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Abstract. The paper presents a Finite Element formulation based on Generalized Beam Theory (GBT) 

for the analysis of the linear buckling behaviour of conical shells under various loading and boundary 

conditions. The GBT approach provides a general solution for the 1
st
 and 2

nd
 order analyses using bar 

elements capable of describing the global and local deformations. Because of the cross-section 

variation specific to conical shells, the mechanical and geometric properties are no longer constant 

along the bar axis as in the case of cylinders and prismatic thin-walled members. This proposed GBT 

finite element formulation is validated by comparison with results obtained by means of shell finite 

element analyses. The illustrative examples cover axially compressed members displaying all classical 

bar boundary conditions. Special attention is dedicated to the effect of pre-buckling stress concentrations.  

1 INTRODUCTION 

The stability of cylindrical and conical structures has been studied from the analytical and 

experimental point of view since the beginning of the 20
th

 century. At first the small 

deflection theory was used for obtaining bifurcation buckling solutions of shell structures [1], 

[2]. However, experimental results showed that cylinders buckled at loads well below those 

predicted by the small deflection theory. Donnell proposed a non-linear theory for circular 

cylindrical shells under the simplifying shallow-shell hypothesis [3]. Depending on the non-

linear strain components considered, other large deflections theories were subsequently 

proposed by Sanders [4], Flügge [5] and Novozhilov [6].  

Von Karman and Tsien performed a seminal study on the stability of axially loaded 

circular cylindrical shells, based on Donnell’s nonlinear shell theory [8]. Later, Donnell and 

Wan showed that the imperfections are the cause of the large differences between the 

analytical and experimental results of the stability analysis of cylindrical structures [9]. 

Weingarten et al. studied the elastic stability of thin-walled cylindrical and conical shells 

under axial compression in an experimental manner and showed that the buckling coefficient 

varies with the radius-to-thickness ratio [10]. Mushtari and Sachenkov determined an upper 

limit of critical bifurcation loads of cylindrical and conical structures with circular cross 

section subjected simultaneously to axial compression and external normal pressure [11]. 

Tovstik studied the stability of thin elastic cylindrical and conical shells by assuming that 

buckling is accompanied by the formation of a large number of dents which depend on the 

initial stresses and on the curvature of the shell’s middle surface [12].  

In this paper the Generalized Beam Theory (GBT) is adapted for the linear stability 

analysis of truncated conical shells. GBT is an efficient method developed by Richard Schard 

[13] to analyse the stability of thin walled prismatic bars, which extends Vlasov’s classical 

beam theory to take into consideration local and distortional cross-section deformation. The 
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first studies which extend GBT to the 1
st
 order analysis and the buckling analysis of 

cylindrical shells were developed by Christof Schardt and Richard Schardt [13], [14] and [15]. 

Silvestre developed further this field by studying the buckling (bifurcation) behaviour of 

circular cylindrical shells subjected to axial compression, bending, compression plus bending 

and also torsion [16]. Also, Silvestre developed a GBT formulation capable of assessing the 

buckling behaviour of elliptical cylindrical shells subjected to compression [17].  

Nedelcu developed a GBT formulation for the buckling analysis of isotropic conical shells 

[18]. The paper studies conical shells subjected to axial compression having different 

boundary conditions. As in the GBT formulation for thin walled prismatic bars with variable 

cross section developed by the same author [19], the mechanical and geometrical properties 

are no longer constant along the member’s length. However, in the case of conical shells, 

these properties can be easily defined. Moreover, the buckling modes turned out to be a 

combination of shell-type deformation modes which can be easily pre-determined. The 

validation of the GBT formulation for conical shells was done by comparing the results 

obtained by the GBT analysis of conical shells having different boundary conditions with the 

results obtained by Shell Finite Element Analysis (SFEA). In [18], the GBT system of 

equilibrium equations was solved using the Runge-Kutta Lobatto IIIA collocation method of 

4th order [20]. The method proved to have limitations in case of structures subjected to 

arbitrary loading and boundary conditions. Also, the method proved to be unstable in case of 

a large number of coupled deformation modes. For these reasons, a GBT-based Finite 

Element (FE) formulation seems preferable. Such type of FE is already used by many 

researchers to analyse the buckling behaviour of prismatic thin-walled members and 

structures under arbitrary loading and boundary conditions [21], [22].  

The following paper presents a GBT-based Finite Element (FE) formulation to analyse the 

elastic bifurcation behaviour (according to the linear bifurcation analysis concept) of isotropic 

conical shells with stress concentrations using the Love – Timoshenko large deflection shell 

theory [7]. The analyzed members are subjected to axial compression and the effect of the 

pre-buckling stress concentrations is assessed. The analysis is divided into two steps: (i) a 1
st
 

order analysis from which the pre-buckling stresses are computed exactly, including boundary 

effects, and (ii) a linear bifurcation analysis using the meridional and circumferential stresses 

obtained from the 1
st
 order analysis. 

The GBT-based FE analysis is implemented in Matlab [23]. For the validation of the 

results, several models were created in Abaqus [24] using shell finite elements. The 

methodology was validated by comparing the results obtained using the proposed formulation 

and SFEA.  

2 GENERALIZED BEAM THEORY FOR CONICAL SHELLS 

The GBT adaption for conical structures was presented in detail in [18], therefore this 

section briefly describes the main aspects. Figure 1 presents the geometry of a conical 

member (length L, thickness t, semi-vertex angle α), the global coordinate system xg, yg and zg 

and the local coordinate system x, θ and z, where: x∈[0, L cos α⁄ ] is the meridional coordinate, 

θ∈[0,2π] is the circumferential coordinate and z∈[-t 2⁄ , +t 2⁄ ] is the normal coordinate. The 

displacements of the structure according to the local coordinate system are as follows: u is the 

displacement along the meridian, v is the displacement along the circumference of the cross 

section and w is the displacement along the thickness. 
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Figure 1: The geometry of conical shell. 

 
The strains can be decomposed according to: 
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where: {ε

M
}, {ε

B
} are the membrane and bending strains, respectively, and {χ} is the vector of 

variation of curvature with respect to the reference surface. 

According to Love – Timoshenko theory [7] the kinematic relationships have the following 

expressions in case of conical shells [25] having linear and non-linear components: 
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with the notation s=sinα and c=cosα. 

According to GBT, the displacements u, v and z of the middle surface are expressed as a 

summation of orthogonal functions as follows: 
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where n is the number of cross-section deformation modes. 

The GBT product formulation is next used to describe each component: 
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where uk(θ), vk(θ), wk(θ) are the cross-section displacement functions pertaining to mode k and 

ϕk(x) is the corresponding modal amplitude function defined along the member’s length. The 

above expressions were chosen in order obtain null membrane shear strains γ
xθ
M.L and 

transverse strains εθθ
M.L (the components –vs/r and us/r are neglected).  

Let us consider the first variation of the strain energy according to the linear stability 

analysis concept, 
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where σxx

0 , σθθ
0  and τxθ

0  are the pre-buckling meridional, circumferential and shear stresses, 

respectively, due to the applied external loads. 

The constitutive relations are the following: 
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where Q11=Q22=E/(1-μ

2
), Q12=Q21=μQ11 and Q33=G. E and G are Young’s and shear moduli 

and μ is Poisson’s ratio. 

Using the kinematic relations from equation (2), the constitutive relations from equation 

(6) and operating all the integrations over the circumference and thickness, the strain energy is 

expressed as follows: 
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where: Cik, Dik

1 , Dik
2 , Bik, Gik are mechanical stiffness matrices related to general warping, 

twisting and cross sectional distortion. Xjik
σx , Xjik

σθ, Xjik
τ  are geometric matrices which take into 

account the second order effects of the meridional, circumferential and shear stresses, 

respectively, associated with the deformation mode j. The expressions of these matrices are 

given in detail in [18].  
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2.1 Shell-type deformation modes 

In order to diagonalize the mechanical stiffness matrices as much as possible, one aims to 

determine the warping functions uk(θ) that simultaneously fulfil all the orthogonality 

conditions:  
 

  0,0,0 ,,,,   duuduuduu ikikik                                   (8) 

 
In case of circular cross sections there are two independent sets of trigonometric functions 

extensively used in other studies [7], [16] which fulfil the orthogonality conditions: 
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For a given m there are two similar modes with distinct order k. This is the reason why in 

the buckling analysis of uniformly compressed members there is always a set of two buckling 

modes with equal critical loads. 

The independent trigonometric functions from equation (9) define the shell-type 

deformation modes, whose in-plane configurations are shown in Figure 2. 
 

 
Figure 2: The shell-type deformation modes.  

 
Introducing the warping functions previously described into the expressions of the 

mechanical stiffness and geometric matrices, leads to simplified formulas depending only on 

the material coefficients, semi-vertex angle, current radius and deformation mode number. 

These formulas were also given in detail in [18].  

As r varies along the length, the elements of the stiffness matrices are not constant along 

the longitudinal axis. Thus, in the expression of the variation of strain energy, the elements of 

the stiffness matrices are also integrated along the member length. 

2.2 Additional deformation modes 

In general, the shell-type modes can describe quite accurately the buckling modes. 

However, for performing a 1
st
 order analysis capable of obtaining a rigorous estimate of the 

pre-buckling stresses, additional deformation modes must be considered. The additional 

deformation modes are axial extension, axisymmetric extension and torsion (presented in 

Figure 3). The assumptions used to determine the shell-type modes (γ
xθ
M.L=εθθ

M.L=0) are no 

longer valid. The classic GBT product formulation of each displacement component is now 

considered: 
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For each additional deformation mode, the cross-section displacements are described as 

follows: 

2.2.1 Axial extension mode 
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2.2.2 Axisymmetric extension mode 
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2.2.3 Torsion mode 
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Figure 3: The additional deformation modes: a) axial extension, b) axisymmetric extension, c) torsion. 

 
For the axially compressed members studied in this paper, the deformation resulting from a 

1
st
 order analysis is characterised by a coupling of the first two additional modes: the axial 

extension mode (e) and the axisymmetric extension mode (a). Since there is no shear, the 

variation of the strain energy for the 1
st
 order analysis reads: 
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where i, k can be any of the modes e or a. 

Introducing equation (11) and equation (12) together with the kinematic and constitutive 

relations given by equation (2) and equation (6), the variation of the strain energy becomes: 
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The mechanical stiffness matrices (with dimension 2x2) are found after integration over 

the circumference and thickness, and their entries read 
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2.2.4 For the axial extension mode 
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2.2.5 For the axisymmetric extension mode 
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2.2.6 For the coupling of extension-axisymmetric modes 
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where: A1=Et/(1-μ

2
), A2=μA1, D1=Et/(12(1-μ

2
)), D2=μD1.  

3 THE FINITE ELEMENT FORMULATION 

The GBT eigenvalue problem for linear buckling (bifurcation) can be solved by analytical 

methods (for very simple cases) or by approximate methods (e.g. FEM). In the case of conical 

shells, initially, a Runge-Kutta numerical method was used in [18] namely the Lobatto IIIA 

4
th

 order collocation method [20]. The method proved to have limitations in case of structures 

subjected to arbitrary loading and boundary conditions. Also, the method proved to be 

unstable in case of a large number of coupled deformation modes. In this paper a FE 

formulation previously used for prismatic members ([21], [22]) was adapted for the special 

case of variable cross-section along the member axis and it is based on the variation form of 

the strain energy given by equations (5) (bifurcation analysis) and (14) (1
st
 order analysis). 

The shape functions to approximate the modal amplitude function ϕk(θ) (see equation (4)) 

are the classic cubic Hermitian polynomials expressed as follows: 
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where Le is the length of the finite element and ξ=x/ Le. 

Therefore, the modal amplitude function ϕk(θ) is approximated in the following form: 

 

  44332211  ddddxk                                          (20) 

 
where: d1=ϕk,x(0), d2=ϕk(0), d3=ϕk,x(Le) and d4=ϕk(Le) are the degrees of freedom (DOF) of 

the FE, leading to 4n DOF per mode (2n DOF per node). 

By substituting equation (20) in equation (7) and carrying out the integrations, the finite 

element matrix bifurcation equation is obtained: 
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} is the displacement vector.  
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where: i,j=2…n and p,r=1…4 (p,r  are the indexes of the DOF).  

For the first order analysis, only the linear stiffness matrix is retained, which for axial 

compression has the following expression: 
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where i, k can be any of the axial extension or axisymmetric extension deformation modes.  

The arbitrary external forces are replaced by equivalent “nodal” forces acting as distributed 

loads at the end cross-sections of the finite element. The FE force vector f
(e)

 is obtained from: 
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where f0 and fLe are the equivalent distributed loads acting at the FE end cross-sections and the 

second index (x, y or z) is specifying the projection on the corresponding local axis. For the 

axially compressed finite element loaded with an axial force P0 at the starting node (x = 0), 

the force vector reduces to: 
 

 ( )

0 0cos 0 0 0 0 sin 0 0
Tef P P                           (26) 

 
where the first 4 components are related with the axial extension mode and the other 4 

components are related with the axisymmetric extension mode. 

The principle of virtual work leads to the standard linear equation: 
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                                               (27) 

 
Because conical shells have variable cross section, the mechanical and the geometric 

stiffness matrices are variable with respect the member’s length. Therefore, the stiffness 

matrices from equation (7) and equation (15)  are also integrated along the length of the finite 

element, an important difference with respect to the GBT formulations for prismatic bars. The 

integrations over the FE length were performed by Gauss numerical integration. For all 



Adina-Ana Mureșan et al. 

 9 

illustrative examples, the authors used 4 integration points, due to the fact that more points 

did not improve the solution. 

The GBT-based finite element formulation starts by dividing the member into the desired 

number of finite elements. The nodal degrees of freedom are identified and they are grouped 

in vector {d}. The finite element stiffness matrices are assembled to form the global linear 

stiffness matrix [K] and the global geometric stiffness matrix [G]. The same applies for the 

external force {f} and displacement {d} vectors. For the 1
st
 order analysis solving the linear 

equation system [K]·{d}={f} leads to the displacement vector {d} from which the pre-buckling 

strain and stress fields are computed. Next the bifurcation analysis is performed using the pre-

buckling stresses and the solution of the eigenvalue problem [K+λG]·{d}={0} leads to the 

eigenvalues λ, with the lowest value being the critical value λcr, and the corresponding 

buckling modes represented by the eigenvectors {d}. 

In order to determine a deformed configuration of the thin-walled member, the modal 

amplitude function ϕk(x) is determined from the superposition of the shape functions ψi(ξ) 

using (20) and next, the displacement field is found using equation (4) and equation (3). 

4 NUMERICAL EXAMPLES 

In order to validate the proposed formulation for the analysis of conical shells under axial 

compression, several numerical examples were considered. Let us consider the conical shell 

from Figure 4. The conical shell is made of steel (E=210GPa, μ=0.3), the thickness of the 

wall is t=1 mm and the length is L=1200 mm. The top radius is r1=50 mm, while the bottom 

radius r2 is variable, having values ranging from 50 to 1000 mm.  

The members with stress concentrations have the top end free to all 

displacements/rotations, a region where the loading is introduced, leading to significant local 

end effects. These end effects are given by local deformations (see Figure 5) and local large 

variations of the pre-buckling circumferential normal stresses provided by the 1
st
 order 

analysis, in the free end region (see Figure 6 and Figure 7 – the free end is located at the left-

hand side). In these figures the bottom radius was considered to be r2 = 1000 mm. These 

concentrations of the pre-buckling stresses can no longer be neglected nor approximated by 

simple formulas (see Eq. 28).  
 

 
Figure 4: The geometry of the analyzed conical shell. 

 
The loading is introduced as P=λ·P0, where λ is the loading coefficient, P0 is the value of 

the axial force used in the 1
st
 order analysis and, for all cases, P0=1 kN. The proposed 

formulation was implemented in Matlab and the results were compared with SFEA results. In 

all the presented examples the differences do not exceed 5%. 
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The SFEA were carried out in Abaqus [24] with S4 rectangular shell finite elements. The 

size of the mesh varies along the length having a dimension around 5 mm at the top end and 

50 mm at the bottom end. 

For the special case of axial compression, the 1
st
 order deformation is characterized by a 

coupling between the axial extension and the axisymmetric extension deformation modes. 

The buckling modes are characterized by a single shell-type deformation mode.  It should be 

stressed that having no deformation mode coupling leads to great computational economy, an 

advantage impossible to achieve with shell finite elements. In particular, all the GBT matrices 

are nxn diagonal matrices and the FE matrices K
(e) 

and G
(e)

 are 4nx4n matrices, essentially 

banded, formed by diagonal addition of 4x4 matrices (there are 4 DOF per deformation mode). 
 

 
Figure 5: The free end displacements of an axially compressed cantilever conical shell resulting from 

SFEA. The displacement scale factor is 200. 
 

 
Figure 6: The pre-buckling meridional stresses σxx

0  of an axially compressed cantilever conical shell 

with r2=1000mm. 
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Figure 7: The pre-buckling circumferential stresses σθθ

0  of an axially compressed cantilever conical 

shell with r2=1000mm. 
 

The meridional and circumferential normal stresses σxx
0  and σθθ

0  determined in the 1
st
 order 

analysis were subsequently used in the buckling analysis, to determine the geometric tensors 

 Xjik
σθ and  Xjik

σx  (equation (7) which take into consideration the second-order effects and they are 

used to to determine the elements of the FE geometric stiffness matrix (equation (23)). 

4.1 Cantilever conical shells 

The analysed members have the top end free to all displacements/rotations, while the 

bottom end is fixed. Figure 8 presents the critical buckling modes and the corresponding 

buckling coefficients λc for conical shells having different values of the radius r2. The figure 

also illustrates the buckling coefficients obtained with SFEA and the relevant cross-section 

deformation modes k. In the conical shells’ buckling modes one can observe the end effects 

that occur at the cantilever’s free end. 
 

 
Figure 8: The buckling modes of cantilever conical shells resulting from SFEA. 

 
To demonstrate the importance of taking into account the 1

st
 order local end effects, a 

simplified analysis was carried out, in which the pre-buckling stresses σθθ
0  were neglected, and 

the pre-buckling stresses σxx
0  were approximated by the following equation:  

 

rtc

P
xx




2

0                                                                  (28) 
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Table 1 shows the comparison between the rigorous and the simplified approach. The 

results were compared with respect the critical buckling coefficient obtained from SFEA. The 

simplified approach provided errors reaching up to 91% for large values of r2, proving the fact 

that the local end effects must be taken into account for the analysis of conical shells with 

free-loaded ends. 

The large variations of the pre-buckling stresses are produced on a small region near the 

free end where the FE mesh should be refined enough to capture them. To test the precision 

and stability of the proposed formulation, two case studies were considered for the analysed 

numerical examples: (i) finite elements having constant length and (ii) finite elements having 

variable length. In Abaqus the size of the SFE-s varies linearly between approximatively 5 

mm at the free end and 50 mm at the fixed end. 
 

Table 1: SFEA results vs. GBT results when local end effects are taken/not taken into account. 

r2  

[mm] 

λc 

SFEA 

λc 

GBT with 

local 

effects 

 

λc 

GBT without 

local effects 

 

Difference 

SFEA vs GBT 

with   local 

effects [%] 

Difference 

SFEA vs GBT 

without  local 

effects [%] 

k 

50 139.98 141.73 141.73 1.24% 1.24% 2 

60 204.9 207.98 207.98 1.48% 1.48% 2 

70 233.62 234.61 262.55 0.42% 11.02% 4 

90 230.53 229.20 288.55 0.58% 20.11% 4 

100 226.82 227.64 307.15 0.36% 26.15% 4 

120 218.06 215.80 351.75 1.05% 38.01% 6 

150 182.8 182.89 377.65 0.05% 51.60% 6 

200 147.44 145.02 392.85 1.67% 62.47% 6 

300 100.6 101.13 423.02 0.53% 76.22% 6 

400 74.551 76.09 406.42 2.03% 81.66% 6 

500 59.068 59.97 386.48 1.50% 84.72% 6 

1000 26.66 27.91 272.91 4.48% 90.23% 8 

 

4.1.1 Finite elements with constant length  

In the following case study, the conical shells modelled using the proposed formulation are 

meshed with finite elements having constant length. Figure 9 presents the differences between 

the results obtained using SFEA and the results obtained using the GBT based FE formulation 

for a cantilever conical shell with r2=500 mm. In the GBT based FE formulation model the 

number of finite elements ranged between 1 and 15. In Figure 9 can be observed that the 

minimum number of FE for which the difference between the results is under 5% is 6.  
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4.1.2 Finite elements with variable length  

In this case study, the conical shell of the preceding example (r2=500 mm) is analyzed 

using the proposed formulation, meshed with finite elements having variable length. At the 

conical shell’s free end (in the “local effects” region) on a meridional length equal with 

r1/cosα, where r1 is the top radius, the finite elements have equal length producing a refined 

mesh. For the rest of the member, the length of the finite elements increases linearly 

producing a coarse mesh (in the “no local effects” region). Table 2 presents the results 

obtained for various discretization schemes and also the SFEA result. The results are 

compared in Figure 9 with the values obtained using FE-s with constant length. It can be 

observed that the differences between the SFEA and the GBT results are now below 3% for 

only 5 FE-s (2 for “the local effects” region and 3 for the “no local effects” region). 
 

 
Figure 9: The differences between the results obtained with SFEA and GBT for different numbers of 

GBT-based finite elements. 
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Table 2: The differences between SFEA vs. GBT for different sizes of the FE mesh. 

No. of FE 

for the 

“local 

effects” 

region  

No. of FE 

for the “no 

local 

effects” 

region 

λc 

SFEA  

 

λc 

GBT  

Differences 

[%] 

1 1  

 

 

 

 

59.06 

66.53 11.21% 

1 2 63.75 7.35% 

2 2 63.68 7.24% 

2 3 60.65 2.61% 

3 3 60.70 2.69% 

3 4 60.14 1.78% 

4 4 60.15 1.79% 

4 5 60.05 1.63% 

5 5 60.05 1.64% 

5 6 60.02 1.59% 

6 6  60.02 1.59% 

6 7  60.01 1.57% 

7 7  60.01 1.57% 

7 8  60.01 1.56% 

 

4.2 Cantilever conical shells with simple support in the middle of the span  

In the following case study, a cantilever conical shell was considered which has an 

additional simple support in the middle of the span. As in the previous case, the conical shells 

have the free end corresponding to radius r1, and the fixed end corresponding to radius r2. In 

the middle of the span, the cantilever has a simple support which allows warping and has the v 

and w displacements blocked. Figure 10 presents the buckling modes and Table 3 presents the 

differences between SFEA and GBT, as well as the relevant deformation mode number k. As 

in the previous case, the local end effects are present and they must be taken into account. By 

comparing the buckling coefficients given in Table 1 and Table 3 it can be concluded that the 

intermediate simple support makes the structure stiffer but only for small values of radius r2. 

This is explained by the localized buckling that occurs for large variations of the shell radius 

along the length.    
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Figure 10: The buckling modes of the cantilever conical shells with simple support in the middle of 

the span resulting from SFEA. 
 
Table 3: SFEA results vs. GBT results for cantilever conical shells with simple support in the middle 

of the span. 

r2 

[mm] 

λc 

SFEA 

λc 

GBT 

Differences 

[%] 

k 

50 274.24 277.19 1.06% 4 

60 272.15 277.53 1.94% 4 

70 267.67 274.05 2.33% 4 

90 257.23 256.12 0.43% 4 

100 244.72 243.87 0.35% 4 

120 219.45 215.76 1.71% 6 

150 183.06 184.08 0.55% 6 

200 143.18 148.10 3.32% 6 

300 101.03 100.98 0.04% 8 

400 74.81 76.32 1.97% 6 

500 60.14 60.92 1.27% 6 

1000 27.37 27.83 1.62% 8 

 

5 CONCLUSIONS  

GBT provides a very efficient mean to calculate bifurcation loads of thin-walled bars. 

Initially it was believed that GBT could only be applied to members having constant cross 

section along the longitudinal axis, but recent studies proved that it can be extended to 
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structural members with variable cross-section [18], [19]. This paper presented a GBT-based 

FE formulation to analyse the buckling (bifurcation) behaviour of isotropic conical shells with 

stress concentrations. The advantages of using this formulation in comparison with the classic 

SFEA are the following: much fewer DOFs are necessary to obtain similarly accurate results 

and the solutions for axially compressed shells are obtained with a single shell-type 

deformation mode. Furthermore, in a coupled instability problem, the proposed formulation 

provides the degree of modal participation – an aspect which will be addressed in a future 

paper concerning the buckling analysis of conical shells subjected to other types of loads.  

From the numerical examples presented in this paper, three remarks can be highlighted. 

The first remark is related to the validation of the GBT based FE formulation for the buckling 

analysis of isotropic conical shells. The critical buckling coefficients obtained with SFEA and 

the ones obtained with the proposed formulation are in excellent agreement. The second 

remark is related to the flexibility of the proposed formulation. As seen from the numerical 

examples illustrated in the paper, the proposed formulation can be applied to any type of 

classic bar boundary conditions. The last remark refers to the local large variations of the pre-

buckling stresses. In this respect it was shown that in the GBT buckling analysis of conical 

shells with stress concentrations is extremely important to take into account the 1
st
 order local 

end effects in order to have good results.  

The proposed GBT based FE formulation can be applied for the buckling analysis of 

conical shells subjected to loads other than axial compression (i.e. pure bending, torsion, or 

complex loading conditions). These case studies are currently under work and will be 

presented in future papers. 
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