H2O 20:1) for 20 s to etch

IGZO with the desired pattern, then dipped sequentially in acetone and DIW to remove

the remaining PR and water to clean the sample. The final step comprised the aluminium

contacts patterning: first PR was spin-coated and soft-baked with the same conditions as

for IGZO, followed by alignment of a negative mask containing source-drain electrodes

patterns with the existing IGZO ones to UV exposure. Substrates were dipped in developer

and aluminium was deposited via thermal evaporation. Finally, the aluminium in excess

was removed by dipping the substrates in acetone to remove PR and all aluminium above

PR (lift-off). A post-annealing step was performed on a hot plate for 1 h at 120 ◦C in air

environment.

Electrical characterisation was performed by measurement of current-voltage character-

istics of the devices using a semiconductor parameter analyser (Agilent 4155C) attached to

a microprobe station (Cascade M150), inside a Faraday cage, in the dark and room tempera-

ture.
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Chapter 3

Results and Discussion

This chapter discusses the results regarding the characterisation of solutions, thin films and

the electrical characterisations of the produced TFTs.

3.1 Solutions characterisation

Analysis of elements through characteristic spectra of IGZO thin films using urea as fuel

was performed by FT-IR, using ATR, and data presented in wavenumber range of 4000-525

cm−1. Figure 3.1 depicts the FT-IR spectra of IGZO solutions for each molar ratio studied.

Correction of the atmospheric contribution was performed for all spectra. Most of the peaks

are related with organic compounds present in 2-ME, identified in Table 3.1. [63, 64].
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Figure 3.1: FT-IR spectra of IGZO solutions, with different molar ratios.

Table 3.1: Characteristic absorbance peaks and associated vibrational modes of the corre-
sponding chemical bonds for analysed FT-IR spectra of IGZO solutions.

Number Position (cm−1) Mode type Chemical bond

1 3500 Stretching vibration M-OH

2, 5 1620, 1015 Bending vibration M-OH

3 1388 Stretching vibration NO3
–

4 1107 Transversal optic stretching Si-O

6 833 Bending vibration NO3
–

7, 8 620, 509 Stretching vibration M-O
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3.1.1 Thermal characterisation

Thermal characterisation was performed to evaluate the decomposition of metal oxides.

IGZO 0.2 M solutions were analysed, with and without urea for further comparison. Figure

3.2 depicts the DSC-TG results for IGZO 3:1:1 with and without urea in 2-ME. DSC and TG

results for IGZO 1:1:1, 2:1:2 and 2:1:2 are represented in Appendix C.
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Figure 3.2: DSC-TG analysis of IGZO 3:1:1 precursor solutions with 2-ME as solvent and
using urea as fuel or not.

Regarding IGZO solution with urea, two endothermic peaks are present (at 112 ◦C and

211 ◦C) accompanied by a mass loss, related with evaporation of solvent and water. Then

there is an intense exothermic peak (at 245 ◦C) accompanied by a large mass loss, corre-

sponding to the redox reaction of the formation of oxides. A smaller endothermic peak at

426 ◦C is related with degradation of residual organics.

Concerning IGZO solution without urea, it is visible a small endothermic peak around

100 ◦C, which is related with water and solvent evaporation events [59]. Then, there is an

intense exothermic peak at 121 ◦C accompanied by an abrupt mass loss, corresponding to

the formation of oxides. Comparing with the solution without urea, the exothermic peak

at lower temperature can be justified by the solvent 2-ME acting as fuel itself to initiate

the redox reaction. According to Salgueiro et al. the organic solvent possesses a reducing

nature, then it can also act as fuel, leading to a combustion reaction [59]. The exothermic
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peak of IGZO with urea is more intense, since the addition of urea increases the organic

content in the solution, therefore additional energy is required to ensure the combustion.

Also, the exothermic peak at 335 ◦C is associated with residual organics, meaning that the

degradation of organics requires at least two phases without use of urea. Nevertheless, the

exothermic peak of IGZO with urea occurs at a temperature below 300 ◦C, meaning that the

annealing temperature used during the production of thin films is enough to promote the

redox reaction.

It is important to mention that process parameters can strongly influence the DSC-TG

measurements, namely the heating rate and the evaporation solvent step previous to DSC-

TG analysis. In the case of solutions with urea, during the evaporation of solvent some

urea could initiate combustion reaction prior to the DSC-TG analysis, leading to a non-

stoichiometric condition during DSC-TG measurements, with the fuel/oxidiser ratio (ϕ) <

1 (see Appendix A). This leads to the formation of more organic compounds as products of

the reaction.

3.2 Thin films characterisation

FT-IR spectra of 3-layer IGZO thin films spin coated on Si substrates after being annealed at

300 ◦C for 30 min were obtained, with correction of the atmospheric contribution performed

for all spectra (Figure 3.3).
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Figure 3.3: FT-IR spectra of 3-layer IGZO thin films on Si substrates, with different molar
ratios, after annealing at 300 ◦C for 30 min.

Si-O peak is observed at 1107 cm−1, which is related with Si substrate; two M-O stretch-

ing vibration peaks at 620 cm−1 and 509 cm−1, are observed (although only the increase of

the latter peak is observed due to the range measurement of the equipment), confirming
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the presence of M-O bonds in thin films after annealing. Note that FT-IR spectra above

1150 cm−1 is not shown in Figure 3.3 because no peaks were observed.

3.2.1 Optical characterisation

Spectroscopic ellipsometry was used to measure the thickness of all thin films. The measured

thickness values are shown on table 3.2, for each number of IGZO layers and molar ratios.

Table 3.2: Thickness of measured films (nm) by spectroscopy ellipsometry, for all IGZO
molar ratios, with films spin coated onto Si substrates and annealed at 300 ◦C.

Number of Layers
IGZO molar ratio

1:1:1 2:1:2 2:1:1 3:1:1

1 13.6 ± 0.1 14.2 ± 0.1 13.7 ± 0.1 14.2 ± 0.1

2 28.1 ± 0.2 27.4 ± 0.3 24.0 ± 0.6 26.6 ± 0.2

3 38.8 ± 0.1 38.2 ± 0.3 36.2 ± 0.3 35.9 ± 0.4

For a fixed number of spin coated layers, the values are similar, regardless the molar

ratios.

Both transmittance and reflectance of IGZO thin films on soda-lima glass substrates were

measured, in a wavelength range of 200-2500 nm with a step of 3 nm. Figure 3.4 depicts

transmittance spectra for IGZO thin films. The values of transmittance are around 90%

in almost entire wavelength range. The increasing number of deposited layers affects the

transmittance in the visible region due to the increase of the thickness; despite this, values

between 85-90% are obtained for all conditions [65]. Reflectance spectra of IGZO thin films

are represented in Appendix D.
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Figure 3.4: Transmittance spectra of IGZO thin films on glass substrates.

Eopt values were obtained by Tauc-bandgap plots; the values are represented in table 3.3,

and the calculation steps are explained in Appendix E.

Table 3.3: Eopt of measured films (eV) determined by linear fit of Tauc-plots, for all IGZO
molar ratios, with films spin coated onto Si substrates and annealed at 300 ◦C.

Number of Layers
IGZO molar ratio

1:1:1 2:1:2 2:1:1 3:1:1

1 3.73 3.75 3.71 3.72

2 3.74 3.73 3.74 3.73

3 3.72 3.74 3.68 3.72

In multicomponent oxides, Eopt is affected by atomic composition of each cation, and

values are generally closer to the Eopt of the dominant cations. Therefore, In IGZO 2:1:1

and 3:1:1 (4:2:1 and 6:2:1 in atomic ratio, respectively), it is expected to obtain an Eopt

similar to the obtained in literature by In2O3 (about 3.5-3.7 eV). In IGZO 1:1:1 (2:2:1 in

atomic ratio), the Ga2O3 content leads to higher Eopt values because it has a Eopt around 4.16

eV; therefore obtained values were intermediate to Eopt of In2O3 and Ga2O3, as expected.

Finally, IGZO 2:1:2 (4:2:2) ZnO should contribute to a decrease in Eopt due to its lower

reported Eopt (3.24 eV). Despite this, all obtained values are in a range of 3.68-3.75 eV,

regardless the composition. These small variations might be attributed to the introduction
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CHAPTER 3. RESULTS AND DISCUSSION

of defects due to a high porous structure in all thin films, combined with small thickness

values. Nevertheless, all values are above 3 eV, meaning that all films produced meet the

required criteria for optical transparent applications [37].

3.2.2 Structural and morphological characterisation

To evaluate the amorphous character of the thin films structure, GAXRD measurements were

performed on 3-layer IGZO thin films annealed at 300 ◦C. GAXRD diffractograms of thin

films with IGZO molar ratios of 1:1:1, 2:1:1, 2:1:2 and 3:1:1 are shown in Figure 3.5.

 1 : 1 : 1
 2 : 1 : 1
 2 : 1 : 2
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Figure 3.5: GAXRD diffractograms of 3-layer IGZO thin films on Si substrates, with different
molar ratios.

GAXRD diffractograms have shown that thin films are amorphous independently the

IGZO molar ratio, exhibiting only a broad peak centred at 2θ = 32-34◦ in all samples, typical

of amorphous binary and multicomponent oxide films composed by indium, gallium and/or

zinc [37, 66, 67]. Since IGZO is a quaternary multicomponent oxide composed by three dif-

ferent metallic cations, the degree of disorder of the structure is higher than binary/ternary

oxides as aforementioned before in section 1.2, therefore IGZO it is harder to crystallise at

this temperature.

The surface topography of IGZO thin films spin coated on Si substrates was measured

using AFM. Surface roughness was obtained by measuring Root mean square (Rms) in alter-

nate mode and the topographic images were analysed in data analysis software Gwyddion.

Surface topographies of all thin films are presented in Figure 3.6. The surface roughness of

the films was determined from the AFM height profile of a 2×2 µm2 area scan. Acquired

AFM images for films revealed a very smooth and homogeneous surface, with Rms close to

0.2 nm in all cases, typical for reported combustion-processed amorphous semiconductors

[6, 25].
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3.2. THIN FILMS CHARACTERISATION

Figure 3.6: Morphological characterisation IGZO a) 1:1:1, b) 2:1:2, c) 2:1:1 and d) 3:1:1 thin
films for a concentration of 0.2 M. AFM deflection images of 2×2 µm2 to an annealing at
300 ◦C during 30 min, with different number of IGZO layers.

SEM images were acquired for all 3-layer IGZO thin films on Si substrates; EDS technique

was used to determine chemical composition the thin films. Figure 3.7 depicts the surface

of IGZO 3:1:1 3-layer deposited on Si.
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CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.7: SEM surface of 3-layer IGZO 3:1:1 thin film on Si substrate, with annealing
300 ◦C for 30 min.

Despite the resolution of the image, crystalline structures are not visible, giving support

to GAXRD results regarding the amorphous character of the thin films.

Figure 3.8 shows the obtained molecular concentration of each metallic oxide, for each

studied IGZO molar ratio. EDS analysis results have shown that most of the molecular

compositions are closer to the expected; some discrepancies, especially regarding In content

in IGZO 1:1:1, can be related to non-uniformity of the scanned area during EDS analysis.
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Figure 3.8: Molecular concentration (%) of each metallic oxide in IGZO thin films with 3
layers on Si substrates, annealed at 300 ◦C for 30 min.
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3.3 Electrical characterisation of solution-based IGZO TFTs

The main focus of this work is the study of solution-processed IGZO applied as channel layer

on TFTs, therefore electrical characterisation of these devices is crucial, by measuring the

Current-Voltage (I-V) curves, which allow to determine their important electric parameters,

as well evaluate the current behaviour in function of the voltage applied.

For all devices, four consecutive stabilisation characteristics were measured (one single

and three appends), with VGS ranging from -10 to 20 V and VDS values being 20 and 10 V

for non-patterned and patterned devices, respectively. Then, transfer curves were performed

in double sweep mode and used to extract Von, VT,VHyst, SS, µsat and Ion/Ioff, with the same

values of VGS range and VDS. Output characteristics were measured with VDS values de-

scribed before and 8 steps of VGS, from 0 to 20 V. The transconductance (gm) variation with

VGS-VT was obtained for each condition, being the plots depicted in Appendix F. Electri-

cal parameters were extracted for the best three performing devices and their average and

standard deviation were calculated.

All non-patterned devices studied have a W/L of 1400 µm/100µm, while patterned

devices were studied with W/L values of 80/20, 160/20 and 320/20 µm/µm.

Ageing effects are also presented in this section, being depicted in the I-V curves mea-

sured when devices were fabricated and 8 weeks later.

In this work four different IGZO molar ratios were studied: 1:1:1, 2:1:2, 2:1:1 and 3:1:1.

These proportions were chosen in order to evaluate the influence of each cation composition

in TFT performance. IGZO 1:1:1 has the same percentage of each oxide molecules, while

IGZO 2:1:2 has more indium and zinc than IGZO 1:1:1. IGZO 2:1:1 has indium as dominant

cation, and as it will be seen later, this is a crucial condition to obtain TFTs with desired

behaviour and electrical parameters; for this reason, IGZO 3:1:1 using urea was also studied.

Prior to the study of IGZO TFTs based on solution combustion synthesis route, TFTs with-

out urea as fuel were fabricated for further comparison. Figure 3.9 depicts the stabilisation

characteristics of TFTs with IGZO 1:1:1, 2:1:2 and 2:1:1 without urea.
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Figure 3.9: Stabilisation curves of IGZO 1:1:1, 2:1:2 and 2:1:1 0.2 M TFTs with 1, 2 and 3
active layers, without urea as fuel.

Most of the devices studied present high instability; TFTs with IGZO 2:1:1 1 layer have

shown better stability and their electrical parameters were extracted from transfer curve

present in Figure 3.10. The device has an Ion/Ioff of 6.4 × 104, Von, VT and Vhyst of 14.29,

18.81 and 1.8, respectively, an SS of 0.92 V/dec and µsat of 0.01 cm2 V−1 s−1. In all cases,

instability can be attributed to incomplete formation of M-O-M lattice during annealing.

Using urea as fuel might ignite a more intense exothermic reaction, releasing more local

energy to fully convert metal hydroxides into M-O-M lattice, with less residual organics,

as it was observed in thermal characterisation of precursor solutions. Besides this, it can

be observed an increasing degree of instability with higher number of layers. This can

be related with increasing number of interfaces between deposited semiconducting layers,

where electron traps can be incorporated, consequently degrading severely stabilisation and

electric parameters.
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3.3. ELECTRICAL CHARACTERISATION OF SOLUTION-BASED IGZO TFTS

Concerning the metallic cations composition, IGZO 2:1:1 has shown better stabilisation

characteristics probably because, as it will be seen later in IGZO TFTs produced with urea

as fuel, the presence of indium as dominant cation is crucial to obtain better stability and

electrical parameters.
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Figure 3.10: Transfer curve of IGZO 2:1:1 0.2 M TFTs with 1 active layer, without urea as
fuel.

TFTs with IGZO 1:1:1 molar ratio using urea as fuel were studied. Figure 3.11 depicts the

transfer curve of a TFT with 1 IGZO 1:1:1 active layer, and extracted electrical parameters of

three devices are shown in Table 3.4. TFTs with 2 and 3 IGZO 1:1:1 active layers have shown

high instability (see Appendix G).
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Figure 3.11: Transfer curve of IGZO 1:1:1 0.2 M TFT with 1 active layer, measured initially
and 8 weeks later.
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Table 3.4: Average and standard deviation of electrical parameters of three measured TFTs
with IGZO 1:1:1 1 layer as channel layer, measured initially and 8 weeks later.

Layers Age Ion/Ioff Von (V) VT (V) VHyst (V) SS (V/dec) µsat (cm2 V−1 s−1)

1
Initial (4.26± 1.52)× 104 4.46± 1.15 7.52± 0.37 1.68± 0.12 0.91± 0.38 (9.00± 0.82)× 10−4

8 weeks (2.43± 0.44)× 104 3.93± 1.16 6.67± 0.61 1.52± 0.09 0.71± 0.07 (7.30± 1.20)× 10−4

Figure 3.12 depicts the transfer curves of TFTs with 1 and 2 IGZO 2:1:2 active layers;

IGZO 2:1:2 TFTs with 3 layers have shown high instability, as shown in Figure G.2 in Ap-

pendix G. Extracted electrical parameters of three devices are shown in Table 3.5.

- 1 0 - 5 0 5 1 0 1 5 2 01 0 - 1 3

1 0 - 1 2

1 0 - 1 1

1 0 - 1 0

1 0 - 9

1 0 - 8

1 0 - 7

1 0 - 6

I G

 I n i t i a l
 8  w e e k s

I G Z O  2 : 1 : 2 ,  1  L a y e r / S i O 2
T  =  3 0 0  ° C
S o l v e n t  2 - M E
W / L  =  1 4
V D S  =  2 0  V

I DS
 (A

)

V G  ( V )
(a) 1 Layer

- 1 0 - 5 0 5 1 0 1 5 2 01 0 - 1 3

1 0 - 1 2

1 0 - 1 1

1 0 - 1 0

1 0 - 9

1 0 - 8

1 0 - 7

1 0 - 6

I G

 I n i t i a l
 8  w e e k s

I G Z O  2 : 1 : 2 ,  2  L a y e r s / S i O 2
T  =  3 0 0  ° C
S o l v e n t  2 - M E
W / L  =  1 4
V D S  =  2 0  V

I DS
 (A

)

V G  ( V )
(b) 2 Layers

Figure 3.12: Transfer curves of IGZO 2:1:2 0.2 M TFTs with 1 and 2 active layers, measured
initially and 8 weeks later.

Table 3.5: Average and standard deviation of electrical parameters of three measured TFTs
with IGZO 2:1:2 as channel layer, measured initially and 8 weeks later.

Layers Age Ion/Ioff Von (V) VT (V) VHyst (V) SS (V/dec) µsat (cm2 V−1 s−1)

1
Initial (1.35± 0.72)× 104 6.07± 1.00 9.10± 0.81 1.09± 0.35 1.11± 0.31 (3.00± 0.70)× 10−3

8 weeks (7.82± 3.49)× 103 6.25± 0.50 9.23± 0.43 1.33± 0.16 0.97± 0.19 (2.33± 0.47)× 10−3

2
Initial (1.02± 0.42)× 104 7.68± 2.21 9.63± 1.77 1.15± 0.23 0.88± 0.09 (6.00± 0.14)× 10−3

8 weeks (9.13± 3.88)× 103 4.46± 1.52 7.46± 0.79 1.09± 0.16 1.17± 0.25 (5.53± 0.18)× 10−3

Transfer curves of TFTs with 1, 2 and 3 IGZO 2:1:1 layers are shown in Figure 3.13.

Statistic parameters of the three best devices are represented in Table 3.6.
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Figure 3.13: Transfer curves of IGZO 2:1:1 0.2 M TFTs with 1, 2 and 3 active layers, measured
initially and 8 weeks later.

Table 3.6: Average and standard deviation of electrical parameters of three measured TFTs
with IGZO 2:1:1 as channel layer, measured initially and 8 weeks later.

Layers Age Ion/Ioff Von (V) VT (V) VHyst (V) SS (V/dec) µsat (cm2 V−1 s−1)

1
Initial (1.48± 0.75)× 105 6.07± 0.44 8.14± 0.51 0.75± 0.09 0.61± 0.05 (1.00± 0.03)× 10−2

8 weeks (4.18± 0.47)× 105 3.61± 0.23 6.96± 0.16 0.74± 0.27 0.47± 0.05 (7.33± 0.1)× 10−3

2
Initial (1.50± 0.50)× 104 4.46± 0.75 6.33± 0.70 0.47± 0.06 0.86± 0.27 (2.33± 0.47)× 10−2

8 weeks (5.08± 2.34)× 103 0.01± 0.67 4.42± 0.42 0.74± 0.07 2.01± 0.26 (2.33± 0.47)× 10−2

3
Initial (4.54± 2.86)× 104 4.00± 1.41 5.99± 1.40 0.80± 0.11 0.95± 0.20 (2.30± 0.47)× 10−2

8 weeks (1.02± 0.41)× 104 0.71± 0.44 2.96± 0.38 0.45± 0.02 1.24± 0.13 (2.00± 0.03)× 10−2

TFTs with IGZO 3:1:1 were studied, to evaluate the influence of indium content in elec-

trical parameters. Transfer curves of TFTs with 1, 2 and 3 IGZO 3:1:1 layers are shown in

Figure 3.14. Statistic parameters of the three best devices are represented in table 3.7.
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Figure 3.14: Transfer curves of IGZO 3:1:1 0.2 M TFTs with 1, 2 and 3 active layers, measured
initially and 8 weeks later.

Table 3.7: Average and standard deviation of electrical parameters of three measured TFTs
with IGZO 3:1:1 as channel layer, measured initially and 8 weeks later.

Layers Age Ion/Ioff Von (V) VT (V) VHyst (V) SS (V/dec) µsat (cm2 V−1 s−1)

1
Initial (1.99± 0.57)× 105 7.86± 0.25 9.57± 0.25 0.67± 0.14 0.49± 0.04 (1.00± 0.03)× 10−2

8 weeks (7.45± 3.91)× 104 5.71± 1.01 8.67± 0.48 0.64± 0.03 0.69± 0.12 (9.00± 0.03)× 10−3

2
Initial (5.31± 2.54)× 105 1.96± 0.50 4.09± 0.39 0.59± 0.19 0.51± 0.01 (6.67± 0.94)× 10−2

8 weeks (7.89± 7.35)× 104 0.18± 0.44 2.29± 0.61 0.49± 0.12 0.76± 0.17 (3.00± 0.03)× 10−2

3
Initial (8.17± 3.48)× 105 0.40± 0.44 1.72± 0.42 0.31± 0.04 0.43± 0.05 (7.33± 0.47)× 10−2

8 weeks (9.01± 2.00)× 103 −1.96± 0.03 0.80± 0.18 0.35± 0.02 1.28± 0.11 (5.00± 0.03)× 10−2

Regarding the effect of the number of semiconductor layers, it is noted that Von and

VT decreased with the increasing number of layers, regardless the molar ratio composition.

These effects are essentially due to higher number of free carriers in the bulk of a thicker
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active layer, leading to an easier accumulation of charges in the semiconductor/dielectric

interface. Thus, the formation of a highly conductive channel occurs at lower VGS values.

An increasing Ioff with the number of layers is generally visible in transfer and stabilisation

curves, associated with the decreasing resistance of the active layer with increasing thickness,

leading to a higher flow of electrons passing through source and drain electrodes [39]. The

effect of the number of layers on Ion/Ioff and SS is easily noted with the ageing effect, as it

will be explained further ahead.

Concerning composition effects, in IGZO TFTs 1:1:1 and 2:1:2 the performance of both

conditions was poorer than 2:1:1 and 3:1:1. In amorphous films, mobility is expected to

increase for higherN , which increases for lower gallium or zinc concentrations. The Conduc-

tion Band Minimum (CBM) is fundamentally composed by In3+, where potential barriers

from random distribution of zinc and gallium exist; an increasing N leads to decrease in

potential barriers from structural randomness, because higher N is associated with lower

gallium and/or zinc content; also, it causes the dislocation of the Fermi level (EF) above these

potential barriers, enhancing mobility. Moreover, less zinc content increases the possibility of

direct overlap of s-orbital of neighbouring In3+ ions and hence enhances the mobility. Given

this, the dominant-indium content is crucial for high-mobility IGZO TFTs, and gallium and

zinc content should be in sufficient amount to prevent the crystallisation of the films and

guarantee the amorphous character of the structure. This sustains the low-mobilities and

Ion/Ioff of IGZO 1:1:1 and 2:1:2 [2, 37].

TFTs with IGZO 1:1:1 2 and 3 layers, and IGZO 2:1:2 with 3 layers have shown high

instability, which can be associated with their compositions combined with higher number

of interfaces that are responsible for introducing more defects, leading to instability in the

devices (see Appendix G).

TFTs with IGZO 1:1:1 1-layer possess low Ion/Ioff and µsat, due to high gallium content,

since it leads to suppression of free carriers, therefore for higher levels of gallium doping

the electron transport is expected to degrade, decreasing both Ion and Ioff, µsat; VT and Von

have high values because these parameters are controlled by N . In TFTs with IGZO 2:1:2 the

same principles are applied, combined with high content of zinc, leading to poorer electrical

performance. [6, 26, 38].

For IGZO 2:1:1 and 3:1:1, the values of µsat are generally higher, because as mentioned

before, a composition with indium as dominating cation is fundamental to enhance mobility,

since In3+ spherical s-orbital has the largest radius of the three cations, thus the orbitals

of neighbouring cations can easily overlap, allowing to create a good pathway for electron

transport. Besides that, the higher N associated with higher indium content leads to higher

Ion, resulting in higher Ion/Ioff values. Also, it facilitates the channel formation at lower VGS,

leading to a negative shift, which justifies the lower Von and VT [7, 68, 69]. IGZO 2:1:1 and

3:1:1 TFTs have shown lower Vhyst and SS values than IGZO 1:1:1 and 2:1:2, meaning that a

composition with indium as dominant cation has a major role in these parameters.

In all cases µsat has very low values compared to the obtained in literature; in this work

several factors could led to such results. Using SiO2 as dielectric compared to high-k oxide

insulators leads to lower performance in the device; in contrast, in high-k oxides mobility is
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enhanced due mainly to a strong accumulation of interfacial carriers from a high capacity

density, compared to conventional SiO2 [70]. Furthermore, the problems regarding solution-

based processes can contribute to low µsat values, as it will be explained further ahead.

By analysing ageing effects, Von and VT generally decrease over time, regardless the

composition. This negative shift might be caused by desorption phenomena of oxygen atoms

in the M-O-M lattice, according to expression 3.1:

2O− (s) −−−→O2 (g) + e− (3.1)

Given this, the semiconductor layer become more conductive over time, decreasing Von

and VT, and increasing Ioff. However, the variation of Ion is very small and negligible, thus

Ion/Ioff decreases over time [39, 71].

SS values increase with higher density of surface traps at the interfaces, therefore is more

severe in devices with more layers, due to higher number of interfaces; also, it is expected

that SS increase over time due to incorporation of more surface traps from atmospheric

molecules. [7, 68].

It was demonstrated TFTs IGZO 3:1:1 3 layers have generally better performance after

their fabrication, and for this reason, it was the chosen condition to apply in patterned

devices. However, this does not hold true when comparing the performance of TFTs with

different molar ratios 8 weeks after their fabrication. In fact, TFTs with IGZO 3:1:1 2 layers

have shown better Ion/Ioff and lower SS 8 weeks later than IGZO 3:1:1 3 layers; also, IGZO

3:1:1 2 layers has a positive Von after 8 weeks, while in IGZO 3:1:1 this value is negative. As

aforementioned above, higher number of layers leads to degradation of some properties due

to the number of interfaces. Moreover, for TFT applications it is desirable a Von positive and

closer to 0 V. Taking these considerations into account, a minimum number of layers for TFT

combined with optimised Von and VT is preferred.

High leakage current (IG) is visible in all transfer curves, associated to non-patterned

semiconductor and gate electrode layers. Due to this, patterning techniques were imple-

mented on the best-performing analysed semiconductor condition in this section (3-layer

IGZO 3:1:1, at the time of fabrication of the devices) [25, 46].

The values obtained for the electrical parameters, specially mobility, are essentially as-

sociated with the main problems regarding solution-based routes. Although the electrical

characteristics of TFTs fabricated by both solution-based processes or vacuum techniques

are mainly influenced by the chemical composition, the formation mechanism of free car-

riers is slightly different in each one, being the reason of poorer performance in solution

TFTs. In solution processes, N is more difficult to control due to solution chemistry and

non-controlled atmosphere, while in vacuum processes it is possible to control the oxygen

vapour pressure. Also, additional physical and chemical defects introduced during anneal-

ing, caused by residual organics and fixed charges contribute to inferior TFT performance,

in addition of the porosity caused by solvent volatilisation and chemical reactions [5, 7, 49].

TFTs with semiconductor patterned were studied by varying two parameters: W/L values

and TFT annealing temperature. TFTs annealed at 120 ◦C have shown generally better
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performance, since at 180 ◦C aluminium could have been oxidised and/or migrated to the

interior of semiconductor layer; for TFTs annealed 180 ◦C, the devices’ stabilisation, transfer

and output curves and their electrical parameters are shown in Appendix H.

Patterned devices were studied with W/L values of 80/20, 160/20 and 320/20 µm/µm,

and their transfer characteristics are represented in Figure 3.15, as well as the variation of

maximum IDS in function of W. Average and standard deviation of electrical parameters of

three devices are represented in Table 3.8. Stabilisation and output characteristics are shown

in Appendix I.
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Figure 3.15: a) Transfer curves of patterned IGZO 3:1:1 3-layer IGZO; b) variation of maxi-
mum IDS with W values studied.

Table 3.8: Average and standard deviation of electrical parameters of three measured TFTs
annealed at 120 ◦C with patterned-IGZO 3:1:1 as channel layer, measured initially and 8
weeks later.

W/L Age Ion/Ioff Von (V) VT (V) VHyst (V) SS (V/dec) µsat (cm2 V−1 s−1)

80/20
Initial (7.80± 5.39)× 106 3.04± 0.91 4.87± 1.76 1.73± 0.55 0.43± 0.10 (1.93± 0.90)× 10−2

8 weeks (1.07± 0.48)× 106 2.68± 0.67 4.21± 1.02 1.68± 0.48 0.42± 0.03 (9.00± 1.41)× 10−3

160/20
Initial (3.75± 2.73)× 107 1.25± 0.44 3.74± 0.21 1.40± 0.25 0.44± 0.10 (1.67± 0.47)× 10−2

8 weeks (1.71± 1.24)× 107 1.61± 0.25 4.28± 0.05 1.97± 0.20 0.40± 0.06 (9.00± 0.82)× 10−2

320/20
Initial (4.19± 6.42)× 107 0.58± 0.79 3.83± 0.87 2.71± 0.32 0.63± 0.11 (1.75± 0.83)× 10−2

8 weeks (1.43± 0.66)× 107 2.46± 1.03 4.01± 1.12 1.89± 0.42 0.35± 0.02 (1.13± 0.52)× 10−2

It is clearly noted that all IG decreased, with values in the order of 10−11 A or less achieved,

which was expected for patterned devices. Secondly, it is visible the increasing IDS with

higher W/L, since W is proportional to IDS. This linear increase has also shown that contri-

bution by fringing and parasitic effects was very small in fabricated patterned devices.

Concerning electrical parameters, Ion/Ioff values obtained for patterned TFTs were higher

than for non-patterned (even for small W/L), which is also associated with the patterning.
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Vhyst is higher compared with non-patterned devices, possibly due to a degradation

of back channel during the deposition of PR, which causes an increase in trap states that

originate from chemical species or water molecules.

In non-patterned devices the measured IDS has contribution by fringing effects, i.e. it

is overestimated for the W/L values studied in this work, erroneously leading to a higher

mobility measure. Therefore, in non-patterned devices it is expected that obtained values

are higher than the real ones.

As a final note, by comparing the extracted electrical parameters from patterned IGZO

3:1:1 3-layer TFTs annealed at 120 ◦C with the values obtained from literature (see table

J.1 in Appendix J), it is clearly evident that the better mobility values were obtained using

solution-based methods, and therefore further investigation should be done to optimise this

parameter.
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Chapter 4

Conclusions and future perspectives

The main goal of this work was the study and optimisation of solution-processed a-IGZO

using SCS, to implement as semiconductor channel layer in TFTs, and evaluate their perfor-

mance. After optimisation, patterned TFTs were produced to reduce the IG and obtain better

electrical parameters.

First, IGZO TFTs with and without urea as fuel were produced and analysed, using

different metallic oxides ratios (In2O3:Ga2O3:ZnO of 1:1:1, 2:1:2, 2:1:1, and 3:1:1), while

the number of deposited IGZO layers was varied to obtain better Von and VT values. Af-

ter a study, TFTs using urea have shown better results, in particular IGZO 3:1:1 and 2:1:1:

higher stability, µsat, Ion/Ioff ratio, and lower Vhyst and SS when compared with 1:1:1 and

2:1:2 conditions; 3-layer IGZO channel have shown the best Von and VT values, due to their

proximity to 0 V. TFTs with 3 layers of IGZO 2:1:1 and 3:1:1 were compared; 3:1:1 have

shown better electrical parameters at the time of fabrication of TFTs, namely higher µsat

and Ion/Ioff ratio, and lower VT and Von . Since all TFTs fabricated in this study have shown

high IG due to non-patterning, 3-layer IGZO 3:1:1 TFTs were patterned. A study of the TFTs

performance over time was also done, and helped to conclude that non-patterned devices

were more conductive over time due to oxygen desorption phenomena, while in patterned

devices in most cases electrical parameters have shown very small variations. Optimised

patterned IGZO 3:1:1 3-layer TFTs have show an average Ion/Ioff ratio of (4.19±6.42)×107,

µsat of (1.75±0.83)×10−2 cm2 V−1 s−1, SS of 0.63±0.11 V/dec, Von of 0.58±0.79 V and VT of

3.83± 0.87 V. However, in both cases, very small mobilities (in the order of 10−2cm2 V−1 s−1)

were obtained, and future investigation should be made to optimise these values. FT-IR anal-

ysis was performed to guarantee that organic compounds were removed after annealing the

thin films, while GAXRD, SEM and AFM characterisations confirmed that thin films were

amorphous and very smooth, important characteristics to ensure high-performing devices.

Optical characterisation confirmed that solution-processed IGZO had high transmittance,

close to 90%, and Eopt values slightly close to 3.70 eV, important characteristics for applica-

tions in TAOSs. DSC-TG analysis were performed to confirm the exothermic nature of the

redox reaction, associated with the use of urea as fuel and also to conclude that the ignition

temperature of the reaction occurs below the annealing temperature of the thin films.
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Future perspectives

After this research work, there are still parameters that should be improved to obtain better

performing solution IGZO TFTs for displays applications, mainly the µsat; some suggestions

for future work are:

• Increase the indium molar ratio content to increase µsat: the role of indium is undoubt-

edly crucial in electrical performance, and more indium content could be a viable way

to increase µsat. However one should take into account that crystallisation is favoured

with higher concentration of one cation relatively to the other ones; to solve this, a

trade-off between higher indium content and slightly lower annealing temperatures

should be studied;

• Use of passivation layers (such as PMMA), to prevent the absorption of atmospheric

water and oxygen on the back surface that affects Ioff, VT and mobility.

• Increase the gallium content in the third spin coated layer of 3-layer semiconductor

structures, to be more effective in suppression of the carriers, thus decreasing Ioff and

improving the Ion/Ioff ratio.

• Fabricate all solution-processed TFTs, using high-k dielectric, to improve mobility.
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Appendix A

Redox reactions

The SCS involves the reduction of metallic nitrates reactions, which are converted into metal

oxides, and the oxidation reactions of fuel by the nitrate ions (Table A.1). Note that the

metallic salts precursor solutions are balanced with urea used as fuel for the reaction.

Table A.1: Reduction and oxidation reactions.

Reduction Reaction

Indium nitrate hydrate 2In(NO3)3 ·H2O −−−→ In2O3 + 2H2O + 3N2 + 15
2 O2

Gallium nitrate hydrate 2Ga(NO3)3 ·H2O −−−→Ga2O3 + 2H2O + 3N2 + 15
2 O2

Zinc nitrate hexahydrate Zn(NO3)2 ·6H2O −−−→ ZnO + 6H2O + N2 + 5
2 O2

Oxidation Reaction

Urea CO(NH2)2 + 3
2 O2 −−−→ 2H2O + CO2 + N2

2-Methoxyethanol C3H8O2 + 4O2 −−−→ 4H2O + 3CO2

The overall combustion reaction involves the combination of reduction and oxidation

reaction; gaseous products are formed and released, including H2O, N2, CO2 and O2 [48].

2-ME can act as fuel, however in this work it is used as solvent, being urea used as fuel [59].

These reactions are represented in Table A.2.

Table A.2: Combination of metal nitrate reduction and fuel oxidation reactions.

Precursor Fuel Overall reaction

Indium nitrate hydrate
Urea

2In(NO3)3 ·H2O + CO(NH2)2 −−−→ In2O3 + 4H2O + CO2 + 4N2 + 6O2

Gallium nitrate hydrate 2Ga(NO3)3 ·H2O + CO(NH2)2 −−−→Ga2O3 + 4H2O + CO2 + 4N2 + 6O2

Zinc nitrate hexahydrate Zn(NO3)2 ·6H2O + CO(NH2)2 −−−→ ZnO + 8H2O + CO2 + 2N2 + O2

By using the Jain method, the stoichiometric proportion of oxidiser and fuel can be

calculated in order to obtain the molar ratio of reactants and ensure the redox stoichiometry

of the reaction, given by Equation A.1 [72].

ϕ =
RV
OV

n (A.1)

Where ϕ is the fuel/oxidiser ratio, RV and RO are reducing valence and oxidising valence

respectively, and n is the number of moles of fuel per mole of oxidant.

If ϕ = 1, the ideal stoichiometric composition of redox mixture is obtained, because no

additional oxygen is required to complete the reaction. However, if ϕ < 1, the redox mixture

is in absence of enough fuel to complete the reaction, resulting in the production of molec-

ular oxygen. In contrast, if ϕ > 1, the redox mixture has fuel in excess, meaning that more
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molecular oxygen is required to convert completely the fuel. The values of oxidising/reduc-

ing valences of a redox mixture can be determined to obtain a condition where ϕ =1 for the

reaction [58].

Indium and gallium, zinc, carbon and hydrogen count all as reducing agents with corre-

sponding valences of +3, +2, +4 and +1, respectively. Oxygen and nitrogen are considered

oxidiser agents with valence of -2 and 0, respectively. Calculations of oxidising and reducing

valences values are represented in Table A.3 . Note that for metal nitrates hydrates, water

molecules do not affect the overall valence [48].

Table A.3: Valence of the reagents.

Reagent Calculation Total

Oxidiser reagent

(OV)

In(NO3)3 3 + (3× 0) + [3× 3× (−2)] -15

Ga(NO3)3 3 + (3× 0) + [3× 3× (−2)] -15

Zn(NO3)2 2 + (2× 0) + [2× 3× (−2)] -10

Reducing reagent

(RV)
CO(NH2)2 4 + (−2) + (2× 0) + (2× 2× 1) +6

Therefore the number of moles needed to ensure stoichiometry of the redox reaction can

be determined, with the values being shown in table A.4.

Table A.4: Number of moles of fuel per mole of oxidiser to ensure stoichiometry of the redox
reaction.

Precursor Fuel ϕ n

Indium nitrate hydrate
Urea 1

5/2

Gallium nitrate hydrate 5/2

Zinc nitrate hexahydrate 5/3

Finally, the global reactions are represented in Table A.5 considering the number of moles

to ensure the stoichiometry of the redox reaction.

Table A.5: Overall reactions with correct stoichiometry.

Precursor Fuel Overall reaction

Indium nitrate hydrate
Urea

2In(NO3)3 ·2H2O + 5CO(NH2)2 −−−→ In2O3 + 14H2O + 5CO2 + 8N2

Gallium nitrate hydrate 2Ga(NO3)3 ·2H2O + 5CO(NH2)2 −−−→Ga2O3 + 14H2O + 5CO2 + 8N2

Zinc nitrate hexahydrate 3Zn(NO3)2 ·6H2O + 5CO(NH2)2 −−−→ 3ZnO + 28H2O + 5CO2 + 8N2
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Appendix B

IGZO solutions viscosity

Viscosities of IGZO solutions with different cation molar ratios, with and without urea, and

2-ME were measured, depicted in Table B.1. All measurements were performed at a speed of

500 rpm. The obtained values have shown that urea increases viscosity values, and metallic

cations ratio does not influence significantly the values. Still, values in the range 1-10 cP were

obtained, being an important requirement to apply solution-processed IGZO in spin-coating

and inkjet printing methods [73, 74].

Table B.1: Viscosities of IGZO solutions with and without urea, and 2-ME.

Solution Fuel Viscosity (cP) FSR (%)

IGZO 1:1:1

Urea

2.34± 0.08 14.22

IGZO 2:1:2 2.30± 0.08 14.67

IGZO 2:1:1 2.26± 0.06 14.03

IGZO 3:1:1 2.28± 0.06 14.15

IGZO 1:1:1

(No fuel)

1.89± 0.06 11.79

IGZO 2:1:2 2.10± 0.22 13.04

IGZO 2:1:1 1.89± 0.07 11.80

IGZO 3:1:1 1.95± 0.09 12.08

2-ME 1.45± 0.07 12.71
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Appendix C

DSC-TG analysis of IGZO solutions

DSC-TG analysis of IGZO 0.2 M solutions with molar ratios of 1:1:1, 2:1:2 and 2:1:1 are

depicted in Figures C.1 and C.2.
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Figure C.1: DSC-TG analysis of IGZO 1:1:1 and 2:1:2 precursor solutions with 2-ME as
solvent and using urea as fuel or not.
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Figure C.2: DSC-TG analysis of IGZO 2:1:1 precursor solutions with 2-ME as solvent and
using urea as fuel or not.

42



Appendix D

Reflectance of thin films

Reflectance spectra are represented in Figure D.1, and their results complement the obtained

transmittance data, with reflectance values increasing with the number of spin coated layers,

from 10 to about 15%. These values demonstrate that IGZO thin films have small reflectance,

an important property for thin films applied in transparent devices.
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Figure D.1: Reflectance spectra of IGZO thin films on glass substrates.
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Calculation of Eopt of IGZO thin films

The Eopt of IGZO thin films can be determined if the absorption coefficient (α) is known,

which can be obtained by Equation E.1:

α =
1
ds
ln

( 1
1−A

)
(E.1)

where ds is the thin film’ thickness and A is the optical absorption of the thin film. By

substituting A with 1-T-R (where R is the reflectance) and neglecting R, approximate values

of α are obtained and Eopt can be calculated. Assuming parabolic bands, the determination

of Eopt is based on a linear fit at the onset of a αx abrupt rise, given by Tauc’s relation:

αx ∝ hν−Eopt (E.2)

Where x is a value related with the transition type, h is the Planck constant and ν is the

photon frequency. In most of amorphous semiconductors, non-direct optical transitions are

allowed, and in this case x assumes the value of 0.5 [37].

Figure E.1 depicts the Tauc plots used to determine Eopt for each IGZO molar ratio and

number of layers studied. Table E.1 represents the values of coefficient of determination (R2)

of each linear fit.
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Figure E.1: Tauc-bandgap plots for the calculation of Eopt.

Table E.1: R2 of each linear fit for determination of Eopt.

Number of Layers
IGZO molar ratio

1:1:1 2:1:2 2:1:1 3:1:1

1 0.99653 0.99877 0.99578 0.99081

2 0.99804 0.99859 0.99793 0.99705

3 0.99858 0.99891 0.99768 0.99859
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Appendix F

Variation of transconductance with voltage

This section comprises the plots of gm for each condition studied.
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Figure F.1: Transconductance curve of IGZO 1:1:1 0.2 M TFT with 1 active layer, measured
initially and 8 weeks later.
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Figure F.2: Transconductance curves of IGZO 2:1:2 0.2 M TFT with 1 and 2 active layers,
measured initially and 8 weeks later.
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Figure F.3: Transconductance curves of IGZO 2:1:1 0.2 M TFT with 1, 2 and 3 active layers,
measured initially and 8 weeks later.
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Figure F.4: Transconductance curves of IGZO 2:1:1 0.2 M TFT with 1, 2 and 3 active layers,
measured initially and 8 weeks later.
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Figure F.5: Transconductance curves of TFTs annealed at 120 ◦C with patterned IGZO 3:1:1
3 layers, measured initially and 8 weeks later.
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Figure F.6: Transconductance curves of TFTs annealed at 180 ◦C with patterned IGZO 3:1:1
3 layers, measured initially and 8 weeks later.
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Appendix G

Stabilisation and output curves non-patterned TFTs

Stabilisation characteristics of IGZO 1:1:1, 2:1:2, 2:1:1 and 3:1:1 are depicted in Figures G.1

G.2, G.3 and G.4, respectively:
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Figure G.1: Stabilisation curves of IGZO 1:1:1 0.2 M with 1, 2 and 3 active layers.
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Figure G.2: Stabilisation curves of IGZO 2:1:2 0.2 M with 1, 2 and 3 active layers.
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Figure G.3: Stabilisation curves of IGZO 2:1:1 0.2 M with 1, 2 and 3 active layers.
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Figure G.4: Stabilisation curves of IGZO 3:1:1 0.2 M with 1, 2 and 3 active layers.
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The output characteristics of IGZO 1:1:1 (1 layer), 2:1:2 (1 and 2 layers) 2:1:1 and 3:1:1

(both with 1, 2 and 3 layers) TFTs are depicted in Figures G.5, G.6, G.7 and G.8, respectively.
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Figure G.5: Output curve of IGZO 1:1:1 0.2 M with 1 active layer.
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Figure G.6: Output curves of IGZO 2:1:2 0.2 M with 1 and 2 active layers.
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Figure G.7: Output curves of IGZO 2:1:1 0.2 M with 1, 2 and 3 active layers.
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Figure G.8: Output curves of IGZO 3:1:1 0.2 M with 1, 2 and 3 active layers.
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Appendix H

Patterned 3-layer TFTs annealed at 180 ◦C

This section comprises the stabilisation, transfer and output characteristics of TFTs with

patterned IGZO 3:1:1 3 layers, annealed at 180 ◦C, depicted in Figures H.1, H.2 and H.3.
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Figure H.1: Stabilisation curves of TFTs annealed at 180 ◦C with patterned IGZO 3:1:1 3
layers, measured initially and 8 weeks later
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Figure H.2: Saturation curves of TFTs annealed at 180 ◦C with patterned IGZO 3:1:1 3 layers,
measured initially and 8 weeks later

62



  I n i t i a l  
  8  w e e k s

0 2 4 6 8 1 00

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4 I G Z O  3 : 1 : 1  3  L a y e r s / S i O 2
T  =  3 0 0  ° C
S o l v e n t  2 - M E
W / L  =  8 0 m m / 2 0 m m
V G =  0  t o  2 0  V ,  8  s t e p s  

I DS
 (µ

A)

V D S  ( V )
(a) W/L = 80/20 µm/µm

  I n i t i a l  
  8  w e e k s

0 2 4 6 8 1 00

0 . 1

0 . 2

0 . 3 I G Z O  3 : 1 : 1  3  L a y e r s / S i O 2
T  =  3 0 0  ° C
S o l v e n t  2 - M E
W / L  =  1 6 0 m m / 2 0 m m
V G =  0  t o  2 0  V ,  8  s t e p s  

I DS
 (µ

A)

V D S  ( V )
(b) W/L = 160/20 µm/µm

  I n i t i a l  
  1 0  w e e k s

0 2 4 6 8 1 00

0 . 0 3

0 . 0 6

0 . 0 9 I G Z O  3 : 1 : 1 ,  3  L a y e r s / S i O 2
T  =  3 0 0  ° C
S o l v e n t  2 - M E
W / L  =  3 2 0 m m / 2 0 m m
V G =  0  t o  2 0  V ,  8  s t e p s  

I DS
 (µ

A)

V D S  ( V )
(c) W/L = 320/20 µm/µm

Figure H.3: Ouput curves of TFTs annealed at 180 ◦C with patterned IGZO 3:1:1 3 layers,
measured initially and 8 weeks later

Table H.1: Average and standard deviation of electrical parameters of three measured TFTs
annealed at 180 ◦C with patterned-IGZO 3-layer 3:1:1 as channel layer, measured initially
and 8 weeks later.

W/L Age Ion/Ioff Von (V) VT (V) VHyst (V) SS (V/dec) µsat (cm2V −1s−1)

80/20
Initial (1.76± 1.23)× 105 −0.75± 0.25 2.79± 2.40 7.06± 0.82 0.69± 0.24 (3.00± 0)× 10−3

8 weeks (5.79± 2.79)× 104 1.25± 0 2.85± 0.10 6.68± 0.52 0.47± 0.055 (8.00± 0)× 10−4

160/20
Initial (1.60± 0.97)× 105 −1.00± 0.50 4.28± 0.0.36 7.14± 0.46 0.67± 0.14 (3.50± 1.50)× 10−3

8 weeks (6.03± 1.41)× 105 0.45± 0.27 2.03± 0.39 3.18± 0.98 0.47± 0.065 (2.00± 1.00)× 10−3

320/20
Initial (2.95± 3.44)× 106 −1.07± 0.25 1.83± 1.28 5.06± 1.15 0.47± 0.12 1.00± 0)× 10−3

8 weeks (4.32± 2.56)× 106 0.35± 0.50 2.77± 1.39 4.94± 0.80 0.32± 0.059 (1.00± 0)× 10−3
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Appendix I

Stabilisation and output curves of TFTs annealed at

120 ◦C

The stabilisation and output curves of patterned 3-layer IGZO 3:1:1 TFTs with W/L of 80/20,

160/20 and 320/20 µm/µm are depicted in Figures I.1 and I.2, respectively.
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Figure I.1: Stabilisation curves of IGZO 3:1:1 0.2 M with W/L of 80/20, 160/20, 320/20
µm/µm, annealed at 120 ◦C

.
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Figure I.2: Output characteristics of patterned IGZO 3:1:1 3 Layers, annealed at 120 ◦C
.
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Appendix J

Comparison of TFTs in this work with literature

Table J.1: Selected processing details for several reported solution based TFTs deposited by
solution processes (“n. a.” means that the related data is not mentioned in the literature).

Ref. TFT T (◦C)
Annealing

time

SS

V/dec

Mobility

(cm2 V−1 s−1)
Ion/Ioff VT (V)

VG range

(V)
SCS

[10] IGZO/SiO2 280 4 h 0.86 0.41 5× 105 13.31 -30-30 Yes

[70] IGZO/Al2Ox 300 1 h 0.16 7.3 1× 105 -0.3 -3-5 Yes

[75] IGZO/TEOS 220 n. a. 0.79 0.05 7× 106 4.26 -40-40 No

[6] IGZO/SiO2 300 n. a. n. a. 5.43 1× 108 17 n. a. Yes

[29] IGZO/SiNx 450 1 h 1.39 0.96 1× 106 7.8 -15-55 No

[24] IGZO/SiNx 450 3 h 0.63 0.86 1× 106 6.89 -30-30 No

[34] IGZO/ATO 400 10 min 0.47 5.8 6× 107 8.1 -10-30 No

[32] IGZO/SiO2 400 n. a. 1.12 0.60 1× 105 11.5 -10-40 No

[52] IGZO/SiO2 300 n. a. n. a. 0.43 2× 106 38.8 -20-100 No

This study IGZO/SiO2 300 30 min 0.63 0.018 4× 107 3.83 -10-20 Yes
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