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Abstract 

 

 

Momentum strategies with commodity futures are simple to implement and have been 

profitable for the past couple of decades. Nonetheless, they yield large drawdowns every once 

in a while. One theory that can explain these events is related to the high level of activity 

(crowdedness) in the strategy, which can be the cause of forced unwinding of positions after 

negative shocks take place due to the use of excessive leverage. Therefore, a measure of activity 

is used to test whether there is a relationship between returns and crowdedness. Even though 

the result of an analysis of momentum strategies with 12-month ranking period does not support 

this theory, strategies with 1-month of ranking period show that the theory might have real 

foundations. 
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1. Introduction & Motivation 

Since the beginning of the 21st century, the trading of commodity-related instruments has seen 

an exponential increase. In fact, according to a report published in 2008 by the U.S. Commodity 

Futures Trading Commission (CFTC 2008), the amount of commodity instruments increased 

from approximately $15 billion in 2003, to over $200 billion in 2008. The exponential increase 

in such a short period of time is a consequence of the small comovement between different 

commodities and with other asset classes. This uncorrelation with other types of investments 

created an opportunity for investors to diversify and improve the performance of their portfolios 

(Tang and Xiong, 2012). The financialization process has been the center of a lot of discussion 

in regard to whether it distorts the prices of the commodities. Cheng and Xiong (2013) argue 

that this phenomenon has changed the commodity markets considerably.  

In order to trade this value of commodity-related instruments, investors make use of financial 

leverage, which is a vehicle commonly used to magnify the potential return of an investment. 

Using financial leverage is a strategy that consists on borrowing money, usually from brokers, 

through margin accounts, that allows one to undertake investments that otherwise would require 

the use of much more of the investor’s capital. In fact, the use of less capital, percentagewise, 

in an investment, via financial leverage, creates the opportunity for investors to embrace other 

trades, and to trade larger positions with less capital. Depending on the size of the margin 

account, on the market in question and even on the broker itself, one can invest with a broad 

range of leverage ratios that start from 2:1 and can go up to more than 200:1. Markets such as 

FOREX, in which intraday prices usually change no more than 1%, attract very high leverage 

ratios. On the other hand, more volatile markets (e.g. equity and commodity markets) are 

limited to less leverage. One should not forget that providing leverage works as lending money, 

and therefore, brokers are subject to credit risk just like other financial institutions and should 

be prepared to cover losses in the case that the client defaults. According to Zsolt Darvas (2009), 
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“with leveraged positions all or most of the wealth can be lost within a single day”. Hence, in 

more volatile markets and periods, brokers provide less leverage and require more margin. In 

order to avoid colossal losses, hedge funds, banks and other financial institutions usually make 

use of several mechanisms that close positions immediately should a negative shock on the 

markets take place.  

Following this premise, recent literature (Sokolovski, 2017) shows that high levels of activity 

in the same strategy (crowdedness) increase the likelihood of realizing extreme losses. 

Sokolovski (2017) studies this relationship specifically for the currency carry trade. This 

strategy consists on borrowing capital from low interest rate currencies and investing it on high 

interest rate currencies. This strategy, whose risk comes, in theory, solely from exchange rate, 

has yielded interesting sharpe ratios in the past, even though its returns present very negative 

skewness. 

Previous research on the currency carry trade associates crashes to a succession of events that 

behave as a true snowball effect. These events are based on two assumptions. Firstly, it is 

assumed that the foreign exchange market, and particularly carry trade investors, are highly 

leveraged, which is very likely to happen since, as aforementioned, it is easy and cheap for 

investors to raise funds and trade with leverage. Secondly, previous literature assumes that 

traders have stop-loss mechanisms at their disposal, such as margin calls, risk management 

constraints and value-at-risk metrics, that when faced with unusual negative shocks, 

immediately close all positions. When these assumptions are verified, and a negative shock 

takes place, it creates a generalized movement of unwinding of positions by carry traders. The 

unwinding is followed by increasing pressure in the foreign exchange markets, drops in 

exchange rates, and more forced unwinding by traders whose stop-loss mechanisms had not 

triggered yet. The domino effect that is created and magnified by automatic and immediate 
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unwinding of positions generates, according to Sokolovski (2017), “a spiral of losses, i.e. a 

crash”. 

Based on the work developed by Sokolovski (2017), this work project studies the relationship 

between the activity of the momentum strategy on the nearest commodities futures contracts 

and crashes in the commodities markets. Similarly to the foreign exchange market, the 

commodities futures market is also leveraged, even though in a smaller scale, since its volatility 

is much higher, which prevents traders to use large leverage ratios. Therefore, since the 

magnitude of leverage in place is very different, the result of too much activity may also be 

different. Contrarily to the forex market, the commodity futures market has a particularity: in 

order to avoid physical delivery, investors must roll over the futures contracts before the 

expiration date, so they can hold the same position in the market. Every time a contract is about 

to expire (the nearest contract), the investor should close its position and move to the next 

contract (the second nearest contract). The return provided by the roll-over of the contracts 

depends on the term structure of the commodities future. If the price of the second nearest 

contract is above the price of the first, it means that the market is in contango and the investor 

has a negative (positive) roll yield in case he bought (sold) the contract. When the opposite 

happens, the market is in normal backwardation and one benefits from a positive (negative) roll 

yield if one bought (sold) the contract. 

This Work Project proceeds as follows: Section 2 presents previous research and study on 

futures contracts term structure, momentum strategies with commodities futures and 

crowdedness measures, Section 3 explains where the data was retrieved from, how it is 

structured and how it will be used, Section 4 consists on a thorough explanation of the 

methodology implemented, Section 5 discusses the results obtained and, finally, Section 6 

concludes.  
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2. Literature Review 

According to a report published in 2008 by the Commission of the European Communities 

addressing the role of speculation in agricultural commodities price movements, the term 

structure of futures contracts can take two forms, depending on whether the futures prices is 

above or below the spot price: contango and normal backwardation, respectively. The term 

“normal backwardation” was coined by John Maynard Keynes (A Treatise on Money, 1930) as 

a backwardated market looked natural if one considers that farmers preferred to sell futures 

contracts in order to lock in the prices of the upcoming harvest. For instance, if producers are 

very risk-averse, they may be willing to sell futures at a price that is below the expected future 

spot price so that they can hedge their risk (Kolb, 1992). Producers prefer to avoid the price 

fluctuations during the production period due to the high volatility in the commodities markets 

that is caused by several reasons: the future demand is very difficult to predict, inventories are 

very expensive and the inelasticity of the supply response in the short-run for most commodities 

(Till and Gunzberg, 2005). On the other hand, non-commercial users (mostly speculators) enter 

the commodity futures market to catch arbitrage opportunities and profit from them 

(Commission for the European Communities, 2008). 

Thus, while consumers enter the futures market usually only to hedge their risk, speculators and 

investors engage in more complex strategies and try to generate earnings. One of those 

strategies is momentum. Momentum is a strategy that investors pursue on the presumption that 

past price moves predict future price moves (Spurgin, 1999). Even though momentum has been 

largely studied in equity markets, there is no accurate explanation for is performance. While 

considered an anomaly by some authors, who believe that momentum is just a result of 

underreaction to news and the way investors interpret information (Barberis, Shleifer and 

Vishny, 1998), others state that momentum is not an anomaly (Dittmar, Kaul and Lei ,2007).  
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In the commodity futures market, momentum has been more and more studied in the past few 

years. Erb and Harvey (2006) developed a momentum strategy that, from December 1969 until 

May 2004, goes long on the four commodity futures with the highest previous 12-month returns 

and short on the four commodity futures with the worst-performing past 12-month returns. The 

authors compare the performance of such a performance-based portfolio to the long-only S&P-

GSCI (a diversified composite index of commodity sector returns), and achieve a Sharpe ratio 

more than twice as high as the long-only GSCI’s Sharpe ratio (0.55 and 0.25, respectively). 

Such a simple momentum strategy has been working as a basis for other authors to build on.  

Miffre and Rallis (2007), examine 56 momentum and contrarian strategies in commodity 

futures markets. The authors also analyze the settlement prices of 31 US commodity futures 

prices over a period that starts in January, 31st 1979 and ends in September, 30th 2004. The 56 

strategies (32 short-term momentum and 24 long-term contrarian) are the result of combinations 

of different holding periods (1, 3, 6, 12, 18, 24, 36 and 60 months) and ranking periods (1, 3, 6, 

12, 24, 36, 60 months). The authors stress that the strategy requires that investors must open 

and monitor a margin account, pay margin calls whenever it is necessary and roll-over contracts 

before expiration. However, as the strategy is based on buying backwardated contracts and 

selling contangoed contracts, there is not much need for paying margin calls and the roll-over 

returns are positive most of the time. The study identifies 13 profitable momentum strategies 

that generate 9.38% average return a year.  

More complex strategies using commodities futures have been studied recently. Triple-screen 

strategies, including variables as past performance, roll-yield and idiosyncratic volatility, have 

been proved to generate an average sharpe ratio five times higher than that of the S&P-GSCI 

(Fuertes, Miffre and Fernandez Perez, 2015). 
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Strategies like momentum, which are considerably easy to apply, attract a lot of investors and 

hedge funds. Therefore, due to a phenomenon called price-pressure (the price at which 

investors buy or sell an asset depends on the speed and quantity that they want to transact), it is 

not surprising that when the activity on momentum is very high, the markets are more prone to 

be destabilized. Indeed, Evans and Lyons (2002) show that order flow has impact on the prices 

of securities. Lou and Polk (2013) create a measure of arbitrage activity in order to analyze 

whether investors can have a negative effect on the market. The activity metric, which the 

authors name comomentum, consists on the high-frequency abnormal return correlation among 

an asset class (in this case stocks). The authors conclude that on periods when momentum is 

very crowded, investors may face crashes, as opposed to periods of low crowdedness, when 

momentum generates earnings. 

Crowdedness is a concept that has been not only used in equity markets. As described 

previously, crowdedness has been tested on the currency carry trade (Sokolovski, 2017). The 

author simulates what a carry trader would do, by shorting two funding currencies and buying 

two investing currencies. Sokolovski assumes that these four currencies are the most likely to 

receive the carry trade order flow.  

The procedure is followed by a 30-day rolling regression for each of the currencies, from where 

the author keeps the residuals, which are believed to be purged out of the U.S. and global effects 

(an average currency excess return of all currencies against the US Dollar is used as a predictor), 

leaving only the countries specific effects. Sokolovski uses the residuals of the regression to 

compute correlations among these set of currencies, which is chosen daily. Finally, the author 

calculates the spot exchange rate correlation implied crowdedness measure as an average of the 

correlations that were computed before.  
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Concluding, it is proved that between 40% to 50% of the largest drawdowns in-sample, are 

registered in moments that follow periods when the currency carry trade strategy is highly 

crowded. Furthermore, Sokolovski finds that other factors can be predictive of carry trade 

crashes when combined with high crowdedness. Funding illiquidity, measured by the TED 

spread (the difference between the three-month U.S LIBOR and the U.S T-bill interest rates), 

can help explain the pressure put on prices, that amplifies the initial negative shock and turns it 

into a crash, when elevated crowdedness is in place. 

 

3. Data 

The data used in this work project was obtained from Datastream International and comprises 

the daily returns of the nearest futures contracts of 31 commodities. The set of commodities 

includes 6 oil and gas futures (crude oil, gasoline, heating oil, natural gas, gas-oil-petroleum 

and propane), 14 agricultural futures (coffee, rough rice, orange juice, sugar, cocoa, milk, 

soybean oil, soybean meal, soybeans, corn, oats, wheat, canola and cotton), 5 metal futures 

(gold, silver, copper, palladium and platinum), 4 livestock futures (feeder cattle, live cattle, lean 

hogs and pork bellies) and the futures on rubber and lumber.  

The dataset spans from January, 2nd 1985 to February, 27th 2015, which results in a sample of 

7567 business days. Since not all the commodities futures contracts listed above were being 

traded in the beginning of the sample period, the number of commodities used in the momentum 

strategy has not totaled 31 during the whole sample. In fact, the number of contracts ranges 

from a low of 25 contracts in the beginning of the sample, to a peak of 31 in August, 12th 1997. 

The contracts are included in the strategy as they start being traded.  

Trading the nearest futures contracts ensures that the risk of illiquidity is partially mitigated, 

given that these contracts have the most open interest when compared to other maturities. The 
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open interest tends to increase exponentially when expiration approaches, because traders are 

not interested in the physical delivery of the commodity. Therefore, they must roll over the 

contract. Hence, as expiration approaches, the number of transaction increases and provides 

liquidity to the market.  

The returns used in this work project include the result of the roll-over of the contracts, which 

means that when the nearest contract is replaced by the second nearest contract, the 

corresponding return will reflect the term structure of the market. Thus, if the market is 

backwardated, then there will be a positive return from rolling the contract. On the other hand, 

if the market of a specific commodity is in contango, the return will be negative, since the trader 

will have to buy a contract that is more expensive than the one that he just got rid of. 

 

4. Methodology 

 

This section includes a thorough description of all methods, calculations and procedures 

undertaken in the process that leads to the results that are analyzed in the following section. All 

calculations, tests and appendices were performed in MATLAB and Microsoft Excel. 

 

4.1. Momentum Strategy 

The momentum strategy performed in this work paper follows the 12-1 momentum strategy 

developed by Miffre and Rallis (2007), which consists in a combination of a 12-month ranking 

and a 1-month holding periods. 

To start with, a cumulative return of the past 12 months is computed in the end of the month 

for each available commodity futures. Thus, since the dataset starts in January, 2nd 1985, the 

first cumulative returns taken into consideration date approximately of one year after.  
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Once the cumulative returns are calculated, the momentum strategy buys the commodities 

futures contracts that outperformed in the past 12 months and sells the ones that underperformed 

in that same period. These contracts are selected according to a 20-80 rule, which consists on 

selling and buying the contracts below and above the 20th and 80th percentiles, respectively. 

Given that, in the beginning of the sample, the number of futures contracts available for trade 

was lower, the strategy selects only five contracts for each trading side. After August, 26th 1987, 

when the number of trading contracts broadens, the strategy goes long and short twelve 

contracts in total. 

As aforementioned, the 12-1 momentum contemplates a holding period of one month. Indeed, 

the strategy is rebalanced every month, more specifically in the first business day of the month. 

Therefore, in the beginning of each month, the highest- and lowest-performing contracts in the 

past 12 months are bought or sold, and held until the beginning of the next month, when another 

rebalancing takes place. Although many commodities have contracts expiring every month (not 

all in the same day), the rebalancing date does not coincide with any of the expiration dates in 

particular, which means that the rebalancing may or may not occur in the same day as a contract 

roll-over trade. For comparison purposes, a 1-month ranking period momentum strategy is also 

computed. 

 

4.2. Drawdowns 

A drawdown is a measure of performance that consists on the persistent loss of value over 

consecutive negative returns (Sornette, 2009). Thus, a drawdown ends every time a new local 

maximum happens, when another drawdown starts counting. The maximum drawdown is a 

statistic that allows investors to determine the risk they face when considering a strategy. 
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Moreover, this metric can also be used for risk management purposes and work as a stop-loss 

mechanism.  

In this work project, two different approaches are considered in order to compute the 

drawdowns. The first approach was the one described above. A drawdown starts in a local 

maximum (when a close price is higher than that of the previous day) and lasts while the daily 

negative returns are consecutive. Logically, it ends when a new local maximum is achieved. 

The second approach is different in the sense that instead of starting and ending in local 

maxima, a drawdown starts in an absolute maximum, and ends only when a new absolute 

maximum occurs. In the between, several local maxima can occur.  

Sokolovski (Crowds, Crashes and the Carry Trade, 2017) describes a crash as an event that is 

likely to happen in a very short period of time (just a few days), forced by the consecutive 

unwinding of positions. Therefore, the author considers a carry trade crash the one hundred 

largest drawdowns in the sample. 

Following the described literature, the 100 most negative drawdowns achieved with the first 

approach in the momentum strategy with commodities futures contracts are considered crashes. 

The second approach (from one absolute maximum to another), on the contrary, does not 

provide a clear view of what should be considered a crash. This happens because, while the first 

approach is able to show quick and sudden loss, which can result from intraday price changes 

or last for a few days, the second approach is not. The second approach allows one to observe 

drawdowns that can last for much longer periods, and to correlate them with the activity on the 

strategy during that period. Since a crash on a financial market is an almost unpredictable event, 

just a few days of consecutive negative returns may not be sufficient to foresee what is to come. 

As an example, during the financial crisis that started in mid-2007, from October, 9th 2007 until 
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March, 9th 2009, the S&P 500, the NASDAQ and the Dow Jones Industrial Average suffered 

losses of, approximately, 56.78%, 55.63% and 55.78%, respectively. 

The result that comes from selecting the largest 100 drawdowns using the second approach is, 

however, not clear. Approximately 31% of these drawdowns belong to just one long drawdown, 

that lasts for more than 200 days until it reached the lowest value, which means that within a 

single drawdown, one can find several very negative cumulative returns. Therefore, to work 

around this result, the drawdowns were separated by the period when they happened. In this 

case, the period is six months. Thusly, the most negative drawdown in each half of every year 

was collected. This way, one can have a wider perspective along the whole data set. 

 

4.3. Activity Measure 

The level of activity in the commodities futures momentum strategy is hard to observe and to 

quantify due to the lack of data that distinguishes activity in this strategy from activity in other 

types of trades. Therefore, a measure computed from pairwise partial correlations of abnormal 

past returns, created by Lou and Polk (2013) for a stock price momentum strategy, and later 

adapted by Sokolovski (2017) for the currency carry trade, is a reliable proxy for the 

crowdedness in the commodity futures momentum. This method, called comomentum by the 

authors, is based on the price pressure premise that the price at which investors buy and sell 

securities depends on the order flow.  

Adapting the methodology of Sokolovski to the commodity futures market, at the end of each 

day, all the tradable futures contracts are sorted performancewise (past 12 months cumulative 

returns). The top and bottom futures are then selected, similarly to what is done in the 

momentum strategy, because when investors engaging in the momentum strategy tilt their 

allocations, they are more likely to do so towards the best- and worst-performing futures 
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contracts. Therefore, to replicate the allocation changes as close as possible, the activity 

measure includes eight futures contracts, the best and worst four. 

The selected commodities futures are then subject to separate ordinary least squares regressions, 

over the returns of the 30 previous days.  

𝑟𝑒𝑡𝑡
𝑖 =  𝛼 +  𝛽𝑀𝑘𝑡𝑀𝑘𝑡𝑡 +  𝑒𝑡

𝑖 

where 𝑟𝑒𝑡𝑡
𝑖 corresponds to the returns of a commodity i on the trading days [t-30, t-1], 𝑀𝑘𝑡𝑡 

represents the average of the returns of the selected commodities in the same period, and 𝑒𝑡
𝑖 

consists on the regression’s residuals.  

According to Sokolovski’s methodology, one should keep the residuals in order to compute 

correlations among all the selected commodities. Since eight futures are selected at a time, 28 

(pairwise) correlations are computed on every trading day: six correlations between the 

contracts that compose the top-4, another six correlations for the contracts that compose the 

bottom-4, and sixteen cross-correlations (between top and bottom contracts). 

A pairwise correlation looks as follows: 

𝑐𝑜𝑟𝑟𝑡

𝑊𝑖𝑊𝑗 = 𝐶𝑜𝑟𝑟 (𝑒𝑊𝑖 , 𝑒𝑊𝑗)  𝑐𝑜𝑟𝑟𝑡

𝐿𝑖𝐿𝑗 = 𝐶𝑜𝑟𝑟 (𝑒𝐿𝑖 , 𝑒𝐿𝑗)  

𝑐𝑜𝑟𝑟𝑡
𝑊𝑖𝐿𝑖 = 𝐶𝑜𝑟𝑟 (𝑒𝑊𝑖 , 𝑒𝐿𝑖)    𝑐𝑜𝑟𝑟𝑡

𝑊𝑖𝐿𝑗 = 𝐶𝑜𝑟𝑟 (𝑒𝑊𝑖 , 𝑒𝐿𝑗)  

where W and L stand for winners and losers, respectively, i,j = [1,4],  i ≠ j , and 𝑐𝑜𝑟𝑟𝑡

𝑊𝑖𝐿𝑗
 

corresponds to the correlation between a top and bottom futures contract from t-30 to t-1.  

Once the correlations are obtained, one should follow the methodology of Sokolovski of 

averaging them all:  

𝐶𝑟𝑜𝑤𝑑𝑒𝑑𝑛𝑒𝑠𝑠𝑡
𝐶𝑜𝑚𝑑𝑡𝑠 =  

𝑐𝑜𝑟𝑟𝑡

𝑊𝑖𝑊𝑗 + 𝑐𝑜𝑟𝑟𝑡

𝐿𝑖𝐿𝑗 − 𝑐𝑜𝑟𝑟𝑡
𝑊𝑖𝐿𝑖 − 𝑐𝑜𝑟𝑟𝑡

𝑊𝑖𝐿𝑗

28
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where the variables are defined as before. The cross correlations appear with a negative sign 

because the order flow is to buy winners and to sell losers, which puts opposite pressures on 

both of their prices. 

 

5. Results 

This chapter follows the same structure as the previous one, addressing the Momentum 

Strategy, Drawdowns and, finally, Activity Measure. All the appendices mentioned in this 

section can be found in the end of the report. 

 

5.1. Momentum Strategy 

As mentioned before, the momentum strategy sells the contracts below the 20th percentile and 

buys the contracts above the 80th percentile, following a 12-1 structure (12-month ranking 

period and 1-month holding period). The results of this strategy are summarized in Table 1, 

alongside the results of the winners and losers’ portfolios that follow the same construction 

mechanism. The equal-weight momentum strategy has an annualized return of 8.74%, which is 

between that of the Winners and Losers’ portfolios (10.01% and 5.45%, respectively). 

However, when the portfolios are compared in terms of risk-to-return, the momentum strategy 

is more appealing: its sharpe ratio of 0.81 is much higher than the other two strategies’ (0.53 

and 0.34). In terms of the normality of the returns’ distribution, according to George, D., and 

Mallery, M. (2010), one considers as normally distributed a set of data with skewness and 

excess kurtosis between -2 and +2. The returns of the momentum strategy, however, have 

skewness of -0.16 and excess kurtosis of 2.38, which means that the distribution of the returns 

is non-normal. The distribution of the daily returns is shown in Figure 1. In fact, the curve is 

slightly left-skewed and has fatter tails than a normal distribution. When these two features are 
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combined, the probability of having sudden very negative returns is higher. This is in 

accordance with the fact that momentum, which has been shown across various asset classes, 

is unattractive to investors that prefer to avoid negative skewness and positive excess kurtosis 

(Barroso and Santa-Clara, 2015).  

 

5.2. Drawdowns 

As mentioned before, two approaches were considered when computing drawdowns in the 

momentum strategy. The first approach consisted on the accumulated loss over consecutive 

daily negative returns. In this case, the maximum drawdown occurred in October, 24th 1990 and 

consisted on a loss of approximately 10.92%. This drawdown, which lasted for five days, was 

partially caused by the combined loss in several commodities, most of them in the energy sector. 

Although this approach is very useful in order to capture sudden and meaningful losses (i.e. 

crashes) in the momentum strategy, it is does not provide enough information on why these 

losses occur, as they can be the result of mere speculation. The evolution of the drawdowns 

following this approach are represented in Figure 2. 

The second approach, on the other hand, provides more insight on macroeconomic imbalances 

between demand and supply, because the losses of the strategy can be seen more as cascades 

than as abrupt events. Therefore, drawdowns in the 12-1 momentum strategy show long-term 

events and crises on commodities markets. As shown in Figure 3, the strategy suffers several 

very negative losses along the almost 30 years of trading. The first large drawdown (the second 

most negative in the whole dataset) starts in April, 1st of 1986 and reaches its bottom on the 

January, 2nd of 1987, when the accumulated loss equaled 18.08%. This loss is mainly associated 

to a surplus of oil in the market commonly named as the Oil Glut, caused by disagreements 

among OPEC countries, which flooded the market with excessive production of oil. The 
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continuous falling price of crude oil created a perfect opportunity to sell contracts. However, 

the market turned due to a new agreement on production quotas and prices started to increase. 

Thus, while prices increased, the signal was to sell contracts, which is explained by the fact that 

the strategy has a 12-month ranking period. If one considers a 1-month ranking period, the 

result is different, as the strategy adapts to the turn in the macroeconomic conditions faster.  

In 2003, another large drawdown (both in duration and magnitude) starts due a sudden crash in 

the prices of the energy sector commodities in the middle of a continuous and steady price 

increase. In fact, in less than two months, the price of crude oil decreased more than 33.19%.  

The largest drawdown in the sample starts in July 2008 and ends in June 2009, and consists on 

a loss of approximately 19.38%. After an unsteady but prolonged increase in prices of crude 

oil, as well as other energy commodities, from 2002 until mid-2008 (from approximately 20 

dollars per barrel to 140 dollars per barrel), prices consistently fell to values below 34 dollars 

in 2009, which means that strong signals that suggested that buying energy commodities came 

out to yield disastrous results. Once again, a momentum strategy with a shorter ranking period 

is much faster in adapting to sudden turns in price trends.  

Figure 4 shows the cumulative returns of the 12-1 momentum strategy, 1-1 momentum strategy, 

long-only and short-only portfolios. 

 

5.3. Activity Measure 

Once the measure of crowdedness has been calculated, whose evolution is represented in Figure 

5, it is possible to address the main purpose of the report: to check the relationship between 

commodity futures momentum crashes and the level of activity. In order to do so, the 

methodology of Sokolovski (2017) is closely followed. First, all values of activity during the 

whole sample period are separated into quintiles. Quintile 1 contains the lowest levels of 
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momentum activity, while Quintile 5 is composed of the highest values. Then, the probability 

of a crash (defined as an accumulated consecutive loss that makes the top 100 of the largest 

drawdowns) being associated to each quintile is calculated. The Panel A of Table 2 shows the 

percentage of Top 20, 40, 60, 80 and 100 crashes in each quintile of activity level in the 12-1 

momentum strategy. It is visible that the higher the magnitude of a crash, the lower the level of 

activity: for example, only 10% of the Top 20 crashes are associated with the highest values of 

crowdedness, while for the Top 100 crashes that value is 18%. Also, the probability that the 

lowest values of activity (Quintile 1) are in the Top 20 crashes is higher than in the Top 100 

(35% and 27%, respectively). Furthermore, one can see in the second column that the average 

value of activity is also lower for Top 20 crashes (-0.10) than for Top 100 crashes (-0.08). 

However, when 1-1 momentum is considered, the results are opposite. The probability that Top 

20 crashes have higher activity levels than that of Top 100 crashes is confirmed (60% against 

33%). For low levels of activity, the probability is the same for both (5%). These results can be 

seen in Panel B of Table 2. 

In order to confirm that the chance that lower values of activity occur when crashes are greater 

is higher than when there are no massive losses, a goodness-of-fit test is performed. Assuming 

that the construction of the activity quintiles is distributed uniformly, means that any subsample 

that is randomly taken is also uniformly distributed. Therefore, if one takes a subsample based 

on the returns of the strategy, it is to expect that the subsample of activity levels is, once again, 

uniformly distributed (Sokolovski, 2017). To test whether this assumption can be held, one can 

perform a Kolmogorov-Smirnov (KS) test, for each subsample individually. The test statistic 

consists on the maximum distance between the empirical cumulative distribution function 

(ECDF) and a hypothetical cumulative distribution function (CDF). The KS test’s null and 

alternative hypotheses are, respectively: 

𝐻0: 𝐹(𝑄)  =  𝑈(𝑄), the subsample is uniformly distributed 
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𝐻𝐴: 𝐹(𝑄)  ≠  𝑈(𝑄), the subsample is not uniformly distributed, 

where Q stands for quintile (1 to 5), F(Q) is the cumulative distribution of the quintiles and 

U(Q) is the normal uniform distribution. 

The results of the test can be seen in the last two columns of Table 2. Even though the null 

hypothesis cannot be rejected for a 5% significance level for the Top 20, 40 and 60 crashes, it 

is rejected for both Top 80 and Top 100 crashes, which means that for the latter, the assumption 

that there is no relationship between activity in momentum strategy and momentum returns is 

not valid.  

For the 1-1 momentum strategy, the null hypothesis is rejected for the Top 100 crashes, which 

means that the same conclusion can be drawn. 

 

6. Conclusion 

Even though momentum with commodity futures has yielded a steady and consistent profit over 

the past 30 years, the strategy has suffered several large losses along the way. One of the reasons 

that can be behind these crashes is the level of activity (crowdedness) that goes on the strategy. 

Theories proposed in the past, affirm that highly crowded markets can be the cause of colossal 

crashes because of a phenomenon of unwinding positions that is triggered by an initial larger 

than usual loss, which is widely amplified due to mechanisms such as stop-loss orders, risk 

management constraints and value-at-risk metrics that, through price pressure, create a snow-

ball effect. 

However, this is not the case for 12-1 momentum in commodity markets. In fact, for a 

momentum that contemplates a 12-month ranking period and a 1-month holding period, 35% 

of the Top 20 of largest crashes occur when the level of activity is at its minimum. Furthermore, 
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only 10% occur when the activity level is at its peak. On the other hand, of the Top 100 

drawdowns, 27% occur in periods of low activity (8 percentage points less), and 18% in periods 

of high crowdedness (8 p.p. more). Although the unwinding phenomenon is not confirmed by 

the results in 12-1 momentum, it happens in 1-1 momentum. 

Therefore, one can conclude that momentum strategies deal with crowdedness in different 

ways. While high activity means less likelihood of crashes for a strategy that entails 12 months 

of ranking period, for a 1-month ranking period momentum, high levels of crowdedness means 

the opposite: a greater likelihood of facing crashes, due to the sudden but strong unwinding of 

positions. 

This report builds on the works of Lou and Polk (2013) and Sokolovski (2017) which analyze 

the relationship between crowdedness and the performance of financial markets (equity and 

forex markets, respectively). 

As a suggestion for future research, it would be interesting to assess how activity levels affect 

the returns of a momentum strategy, while controlling for commodity futures illiquidity, 

funding illiquidity (e.g. through the TED spread) and for volatility.  
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Figure 1: Distribution of 12-1 Momentum Daily Returns 

This graph presents the distribution of momentum daily returns. The x-axis represents the daily returns, 

while the y-axis shows the percentage of each daily return occurring during the whole dataset. 
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Figure 2: Drawdowns computed according to the 1st approach 
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Figure 3: Drawdowns computed according to the 2nd approach 

Figure 4: Cumulative Returns 

This graph plots the cumulative return of 4 strategies: Long-only (Winners), Short-only (Losers), 12-month 

ranking and 1-month holding periods momentum, and 1-month ranking and holding periods. All strategies 

start with 1$ in 01/1986. The data goes until the end of 12/2014. 
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Figure 5: Evolution of Activity level 
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Table 1: Summary Statistics of 12-1 Commodity Futures Momentum  

 

 Momentum Winners Losers 

Mean Return 0.036% 0.045% 0.026% 

Avg Annual Return 8.74% 10.01% 5.45% 

Std Dev 10.78% 18.86% 15.95% 

Sharpe Ratio 0.81 0.53 0.34 

Skewness -0.16 -0.35 -0.09 

Excess Kurtosis 2.38 4.58 2.35 

AC(1) 0.075 0.096 0.037 

Max (%) 3.56% 7.49% 5.85% 

Min (%) -6.05% -12.83% -6.09% 

 

 

Table 2: Momentum crashes and Activity level quintiles 

 4 COMDTS   

          

Panel A: 

  Avg Q1 Q2 Q3 Q4 Q5 KS CV (α = 0.05) 

Top 20 -0.10 0.35 0.10 0.30 0.15 0.10 0.16 0.29 

Top 40 -0.09 0.30 0.10 0.30 0.18 0.13 0.17 0.21 

Top 60 -0.09 0.33 0.08 0.25 0.20 0.13 0.14 0.18 

Top 80 -0.09 0.30 0.16 0.21 0.16 0.16 0.17 0.15 

Top 100 -0.08 0.27 0.15 0.25 0.15 0.18 0.17 0.14 

         

Panel B: 

  Avg Q1 Q2 Q3 Q4 Q5 KS CV (α = 0.1) 

Top 20 0.10 0.05 0.00 0.00 0.20 0.60 0.25 0.26 

Top 40 0.20 0.05 0.03 0.03 0.10 0.43 0.15 0.19 

Top 60 0.25 0.07 0.02 0.02 0.07 0.35 0.08 0.16 

Top 80 0.26 0.05 0.01 0.03 0.06 0.36 0.13 0.14 

Top 100 0.26 0.05 0.02 0.03 0.06 0.33 0.13 0.12 

 


