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Abstract:
The previous literature on general equilibrium has assumed that all traders belong to a single market. However,
traders often participate in more than one exchange to diversify their portfolios. Moreover, there is evidence
that the security listings of exchanges overlap. Our model captures these facts: there are multiple exchanges,
the same security is listed in different exchanges, and traders can belong to more than one exchange. We show
that, in the presence of convex transaction costs, there exists an equilibrium, and that individual demand is a
continuously differentiable function in prices.
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1 Introduction

During the last few decades, the securities exchange industry has experienced an intense demutualization pro-
cess. For example, in 2007 the European Commission enacted the Market in Financial Instruments Directive
(Mifid) to facilitate competition across the region. Similarly, the U.S. has encouraged fragmentation with the
Regulation National Market System (see the 2010 SEC report “Concept Release on Equity Market Structure” ).
The result has been a more interconnected market structure with “overlapping security exchanges”, where traders
participate in several exchanges (multiple memberships), and securities are simultaneously traded in different
platforms (cross-listings).

Several empirical studies have echoed the importance of cross-listings. For instance, Krishnamurti, Sequeira,
and Fangjian (2003) have documented 40 stocks that are simultaneously traded on two Indian stock exchanges.
Treptow (2006) presented evidence that the number of cross-listed securities between the NYSE and the re-
spective primary market is quite significant: Amsterdam (20), Athens (5), Australia (11), Brussels (1), Deutsche
Bourse (16), Helsinki (4), Hong Kong (9), Lisbon (2), London (53), New Zealand (2), Oslo (4), Paris (21), Singa-
pore (1), Stockholm (1), Toronto (58), where the number in parentheses stands for the number of cross-listings.

We incorporate these new features into the standard and simplified setting of general financial equilibrium
models with a single consumption good, several securities, and two dates. Traders are small and take prices as
given.1 At date 1 traders buy and sell securities in their respective exchanges, subject to transaction costs. We
do not explain at all how traders have chosen their exchange memberships. Instead, memberships enter as a
primitive in our formulation.2 At date 2 there are several states of nature where real securities pay exogenous
returns.

Multiple memberships and cross-listings introduce two new fundamental challenges in the classic two-
period financial general equilibrium model. One has to do with demand differentiability and the other with
equilibrium existence. We find positive results for both cases when trading costs are convex. This convexity
property of trading costs is motivated by some frictions that a trader faces when buying/selling a security. For
example, we have in mind search costs, i.e., the larger the quantity bought (sold), the more difficult it is for a
trader to find the security (the buyer). Another example is the costs associated with the valuation of a secu-
rity, e.g., the larger the amount of a mortgage-backed security (MBS) bought, the more due diligence the buyer
needs to do in order to properly understand and value the pool of mortgages backing the MBS.

In the remainder of this Introduction, we explain our two main results separately.
Jaime Luque is the corresponding author.
© 2017Walter de Gruyter GmbH, Berlin/Boston.
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1.1 Demand Di昀�ferentiability

Cross-listings prevent us from using previous techniques to prove the differentiability of the demand function
with respect to prices (Geanakoplos and Polemarchakis 1986 assumed that the asset payoff matrix has full rank):
if a trader belongs to two exchanges and the same security is listed in these two exchanges, this trader’s available
security payoff structure becomes linearly dependent. Thus, this trader’s security payoff structure may not have
full column rank. We refer to this possibility as the “collinearity problem”.3 A (non-linear) convex transaction
cost guarantees that traders’ demand functions are smooth in a context with collinear securities among different
exchanges (for this result, trading costs do not need to be large). Key for this result is to show that the Jacobian
matrix of the system of first order conditions has full column rank even when the trader’s matrix of security
returns does not have full rank. This property may fail when we consider instead a concave trading cost function.

The (positive) result of the smoothness of the demand function can be useful not only for standard analytical
exercises, but also to study other important theoretical issues, such as the regularity of the competitive equilib-
rium or the endogeneity of an exchange structure with multiple memberships and cross-listings. For the latter,
Faias and Luque (2017) show that demand differentiability is crucial in evaluating the trader’s utility function
in a given trading equilibrium for a given exchange structure. However, the approach of endogenizing the ex-
change structure in Faias and Luque (2017) is club theory, and such a framework assumes that a trader belongs
to only one exchange. Allowing for multiple memberships would imply that the trader’s utility depends on the
whole structure of exchanges through prices, a setting incompatible with existing results in club theory. Thus, it
remains an open question how to endogenize the structure of security exchanges with multiple memberships.
The results in the current paper make a step towards that goal by identifying conditions under which demand
differentiability is achieved.

1.2 Equilibrium Existence

The standard simultaneous optimization approach to equilibrium existence of Debreu (1952) and Arrow and
Debreu (1954), which relies on fixed point theory, fails when considering more than one platform (exchange).
In that setting, there is an auctioneer that chooses both the commodity and security prices in the simplex. If the
auctioneer chooses the price of one security equal to 1, the remaining commodity and security prices would be
zero. But then, there would be exchanges with commodity and security prices equal to zero, and the budget
constraints of traders with single exchange memberships would hold with equality. In that case, we cannot
guarantee the lower semicontinuity property of the budget correspondence by finding an interior point in the
budget constraint.

Another tentative approach would be to consider an auxiliary economy for each exchange where traders
trade the consumption good and securities only among themselves, and then show that the equilibrium for
this system of auxiliary economies is a trading equilibrium for the original economy. However, with multiple
memberships, we would not be able to isolate the trading activity in one exchange from the trading in another
exchange.

We are able to show existence of equilibrium for our model with cross-listings, multiple memberships, and
market clearing occurring in each exchange using fixed point theorem. A subtlety of our existence proof is
guaranteeing the lower semicontinuity of the trader’s budget set correspondence. For this, we need to show
that exchange clearing security prices cannot be “too large” in equilibrium. To this end, we cannot impose
additional restrictions on the trader’s budget constraints and portfolio sets, as these are written to capture our
particular setting. We do not require further assumptions concerning portfolio sets, namely, “financial survival”
assumptions as in Angeloni and Cornet (2006) and Aouani and Cornet (2009, 2011), which would not be in
accordance with our framework. Instead, we consider a mild impatience assumption, proposed by Seghir and
Torres-Martinez (2011) for an economy with restricted participation. This assumption, satisfied by many types
of utility functions (e.g., CES, CARA, Cobb-Douglas), says that the impact on the welfare of a reduction in
future consumption can be offset by an increase in today’s consumption.4 The assumption does not depend on
the representation of individuals’ preferences.

Another subtlety of our existence proof is the presence of transactions costs, which are paid in the nu-
meraire good. They allow us to obtain endogenous bounds on the trader’s portfolio choice set. This approach
differs from what has been done in the literature of incomplete financial markets with exogenous portfolio con-
straints. Specifically, we do not need to consider an auxiliary economy where the original financial economy
(the financial structure or the set of admissible portfolio allocations) is reduced without changing the consump-
tion equilibrium set (see Angeloni and Cornet 2006; Aouani and Cornet 2009; Balasko, Cass, and Siconolfi 1990;
Cornet and Gopalan 2010, among others).

For our existence proof, it is convenient to assume that transaction costs are convex because they do not
change the convex nature of the values of the budget constraint correspondence. Equilibrium existence with
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concave transaction costs could be recovered if we extend our model to a large economy with a continuum of
traders.

1.3 Structure of the Paper

The remainder of this paper is structured as follows. Section 2 establishes the baseline model. Section 3 estab-
lishes the equilibrium existence and demand differentiability results. Here, we also provide further discussion
of the contribution of our paper to the literature of restricted participation. In Section 4, we address impor-
tant issues regarding our model. First, we provide an example that illustrates how the equilibrium in a setting
with decentralized (multiple) exchanges differs from its counterpart in a setting with a (unique) centralized
exchange. Second, we discuss the economic interpretation and plausibility of convex transaction costs and the
implications of considering instead a concave transaction cost function, both in terms of equilibrium existence
and demand differentiability. Third, we show that our baseline model is a particular case of a more general
model that only considers a single global financial market and restrictions on the trader’s portfolios. Also there
we explain that previous results obtained in the literature of restricted participation cannot be applied to show
that an equilibrium exists for our more general model. Section 5 concludes and suggests directions for future
research.

2 The Baseline Model

An exchange participant or trader is a corporation that may trade on or through the exchange and is licensed
under the ordinance of the corresponding exchange financial regulator to carry out security trading activity.
An exchange is a security market that allows traders with membership in that exchange to diversify risk among
themselves by trading the securities available in the exchange.

2.1 Uncertainty, Trader’s Primitives, and Security Payo昀�fs

Our economy lasts for two dates, 𝑡 = 1, 2. The set of states of uncertainty in the last date is Ξ ≡ {1, ...,Ξ}, with
representative element 𝜉 . At each date there is a spot market for a perfectly divisible perishable physical good,
whose price we normalize to 1. Thus, the commodity space is IRΞ+1

+ . For a consumption bundle, we use the
notation 𝑥 = (𝑥1, (𝑥(𝜉), 𝜉 = 1, ...,Ξ)) ∈ IRΞ+1

+ , where 𝑥1 denotes the consumption at the first date and 𝑥(𝜉)
denotes the consumption at state 𝜉 of the second date.

The set of traders is I ≡ {1, ..., 𝐼}, with 𝐼 assumed to be large but finite. We write 𝑥u� = (𝑥u� ∶ 𝑖 ∈ I) to denote
traders’ consumption bundles in the two dates. Each trader is endowed with a consumption set 𝑋u� = IRΞ+1

+ , a
utility function 𝑢u� ∶ 𝑋u� → IR, and an endowment vector 𝜔u� = (𝜔u�

1, (𝜔u�(𝜉), 𝜉 = 1, ...,Ξ)) ∈ IRΞ+1
++ .

At date 1, security trading occurs in several exchanges. At date 2, these securities pay returns. The set of
securities in the economy is denoted by J ≡ {1, .., 𝐽}. We denote security 𝑗’s return (in terms of the good) at state
𝜉 by 𝑎u�(𝜉), 𝑎u�(𝜉) ≥ 0.

2.2 Exchange Structure and Trading

By an exchange 𝐸 we mean a group of traders (𝑆) and a payoff matrix associated with the subset of securities
𝐽(𝐸) ⊆ J available for trade in an exchange 𝐸. We denote this payoff matrix by 𝐴 = [𝑎u�(u�)(𝜉)]

Ξ×u�(u�). Thus,
we write 𝐸 = (𝑆, 𝐴) for an exchange in general. Let us then denote an exchange structure by 𝐹 (I) = {𝐸u�}u�

u�=1 =
{(𝑆u�, 𝐴u�)}u�

u�=1 (notice that because we allow for multiple exchange memberships, the set {𝑆u�}u�
u�=1 is not a partition

of I). A key element of our model is that traders can only trade securities in those exchanges to which they
belong. Formally, we denote by 𝐹 [𝑖; I] = {𝐸u� ∈ 𝐹 (I) ∶ 𝑖 ∈ 𝑆u�} the set of all exchanges in 𝐹 (I) that contain trader
𝑖.

We denote trader 𝑖’s trading of security 𝑗(𝐸) ∈ 𝐽(𝐸) at date 1 by 𝑦u�
u�(u�). A necessary condition for trader 𝑖 to

trade 𝑗(𝐸) is that (𝑆, 𝐴) ∈ 𝐹 [𝑖; I] . As usual, 𝑦u�
u�(u�) > 0 denotes a purchase of security 𝑗(𝐸), while 𝑦u�

u�(u�) < 0 denotes
a sale of this security. We write 𝑦u� = (𝑦u� ∈ IRu�(u�u�) ∶ 𝐸u� ∈ 𝐹[𝑖; 𝐼], 𝑖 ∈ 𝐼) to denote the vector of security positions
that all traders have in their respective exchanges.
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Traders face transaction costs 𝑔u�(u�)(𝑦u�(u�)) when trading an amount 𝑦u�(u�) of security 𝑗(𝐸). Transaction costs
are denominated in units of the private good, and apply to both sides (long and short security positions). For
simplicity, we assume that these costs do not revert to the individuals of the economy.5 Given the exchange
structure 𝐹(I) and security prices 𝑞 ∈ 𝐼𝑅∑u�

u�=1 |u�(u�u�)|, trader 𝑖’s budget constraint at date 1 is

𝑥1 − 𝜔u�
1 + ∑

u�u�∈u�[u�;I]
∑

u�(u�u�)∈u�(u�u�)
(𝑞u�(u�u�)𝑦u�(u�u�) + 𝑔u�(u�u�) (𝑦u�(u�u�))) ≤ 0. (1)

Trader 𝑖’s budget constraint at date 2 and node 𝜉 ∈ Ξ is such that his consumption, net of his good endowment,
is bounded by the returns on his security positions.

𝑥(𝜉) − 𝜔u�(𝜉) ≤ ∑
u�u�∈u�[u�;I]

∑
u�(u�u�)∈u�(u�u�)

𝑎u�(u�u�)(𝜉)𝑦u�(u�u�). (2)

2.3 Assumptions

We impose the following assumption on transaction costs:
(A1) 𝑔u�(u�u�) ∶ 𝐼𝑅 → 𝐼𝑅+ is twice continuous differentiable (𝐶2) in 𝑦u�(u�u�), increasing in |𝑦u�(u�u�)|, convex in 𝑦u�(u�u�) (i.e.,

𝑔′′ > 0), and is such that 𝑔(0) = 0, for all 𝑗(𝐸u�) ∈ 𝐽(𝐸u�) and all 𝐸u� ∈ 𝐹[I].
We need the properties in (A1) for both our equilibrium existence and demand differentiability results. We

refer to Section 4.2 for the economic interpretation of the convexity of the transaction cost function.
Trader 𝑖’s utility function 𝑢u� ∶ 𝖨𝖱1+Ξ

+ → 𝖨𝖱, evaluated on the consumption bundle 𝑥 ∈ 𝖨𝖱1+Ξ
+ , is denoted by

𝑢u�(𝑥1, 𝑥(1), ..., 𝑥(Ξ)), and satisfies the following assumptions:
(A2) For every 𝑖 ∈ I, 𝑢u� is continuous, strictly quasi-concave, and strictly increasing on 𝐼𝑅1+Ξ

+ .
(A3) For every 𝑖 ∈ I, 𝑢u� is twice continuously differentiable and the matrix of second derivatives, 𝐷2𝑢u�, is negative

definite on 𝐼𝑅1+Ξ
++ .

Assumptions (A2) and (A3) are standard (see Geanakoplos and Polemarchakis 1986). We also consider util-
ity functions that satisfy a mild impatience assumption that says that we can always find a large consumption
at date 1 such that the trader is better off with this extra consumption at date 1 but less consumption in every
state of date 2. Formally, we write this as follows:

(A4) For every 𝑖 ∈ I, given a consumption plan 𝑥 = (𝑥1, 𝑥(1), ..., 𝑥(Ξ)) ∈ 𝐼𝑅1+Ξ
++ , for any 𝜃 ∈ (0, 1) there exists a

bundle 𝜚(𝜃, 𝑥) ∈ 𝐼𝑅+, such that 𝑢u�(𝑥1 + 𝜚(𝜃, 𝑥), 𝜃𝑥(1), ..., 𝜃𝑥(Ξ)) > 𝑢u�(𝑥).
As Seghir and Torres-Martinez (2011) point out, this assumption is satisfied by many different types of utility

functions. For instance, it is satisfied by utility functions that are unbounded on the first date consumption, such
as von-Neumann utility functions with quasi linear, Cobb-Douglas, or Leontieff kernels (e.g., Cobb-Douglas,
CES, CARA). Also notice that this type of utility function does not depend on the representation of individuals’
preferences and does not require further assumptions on the portfolio sets.

3 Existence of Equilibrium and Demand Di昀�ferentiability

In this section we give our two main results: equilibrium existence and demand differentiability. We start with
the former.

3.1 Existence of Equilibrium

Given an exchange structure 𝐹(I), an equilibrium consists of a system (𝑥u�
1, 𝑥

u�(1), ..., 𝑥u�(Ξ), 𝑦u�, 𝑞) ∈ 𝐼𝑅u�(1+Ξ)
+ ×

𝐼𝑅
∑
u�∈I

∑
u�u�∈u�[u�;I]

∣u�(u�u�)∣
× 𝐼𝑅

∑ u�
u�=1|u�(u�u�)|

+ , such that (i) (𝑥u�
1, 𝑥

u�(1), ..., 𝑥u�(Ξ), 𝑦u�) ∈ argmax 𝑢u�(𝑥1, 𝑥(1), ..., 𝑥(Ξ)), subject to
constraints eqs (1) and ( 2), given 𝐹[𝑖; I]; and (ii) ∑u�∈I(𝑥u�

1 − 𝜔u�
1 + ∑u�u�∈u�[u�;I] ∑u�(u�u�)∈u�(u�u�) 𝑔u�(u�u�)(𝑦u�

u�(u�u�))) = 0,
∑u�∈I (𝑥u�(𝜉) − 𝜔u�(𝜉)) = 0, for all 𝜉 ∈ Ξ, and ∑u�∈u�u�

𝑦u�
u�(u�u�) = 0, ∀𝑗(𝐸u�) ∈ 𝐽(𝐸u�), ∀𝐸u� ∈ 𝐹(I).

Theorem 1.
Assume A1, A2, and A4. Then, an equilibrium exists for our economy with multiple exchange memberships and

cross-listings.
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Proof of Theorem 1:
Let us consider a generalized game in which players maximize payoffs in truncated compact sets. The play-

ers are the traders and one auctioneer who chooses the prices for the securities.6 Let 𝑊1 = ∑u�∈I 𝜔u�
1 denote the

aggregate endowment of date 1. Let 𝑌 = 2maxu�(u�u�)∈J(u�u�),u�u�∈u�[I]{|𝑔−1
u�(u�u�)(𝑊1)|}, 𝑊 = max {∑u�∈I 𝜔u�

1, ∑u�∈I 𝑤u�(1),

..., ∑u�∈I 𝑤u�(Ξ)}, and 𝑛 ∈ 𝐼𝑁 and consider the closed cube: 𝐶u� = [0, 𝑛] × [0, 2𝑊]Ξ × [−𝑌, 𝑌]∑u�u�∈u�[u�;I]∣u�(u�u�)∣. We
make 𝐶u� large in order to guarantee that an equilibrium of the generalized game is an interior point. Each trader
chooses a vector (𝑥u�

1, 𝑥
u�(1), ..., 𝑥u�(Ξ), 𝑦u�) on 𝐶u�, subject to constraints eqs (1) and (2), for a given vector of security

prices. Now fix 𝑚 ∈ 𝐼𝑁. The auctioneer chooses security prices in [0, 𝑚]∑u�u�∈u�(I)∣u�(u�u�)∣ in order to maximize

∑
u�∈I

(𝑥u�
1 − 𝜔u�

1) + ∑
u�∈I

∑
u�u�∈u�[u�;I]

∑
u�(u�u�)∈u�(u�u�)

𝑔u�(u�u�)(𝑦u�
u�(u�u�)) + ∑

u�u�∈u�(I)
∑

u�(u�u�)∈u�(u�u�)
𝑞u�(u�u�) ∑

u�∈u�u�

𝑦u�
u�(u�u�). (3)

This auctioneer’s objective function consists of the aggregation of all traders’ budget constraints. We choose
this specific objective function because it allows us to prove market clearing.

We denote the generalized game by 𝐺(𝑛, 𝑚). This generalized game has an equilibrium since it satisfies all
the assumptions of Debreu’s (1952) theorem. In fact, the auctioneer’s objective function eq. (3) is linear in the
respective price variables and the choice set is compact. Traders’ utilities are continuous and strictly quasi-
concave according to (A2), and their choice variables (𝑥1, 𝑥(1), ..., 𝑥(Ξ), 𝑦) belong to non-empty, convex, and
compact sets. Moreover, for each security price vector chosen by the auctioneer, the traders’ choice set has an
interior point. For instance, the price for the good is one and good endowments are assumed to be strictly
positive. This assures the lower hemi-continuity of the budget set.

Lemma: Let us assume (A1), (A2), and (A4), and let ( ̄𝑥u�
1, ̄𝑥u�(1), ..., ̄𝑥u�(Ξ),  ̄𝑦u�, ̄𝑞) be an equilibrium of the generalized

game 𝐺(𝑛, 𝑚). If ̄𝑥u�
1 ≤ 𝑊1 for all 𝑖 ∈ I, then there exist 𝑚̄, such that max

u�u�∈u�[I]
max

u�(u�u�)∈u�(u�u�)
̄𝑞u�(u�u�) < 𝑚̄.

Proof
Without loss of generality, fix a security 𝑗(𝐸u�) ∈ 𝐽(𝐸u�) and consider a trader 𝑖 ∈ I such that 𝐸u� ∈ 𝐹[𝑖; I]. By As-

sumption (A4), we have that, given 𝜃 ∈ (0, 1), there exists 𝜚(𝜃, 𝑊1, (2𝑊, 𝜉 = 1, ...,Ξ)) such that 𝑢u�(𝑊1, (2𝑊, 𝜉 =
1, ...,Ξ)) < 𝑢u�(𝑊1 + 𝜚(𝜃, 𝑊1, (2𝑊, 𝜉 = 1, ...,Ξ)), (2𝜃 𝑊, 𝜉 = 1, ...,Ξ)).

If we consider 𝜃 ∈ (0, 1) such that 2𝑊𝜃 < 0.7𝜔u�(𝜉), ∀𝑖 ∈ I, 𝜉 ∈ Ξ, we conclude that 𝑢u�(𝑊1, (2𝑊, 𝜉 =
1, ...,Ξ)) < 𝑢u�(𝜔u�

1 + ̆𝜚, 0.7𝜔u�(1), ..., 0.7𝜔u�(Ξ)), where ̆𝜚 = 𝜚(𝑊1, (2𝑊, 𝜉 = 1, ...,Ξ)) + 𝑊1 − 𝜔u�
1. Note that ̆𝜚 only

depends on the primitive parameters of the economy.
The monotonicity of the preferences and the fact that ̄𝑥u�

1 ≤ 𝑊1 (later, we will show that this condition is sat-
isfied in equilibrium), for all 𝑖 ∈ I, implies 𝑢u�(𝜔u�

1 + ̆𝜚, 0.7𝜔u�(1), ..., 0.7𝜔u�(Ξ)) > 𝑢u�( ̄𝑥u�
1, ̄𝑥u�(1), ..., ̄𝑥u�(Ξ)). Now, let us

consider a trading position ̆𝑦u�(u�u�) < 0 such that −𝑎u�(𝜉) ̆𝑦u�(u�u�) < 0.3 min
u�∈I, u�∈Ξ

𝜔u�(𝜉) and 𝜔u�
1 − 𝑔u�(u�u�)( ̆𝑦u�(u�u�)) ≥ 0. With

this trading position on security 𝑗(𝐸u�), the bundle (𝜔u�
1 − ̄𝑞u�(u�u�) ̆𝑦u�(u�u�) − 𝑔u�(u�u�)( ̆𝑦u�(u�u�)), 0.7𝜔u�(1), ..., 0.7𝜔u�(Ξ)) is ad-

missible for trader 𝑖 and, therefore, we can write 𝑢u�(𝜔u�
1 − ̄𝑞u�(u�u�) ̆𝑦u�(u�u�) − 𝑔u�(u�u�)( ̆𝑦u�(u�u�)), 0.7𝜔u�(1), ..., 0.7𝜔u�(Ξ)) ≤

𝑢u�( ̄𝑥u�
1, ̄𝑥u�(1), ..., ̄𝑥u�(Ξ)). Thus, we get inequality 𝑢u�(𝜔u�

1 + ̆𝜚, 0.7𝜔u�(1), ..., 0.7𝜔u�(Ξ)) > 𝑢u�(𝜔u�
1 − ̄𝑞u�(u�u�) ̆𝑦u�(u�u�) −

𝑔u�( ̆𝑦u�(u�u�)), 0.7𝜔u�(1), ..., 0.7𝜔u�(Ξ)), which implies ̄𝑞u�(u�u�) < 𝑚̄u�(u�u�) =
̆𝜚 + 𝑔u�(u�u�)( ̆𝑦u�(u�u�))

− ̆𝑦u�(u�u�)
(recall that ̆𝑦u�(u�u�) < 0). Since

there is a finite set of securities, we can set 𝑚̄ > 0 such that 𝑚̄ > max
u�u�∈u�[I]

max
u�(u�u�)∈u�(u�u�)

𝑚̄u�(u�u�).

Next, let ̄𝑛 = 2𝑊1 + 𝑚̄𝑌. We will show that if (𝑛, 𝑚) ≫ ( ̄𝑛, 𝑚̄), then the equilibrium of the generalized game
𝐺(𝑛, 𝑚), denoted by (𝑥u�

1, 𝑥
u�(1), 𝑥u�(2), ..., 𝑥u�(Ξ), 𝑦u�), is an equilibrium of the economy.

First, let us show that there is no excess of demand in the market of the good at the first date. Suppose
not, ∑

u�∈u�
(𝑥u�

1 − 𝜔u�
1) + ∑

u�∈u�
∑

u�u�∈u�[u�;u�]
∑

u�(u�u�)∈u�(u�u�)
𝑔u�(u�u�)(𝑦u�

u�(u�u�)) > 0. But then the auctioneer would choose 𝑞 = 0, and this

would contradict the aggregation of the traders’ budget constraints of the first date,

∑
u�∈I

(𝑥u�
1 − 𝜔u�

1) + ∑
u�∈I

∑
u�u�∈u�[u�;I]

∑
u�(u�u�)∈u�(u�u�)

(𝑞u�(u�u�)𝑦u�
u�(u�u�) + 𝑔u�(u�u�)(𝑦u�

u�(u�u�))) ≤ 0.

Now, we show that there is no excess of demand in the security market, ∑u�∈u�u�
𝑦u�

u�(u�u�) ≤ 0, for all 𝐸u� ∈ 𝐹(I).
If for some security 𝑗(𝐸u�), it happens that ∑u�∈u�u�

𝑦u�
u�(u�u�) > 0, then the auctioneer would choose the maximum

possible price for this security, 𝑞u�(u�u�) = 𝑚 > 𝑚̄, which is in contradiction with our previous result that security
prices are uniformly bounded by 𝑚̄ (notice that no excess of demand in the commodity market implies 𝑥u�

1 ≤ 𝑊1,
for every 𝑖 ∈ I).
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Faias and Luque DE GRUYTER

It remains to be shown that there is no excess supply in the good and in the security markets. If there were
excess supply in the market of the good, we must have at least one trader with his budget constraint with strict
inequality, but this contradicts the strict monotonicity of preferences. Thus, we conclude that

∑
u�∈u�

(𝑥u�
1 − 𝜔u�

1) + ∑
u�∈u�

∑
u�u�∈u�[u�;u�]

∑
u�(u�u�)∈u�(u�u�)

𝑔u�(u�u�)(𝑦u�
u�(u�u�)) = 0.

If there were excess supply in the market of the securities ∑u�∈u�u�
𝑦u�

u�(u�u�) < 0, the auctioneer would choose 𝑞u�(u�u�) =
0, again a contradiction with the strict monotonicity of preferences. Actually, if 𝑞u�(u�u�) = 0, every trader would
choose 𝑦u�

u�(u�u�) = 0. Otherwise, the trader has to pay a trading cost and gets no income from the short sale.
The proof that there is no commodity excess supply or demand in each node 𝜉 of date 2 follows by similar

arguments as above.
Finally, we show that the bundle allocations are optimal. Market clearing in each market implies that 𝑥u�

1 < 𝑛
and 𝑥u�(𝜉) < 2𝑊, for any, 𝑖 ∈ I and 𝜉 = ...,Ξ. Moreover, |𝑦u�

u�(u�u�)| < 𝑌. If |𝑦u�
u�(u�u�)| ≥ 𝑌 for any 𝑖, any 𝑗(𝐸u�) and

any 𝐸u�, then 𝑔u�(u�u�)(𝑦u�
u�(u�u�)) > 𝑊1, which, in turn, would imply that market clearing at date 1 does not hold.

Thus, for any 𝑖, (𝑥u�
1, 𝑥

u�(1), ..., 𝑥u�(Ξ), 𝑦u�) belongs to the interior of 𝐶u�. Suppose that there exists another alloca-
tion ( ̂𝑥u�

1, ̂𝑥u�(1), ..., ̂𝑥u�(Ξ), ̂𝑦u�) that is budget feasible and such that 𝑢u�( ̂𝑥u�
1, ̂𝑥u�(1), ..., ̂𝑥u�(Ξ)) > 𝑢u�(𝑥u�

1, 𝑥
u�(1), ..., 𝑥u�(Ξ)).

For 𝜆 small enough, 𝜆( ̂𝑥u�
1, ̂𝑥u�(1), ..., ̂𝑥u�(Ξ), ̂𝑦u�) + (1 − 𝜆)(𝑥u�

1, 𝑥
u�(1), ..., 𝑥u�(Ξ), 𝑦u�) belongs to 𝐶u�, is budget feasible

and, by strict quasi-concavity of the utility function, 𝑢u�((𝜆 ̂𝑥u�
1, ̂𝑥u�(1), ..., ̂𝑥u�(Ξ)) + (1 − 𝜆)(𝑥u�

1, 𝑥
u�(1), ..., 𝑥u�(Ξ))) >

𝑢u�(𝑥u�
1, 𝑥

u�(1),..., 𝑥u�(Ξ)), which is a contraction with the optimality of (𝑥u�
1, 𝑥

u�(1), ..., 𝑥u�(Ξ), 𝑦u�).
The rest of this subsection discusses the relationship of our paper with the literature on restricted partici-

pation.7 There are two branches in this literature, one with exogenous portfolio constraints and the other with
endogenous portfolio constraints. The latter specifies restrictions by functions that depend not only on the port-
folio, but also on the security and commodity prices - see Cass, Siconolfi, and Villanacci (2001) and Carosi, Gori,
and Villanacci (2001). This literature considers smooth economies determined by smooth utility functions and
restrictions, and relies on techniques of differential topology to prove existence and regularity of demand func-
tions. To capture the current market microstructure of trading across exchanges, we introduce restrictions on
whom to trade with: a trader can trade the securities available in his exchanges only with those traders that also
belong to his exchanges.

Since in our setting the restrictions are given exogenously, we follow the other branch of the literature (the
one with exogenous portfolio constraints), which applies fixed point techniques to prove existence of equilib-
rium. Angeloni and Cornet (2006) and Aouani and Cornet (2009), and Balasko, Cass, and Siconolfi (1990), and
Cornet and Gopalan (2010), among others, have contributed to this literature, and consider restrictions given
by spanning conditions on the set of admissible portfolios. For instance, Cornet and Gopalan (2010) considered
a spanning condition on the set of admissible portfolios and imposed a “financial accessibility” assumption on
the payoff of each date and state of nature. Our payoff at the first date, however, is of a different nature due to
the transaction cost; more precisely, our payoff function is nonlinear in portfolios.

Notice that, even without a transaction cost, we could not apply the results of equilibrium existence in
Balasko, Cass, and Siconolfi (1990) and Angeloni and Cornet (2006), or Aouani and Cornet (2009). The reason
is that we want our model to accommodate the situation where a trader cannot transact securities that are not
available in the exchanges where he is a member, and these restrictions do not satisfy the “financial survival”
assumptions considered in those models. In particular, Angeloni and Cornet (2006) require that portfolio sets
contain a neighborhood of zero, which does not necessarily hold in our case. In addition, Balasko, Cass, and
Siconolfi (1990) and Aouani and Cornet (2009) require a non-redundancy type hypothesis to bound portfolio
choice sets. We do not need to impose this kind of assumption since these sets are endogenously bounded in
our model as a consequence of the transaction costs.

3.2 Demand Di昀�ferentiability

Proposition 1
Assume A1, A2, and A3. Then, the individual demand (𝑥u�(𝑞), 𝑦u�(𝑞)) is a continuously differentiable function in prices

𝑞, for 𝑞 in the interior of [0, 𝑚̄]∑u�u�∈u�(I)∣u�(u�u�)∣, with 𝑚̄ > 0.

Proof of Proposition 1:
TT
The first order necessary and sufficient conditions for an interior optimum of a trader 𝑖’s problem with

some of his constraints being non-binding are: 𝐷1𝑢u� − ̃𝛽1 = 0; 𝐷u�𝑢u� − ̃𝛽(𝜉) = 0 and −𝑥(𝜉) + 𝜔u�(𝜉) + 𝐴u�
u�𝑦 =

6
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DE GRUYTER Faias and Luque

0 for 𝜉 = 1, ...,Ξ; ̃𝛽u�𝐴u� − ̃𝛽1[𝑞 + 𝐷u�𝑔] = 0 (where 𝑇 refers to the transpose of a matrix and 𝑔(𝑦) =
∑u�u�∈u�[u�;I] ∑u�(u�u�)∈u�(u�u�) 𝑔u�(u�u�) (𝑦u�(u�u�)); and −𝑥1 + 𝜔u�

1 − 𝑞 ⋅ 𝑦 − 𝑔(𝑦) = 0. The shadow price vectors for the bud-
get constraints at date 1 and node 𝜉 of date 2 are ̃𝛽1 and ̃𝛽(𝜉), respectively. The columns of the return matrix
𝐴u� = | ⋅ ⋅ ⋅ 𝐴u� ⋅ ⋅ ⋅ | are those 𝐴u� with 𝐸u� ∈ 𝐹[𝑖, I]. Then, the element 𝐴u�

u� denotes the line 𝜉 of the return matrix 𝐴u�.
The matrix of second order derivatives with respect to (𝑥1, 𝑥(𝜉), ̃𝛽(𝜉), 𝑦, ̃𝛽1), where 𝑥(𝜉) and ̃𝛽(𝜉) are generic
elements of the corresponding Ξ-vector, is:

J =

⎡
⎢⎢⎢⎢⎢⎢
⎣

𝐷2
1𝑢

u� 0 0 0 −1
0 𝐷2

u�𝑢u� (−1) 0 0
0 (−1)u� 0 𝐴u� 0
0 0 𝐴u�u� − ̃𝛽1𝐷2

u�𝑔 −𝑞 − 𝐷u�𝑔
−1 0 0 −𝑞u� − 𝐷u�𝑔u� 0

⎤
⎥⎥⎥⎥⎥⎥
⎦

It is easy to see that the matrix J is non-singular (i.e., invertible). For this, we need to show that if J𝑧 = 0,
where 𝑧 = ( ̌𝑥1, ̌𝑥(𝜉), ̌𝛽(𝜉), ̌𝑦, ̌𝛽1), then 𝑧 = 0. So let 𝑧 be such that J𝑧 = 0. Then, 𝑧u�J𝑧 = 0, and using some of the
equations of the system J𝑧 = 0 , 𝑧u�J𝑧 = 0 reduces to (𝐷2

1𝑢
u�)( ̌𝑥1)2 + ̌𝑥(𝜉)u�(𝐷2

u�𝑢u�) ̌𝑥(𝜉) − ̌𝑦u�( ̃𝛽1𝐷2
u�𝑔) ̌𝑦 = 0. Notice

that this last equality can be written as

[ ̌𝑥1 ̌𝑥(𝜉)u� ̌𝑦u� ]
⎡
⎢⎢
⎣

𝐷2
1𝑢

u� 0 0
0 𝐷2

u�𝑢u� 0
0 0 − ̃𝛽1𝐷2

u�𝑔

⎤
⎥⎥
⎦

⎡⎢⎢
⎣

̌𝑥1
̌𝑥(𝜉)

̌𝑦

⎤⎥⎥
⎦

= 0

which implies ̌𝑥1 = 0, ̌𝑥(𝜉) = 0, and ̌𝑦 = 0 by negative definiteness of 𝐷2𝑢u� and − ̃𝛽1𝐷2
u�𝑔.8 Then, back to

J𝑧 = 0, we obtain ̌𝛽(𝜉) = 0. Finally, again with J𝑧 = 0, ̌𝛽1 = 0. Therefore, by the implicit function theorem, we
conclude that a trader’s excess demand is a continuous differentiable function in security prices.

4 Further Remarks

This section addresses three important issues related to our baseline model. The first one discusses how the
equilibrium with multiple exchanges differs from its counterpart in a setting with a centralized market. The
second issue has to do with our assumption of convex transaction costs. Here we discuss the economic in-
terpretation and explain the difficulties of obtaining demand differentiability and equilibrium existence if we
consider instead a concave transaction cost function. Finally, we explain that our model can be seen as a particu-
lar case of a more general model with only one global exchange market and traders facing exogenous portfolio
constraints. In addition, for this more general model, we further clarify our contribution to the literature on
incomplete financial markets with portfolio constraints.

4.1 An Example: Centralized Versus Decentralized Exchanges

Let us consider a simple example with two cases for a simple economy with three traders and two securi-
ties. In the first case, there are two exchanges (one security per exchange), where only one of the traders can
trade in both exchanges. In the second case, there is only one exchange (with two securities), which we call the
centralized exchange. This example highlights the important role that trading costs have for the equilibrium
and traders’ welfare, and ultimately on the market microstructure. When trading costs are the same, traders
are better off in the centralized exchange. However, when trading costs are sufficiently lower in the decentral-
ized exchanges than in the centralized exchange, traders are better off in separate (overlapping) exchanges.
Roughly speaking, the potential high trading costs of a centralized exchange offset the better risk sharing that
this exchange offers when compared to the case of decentralized exchanges. This result suggests that factors
that influence trading costs, such as the search costs, valuation costs, inventory costs, information processing
technology, computing capacity, trade execution speed, and clearing, to name a few, may have an impact on
traders’ welfare and ultimately on the stability of the exchange structure.9

Example: There are two dates, three states of nature at the second date, three traders (𝑖 = 1, 2, 3), and two
possible exchange structures: (i) two decentralized overlapping exchanges, {𝐸u�

1 , 𝐸u�
2} = {(𝑆u�

1 , 𝐴u�
1), (𝑆u�

2 , 𝐴u�
2)} with

𝑆u�
1 = {1, 3} and 𝑆u�

2 = {2, 3}, and (ii) a centralized exchange 𝐸u� = (𝑆u�, 𝐴u�) with 𝑆u� = {1, 2, 3}. Each decentralized
exchange has only one security.
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For the case of decentralized exchanges, we use the following returns: 𝐴u�
1 = [0 1 0]′ if the exchange is 𝐸u�

1
and 𝐴u�

2 = [1 0 1]′ if the exchange is 𝐸u�
2 , where ′ denotes the transpose of the matrix. For the case of a centralized

exchange, we consider the same two securities, namely,

𝐴u� = ⎡⎢⎢
⎣

0 1
1 0
0 1

⎤⎥⎥
⎦

For both the decentralized and centralized exchange structures, we consider the same functional form of the
trading cost: 𝑔1(𝑦) = 𝛾1𝑦2 (for security 1 with returns [0 1 0]′) and 𝑔2(𝑦) = 𝛾2𝑦2 (for security 2 with returns [1 0
1]′). However, the value of 𝛾1 and 𝛾2 might differ between exchange structures.

The corresponding good endowments for traders 1, 2, and 3 are 𝜔1 = (6, 6, 0, 6), 𝜔2 = (8, 6, 6, 0), and 𝜔3 =
(4, 6, 6, 6), respectively. The utility functions of traders 𝑖 = 1, 2, 3 are, respectively,

𝑢1(𝑥0, 𝑥(1), 𝑥(2), 𝑥(3)) = 𝑥0 + 2𝑥(2)
𝑢2(𝑥0, 𝑥(1), 𝑥(2), 𝑥(3)) = 𝑥0 + 2𝑥(3)
𝑢3(𝑥0, 𝑥(1), 𝑥(2), 𝑥(3)) = 𝑥0 + 𝑥(1)

In the appendix, we report the equilibrium consumption and trading quantities as a function of 𝛾1 and 𝛾2 for
each exchange structure. Using those expressions, we find that, for the case with two decentralized overlapping
exchanges, the corresponding indirect utilities of traders 1, 2, and 3 are, respectively, 𝑢1 = 6+(1/(4𝛾1)), 𝑢2 = 8+
(1/(16𝛾2)), and 𝑢3 = 10+(1/(4𝛾1))+(1/(16𝛾2)). For the case with a unique exchange, the corresponding indirect
utilities of traders 1, 2, and 3 are, respectively, 𝑢1 = 6 + (4/(9𝛾1)) + (1/(4𝛾2)), 𝑢2 = 8 + (1/(9𝛾1)) + (1/(4𝛾2)),
and 𝑢3 = 10 + (1/(9𝛾1)).

From the above expressions, we find that, if the three traders belong to a single exchange with 𝛾1 = 𝛾2 = 1 ,
then their respective utilities are lower than if they were in separate exchanges with 𝑆1 = {1, 3} and 𝑆2 = {2, 3},
and 𝛾1 = 0.3 and 𝛾2 = 0.1.

4.2 Convex Transaction Costs

In real life, traders face several types of transaction costs. These include taxes, fees paid to the exchange where
a trade is executed, and other types of costs, perhaps more indirect, but also economically important, that have
to do with those frictions that traders face to execute trades. For example, traders may incur search costs, secu-
rity valuation costs, inventory costs, and other costs related to some possible form of asymmetric information.
Whereas transaction fees paid to the exchange are rather linear, and in some cases concave, other types of costs,
such as the ones mentioned before, are usually convex.

The economic intuition behind convex search costs is simple: the larger the quantity a trader wants to
buy/sell, the more difficult it is to find the security in case of a security purchase or buyer in case of a security
sale. This type of friction has been coined as “market illiquidity” in the literature of search theory applied to
financial markets (see, for instance, Lagos, Rocheteau, and Wright 2017). Traditional general equilibrium mod-
els have ignored such frictions. To some extent, we can incorporate these indirect costs into our model with a
(proxy) transaction cost function that is convex in the amount of the security transacted.

The convexity argument also applies in terms of security valuation costs. Think for instance of a mortgage-
backed security (MBS). This financial product consists of a pool of mortgages of possibly different types (e.g.,
different maturities, loan-to-value ratios, prepayment conditions and geographies, to name a few) that secure
the MBS payments. Roughly speaking, the larger the amount of the MBS that a trader wants to buy, the more
due diligence the trader has to do in order to properly understand and value the individual mortgages that
back the MBS.

These are just some examples that motivate our assumption of convex transaction costs.
Finally, it is worth noting that we are considering a competitive framework, so the convexity of the trans-

action cost does not have to do with the price impact that traders may have in an environment with market
power.

The rest of this subsection discusses the technical difficulties and potential solutions that one may face when
dealing with other transaction costs that are concave, such as those paid by the traders to their respective ex-
changes.10 First, we cannot guarantee the differentiability of the trader’s demand function using the approach
of Geanakoplos and Polemarchakis (1986) when transaction costs are concave. This is because we need to have
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the matrix of second order derivatives with respect to (𝑥1, 𝑥(𝜉), ̃𝛽(𝜉), 𝑦, ̃𝛽1) invertible (see the proof of Proposi-
tion 1). But with a concave utility function (negative definiteness of 𝐷2𝑢u�), the transaction cost function needs
to be convex (i.e., ̃𝛽1𝐷2

u�𝑔 needs to be positive definite).
Second, Debreu (1952) fixed point theorem, used in our equilibrium existence proof, fails with concave

transaction costs due to the non-convexity of the trader’s budget set. Our existence result could be recovered if
we were to consider instead a large economy with a continuum of traders.11 This approach has been used by
Araujo and Pascoa (2002, Lemma 2) in a general financial equilibrium economy with incomplete markets and
non-convex consumer budget sets.

4.3 A More General Model with a Single Financial Market

One could argue that the restuls found here could be also obtained under an alternative specification using the
standard model of restricted participation with a single market. The idea would be to assign different labels
(“colors”) to securities with the same return structure that are however traded in different exchanges. In this
section, we show that such an approach would face the same new technical problems (collinearity problem,
lower semi-continuity, etc.) that we are facing with our formulation. Specifically, we argue that we can interpret
our baseline model with multiple exchanges, cross-listings, and multiple exchange memberships as a particular
case of a more general model with only one global exchange market and traders facing exogenous portfolio
constraints. In addition, we expand our discussion on our contribution to the literature on incomplete financial
markets with portfolio constraints.

Let us consider the same ingredients (uncertainty, trader’s primitives, and security payoffs) as in the baseline
model in Section 2.1. Because now there is a single global market, we find it convenient to denote the financial
return structure by the payoff matrix 𝐴 = [𝑎u�(𝜉)]Ξ×J. Our notation for a portfolio is now specific to the whole
set of securities J, that is, a portfolio 𝑦 = (𝑦u�)u�∈u� ∈ 𝐼𝑅u� specifies the quantity of each security. In addition, we
also consider transaction costs, specified by a function 𝑔u� ∶ 𝐼𝑅 → 𝐼𝑅+ and satisfying Assumption A1.

Importantly, we allow for repetition of some columns of the payoff matrix 𝐴. Securities in 𝐴 with the same
return structure can be distinguished by the set of traders that are allowed to trade those securities and/or
by their corresponding transaction costs. We specify the set of traders allowed to trade a given security using
restrictions on their trading constraints. In particular, we assume that traders face portfolio constraints, i.e., each
trader chooses a portfolio in 𝑌u� ⊂ 𝐼𝑅u�, which is the set of portfolios that trader 𝑖 is allowed to choose. We require
the following assumptions on 𝑌u�.

(A5) For every trader 𝑖 ∈ I, 𝑌u� is a closed and convex set with 0 ∈ 𝑌u�.
Let us now rewrite the trader’s budget constraints for this new setting. Given security prices 𝑞 ∈ 𝐼𝑅u�

+, the
trader 𝑖’s budget constraint at date 1 is

𝑥1 − 𝜔u�
1 + ∑

u�∈J
(𝑞u�𝑦u� + 𝑔u� (𝑦u�)) ≤ 0. (4)

Trader 𝑖’s budget constraint at date 2 and node 𝜉 ∈ Ξ is such that his consumption, net of his good endowment,
is bounded by the returns on his security positions, i.e.,

𝑥(𝜉) − 𝜔u�(𝜉) ≤ ∑
u�∈J

𝑎u�(𝜉)𝑦u�. (5)

An equilibrium then consists of a system (𝑥u�
1, 𝑥

u�(1), ..., 𝑥u�(Ξ), 𝑦u�, 𝑞) ∈ 𝐼𝑅(1+Ξ)u� × 𝐼𝑅u�u� × 𝐼𝑅u�, such that, (i) (𝑥u�
1, 𝑥

u�(1),
..., 𝑥u�(Ξ), 𝑦u�) ∈ argmax 𝑢u�(𝑥1, 𝑥(1), ..., 𝑥(Ξ)), subject to portfolio constraints 𝑦u� ∈ 𝑌u� and to budget constraints eqs
(4) and (5), and (ii) ∑u�∈I(𝑥u�

1 − 𝜔u�
1 + ∑u�∈J 𝑔u�(𝑦u�

u�)) = 0, ∑u�∈I (𝑥u�(𝜉) − 𝜔u�(𝜉)) = 0, for all 𝜉 ∈ Ξ, and ∑u�∈I 𝑦u�
u� = 0,

∀𝑗 ∈ J. An equilibrium exists for this alternative economy, as we claim next.

Theorem 2.
Assume A1, A2, A4, and A5. Then, an equilibrium exists for the financial economy.

The proof of Theorem 2 follows the same steps of Theorem 1 and, therefore, we omit it. Next, we explain
that the specificities of our general model require a different approach than the ones used in the literature of
exogenous portfolio constraints to show equilibrium existence.

In the general model introduced above, the exogenous participation restrictions of a trader 𝑖 is defined by a
set 𝑌u� ⊆ 𝐼𝑅u�, with 𝑌u� being a closed, convex set which contains zero. This framework includes linear equality
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and inequality constraints as particular cases and, therefore, it includes the case of linear subspaces of the
portfolio space. However, the presence of transaction costs in our model makes it different from other models
in the literature with exogenous constraints. Indeed, transaction costs play a key role in the proof of equilibrium
existence as well as in the welfare properties and structure of exchanges, as we show in our example in Section
4.1.

An essential step in the proof of equilibrium existence is to find a non-empty, convex and compact choice
set of portfolios. Assumption A5 guarantees that the portfolio choice set is non-empty, convex and closed. The
subtlety in this proof is finding upper and lower bounds to guarantee that every trader’s portfolio choice set
is compact. In the incomplete financial markets without trading restrictions literature, this is obtained by as-
suming a payoff matrix with full rank; this is made without loss of generality since redundant securities can
be removed without changing the equilibria consumption set. However, this is no longer true in a setting with
individual trading constraints. There are different methods to overcome this difficulty. For instance, a well-
known technique in the literature consists of reducing the original financial economy (the financial structure
or the set of admissible portfolio allocations) and keeping the same consumption equilibria (see Aouani and
Cornet 2011 for a more detailed discussion). In our model, it is precisely the transaction cost that allows us to
find endogenous bounds for the portfolio choice sets (see proof of Theorem 1).

Another difficulty to prove equilibrium existence is bounding security prices. Without portfolio constraints,
the standard approach is to embed all prices in the simplex. With portfolio constraints, this approach puts at
risk the lower semicontinuity of a trader’s budget constraints when such a trader cannot transact certain secu-
rities. Aouani and Cornet (2009, 2011), and Angeloni and Cornet (2006) get rid of this problem by introducing
“financial survival” assumptions, which allow all agents to short sell at least a minimum amount of each se-
curity. This approach is not compatible with our general model if we want it to have as a particular case our
economy with multiple exchanges where some traders cannot trade the securities specific to an exchange they
do not belong to. To overcome this difficulty, we consider instead Seghir and Torres-Martinez (2011) impatience
assumption (our assumption A4), which allows us to find upper bounds for security prices.

Finally, we believe that our approach with multiple exchanges and cross-listings would be more natural and
intuitive than the more general model introduced above if we were to extend our model to a framework where
exchanges are endogenously formed as in Faias and Luque (2017).

5 Conclusions and Directions for Future Research

When traders can belong to several bourses and the same security can be traded in different exchanges, differ-
entiability of the demand function with respect to prices may fail due to the “collinearity problem”. However,
when considering a richer model with convex transaction costs, we show that traders’ demand functions are
smooth even in a context with collinear securities among different exchanges. Also, we show that, in this frame-
work, an equilibrium exists under a mild impatience assumption that is satisfied by many utility functions, does
not depend on the representation of individuals’ preferences, and does not require further assumptions con-
cerning the portfolio sets.

It remains an open question how to endogenize the structure of security exchanges with multiple member-
ships. The results in the current paper make a step towards that goal by identifying conditions under which
demand differentiability is achieved.

Also, we believe that the results presented in this paper can be useful to study other issues in the field
of financial intermediation. We are thinking, for example, in a simple economy with two markets: a primary
market where banks originate and buy mortgages from households, and a secondary market where these banks
sell these mortgages to investors. This setting captures our main ingredients: banks belonging to more than one
market, and the same assets (mortgages) transacted in the two markets; however, households and investors
cannot transact with one other.
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Appendix

Example

Let us denote securities with returns [0 1 0]′ and [1 0 1]′ by 𝑗1 and 𝑗2, respectively. For the case with two decen-
tralized overlapping exchanges, we find the following equilibrium security prices and traders’ consumption
bundles:

(𝑞u�1(u�u�
1 ), 𝑞u�2(u�u�

2 )) = (1, 3
2

)

(𝑥10, 𝑥
1(1), 𝑥1(2), 𝑥1(3), 𝑦1

u�1(u�u�
1 )

) = (6 − 3
4𝛾1

, 6, 1
2𝛾1

, 6, 1
2𝛾1

)

(𝑥20, 𝑥
2(1), 𝑥2(2), 𝑥2(3), 𝑦2

u�2(u�u�
2 )

) = (8 − 7
16𝛾2

, 6 + 1
4𝛾2

, 6, 1
4𝛾2

, 1
4𝛾2

)

(𝑥30, 𝑥
3(1), 𝑥3(2), 𝑥3(3), 𝑦3

u�1(u�u�
1 )

, 𝑦3
u�2(u�u�

2 )
) = (4 + 1

4𝛾1
+ 5

16𝛾2
, 6 − 1

4𝛾2
, 6 − 1

2𝛾1
, 6 − 1

4𝛾2
, − 1

2𝛾1
, − 1

4𝛾2
)

Then, the corresponding indirect utilities of traders 1, 2, and 3 are, respectively 𝑢1 = 6 + (1/(4𝛾1)), 𝑢2 = 8 +
(1/(16𝛾2)), and 𝑢3 = 10 + (1/(4𝛾1)) + (1/(16𝛾2)).

For the case with a unique exchange, we find the following equilibrium security prices and traders’ con-
sumption bundles:

(𝑞u�1(u�u�), 𝑞u�2(u�u�)) = (2
3

, 1)

(𝑥10, 𝑥
1(1), 𝑥1(2), 𝑥1(3), 𝑦1u�1(u�u�), 𝑦

2
u�2(u�u�)) = (6 + 1

4𝛾2
− 8

9𝛾1
, 6 − 1

2𝛾2
, 2
3𝛾1

, 6 − 1
2𝛾2

, 2
3𝛾1

, − 1
2𝛾2

)

(𝑥20, 𝑥
2(1), 𝑥2(2), 𝑥2(3), 𝑦2u�1(u�u�), 𝑦

2
u�2(u�u�)) = (8 + 1

9𝛾1
− 3

4𝛾2
, 6 + 1

2𝛾2
, 6 − 1

3𝛾1
, 1
2𝛾2

, − 1
3𝛾1

, 1
2𝛾2

)

(𝑥30, 𝑥
3(1), 𝑥3(2), 𝑥3(3), 𝑦3u�1(u�u�), 𝑦

3
u�2(u�u�)) = (4 + 1

9𝛾1
, 6, 6 − 1

3𝛾1
, 6, − 1

3𝛾1
, 0)

Then, the corresponding indirect utilities of traders 1, 2, and 3 are, respectively, 𝑢1 = 6 + (4/(9𝛾1)) + (1/(4𝛾2)),
𝑢2 = 8 + (1/(9𝛾1)) + (1/(4𝛾2)), and 𝑢3 = 10 + (1/(9𝛾1)).

Notes
1See Malamud and Rostek (2017) for a different approach where a trader may have a price impact. In our paper we consider a large

economy where trading in exchanges is Walrasian. Thus, when evaluating an exchange, a trader anticipates that his own participation has
no price impact on security prices. Our context is naturally satisfied in exchanges with many traders.

2This assumption is also common in the literature of network formation. See, for example, Malamud and Rostek (2017).
3For example, we may consider an economy with three states of nature at date 2 and two bourses u� and u�′ with two securities and the

following payoff matrices u�(u�) = {(1, 0, 0), (0, 0, 1)} and u�(u�′) = {(1, 0, 1), (0, 1, 0)}. These payoff vectors are clearly linearly dependent for
a trader u� that belongs to the two exchanges and value consumption in every state of nature in period 2.

4In our setting we add the transaction cost, which is a non-linear payment in each financial transaction in the first period. However, this
is not the case in the model of Seghir and Torres-Martinez (2011). Moreover, they impose an assumption that requires that the portfolio
choice set is bounded (their assumption A7). We do not need that assumption. Our existence proof incorporates these subtleties.

5For the sake of simplicity in the exposition of our proofs, we have decided to assume that transaction costs do not revert into the
economy. That possibility could be incorporated into our model by considering a transfer system that distributes these resources back to
the individuals of the economy according to some exogenous rule. See e.g., Markeprand (2008) and Préchac (1996).

6Since there is only one good, the price of the good is naturally 1, so no additional auctioneers are needed here.
7See the seminal works of Balasko, Cass, and Siconolfi (1990), and Polemarchakis and Siconolfi (1995, 1997).
8This result would not be possible if we had assumed a concave transaction cost function (i.e., u�u�(u�u�) concave in u�u�(u�u�)).
9See Glosten (1994) for a leading paper that analyzes the role of information processing technology on the stability and structure of

trading institutions.
10With increased competition among exchanges, non-linear transaction fees paid to the exchanges are now more important. In many

situations, these transaction fees are concave rather than convex, i.e., the larger the quantity, the lower the trading cost on average. For
example, traders may pay a constant price per order, but some traders doing a high volume can sign up for a different offer involving a
fixed part and a lower unit price.
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11For this extension, notice that, following Hildenbrand (1974), most of the properties of our generalized game in the continuum setting
would hold. Lyapounov’s convexity theorem guarantees that the aggregate trader demand is convex-valued. To deal with the non-convexity
of the trader ’s budget set, one should extend the truncated generalized game to mixed strategies, and then show that an equilibrium exists
for this extended generalized game by appealing to Debreu (1952) theorem. Since the auctioneer’s new objective function depends only on
the average of the traders’ profile in each exchange, one could use Schmeidler (1973) to show that a degenerate equilibrium of the extended
generalized game is an equilibrium of the original game (see p. 62, Theorem 3, in  Hildenbrand 1974).
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