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Abstract

Molecular Layer Deposition (MLD) is an attractive vapour-phase technique to deposit

organic thin films with thickness control at the subnanometer level. Thus far, a large

deal of research has been dedicated to study MLD on flat substrates. However, MLD

on particle substrates is becoming increasingly relevant since depositing organic films is

highly sought for several applications, such as controlled release of pharmaceutical and

food products and protection of pigments.

This project focuses on the MLD growth of polyester films on both inorganic, TiO2,

and organic particles, proteins. The deposition is executed in atmospheric-pressure flu-

idized bed reactors for a wide range of number of cycles, from 5 to 50, using either malonyl

chloride or diethyl succinate as reactant, and either 1,2-butanediol or 1,4-butanediol as co-

reactant. To verify the success of the process, the photocatalytic activity of MLD-coated

TiO2 and the dissolution behaviour of MLD-coated protein are tested.

FTIR and TGA show that the MLD growth on TiO2 using malonyl chloride and 1,2-

butanediol evolves linearly with the number of cycles, thus confirming one of the main

characteristics of MLD. However, the film deposited with these precursors is not effec-

tive in suppressing the photocatalytic activity as the model pollutant is adsorbed by the

coating. The MLD growth using diethyl succinate, independently of the diol, stops after

a few cycles. Nonetheless, the photocatalytic activity of TiO2 is reduced by one-half.

Regarding proteins, the MLD growth using malonyl chloride potentially leads to

denaturation and thus to structural changes of the proteins, which affect the inherent

dissolution behaviour. Therefore, no clear conclusion can be drawn by the comparison of

the dissolution profiles of uncoated and MLD-coated proteins.

The results show that the only successful MLD approach for the deposition of polyesters

involves the use of an acid dichloride (e.g. malonyl chloride) and a diol. However, it can

only be applied to chemically stable particles as TiO2. Nonetheless, malonyl chloride

changes the colour and thus the intrinsic photocatalytic properties of TiO2.

Keywords: Molecular Layer Deposition, polyester films, MLD growth, TiO2, Proteins,

photocatalytic activity, dissolution behaviour
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Resumo

Deposição de camada molecular (MLD) é uma técnica de deposição na fase de vapor

de filmes orgânicos finos que permite o controlo da espessura ao nível subnanométrico.

Até agora, a maioria dos estudos sobre MLD focaram-se na deposição em substratos pla-

nos. Contudo, a relevância de MLD em partículas tem aumentado devido ao interesse em

depositar filmes orgânicos para diversas aplicações, tais como a libertação controlada de

produtos farmacêuticos e alimentares e proteção de pigmentos.

Este projeto foca-se no crescimento por MLD de filmes de poliéster tanto sobre partícu-

las inorgânicas, TiO2, como sobre partículas orgânicas, proteínas. A deposição é executada

num reator de leito fluidizado à pressão atmosférica com um número de ciclos entre 5 e

50, usando cloreto de malonilo ou dietil succinato como reagente e 1,2-butanodiol ou 1,4-

butanodiol como co-reagente. O sucesso do processo é verificado estudando a atividade

fotocatalítica das partículas de TiO2 revestidas por MLD e a dissolução das partículas de

proteína revestidas por MLD.

A análise de FTIR e TGA mostram que o crescimento por MLD sobre TiO2 usando

cloreto de malonilo e 1,2-butanodiol evolui linearmente com o número de ciclos, con-

firmando uma das características principais da MLD. Contudo, o filme depositado com

estes precursores não diminui a atividade fotocatalítica das partículas de TiO2, pois o

poluente estudado é adsorvido pelo revestimento. O crescimento por MLD usando di-

etil succinato cessa após alguns ciclos, independentemente do diol utilizado. Porém, a

atividade fotocatalítica de TiO2 é reduzida para metade.

No caso das proteínas, o crescimento por MLD utilizando cloreto de malonilo provoca

potencialmente a desnaturação, o que induz alterações estruturais nas proteínas, afetando

assim a dissolução. Portanto, não pode ser retirada uma conclusão clara pela comparação

dos perfis de dissolução de proteínas não revestidas e revestidas por MLD.

Os resultados obtidos mostram que a única abordagem com sucesso na deposição de

poliéster envolve a reação entre um dicloreto ácido (e.g., cloreto de malonilo) e um diol

sobre partículas quimicamente estáveis como as de TiO2. Todavia, o cloreto de malonilo

modifica a cor destas partículas, alterando assim as suas propriedades fotocatalíticas.

Palavras-chave: Deposição de camada molecular, filmes de poliéster, crescimento de

MLD, TiO2, Proteínas, actividade fotocatalítica, dissolução
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1
Introduction

1.1 Vapour-phase techniques for depositing thin films

There are many techniques for depositing thin films, one of them being Chemical

Vapour Deposition (CVD). As the name indicates, it involves the formation of a thin

solid film on a substrate by a chemical reaction between vapour-phase precursors. In this

technique, two or more reactants are simultaneously introduced into a reaction chamber,

where they react in the gas–phase to produce the desired material on the substrate surface.

Therefore, it distinguishes itself from another technique, Physical Vapour Deposition

(PVD) where atomic or molecular species adsorb on the substrate surface without reacting

with it. However, the vapour-phase deposition methods currently employed, such as CVD

and PVD cannot control the film growth nor the composition of the film[1–3].

Atomic Layer Deposition (ALD) and MLD, which are two vapour-phase techniques,

have appeared as a response to the challenge of controlling the deposited film growth at

the atomic level. These techniques allow the deposition of a conformal film and great

control over the thickness and composition of this film by two sequential, self-limiting

surface reactions of two precursors. The precursors are introduced into the reactor in

alternating pulses which are separated by a purge pulse to remove any unreacted pre-

cursor or reaction by-products[2, 4–6]. In this manner, the precursors are chemisorbed

onto the substrate instead of reacting on the gas-phase[3]. Typically, in ALD, the combi-

nation of a metal-containing compound, referred to as metal precursor, and an oxidizer,

referred to as co-reactant, lead to the deposition of a metal or a metal-oxide. MLD is the

organic counterpart of ALD and therefore instead of using metal precursors, it makes use

of organic bifunctional precursors that undergo condensation polymerization reactions

to yield organic polymers[4, 7].
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1.2 Molecular Layer Deposition

Molecular layer deposition has seen a relevant development as a vapour-phase tech-

nique for the deposition of ultrathin organic films in many different applications such

as microelectronics[2, 8], biomedical[9], luminescent materials[10, 11] and solar cell de-

vices[12–14]. This deposition technique was developed during the 1990’s by Yoshimura et
al[15] to produce thin films of polyimides on a flat substrate. Since then, it has been an

appealing method for the deposition of multiple organic polymers and currently hybrid

inorganic-organic compounds such as titanicone, alucone, zincone, zircone[16].

The main advantage of MLD over other deposition techniques is that by relying on

the same principle of self-limiting surface reactions as ALD, it provides precise control

over multiple polymer film properties such as thickness, composition, morphology and

conformality. MLD has been based on bifunctional monomers such as A-M-A and B-

P-B, where “A” and “B” are the chemical functional groups, and “M” and “P” are the

organic backbone[2, 17–20]. Both the organic backbone and organic functional groups

of each monomer can be altered to tailor the film properties, i.e. chemical functionality,

thermal stability, adhesion, and optical and electrical properties[21]. Ideally in MLD, each

bifunctional precursor reacts with the surface merely with one functional group, adding

a single monolayer per precursor pulse and thus by cycling between both precursors, a

multilayer film can be achieved.[18]

Thus far, most research work on MLD focused on the deposition of the following poly-

mers: polyimides[15, 22–26], polyureas[21, 27–32], polythiourea[33], polyurethanes[34],

polyamides[17, 35–37], polyesters[7, 16], polyazomethines[38–42] and polyacrilates[43].

However, despite the extensive work to expand the applications of this technique and to

develop new chemistries, little MLD work has been conducted on particles until now[16,

17, 35, 44]. The main reason for this is that MLD is mostly applied in microelectronics

and energy-related devices which are preferably flat[7, 39, 43, 45, 46]. However, there

is an increasing interest in applying MLD on particles as organic thin films with a well

controlled thickness and composition are becoming more attractive for other applications

such as controlled release of pharmaceutical and food particles[47, 48] and protection of

pigments[49–51].

The major difference between MLD on particles and flat substrates is in the specific

surface area, which is several order of magnitude higher for particles, resulting in longer

pulse times to saturate the surface of the particles[52, 53]. The use of conventional ALD

reactors, e.g. vacuum or viscous flow reactors, would bring economic problems as they

lead to longer deposition times and lower precursor efficiency. Hence, when using high

surface area substrates, i.e. particles, it is more appealing to use dedicated reactor designs,

such as the rotary, the fixed bed reactor and fluidized bed reactor (FBR)[54]. The use of

a FBR becomes attractive as these reactors ensure an efficient contacting between the

vapour-phase precursors and the surface of the substrate, which is not verified with a

fixed bed reactor. In addition, FBRs are also widely used for industrial processes and thus
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the scale-up of MLD is feasible[44]. Despite also ensuring an efficient contacting between

the precursors and the substrate, the rotary reactor due to the existence of moving parts

and larger necessary volume, it is less appropriate for large scale operations[54]. Typically,

most MLD experiments operate at low pressures as they facilitate lower pulse times and

help mitigating the incorporation of impurities. Nonetheless, as the cost and complexity

of vaccuum equipment represent a big obstacle to scale-up of the process, there is a

great effort to develop atmospheric pressure processes[17, 28, 54]. Hence, a scalable and

cost-effective solution to satisfy industry requirements can be provided by atmospheric

pressure FBRs[44].

Two major challenges arise in MLD, namely the deep understanding of the growth

behaviour and the development of new coupling chemistries. In contrast to the vertical

chain growth model that is typically used to illustrate MLD (Figure 1.1a), the polymer

chains tend to have a severely tilted orientation, i.e. not aligning perpendicularly to

the substrate surface (Figure 1.1b)[35], and to react twice with the surface due to the

bifunctional reactants (Figure 1.1c) which decrease the overral growth[2, 20, 55]. The

second challenge is the limited number of linking reactions as the absence of catalysts

and solvents limit the type of reactions that can be applied to MLD. Therefore, MLD

relies on the formation of polar linkages such as urea bonds[28–32], or ester bonds[7, 16].

For example, polyethylene, polystyrene and polyvinyl chloride cannot be deposited by

MLD as there are no polar linkages in the backbones of these polymers. This shows that

it is important to first study the fundamentals of MLD to understand how the growth

proceeds on particles and what are the optimal precursors for the deposition of organic

films.
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Figure 1.1: Representation of different MLD growth models.

1.3 Protection of Pigments

The bright white colour and great photostability of TiO2 nanoparticles make them a

highly attractive pigment for several industrial fields as paints, pharmaceuticals, plastics,
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synthetic fibers, paper and cosmetics [49, 56–58]. However, due to their strong photo-

catalytic activity, these particles can cause degradation to materials around them when

irradiated by ultraviolet radiation or sunlight. For instance, in paintings, the photocat-

alytic activity of TiO2 causes the discoloration which reduces the lifetime of paintings[59,

60].

Currently, most studies about suppressing the photocatalytic activity of TiO2 used

ceramic oxides such as Al2O3, SiO2, CeO2, ZrO2, NiO or CoO to cover the surface of the

particles[60–64]. Nevertheless, organic coatings with the intent to suppress the photocat-

alytic activity have already been studied, however to a lesser extent than ceramic oxides,

and proven to be efficient in reducing the photocatalytic activity[49–51]. Liang et al [62]

reported that a 10 nm alucone film deposited by means of MLD onto TiO2 lead to the

complete suppression of the photocatalytic activity of TiO2. This shows that organic films

are suitable for suppressing the photocatalytic activity of TiO2 and thus MLD stands out

as an excelent method for depositing organic films for protecting pigments.

1.4 Controlled Release of Pharmaceutical and Food Products

Controlled release systems currently represent one of the foremost areas of science

as it involves multidisciplinary scientific approaches which contribute to human health

care and well being[47]. Presently, there is a requirement for edible delivery systems to

encapsulate, protect and release bioactive and functional constituents within the food

and pharmaceutical industries[65, 66].

For instance, in the pharmaceutical industry these controlled release systems are

mainly developed for slow release of drugs to decrease the fluctuation of drug concen-

tration in plasma. Hence, the toxicity is reduced and the efficacy is increased since these

systems do not easily degrade in the digestive tract before they get to the targeted organ

and also improve patient compliance and convenience[16, 47, 67]. Furthermore, pharma-

ceutical companies by applying such method reduce the side effects of their old drugs

and consequently save money on health care delivery[68].

In the food industry, controlled release systems are mainly utilized for protection

of nutrients and to ensure the appropriate administration of heat- or oxidation-labile

health actives[65, 69]. Delivery systems can be significantly useful for developing func-

tional food designed to fight obesity, e.g. if such system can delay lipid digestion and

increase the quantity of undigested food reaching the ileum, it can stimulate the ileal

brake mechanism that modulates hunger, satiety and satiation[66, 70].

Proteins are emerging as the natural choice for nutraceuticals due to their high bioac-

tivity and specificity. However, the administration of most of proteins is still limited to

the parenteral route, i.e non-oral routes, since they degrade under the conditions found

in the gastrointestinal tract[48, 71, 72].

There are two main methods used for controlled release of particles: the active ingre-

dient can be embedded inside a polymeric matrix[73] or it can be coated by a polymeric
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film[47, 74]. The latter allows control over the release time and targeting by either manip-

ulating the thickness or composition[75, 76]. The complete control of these two aspects,

thickness and composition, makes MLD an excellent candidate to produce new controlled

release systems.

1.5 Research Questions

Based on the above described information, the main goal of this thesis was to under-

stand how the growth of polyester films by means of molecular layer deposition evolves

on both inorganic (i.e. TiO2) and organic (protein) particles using different combinations

of precursors, namely dichloride/diol and diester/diol.

In order to be able to achieve this goal, the following research questions were formu-

lated:

1. Which operating conditions ensure the MLD growth of polyester films on TiO2

nanoparticles using malonyl chloride and 1,2-butanediol?

2. How does the MLD growth proceed on organic particles such as protein containing

– NH2 surface groups?

3. Is it possible to grow polyester films by combining dialkyl diester (e.g., diethyl

succinate) and diol (e.g., 1,2-butanediol or 1,4-butanediol)?

4. What is the influence of the MLD coating on the photocatalytic activity of TiO2 P25

nanoparticles?

5. What is the effect of the MLD coating on the dissolution behaviour of the protein

particles?

1.6 Outline thesis

In Chapter 2 the theoretical background for this project will be provided to support

the choices made for experimental work and to support conclusions made from the results.

In Chapter 3, the experimental procedure is described. In Chapter 4, the results are

presented and discussed based on the given theoretical background. In Chapter 5, the

conclusions of this project are summarized and in Chapter 6 a few reccomendations are

made based on the conclusions.
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2
Theoretical Background

2.1 Molecular Layer Deposition

MLD is a vapour-phase deposition technique based on two sequential, self-limiting,

surface reactions[2, 4, 5]. This technique allows the deposition of conformal polymeric

thin films on the surface of a substrate. The deposition is achieved by alternating pulses

of two organic precursors which will react with the substrate surface rather than in the

gas-phase. Between these pulses, a purge step with an inert gas, most commonly nitrogen

gas, is applied to remove any unreacted precursor or reaction by-products. The inert gas

is used as a carrier for the precursors as well. Normally, a MLD cycle consists of four

steps: reactant, purge, co-reactant and purge again[1, 3, 77]. Hence, by simply adjusting

the number of these cycles, the film thickness can be tuned[77]. Figure 2.1 represents the

typical steps of one MLD cycle.

Figure 2.1: Representation of the precursor pulses in one MLD cycle on TiO2
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CHAPTER 2. THEORETICAL BACKGROUND

MLD, as well as ALD, is characterized by two major features, namely the linear growth

of the film thickness with increasing number of cycles and saturation of the surface within

one precursor pulse. The film growth is described in terms of growth per cycle (GPC),

which represents the thickness increase in each cycle. Ideally, the GPC is constant and

it is the slope of the plot of the evolution of the thickness as a function of the number of

cycles[20, 35].

Usually, MLD growth depends on the deposition temperature. The temperature range

where the GPC stays constant is called the MLD window as depicted in Figure 2.2. On

one hand, at high deposition temperatures, the precursors may either desorb rapidly

from the surface before the reaction takes place or decompose[2]. The desorption event

is commonly attributed to a phenomenon named by King et al[78] as precursor-mediated

reaction. On the other hand, at low deposition temperatures, the precursors may either

condense in the reactor or not reacting on the surface.[1, 20, 55] However, low tempera-

tures, that should be inside the MLD window, are preferable when performing MLD on

organic particles, i.e. proteins, due to their temperature sensitive behaviour[79]. How-

ever, Ivanova et al[55] suggested that the MLD window is either fairly narrow or in some

cases does not exist.
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Figure 2.2: Schematic representation of the MLD temperature window. Adapted from Sundberg et al[20]

Even though much less experimental work has been done regarding MLD in com-

parison with ALD, the interest in this field is rising and more studies have arose in the

last few years[55]. The major focus has been on the deposition of polyureas[21, 27–32],

polyimides[15, 22–26], polyamides[17, 35–37] and polyazomethines[38–42]. Less work

has described the MLD growth of polyesters[7, 16], polythioureas[33], polyurethanes[34]

and polyacrilates[43]. Table A.1 in Appendix A shows the type of precursors used to

deposit each of the referred polymer films. Thus far, most studies were done on flat sub-

strates, e.g. Silica wafers, and not on particles[7, 17, 35, 39, 45, 46, 80]. This is due to

ALD/MLD being mainly used in microelectronics and energy related devices which are

preferentially flat[7, 39, 43, 45, 46]. In addition, precursor pulses for particles need to

be several times higher than for flat substrates due to the higher specific surface area of

particles[52, 53]. However, in the past years, the research work on MLD on particles has
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increased mostly owing to the rising number of particle applications, e.g. protection of

pigments and controlled release of pharmaceutical and food products. Such applications

require films with a well controlled thickness and composition[16, 17, 35, 44].

Despite being a viable method for the deposition of thin films, MLD still faces many

challenges that need to be addressed to improve its robustness and effectiveness in mul-

tiple applications. The main challenges are the profound understanding of the growth

behaviour and the development of new and better coupling chemistries.

So far, most MLD related studies achieve a GPC lower than the length of one monomer.

Ivanova et al[7] demonstrated the MLD of polyethylene terephtalate (PET), which is

a polyester, on silica wafers. The surface of some wafers was functionalized with (3-

aminopropyl)triethoxysilane (APS) to have amine groups on the surface. The results

showed a better GPC with APS (0.33 nm.cycle−1) than without (0.06 nm.cycle−1) however

these values only represent 33% and 6% of the monomer length, respectively. This low

GPC was primarily attributed to the existence of double-reactions on the surface. These

double reactions arise from the use of homobifunctional precursors, or in other words

precursors that are terminated by the same functional group, and thus there is the de-

crease of the number of free active sites for the next step[2, 20, 55]. A study by Bergsman
et al[32] showed the decrease of the GPC with increasing flexibility of the monomer chain.

A more flexible precursor, i.e. the precursor has more aliphatic chains, has higher proba-

bility of reacting twice with the surface enabling more termination events to take place

and thus reducing the overall growth rate. The low GPC was also attributed to a severely

tilted orientation of the polymer chain[7, 20, 35, 36] which can cause steric hindrance

and thus not allowing other precursor molecules to react with the substrate as shown by

Peng et al[36]. Peng and his team observed the molecular orientation of films deposited by

MLD using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NEXAFS

revealed significant tilting of the grown polymer with respect to the substrate normal.

Nevertheless, depite the ocurrence of termination events as explained above, most

MLD studies sustain constant film growth. It would be expected that by increasing the

number of cycles, the number of active sites would decrease until all the sites were occu-

pied and the growth rate completely ceased. A recent study by Bent et al[18] presented

a possible explanationfor this behaviour. It was suggested that new active sites are intro-

duced into the organic film during the cycling process by either through absorption or

adsorption of the precursors. They showed that on terminated surfaces of silicon wafers,

the growth rate was initially slower than on un-terminated surfaces but eventually recov-

ered and stayed constant after 16 cycles.

Another major challenge of MLD is the narrow number of linking reactions available

due to the absence of solvent and catalyst in the vapour-phase. Thus far, MLD systems

rely on the formation of polar linkages, i.e. ester, amide and urea bonds[2]. Deposition of

polymers like polyethylene, polystyrene and polyvinyl chloride (PVC) is unfeasible due

to the lack of these polar linkages. Therefore, novel strategies need to be studied to broad

the coupling chemistries applicable for MLD[2, 81].
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Generally, in order to have an effective and well-controlled MLD process, the organic

precursors must have high vapour pressure, high reactivity and show no, or weak, self-

reactions[55]. To choose the ideal precursors for MLD, the first step is to examine their

vapour pressures at the operating temperatures, which in this project were between 50°C

and 120°C. If the vapour pressure is too low, i.e. less than 1 torr[81], around the operat-

ing temperatures, the precursors may not be suitable for MLD on heat-sensitive particles,

e.g. protein particles. Therefore, polyimides and polyureas are not adequate as dianhy-

drides[82, 83] and diisocyanates[84] usually have low vapour pressures, as they are solid,

at the lowest operating temperature. Polyesters and polyamides remain as appropriate

coating materials since the vapour pressure of short aliphatic acid chlorides, diols and

diamines are adequate[84–86]. Nevertheless, diamines are highly toxic in comparison

with the diols and acid dichlorides[87–91]. Consequently, the deposition of polyester

films was selected.

Ester bonds can be achieved as well by using a diacid as the carbonyl source as an

alternative to acid dichlorides. However, diacids are solid at the room temperature and

have too low vapour pressures at the operating temperatures[84]. The use of diesters as a

carbonyl source is suggested by J. Ruud van Ommen[92] as they have suitable vapour pres-

sure[84]. However, transesterification reactions are equilibrium reactions that require

the presence of either an acid or a base catalyst[93, 94]. In Ruud van Ommen’s work, it

was also suggested that the catalyst could be added in the gas-phase or be present in the

core material.

Previous work in the PPE research group of TU Delft, The Netherlands has shown

low temperature deposition of polyester material using malonyl chloride (MC) and 1,2-

butanediol (12BD)[16] and consequently, these two precursors were the major focus of

this project. Other precursors such as diethyl succinate (DS), a diester, and 1,4-butanediol

(14BD) were also tested even though no catalyst was employed.

2.2 MLD on Particles: TiO2 and Protein

In this project, both inorganic and organic particles were studied. Titania P25 nanopar-

ticles with d1,0=21 nm were selected as the inorganic particles. These nanoparticles were

studied as a model substrate to understand the optimal conditions to operate the MLD

process and in addition the effect of the polyester film on their photocatalytic activity.

The organic particles studied were micron-sized protein particles which are used as

dietery supplement for gluten-intolerant people. The used protein is a proline-specific

endopeptidase or prolyl-olygopeptidase that is the only known dietery enzyme to suc-

cessfully break down gluten in the stomach. Protein particles were studied as a model

particle for organic particles to comprehend the feasibility of depositing polyester films

by MLD and the influence of polyester thin films on its dissolution.

Table 2.1 shows some relevant physicochemical properties of each substrate used
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during this project. Appendix C briefly describes the Fourier Transform Infrared Spec-

troscopy (FTIR) spectra of both bare TiO2 and bare protein and the Thermogravimetric

Analysis (TGA) curve for bare TiO2.

Table 2.1: Physicochemical Properties of each substrate studied

Properties TiO2 Protein
Density / g.cm−3 4.1 [95] N.A.
Surface Area / m2.g−1 52.4 N.A.
Melting point / ºC 1850 [95] N.A.
Colour White Creamish

2.3 Fluidized Bed Reactors

In MLD, it is very important to ensure the contact between the precursors in the

vapour-phase and the surface of the substrate. Furthermore, adequate mixing is neces-

sary to make sure that all particles come into contact with the same amount of precur-

sor[54]. Therefore, the ideal technology for coating bulk quantities of particles is gas

fluidization[96] where the particles are suspended in a vessel in a fluid-like state by an

up-flowing gas[97]. Moreover, FBRs provide excellent gas-particle heat and mass trans-

fer as a consequence of the proper contact between the particles and the precursors in

vapour-phase[98].

In FBRs, the fluidization of the particles is achieved when the pressure drop, ∆pf b,

of gas passing through the fluidized bed is equal to the weight of the solids minus the

buoyancy, divided by the cross-sectional area, At, of the reaction vessel as shown in

Equation 2.1[98].

∆pf b =
At ×H × (1− ε)× (ρS − ρf )× g

At
(2.1)

where H is the height of the bed, ε is the porosity of the bed divided by the total bed

volume, ρs is the solids apparent density, ρf is the density of the fluid and g is the gravitic

acceleration. To achieve this condition, the flow rate of the upward gas needs to exceed a

certain limiting velocity, typically denoted by minimum fluidization velocity, vmf[97].

In fluidization with gases, solids show characteristic differences in behaviour that also

affect the operating characteristics of FBRs. Thus, particles are divided into four different

classifications (A to D) regarding their particle size, dp, and their relative density, (ρs − ρf)

as proposed by Geldart (Figure 2.3)[98]. Smaller particles are, typically, classified as

Geldart A or C. The cohesive forces of Geldart C particles are stronger than the forces

exerted by the fluid on the particles. Hence, this class of particles cannot be virtually

fluidized without fluidization aids, e.g. assisting vibration[97, 98]. Due to their small

size, both the Tio2 and the protein particles studied in this project fall in the Geldart C

classification.
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CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: Classification of particles in Gelgart A, B, C and D based on their particle size, dp , and relative density, (ρS−ρf ).
Adapted from Kunil and Levenspiel [97].

In contrast to micron-sized particles, nanoparticles do not fluidize individually but

as very dilute agllomerates. Some nanopowders are able to fluidize without any sort of

assistance with virtually no bubbles, large bed expansion and little elutriation whereas

other nanopowders require significantly high superficial velocities to be fluidized and

strong bubbling. Therefore, to fluidize these nanopowders some fluidization assistance

such as vibration is needed[96].

2.4 Protection of Pigments

TiO2 nanoparticles are widely used as a pigment due to its white colour and photo-

stability. These particles are also largely used in sunscreens since they act as an inorganic

Ultraviolet (UV) radiation filter owing to their high absorbance of UV radiation giving an

extensive broadband protection across this whole electromagnetic region[49].

Nevertheless, due to their high photocatalytic activity, these particles tend to react

with the surrounding materials, causing degradation, for example of paintings[59, 60].

Moreover, this irradiation-induced degradation of their surroundings also becomes a

problem for sunscreens. In this case, the photoexcited species, formed by the interaction

between UV light and TiO2 nanoparticles, can react with other molecules, such as water,

that are adsorbed on the surface of these particles producing reactive oxygen species

(ROS). These ROS can cause cellular and even mutagenic damage[49]. As shown by J. Wu
et al[99], after a long exposure, they induce significant oxidative stress potentially related

to the formation of oxygen free radicals.

Most commonly, ceramic oxides are deposited on TiO2 for suppressing its photoac-

tivity. Ceramic oxides are chosen since they have the ability to prevent the transport of
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eletrons and holes caused by the absorption of UV light to the surface and have high

transparency which conserves the white colour of TiO2. Notwithstanding, a few studies

reported the use of organic films to suppress the photocatalytic activity of TiO2[49–51]

Morlando et al[49] suggested a spray-drying method where TiO2 nanoparticles would be

encapsulated inside chitosan. In this work, a 10-fold decrease of the kinetic constant was

observed when using a relative amount of chitosan to titania of 2:1. Also, a multicom-

ponent polymer film with 11 nm was shown by Lee et al[51] to be also able to decrease

almost entirely the photocatalytic activity of TiO2 without affecting the core characteris-

tics of these particles such as colour, UV absorption and sun protection factor. All in all,

organic films seem to be a reasonable option for suppressing the photocatalytic activity

of TiO2 and hence, for protection of pigments.

2.5 Controlled release of Pharmaceutical and Food Products

The aim of controlled release of systems is to administer a constant concentration

of one or more active ingredients over a specific length of time[81, 100]. In this way,

the effectiveness of the ingredient can be increased whille it is protected from different

stimuli, e.g. pH and enzymes present in the gastrointestinal tract[48, 71, 72, 100].

Microencapsulation is the most used method to achieve controlled release of active

ingredients. In this method, one or more materials are coated with or embedded within

polymers[47, 74, 101]. Thus far, multiple polymers have been used to produce adapt-

able carriers of bioactive ingredients[102]. These polymers are generally hydrophobic,

which is the case of the polyester studied in this project, to reduce water penetration and

to lead to delayed diffusion and slowed release[81]. The controlled release can then be

accomplished by modulating the environment temperature, formula of copolymer and

the concentration of active agent[75, 76]. The full control of the thickness and composi-

tion of the polymer film is then a very important feature for controlled release systems.

Hence, MLD is an excellent candidate to attain this new kind of active ingredient delivery

systems[16].

2.6 Characterization Techniques

It is highly important to measure the thickness of the achieved coating since MLD

is mainly characterized by the GPC. The main characterization techniques employed

during this project were FTIR and TGA. To further characterize the particles, other

characterization techniques such as Transmission Electron Microscopy (TEM), Brunaur-

Emmet-Teller (BET) surface adsorption and Ultraviolet-Visible Spectrophotometry (UV-

Vis) were employed.

Generally, on flat substrates the film thickness is analysed by Spectroscopic Ellipsom-

etry (SE), X-ray Reflexivity (XRR) or TEM. However, SE and XRR can only be used with

flat substrates and thus they were not used. TEM visualization of nanoscale deposited

13



CHAPTER 2. THEORETICAL BACKGROUND

organic films is easier on an inorganic substrate than on an organic substrate since areas

with higher mass, e.g. TiO2, appear darker than regions with lower mass, e.g. proteins.

Furthermore, the studied protein particles were micron-sized and thus they are too large

to be analysed under TEM.

2.6.1 Fourier Transform Infrared Spectroscopy

FTIR is a characterization technique that allows the determination of structural char-

acteristics of molecules by their interaction with infrared light, focusing on the mid-

infrared region: 4000-400 cm−1. FTIR can be performed in different modes, e.g. trans-

mission or diffuse reflectance (DRIFTS) mode. In transmission mode, potassium bromide

(KBr) pellets are used to get the infrared spectra of powders. Despite the beam passing

through the whole sample in this mode, principally bulk contributions are emphasized

whereas surface contributions are minimized. KBr is used as it is inert and transpar-

ent for wavenumbers above 400 cm−1. In DRIFTS mode, mainly surface contributions

are recorded and sample preparation is quicker as the mix sample/KBr powder is just

placed in the metal cup instead of having to prepare a pellet. The quantitative analysis

of DRIFTS spectra should always be done in Kubelka-Munk units which is a reflectance

unit. Therefore, the obtained spectra should always be converted from absorbance units

to Kubelka-Munk units[103].

This technique was the most important method to characterize the coated particles

throughout this project as it is the single one that enables the analysis of both substrates

used. Table 2.2 shows the absorption peaks of interest in MLD of polyester films from

MC, DS and diols[104].

Table 2.2: List of the important organic groups for the identification of the deposited polyesters. The list was obtained
from Mayo et al[104]

Group Type Wavenumber / cm−1 Signal
O – H (stretch) Water 3450-3200 strong
C – H (stretch) alkyl 3000-2800 strong
C –– O (stretch) Acid Halide 1880-1800 strong
C –– O (stretch) ester 1755-1735 strong
C –– O (stretch) aldehyde 1735-1720 strong
C –– O (stretch) Carboxylic Acid 1720-1706 strong
O – H (stretch) Water 1640 strong
C – O (stretch) ester 1250-1000 strong

It is not expected that all of these peaks appear if the coating process was successful.

For instance, the carbonyl bond, C –– O, at 1880-1800 cm−1 will only arise if part of the

MC did not react. The most important peaks are the ester carbonyl peak around 1755-

1735 cm−1 and the C – H peaks around 3000-2800 cm−1 since their arising guarantees the

occurrence of reaction. The C – H peaks arise due to the methyl and methylene groups

present in 12BD and 14BD, respectively.
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A qualitative evaluation of the amount of polyester deposited can be done by analysing

the ester carbonyl peak in the FTIR spectra[17, 35]. The integrated area under the ester

carbonyl peak can be plotted as a function of the number of cycles giving an idea of the

evolution of the amount of polyester deposited (see Appendix D). It is then possible

to compare samples with different operating conditions such as number of cycles and

temperature. However, these results are not as accurate as TEM, XRR and SE[35].

2.6.2 Thermogravimetric Analysis

Thermal Gravimetric Analysis consists of a pan where the sample is placed and it

is supported by a high-precision balance. The pan is in a furnace that can be heated

during the analysis. The mass of the sample is monitored throughout the heating in a

pre-established and controlled atmosphere. The sample can be analysed under different

conditions such as vacuum, a reactive gas as air or an inert gas as hellium (He) or nitrogen

(N2). Since polyester is an organic molecule, it will combust if it is analysed under an

oxidative atmosphere such as air or oxygen (O2) or it will pyrolyse if it is analysed under

an inert atmosphere such as N2. The former allows the determination of the amount

of material that was deposited on the samples surface as shown in Appendix E. This

technique can only be applied to evaluate the deposited material on TiO2 since proteins

would also decompose during the TGA[79, 105, 106].

2.6.3 Transmission Electron Microscopy

The Transmission Electron Microscope works on the same fundamental principles

as the optical microscope but instead of light it uses an electron beam. A high energy

electron beam passes through a very thin sample in a vacuum atmosphere and parts of

it are transmitted whereas others are diffracted depending on the thickness and electron

transparency of the sample. The transmitted part is focused by an objective lens into an

image on a phosphor screen, creating light and allowing the user to observe the image.

The amount of diffracted electrons will dictate the image contrast. In this way, the inner

structure of the sample can be observed. The darker areas of the image arise due to

heavier atoms that deflect more electrons whereas the lighter areas appear due to lighter

atoms where more electrons can be transmitted through[107, 108]. Since protein particles

and the polyester coating mainly consist of carbon atoms, it is not expected to be able to

observe a contrast between the substrate and the coating. Consequently, this technique is

only viable to analyse the coating on TiO2 particles as the contrast between these heavier

particles and the polyester is higher.
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2.6.4 BET surface area Analysis

BET surface area analysis provides precise specific area evolution of materials by

measuring the physisorption of N2 gas as a function of the relative pressure. This deter-

mination is normally executed at the temperature of liquid nitrogen. From this method,

two isotherms are obtained: an adsorption isotherm and a desorption isotherm. The BET

adsorption isotherm equation, as represented in Equation 2.2, is fitted to the obtained

isotherm curve and hence the specific surface can be calculated by Equation 2.3[109, 110]:

1

Vα( P0
P − 1)

=
C − 1
VmC

P
P0

+
1

VmC
(2.2)

SBET =
VmNAα
Vmolar

(2.3)

where Vα represents the volume of the gas adsorbed at Standard Temperature and Pres-

sure conditions (STP) conditions, P0 is the saturated pressure of adsorbate gas, P is the

partial pressure of adsorbate gas in equilibrium with the surface, C is a dimensionless

constant that is related to the enthalpy of adsorption of the adsorbate gas on the sample

and Vm is the volume of gas adsorbed at STP conditions to produce an apparent mono-

layer on the sample surface. NA is the Avogadro constant, α is the effective cross-sectional

area of one adsorbate moleculuce (αN2
=0.162 nm2) and Vmolar is the molar volume at STP

conditions (assumed as 22.4 dm3). As the surface area is related to the particle diam-

eter by Equation E.3, this analysis can be used as well to evaluate the thickness of the

deposited film.

2.6.5 Ultraviolet-Visible Spectrophotometry

UV-Vis is based on the principle that compounds absorb or transmit light over a de-

fined interval of wavelengths if they possess chromophores such as aromatic nitro, azoxy,

nitroso, carbonyl or azo groups[111]. A UV-Vis spectrophotometer is able to measure the

intensity of a light beam, with variable wavelength from 185 to 700 nm, after it passed

through a sample solution. The absorbance value given by this instrument can then be

related to the concentration of the solution by Lambert-Beer’s Law (Equation 2.4):

A = ε.l.C (2.4)

where A is the absorbance, ε is the molar extinction coefficient or molar absorptivity, l is

the path length and C is the sample concentration. UV-Vis is a useful tool to analyse the

results from dissolution and photocatalytic tests since it is able to indirectly measure a

solution’s concentration and thus monitor the amount of material dissolved at a certain

moment during the test.
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3
Experimental Procedure

3.1 Materials and Chemicals

Crystalline TiO2 P25 nanoparticles were purchased from Evonik Aeroxide® and prior

to being used, they were sieved at a cut-off size of 150 µm for 20 min. Sieved TiO2 nanopar-

ticles were stored in an oven at 120ºC for 12 hours. Protein particles were obtained from

Royal DSM and stored in the fridge at 4ºC.

Malonyl Chloride (97%), diethyl succinate (≥99%), 1,4-butanediol (99%) and rho-

damine B (∼95%) were purchased from Sigma-Aldrich. Malonyl chloride was kept in

the fridge after each experiment and it was replaced after at least 1 week of usage to

avoid any decomposition. 1,2-butanediol (≥98%) was acquired from Fluka-analytical and

Sigma-Aldrich.

3.2 Molecular Layer Deposition Setup

Polyester thin films were deposited on different particle substrates using a fluidized

bed reactor. The reactor consisted in a vertical glass tube with an inner diameter of 2.6

cm and a length of 50 cm with a thermocouple inserted inside the powder bed. When the

pulses’ flow rate was not enough to fluidize the particles, the reactor was attached to a

mechanical vibration table (PAJA Triltechniek) with a frequency of 44-45 Hz. The vibra-

tion causes the breaking of agglomerates that could be formed thus helping the powder

fludization during the coating process. Attached to the bottom and top of the reactor

there were two windboxes with one distributor plate each. To the bottom windbox, it was

connected the inlet to the reactor, a type K thermocouple and an outlet for the manome-

ter. To the top windbox, there were the outlet of the reactor and an inlet for backflow,

used after every purge to prevent the powder getting stucked to the top distributor plate

17



CHAPTER 3. EXPERIMENTAL PROCEDURE

avoiding in this way a pressure drop increase.

As seen in Figure B.1, there were three different sets of lines, one for each precursor

and a third one for nitrogen gas at room temperature used as purge. The lines were

connected at a mixing point before entering the reactor. The precursors were preheated

inside bubblers which were placed in Isopad™ heating mantles and the temperature was

measured by means of a type K thermocouple inserted in the precursor liquid. Table B.1

shows the temperatures and vapour pressures at which each precursor was kept inside

the bubbler. The precursor gas in the bubblers was carried to the reactor by flowing

nitrogen gas.

The unreacted gases after exiting the reactor flowed through four vessels as shown

in Figure B.1. The second and third one were filled kaydol oil and sodium hydroxide,

respectively, to clean the outlet gases of organic compounds and neutralize the hydrochlo-

ric acid arisen from the reaction between MC and 12BD. The first and last one are empty

in order to prevent any backflow from the second vessel going to the reactor and any

sodium hydroxide from the third one going into the building vents and damaging them,

respectively. After the last vessel, there was a nanoparticle filter to impede nanoparticles

from also going into the building vents.

The control of temperature in this process is an essential point as slight variations

can induce problems such as substrate decomposition or condensation of the precursors

inside the lines. The reactor temperature was maintained constant at a temperature

between 50 and 120°C using an infrared lamp. This temperature was measured by in-

serting a type K thermocouple in the particle bed. Precursor lines (L-20# and L-30#)

were wrapped in heating and isolating tape with type K thermocouples attached since

the temperature in the line has to be higher than the bubbler’s to avoid any precursor

condensation inside these lines.

3.2.1 Coating of TiO2

For the coating of TiO2 nanoparticles, the reactor was filled with 1.5 g of sieved TiO2,

weighed prior to being stored in the oven. The nanoparticles were fluidized by a N2

flow assisted by vibration only when needed. The operating conditions used for each

experiment are present in Table B.2.

3.2.2 Coating of Proteins

For the coating of protein particles, the reactor was filled with 10 g of protein. The

operating conditions used for each experiment are present in Table B.2. In experiments

number 18 and 24, a four-port winbox was used. The fourth port was used to continuously

send N2 to be able to fluidize the particles. All the samples were later stored in the fridge

to avoid further denaturation of the enzyme.
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3.3 Characterization Techniques

Samples using TiO2 as substrate were always characterized ex-situ by FTIR and TGA.

Some samples were also characterized by TEM. Samples using protein were only charac-

terized by FTIR.

3.3.1 Fourier Transform Infrared Spectroscopy

FTIR analyses were executed in diffuse reflectance mode on a Nicolet 8700 spec-

trometer (ThermoFisher Scientific) equipped with a DTGS (Deuterated Triglycine Sulfate)

detector. Before analysing the samples, a background was made using a freshly grinded

potassium bromide sample, KBr (99+% FTIR grade, Harrick Scientific Corporation). The

spectra were recorded over the range of 4000-400 cm−1 using a resolution of 4 cm−1 and

128 scans. The spectra were then analysed using the software OMNIC 8.0 (ThermoFisher
Scientific). Since DRIFTS spectra should be analysed in Kubelka-Munk units, all spectra

were firstly converted from absorbance units using an OMNIC 8.0 built-in function. This

enabled to qualitatively evaluate the deposition of polyester films by calculating the in-

tegrated area under the ester peak (C=O) in different ranges. These measurements were

performed three times to estimate the error in this analysis unless otherwise specified.

3.3.2 Thermogravimetric Analysis

TGA’s were performed using a TGA2/SF1100 STARe system (METTLER TOLEDO).

All samples were heated in the range of 30ºC-600ºC under an air flow of 100 mL.min−1

with an heating rate of 5 K.min−1. The analysed samples had an initial mass between 5

mg to 7.5 mg. Similar to FTIR, this analysis were performed in three different instances

in time. This is only false when the collected powder was not enough to execute it.

3.3.3 Transmission Electron Microscopy

To prepare the samples for TEM, the powders were dispersed in the dry phase on

copper TEM grids. The images from TEM were recorded at several locations in the

sample by a JEM-1400 transmission electron microscope (JEOL) operating at a voltage of

120 kV and a current density of 10 to 30 pA.cm−2

3.3.4 BET-surface area analysis

Physisorption of N2 at 77 K was done on a TriStar II 3020 (Micromeritics Instrument
Corp). Before doing the physisorption of N2, the samples were degassed at room temper-

ature over 24 h.
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3.4 Performance Testing

The next two sections, Subsection 3.4.2 and Subsection 3.4.1, will explain how the

dissolution and the photocatalytic tests were performed.

3.4.1 Photocatalytic Test

In this test, the concentration of rhodamine B (Figure 3.1), a model pollutant, in a

continuously stirred photocatalytic slurry reactor was measured over time. This provided

a profile of the concentration from which a kinetic constant could be calculated as de-

scribed in Section G.1. To prepare the samples, 30 mg of powder was added to a 30 ml

solution of RhB with a concentration of 12 mg.l−1 along with a 1.5 cm magnetic stirrer in

a 100 ml glass beaker. The samples were placed onto a stirring plate for 5 minutes and

after they were mixed in an ultrasonic bath for 10 minutes at room temperature.

Afterwards, the samples were taken to the Atlas Suntest XXL+ sun simulator and

placed inside a water bath and onto a RO 15 power IKAMAG® magnetic stirring plate

with 15 different stirring positions. The water bath was maintained at 20°C using a Watson
Marlow 323 peristaltic pump and a Julabo FL300 recirculating cooler. All samples were

stirred for 20 minutes inside the closed sun simulator without any irradiation.

Subsequently, the samples were irradiated by Xe lamps in the range of 300-400 nm

with an irradiation power of 45 W/m2. Samples of 1 ml were taken from solutions at

different instances with a Gilson apipatman P1000 and placed in a 1.5 ml vial. These vials

with solution were covered by aluminium foil to prevent any additional degradation of

the model pollutant.

Afterwards, all the vials were centrifuged for 10 min at 12500 rpm in a Thermo Scien-
tific MicroCL 21R . With a Gilson apipatman P100, 0.4 ml was taken from the supernatant

and placed in another vial. The remaining solution was centrifuged again for the same

time and speed. Once again, 0.4 ml was taken and placed in the same vial as previously.

From these new vials, 0.4 ml was taken and analysed by ex situ UV/Vis using a HACH
LANGE DR 5000™ UV-Vis Spectrophotometer in the range of 350 to 700 nm as the

maximum absorbance of rhodamine B (rhB) is at λmax=554 nm.

O

COOH

N
+

-
Cl

Figure 3.1: Chemical structure of Rhodamine B
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3.4.2 Dissolution Test

The dissolution tests were performed at room temperature and using a stirring rate

of 8 Mot which corresponds to roughly 880 rpm. It was used 100 mg of sample in 100

ml of deionized water to execute the dissolution test. The dissolution was monitored by

taking around 2 ml of solution and filtering it through a 0.22 µl pore size polyvinylidene

difluoride membrane (Millex®) and then analizing it ex situ UV/Vis using a HACH LANGE
DR 5000™ UV-Vis Spectrophotometer. Before any measurements, a blank measurement

was made using deionized H2O. All measurements were made in the range of 240-320

nm, since the maximum absorbance for the used protein is at λmax=280 nm.

21





C
h
a
p
t
e
r

4
Results and Discussion

In this Chapter, the results of the experiments at high reactor temperature, mean-

ing TR−401 ≥ Tprecursor bubblers, with TiO2 and the experiments with proteins described

previously will be shown. In Section 4.1, the deposition of polyester films on TiO2 P25

nanoparticles using different precursors will be presented. More specifically, the MLD

processes using MC and DS as a first precursor are presented in Subsection 4.1.1 and

4.1.2, respectively. In section 4.2, the results of the MLD experiments on proteins will be

discussed.

4.1 Molecular Layer Deposition on TiO2

4.1.1 Molecular Layer Deposition using Malonyl Chloride

In this section only the experiments with reactor and windbox temperatures higher

than the precursor bubbler temperatures will be considered. By using these conditions, it

was ensured that no condensation occurred neither inside the bottom windbox nor inside

the reactor and thus a proper MLD process was performed. The set of experiments with

lower temperatures and/or lower flow rates, experiments identified with number 1-9, 14

and 16 in Table B.2, were performed to understand the optimal conditions to operate the

setup when using MC and 12BD as precursors. A brief discussion of these experiments is

present in Appendix F.

In order to study the evolution of the growth using MC as reactant and 12BD as a co-

reactant, an experiment up to 50 cycles was performed. During the experiment, samples

were collected after 5, 10, 15, 20, 30 and 40 cycles. In this way, it is guaranteed that all

these samples were under the same operating conditions.

The FTIR spectra for each sample are shown in Figure 4.1. The ester peak C –– O

between 1735 and 1755 cm−1 is present in all samples except on the 5 cycles one. This
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Figure 4.1: FTIR spectra obtained for different number of MLD cycles on TiO2 using MC and 12BD. Figure (a) shows
the spectra after being subtracted by the bare TiO2 spectrum in Kubelka-Munk units. Figure (b) shows a zoom of the
FTIR spectra in the range 3100-2500 cm−1. Figure (c) shows the peak area under the ester peak from 1808.930 cm−1 to
1685.507 cm−1 for all samples in (a). They were normalized with respect to highest one. The error bar represents the
standard deviation.

sample shows a peak around 1720 cm−1 which is also related to a C –– O bond but it

is predominantly determined by the presence of a carboxylic acid[104]. This can be

an indication that part of the MC reacted with some moisture present on the surface

of TiO2[112] since it is widely known that the surface of TiO2 nanoparticles contains

water[113]. There is also the presence of three distinct peaks in the range 3000-2880

cm−1 that appear due to the C – H stretch of methyl (CH3) and methylene (CH2) groups

as shown in Figure 4.1b. The peak at 2974 cm−1 can be attributed to the asymetric CH3

stretch whereas the peaks at 2945 cm−1 and 2884 cm−1 are due to the symmetric CH3

stretch split due to Fermi resonance. Methylene C-H stretch peaks are expected to have

a low intensity since only short alkyl chains are deposited [104, 112, 114, 115]. Since

the methyl groups emerge due to the reaction with 12BD, the increase of both the CH3
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stretches and the ester C –– O peak with the number of cycles is further proof that the

precursors have reacted on the surface of TiO2 to form a polyester film. Another peak at

1545 cm−1 appears in every spectra and it shows an increase with increasing cycles. This

peak is typically assigned to the carboxylate ion (COO– ) which can most probably be due

to the interaction of carboxylic groups with the TiO2 surface[116].

In Figure 4.1c, the normalized integrated area under the ester peak between 1808-

1685 cm−1 as a function of the number of cycles is shown. It is possible to observe that the

area under the peak linearly increases with the number of cycles, thus substantiating one

of the key characteristics of the MLD process. Each sample was analysed by FTIR in three

different instances in time as explained in Appendix D. The high standard deviations

observed are due to the time difference between FTIR analysis, which was around three

weeks, suggesting that the polyester coating from this combination of precursors is not

stable for large periods of time, i.e. one month.

These samples were also analysed by TGA and the respective curves are represented

in Figure 4.2a. The weight loss between 120°C and 500°C, which is attributed to the

loss of the polyester coating, increases with increasing the number of cycles. Figure 4.2b

shows the calculated loading, which represents the weight loss between 120°C and 500°C,

for each sample. In Appendix E, there is a brief demonstration of the calculation of the

loading and respective error. The trend of the calculated loading is found to be quite

linear. The linear evolution of both the integrated ester peak area from FTIR and the

weight loss from TGA with the number of cycles is a strong indication of the success of

the MLD process.

(a) Normalized Weight as a function of temperature. (b) Loading as calculated from the thermogravimetric
curves.

Figure 4.2: Thermogravimetric analysis in air with an heating rate of 5°C.min−1. Figure (a) shows the normalized weight
as a function of temperature for increasing number of MLD cycles on TiO2 using MC and 12BD. These curves were
consequently used to calculate the loading shown in Figure (b). The error bars, although they are too small to be visible,
represent the uncertainty propagated in the TGA measurements.

From the obtained loadings, the thickness of the polyester film could be estimated

using Equation 4.1 and it can be observed in Figure 4.3.
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δ =
dcore

2
×

 3

√
fcoating

100
×

ρcore
ρcoating

+ 1− 1

 (4.1)

where δ is the thickness, dcore is the diameter of bare TiO2 as determined by BET mea-

surements, fcoating is the loading of the deposited film, ρcore is the density of TiO2 and

ρcoating is the density of the polyester coating.

The GPC can be obtained by the slope of the linear fitting represented by the red line in

Figure 4.3 and it is 0.057±0.001 nm/cycle. The expected value of a monolayer thickness

of the polyester formed by MC and 12BD is 1.023 nm. This was estimated assuming

that the polyester monomer is completely linear and depending on the number of C – O

and C – C bonds and their usual lengths, which are 0.141 and 0.153 nm respectively[93].

The theoretical monolayer thickness of all the polyesters deposited in this project are

present in Table E.2. Therefore, the GPC obtained from TGA represents only 5.6% of the

theoretical monolayer thickness of the polyester formed by MC and 12BD. Several studies

in literature report GPC’s lower than the length of one monomer and generally attribute

this behaviour to either tilted growth of the polymer chains [2, 20, 21, 35, 36, 55]or double

reactions with the surface[2, 20, 55]. Adamczyk et al [35] reported a GPC 4- to 25-fold

lower than the expected value and attributed it to tilted growth of the polymer and to

homobifunctional precursors, such as terephthaloyl chloride and p-phenylenediamine,

which can react twice with the surface thus occupying active sites needed for the next

layers.

Figure 4.3: Thickness estimated from the obtained loadings by TGA. The error bars represent the uncertainty propa-
gated in the TGA measurements, the uncoated TiO2 diameter from BET and density of the coating. whereas the red line
represents the linear fit of the data.

Furthermore, as shown by Bergsman et al [32], the GPC is fairly dependent on the

flexibility of the precursors. It was stated that more flexible precursors tend to double-

react with substrate surface. Since in the current experiment the precursors used have

mainly aliphatic chains, this can also be the reason for the lower GPC as well. However,

all these reasons would cause termination events and it would be expected that all active
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sites would be occupied by increasing the number of cycles. Bent et al[18] proposed that

new active sites are established inside the organic film during the cycling process either

through absorption or adsorption of the precursors. This work showed that the initial

growth rate on terminated surfaces was slower than on un-terminated surfaces but after

16 cycles it recovered and stayed constant. Hence, the absorption of precursors into the

film seems a reasonable explanation for the lower but constant GPC obtained.

The sample with 50 cycles of MLD was also visualized under TEM. From Figure 4.4a,

it is possible to observe a uniform and conformal carbonaceous coating, assumed to be

polyester, around the particles. From Figure 4.4b, it is possible to observe that there is a

difference of around 1.5 nm between the thicknesses estimated by TEM (1.3 nm) and TGA

(2.8 nm) techniques. This difference can be attributed to two distinct reasons. The first

is an inaccurate estimation of the density of the polyester coating, since a small variation

in density yields a slightly distinct thickness. The second is the presence of excess of

precursor physisorbed on the substrate surface as the colour of the powder changed from

white to orange, which is the colour of MC, with increasing cycles as shown in Figure 4.5.

The excess precursor can induce a higher loading estimation from TGA which is translated

into a higher thickness as well. The physisorbed species are, potentially, removed due to

high vacuum produced during the TEM and thus are not observed.

5 nm

(a) TEM picture. (b) Comparison of the thickness estimated from TEM and
TGA.

Figure 4.4: Figure (a) is a TEM picture of 50 MLD cycles coated TiO2 using MC and 12BD. The darker areas are TiO2
nanoparticles and it is possible to see that around most particles there is a lighter area which is the polyester coating.
In (b), a comparison between the thicknesses estimated by TEM and TGA is given. The error bar in the TEM thickness
represents the standard deviation obtained by measuring the thickness in three different parts of four different TEM
pictures of the same sample. The red line represents the perfect agreement between the two methods.

This study, using MC as a reactant and 12BD as a co-reactant, revealed that it is, in

fact, possible to deposit a polyester film on the surface of TiO2 by MLD. The FTIR spectra

showed the presence of both the ester C –– O peak (1755 cm−1) and the CH3 stretches (2974,
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2945 and 2884 cm−1), proving the occurrence of the reaction between precursors. Both

the integrated ester C –– O peak and the film thickness (GPC=0.057±0.001 nm) evolved

linearly with increasing number of cycles, upholding one of the key characteristics of

MLD. In addition, a carbonaceous film, most probably polyester, deposited on the 50

MLD cycles was visualized by TEM. However, the thickness estimated by TGA and TEM

were not similar. Hence, experiments with higher number of cycles should be carried out

to better understand the evolution of the MLD growth and to ensure that the visualized

coating is indeed polyester.

As TiO2 is widely used as a pigment, the bulk optical properties should not change

with the addition of a coating [51, 61, 64]. It is certain that part of the optical properties

have changed since there is a colour change as shown in Figure 4.5.

Figure 4.5: TiO2 coated with 5, 20 and 50 MLD cycles using MC and 12BD.

Nonetheless, a photocatalytic test of uncoated TiO2 and 5, 20 and 50 MLD cycles

was performed as described in Section 3.4.1 to study the influence of the polyester coat-

ing formed by MC and 12BD in the photocatalytic activity of TiO2 P25 nanoparticles.

Figure 4.6 shows the absorption curves obtained from UV-Vis for each sample. It is pos-

sible to observe that there is a clear decrease in the rhB maximum absorbance peak at

λmax=554 nm over time. This decrease indicates that rhB is being degraded over time.

The maximum absorbance peak suffers a shift to lower wavelengths with time. This shift

is due to the de-ethylation of rhB and the fact that the fully de-ethylated rhB exhibits a

major absorption band at λmax=506 nm[117].

However, by comparing the intensity of the peak at λmax at 0 minutes in Figure 4.6c

and Figure 4.6d with Figure 4.6a and Figure 4.6b, it can be seen that in the 20 MLD cycles

sample the absorbance is less than half and in the 50 MLD cycles this peak does not even

appear. Furthermore, the solution with 50 MLD cycles coated TiO2 is "orangish", as shown

in Figure 4.7c, and remained with the same colour throughout the entire photocatalytic

test. The low value of absorbance at 0 min suggests that part of the dye was adsorbed on

the sample surface instead of being degraded. This is further supported by Figure 4.7

where it is possible to observe that the powder coated with 5 MLD cycles is white whereas

the powder coated with 20 and 50 MLD cycles is pink during the whole photocatalytic
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(a) UV-Vis absorption curves for TiO2 P25 nanoparticles. (b) UV-Vis absorption curves for 5 MLD cycles coated TiO2.

(c) UV-Vis absorption curves for 20 MLD cycles coated TiO2. (d) UV-Vis absorption curves for 50 MLD cycles coated TiO2.

Figure 4.6: UV-Vis spectra of bare TiO2 and MLD-coated TiO2 with MC and 12BD that were subjected to the photocat-
alytic test over time. In (a), (b) and (c) it can be seen the presence of the rhB by the peak present at λ=554 nm. In (d), the
rhB peak is not present but two peaks around 360 nm and 400 nm appear.

(a) 5 MLD-cycles on TiO2 at the end of photo-
catalytic test.

(b) 20 MLD-cycles on TiO2 at the end of photocat-
alytic test.

(c) 50 MLD-cycles on TiO2 at the end of photo-
catalytic test.

Figure 4.7: rhB solutions with MLD-coated TiO2 after photocatalytic test and being centrifuged. In (a) and (b), it can be
seen that the solution suffered discoloration over time. The numbers 0-9 correspond to 0, 5, 10, 15, 20, 30, 40, 50 and 60
minutes, respectively. In (c), the solution stayed with the same colour after the 60 minutes.
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test. The colour of a solution with just water and TiO2 coated with 50 MLD cycles using

MC and 12BD (Figure 4.8a) is similar to the colour of the solution with 50 MLD coated

TiO2 and rhB (Figure 4.7c). Moreover, the UV-Vis absorption curve obtained for the

solution with just water and TiO2 coated with 50 MLD cycles using MC and 12BD is

identical to the curve obtained for TiO2 coated with 50 MLD cycles using MC and 12BD

in a solution with rhB. The similarity of the obtained curves gives additional support

to the initial assumption that the dye may get adsorbed onto the surface without being

degraded.

This shows that suppressing the photocatalytic activity of TiO2 P25 nanoparticles

by depositing a polyester film by MLD using MC and 12BD is not feasible as the par-

ticles coated with higher number of cycles adsorb the dye instead of slowing down the

degradation by TiO2. The presence of malonyl chloride also induces colour change which

modifies the optical properties of TiO2.

(a) 50 MLD cycles coated TiO2 P25 nanoparticles in
water.

(b) UV-Vis of 50 MLD cycles coated TiO2 in water and a rhB
solution.

Figure 4.8: Figure (a) shows an aqueous solution with 50 MLD cycles coated TiO2 using MC and 12BD. Figure (b) is a
comparison between the UV-Vis of the aqueous solution with coated TiO2 and the solution with rhB and coated TiO2.

4.1.2 Molecular Layer Deposition using Diethyl Succinate

As described in Subsection 4.1.1, a polyester film was deposited on TiO2 P25 nanopar-

ticles by MLD using MC and 12BD but the photocatalytic activity of TiO2 P25 nanopar-

ticles was not suppressed as the coated particles adsorbed the dye. Therefore, it was

decided to use DS as a new reactant to replace MC. It should be stated that for the exper-

iments with DS, every characterization technique was done once for each sample due to

the lack of powder collected during each sampling unless otherwise specified.

To study the evolution of the film growth by only using DS, an experiment up to 50

cycles was carried out. The operating conditions used for this experiment, experiment

number 21, are shown in Table B.2. It is worth noting that in this case, one cycle comprises

only two steps: (i) pulsing DS and (ii) purging. In addition, no saturation tests were

performed prior to this trial and therefore the chosen pulse times and flow rates were
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the same used with MC and 12BD. Therefore, the pulses times were 1/5 min and the

flow rates were 1.5/1.5 l.min−1. Samples at 5, 10, 15, 20, 30 and 40 cycles were collected

during the experiment to understand the behaviour of this reactant on the surface of

TiO2.

The FTIR spectra obtained for each sample are shown in Figure 4.9. As it is possible

to observe, in all spectra there is a peak around 1720 cm−1, which is also attributed to a

ester C –– O peak as referred previously. It can be ascribed to the formation of carboxylic

acid upon reaction of the diester with moisture present on the surface of TiO2[112]. The

intensity of this peak apparently ceases increasing after a few cycles, suggesting the

saturation of the surface occurred between 15 and 20 MLD cycles instead of ocurring in

the first cycle. Furthermore, a more pronounced shoulder at 1740 cm−1 starts to appear

from 20 cycles onwards, indicating the presence of an ester[104]. However, both peaks

should have appeared even with less cycles as DS is a diester and only one ester functional

group is supposed to react with the surface. This fact suggests the occurrence of double-

reactions with the substrate surface. Since the ester C –– O peak is not well defined, the

integrated area of the ester carbonyl peak was not calculated for any sample. Here, also

a peak at 1540 cm−1 appears which, as previously referred, can be attributed to the

interaction of carbonyl groups with the surface of TiO2 leading to the formation of the

carboxylate ion (COO– )[116].

Figure 4.9: Subtracted FTIR spectra with increasing number of cycles of DS on TiO2. These spectra were subtracted by
the bare TiO2 spectrum in Kubelka-Munk units. These spectra were measured once.

The TGA curves and estimated loadings for all samples are represented in Figure 4.10.

Every sample was analysed under TGA twice. The loading estimated from the TGA

curves increases until 20 cycles and then had a little decrease, remaining constant with

increasing number of cycles. The higher loading value from 20 cycles can be due to an

error in the TGA machine and thus it was not accounted for the calculation of the film

thickness. By comparing both the FTIR spectra and TGA curves with increasing number

of cycles, it is possible to observe that there is an identical saturation behaviour after 20

cycles. The late saturation behaviour may be caused by the fact that operating conditions
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(a) Normalized weight as a function of the temperature. (b) Loading as calculated from the thermogravimetric
curves.

Figure 4.10: Thermogravimetric analysis in air with an heating rate o 5°C.min−1. Figure (a) shows the normalized weight
as a function of temperature for increasing number of cycles of solely pulsing DS on TiO2. These curves were consequently
used to calculate the loading shown in Figure (b). The error bars, although they are too small to be visible, represent the
uncertainty propagated in the TGA measurements.

in terms of flow rate and pulse times were not the ideal.

From the estimated loading, the DS film thickness could be obtained using Equa-

tion 4.1 and it is shown in Figure 4.11. The GPC was not calculated for this film as the

estimated thickness has remained almost constant with increasing number of cycles.

Figure 4.11: Thickness estimated from the obtained loadings from TGA for increasing number of cycles with solely puls-
ing DS on TiO2. The error bars represent the uncertainty propagated in the TGA measurements, the uncoated TiO2
diameter from BET and density of the coating.

Afterwards, to study the MLD growth using DS and 12BD on TiO2 P25 nanoparticles,

an experiment of 50 MLD cycles was performed. Identical to previous experiments,

samples were collected at 5, 10, 20, 30 and 40 cycles. The operating conditions used were

the same as the conditions used with MC, therefore the pulse times were 1/5/1/5 min

and the flow rates were 1.5/1.5/1.5/1.5 l.min−1 as shown in Table B.2.

The obtained FTIR spectra and respective integrated ester C –– O peak are shown in
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Figure 4.12. The ester C –– O peak is identifiable in every spectrum at 1744 cm−1. For the

5 MLD cycles on TiO2 using DS and 12BD, a peak appears at 1720 cm−1, analogous to

what occurs when solely pulsing DS. This can be attributed to the formation of carboxylic

acid by the reaction of DS and moisture present on the surface. However, in this case,

there is the presence of three peaks in the range 3000-2880 cm−1. As explained before,

these peaks arise due to the symmetric CH3 stretch split (2940 and 2881 cm−1) and the

asymmetric CH3 stretch (2967 cm−1). It is also possible to observe a broad peak in the

range 1370-1475 cm−1 that is ascribed to the C – H bend of CH3[104]. As mentioned in

Subsection 4.1.1, the simultaneous appearance of the ester C –– O peak and the symmet-

ric and asymmetric CH3 strectches are an excellent indication that atleast part of the

precursors have reacted to form a polyester.

(a) Subtracted FTIR spectra with increasing number of cy-
cles.

(b) Normalized ester peak area from 1808.930-1685.507
cm−1.

Figure 4.12: FTIR spectra obtained for different number of MLD cycles using DS and 12BD. Figure (a) shows the spectra
after being subtracted by the bare TiO2 spectrum in Kubelka-Munk units. Figure (b) shows the peak area under the ester
peak from 1808.930 cm−1 to 1685.507 cm−1 for all samples in (a). They were normalized with respect to highest value.
These spectra were measured once.

Typically, as previously referred, transesterification reactions require the presence of

a base or acid catalyst [93, 94]. Martra[118] reported the existence of Lewis acid-base

pairs on the surface of TiO2 that can catalyze reactions between adsorbed species. Hence,

these Lewis acid-base pairs may have catalysed the reaction between DS and 12BD. This

proposition is further supported by Kim et al[119]. Kim et al reported the gas-phase

transesterification of dimethylcarbonate and phenol over supported TiO2 in a fixed bed

reactor. The supported TiO2 catalyst achieved a conversion of over 35% and a selectivity

of almost 90% with 10 wt% Ti. The high selectivities were maintained above 10 wt%

indicating that both monolayer and bulk TiO2 serve as active sites.

Nevertheless, when comparing the FTIR spectra in Figure 4.12a, it can be seen that

the ester peak at 1740 cm−1 stops increasing after 20 cycles, as shown by the integrated

ester C –– O peak in Figure 4.12b. This behaviour implies that initially, the precursors can

reach the surface and consequently react to yield an ester. However, after a few cycles,

the surface of TiO2 becomes shielded, i.e. all catalytic active sites are occupied, and
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hence, it cannot act as a catalyst anymore, causing the growth cease. Furthermore, double

reactions and the tilted growth of the polymer chain may also occur.

The TGA curves with increasing number cycles for MLD on TiO2 using DS and 12BD

are shown in Figure 4.13a. From 30°C to 120°C, all samples present similar weight

loss except the 5 MLD cycles sample. This can be attributed to an increased amount

of moisture, although it is highly unlikely as the FTIR spectra does not show any peak

related to – OH groups (3400-3250 cm−1) or water (1640 cm−1). Between 120°C and

500°C, all samples have an identical weight loss (Figure 4.13b), despite some negligible

fluctuation attributed to the TGA machine.

(a) Normalized weight as a funtion of temperature. (b) Loadings as obtained from the thermogravimetric curves.

Figure 4.13: Thermogravimetric analysis in air with an heating rate o 5°C.min−1. Figure (a) shows the normalized weight
as a function of temperature for increasing number of MLD cycles on TiO2 using DS and 12BD. These curves were
consequently used to calculate the loading shown in Figure (b). The error bars, although they are too small to be visible,
represent the uncertainty propagated in the TGA measurements.

The thickness for each sample was then calculated by Equation 4.1 and it is shown

in Figure 4.14. Since the growth apparently reached a saturation point, the GPC was not

calculated for this experiment either.

Figure 4.14: Thickness estimated from the obtained loadings from TGA for increasing number of MLD cycles with DS
and 12BD on TiO2. The error bars represent the uncertainty propagated in the TGA measurements, the uncoated TiO2
diameter from BET and density of the coating.
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Subsequently, the sample with 50 MLD cycles of DS and 12BD was also visualized

under TEM as depicted in Figure 4.15. As it can be seen, it is not possible to observe any

organic film on TiO2 nanoparticles. This can ascribed to the fact that the film is too thin,

as the expected thickness from TGA is lower than the maximum resolution of the used

TEM. Therefore, high resolution TEM should be performed[120] to verify the existence

of a polyester coating.

5 nm

Figure 4.15: TEM picture of MLD-coated TiO2 P25 nanoparticles after 50 cycles using DS and 12BD. The darker areas
are TiO2 nanoparticles. It was not possible to visualize any polyester film deposited on the particles.

Since the experiments using only DS and complete MLD using DS and 12BD had

similar results in terms of growth, it was decided to test another diol. A list of possible

co-reactants for MLD of polyester films is suggested by J. Ruud van Ommen[92]. This list

is divided in two categories: (i) start-end, meaning the OH functional groups are at both

ends of the molecule and (ii) start-next, meaning the OH functional groups are next to

each other. As 12BD is a start-next diol, it was determined to use its start-end counterpart,

14BD. An experiment up to 50 cycles was performed. The operating conditions, identified

as experiment number 23, are described in Table B.2. The pulse times and flow rates

were maintained the same as the previous experiments with DS. During the experiment,

samples were collected at 5, 10, 20, 30 cycles.

Figure 4.16a shows the subtracted FTIR spectra obtained for each sample. The char-

acteristic ester C –– O around 1741 cm−1 appears in every samples spectra confirming the

presence of polyester. In the 5 cycles spectrum, there is also the presence of a shoulder at

1724 cm−1 which can be attributed to the formation of carboxylic acid from the reaction

between DS and moisture present on the surface of TiO2. Despite the reactor temperature

of 120°C, some moisture could still be present before 5 cycles were complete, explaining

the existence of a more pronounced carboxylic acid peak. However, since this shoulder

disappears with increasing number of cycles, possibly the moisture was vapourized over

time during the subsequent purge pulses. Three peaks at 2916, 2880, 2850 cm−1 and a
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(a) Subtracted FTIR spectra with increasing number of cy-
cles.

(b) Normalized ester peak area from 1808.930-1685.507
cm−1.

Figure 4.16: FTIR spectra obtained for different number ofMLD cycles on TiO2 using DS and 14BD. Figure (a) shows the
spectra after being subtracted by the bare TiO2 spectrum in Kubelka-Munk units. Figure (b) shows the peak area under
the ester peak from 1808.930 cm−1 to 1685.507 cm−1 for all samples in (a). They were normalized with respect to highest
value. These spectra were measured once.

short shoulder at 2980 cm−1 arise with increasing number of cycles. The peaks at 2916

and 2850 are typically assigned to the symmetric and antisymmetric CH2 groups, respec-

tively[115]. The appearance of these two peaks was expected as there is no methyl (CH3)

groups in a polyester formed by DS and 14BD. In this instance, there is also a broad peak

in the range of 1370-1475 cm−1 that can be attributed to the C – H bend of CH2, instead

of CH3[104]. Both the appearance of the ester C –– O peak at 1741 cm−1 and the methylene

group stretches indicate that the reaction between the two precursors occurred to form a

polyester. The 2880 cm−1 peak and 2980 cm−1 shoulder, as described earlier in Subsec-

tion 4.1.1, are attributed to the symmetric CH3 stretch split due to Fermi resonance and

can be assigned to some unreacted DS present in the reactor. The integrated ester C –– O

peak under the range 1809-1685 cm−1 increased slightly until 30 MLD cycles whereas

between 30 and 50 MLD cycles increased about 36% as shown in Figure 4.16b.

The TGA curves and loadings obtained for MLD coated TiO2 using DS and 14BD are

present in Figure 4.17. In this experiment, each sample was analysed twice in TGA. The

TGA curves depicted in Figure 4.17a show little difference up to 120°C, meaning that

their water content is fairly similar. Between 120°C and 500°C, it can be seen that the

loading increases with increasing number of cycles until 30 cycles and then decreases as

shown in Figure 4.17b. The temperature of the 14BD bubbler was not well controlled

from cycle 20 to cycle 30, reaching temperatures higher than the temperature of the

reactor several times. This temperature difference may have induced the condensation

of precursor inside the reactor causing the weight loss to increase. Thus, the 50 MLD

cycles should have higher loading as well which is not verified. The last 20 cycles were

done the following day, as this experiment took over 2 days. During this day, despite

the innefficient control of the temperature of diol bubbler, the reactor temperature raised

36



4.1. MOLECULAR LAYER DEPOSITION ON TIO
2

(a) Normalized weight as a funtion of temperature. (b) Loadings as obtained from the thermogravimetric curves.

Figure 4.17: Thermogravimetric analysis in air with an heating rate o 5°C.min−1. Figure (a) shows the normalized weight
as a function of temperature for increasing number of MLD cycles on TiO2 using DS and 14BD. These curves were
consequently used to calculate the loading shown in Figure (b). The error bars, although they are too small to be visible,
represent the uncertainty propagated in the TGA measurements.

from 120°C to 140°C with the IR lamp switched off. This increased reactor temperature

could have managed to vaporize the excess precursor and therefore remove it from the

reactor.

Subsequently, the thickness of the film from the estimated loadings was calculated

by Equation 4.1 and it is shown in Figure 4.18. The evolution of the thickness of the

polyester film is analogous to the previous experiments with DS as reactant. In the first

20 cycles there is a negligible increase and afterwards the growth pratically stops.

Figure 4.18: Thickness estimated from the obtained loadings from TGA for increasing number of MLD cycles with DS
and 14BD on TiO2. The error bars represent the uncertainty propagated in the TGA measurements, the uncoated TiO2
diameter from BET and density of the coating.

The sample with 50 MLD cycles on TiO2 using DS and 14BD was also visualized by

TEM. In Figure 4.19a, it is possible to observe a conformal thin coating on most particles.

However, several pictures were taken in different sites of the powder and as it can be

seen in Figure 4.19b, a significant amount of particles were not coated during the MLD
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5 nm

(a) TEM picture: visible coating.

5 nm

(b) TEM picture: no coating
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(c) Comparison of the thickness estimated from TEM and
TGA.

Figure 4.19: Figure (a) and (b) are TEM pictures of MLD-coated TiO2 P25 nanoparticles after 50 cycles using DS and
14BD. The darker areas are TiO2 nanoparticles. Around most particles in (a) there is a lighter area which is the polyester
coating. In (b) no coating is observable. In (c), a comparison between the thicknesses estimated by TEM in Figure (a) and
TGA is given. The error bar in the TEM thickness represents the standard deviation obtained by measuring the thickness
in three different parts of four different TEM pictures of the same sample. The red line represents the perfect agreement
between the two methods.

process. This shows a weakness of the process using DS and 14BD as it cannot provide a

conformal thin film around every particle. This weakness may arise from the absence of

a proper catalyst. Although the TiO2 nanoparticles may catalyze the transesterification

reaction as stated previously, the film growth is not conformal and stops after some time

due to the occupation of the catalytic active sites.

Consequently, a comparison between the thickness estimated from TEM and the thick-

ness estimated from TGA was done as shown in Figure 4.19c. It can be seen that there is

a difference of 0.9 nm between both thicknesses (δT EM=1.32 nm and δTGA=0.42) and, as

stated before in Subsection 4.1.1, this difference can arise from an inaccurate estimation of

the density of the polyester coating or the presence of carbonaceous impurities. Moreover,

the thickness measured under TEM for this polyester film using DS and 14BD is identical

to the measured thickness using MC and 12BD whereas the thicknesses measured by
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TGA are quite different.

Figure 4.20 shows a comparison of the FTIR spectra and estimated loading obtained

for every 50 cycles sample done with DS. The ester peak of the 50 MLD cycles using is

clearly better defined, meaning that there is only the presence of this peak without any

visible shoulder, than in 50 MLD cycles using DS and 12BD. Besides, the 50 MLD cycles

using DS and 14BD presents a higher loading than the combination of DS and 12BD.

Hence, the samples of MLD coated TiO2 using DS and 14BD were chosen to study the

influence of a polyester film on the photocatalytic activity of TiO2 P25 nanoparticles.

(a) Subtracted FTIR spectra for every 50 cycles sample using
DS.

(b) Estimated loading from TGA every 50 cycles sample us-
ing DS.

Figure 4.20: Comparison between the 50 cycles on TiO2 using solely DS, 50 MLD cycles on TiO2 using DS and 12BD
and 50 MLD cycles on TiO2 using DS and 14BD. Figure (a) shows FTIR spectra after being subtracted by the bare TiO2
spectrum in Kubelka-Munk units. Figure (b) shows the evolution of the loading with increasing number of cycles. The
error bars represent the uncertainty propagated in the TGA measurements.

From the study using DS as a reactant, it can be concluded that there is indeed depo-

sition of polyester as the FTIR spectra from both the MLD using 12BD and using 14BD

showed a C –– O peak around 1740 cm−1 which is generally related to an ester carbonyl

bond[104]. However, the weight losses estimated from TGA do not present significant

difference between solely pulsing DS and doing a fully MLD process using DS and 12BD.

Moreover, it was not possible to visualize any polyester film deposited onto TiO2 coated

with 50 MLD cycles using DS and 12BD by TEM. This proved that although there was

polyester, the film was too thin or not uniformly present to be visualized. The experiment

using DS and 14BD showed a clear ester C –– O peak at 1740 cm−1, slightly higher weight

losses from TGA and a carbonaceous coating was visualized by TEM. Nevertheless, for

all experiments the growth after 20/30 cycles ceased. Therefore, experiments with higher

number of cycles are required to gain insights into the morphology of the MLD films

deposited with these combinations and the evolution of the ester C –– O peak.

As described in Subsection 4.1.1, the bulk optical properties of TiO2 P25 nanoparticles

should not be affected by the deposited film, thus visually the colour should stay white.

From Figure 4.21, it can be seen that the colour of the powder almost did not change from
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Figure 4.21: TiO2 P25 nanoparticles coated with 5 and 50 MLD cycles using DS and 14BD

5 MLD cycles to 50 MLD cycles. Only two samples are shown since there was no powder

left from the other samples after the characterization techniques.

To test the influence of the polyester coating formed by diethyl succinate and 14BD

in the photocatalytic activity of TiO2 P25 nanoparticles, photocatalytic tests of the 5 and

the 50 MLD cycles, as described in subsection 3.4.1, were conducted.

From Figure 4.22, it can be seen that the characteristic rhB peak at λ=554 nm at 0

min is present in both the 5 MLD cycles and the 50 MLD cycles practically with the same

intensity as the peak found in the uncoated TiO2 P25 nanoparticles (see Figure 4.6a).

This means that, unlike with the polyester deposited by MLD using MC and 12BD, this

polyester coating does not cause the adsorption of the dye onto the surface of TiO2.

Subsequently, the kinetic constants for the degradation of rhB using uncoated TiO2

P25 nanoparticles and using 5 and 50 MLD cycles using DS and 14BD on TiO2 P25

(a) UV-Vis absorption curves for 5 MLD cycles coated TiO2. (b) UV-Vis absorption curves for 50 MLD cycles coated TiO2.

Figure 4.22: UV-Vis spectra of MLD-coated TiO2 with DS and 14BD that were subjected to the photocatalytic test over
time. In (a) and (b), it can be seen the presence of the rhB by the peak at λ=554 nm.
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nanoparticles shown in Figure 4.23 were calculated by the slope of Equation 4.2 as de-

scribed in section G.1.

ln(
A0

At
) = k × t (4.2)

where A0 is the absorbance at 0 minutes and At is the absorbance at time t, both at λ=554

nm.

From Figure 4.23b, it can be seen that the kinetic constant was reduced about 52%

from uncoated TiO2 to 5 MLD cycles. The kinetic constants of the 5 and the 50 MLD

cycles are identical (k5 cycles = 47.77× 10−3 min−1 and k50 cycles = 45.39× 10−3 min−1). As

these two samples exhibit similar film thickness estimated by TGA, it was expected that

their ability to suppress the photocatalytic activity of TiO2 P25 nanoparticles was equally

identical. Therefore, a polyester film deposited by MLD using DS and 14BD can, in

fact, partially suppress the photocatalytic activity of TiO2 P25 nanoparticles. However,

further work is necessary to gain more insight on how to achieve thicker polyester films

by MLD using DS and 14BD and their influence in the photocatalytic activity of TiO2 P25

nanoparticles. It is important to state again that typically a transesterification reaction

takes place in the presence of an acid or base catalyst[92, 93] which was not the case of

this study.

(a) Linear fitting of ln(A0
A ). (b) Kinetic constants with increasing number of cycles.

Figure 4.23: Figure (a) shows the evolution of ln(A0
A ) over time for uncoated TiO2 P25 nanoparticles, 5 and 50 MLD cycles

using DS and 14BD on TiO2 P25 nanoparticles. Figure (b) shows the kinetic constants calculated from (a). The kinetic
constant for uncoated TiO2 P25 nanoparticles is represented as 0 cycles. The error bars represents the standard error as
calculated by OriginPro 9 software.

4.2 Molecular Layer Deposition on Proteins

4.2.1 Molecular Layer Deposition using Malonyl Chloride

In this section, the experiments with 10 MLD cycles on proteins using MC and 12BD

while increasing the flow rate from 1.5 till 4 l.min−1, 30 MLD cycles on proteins using MC

and 12BD while using 4-port bottom windbox where the 4th port was used to continuously
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send nitrogen gas to be able to fluidize the particles, 10 cycles of solely pulsing one of the

precursors and heating up protein at 50°C over 2 hours will be discussed. A summary of

the conditions used for these experiments (experiment numbers 12, 18-21), is shown in

Table B.2. It should be noted that no saturation tests were performed during this project

and thus the chosen operating conditions are similar to the conditions used for MLD

on TiO2 P25 nanoparticles using MC and 12BD. All experiments were executed with a

reactor and bottom windbox temperature of 50°C.

To understand the MLD growth behaviour on proteins using MC and 12BD, two

experiments up to 10 and 30 cycles were performed. The 10 MLD cycles on proteins

using MC and 12BD while increasing the flow rate from 1.5 till 4 l.min−1 was performed

first.

The subtracted FTIR spectrum is depicted in Figure 4.24a. The subtracted FTIR

spectrum of 10 MLD cycles on protein shows a peak at 1750 cm−1, which can be assumed

as the ester peak, indicating that a polyester film was deposited onto the protein. The

integrated area under the ester peak was not calculated as in this experiment no powder

was collected at lower number of cycles. During the experiment, the fluidization of the

protein particles was lost everytime a precursor was being pulsed and then returning back

while being purged. However, the fluidization got worse with increasing number of cycles

and thus the flow rates were increased to counter this effect. In the end of this experiment,

the protein particles were quite agglomerated as it can be seen in Figure 4.24b. The

presence of such big agglomerates inside the reactor is probably the cause of the loss of

fluidization.

(a) Substracted FTIR spectra with increasing number of cy-
cles.

(b) Protein after 10 MLD cycles using MC and 12BD.

Figure 4.24: Figure (a) shows the FTIR spectra obtained for different number of cycles of MLD using MC and 12BD while
increasing the flow rate on protein after being subtracted by the bare protein spectrum in Kubelka-Munk units. Figure (a)
shows the spectra Figure (b) shows the protein after being collected. The powder was fairly agglomerated however they
were easily grinded afterwards.
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Consequently, for the 30 MLD cycles experiment, it was decided to use a 4-port bottom

windbox in order to enhance the fluidization of the particles without sending excess

precursor. Therefore, the flow rates used were 1.5 (5 N2)/5/1.5 (5 N2)/5 l.min−1. Identical

to what was done with MLD on TiO2, samples were collected during the experiment at

10, 15 and 20 cycles. It was observed that the pressure drop evolved in a similar manner

as the previous experiment, however, there were no agglomerates formed at the end.

The FTIR spectra obtained for each sample are shown in Figure 4.25a. It is possible

to see that with increasing number of cycles a peak at 1760 cm−1 emerges. Even though

this is slightly out of the usual range for an ester C –– O peak, it can still be assign to an

ester. The higher carbonyl peak can result from the resonance competition for the lone-

pair electrons of the ether oxygen (C – O) by the carbonyl group and the new conjugating

group, i.e the protein[104]. Furthermore, a peak begins to arise after 20 cycles at 1830

cm−1. This peak is typically related to acid halides (X-C –– O, X represents an halogen

atom) and thus it implies the existence of unreacted MC. Subsequently, the integrated

ester C –– O peak was calculated in the range 1809 to 1724 cm−1 as shown in Figure 4.25b.

This range was chosen since with the range used for TiO2, the baseline would be too

skewed and a proper conclusion could not be drawn from it. The integrated area under

the ester peak around 1760 cm−1 seems to be quite linear with increasing number of

cycles.

(a) Substracted FTIR spectra with increasing number of cy-
cles.

(b) Normalized ester peak are from 1808.930 to 1724.077
cm−1.

Figure 4.25: FTIR spectra obtained for different number of cycles of MLD using MC and 12BD on protein and using a 4-
port bottom windbox. Figure (a) shows the spectra after being subtracted by the bare protein spectrum in Kubelka-Munk
units. Figure (b) shows the peak area under the ester peak from 1808.930 cm−1 to 1724.077 cm−1 for all samples in (a).
All spectra were measured once.

Proteins can undergo denaturation for several different reasons such as: presence of

chemical denaturants, e.g. guanidinium chloride, temperature, pressure and pH[121–

125]. As the MLD process was executed at atmospheric pressure, the protein should not

be affected by it. Therefore, to study the influence of each precursor and temperature

on proteins, two experiments till 10 cycles of solely pulsing one the precursors and one
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experiment of heating up the protein at 50°C for 2 hours were executed. The operating

conditions for the 10 cycles pulsing only one precursor were similar to the conditions

used in the first 10 MLD cycles on protein and they are present in Table B.2. The flow rate

used for each pulse was 4 l.min−1. The experiment of heating up the protein at 50°C was

performed by merely switching on the IR lamp, the lines’ and bottom windbox’s heating

tapes without any gas flow.

Figure 4.26 compares the FTIR spetra obtained for both the 10 cycles of pulsing just

one precursor, the 10 MLD cycles using MC and 12BD with the 4th-port bottom windbox

and protein heated for 2 hours. The FTIR spectrum of the heated sample is practically

an horizontal line. Hence, the heating does not have a significant effect on the protein as

there is no particular difference between bare protein and the protein after being heated

to 50°C. The FTIR spectrum of 10 cycles of 12BD shows a peak at 1700 cm−1 but it is due

to the used subtraction factor as this peak also appears in the spectrum of bare protein

as shown in Figure C.3. By comparing both spectra from sending only MC and from the

complete MLD process, it can be seen that in both a peak around 1760 cm−1 appears.

Therefore this peak cannot be completely assigned to the formation of an ester. Moreover,

in the spectrum of just MC, similar to what is shown in the 30 MLD cycles spetrum, a

shoulder at 1830 cm−1 arises, which is attributed to an acid halide[104]. Thus, this peak

can surely be assigned to the presence of unreacted MC in both FTIR spectra.
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Figure 4.26: Subtracted FTIR spectra obtained for 10 cycles of pulsing only one precursor on protein, heating the protein
at 50°C and 10 complete MLD cycles using MC and 12BD. This spectra was subtracted by the bare protein spectrum in
Kubelka-Munk units.

To study the influence of different number of MLD cycles, precursors and heating up

on the dissolution of the used protein, dissolutions tests of bare protein, 10 MLD cycles

with higher flow rate (1.5 till 4 l.min−1), 30 MLD cycles using the 4-port windbox, protein

heated at 50°C for 2 hours, and 10 cycles with only one of the precursors were executed.

Figure 4.27a shows the normalized absorbance at λ=280 nm for uncoated protein and

10 and 30 MLD cycles. It is possible to observe that the dissolution of the uncoated protein
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(a) Normalized Absorbance at λ=280 nm as a funtion of the
time until 30 minutes.

(b) Normalized Absorbance at λ=280 nm as a funtion of the
time until 24 hours.

Figure 4.27: Normalized Absorbance at λ=280 nm of uncoated protein, 10 and 30 MLD cycles using MC and 12BD as
a funtion of the time (a) until 30 minutes and (b) until 24 hours. The curves were normalized regarding the highest
absorbance value.

is fairly fast and reaches full dissolution in just 20 seconds whereas the coated particles

seem to take more time, in the order of minutes, to reach full dissolution. The dissolution

tests of the 10 MLD cycles and the 30 MLD cycles were done over 24h as depicted in

Figure 4.27b and it can be seen that the absorbance after reaching full dissolution starts

to slowly decrease over time. Furthermore, during the dissolution test, small strands of

material formed and the solution became more blurry over time as shown in Figure 4.28.

The formation of strands and the decrease in absorbance occurred during the dissolution

test of uncoated protein as well, although in this case the decrease was not significant

and it was attributed to the hydrolysis of the protein[126].

3 min 6 h 24 h

Figure 4.28: Formation of strands during the dissolution of protein coated with 30 MLD cycles using MC and 12BD.

The appearance of strands and the decrease in absorbance at longer dissolution times

can be explained by the denaturation of the protein since the solubility of denatured pro-

tein tends to be lower than the solubility of the native protein [127, 128]. As previously

referred, proteins can suffer denaturation by multiple reasons as pH and the presence of

chemicals. Furthermore, several studies in literature report the use of chloride molecules

such as guanidinium chloride[121–125] and cetyltrimethylammonium chloride[122] to

induce the denaturation of proteins. Hence, the presence of MC, an acid chloride, most
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probably, induced the denaturation of the protein causing the observed behaviour. Other

reason for this behaviour can be a faster hydrolysis of the protein provoked by the pres-

ence of hydrochloric acid (HCl), which is a by-product of the reaction between MC and

12BD. HCl is generally used, together with heating, as an hydrolysis agent[129, 130].

The solution of 30 MLD cycles using MC and 12BD on protein was centrifuged af-

ter the 24h to separate the undissolved material from the liquid phase. The mass of

undissolved particles was around 15 mg which means that 15% of the particles were

not dissolved. This value is comparable with the difference between the maximum ab-

sorbance value obtained for bare protein and the absorbance value obtained for 30 MLD

cycles coated protein after 24h of stirring. Hence, the results from every dissolution test

were normalized regarding to the highest value to avoid the contribution of undissolved

material.

Since the FTIR spectra of solely pulsing MC and of the complete MLD process were

similar, a dissolution test of both the 10 cycles of solely pulsing one of the precursors

and the protein heated at 50°C for 2 hours were performed. These tests were carried out

to ensure that the slower dissolution is in fact due to a polyester coating and not to any

different factor as denaturation of the protein.

From Figure 4.29, it can be observed that both dissolution curves of the 10 cycles

of solely pulsing 12BD and of the heated protein present the same trend and they are

not significantly different from the uncoated protein curve. Thus, substantiating that

neither the heating at 50°C nor the 12BD have a significant effect on the protein and its

dissolution. Nevertheless, a more interesting finding emerges from dissolution curves of

10 MLD cycles and 10 cycles of solely pulsing MC as they almost superimpose over each

other. This is further indication that most probably the coating was not deposited on the

protein, as shown before in Figure 4.26. In addition, the observed delay in dissolution

is due to the presence of MC which possibly denatures the protein and consequently

decreases the solubility of the protein.

Figure 4.29: Normalized Absorbance at λ=280 nm of uncoated protein, heated protein, 10 MLD cycles using MC and
12BD and 10 cycles of solely pulsing one of the precursors as a funtion of the time until 30 minutes. The curves were
normalized regarding the highest absorbance value.

46



4.2. MOLECULAR LAYER DEPOSITION ON PROTEINS

4.2.2 Molecular Layer Deposition using Diethyl Succinate as Reactant

Based on the results of MLD growth using DS on TiO2 P25 nanoparticles described

in Subsection 4.1.2, it was determined to use 14BD as co-reactant to study the evolution

of the growth of MLD using DS on protein particles. Therefore, to perform this study,

an experiment up to 30 cycles (experiment number 24 in Table B.2) was executed. Anal-

ogous to previous experiments, some powder was collected at 10 and 20 cycles during

the experiment. For this experiment, it was used the 4-port bottom windbox to avoid

loss of fluidization during the process. The reactor and windbox temperatures were the

same as the temperatures used for 30 MLD cycles on protein using MC, as shown in

Table B.2, whereas the temperatures for the precursor bubblers and lines were identical

to the temperatures used in 50 MLD cycles on TiO2 using DS and 14BD.

The subtracted spectra for each sample is shown in Figure 4.30. As it can be seen,

there is a peak at 1700 cm−1, as explained in Subsection 4.2.1, this peak is due to the

used subtraction factor as it also appears in the spectrum of bare protein as shown in

Figure C.3. Hence, there is no clear evidence that a polyester film was indeed deposited

during this MLD experiment. This can be due to the fact that a transesterification reaction,

as mentioned earlier in Subsection 4.1.2, usually occurs in the presence of a catalyst[92–

94] which is not the case of the experiment described above.

Figure 4.30: Subtracted FTIR spectra obtained for different number of cycles using DS and 14BD on protein. This spectra
was subtracted by the bare protein spectrum in Kubelka-Munk units.

Despite the lack of evidence of the deposition of polyester film on protein particles,

a dissolution test of the 30 MLD cycles using DS and 14BD was carried out. Only this

sample was considered for a dissolution merely because of the higher probability of

having polyester deposited onto the particles. Figure 4.31a shows the obtained dissolution

curve for 30 MLD cycles using DS and 14BD on protein. A slight delay is observed

however it is comparable with the delay caused by heating up the protein at 50°C implying

that the delay was entirely caused by heating up the protein rather than by the presence
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(a) Normalized Absorbance at λ=280 nm as a funtion of the
time until 30 minutes.

(b) Strands in solution.

Figure 4.31: Figure (a) shows the normalized absorbance at λ=280 nm of uncoated protein, 30 MLD cycles using DS
and 14BD until 30 minutes. The curves were normalized regarding the highest absorbance value. Figure (b) shows the
presence of strands after 30 min of dissolution of protein coated with 30 MLD cycles using DS and 14BD.

of a polyester coating. In Figure 4.31b, small strands are observable in solution after 30

minutes of dissolution which were attributed to the hydrolysis of the protein as discussed

for uncoated protein particles. Hence, it was not possible to deposit a polyester film on

protein particles using the precursor combination DS and 14BD and thus there was no

significant effect on the dissolution of these particles.
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5
Conclusion

The main goal of this project was to understand how the growth of polyester films by

means of molecular layer deposition evolves on both inorganic (i.e. TiO2) and organic

(protein) particles using different combinations of precursors, namely dichloride/diol

and diester/diol.

Firstly, it was shown that to be able to deposit a conformal thin polyester film onto

TiO2 P25 nanoparticles using MC and 12BD, it is crucial that the MLD process has a

high enough flow rate (1.5 l.min−1) that ensures the transport of the precursor vapour

from the bubbler to the reactor and to fluidize the bed without the help of vibration.

The flow rate has also to be low enough not to quickly increase the pressure drop and

not to form agglomerates. The reactor temperature (TR−401=100°C) should be higher

than the bubblers temperature (TB−201=40°C and TB−301=90°C) to make sure that no

condensation of precursors takes place inside the reactor. As this would increase the

weight loss while decreasing the amount of polyester chemisorbed on the particles. The

use of such conditions allowed the deposition of a conformal polyester film with constant

GPC , shown by both FTIR and TGA, onto the TiO2 particles. The polyester film was

also thick enough to be visualized under TEM. However, disagreements in the estimated

thickness arised when comparing both the value estimated by TEM (1.34 nm) and the

value estimated by TGA (2.77 nm). Therefore, higher number of cycles are necessary

to understand the growth of this polyester and to ensure that the carbonaceous coating

visualized is indeed polyester.

New combinations of precursors, such as DS + 12BD and DS + 14BD, were tested to

understand the feasibility of growing a polyester film by combining a dialkyl diester and

a diol. From FTIR and TGA, it was concluded that by using the combination DS and 12BD,

a polyester was deposited on the surface of TiO2, despite the existence of growth cease

after a few cycles. However, the supposed polyester coating was not visualized by tem.
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These results were also identical to the results obtained from solely pulsing DS. Instead,

by using DS and 14BD, a carbonaceous coating, that was attributed to polyester, was

visualized under TEM. However, the TGA and integrated ester C –– O peak also showed

a cease of growth after a few cycles. The growth cease can be explained by the fact

that the transesterification reaction between the diester and the diol usually occurs in

the presence of an acid or base catalyst. Thus, different operating conditions should be

studied to guarantee that the precursors react with each other.

The influence of the polyester coating in the photocatalytic activity of TiO2 P25

nanoparticles was subsequently studied by performing a photocatalytic test using a solu-

tion of rhodamine B. For the MLD using MC and 12BD, it was observed that rhodamine

B was adsorbed on the surface of the particles rather than being degraded. This was

supported by the colour of the particles and the solution at the end of the test, which

were pink and "orangish" in the case of the 20 and the 50 MLD cycles using MC and

12BD, respectively. Furthermore, the absorbance curve obtained for the 50 MLD cycles

coated TiO2 using MC and 12BD also provided support to the dye adsorption since the

characteristic rhodamine B peak at λ=554 nm was absent right from the start of the test.

The obtained absorbance curve was also identical to the absorbance curve obtained for

a solution of just water and 50 MLD cycles coated TiO2 using MC and 12BD. Therefore,

for purposes of suppression of the photocatalytic activity, a polyester coating formed by

MC and 12BD is not feasible, as it improves the adsorption of the surrounding mate-

rial. For the MLD using DS and 14BD, a decrease of about 50% in the kinetic constant

was observed when both the 5 MLD cycles and the 50 MLD cycles coated particles were

present in solution. This is clear evidence that these particles were modified due to the

MLD process. Hence, as previously mentioned, the MLD process for depositing polyester

films onto TiO2 should be further studied in order to optimize the operating conditions

to reach thicker polyester films.

The operating conditions used in the MLD using MC and 12BD, except the reactor

and windbox temperature, were extended towards the protein. To be able to fluidize the

protein particles, flow rates higher than 1.5 l.min−1, even with vibration switched on,

were needed. Two different approaches were used on this project. On the first, all flow

rates were increased during the experiment from 1.5 l.min−1 to 4 l.min−1 however due

to the excess precursor pulsed, agglomerates started to be formed causing the rise of the

pressure drop in the reactor. On the second one, to avoid sending excess precursor, a 4-

port bottom windbox, where the 4th port was utilized to continously send 5 l.min−1, was

used. Although the pressure drop increased in a similar trend as previously, there was no

formation of such agglomerates. Furthermore, since proteins can undergo denaturation

by several reasons such as temperature and presence of certain chemicals, it was decided

to also study the effect of each precursor and temperature. From the FTIR spectra, there

was no particular evidence that polyester was deposited onto the surface of proteins

in both MLD experiments as their spectra were, in fact, very similar to the spectrum

obtained for the experiment of solely pulsing MC. As for the other two spectra, from
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only pulsing 12BD and heating up the protein to 50°C, no significant difference from the

spectrum obtained for bare protein was observed.

In addition, identical to TiO2, the combination of a dialkyl diester and a diol, namely

DS and 14BD, was tested on protein particles. It was found that most probably no

polyester was deposited on the protein particles as there was not a clear ester C –– O peak

in the FTIR spectra.

The influence of the polyester coating in the dissolution of the proteins was then

studied. For the MLD using MC and 12BD, it was found that the delay in the dissolution

was mostly caused by the presence of MC which most probably denatures the protein

and thus decreases the solubility of the protein. For the MLD using DS and 14BD, the

obtained dissolution curve was almost identical to the dissolution curve obtained for

heated protein, meaning that the observed small delay was more caused by the heating

instead of by a polyester coating. Therefore, for deposition of polyester thin films by

means of MLD on proteins, new combinations of precursors need to be studied.
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Recommendations

• Study the MLD growth behaviour using malonyl chloride and 1,2-butanediol on

TiO2 for higher number of cycles, i.e. 100 or more, to ensure that the evolution of

the thickness is visualized under TEM.

• Study the MLD growth behaviour using malonyl chloride or, if possible, other acyl

dichlorides, and different diols, for example ethylene glycol, 1,2-propanediol, 1,3-

propanediol or 1,4-butanediol.

• Synthesize MLD films that do not require the use of chloride based precursors as

they are not beneficial for both TiO2 due to the colour change and proteins due to

denaturation.
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Overview of past Molecular Layer

Deposition Experiments

Table A.1 shows a summary of the current MLD literature and also the type of precur-

sors were used for the deposition of each polymer film.
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APPENDIX A. OVERVIEW OF PAST MOLECULAR LAYER DEPOSITION

EXPERIMENTS

Table A.1: MLD precursors for: polyester, polyamide, polyimide, polyimine polythiourea, polyurea, polyurethane and
polyacrylate. Adapted from D. La Zara[81]

Polymer Characteristic Linkage Reactant Co-Reactant Literature

Polyester R

O

O

R'

dichloride, diacid, diester diol [7, 16]

Polyamide

R

O

N

R'

R'' dichloride, diacid, diester diamine [17, 35–37]

Polyimide

R

O

N

R''

R'

O

dianhydride diamine, dichloride [15, 22–26]

Polyimine R

N

R'

R''

dialdehyde diamine [38–42]

Polythiourea

N

S

N

R'''R

R''R' diisothiocyanate diamine [33]

Polyurea

N

O

N

R'''R

R''R' diisocyanate diamine [21, 27–32]

Polyurethane

O

O

N

R''R

R' diisocyanate diol [34]

Polyacrilates R

O

O

R'

diene diiodo [43]
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B
Overview of the Experimental Work

B.1 Molecular Layer Deposition Experiments

Figure B.1 shows a schematics of the MLD experimental setup. Figure B.2 shows the

molecular structure of reactant and co-reactant used in this project. Table B.1 shows

the bubbler temperatures and respective vapour pressure for each precursor. Table B.2

shows all the MLD experiments done throughout this project in chronological order and

respective operating conditions.
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B.1. MOLECULAR LAYER DEPOSITION EXPERIMENTS

Cl Cl

O O

(a) Chemical Structure of Malonyl Chloride.

O

O

O

O

(b) Chemical structure of Diethyl Succinate.

HO

OH

(c) Chemical Structure of 1,2-butanediol.

HO

OH

(d) Chemical structure of 1,4-butanediol.

Figure B.2: Chemical Structure of both reactants and co-reactants used in this project.

Table B.1: List of precursors with vapour pressure at the temperature inside the bubbler

Precursor Tbubbler/°C Pv /torr
MC 40 3.161

DS 95 9.92[84]
12BD 115 46.3 [84]
12BD 90 13.3[84]
14BD 115 10.1[84]

1at 25 ºC
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B.2. PHOTOCATALYTIC EXPERIMENTS

B.2 Photocatalytic Experiments

Table B.3 gives a summary of the conditions used for the photocatalytic tests per-

formed throughout this project.

Table B.3: Photocatalytic Activity Tests by Chronological order

Test Experiment Number Mass Volume Dye
Number Number of Cycles of powder / mg of solution / ml Concentration / mg.l−1

15

1 5 30 30 12

2 20 30 30 12

3 50 30 30 12

23

4 5 30 30 12

5 20 15 30 6

6 50 30 30 12

B.3 Dissolution Tests

Table B.4 gives a summary of the conditions used for the dissolutions tests performed

throughout this project.

Table B.4: Dissolution Tests by Chronological order

Dissolution Number Experiment Number Mass / mg Volume / ml Stirrer Speed / Mot Dissolution Time / h

1 Bare 100 100 8 1

2 12 100 100 8 24

3 Bare 100 100 8 24

4 18 100 100 8 24

5 172 100 100 8 0.5

6 20 100 100 8 0.5

7 19 100 100 8 0.5

8 24 100 100 8 0.5

2Sample kept in the drawer at room temperature
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C
Characteristics of bare substrates

C.1 TiO2 P25 nanoparticles

The used FTIR spectra and the TGA curves of bare TiO2 will be discussed. Both the

FTIR spectrum measured on November 6, 2017, and the TGA performed on November

22, 2017, were measured by a previous master student during their thesis project.

The FTIR spectra obtained for bare TiO2 is shown in Figure C.1. Three distinct fea-

tures are seen in this spectrum are the peaks at 3700-3600 cm−1, the broad peak ranging

from 3600-2500 cm−1 and the peaks at roughly 1620 cm−1 and 1540 cm−1. The peaks

between 3700-3600 cm−1 can be attributed to – OH groups strongly bonded to the sur-

face of TiO2 nanoparticles[131]. The broad peak ranging from 3600-2500 cm−1 can be

assigned to adsorbed H2O molecules and hydrogren bonded – OH groups, whereas the

Figure C.1: FTIR spectrum obtained for bare TiO2 measured in DRIFTS at room temperature.
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APPENDIX C. CHARACTERISTICS OF BARE SUBSTRATES

(a) Normalized weight as a function of temperature. (b) Normalized first derivative as a function of temperature.

Figure C.2: Figure (a) is the thermogravimetric curve for bare TiO2 in 100 ml.min−1 of air with an heating rate of
5°C.min−1 and (b) the respective first order derivative. As the derivative was too noisy (red), it was applied 50pt Savitzky-
Golay smoothing in OriginPro 9.0 to observe the fundamental trend (green line).

peak at 1620 cm−1 can be fully attributed to adsorbed water. Regardless of fact that the

TiO2 was firstly placed in the oven at 120°C before measuring the FTIR spectrum, it can

be inferred that significant adsorption of water is still present in some extent. This shows

that upon contacting with air, TiO2 quickly adsorbs water and therefore heating should

be carried out under inert atmosphere before starting an experiment in order to remove

more of the adsorbed water[112]. The peak at 1540 cm−1 is typically assigned to the

carboxylate ion[104], which arises in TiO2 samples due to carboxylic groups interacting

with the TiO2 surface[116].

The obtained TGA curve is shown in Figure C.2a. The values were normalized with

respect to the initial mass. It can be seen that the mass loss is approximately 2% in total.

The mass loss up to 120°C is normally attributed in literature to the loss of physisorbed

water, whereas at higher temperatures the mass loss is assigned to the loss of hydroxyl

groups (chemisorbed water) and combustion of carbonaceous material adsorbed to the

surface of TiO2[113, 132]. It is expected that the mass loss between 120-250°C is princi-

pally due to the loss of the hydroxyl groups whereas from 250-500°C, it is mainly due to

the combustion of carbonaceous material. When analysing the TGA of coated TiO2 sam-

ples, it is therefore relevant to realise that mass loss in the temperature range of 120°and

500°C may also be attributed to the combustion of the carbonaceous material and not

only to polyester coating.

C.2 Protein Particles

In this section, the FTIR spectrum and the results of the dissolution test of uncoated

protein particles will be discussed.

In Figure C.3, the region between 3500-3200 cm−1 can be attributed to both asymmet-

ric and symmetric amine N – H stretches of aliphatic and aromatic amines. In the region
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C.2. PROTEIN PARTICLES

Figure C.3: FTIR spectrum obtained for bare protein measured in DRIFTS at room temperature.

of 3000-2850 cm−1, the aliphatic C – H stretches can be found. Due to the presence of

a large peak at 1690 cm−1, the exact identification of an ester C –– O peak in the region

1755-1735 cm−1 is expected to be more difficult than in TiO2 nanoparticles as the effect

of a nano-sized polyester is too small.

The dissolution of uncoated protein was carried out twice at different instances in

time. In Figure C.4a, it can be seen that the dissolution curves are quite similar however

the curve of uncoated protein performed on May 16, 2018, shows a few oscillations. Only

this dissolution test was performed at a different random place on the table that was

under a ventilation shaft. These oscillations were attributed to the position of the stirrer

plate regarding the ventilation shaft since it was never observed this type of behaviour

during the remaining tests.

In Figure C.4b, it can be observed that there is a slight decrease in absorbance over

time which is attributed to the hydrolysis of the protein[126].

(a) Normalized Absorbance at λ=280 nm as a funtion of the
time until 30 min.

(b) Normalized Absorbance at λ=280 nm as a funtion of the
time until 24 hours.

Figure C.4: Normalized Absorbance at λ=280 nm of uncoated protein as a funtion of the time (a) until 30 minutes and
(b) until 24 hours. The curves were normalized regarding the highest absorbance value.
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D
Fourier Transform Infrared Spectroscopy

This appendix describes how the integrated peak areas corresponding to the carbonyl

ester peak, C –– O, were calculated. This procedure was applied to every sample for which

the integrated peak area was obtained unless otherwise specified.

1. The spectra obtained with the Nicolet 8700 Spectrophotometer is given in ab-

sorbance units. However, as described in Subsection 2.6.1, for quantitative analysis

of the results obtained in DRIFTS mode, the data should be in Kubelka-Munk units.

This conversion can be done by OMNIC 8.0 software.

2. Afterward, the spectrum of the bare substrate is subtracted. For both studied parti-

cles, it was always used the same bare substrate spectrum. TiO2 spectrum was mea-

sured on November 6, 2017 by another student during their master thesis project

and used a subtraction factor of 1. For the protein, the bare spectrum was measured

on March 29, 2018 and was used a subtraction factor of 0.6624. This substraction

factor for the protein was chosen in order to maximize the peaks of interest, in this

case, the ester C –– O peak.

3. Using the peak area tool from OMNIC 8.0, the area of the ester C –– O can be cal-

culated from the subtracted spectrum. Figure D.1 shows that both the range and

baseline can be adjusted for the calculation of the areas under the ester peak. It

was decided to always use the same position for both the range and baseline. The

used range and baseline for TiO2 were from 1808.930 to 1685.507 and 1808.930 to

1724.077 for the protein. These ranges were chosen to not have a skewed baseline.

4. For each analysis, the spectrum was measured twice or thrice depending on the

amount of powder remaining at different points in time. Hence, the variability of

the measurement, variability in the sample and in the surrounding environment
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APPENDIX D. FOURIER TRANSFORM INFRARED SPECTROSCOPY

Figure D.1: The procedure used in OMNIC 8.0 to calculate the ester peaks, C –– O. As it can be seen, the range and baseline
for integration can be adjusted.

are taken into account. Steps 1 to 3 were repeated every time a new measurement

was done.

5. Following this, the average peak area (µ) and standard deviation (σ ) were calculated

for each sample as shown in Equation D.1 and Equation D.2, respectively.

µ =
∑
i xi
N

(D.1)

σ =

√∑
i(xi −µ)2

N − 1
(D.2)

where xi represents each calculated area and N is the number of measurements with

each sample, N=2 or N=3 in this case
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E
Thermogravimetric Analysis

This analysis gives the percentage of weight loss with increasing temperature[3] allow-

ing to know the amount of deposited material. This is possible as the film is a polyester

that will decompose with increasing temperature. Such technique can be only used if

the substrate is not heat-sensitive (e.g., TiO2). Proteins, instead, undergo decomposi-

tion/degradation upon high-temperature treatments, thus they cannot be characterized

by TGA.

In section E.1, it will be described how to interpret the thermogravimetric curves of

MLD coated TiO2 nanoparticles when analysed in air. In section E.2, it will be described

how can the loading and thickness be estimated from the obtained thermogravimetric

curves.

E.1 Interpreting a Thermogravimetric Curve

Figure E.1a shows the normalized weight in function of the temperature and Fig-

ure E.1b shows the normalized first order derivative in function of the temperature for

50 MLD cycles of MC and 12BD deposited at a reactor temperature of 100°C. The values

were normalized according to the initial weight.

By comparing both the TGA curve obtained for bare TiO2 (Figure C.2a) and the TGA

curve obtained for the coated sample , it can be seen that the weight loss up to 120°C

is less for the coated sample than for the uncoated one. This indicates that the coating

process indeed guarantees that there is less physisorbed water on the particles. Further-

more, the weight loss of the coated sample between 120°C and 500°C is notably more

when compared to bare TiO2. For bare TiO2, this weight loss is attributed to the loss of

chemisorbed water, in the form of – OH surface groups and some carbonaceous residues

and adventitious carbon [113, 132]. However, for coated particles this weight loss can be

attributed to the loss of coating.
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APPENDIX E. THERMOGRAVIMETRIC ANALYSIS

(a) Normalized weight as a function of temperature. (b) Normalized first derivative as a function of temperature.

Figure E.1: Thermogravimetric curve for 50 MLD cycles of MC and 12BD on TiO2 in 100 ml.min−1 of air with an heating
rate of 5°C.min−1 (a) and the respective first order derivative (b). As the derivative was too noisy (grey), it was applied
50pt Savitzky-Golay smoothing in OriginPro 9.0 to observe the fundamental trend (blue line).

E.2 Calculation of the Loading and Thickness

The coating is assumed to be lost between 120°C and 500°C as already described in

section E.1. This means that the loading of carbonaceous material initially on the surface

can be calculated as:

fcarbon =
m120 −m500

m500
× 100% (E.1)

where m120 and m500 are the mass at 120°C and 500°C respectively.

In Equation E.1, the loading is expressed with respect to uncoated and dried TiO2. As

described in section E.1, bare TiO2 already contains some adventitious carbon. This was

calculated as 0.45±0.005 wt% and thus the loading related to the actual coating can be

calculated by:

fcoating = fcarbon − 0.45 (E.2)

It is possible to calculate the thickness of the coating from its loading by methods

already developed by this research group[133]. The method was developed to calculate

the thickness of Al2O3 thin films on spherical particles based on the loading of Al2O3

given by e.g. Inductively Coupled Plasma Optical Emission Spectroscopy but it can be

easily applied to calculate the thickness of an organic coating with loadings obtained

from TGA. Based on this, the thickness can be calculated as:

δ =
dcore

2
×

 3

√
fcoating

100
×

ρcore
ρcoating

+ 1− 1

 (4.1)

The density of the polyester coating is unknown and was predicted using the online

available software from ACD/Labs: ACD/I-Lab v12[134]. The predicted polyester densi-

ties for each combination of precursors can be seen in Table E.1. The diameter dcore can
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be calculated as:

dcore =
6

ρcore × SBET
(E.3)

where SBET is the surface are obtained from BET. The SBET for TiO2 P25 nanoparticles,

as measured on May 8, 2018, is 52.4 m2.g−1.

Table E.1: Predicted polyester densities for each combination of precursors. The densities were estimated by setting up
an oligomer consisting of ten repeating units.

Reactant Co-Reactant Density / g.cm−3

Malonyl Chloride 1,2-Butanediol 1.283±0.06

Diethyl Succinate
1,2-Butanediol 1.242±0.06
1,4-Butanediol 1.236±0.06

After calculating the thickness, this value can be plotted as function of the number of

cycles. As the film growth should be linear,the value of GPC can be obtained from the

slope of the plot as shown in Equation E.4.

δ = GPC.NC (E.4)

where NC is the number of cycles. The y-intercept of the linear fitting is fixed at

zero. This estimated value of GPC can then be compared with the expected GPC for each

combination of precursors. The expected values of GPC are present in Table E.2. This

values were calculated according to the number of C-O and C-C bond and their typical

lengths, which are 0.141 and 0.153 nm respectively[93] and assuming that the polyester

monomer is completely linear.

Table E.2: Expected Thickness for one layer of polyester according to each combination of precursors

Reactant Co-Reactant
Number Number Expected

of C-O bonds of C-C bonds Thickness /nm
Malonyl Chloride 1,2-Butanediol 4 3 1.023

Diethyl Succinate
1,2-Butanediol 4 4 1.176
1,4-Butanediol 4 6 1.482

E.3 Error propagation

The error present in the TGA measurements can be traced back to two distinct sources:

the error in the external balance with which the initial mass is measured and the error

in the internal balance with which variations in mass are established. The former has

an uncertainty of 0.1 mg while the internal balance in the TGA machine has weighing

accuracy of 0.005%[135].

In Equation E.1, the numerator is calculated by the weight loss measured by the TGA

machine, independently of the initial weight set in the machine. The denominator is an

absolute weight determined after subtraction of the weight loss measured and therefore it

is dependent of the initial mass established. Since the uncertainty in the external balance
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for weighing samples between 4-20 mg causes a greater error in the determined mass at

500°C than the relative error of 0.005% caused by the balance of the TGA machine, it is

considered that the error in the mass at 500°C is entirely due to the uncertainty of the

external balance. For divisions[136], the uncertainty is calculated as:

%ef inal =
√

%e2
numerator + %e2

denominator (E.5)

where % e represents the relative error of a value. As the relative error in the numerator,

which is related to difference determined by the TGA machine, is expected to be much

less than the relative error in the denominator, which is related to the error determined

by the initial mass weighing, the %enumerator was neglected. This means that the error of

the loading of carbonaceous material originally on the surface can be calculated as:

ecarbon =
0.1
m500

× fcarbon (E.6)

By applying this method to bare TiO2, a loading of adventitious carbon of 0.45±0.005%.

Since this loading is subtracted from the loading calculated for the MLD coated samples

as shown in Equation E.2, the uncertainty in the final loading has to be determined by

the propagation of uncertainty during the subtraction. This propagation of uncertainty

is given by[136]:

ef inal =
√
e2

1 + e2
2 (E.7)

where e is the absolute error in the terms subtracted. This means that the absolute error

in the coating loading is given by:

ecoating =
√
e2
carbon + 0.0052 (E.8)

A similar method can be applied to the thickness of the coating determined from the

TGA loading. As the thickness is calculated by Equation 4.1, the error can be estimated

by:

ethickness =
δ

100
×

√
%e2

dcore
+
(1

3
×
√

%e2
coating + %e2

ρcoating

)2
(E.9)

It is assumed that the density of the TiO2 P25 nanoparticles is a known value, there-

fore the relative error in dcore is equal to the relative error in the SBET following Equa-

tion E.5. This is error is set to be maximum 5% [112]. Although the standard deviations

are given for the density of the coating in Table E.1, it is not known how the software

calculated these densities. Thus, a relative error of 10% was assumed in the coating

densities.
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Optimization of the operating conditions

In this appendix the MLD experiments using malonyl chloride and 1,2-butanediol

at low reactor temperatures and low flow rates will be briefly discussed. It was known

from past experiments in the PPE research group from TU Delft that a 1,2-butanediol

flow rate of 1 l.min−1 was not enough to ensure that vapour reached the reactor and thus

reacting with the malonyl chloride on the surface of TiO2 P25 nanoparticles. Therefore,

this project started by optimizing the diol flow rate. Four MLD experiments of only

5 cycles with different diol flow rates while the remaining steps stayed constant were

performed to understand the optimal diol flow rate. The operating conditions for these

experiments are described in Table B.2. The different diol rates used were: (i) 1.5 l.min−1,

(ii) 2 l.min−1, (iii) 2.5 l.min−1 and (iv) 3 l.min−1 while the other steps had a flow rate of

0.5 l.min−1.

(a) Subtracted FTIR spectra with increasing 1,2-
butanediol flow rate.

(b) Normalized ester peak area from 1808.930 to
1685.507 cm−1.

Figure F.1: FTIR spectra obtained for different 12BD flow rates. Figure (a) shows the spectra after being subtracted by the
bare TiO2 spectrum in Kubelka-Munk units. Figure (b) shows the peak area under the ester peak from 1808.930 cm−1 to
1685.507 cm−1 for all samples in (a). They were normalized with respect to the highest one. These spectra were measured
once.
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The FTIR spectra for each sample are shown in Figure F.1a. It is possible to see that

the intensity of the ester C –– O peak around 1740 cm−1 increases with increasing diol

flow rate, except for the sample with 2.5 l.min−1, as shown by the integrated area under

the ester peak in Figure F.1b. Furthermore, both the asymmetric and symmetric C – H

stretching peaks appear with increasing trend as well. These samples were then analysed

under TGA and the obtained thermogravimetric curves are depicted in Figure F.2a. As

it is can be observed the weight loss for both the samples with 1.5 l.min−1 and 2 −1 are

identical whereas for the sample with 3 l.min−1 is higher. Although, the sample with 3

l.min−1 seemed a better option, it was not the chosen diol flow rate as it increased the

pressure drop quite quickly. The difference between the weight loss using 1.5 l.min−1

and using 2 l.min−1 was not significant and therefore it was decided to use 1.5 l.min−1

for the following experiments.

(a) Normalized Weight as a function of temperature. (b) Loading as calculated from the thermogravimetric
curves.

Figure F.2: Thermogravimetric analysis in air with an heating rate of 5°C.min−1. Figure (a) shows the normalized weight as
a function of temperature for increasing flow rate of 12BD in MLD using MC and 12BD. These curves were consequently
used to calculate the loading shown in Figure (b). The error bars, although they are too small to be visible, represent the
uncertainty propagated in the TGA measurements.

Following this, it was tested the influence of the flow rate of the other steps of a MLD

cycle and the influence of the vibration. Therefore, three experiments up to 5 cycles

were carried out. Firstly, the flow rate of the last purge was changed from 0.5 to 1.5

with vibration the whole experiment, then the same flow rate but no vibration during the

diol and last purge steps and finally all steps with 1.5 l.min−1 without vibration in any

step. The operating conditions were identical to the conditions used previously and are

shown in Table B.2. Vibration was switched off since 1.5 l.min−1 is sufficient flow rate

to fluidize TiO2 nanoparticles and it is known that agglomerates are more easily formed

when vibration is on for long times.

In Figure F.3 it can be seen the presence of the ester C –– O peak around 1740 cm−1

and the C – H stretching peaks around 3000-2850 cm−1[104] in all spectra. Furthermore,

these peaks increase when the vibration is switched off and all pulse flow rates are 1.5

l.min−1 as it can be observed in Figure F.3b. The increase of polyester on the surface is
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also comproved by the TGA which is shown in Figure F.4. Therefore, the optimal flow rate

conditions were determined to be 1.5 l.min−1 for every pulse and with vibration switched

off.

(a) FTIR spectra with different pulsing flow rates and vibra-
tion.

(b) Normalized ester peak area from 1808.930 to 1685.507
cm−1.

Figure F.3: Figure (a) shows the FTIR spectra after being subtracted by the bare TiO2 spectrum in Kubelka-Munk units.
Figure (b) shows the peak area under the ester peak from 1808.930 cm−1 to 1685.507 cm−1 for all samples in (a). These
spectra were measured once.

(a) Normalized Weight as a function of temperature. (b) Loading as calculated from the thermogravimetric
curves.

Figure F.4: Thermogravimetric analysis in air with an heating rate of 5°C.min−1. Figure (a) shows the normalized weight
as a function of temperature for changing the pulsing flow rates and turning off the vibration. These curves were con-
sequently used to calculate the loading shown in Figure (b). The error bars, although they are too small to be visible,
represent the uncertainty propagated in the TGA measurements.

Subsequently, an experiment up to 30 MLD cycles was performed in order to study

the MLD growth at low temperatures (TReactor=50°C and Tdiol=115°C). All the operat-

ing conditions are present in Table B.2. Samples were collected at 5, 10, 15, 18 cycles

during the experiment. The experiment was stopped at 18 cycles instead of at 20 cycles

due to liquid malonyl chloride raising up through the bubbler’s inlet and clogging the

lines. Thus, the line was disassembled and the valves cleaned. The experiment was then
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(a) Subtracted FTIR spectra with increasing number of cy-
cles.

(b) Normalized ester peak area from 1808.930 to 1685.507
cm−1.

Figure F.5: FTIR spectra obtained for different number of cycles for MLD using MC and 12BD at TReactor=50°C and
Tdiol=50°C. Figure (a) shows the spectra after being subtracted by the bare TiO2 spectrum in Kubelka-Munk units. Figure
(b) shows the peak area under the ester peak from 1808.930 cm−1 to 1685.507 cm−1 for all samples in (a). The error bar
represents the standard deviation.

restarted and stopped at 30 cycles. Figure F.5a shows the FTIR spectra obtained for dif-

ferent number of MLD cycles using malonyl chloride and 1,2-butanediol at TReactor=50°C

and Tdiol=115°C. It can be seen that a peak arises around 1760 cm−1 in all spectra. As

mentioned previously in subsection 4.2.1, it is slightly out of the usual range for an ester

C –– O peak however it can still be attributed to an ester[104]. The intensity of this peak

decreases from 18 to 30 cycles as it can be observed in Figure F.5b which may be explained

by the problems arised during the experiment. These samples were then analysed under

TGA and the respective curves are depicted in Figure F.6a. It can be seen that the weight

(a) Normalized Weight as a function of temperature. (b) Loading as calculated from the thermogravimetric
curves.

Figure F.6: Thermogravimetric analysis in air with an heating rate of 5°C.min−1. Figure (a) shows the normalized weight
as a function of temperature for increasing number of MLD cycles on TiO2 using MC and 12BD at TReactor=50°C and
Tdiol=50°C. These curves were consequently used to calculate the loading shown in Figure (b). The error bars, although
they are too small to be visible, represent the uncertainty propagated in the TGA measurements.
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loss increases linearly with increasing number of cycles as shown in Figure F.6b. How-

ever, there is discordance between the weight loss and the integrated area under the ester

peak which indicates that although there is more material deposited on the surface with

increasing number of cycles, this additional material is not only polyester coating. The

high weight loss can also be attributed to condensation of the precursors in the reactor

since the temperature of the diol bubbler is more than two-fold higher than the reactor

temperature. Furthermore, the powder was completely orange and quite agglomerated.

The sample with 30 MLD cycles was also visualized under TEM despite no pictures are

shown in this project. It was not possible to visualize any carbonaceous film around the

particles and thus strongly supporting the conclusion that the weight loss was more due

to condensation of the precursor than to the formation of polyester.

An experiment using a lower diol bubbler temperature (Tdiol=90°C) and maintaining

the reactor temperature was then performed. This experiment was up to 50 cycles and

the remaining operating conditions are present in Table B.2. The FTIR spectra is shown in

Figure F.7a. The ester C –– O peak (1755-1735 cm−1) can be found in all spectra however a

shift to higher wavenumbers is observed which suggests a resonance competition for the

lone-pair electrons of the ether oxygen (C – O) by carbonyl group and the new conjugating

group as it was earlier described in subsection 4.2.1. The FTIR spectrum of the 50 MLD

cycles using malonyl chloride and 1,2-butanediol at TReactor=50°C and Tdiol=90°C also

shows a peak at 1830 cm−1 which it is assigned to an acid chloride implying that there is

unreacted malonyl chloride on the particles.
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(a) Subtracted FTIR spectra with increasing number of cy-
cles.

(b) Normalized ester peak area from 1808.930 to 1685.507
cm−1.

Figure F.7: FTIR spectra obtained for different number of cycles of MLD using MC and 12BD at TReactor=50°C and
Tdiol=90°C. Figure (a) shows the spectra after being subtracted by the bare TiO2 spectrum in Kubelka-Munk units. Figure
(b) shows the peak area under the ester peak from 1808.930 cm−1 to 1685.507 cm−1 for all samples in (a). These spectra
were measured once.

The TGA curves for each samples are shown in Figure F.8a and the respective weight

losses are presented in Figure F.8b. It can be seen that the weight loss evolves linearly

with increasing cycles. In this experiment, some condensation was observed but unlike
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the experiment with Tdiol=115°C, there was not the formation of agglomerates and the

colour of the powder was light orange instead of completely orange.

(a) Normalized Weight as a function of temperature. (b) Loading as calculated from the thermogravimetric
curves.

Figure F.8: Thermogravimetric analysis in air with an heating rate of 5°C.min−1. Figure (a) shows the normalized weight
as a function of temperature for increasing number of MLD cycles on TiO2 using MC and 12BD at TReactor=50°C and
Tdiol=90°C. These curves were consequently used to calculate the loading shown in Figure (b). The error bars, although
they are too small to be visible, represent the uncertainty propagated in the TGA measurements.

From the above described results and the results discussed in subsection 4.1.1, it

can be concluded that the optimal temperature conditions to operate the MLD set-up are

TReactor=100°C and Tdiol=90°C since in this manner it was verified that little condensation

occurred in the reactor and thus obtaining a more successful gas-phase deposition.
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Photocatalytic Test

G.1 Calculation of Kinetic Constant from UV-Vis

The rate of degradation of a contaminant, in this case rhodamine B, is usually assumed

to follow a Langmuir adsorption model[137] as shown in Equation G.1.

r = −dC
dt

= k1 ×
KadsC

KadsC + 1
(G.1)

where C is the concentration of rhodamine B, k1 is the kinetic constant and Kads is

the adsorption constant of rhodamine B. In dilute solutions of the contaminant where

C < 10−3mol.dm−3, KadsC becomes � 1 and the reaction follows pseudo-first order ki-

netics. In more concentrated solutions such as C < 5× 103mol.dm−3, KadsC becomes �
1 and the reaction becomes pseudo-zero order. Since rhodamine B has molecular mass

of 479.01 g.mol−1[138] and the concentration of rhodamine B used was 12 mg.l−1, this

corresponds to a molar concentration of 2.5× 10−5 mol.l−1. Therefore, it was assumed

that the reaction followed a pseudo-first order kinetics and Equation G.1 can be written

as Equation G.2.
dC
dt

= −kC (G.2)

where k is the pseudo-first order kinetic constant. By integrating Equation G.2 as shown

in Equation G.3, Equation G.4 is obtained.∫ Ct

C0

1
C
dC =

∫ t

0
kdt (G.3)

ln(
C0

Ct
) = k × t (G.4)

where C0 and Ct are the initial concentrationand concentration at time t of rhodamine B,

respectively.
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From Equation 2.4, the concentration is directly proportional to the absorbance for a

constant length of the cuvette. Hence, Equation G.4 can be written as:

ln(
A0

At
) = k × t (4.2)

Therefore, the kinetic constant k can be obtained by plotting ln(A0
At

) in function of the

time, where A0 is the absorbance at λ =554 nm at 0 minutes and At is the absorbance at

λ =554 nm at time t. The y-intercept was always fixed to 0.
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