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Resumo  

A prevalência de Diabetes Mellitus (DM) na população mundial tem vindo a aumentar e a 

Retinopatia Diabética (RD), uma doença associada à disrupção da barreira hemato-retiniana, é 

a complicação ocular mais comum relacionada com esta doença em países desenvolvidos. 

Uma exposição crónica a hiperglicemia e hipóxia é crucial para a fisiopatologia da RD, que em 

estágios avançados provoca neovascularização da retina e consequentemente, perda de visão. 

Não há cura para a RD, existem apenas tratamentos invasivos como fotocoagulação a laser e 

terapias anti-VEGF, que apresentam inúmeras desvantagens e apenas atrasam a progressão 

da doença. Vários estudos relacionados com esta doença descrevem um desequilíbrio entre 

fatores pro- e anti-angiogénicos, o que promove o processo de angiogénese patológica, 

característico da RD. Foi também descrito que pacientes com RD apresentam alterações 

fisiológicas consistentes com um estado de inflamação crónica. Desta forma, e sabendo que a 

angiogénese patológica e a inflamação crónica são das principais características da RD, 

desenvolver tratamentos com base nestes processos poderá constituir uma alternativa 

terapêutica. 

Os compostos polifenólicos têm sido utilizados em vários paradigmas da doença devido ao 

seu potencial efeito terapêutico. Existem estudos que demonstram que o sulfato de catecol 

(Cat-sulf) e o sulfato de pirogalol (Pyr-sulf) reduzem a expressão de marcadores de inflamação 

e que são capazes de atravessar a barreira hematoencefálica em modelos in vitro.  

Desta forma, o objetivo deste estudo é avaliar o efeito do Cat-sulf e do Pyr-sulf na 

expressão de marcadores pro- e anti-angiogénicos, na expressão do transportador de glucose 

na retina (GLUT1) e em marcadores de inflamação, quer in vitro, utilizando uma linha celular da 

do epitélio pigmentar da retina, quer in vivo, usando um modelo de ratinho para RD. Os nossos 

resultados mostram que nas concentrações testadas, o Cat-sulf influenciou negativamente a 

viabilidade das células e foi, assim, excluído do restante estudo. Para o Pyr-sulf os resultados 

mostraram um efeito positivo sobre a viabilidade celular e ainda a capacidade de aumentar os 

níveis de mRNA de PEDF e diminuir a expressão da proteína VEGF sob condições diabéticas. 

Em condições diabéticas, a expressão do GLUT1 é aumentada e o tratamento com Pyr-sulf, 

embora sem significado estatístico, diminui a expressão de GLUT1 em condições diabéticas in 

vitro, destacando o efeito benéfico deste metabolito fenólico no controlo do transporte de 

glucose. Verifica-se também que em células do epitélio pigmentar da retina tratadas com Pyr-

sulf há uma diminuição de marcadores de inflamação, confirmando o potential anti-inflamatório 

deste composto. Para complementar estes resultados in vitro, mostramos que o metabolito 

diminui a expressão da proteína pro-inflamatória Iba1 em ratinhos diabéticos com RD. 

No seu conjunto, estes resultados evidenciam o potencial do Pyr-sulf para tratamento de 

doenças associadas com inflamação crónica e angiogénese patológica, como a DR. 

 

Palavras chave: Diabetes Mellitus; Retinopatia Diabética; Angiogénese; Inflamação; metabolitos 

fenólicos. 
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Abstract 

The prevalence of Diabetes Mellitus worldwide continues to increase and Diabetic 

Retinopathy (DR), a blood-retinal barrier disorder, is its most common ocular complication in 

developed countries. Chronic exposure to hyperglycemia and hypoxia is essential to the 

pathophysiology of DR, that in advanced stages leads to neovascularization and consequently 

vision loss. There is no cure for DR, only symptomatic care with invasive treatments, such as 

laser photocoagulation, which have several drawbacks, and anti-VEGF (vascular endothelial 

growth factor) therapies, which do not halt the progression of the disease. 

Several studies report an imbalance between pro-angiogenic and anti-angiogenic factors, 

which promotes the pathological angiogenesis characteristic of DR. It was also reported that 

patients with DR have physiological changes consistent with chronic inflammation. Since 

abnormal angiogenesis and chronic inflammation are considered important hallmarks of DR, it 

is critical to develop efficient therapies.  

Phenolic metabolites have been used in several disease paradigms due to its potential 

therapeutic effect. It is reported that Cathecol-O-sulfate (Cat-sulf) and Pyrogallol-O-sulfate (Pyr-

sulf) were shown to reduce inflammation markers and cross blood brain barrier in in vitro 

models. 

Therefore, the aim of this study is to evaluate the effect of Cat-sulf and Pyr-sulf in the 

expression of pro- and anti-angiogenic markers, in the expression of retina glucose transporter 

(GLUT1) and in inflammation biomarkers. In vitro, using a retinal cell line, and in vivo, using a 

mouse model of DR. 

Our results show that in the tested concentrations, Cat-sulf had a negative influence on the 

viability of D407 RPE cells and was excluded for the rest of this study. For Pyr-sulf our results 

have shown a positive effect on cell viability and it increases the mRNA levels of the PEDF 

(Pigment Epithelium–Derived Factor) and decreases VEGF protein expression under diabetic 

conditions. 

It is well known that in diabetic conditions the expression of the GLUT1 is increased. 

Treatment with Pyr-sulf, although not statistically significant, decreases GLUT1 expression 

under diabetic conditions in D407 RPE cells, highlighting the beneficial effect of this phenolic 

metabolite in controlling glucose transport. 

Furthermore, in RPE cells treated with Pyr-sulf the expression of inflammatory markers 

under hypoxic conditions decreases, confirming the anti-inflammatory effect of this phenolic 

metabolite. To support our in vitro studies, we have shown that in Ins2Akita mice, a model for 

type I diabetes and DR, Pyr-sulf decreases the expression of the pro-inflammatory protein Iba1. 

Taken together, these results shown the great potential of Pyr-sulf as treatment for 

diseases associated with chronic inflammation and abnormal angiogenesis, such as DR. 

 

Keywords: Diabetes Mellitus; Diabetic Retinopathy; angiogenesis; inflammation; phenolic 

metabolites. 
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1. Introduction  

1.1. Diabetes 

 
Nowadays, the sedentary life, obesity, unhealthy food, smoking, and alcohol consumption 

lead to increased prevalence of diseases such as Diabetes Mellitus (DM) (Hu, 2011). DM is a 

group of metabolic disorders mainly characterized by high levels of glucose in blood resulting 

from defects in insulin secretion and/or action. DM is divided in two categories: type 1 diabetes, 

characterized by autoimmune destruction of pancreatic insulin-producing β-cells and 

consequently absolute deficiency in insulin secretion; type 2 diabetes, much more prevalent, 

combines the resistance to insulin action with abnormal secretion. Both, type 1 and type 2 

diabetes are related with abnormal glucose homeostasis; however there are other types of 

diabetes, such gestational diabetes, characterized by glucose intolerance during pregnancy and 

diabetes caused by genetic defects (American Diabetes, 2010). 

Common to all types of diabetes is the chronic hyperglycemia further associated with 

dysfunction and damage of different organs, in which the eye is included. 

 

1.2. The eye 

 
The eye is the organ responsible for vision, which is composed by several structures 

involved in the vision cycle. The retina is an inner layer of the posterior cavity of the eye that 

receives the light signal, converts it to chemical signals and sends these to the brain through the 

optic nerve. In greater detail the retina is divided in ten different layers composed by three major 

cell types: photoreceptors, several types of neural cells, and retinal pigment epithelium (RPE) 

cells (Figure 1.1). 

Photoreceptors cells are light sensitive neurons in the retina, responsible for transducing the 

light stimulus in an electric signal. There are two distinct subtypes of photoreceptors: rods and 

cones. The rods photoreceptors are very sensitive to low-light and cones operate with bright 

light and are responsible for color perception and central vision. Neural cells (ganglion, 

horizontal, bipolar and amacrine cells) are involved in the transduction of the eletrical signal to 

the optic nerve and then to the brain. The bipolar and horizontal cells receive the signal from the 

photoreceptors, transfer to the amacrine cells which interact with the ganglion cells, the output 

neurons (Naik, Mukhopadhyay and Ganguli, 2009; Veleri et al., 2015). Its axons transmit the 

information from the retina to the brain. 
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The RPE is formed by pigmented cuboidal cells that makes part of the retina/blood barrier 

surrounded by the choroid. These cells have the capacity of absorb scattered light and serves 

as a barrier between the choroid and the photoreceptors. RPE is also responsible for the 

transport of glucose and other nutrients to the photoreceptors, which makes RPE crucial in its 

maintenance (Veleri et al., 2015). Besides that, RPE secretes growth and neurotrophic factors 

responsible for maintaining the structural integrity of the retina which is essential for visual 

function (reviewed in Araújo, Santos and Silva, 2018; Strauss, 2005).  One of the most 

important molecules secreted by the RPE is the pigment epithelial-derived factor (PEDF), a 

potent anti-inflammatory and anti-angiogenic protein (reviewed in Araújo, Santos and Silva, 

2018), crucial in physiology and pathophysiology of RPE. The main functions of RPE are 

resumed in Figure 1.2. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1.2 Retinal Pigment Epithelium (RPE) main functions: scattered light absortion, two-way 

epithelial transport, phagocytosis and secretion of growth neurotrophic factors such as VEGF and PEDF. 

Adapted from (Strauss, 2005). 

Figure 1.1 Structure of the eye and different cells of the retina. (A) schematic representation of 

human eye and its major structures. (B) Retinal cells organization composed by choroid, RPE, 

photoreceptors, different neural cells (horizontal, bipolar, amacrine and ganglion cells) and the optic nerve. 

Adapted from (Naik, Mukhopadhyay and Ganguli, 2009; Veleri et al., 2015). 
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Diseases affecting the retina are blinding disorders influenced by genetic and/or 

environmental factors altogether contributing to more than 25% of blindness cases  (Resnikoff 

et al., 2004). Acquired retinal disorders include Age-related Macular Degeneration, Retinitis 

Pigmentosa, Glaucoma and Diabetic Retinopathy (DR) that results from a combination of aging, 

environmental and genetic factors that damage the retina and RPE. Since photoceptors and 

RPE cells are affected in these diseases, they can be suitable targets for therapies.  

The anatomical location of the eye makes it an excellent therapy target because it allows 

easy acessibility and due to its small size the amount of therapeutic required is reduced 

(Bainbridge, Tan and Ali, 2006; Borrás, 2003). 

 

1.3. Diabetic Retinopathy 

 
The prevalence of DM worldwide continues to increase and DR is the most common ocular 

complication of this disease in developed countries (Fong et al., 2004). DR is a chronic and 

progressive disease characterized by ischemia, microaneurysms, hemorrhages, 

neovascularization and increased vascular permeability. This disease leads to vision loss and 

affects mostly working-age adults, because it develops several years after the onset of diabetes 

(Cheung, Mitchell and Wong, 2010).  

Clinically, there are two types of DR: non-proliferative, associated with early stages and 

proliferative, related with advanced stages. In the non-proliferative form there is an abnormal 

blood flow, promoting changes in the retina vascular permeability. In advanced stages ischemia 

can develop, leading to proliferative DR. The proliferative form is related with hypoxia and neo-

angiogenesis, which leads to formation of new, abnormal blood vessels in the eye, called 

neovascularization. The new blood vessels are usually weak, fragile and leaky which allows 

proteins, fluids and debris to enter the retina (Cheung, Mitchell and Wong, 2010; Fong et al., 

2004). This type of retinopathy is usually more severe, because hemorrhages in the retina lead 

to severe vision loss.  

At present, there is no efficient treatment for DR. Glycemic control helps to slow the 

progression and, in advanced stages, invasive therapies like photocoagulation and ocular 

injections of anti-angiogenic agents are applied with several negative effects such as  peripheral 

vision loss and damage of neural tissues (Caldwell et al., 2003). 

The pathophysiological mechanism behind DR is not yet fully known but is believed that 

the chronic exposure to hyperglycemia and hypoxia initiates a cascade of biochemical and 

physiological changes that lead to neovascularization and retina dysfunction (Cheung, Mitchell 

and Wong, 2010). Most of the studies found in the literature are focused on the effects of DR in 

RPE cells, because these cells are crucial to the homeostasis of the neuroretina and to 

transport important nutrients. 
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1.3.1. Pathophysiology of DR 

 
Several mechanisms have been proposed to modulate the pathogenesis of this disease, 

like the modulation of angiogenesis and inflammation.  

 

1.3.1.1. Angiogenesis 

 
Angiogenesis is the formation of new blood vessels from pre-existing ones, requiring 

endothelial cell migration, growth and differentiation, that begins in the embryonic stage and 

continues until death, being active in both physiological and pathological situations (Risau, 

1997). All tissues in the body are formed of blood vessels, responsible for exchange of nutrients 

and metabolites, and clean waste products. The oxygen levels have a pivotal role in the 

regulation of angiogenesis. In sprouting angiogenesis, the oxygen sensing mechanisms detect 

a certain level of hypoxia (oxygen privation) and stimulate the production of a pro-angiogenic 

factor, the vascular endothelium growth factor (VEGF), a signaling molecule that binds to a 

specific receptor in endothelial cells membrane and promotes the formation of the new blood 

vessels to satisfy tissues metabolic requirements  (Nagy et al., 2008). In pathological 

angiogenesis, VEGF is overexpressed (Fong et al., 2004) leading to an abnormal and 

uncontrolled formation of new blood vessels which can cause irreversible damage, such as 

neovascularization in the eye and consequently vision loss (Cheung, Mitchell and Wong, 2010). 

 

1.3.1.1.1. VEGF 

 
VEGF or VEGF-A (42 kDa), is a protein from a large family of angiogenic proteins, that is 

secreted by different cells in retina, mostly by the RPE. The main functions of these proteins are 

the regulation of angiogenesis and vascular permeability. The VEGF signal involves the binding 

of this factor to specific tyrosine-kinase receptors called VEGFR (Figure 1.3), promoting 

proliferation and migration of endothelial cells, and the formation of new blood vessels (Nagy et 

al., 2008). VEGF is also involved in the inflammatory response since is strongly expressed in 

wound healing, where microvascular permeability and angiogenesis are increased (Ferrara, 

Gerber and Lecouter, 2003). In pathologies associated with abnormal angiogenesis, like DR, 

standard treatments associated with the inhibition of VEGF have been successfully used to slow 

disease progression and to reduce the risk of vision loss (Ni and Hui, 2009). However these 

therapies are limited because the injections must be repeated frequently and has complications 

associated, such as RPE and photoreceptors degeneration and increased ocular pressure 

(Araújo, Santos and Silva, 2018; Ni and Hui, 2009; Simão et al., 2016).  

In a healthy eye, the levels of pro-angiogenic and anti-angiogenic factors are balanced and 

promote the control of new blood vessels formation. In addition to VEGF overexpression, there 

is a downregulation of anti-angiogenic factors, such as PEDF.  
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1.3.1.1.2. PEDF 

 
PEDF (50 kDa) is a protein from the serine protease inhibitor (serpin) super family. During 

evolution PEDF lost the protease inhibitory activity and gained others properties like anti-

oxidative, neuroprotective, anti-inflammatory and anti-angiogenic (Araújo, Santos and Silva, 

2018; Becerra and Notario, 2013; Dawson, 1999). PEDF is a potent anti-angiogenic factor 

through apoptotic effects on endothelial cells and, in the eye, overexpression of PEDF prevents 

the formation of new blood vessels, conferring protection to the retina. The molecular 

mechanisms involved in PEDF functions are based on its interactions with cell-surface receptors 

(Becerra and Notario, 2013). Related with its properties, the therapeutic potential of PEDF was 

considered.  

The imbalance between these pro-angiogenic and anti-angiogenic proteins in DR is 

considered responsible for the vascular alterations and consequently vision loss (Farjo and Ma, 

2010).  The signaling events behind PEDF activity in cells are represented in Figure 1.3. 

 
 
 
 

 
 

 
 
 

 
 

1.3.1.2. Inflammation 

 
Inflammation is a biological response to harmful stimuli that protects cells of permanent 

damage, but chronic inflammation can be harmful (Ibrahim et al., 2011). This natural process 

allows the immune system to recognize a pathogen by its specific binding to pattern recognition 

receptors. The activation of these receptors results in the production or recruitment of specific 

cytokines, which induces the expression of other pro-inflammatory proteins that are controlled at 

gene transcription level. This increased expression of pro-inflammatory proteins is regulated 

trough the activation of pro-inflammatory transcription factors (Tang and Kern, 2011). 

Figure 1.3 Signalling events of PEDF in cells. VEGF binds to the specific receptor, VEGFR, which 

becomes phosphorylated and activated. PEDF increases the levels of γ-secretase which promotes the 

cleavage of VEGFR and inhibit the VEGF-driven angiogenesis and permeability. PEDF can also activate a 

specific pathway to inhibit endothelial cell migration and induces apoptosis. PEDF is a ligand to two 

proteins on endothelial cells, that results in angiogenic responses. Adapted from (Becerra and Notario, 

2013). 
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Several physiologic and molecular changes that are consistent with inflammation have 

been found in the retinas of diabetic animals and patients (Brucklacher et al., 2008), which has 

been widely reviewed in (Adamis and Berman, 2008; Kaul et al., 2010; Kern, 2007). 

Understanding the mechanisms linking inflammation to DM and related complications is very 

important to develop new strategies to prevent them, by targeting inflammatory pathways. 

Inflammation contributes to DM by causing insulin resistance and it is intensified in high 

concentrations of glucose. This happens because several cytokines activated in inflammatory 

processes have the capacity of develop insulin resistance (Tanaka, Narazaki and  Kishimoto, 

2014). Hyperglycemia itself has been regarded as pro-inflammatory environment, so chronic 

inflammation may play a critical role in the development of early stages of DR (Tang and Kern, 

2011).  

Since RPE has an important role in the maintenance of visual function, acknowledgment of 

the inflammatory process occurring in these cells could lead to new therapeutic targets. Retinal 

cells have characteristics that allow them to mediate the immune response in the eye, such as 

described above (Tang and Kern, 2011). However, the understanding of the inflammatory 

process behind DR pathogenesis is poor and needs to be expanded. Several key players have 

been indicated as part of the inflammatory process of DR, as follows. 

 

1.3.1.2.1. Microglia cells 

 
Retinal microglia or Müller cells are the most important glial cell type in the retina because 

they act like macrophages, forming the first active immune defense in the neural retina. 

Microglia activation results from very sensitive calcium transport channels to small alterations in 

extracellular calcium. This activation promotes a cytokine-induced activation cascade to help 

microglia in inflammation process. If microglia remain active, the cytokines damaged other cell 

types, which in this context can lead to retinal degeneration and chronic inflammation. 

During the activation of microglia, some specific proteins, like the ionized calcium-binding 

adapter molecule 1 (Iba1, 17 kDa) are up-regulated, promoting the migration and proliferation of 

cells involved in the vascular process and the deregulation of the cell cycle. Iba1 could be a DR 

marker, since inflammation is an outcome of this disease and Iba1 is found in activated 

macrophages in inflamed tissues (Ibrahim et al., 2011; Ito et al., 1998). 

 

1.3.1.2.2. Cytokines 

 
The inflammatory response also involves specific mediators like cytokines, interleukins and 

lymphokines in response to certain stimuli. In previous studies with samples collected from 

patients with Proliferative Diabetic Retinopathy, was demonstrated that pro-inflammatory 

cytokines, like interleukin-1β (IL-1β) and interleukin-8 (IL-8), are significantly increased (Elner et 

al., 1995; Tang and Kern, 2011). 

Interleukin 1β (IL-1β) is produced by caspase-1 and is associated with local inflammatory 

response and in hyperglycemia is increased in retinal Müller cells, which induces cell death and 
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vascular dysfunction (Mohr et al., 2002; Vincent and Mohr, 2007). IL-1β associated with another 

cytokines is responsible for collagen and fibroblasts synthesis, resulting in proliferation and 

contraction, influencing angiogenic activity (Demircan et al., 2006). Previous studies 

demonstrated that the use of antioxidants in the diet reduces the IL-1β expression promoted by 

diabetes and inhibits the degeneration of capillaries in animal models (Vincent and Mohr, 2007). 

The presence of IL-1β modulates the production, by epithelial cells, of the IL-8 (Muto et al., 

2015). IL-8 induce chemotaxis, the process of recruitment of immune cells to the site of damage 

promoting vascular permeability and angiogenesis (Elner et al., 1995). IL-8 specifically 

promotes de attraction and activation of neutrophils that release enzymes that degrade 

connective tissues (Bickel M., 1993). Previous studies with epithelial cells stimulated with IL-1β 

have shown an increase in IL-8 secretion; while treatment with antioxidants successfully 

decreased its expression (Muto et al., 2015). 

 

1.3.1.3. Glucose content in RPE cells 

 
The RPE transports water and electrolytes from the subretinal space to the choroid and, in 

the other direction, transports glucose from the blood to the photoreceptors. As glucose is the 

only fuel source of retinal cells, an adequate glucose delivery is crucial. The transport of glucose 

is exclusively mediated by a sodium-independent glucose transporter 1 (GLUT1, 55 kDa) 

located in the RPE basal membrane (Ban and Rizzolo, 2000; Bergersen et al., 1999). GLUT1 

adapts the glucose transport to different situations, like hypoxia, growth factors and glucose 

levels. Our group has shown that in DR, hyperglycemia and hypoxia directly affect GLUT1 

expression (Calado et al., 2016). As cells need a higher consumption of glucose in oxygen 

deprivation, the GLUT1 expression increases (Calado et al., 2016) to achieve an effective 

glucose transport. 

RPE cells secrete multiple essential trophic factors, among them PEDF (Araújo, Santos 

and Silva, 2018; Ponnalagu et al., 2017). Previous studies from our group with a RPE cell line 

demonstrated that high levels of GLUT1 and, consequently an increase in glucose supply, has 

negative effects in PEDF expression and promotes the VEGF expression, contributing to the 

imbalance between these two proteins, promoting angiogenesis (Calado et al., 2016). These 

results show that high levels of glucose directly affect the secretory function of RPE cells. 
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1.4.  Phenolic metabolites 

 

Polyphenols are molecules with aromatic rings and hydroxyl groups (-OH) in their structure, 

naturally found in fruits, vegetables, cereals and beverages, including tea, red wine, olive oil and 

berries. They are identified as secondary metabolites of plants, involved in its protection against 

reactive oxygen species (ROS) produced during photosynthesis. At the present, have been 

identified more than 8000 polyphenolic compounds in various plants species. Fruits and some 

beverages are the main source of polyphenols. In fruits there are a complex mixture of 

polyphenols dependent on environmental factors such time of harvest, sun exposure, 

processing and storage (Kroon et al., 2004). Berries are an exceptional exogenous source of 

polyphenols, which makes them a good alternative for healthy diet to prevent the progression of 

diseases like DR.  

The preventive or therapeutic action of these compounds are dependent of its 

bioavailability, meaning the proportion of nutrient that is digested, absorbed and metabolized 

(Pandey and Rizvi, 2009). In the first step and before absorption, the compounds are 

hydrolyzed by intestinal enzymes/colonic microflora and during absorption the polyphenols 

suffers methylation, sulfation and/or glucuronidation and reaches the blood and tissues in a 

different form from those present in food (Pandey and Rizvi, 2009). The intestinal absorption 

levels and the nature of the metabolite circulating in the plasma its directly related with the 

structure of the polyphenols. The metabolism of polyphenols starts as soon as the compounds 

enter the body, although some are rapidly absorbed others are not (Lafay and Gil-Izquierdo, 

2008; Pimpão et al., 2014). 

 The scientific interest on these compounds have increased based on their anti-

inflammatory, anti-diabetic, anti-mutagenic, anti-aging and neuroprotective properties, which 

may have beneficial effects on human health (Figueira et al., 2017; Pandey and Rizvi, 2009). 

 There are various studies on the anti-diabetic effects of polyphenols. These compounds 

influence the glycemia through different mechanisms like inhibition of glucose absorption in the 

gut or in peripheral tissues. Some studies show the inhibition of glucose transporters by 

polyphenols (Matsui et al., 2001). For example, onion polyphenols have the capacity of protect 

diabetic patients from oxidative stress (Pandey and Rizvi, 2014) and polyphenols from 

vegetables act as potent anti-diabetic agents because they lowered the levels of blood glucose 

and increase plasma insulin (Barone, Calabrese and Mancuso, 2009; Eun et al., 2007). 

 Oxidative stress is considered the main process behind neurodegenerative diseases. 

Since polyphenols have important anti-oxidative properties, their consumption may confer 

protection in neurological disorders because they influence important cell processes like 

signaling, apoptosis, proliferation and redox balance (Singh et al., 2008). In fact, people who 

drink three to four glasses of wine per day had 80% decreased neurodegeneration compared to 

those who did not (Scarmeas N, Luchsinger JA, Mayeux R, Stern Y, 2009). 
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 The combination of anti-inflammatory and anti-oxidant properties makes polyphenols good 

anti-aging compounds, since inflammation and oxidative stress are characteristic of aging 

process (Joseph, Shukitt-Hale and Casadesus, 2005). Supplementation of diet with spinach, 

strawberries and blueberries for 8 weeks were effective in reversing age-related markers in 

aged rats (Shukitt-Hale, Lau and Josep, 2008). Polyphenols are also effective in protecting 

brain from the adverse effects of aging since these compounds cross the blood-brain barrier 

(BBB), which controls the influx of nutrients and drugs in the brain (Figueira et al., 2017). 

The mechanisms of action of polyphenols in the human body are poorly known, so it is 

important to determine the compounds that can be found in the body and use them in relevant 

concentrations. Thus, bioavailability studies are very important and needed (Manach et al., 

2004; Rio, Del et al., 2013). 

Claúdia Santos and co-workers identified for the first time in human plasma the presence in 

high concentrations of sulfated metabolites of catechol (catechol-O-sulfate, Cat-sulf) and 

pyrogallol (pyrogallol-O-sulfate, Pyr-sul), after the ingestion of a purée containing five different 

berry fruits, suggesting that the sulfated form of the metabolites results from the polyphenols 

metabolism in the body (Pimpão et al., 2015). Moreover, the same group identified, for the first 

time, Cat-sulf in significant concentrations in the urine of volunteers after the ingestion of the 

same purée (Pimpão et al., 2014). Previously, in other study, it was identified Pyr-sulf in 

volunteers’ urine after the ingestion of green and black tea (Daykin et al., 2005; Dorsten, Van et 

al., 2006; Hooft, Van Der et al., 2012). The pyrogallol was found as a mixture of two isomers 

(pyrogallol-1-O-sulfate and pyrogallol-2-O-sulfate) in similar proportions, but in vitro studies 

suggests that pyrogallol-2-O-sulfate was the main form transported (Pimpão et al., 2014, 2015). 

The structure of pyrogallol, catechol and the sulfated forms are represented in Figure 1.4. 

 

 

Figure 1.4 Principal bioavailable phenolic metabolites in human plasma and urine, after 

the ingestion of a purée containing five different berry fruits. (A) Reaction of sulfation of 

catechol results in the metabolite catechol-O-sulfate (Cat-sulf). (B) Reaction of sulfation of pyrogallol 

results in two compounds aproximately in similar proportion, pyrogallol-O-sulfate (Pyr-sulf).  

 

 

Scheme  1.1Figure 1.4 Principal bioavailable phenolic metabolites in human plasma and 

urine, after the ingestion of a purée containing five different berry fruits. (A) Reaction of 

sulfation of catechol results in the metabolite catechol-O-sulfate (Cat-sulf). (B) Reaction of sulfation of 

pyrogallol results in two compounds aproximately in similar proportion, pyrogallol-O-sulfate (Pyr-sulf).  

B 
 

A 
 



Can polyphenols’ metabolites ameliorate the outcome of Diabetic Retinopathy? 
 

10 

The selective permeability across the BBB limit the bioavailability and protective effects of 

phenolic metabolites (Borges et al., 2013; Chen et al., 2015). A group of researchers have used 

a BBB in vitro model to confirm that phenolic metabolites could be transported through the BBB 

endothelium, and have shown that differences in endothelial transport is due to the metabolite 

chemical structure. However, it is not clear if the transport is mediated or if is by simple 

diffusion. The results suggest that the endothelial cells may favor the uptake of the most 

abundant bioavailable metabolite of a mixture in similar proportions, which confirm the detection 

of only one isomer of pyr-sulf (Figueira et al., 2017; Pimpão et al., 2015). The same group, 

show for the first time that the most abundant metabolite in circulation, Pyr-sulf, was also the 

most effective in prevent oxidative damage in in vitro studies with endothelial cells model 

(Pimpão et al., 2014) 

 

1.5. In vitro and in vivo models of Diabetic Retinopathy 

 

The models used to study the mechanisms of disease are very important tools. Using in 

vitro models, we are able to control the conditions of the environment, spend less amounts of 

reagents and avoid animal sacrifice. However, in vivo models allow us to test a hypothesis 

under similar conditions to those detected in human. Despite in vitro models not fully mimicking 

the in vivo, they are less expensive, and results can be obtained faster. 

As mentioned before, RPE can express and secrete several factors, which allows to 

confirm some of DR characteristics. VEGF and PEDF are among the most important factors 

secreted by RPE cells. Analyzing VEGF messenger RNA (mRNA) or protein expression 

together with PEDF after the onset of hyperglycemia and hypoxia, we can determine if there is 

an imbalance between these two factors. This imbalance is a hallmark of DR that can 

contributes to retinal neovascularization, which can be further confirmed with in vivo 

experiments. High glucose concentration and hypoxia conditions contributes to an inflammatory 

response, so the presence of specific cytokines in mRNA or protein expression analysis, both in 

vitro or in vivo, confirms the onset of inflammation, another important hallmark of DR (Araújo, 

Santos and Silva, 2018). 

For this work we used two different models which will be described in sections 3.1. and 3.5. 
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2. Objectives 

The prevalence of DM worldwide continues to increase and DR is the most common ocular 

complication of this disease in developed countries (Fong et al., 2004). Oxidative stress, 

inflammation and abnormal angiogenesis are major hallmarks in DR. This disease can lead to 

vision loss and affects mostly working-age adults (Cheung, Mitchell and Wong, 2010). 

Therefore, it is extremely important develop efficient treatments for this pathology. 

Over the years the beneficial effects in human health of polyphenols, compounds present 

in various foods, have been studied. Studies with berries showed relevant concentrations of two 

different  phenolic metabolites (catechol-O-sulfate and pyrogallol-O-sulfate) in human plasma 

and urine (Pimpão et al., 2014, 2015). Based on their anti-inflammatory, anti-diabetic, anti-

mutagenic, anti-aging and neuroprotective properties, polyphenols can be used as treatment for 

several diseases (Figueira et al., 2017). 

The objective of this work is to evaluate the potential benefit of Pyr-sulf and Cat-sulf 

phenolic metabolites in the outcome of DR.  

This study is divided in two specific aims: 

1. The evaluation of the effects of the phenolic metabolites’ treatment in vitro using RPE 

cells as model; 

2. The administration of the phenolic metabolites and evaluation of their effects in vivo 

in a diabetic mouse model. 

 



 

12 
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3. Materials and Methods 

3.1.  In vitro model: D407 RPE cell line 

 

In vitro cell models can be either primary cultures or continuous cell lines of human origin. 

In the beginning, in vitro studies of human RPE cells has been done with primary cultures, but 

these cultures only survive eight to ten passages (Davis et al., 1995). Thus, the need to create a 

continuous cell line was imperative. In 1995 a group of investigators extract cells from a globe of 

the eye of a dead 12-year-old boy, cultured it and they were able to maintain the cells in 

cultured for more than 200 passages (Davis et al., 1995) . This cell line, named D407, is now 

considered a spontaneously transformed RPE cell line that retain their epithelial morphology 

and characteristics which makes it a great model to study alterations in different conditions 

(Davis et al., 1995). However, D407 cells do not polarize in culture and they do not synthesize 

the characteristic pigment. In this work we have used D407 cells because our study is related 

with the eye metabolism, so we have used a RPE cell line that maintains a high degree of 

epithelial morphology is very important. We can use this cell line for a high number of passages 

and they maintain a morphology similar to early passages (Davis et al., 1995). Furthermore, 

D407 cells maintain its cobblestone epithelial morphology unlike other cell lines whose pigment 

production ceases under the culture conditions and lose their morphology (Davis et al., 1995). 

 

3.1.1. Cell culture 

 

For the in vitro studies were used D407 cells, RPE cell line (Davis et al., 1995), kindly 

provided by Dr. Jean Bennett (University of Pennsylvania, USA). The cells grown in 25 cm2 

flasks (Orange Scientific, Belgium) containing Dulbecco’s Modified Eagle’s Medium (DMEM) 

with 5.5 mM D-glucose (GE Healthcare, USA) supplemented with 1% penicillin/streptomycin 

(Sigma-Aldrich, USA) and 5% fetal bovine serum (FBS) (Sigma-Aldrich, USA) and kept in a 

humidified chamber at 37ºC with 5% CO2. The medium was changed every 2 days. Standard 

culture protocols suggest growing cells in high glucose media; however, we have cultured the 

cells in DMEM with 5.5 mM D-glucose (non-diabetic conditions) and we have shown no 

deleterious effects on cell viability or function.  

After reaching confluence (70%-90%), cells were washed with PBS 1x and detached with 

trypsin-EDTA at 37ºC. After 5 minutes DMEM with 5.5 mM D-glucose was added to the flask 

and the final volume were centrifugated (1 min, 1500 rpm). The pellet was resuspended in the 

fresh medium.  
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3.1.2. Polyphenol treatment 

 

To test the effect of the polyphenol’s metabolites on D407 cell line, cells were seeded at a 

density of 3x105 cell/well and after 24 h of incubation at 37ºC, the medium was changed. Cells 

were cultured for 24 h in DMEM with 5.5 mM of D-glucose to mimic a physiological 

concentration, in DMEM with 25 mM of D-glucose, to mimic a pathological condition 

(hyperglycemia) and in DMEM with 5.5 mM of D-glucose containing mannitol with a final 

concentration of 25 mM, as an osmolarity control. Mannitol (AppliChem, Germany) was chosen 

because it has no known biological activity and cannot be used by the cells as energy source 

(Duffy et al., 2006). 

The polyphenol compound (Cathecol-O-sulfate Cf = 5 µM or Pyrogallol-O-sulfate Cf = 6.5 

µM), kindly provided by Claúdia Santos (ITQB/iBET), was incubated for 24 h in the three 

different media without FBS. To induce hypoxia cells were incubated with desferrioxamine 

(DFO) (Sigma-Aldrich, USA) at a final concentration of 100 µM (Aprelikova et al., 2004; Wu and 

Yotnda, 2011), for 16 h or 24 h. All the protocol is represented below in Figure 3.1. 

 
 

 

 

3.2. MTT cell viability assay 

 
MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) is a yellow 

substrate that, when metabolized by the cells turns to dark blue, a formazan product. So, the 

metabolic activity of D407 cells is directly proportional to the quantity of formazan formed 

(Berridge, Herst e Tan, 2005). 

D407 cells were seeded at a density of 2x104 cell/well in a 48-well plate, for a final volume 

of 500 µl/well of DMEM with 5.5 mM medium (supplemented with 1% penicillin/streptomycin and 

5% FBS), the standard condition. After 24 h the media was changed, and cells were exposed to 

different media conditions as previously described in 3.1.2. Treatment with the polyphenolic 

metabolite compound (Cathecol-O-sulfate Cf=5 µM or Pyrogallol-O-sulfate Cf=6.5 µM) was 

maintained for 24 h and hypoxia induced for 24 h or 16 h with DFO at a final concentration of 

100 µM. 

In each well 25 µL of MTT at a final concentration of 0.25 mg/ml (Sigma-Aldrich, Missouri, 

USA) was incubated at 37ºC for 3 hours. At the end of the incubation period, the formazan was 

Figure 3.1 Schematic representation of the in vitro setup for testing the phenolic 

metabolites. 
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dissolved with 250 µl of 0.04 N HCl (Sigma-Aldrich, USA) in isopropanol 100% (Fisher 

Scientific, USA) and the absorbance was measured in a Biotrak II Plate reader (Amersham 

Biosciences, UK) at 540/620 nm.  

 

3.3. Quantitative Real Time PCR (RT-qPCR) 

 

3.3.1. RNA extraction 

 
To promote the lysis of the cultured cells, TRIzolTM Reagent (Sigma-Aldrich, Missouri, 

USA) were added (300 µl) to each well. After homogenization, all the volume was transferred to 

a previously identified tube and incubated 2-3 minutes with chloroform (VWR, USA) to 

precipitate the deoxyribonucleic acid (DNA). After centrifugation (12000 g, 4ºC, 15 min), the 

aqueous part, containing the ribonucleic acid (RNA), was carefully transferred to a new tube 

with isopropanol for 10 minutes. The samples were centrifugated (12 000 g, 4ºC, 10 min) and 

the supernatant removed. A solution of 75% ethanol (Sigma-Aldrich, USA) was used to wash 

the RNA and the sample centrifugated again (7500 g, 4ºC, 5 min). In the end, the pellet was 

resuspended in 20 µl of RNAse-free water (Sigma-Aldrich, USA).   

 To evaluate the quality and quantity of the RNA, samples were analyzed in a NanoDropTM 

2000 (Thermo Scientific, USA) spectrophotometer. 

 

3.3.2. cDNA synthesis 

 
The complement deoxyribonucleic acid (cDNA) was synthetized with a High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, USA). The RNA extract was diluted to a 

ratio of 1000 ng of RNA per 10 µl of RNAse-free water. To perform the reaction, each tube had 

a final volume of 20 µl (10 µl of the sample and 10 µl of the master mix). The reactions were 

done in a MyCyclerTM Thermocycler (BioRad, USA). 

 

3.3.3. RT-qPCR 

 
This technique was used to analyze the expression of PEDF, VEGF, IL-8, IL-1β genes and 

β-Actin gene as a control. To perform the RT-qPCR, we used the cDNA obtained, prepared a 

mix with RNase-free water, containing the correspondent primers (Sigma-Aldrich, USA), forward 

and reverse, and Ssofast Evagreen Supermix (Bio-Rad, USA). In a 96 well-plate, 13 µl of the 

Mix and 2 µl of the diluted cDNA sample were added, for a final volume of 15 µl. The reactions 

were done in a 7300 real Time PCR System (Applied Biosystems).  

The primers sequence and annealing temperature are listed in Table 3.1. For the PCR 

reactions, the conditions used were: denaturation at 95ºC for 1 minute, followed by 40 cycles of 

denaturation at 95ºC for 15 seconds and annealing for 15 seconds at the gene-specific 

temperature (Table 3.1), the extension step was done at 65ºC for 30 seconds. The β-actin was 
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Equation 3.1 Comparative Method 

 

 

 

Figure 3.2 Subretinal injection. Its the most efficent method of injection to the RPE but is also very 

invasive (Koirala, Conley and Naash, 2013). 

 

Figure 4.1Figure 3.1 Subretinal injection. Its the most efficent method of injection to the 

RPE but is also very invasive (Koirala, Conley and Naash, 2013).Equation 3.1 Comparative 

Method 

 

 

 

Figure 3.2 Subretinal injection. Its the most efficent method of injection to the RPE but is also very 

invasive (Koirala, Conley and Naash, 2013). 

 

Figure 4.1Figure 3.1 Subretinal injection. Its the most efficent method of injection to the RPE but is 

also very invasive (Koirala, Conley and Naash, 2013). 

 

Figure 4.1 Cat-sulf treatment affects D407 cell viability. Effect of Cat-sulf (5 µM, 24 

h), on RPE cell line viability under high glucose (25 mM glucose) and hypoxia (DFO 100 µM 

16 h (A) or DFO 100 µM 24 h (B)) conditions, assessed by MTT assay. Values are expressed 

as percentage of control. N=4, *p < 0.05, ** p < 0.01 and *** p < 0.001 are significantly 

different from control (5.5 mM glucose, under normoxia with no treatment), determined by 

Sidak’s (A) and Tukey’s (B) multiple comparisons tests. M, Mannitol (osmolarity control) and 

G, Glucose. 

 

 

Figure 4.2Figure 4.1 Cat-sulf treatment affects D407 cell viability. Effect of Cat-sulf (5 µM, 24 h), on 

RPE cell line viability under high glucose (25 mM glucose) and hypoxia (DFO 100 µM 16 h (A) or DFO 

used has housekeeping gene, to normalize the mRNA levels of PEDF, VEGF, IL-8 and IL-1β. 

For mRNA quantification we used the comparative method represented in Equation 3.1 

(Schmittgen and Livak, 2008). 

 

Table 3.1 Primers used in RT-qPCR 

Gene Primer sequence  
Annealing 

temperature (ºC) 

hPEDF 
FW 5’ CGACCAACGTGCTCCTGTCT 3’ 

63.3 

RV 5’ GATGTCTGGGCTGCTGATCA 3’ 

hVEGF 

   FW  5’ ACTTCTGGGCTGTTCTCG 3’ 

72.3 

RV 5’ TCCTCTTCCTTCTCTTCTTCC 3’ 

hIL-8 

FW 5’ ATAAAGACATACTCCAAACCTTTCCAC 3’ 

62.3 

RV 5’ AAGCTTTACAATAATTTCTGTGTTGGC 3’ 

hIL-1β 

FW 5’ AAATACCTGTGGCCTTGGGC3’ 

62.3 

RV 5’ TTTGGGATCTACACTCTCCAGCT 3’ 

hβ-Actin 
FW 5’ GCAAAGACCTGTACGCCAAC 3’ 

59 

RV 5’AGTACTTGCGCTCAGGAGGA 3’ 

  

 

  

FW – forward; RV - reverse 

 

Figure 3.2 Subretinal 

injection. Its the most 

efficent method of injection 

to the RPE but is also very 

invasive (Koirala, Conley 

and Naash, 2013). 

 

Figure 4.1Figure 3.1 

Subretinal injection. Its 
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3.4. Western blot 

 

3.4.1. D407 protein extraction 

 
To obtain cellular lysates, cells were washed with PBS 1x, and collected with a cell scraper 

in cold RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl 

and 1 mM EDTA) with protease inhibitor cocktail 1x (Sigma-Aldrich, USA). The samples were 

transferred to tubes properly identified, incubated on ice for 20 minutes, centrifugated (13 200 

rpm, 4ºC, 20 min) and the supernatant was collected. The samples were stored at -20ºC. 

 

3.4.2. Protein quantification 

 
The protein quantification was done by the Bradford Assay, using BSA (bovine albumin 

serum, NZYTech, Portugal) as standard and protein assay dye reagent concentrate (BioRad, 

USA). The standard concentrations of BSA (1 mg/mL; 0.5 mg/mL; 0.25 mg/mL; 0.125 mg/mL 

and 0.0625 mg/mL) and the dye reagent were prepared in ultrapure H2O. The cellular lysates 

were diluted in ultrapure H2O (1:5). In a 96-well plate, the cell and standard samples were 

loaded, and the dye reagent was added to each well. The absorbance was read in a Biotrak II 

Plate reader at 590 nm. The concentration of protein was exactly determined by linear 

regression. 

 

3.4.3. Western blot 

 

The samples were diluted in RIPA with 4x Laemmli Sample Buffer (Bio-Rad, USA) and 

heated at 95ºC for 5 minutes for DNA denaturation. Then the samples were loaded on a 12% 

SDS polyacrylamide gels along with 5 µl of a PageRuler Plus Prestained Protein Ladder 2x 

(Fisher Scientific, USA). Electrophoresis was performed at 100-120V in electrophoresis buffer 

(25 mM Tris-HCl, 192 mM Glycine and 0.1% SDS) until the dye reaches the bottom of the gel. 

Proteins were transferred to polyvinylidene fluoride membrane (GE Healthcare, UK), 

previously activated for 20 seconds with methanol, following deionized H2O for 20 seconds and 

cold transfer buffer (0.192 M glycine, 0.025 M Tris pH 8.3, 10% methanol) for 5 minutes, in the 

TRANS-BLOT SD equipment (Bio-Rad, USA) for 20 minutes at 25 V. 

To block non-specific binding sites, the membrane was covered with 5% BSA in TBS-T 

(Tris-buffered saline 0.1% Tween-20) (Sigma-Aldrich, USA) for 72 h at 4ºC, with gently 

agitation. The appropriate primary antibody for the protein of interest was incubated overnight at 

4ºC, with gently agitation, diluted in 5% BSA in TBS-T. 

After washing with TBS-T three times for 5 minutes, the correspondent secondary antibody 

diluted in 5% BSA TBS-T was incubated for 1 hour at room temperature, with gently agitation. 

The dilutions used for each antibody are listed in Table 3.2. β-actin (Sigma-Aldrich, USA, 

1:5000 dilution), incubated for 1h at room temperature, was used as loading control.  The 

membrane was then washed for 5 minutes each with TBS-T and incubated 5 minutes with ECL 
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Prime Western Blotting Detection Reagent (1:1) (GE Healthcare, UK) for visualization in a 

ChemiDocTM imaging System by Bio Rad. 

For stripping, the membrane was washed three times with TBS-T for 5 minutes, incubated 

for 5 minutes with Sodium Hidroxyde (Sigma-Aldrich, USA) 2N, followed by a TBS-T three times 

wash for 5 minutes and incubated with the new primary antibody. 

 

Table 3.2 Primary and secondary antibodies used for immunoblotting. 

Antibody Brand Dilution 

Primary 

Rabbit polyclonal anti-PEDF Santa Cruz Biotechnology, USA 1:500 

Rabbit polyclonal anti-VEGF Abcam, UK 1:1000 

Rabbit polyclonal anti-GLUT1 Santa Cruz Biotechnology, USA 1:3000 

Goat polyclonal anti-Iba1 Abcam, UK 1:500 

Mouse monoclonal anti-β-actin Sigma- AldrichTM, USA 1:5000 

Secondary 

HRP-conjugated goat anti-rabbit IgG Santa Cruz Biotechnology, USA 1:5000 

HRP-conjugated goat anti-mouse IgG Santa Cruz, Biotechnology, USA 1:5000 

HRP-conjugated donkey anti-goat IgG Santa Cruz, Biotechnology, USA 1:5000 

 

3.5.  In vivo model: Ins2Akita mice 

 

There are several animal models to study complications associated with DM, like rodents, 

dogs, pigs or primates, but mouse and rat are the most used because of their small sizes and 

short lifespan (Olivares et al., 2017).  

Since DR is a complex disease with both genetic and environmental influences, diabetes in 

animal models can be pharmacologically induced or by genetic modification. There are different 

methods to induce diabetes: surgical removal of the pancreas, drug administration, high sugar 

diets and for features of DR, direct laser or chemical damage in the eye (Jo et al., 2013; 

Olivares et al., 2017). The genetic modified models include strain-specific, spontaneous and 

genetically edited mutations. There are at least five different genetic mouse models of DR, that 

vary in progression and pathology of disease. 

 In this work, we have used Ins2Akita mouse, a spontaneous model of Type I DM, that 

results from a mutation in the mouse insulin II gene (Ins2), leading to insulin protein misfolding. 

The abnormal protein accumulates in pancreatic β-cells resulting in its death and consequently 

in a decrease in insulin secretion and hyperglycemia. Up to 8 months of age (Cai and McGinnis, 

2016; Jo et al., 2013; Olivares et al., 2017) these mice show several characteristics that provide 

the opportunity to study the pathophysiology of DR and gives it advantage over other animal 

models. First, the mice breed well and are fertile. Second, they have a stable insulin-deficient 

diabetes and can be maintained without an exogenous insulin source. Third, the onset of 

diabetes does not involve immunologic alterations (Barber et al., 2005). In previous studies 

researchers have tested Ins2Akita as a model of early DR. They have shown in these mice a loss 
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of the blood-retinal barrier function, an increase in vascular permeability, and a thickening of the 

vascular basement membrane. Furthermore, the number of leukocyte adherent to the vascular 

wall was significantly elevated and microglia is activated, which confirm that the inflammation 

component of DR is present in these mice (Barber et al., 2005; Gastinger et al., 2008). All these 

features makes this model an excellent tool to study the progression of DR and neuroprotective 

treatments (Robinson et al., 2012). 

 With Ins2Akita we can evaluate the expression of proteins expressed and secreted by all 

the retina cells, unlike the in vitro model used in this work, where we can only analyze proteins 

expressed and secreted by RPE. For example, Iba1 is secreted by microglia cells. The 

presence of these biomarkers in mRNA or protein expression analysis of the mice retina confirm 

the inflammation state, an important characteristic of DR (Ibrahim et al., 2011).  

Previous studies with Ins2Akita mice demonstrated that advanced characteristics of DR, 

such as neovascularization and thinning, only develop at 6 months of age  (Mclenachan et al., 

2013). Using these in vitro and in vivo models, we can study the hallmarks of early and 

advanced stages of DR and perform experiments to find an efficient treatment to this 

complication associated with DM. 

 

3.5.1. Housing 

 
To test the treatment in vivo, were used male C57Bl/6 Ins2Akita (diabetic) heterozygote mice 

as DR model and C57BL/6 age-matched (wild-type) as a control group (The Jackson 

Laboratory, USA). The animals were sacrificed at 8 and 9 months of age. 

Mice were housed in individually ventilated cages, under controlled temperature, with 

continuous access to food and water on a 12 hours dark/light cycle. 

To confirm the diabetic phenotype, the blood glucose levels were measured 2 months after 

birth in a drop of blood from a tail’s cut, with reactive glucose strips (Contour Next, Ascencia 

Diabetes Care, Portugal). Animals exhibiting blood glucose ≥ 250 mg/dl were considered 

diabetic (Barber et al., 2005). 

 

3.5.2. Anesthesia 

 
To anesthetize the animals, Avertin [2,2,2-tribromoethyl alcohol (Sigma-Aldrich, USA) with 

2-methyl-2-butanol (Sigma-Aldrich, USA)] was dissolved in deionized water, heated up to 30ºC 

using a magnetic stirrer. The mixture was then filtered/sterilized through 0.2-micro filter. The 

preparation was stored at 4ºC and protected from light for up to 1 week. 

 

3.5.3. Treatment with Pyr-sulf in C57BL/Ins2Akita mice 

 

All the methods with animals were performed according to the ARVO Statement for the 

Use of Animals in Ophthalmic and Vision Research.  
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The animals were anesthetized with Avertin (0.5 ml/25 g) and the cornea was superficially 

anesthetized with Anestocil (Edol, Portugal) as an eye drop. The pupil was dilated with 

Cicloplegicedol (Edol, Portugal). The immobilized animal was subretinal injected (Figure 3.2), 

with 2 µl of Pyr-sulf (6.5 µM) in the left eye, using a Hamilton Syr 10 µl 701 RN injector. The 

non-injected eye was used as control. After the injection gentamicin and dexamethasone were 

applied in the injected eye to reduce the risk of infection. 

 

 

 

 

 

 

 

 

3.5.4. Retina extraction 

 
Two weeks after Pyr-sulf injection, the animals are humanely sacrificed by cervical 

dislocation and the eyes removed. The retina was dissected and homogenized in ice-cold RIPA 

buffer using a motor pestle. After 20 minutes in ice the extracts were centrifugated (20 minutes, 

4ºC, 13 200 rpm). The supernatant was collected and quantified by Braford method, as 

previously described in section 3.4.2, with a dilution of 1:10, for Western blot. The samples were 

stored at -80ºC. 

 

3.6. Statistical analysis 

 

Arithmetic means are given with standard error of the mean (SEM). Statistical analysis was 

performed using an unpaired t-test and two-way analysis of variance followed by the Sidak’s or 

Tukey’s Multiple Comparison test for multiple comparisons. A value of p < 0.05 was considered 

to be statistically significant. 

  

Figure 3.2 Subretinal injection. Its the most efficent method of injection to the RPE but is also very 

invasive (Koirala, Conley and Naash, 2013). 
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4. Results and discussion 

4.1. Differential effect of Cat-sulf and Pyr-sulf in the viability of RPE cells 

 
To evaluate whether the phenolic metabolites influence the viability of the cells used for the 

in vitro tests, we have performed a MTT assay, an indirect method to evaluate cell viability. MTT 

(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) is a yellow substrate that 

when metabolized by the cells turns to dark blue, a formazan product. This reaction and readout 

is only possible in living cells, so the cell viability is directly proportional to the quantity of 

formazan formed (Berridge, Herst and Tan, 2005). D407 cells were incubated with Cat-sulf 5 

µM or Pyr-sulf 6.5 µM for 24h, as described in section in 3.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 shows significantly differences in cell viability after treatment of D407 cells with 

Cat-sulf, when compared with no treatment conditions. The percentage of cell viability 

decreases to about 75% (red line), suggesting that Cat-sulf affects the metabolic activity of 

D407 cells. The MTT is a reagent that is reduced to blue formazan crystals by mitochondrial 

succinate dehydrogenase (WANG et al., 1996) and the color intensity of the formazan is 

proportional to the number of viable cells (O’Toole et al., 2003). However, some phytochemicals 

may direct interact with MTT or alters the activity of succinate dehydrogenase (Devika and 

Stanely Mainzen Prince, 2008; Hsu et al., 2003).   

Some studies with green tea polyphenols show that these compounds may interfere with 

formazan formation (Bruggisser et al., 2002; Maioli et al., 2009). When compared with other 

viability tests, the MTT was the only one with different results (Wang, Henning and Heber, 

Figure 4.1 Cat-sulf treatment affects D407 cell viability. Effect of Cat-sulf (5 µM, 24 h), on RPE 

cell line viability under high glucose (25 mM glucose) and hypoxia (DFO 100 µM 16 h (A) or DFO 100 µM 

24 h (B)) conditions, assessed by MTT assay. Values are expressed as percentage of control. N=4, *p < 

0.05, ** p < 0.01 and *** p < 0.001 are significantly different from control (5.5 mM glucose, under normoxia 

with no treatment), determined by Sidak’s (A) and Tukey’s (B) multiple comparisons tests. M, Mannitol 

(osmolarity control) and G, Glucose. 

A 
 

B 
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2010). In fact, the results obtained after cell exposure to Cat-sulf may be due to its reaction with 

formazan, which affects cell metabolic activity. To corroborate these results we must perform 

other viability tests, such as Flux Cytometry, the traditional Trypan Blue dye exclusion assay, 

the ATP-based method using luciferin-luciferinase reaction to produce bioluminescence or a 

DNA-based assay kit to produce strong fluorescence of nucleic acid (Chen and Cushion, 1994; 

Jones et al., 2001; Kanemura et al., 2002). 

Contrary to the results obtained with Cat-sulf, the treatment with Pyr-sulf does not influence 

the viability of D407 cells (Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results may suggest that Pyr-sulf does not interfere with formazan formation in the 

same way as Cat-sulf, perhaps because of their chemical structures the compounds are 

metabolized differently by cells. In previous studies, it was shown that Pyr-sulf can be 

metabolized in two different ways. One of them suggests that Pyr-sulf can be metabolized in 

Cat-sulf (Figueira et al., 2017). This transformation can explain the results obtained after cell 

exposure with Pyr-sulf in the MTT assay. Also, the synthetic Pyr-sulf used for this assay is a 

mixture in equal proportions of two isoforms of the compound (Pyr-O-sulf 1 and Pyr-O-sulf 2) 

which, in terms of metabolization, can be more time consuming than that of the Cat-sulf and 

therefore does not affect the cellular viability in 24 h of treatment. MTT reagent itself can be 

cytotoxic and if the metabolization of the compound ends before the period of incubation of 

MTT, then the cells are left with the reagent and their viability may be affected. In the future we 

could test a longer period of incubation with Pyr-sulf and assess cell viability to confirm this 

hypothesis. Also, D407 cells treated with Cat-sulf were, in general, older than the cells exposed 

to Pyr-sulf which presupposes different metabolic activities. Moreover, different results observed 

for both metabolites may result from technical problems, especially during the removal of cell 

Figure 4.2 Pyr-sulf treatment does not affect D407 cell viability. Effect of Pyr-sulf (6.5 µM 24 

h), assessed by MTT assay, on RPE cell line viability under high glucose (25 mM glucose) and hypoxia 

(DFO 100 µM 16 h (A) or DFO 100 µM 24 h (B)) conditions. Values are expressed as percentage of 

control. N=4, *p < 0.05, ** p < 0.01 are significantly different from control (5.5 mM glucose, under normoxia 

with no treatment), determined by Tukey’s multiple comparisons tests. M, Mannitol (osmolarity control) and 

G, Glucose. 

A 
 

B 
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culture medium before dissolving the formazan crystals. This is achieved by aspiration with a 

vacuum bomb, leading to possible removal of crystals and, therefore, inconsistent results 

between independent experiments.  

In addition, we also used the MTT assay to assess the time of cell exposure to hypoxia. To 

perform this study, we perform the MTT assay with two different hypoxia timepoints, 16 h and 

24 h. Our results show that after 24 h of exposure to DFO the cell viability is lower than with 16 

h of hypoxia for both phenolic metabolites (Figure 4.1and Figure 4.2). Therefore, based on 

results previously obtained in our laboratory and according with the literature (Aprelikova et al., 

2004), in the following experiments we decided to incubate the DFO for 16 h and not for 24 h to 

be sure that the metabolic activity of the cells is not compromised due to hypoxia. 

After the optimization of the protocol, we decided to perform the in vitro studies only with 

Pyr-sulf 6.5 µM and to induce hypoxia for 16 h. The cells were cultured as previously described 

(section 3.1.1) and after 24 h of treatment, the protein or RNA was extracted for Western blot or 

RT-qPCR, respectively. 

 

4.2. Treatment with Pyr-sulf alters the expression of pro- and anti-angiogenic 

factors 

 

As previously reported, in DR there is an imbalance between pro- and anti-angiogenic 

proteins, such as PEDF and VEGF. The levels of the pro-angiogenic factor (VEGF) are 

abnormally increased and the anti-angiogenic protein (PEDF) levels decreased (Farjo and Ma, 

2010).  

To evaluate if the treatment with Pyr-sulf has beneficial effects in balancing these protein 

levels, we have developed an in vitro system to simulate DR in RPE cells, where D407 cells 

were cultured in low glucose (5.5 mM D-Glucose) followed by high glucose (25 mM D-Glucose) 

conditions and in normoxia and hypoxia (DFO 100 µM 16 h). The cells were incubated with Pyr-

sulf for 24 h in free-serum medium. To analyze protein levels and mRNA expression we perform 

a Western blot or RT-qPCR, respectively, and the results are represented below. 

Figure 4.3 represents the levels of gene (A) and protein (B) expression of PEDF with and 

without treatment with Pyr-sulf for 24 h.  
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Regarding the gene expression of PEDF, conditions without treatment tend to express less 

PEDF in hypoxia, compared with normoxia (Figure 4.3 A), especially when cells are in high 

glucose medium. This is in accordance with what is described for DR, with oxygen deprivation  

leading to PEDF downregulation (Cheung, Mitchell and Wong, 2010; Fong et al., 2004). After 

treatment with Pyr-sulf the PEDF relative expression increases in hypoxic conditions compared 

with those without treatment, which suggest that this phenolic metabolite influences PEDF 

expression at mRNA levels. Although not statistically significant, we observe an increase in 

mRNA relative expression of PEDF when treated cells are in high glucose (25 mM G) under 

hypoxia, compared with the high glucose (25 mM G) in normoxia condition. These results may 

suggest a beneficial effect of treatment with Pyr-sulf to re-establish the normal regulation of this 

anti-angiogenic factor. 

In Figure 4.3 B, we observe that the levels of PEDF protein decrease when conditions 

without Pyr-sulf treatment are in hypoxia, which is accordance with the literature (Fong et al., 

2004) and with the results obtained for mRNA (Figure 4.3 A). For the same untreated cells there 

is a significant decrease in PEDF protein levels when cells are in high glucose (25 mM G) under 

hypoxia compared with untreated cells in low glucose (5.5 mM G) under hypoxia. These results 

are in accordance with the physiological situation (Araújo, Santos and Silva, 2018; Fong et al., 

2004), and corroborates previous work from our lab (Calado et al., 2016), where the levels of 

PEDF are described to be reduced with the increase of glucose levels. However, after treatment 

with Pyr-sulf the PEDF protein levels decrease in all conditions compared with no treatment 

conditions. Nevertheless, treated cells in high glucose (25 mM G) under hypoxia shows a slight 

increase in PEDF levels when compared with the same cells in normoxia or low glucose (5.5 

mM G) treated cells under hypoxia. 

Figure 4.3 Pyr-sulf treatment alters PEDF mRNA expression and levels of protein under 

diabetic conditions. (A) RT-qPCR analysis of PEDF mRNA expression in D407 cells after Pyr-sulf 

treatment (6.5 µM 24 h). β-Actin was used as housekeeping control, N=4. (B) Western blot analysis of 

PEDF protein levels in D407 cells after treatment with Pyr-sulf (6.5 µM 24 h). Quantitative data normalized 

by the intensity of β-Actin. N=5. *p < 0.05 is significantly different from 5.5 mM glucose under hypoxia; n.s 

indicates no significative differences between conditions, determined by Tukey’s multiple comparisons 

tests. M, Mannitol (osmolarity control) and G, Glucose. 

A 
 

B 
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PEDF is a protein secreted by RPE cells. In order to complement the obtained results with 

cell lysates, we can perform studies to evaluate the expression of the protein secreted in the cell 

medium. There are some problems related with analyzing secreted proteins, for example low 

concentration of protein in the media, the contamination of these proteins with proteins released 

by cell lysis and contamination with proteins from the serum (FBS) (Chevallet et al., 2007). To 

avoid these issues, we can perform an ELISA (Enzyme-Linked Immunosorbent Assay) to 

analyse the levels of secreted PEDF. This assay is a specific technique based on antigen-

antibody interaction. In a 96-well plate the antigens present in the media sample are attached to 

the surface. Then we apply a specific antibody for PEDF, over the surface to bind to the 

antigen. The primary antibody can be detected by a secondary antibody linked to an enzyme, 

followed by a substrate to produce a visible signal. Between each step, the plate is washed to 

remove non-specific proteins and antibodies (Leng et al., 2008). Another technique we can use 

is Immunoprecipitation. An antibody is also immobilized to a beaded support (agarose or 

magnetic beads) and then incubated with the sample containing the target protein. The target 

antigen will bind specifically to the specific antibody. This complex lysate is isolated from the 

support and analyzed by Western blot or other quantitative assay methods (Kaboord and Perr, 

2008). 

Figure 4.4 represents the levels of gene (A) and protein (B) expression of VEGF with and 

without treatment with Pyr-sulf for 24 h.  
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Figure 4.4 Pyr-sulf treatment decreases pro-angiogenic protein expression under 

diabetic environment. (A) RT-qPCR analysis of VEGF mRNA expression in D407 cells after Pyr-sulf 

treatment (6.5 µM 24 h). β-Actin was used as housekeeping control, N=4. (B) Western blot analysis of 

VEGF protein levels in D407 cells after the treatment with Pyr-sulf (6.5 µM 24 h). Quantitative data 

normalized by the intensity of β-Actin. N=5. ***p < 0.001 are significantly different from 25 mM glucose 

under normoxia or hypoxia with no treatment, determined by Tukey’s multiple comparisons tests. M, 

Mannitol (osmolarity control) and G, Glucose. 
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It is well known that mRNA expression of VEGF increase when cells are under hypoxia 

(Cheung, Mitchell and Wong, 2010; Simão et al., 2016), which is what we observe in the no 

treatment conditions (Figure 4.4 A). This increase is expected in hypoxia because cells need an 

increased blood supply, and VEGF promotes the formation of new blood vessels to guarantee 

cell survival. However, the decrease in VEGF mRNA in non-treated cells in high glucose (25 

mM G) under hypoxia, compared with cells in low glucose (5.5 mM G) under hypoxia, is 

opposite what we were expecting (Figure 4.4 A). Support to our results can be found in the work 

of Benjamin and co-workers. (Benjamin, 2001), in which when cells are in high glucose medium 

a higher increase in VEGF mRNA expression is expected, because this factor controls the 

glucose passage to the retina (Benjamin, 2001). We hypothesized that there are at least two 

possible explanations for the decrease of VEGF: firstly, VEGF in hypoxia is secreted by RPE to 

the supernatant (Bian, Elner and Elner, 2007), and we are analyzing cell lysates and not the 

medium, explaining the decrease in VEGF expression. Secondly, as described in previous 

studies (Takenaka et al., 2005), PEDF may block the VEGF production, which corroborates the 

decrease in VEGF mRNA expression in diabetic conditions . 

Unfortunately, treatment with Pyr-sulf does not alter the expression profile when cells are in 

high glucose medium, which shows that Pyr-sulf has no influence in decreasing mRNA 

expression of VEGF in a pathological condition. On the other hand, when cells are in low 

glucose (5.5 mM G) under hypoxia, treatment with Pyr-sulf tends to decrease the mRNA 

expression of VEGF compared with non-treated cells in the same conditions. This result opens 

an opportunity to explore the Pyr-sulf potential as preventive therapeutic agent. Pyr-sulf may 

help to prevent new blood vessels formation and other hallmarks of DR, by avoiding pro-

angiogenic protein mRNA overexpression. 

Similarly, to what we did with PEDF, we have analyzed VEGF protein expression (Figure 

4.4 B). In cells without treatment we observe a slight increase in VEGF levels in low glucose 

(5.5 mM G) when comparing hypoxia with normoxia. In untreated cells cultured in high glucose 

(25 mM G) there is a slight increase in VEGF protein compared with the cells cultured in low 

glucose (5.5 mM G) medium under normoxia, despite the decrease at mRNA levels. In fact, it 

was already described that high glucose affects VEGF expression at protein level by Chang et 

al., 2018. Also, these results are similar to those previously obtained in our lab. Overall, the 

levels of VEGF significantly decrease after the treatment with Pyr-sulf. In diabetic conditions 

(25mM G under hypoxia) the levels of this pro-angiogenic protein are significantly lower after 

treatment when compared with the same condition without treatment, showing a beneficial 

effect of Pyr-sulf at protein level. There is also a significant decrease in VEGF levels in high 

glucose (25 mM G) normoxia condition between treated and non-treated cells. Contrary to what 

happen with PEDF, Pyr-sulf seems to influence VEGF expression at pos-translational levels. 
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4.3. Treatment with Pyr-sulf reduces the expression of the glucose 

transporter, GLUT1 

 

Glucose is the only fuel source of retinal cells and it must be adequately delivered to supply 

all needs. GLUT1 is the only glucose transporter in the RPE membrane and has the capacity of 

adapt the transport in different situations (Sone, Deo and Kumagai, 2018). GLUT1 is able to 

increase the glucose transport in oxygen deprivation conditions, showing a direct effect of 

hypoxia in this glucose transporter (Calado et al., 2016). Furthermore, an increase in glucose 

levels leads to a significant increase in GLUT1 protein, showing the effect of glucose 

concentration in GLUT1 protein expression (Calado et al., 2016). Since hypoxia and 

hyperglycemia are hallmarks of DR (Cheung, Mitchell and Wong, 2010), GLUT1 expression is 

directly affected in this disease (Calado et al., 2016).  Knowing that we intend to study the effect 

of Pyr-sulf in GLUT1 protein expression using an in vitro approach with D407 cells. 

Figure 4.5 represents the levels of protein expression of GLUT1 with and without treatment 

with Pyr-sulf. 

 

 

The Western blot analysis show that expression of GLUT1 in cells without treatment in low 

glucose (5.5 mM G) under normoxia had no differences compared to cells under hypoxia. 

However, untreated cells in high glucose condition (25 mM G) under hypoxia shows an 

increased at protein level compared with the cells cultured in normoxia, showing the effect of 

glucose concentration in GLUT1, as well as the effect of oxygen privation. 

 

Figure 4.5 GLUT1 expression is reduced after treatment under diabetic conditions. 

Western blot analysis of GLUT1 protein levels in D407 cells after treatment with Pyr-sulf (6.5 µM 24 

h).Quantitative data normalized by the intensity of β-Actin. N=5. M, Mannitol (osmolarity control) and G, 

Glucose. 
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After treatment with Pyr-sulf, GLUT1 levels decreases in all conditions compared to 

untreated cells. The protein expression is reduced in cells in high glucose (25 mM G) condition 

under hypoxia when compared to those without treatment, suggesting that there is a tendency, 

although not statiscally significant, for treatment with Pyr-sulf decrease the expression of 

GLUT1 protein, highlighting the beneficial effect of Pyr-sulf in controlling the transport of glucose 

in DR. To confirm this hypothesis, we can perform a glucose consumption assay in the future, to 

evaluate the uptake of glucose by RPE cells and if it is affected by treatment with Pyr-sulf. 

 

4.4. Pyr-sulf has anti-inflammatory effect in D407 RPE cells 

 

As previously reported, phenolic metabolites have, among others, the important capacity of 

acting against inflammation. In DR, the hyperglycemia and hypoxia contribute to a chronic 

inflammatory state, since they promote microglia constant activation. In this situation there is an 

increased in cytokines released contributing to retinal degeneration (Ibrahim et al., 2011; Tang 

and Kern, 2011). Having this into account, we intended to study the anti-inflammatory effect of 

Pyr-sulf using an in vitro approach, with D407 RPE cells, by evaluating the relative expression 

of IL-1β and IL-8, pro-inflammatory cytokines.  

Figure 4.6 represents the levels of gene expression of IL-1β with and without treatment 

with Pyr-sulf.  

 

Knowing that IL-1β is released in diabetic environment (Vincent and Mohr, 2007), we 

performed a RT-qPCR to evaluate the effect of Pyr-sulf in the expression of this cytokine. Figure 

4.6 shows that in cells without treatment, there is a slight increase in the mRNA expression of 

IL-1β in hypoxia conditions, suggesting the activation of the inflammatory state in these 

conditions. However, in untreated cells cultured in high glucose (25 mM G) under hypoxia there 

is no significant difference in IL-1β mRNA expression when compared with cells cultured in low 

Figure 4.6 Pyr-sulf treatment does not alter gene expression of IL-1β. RT-qPCR analysis of 

IL-1β mRNA expression in D407 cells after Pyr-sulf treatment (6.5 µM 24 h). β-Actin was used as 

housekeeping control. N=4. M, Mannitol (osmolarity control) and G, Glucose. 

 



Can polyphenols’ metabolites ameliorate the outcome of Diabetic Retinopathy? 
 

29 

glucose (5.5 mM G) under hypoxia, which is opposite what we are expecting. We were 

expecting the levels of IL-1β to be higher in the pathological condition because chronic 

exposure to large amounts of glucose leads to a chronic inflammatory state. According to the 

literature, the peak of inflammation in D407 cells exposed to 25 mM glucose is at 4 hours after 

the induction of hyperglycemia (Busik, Mohr and Grant, 2008). We performed the RT-qPCR 24 

h after inducing hyperglycemia which may suggest that the peak of inflammation had already 

passed, and the cells developed a mechanism of habituation to the glucose concentration in the 

medium. 

After treatment with Pyr-sulf, in cells cultured in low glucose (5.5 mM G) there is no 

difference in mRNA expression of IL-1β when compared with the same untreated condition or 

treated condition under normoxia. However, the treatment increases the expression of IL-1β in 

high glucose (25 mM G) under hypoxia, when compared with treated cells in high glucose (25 

mM) under normoxia, however when compared with the correspondent untreated cells there is 

no difference. These results suggest that Pyr-sulf have no influence in mRNA expression of IL-

1β and treatment is not working.  

Figure 4.7 represents the levels of gene expression of IL-8 with and without treatment with 

Pyr-sulf.  

 

Also IL-8 is released in diabetic environment (Vincent and Mohr, 2007), so we performed a 

RT-qPCR to evaluate the effect of Pyr-sulf in the expression of this cytokine.  Figure 4.7 shows 

that in cells without treatment the mRNA expression of IL-8 increases in hypoxia conditions. 

When untreated cells are in low glucose (5.5 mM G) under hypoxia there is an increase in IL-8 

relative expression when compared with normoxia, suggesting the activation of the 

inflammatory state in hypoxia conditions. However, in untreated cells cultured in high glucose 

(25 mM G) under hypoxia there is a decrease of IL-8 mRNA expression when compared with 

cells cultured in low glucose (5.5 mM G) under hypoxia, which is opposite what we are 

Figure 4.7 Pyr-sulf treatment reduces inflammation in hypoxia condition. RT-qPCR analysis 

of IL-8 mRNA expression in D407 cells after Pyr-sulf treatment (6.5 µM 24 h). β-Actin was used as 

housekeeping control. N=4. M, Mannitol (osmolarity control) and G, Glucose. 
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expecting and is according with what happen in the IL-1β mRNA expression in the same 

conditions, suggesting that the peak of inflammation had already passed. 

After treatment with Pyr-sulf, the mRNA expression of IL-8 decrease in hypoxia conditions. 

For cells in low glucose (5.5 mM G) under hypoxia, the IL-8 relative expression is lower when 

compared with cells without treatment in low glucose (5.5 mM G) under hypoxia. In treated cells 

under high glucose (25 mM G) and hypoxia, the IL-8 expression is also lower when compared 

with cells without treatment under high glucose (25 mM G) and hypoxia. These results suggest 

that treatment with Pyr-sulf reduces the expression of IL-8 in hypoxia conditions and 

consequently the inflammation. 

As described in literature (Muto et al., 2015), the expression of IL-8 can be induced by IL-

1β. Our results show no differences in IL-1β mRNA expression after the onset of hyperglycemia 

and hypoxia. After the treatment, the expression of IL-1β increases in Mannitol under hypoxia, 

which is not expected, suggesting some problems with the protocol and consequently no effect 

of Pyr-sulf in this situation However there are differences in IL-8 expression. These results 

suggest a different regulation level of IL-8 where Pyr-sulf has effect.  

 

4.5. Treatment with Pyr-sulf decreases inflammation in Ins2Akita 8 months-old 

mice 

 
Similarly, to the in vitro experiments, we intended to evaluate the effects of the treatment 

with Pyr-sulf in the protein levels of our target molecules in an in vivo model of DR. For that 

purpose we used Ins2Akita diabetic mice model and/or non-diabetic (WT) mice with 8 and 9 

months-old, when DR features are established (Barber et al., 2005). In both timepoints we have 

analyzed the expression of pro- and anti-angiogenic proteins, VEGF and PEDF respectively, the 

expression of the glucose transporter, GLUT1 and the expression of an inflammatory marker, 

Iba1 by Western blot. The retina extraction was performed two weeks after the Pyr-sulf 

subretinal injection as described in section 3.5.4.  

Figure 4.8 represents the levels of protein expression of PEDF and VEGF (A), GLUT1 (B) 

and Iba1 (C) two weeks after the Pyr-sulf subretinal injection. 

Because we were not able to perform the experiments in age-matched non-diabetic mice, 

we will only describe our observations regarding Ins2Akita mice, comparing the non-injected 

eye with the treated eye. Treatment with Pyr-sulf does not affect the expression of PEDF and 

VEGF proteins in diabetic mice (Figure 4.8 A) when compared with non-injected conditions. The 

PEDF results are consistent with those obtained with PEDF expression in D407 RPE cells 

(Figure 4.3 B), contrary to what happens with VEGF expression in vitro (Figure 4.4 B). In the 

same manner, the treatment with Pyr-sulf does not seem to affect GLUT1 protein expression 

(Figure 4.8 B).  

These results need further validation due to the low number of experiment animals. Also, at 

this age, the retina of these animals is at an advanced stage of DR, affecting the expression of 

our proteins of interest (PEDF, VEGF and GLUT1). 
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Despite the results obtained for other proteins, Figure 4.8 C shows a decrease in the levels 

of Iba1 after treatment with Pyr-sulf, although not statiscally significant, probably due to the low 

number of experimental animals. Iba1 is a pro-inflammatory protein released when the microglia 

is activated. Being a marker for inflammation, the decrease in its protein levels after Pyr-sulf 

injection highlights the anti-inflammatory efficacy of this phenolic metabolite, already indicated 

by the in vitro studies for IL-8, another inflammation marker (Figure 4.7). As mentioned at the 

beginning of this section, these results need the support of the analysis of age-match non-

diabetic mice in the same conditions. Otherwise we cannot draw any conclusions. 

  

Figure 4.8 PEDF, VEGF, GLUT1 and Iba1 expression in 8 months Ins2Akita, 2 weeks after 

Pyr-sulf injection. (A) Represents the quantitative data normalized to the intensity of β-Actin of PEDF 

and VEGF, for Ins2Akita mouse with 8 months. N=2. (B) Represents GLUT1 quantitative data normalized to 

the intensity of β-Actin of GLUT1, for Ins2Akita mouse with 8 months. N=2. (C) Represents Iba1 quantitative 

data normalized to the intensity of β-Actin of Iba1, for Ins2Akita mouse with 8 months. N=2. (D) 

Representative Western blot images of PEDF, VEGF, GLUT1 and Iba1 for non-injected and injected 

conditions (Pyr-sulf, 6.5 µM). 
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4.6. Treatment with Pyr-sulf has no effect in Ins2Akita and in age-matched 

wild-type 9 months-old mice 

 

To confirm our in vitro observations, we performed some preliminary in vivo studies with 

diabetic mice models Ins2Akita and with age-matched wild-type mice 9 months-old. We have 

analyzed PEDF, VEGF, GLUT1 and Iba1 proteins expression by Western blot. 

Figure 4.9 represents the levels of protein expression of PEDF and VEGF (A), GLUT1 (B) 

and Iba1 (C) two weeks after the Pyr-sulf subretinal injection. 
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Figure 4.9 PEDF, VEGF, GLUT1 and Iba1  expression in 9 months Ins2Akita and wild type 

mouse retina, 2 weeks after Pyr-sulf injection. (A)  Represents PEDF and VEGF quantitative 

data normalized to the intensity of β-Actin of PEDF and VEGF, for wild-type and Ins2Akita mouse with 9 

months. N=2 to 3. (B) Represents GLUT1 quantitative data normalized to the intensity of β-Actin of 

GLUT1, for wild-type and Ins2Akita mouse with 9 months. N=2 to 3. (C) Represents Iba1 quantitative data 

normalized to the intensity of β-Actin of Iba1, for wild-type and Ins2Akita mouse with 9 months. N=2 to 3. 

(D) Representative Western blot images of PEDF, VEGF, GLUT1 and Iba1 of non-injected and injected 

conditions, for wild-type and Ins2Akita mice. 
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Figure 4.9 A, shows no differences in PEDF and VEGF protein expression when treated 

eyes of Ins2Akita mice are compared with the non-injected eye and age-match wild-type animals. 

The results with PEDF are according to those obtain for PEDF protein expression in vitro 

(Figure 4.3 B) and with those obtain for Ins2Akita 8 months mice (Figure 4.8 A).  Also, the VEGF 

expression in Ins2Akita mice at this timepoint is similar to what we observe in 8-months old mice  

( Figure 4.8 A). The results in vivo after the treatment are according with those obtained in vitro 

(Figure 4.3 B and Figure 4.4 B). The treatment with Pyr-sulf does not seem to increase PEDF 

expression, but we could further increase the number of animals tested to corroborate the 

results. In this way, we could later explore the effect of the treatment on VEGF expression in 

vivo, increasing the number of injections, or inject Pyr-sulf at different timepoints. In this study 

we are analyzing the expression of PEDF and VEGF in the retina, however these proteins are 

secreted by RPE. Additionally, we can analyze its expression in the mice RPE cells to elucidate 

the results obtained. In fact, other studies in our lab show differences in VEGF and PEDF 

expression in the retina and in the RPE. For example, in the retina of 12 months mice the 

results shown an increase in VEGF levels, however in the RPE this increase was at 9- and 12-

months mice (data not shown). 

Treatment with Pyr-sulf increases GLUT1 expression in diabetic mice when compared 

with non-injected, however there is no difference when compared with age-matched wild-type 

mice. These results show that Pyr-sulf injection does not affect GLUT1 protein expression 

(Figure 4.9 B). Although these results are supported by the literature (Calado et al., 2016), they 

are in according with the results obtained with D407 RPE cells for GLUT1 expression (Figure 

4.5) and we can conclude that Pyr-sulf treatment is not effective in decreasing GLUT1 protein 

expression. 

In Figure 4.9 C the expression of Iba1 decrease in wild-type mice after Pyr-sulf 

treatment which is according with Pyr-sulf anti-inflammatory properties. However, in diabetic 

mice the expression of Iba1 tends to increase, which does not corroborate what we have 

observed for 8-month-old animals.  This may be related to the low number of animals analyzed 

and the natural variability among animals. Beside this, the injection is an invasive procedure 

that causes a natural inflammatory response in the animals, which certainly influences the 

results obtained. To further corroborate this, we can establish a control (sham-injected animal) 

for the subretinal injection. In this case we perform the injection with PBS 1x instead of the 

phenolic metabolite and normalize the results with this condition to eliminate probable 

interferences of the natural inflammation. 
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5. General discussion  

Diabetic Retinopathy is a blood-retinal barrier disorder that affects 90% of type 1 diabetes 

patients, and it is the leading cause of blindness worldwide (Cheung, Mitchell and Wong, 2010; 

Garg and Davis, 2009). This chronic and progressive disease is mostly characterized by 

ischemia, microaneurysms, hemorrhages, neovascularization, increased vascular permeability 

and, as for all chronic diseases, inflammation. It is well known that hyperglycemia and hypoxia 

are the main keys for the development of DR, however the pathophysiological mechanism 

behind this disorder remains unclear (Cheung, Mitchell and Wong, 2010). In DR, the ischemia 

leads to oxygen privation and to satisfy tissue metabolic requirements signaling pathways are 

activated to induce new blood vessels formation in the retina. During this process, pro-

angiogenic factor, VEGF, is overexpressed while the anti-angiogenic protein, PEDF, is 

downregulated. This imbalance between pro- and anti-angiogenic proteins is responsible for 

neovascularization in the eye and consequently vision loss (Farjo and Ma, 2010). In addition to 

VEGF and PEDF, the only glucose transporter (GLUT1) in RPE cells is also affected in DR (Ban 

and Rizzolo, 2000; Sone, Deo and Kumagai, 2018). 

Among the last decades, polyphenols have been widely studied due to its incredible 

properties. Has been identified more than 8000 polyphenolic compounds in plants. It is known 

that berries are a great source of polyphenols which makes them a good alternative for healthy 

diet and to prevent the progression of several diseases (Manach et al., 2004; Rio, Del et al., 

2013). From a study with berry fruits, some researchers shown that Cat-sulf and Pyr-Sulf are 

the most abundant phenolic metabolites in the urine and plasma of some volunteers (Pimpão et 

al., 2014, 2015). Thus, based on these previously results we have tested the effect of these 

metabolites in DR hallmarks, like angiogenesis and inflammation. 

To understand the effect of polyphenols in DR conditions, we perform in vitro studies using 

D407 cells, a spontaneously transformed RPE cell line derived from a primary culture of human 

RPE cells (Davis et al., 1995).  D407 cells were exposed to different concentrations of glucose, 

5.5 mM D-Glucose or 25 mM D-Glucose to mimic physiological or pathological diabetic 

conditions, respectively. Furthermore, the cells were also exposed to DFO 100 µM to induce 

hypoxia and simulate retinal ischemia, characteristic of DR. Also, we tested the effect of 

phenolic metabolites in a mice model of advanced DR, using 8- and 9-month old Ins2Akita mice, 

by subretinal injection.  

Before studying the effects of polyphenol treatment on RPE cells we wanted to test 

whether these compounds had influence on the metabolic activity of D407 cells and optimize 

the time of hypoxia that does not induce cell death. 

Use of the MTT tetrazolium compound to measure the number of viable cells in culture was 

first described by Mosmann in 1983 (Mosmann, 1983). We perform this assay to evaluate the 

effect of the phenolic metabolites in D407 cell viability. The treatment with Cat-sulf show 

significantly differences in cell viability, 24 h after the treatment (Figure 4.1), suggesting that 

Cat-sulf affects the metabolic activity of D407 cells.  
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Despite the results obtain with Cat-sulf, the treatment with Pyr-sulf does not influence the 

D407 cell viability (Figure 4.2). These results may suggest that Pyr-sulf is metabolized 

differently by cells, perhaps because of their different chemical structures. Based on previous 

studies we conclude that the metabolization of Pyr is more time consuming than that of the Cat-

sulf, because Pyr-sulf has two different ways of metabolization, in one of them it is metabolized 

in Cat-sulf (Figueira et al., 2017). We hypothesized that an increase in the time of exposure of 

the treatment to 48 h will show a different outcome. In fact, previous studies in our laboratory in 

which we incubated Cat-sulf for 48 h (data not shown) allowed us to conclude that cell viability 

is significantly affected. 

MTT assay was also performed to assess the time of cell exposure to hypoxia. We tested 

two different hypoxia timepoints, and our results show that after 24 h of hypoxia the cell viability 

is lower than with 16 h of hypoxia (Figure 4.1and Figure 4.2 B).  In order to verify if hypoxia is 

being correctly induced with DFO, we could evaluate the expression of Hypoxia-Inducible 

Factor 1-alpha (HIF1-α). This factor is encoded by the HIF1-α gene and plays an important role 

in response to systemic oxygen levels.  HIF1-α is responsible for the transcription of several 

genes including the important VEGF, to induce angiogenesis in oxygen privation situations - so 

if VEGF is overexpressed, HIF1-α will also be (Kallio et al., 1997; Lee et al., 2006). In addition to 

allowing us to confirm hypoxia induction, analyzing the expression of HIF1-α will also allow us to 

normalize our results against these conditions, to discard the influence of hypoxia on the 

expression of the proteins under study. 

Taking the previous results into account we decided to focus our attention and further 

experiments only in one phenolic metabolite, Pyr-sulf, and to induce hypoxia for 16 hours to be 

sure that the metabolic activity of the cells is not compromised. 

After cell culture in the conditions previously described, we have performed the quantitative 

analysis of protein and mRNA levels of the gene of interest by Western blot and RT-qPCR, 

respectively. We analyzed the mRNA expression and protein levels to evaluate the effect of 

Pyr-sulf in restoring the balance between VEGF and PEDF. Our results for mRNA expression of 

PEDF (Figure 4.3 A), although not statistically significant, showed an increase in mRNA relative 

expression of PEDF when treated cells are in diabetic conditions, compared with the high 

glucose condition in normoxia treated cells. These results showed a promising beneficial effect 

of treatment with Pyr-sulf in re-establishing the normal regulation of this anti-angiogenic factor. 

But when assessing the levels of PEDF at a post-translational level (Figure 4.3 B) we only see a 

correlation with mRNA results in cells without treatment under hypoxia, where the levels of 

protein are significantly lower in high glucose than in low glucose. These results confirm once 

more that PEDF is downregulated in high glucose and hypoxia situations. Despite this, and 

unlike what happens with the mRNA levels, the treatment with Pyr-sulf in general decreases 

PEDF expression. Further studies will be needed to confirm the effect of Pyr-sulf treatment on 

PEDF expression, namely studies on the secretory function of RPE, since PEDF is one of the 

most important secreted proteins of this retinal cell layer. 
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It was previously shown that VEGF levels are increased in diabetic conditions (Cheung, 

Mitchell and Wong, 2010). Our results show that hypoxia induces an increase in VEGF mRNA 

in cells without treatment, like we were expecting (Figure 4.4 A). However, there is a decrease 

in VEGF mRNA in cells in high glucose condition under hypoxia, compared with cells in low 

glucose under hypoxia. In high glucose medium we were expecting to have a stronger increase 

in VEGF mRNA expression, because this factor controls the glucose passage to the retina. 

After the treatment with Pyr-sulf there was no differences in VEGF mRNA expression, 

suggesting that Pyr-sulf has no influence at mRNA level. 

When we analyze VEGF protein expression (Figure 4.4 B) there is a slight increase in 

VEGF levels in low glucose when comparing hypoxia with normoxia in cells without treatment, 

which is in accordance with the RT-qPCR results. Despite the decrease at mRNA levels, at 

protein level there is a slight increase in VEGF protein in the cells cultured in high glucose 

compared with the cells cultured in low glucose medium under hypoxia. This may suggest that 

high glucose affects VEGF expression at protein level. After Pyr-sulf treatment, there is 

significant differences in protein expression. The VEGF expression not only decreases in 

diabetic conditions when compared with same condition without treatment, but also decreases 

in cells under normoxia with high glucose concentration. Contrary to what happen with PEDF, 

Pyr-sulf seems to influence VEGF expression at pos-translational levels, with a potential effect 

on the molecular level of neovascularization. 

To evaluate the effect of Pyr-sulf in expression of GLUT1 we performed a Western blot 

analysis (Figure 4.5). Our results shown an increase in GLUT1 protein in high glucose under 

hypoxia, in cells without treatment. This result is in accordance with previously work in our lab, 

where it was shown that hypoxia induces an increase in GLUT1 protein levels in high glucose 

medium. This suggest that, diabetic environment contributes to increase GLUT1 protein levels 

due to the high concentration of glucose in the medium and oxygen privation. After treatment 

with Pyr-sulf, GLUT1 levels decreases in all conditions compared to untreated cells, suggesting 

that there is a tendency, although not statiscally significant, for treatment with Pyr-sulf decrease 

the expression of GLUT1 protein, highlighting the beneficial effect of Pyr-sulf in controlling the 

transport of glucose in DR. One easy experiment we could do to confirm these results is to 

assess glucose consumption of RPE cells and compare treated and no treated cells with the 

phenolic metabolite. 

 Inflammation is a hallmark of DR, since hyperglycemia and hypoxia lead to microglia 

activation and release of pro-inflammatory molecules. IL-1β and IL-8 are both cytokines 

secreted cells in a chronic inflammatory state, functioning as an inflammation marker. Knowing 

that IL-1β and IL-8 are released in diabetic environment (Vincent and Mohr, 2007), we have 

performed a RT-qPCR to evaluate the effect of Pyr-sulf in the expression of these cytokines. 

Our results showed no differences in IL-1β mRNA levels in cells without treatment under 

hypoxia but also showed an increase in IL-8 mRNA expression in the same conditions. 

However, in untreated cells in high glucose under hypoxia the expression of these cytokines is 

not higher when compared with low glucose under hypoxia.  We expected the levels of IL-1β 
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and IL-8 to be higher in high glucose (Figure 4.6 and Figure 4.7) because chronic exposure to 

large amounts of glucose leads to a chronic inflammatory state. According to the literature, the 

peak of inflammation in D407 cells exposed to 25 mM glucose is at 4 hours after the induction 

of hyperglycemia (Busik, Mohr and Grant, 2008). We performed the RT-qPCR 24 h after 

inducing hyperglycemia which may suggest that the peak of inflammation had already passed, 

and the cells developed a mechanism of habituation to the glucose concentration in the 

medium.  

 After treatment with Pyr-sulf, although we did not see differences in IL-1β (Figure 4.6) 

expression, IL-8 mRNA expression decreases in cells under hypoxia conditions compared with 

cells without treatment in low glucose under hypoxia (Figure 4.7). This result shows the capacity 

of Pyr-sulf in reducing inflammatory states in hypoxia.  

The results obtained for the expression of IL-1β (Figure 4.6) are not according with what 

we are expecting, which may indicate that inflammation is not being induced properly. To 

corroborate the results, we can stimulate cells with LPS (lipopolyssacharide), the principle 

component of the membrane of gram-negative bacteria’s that induces a response by the 

immune system, and then evaluate the expression of inflammatory markers and the effect of 

Pyr-sulf in reduce inflammation. 

To confirm our in vitro observations, we have performed some preliminary in vivo studies 

with diabetic mice models Ins2Akita and with age-matched wild-type mice, at 8 and 9 months-old.  

Treatment with Pyr-sulf does not affect the expression of PEDF and VEGF proteins in 

diabetic mice (Figure 4.8  and Figure 4.9 A) when compared with non-injected condition. The 

PEDF results are consistent with those obtained with PEDF expression in D407 RPE cells 

(Figure 4.3 B), contrary to what happens with VEGF expression in vitro (Figure 4.4 B). Our 

results for the expression of GLUT1 protein seems to show no differences in GLUT1 expression 

after the injection with Pyr-sulf in both 8 and 9 months Ins2Akita, showing that the treatment does 

not affect GLUT1 expression, which is also associated with the severe state of the disease 

installed in these ages. At this age, the animal’s retina is aged, which can explain the results 

obtained for PEDF, VEGF and GLUT1 expression in the retina of Ins2Akita diabetic mice (Kakoki 

et al., 2006). Moreover, the results we have obtained for the expression of GLUT1 corroborates 

previous studies from our lab for RPE cells and Ins2Akita mice (Calado et al., 2016). 

However, in 8 months Ins2Akita mice the treatment with Pyr-sulf decreases Iba1 protein 

levels (Figure 4.8 C). Iba1 is a pro-inflammatory protein released when the microglia is 

activated, being a marker for inflammation. After treatment, there is a reduction in Iba1 levels 

suggesting the anti-inflammatory efficacy of Pyr-sulf. In 9-month mice this reduction is only 

observed in wild-type aged-matched (Figure 4.9 C). These results together with our in vitro 

findings, and with work of others  (Pandey e Rizvi, 2014) confirm the anti-inflammatory effect of 

polyphenols, such as Pyr-sulf. Since inflammation is a hallmark in DR, Pyr-sulf can have 

beneficial effects in preventing this disease. 

Overall, the results observed in the in vivo model may be explained by the low number of 

animals analyzed so far. However, since inflammation arises in early stages of RD it would be 
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important to study the expression of the proteins involved in the pathophysiology of the disease 

in animals aged less than 8 months. 

Since inflammation is a hallmark of all chronic diseases and our results confirm the great 

anti-inflammatory potential of Pyr-sulf, we can explore more this feature. In this work we only 

analyzed two different inflammatory biomarkers, however there are more to be explored. In the 

future, we can analyze the effect of Pyr-sulf in the expression of other inflammation markers 

known being increased in DR such as tumor necrosis factor alpha (TNF-α). TNF-α is an 

important cytokine produced by activated macrophages, neurons and other cell types 

(Demircan et al., 2006). This protein is activated even in low grade chronic inflammation, its first 

function is to regulate the immune cells and induce inflammation. It is proved that in 

hyperglycemia TNF-α induce insulin resistance (Feinstein et al., 1993), so study the effects of 

anti-inflammatory compounds, such as Pyr-sulf is imperative to improve complications 

associated with diabetes. Also interleukin 6 is known to be involved in chronic inflammation 

processes in disease (Tang and Kern, 2011). Interleukin 6 is a pleiotropic protein released by 

macrophages and T-cells in the local of the injury together with IL-1β and TNF-α (Tanaka, 

Narazaki and Kishimoto, 2014). To confirm the anti-inflammatory effect of Pyr-sulf treatment we 

can also evaluate the expression of anti-inflammatory biomarkers, such as interleukyne-10, 

which in treated conditions may be increased. Interleukin 10 downregulate the expression of 

pro-inflammatory cytokines such as IL-1β (Yan and Mao, 2014). Another important pathway is 

the NF-kβ signaling pathway. This pathway is considered a proinflammatory signaling pathway 

by activation of several proinflammatory molecules, such as, IL-8 (Lawrence, 2009; Muto et al., 

2015), so it could be a therapeutic target to reduce inflammation by Pyr-sulf treatment. 

 Furthermore, Glial Fibrillary Acidic Protein (GFAP) produced by astrocytes is responsible 

for the regeneration of glial cells after injury, being essential in cell support (Middeldorp and Hol, 

2011). However, in chronic situations its production can be deregulated, so studying the effect 

of Pyr-sulf in GFAP expression can elucidate the great potential of this metabolite. Previous 

work in our lab, shown a decrease in GFAP expression in diabetic mice with 6 months-old. In 

the future, we can test the effect of Pyr-sulf in increasing GFAP expression and consequently 

ameliorate the astrocytes function to support cells in injury. 

The accumulation of ROS, by disturbance in the normal redox state of cells and the failure 

of the antioxidant defense system are the main characteristics of oxidative stress, also an 

important hallmark of DR. The production of ROS triggers pro-inflammatory responses that may 

be involved in chronic diseases like diabetes, and development of therapies that modulate their 

production can be an interesting approach (Obrenovich et al., 2011; Rodrigo, Miranda and 

Vergara, 2011). In normal conditions, endogenous antioxidants like enzymes are responsible for 

reducing these species, however polyphenols can be an exogenous source of anti-oxidants and 

act against oxidative stress (Macedo et al., 2015; Obrenovich et al., 2011; Rodrigo, Miranda e 

Vergara, 2011). In future works we are planning to evaluate the effect of Pyr-sulf in oxidative 

stress. There is several techniques that allows to analyze the formation of this species. We can 

use for example specific antibodies to evaluate the changes in specific proteins caused by 
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ROS, or specific tag and then immunodetection, among others. However, the experiences have 

to be clearly planned because redox signaling is an essential part of normal homeostasis, so 

any therapeutic design must be constructed to distinguish pathological redox from normal. 

Based on these facts, and since oxidative stress is a hallmark of DR, study the effect of Pyr-sulf 

in decreasing ROS may give an important advantage in developing therapies to ameliorate the 

outcomes of DR.  
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6. Conclusion 

This work allows to confirm the decrease in PEDF levels in RPE cells under diabetic 

conditions and, although not statiscally significant, we observed an increased in PEDF mRNA 

expression after the treatment with Pyr-sulf. However, treatment with Pyr-sulf has no effect in 

PEDF protein expression, suggesting that Pyr-sulf only affects PEDF at transcriptional levels. 

We also confirmed that high glucose increases VEGF levels at protein manner, as we were 

expecting. Unlike to what happens with PEDF, treatment with Pyr-sulf influences VEGF protein 

expression, suggesting that Pyr-sulf affects VEGF at pos-translational levels. Regarding 

glucose intake, although not statistically significant, treatment with Pyr-sulf appears to decrease 

GLUT1 levels, evidencing the beneficial potential of this polyphenol for controlling the 

deleterious glucose intake levels. Despite results with D407 cells, in vivo treatment with Pyr-sulf 

appears to have no influence on studied proteins, which can be associated with the advanced 

state of the disease and because at this stage inflammation is no longer the main cause of 

physiological changes. 

However, the great anti-inflammatory potential of Pyr-sulf is shown both in in vivo and in 

vitro. The IL-8 mRNA expression decreases under hypoxia conditions in RPE cells and in 

diabetic mice, Iba1 protein expression also decreases after the treatment, suggesting the 

beneficial effect of Pyr-sulf in reducing inflammation. 

Further studies will focus on the effect of Pyr-sulf on ROS and on another inflammation 

markers as well as testing another incubating time of polyphenols in cells. 

Altogether, our results show the capacity of Pyr-sulf in ameliorating the effects of DR, 

especially the anti-inflammatory potential, adding to the potential of this compound in preventing 

the development of DR. 
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