
Sabrina Josephine Rubin

Licenciada em Engenharia de Micro e Nanotecnologias

Development of eco-friendly ZnO inks for
paper-based printed electronics

Dissertação para obtenção do Grau de Mestre em

Engenharia de Micro e Nanotecnologias

Orientador: Doutor Luís Miguel Nunes Pereira, Professor Auxiliar, Fa-
culdade de Ciências e Tecnologia da Universidade Nova
de Lisboa

Júri

Presidente: Doutor Rodrigo Ferrão de Paiva Martins
Arguente: Doutora Marja Vilkman

Vogal: Doutor Luís Miguel Nunes Pereira

September, 2017





Development of eco-friendly ZnO inks for paper-based printed electronics

Copyright © Sabrina Josephine Rubin, Faculdade de Ciências e Tecnologia, Universidade

NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “novathesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt




Acknowledgements

After all the effort made these past months, including frustrating results, sometimes

days spent on one single detail, but also memorable and exciting moments, this master

thesis would not have been possible without the help and guidance of a large number of

people.

I would like to thank Prof. Elvira Fortunato and Prof. Rodrigo Martins for the priv-

ilege and opportunity to work at the prestigious CENIMAT|i3N and CEMOP. The fully

equipped laboratories, expertise and passion for science as well as the positive demand

for innovative and challenging work all create the excellent conditions and scientific basis

for this thesis and other works.

Secondly, I would like to express my sincere gratitude to my supervisor, Prof. Luís

Pereira, for accepting me into the team, for all the suggestions, weekly meetings, help

and ideas, all contributing to the excellent team spirit.

To Inês Cunha, my co-supervisor, partner to all the endless lab work, humorous mo-

ments, serious and frustrating moments and most valuable suggestions and help, from

the very basic problems to the head-scratching complicated problems. Her persistence,

knowledge, ideas, never-ending energy, trust in my work, mini pep-talks (all the time

spent helping me!) and constantly pushing me to better results helped to surpass many

difficulties encountered in this work. The vital electrolyte component used in this work

and opportunity to freely cut and use (almost all!) her ion gel for the countless transistors

will not go unnoticed. Thank you! Besides co-supervisor, you are a great friend.

I am also grateful for all the support given by the extraordinary group of researchers

which include Rogério Morais, Tiago Carvalho, Raquel Barras, Paul Grey, Emanuel Carlos,

Gabriel and Ribas. Thank you guys for all the tips, knowledge, inspiring long hours of

work spent at Lab 5, 6 and 7, the laughs and never ending patience with me. To Rogério,

for showing me the basics at the printing lab. To Tiago and Raquel for helping me with

the equipment and expertise and sharing weird and funny moments. To Paul and Manu,

for the circuit knowledge and wise advice at the electrical characterization workbench.

Gabriel and Ribas, you guys kept the environment uplifting and solidarity.

To the rest of the team at CENIMAT, always willing to help, thank you: Rita Bran-

quinho, Sónia Pereira, Ana Pimentel, Joana Pinto, Pedro Barquinha, Diana Gaspar, Daniela

Nunes. In order to not forget anyone I would like to express my gratitude to the rest of

these both institutes for the support and the relevant suggestions.

v



To my colleagues working with me at CENIMAT, there has never been a quieter and

hilarious OpenSpace to work at.

To all my course colleagues, a big thank you. I would not have come so far alone, all

of your support and help I will keep with me forever. Marta, I have never had a better

friend for head-banging on the walls. You also belong above in the team paragraph, but

are most of all my course friend. Miguel, thank you for the advice all the way from Braga.

Fernocas (your nickname forever) from Braga, even though I never see you, thank you

for the friendship since the 1st year. To Catarina, for the unconditional support even all

the way from Japan. Caupi, for wise words from Finland. Cláudia, you also belong to the

international paragraph, thank you for the support from England.

To my whole family, for the unconditional support, love and comprehension, that

words cannot express. To my parents, for showing me in a real-life example, that even

after five times, even the impossible becomes possible and you should never ever give up.

To my brothers, for putting up with your annoying sister, "let’s go to the beach", "come on

hurry up let’s watch a movie", 9gag posts, memes, fail videos, Praia da Rocha moments,

making fun of absolutely anyone and anything and making me laugh when I’m trying to

stay mad.

To Ricardo, thank you for being the light on dark days, for the incomprehensible

patience with me, keeping me strong during this stressful period and making me laugh

when I thought it impossible. Also for "está na hora", guitarradas with the bros, film

sessions, all the trips, Algarviadas, pep talks and reminding me of what is the most

important.

vi



Abstract

In this work, we report the development of printable semiconducting inks compatible

with screen-printing and paper technology and functional at room temperature without

the need of post-deposition treatments. The developed eco-friendly inks are based on a

dispersion of zinc oxide nanoparticles on a cellulose matrix. Several cellulose derivatives

were used to design and engineer such inks looking for the best formulation, printing

conditions and compatibility with cellulose-based substrates. The approach described

here represents an innovative and versatile generation of semiconducting inks composed

of some of the cheapest, renewable and highly abundant materials we can find on Earth,

such as cellulose, able to be implemented as channel in printed transistors on paper.

By using a cellulose-based ion gel as gate dielectric the printed ZnO transistors exhibit

an Ion/of f ratio ranging from 103 to 105, µsat values close to 9 cm2 V −1 s−1 and gm of

around 0.4 mS.

Keywords: Zinc oxide, electrolyte-gated transistor, printed electronics, screen-printing,

cellulose, paper electronics.
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Resumo

Neste trabalho, reportamos o desenvolvimento de tintas semicondutoras de impres-

são compatíveis com screen-printing e tecnologia de papel e funcionais à temperatura

ambiente sem a necessidade de tratamentos de pós-deposição. As tintas eco-friendly de-

senvolvidas baseiam-se numa dispersão de nanopartículas de óxido de zinco numa matriz

de celulose. Vários derivados de celulose foram usados para projetar estas tintas, procu-

rando pela melhor formulação, condições de impressão e compatibilidade com substratos

baseados em celulose. A abordagem descrita aqui representa uma geração inovadora e

versátil de tintas semicondutoras compostas por alguns dos materiais mais baratos, reno-

váveis e altamente abundantes que se podem encontrar na Terra, como a celulose, que

podem ser implementados como canal em transistores impressos em papel.

Ao utilizar um gel iónico à base de celulose como dielétrico de porta, os transistors

de ZnO impressos exibem um rácio de Ion/of f entre 103 e 105, valores de µsat pertos de 9

cm2 V −1 s−1 e um gm de 0.4 mS.

Palavras-chave: Óxido de zinco, transístor de porta eletrolítica, eletrónica impressa,

screen-printing, celulose, eletrónica de papel.
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1
Motivation and objectives

The current electronics market revolution demands for efficient power sources to

sustain flexible, light, thin, low-cost, portable and sustainable electronic gadgets with

different functions. To turn into reality this new class of consumer’s electronics, printed

electronics become increasingly popular as an alternative to conventional silicon-based

electronics. [1]

The strive for high-performance electronic devices onto large area flexible substrates,

like plastic and cellulose-based paper, with low processing cost drives the development

of alternative advanced functional materials with tailored properties, including semicon-

ductor materials, such as quantum dots, carbon-based nanostructures, organic semicon-

ductors, and inorganic metal oxides. [2]

Oxides of transition metals may be used in flexible electronics, however, vacuum

deposition techniques are used rather than printing. [3] More notably, metal oxide semi-

conductors such as zinc oxide (ZnO), indium oxide (In2O3), indium gallium zinc oxide

(IGZO) and tin oxide (SnO) are very attractive due to their high charge-carrier mobility,

high optical transmittance, and excellent chemical/mechanical stability. [2] However, the

necessity for sintering temperatures of 300-500 °C are required to achieve optimum mo-

bility for inorganic semiconductors, despite it being possible to solution process and even

print these materials. [3] Consequently, heat-sensitive materials such as paper or plastic

are not compatible with such materials. Solution processed inorganic semiconductors

and their compatibility with usual printing techniques have scarcely been reported. [4]

In this work, ZnO was chosen as semiconductor functional material for the devel-

opment of printable inks compatible with cellulose-based paper substrates, since it has

advantageous inherent electrical properties and can be processed and printed, as has al-

ready been demonstrated. [5] From a printability standpoint, depending on the printing

technique considered, the deposition of functional materials demands the formulation of

1



CHAPTER 1. MOTIVATION AND OBJECTIVES

suitable inks which combine in their composition the optimal proportion of functional

material, solvent and binder. For screen-printing, the preparation of such inks with high

viscosity (> 1000 cP [6]) is required, through the addition of polymer binders.

Cellulose, the most abundant and renewable biopolymer resource on Earth, can be

used for the development of composites from solutions, providing a stabilizing and film-

forming matrix hosting the ZnO NPs, as in this case, as well as providing high viscosity

for solutions intended for printing. [6]

A challenge worth noting is finding the optimal adjustments between the polymeric

material which is normally non-conductive, used to adjust the viscosity and the dispersion

of nanoparticles, with the semiconductor material. Depending on the polymer amount,

part of the semiconducting properties of ZnO can be impaired, which is why a careful

combination of the materials must be taken in account. [5]

One of nature’s exceptional diverse biomaterials is cellulose, which composes paper.

Cellulose is a renewable, biodegradable and the most abundant biopolymer resource avail-

able on Earth and therefore a highly attractive material for the development of innovative

electronic composites with new functionalities. [1, 7]

Cellulose is produced from renewable resources at low cost and its dissolution still

proves a challenge, due to its rigid long-chain and strongly inter-molecular and intra-

molecular hydrogen-bonded structure. Therefore, cellulose is usually converted into

derivatives such as sodium carboxymethyl cellulose (CMC), ethyl cellulose (EC) and

hydroxypropyl cellulose (HPC), with interesting properties. [1, 6, 8]

In CENIMAT/i3N, cellulose is explored extensively assuming a key role in electronics.

Remarkably, paper batteries [9] have been developed as well as paper-based FETs [9–

11], write-erase and read paper memory transistors [12] and CMOS inverters based on

paper [13, 14]. More recently, remarkable work by our research group has lead to the

development, for the first time, of a printable cellulose composite ink based on ZnO NPs

dispersed in a cellulose matrix, compatible with screen-printing. [5]

There are some challenges that remain concerning the development and technology

surrounding paper-based electronics, since it presents large surface roughness, resulting

in a series of limitations for hosting electronic devices such as EGTs on its surface. [6]

This master thesis is focused on the development and study of the influence of differ-

ent cellulose derivatives in regards to the semiconductors’ ink performance in printed

transistors, bringing new insight to advanced functional materials based on cellulose.

The ultimate goal relies on implementing the developed cellulose-based inks in flexible

electrolyte-gated transistors on paper. This work will also rely on an ion gel based on

a cellulose matrix with incorporated lithium ions to enable the devices performance at

low-voltage, which is the electrolytes major advantage. The advantage with this elec-

trolyte also resides in the eco-friendly and low-cost components and processes as well

as versatile implementation strategies (stick and reusability of the ion gel), along with

the gel’s appealing electrochemical properties by upgrading the low flexibility and ionic

conduction of solids and leakage problems characteristic of liquid electrolytes.

2



Several studies were performed in order to find the best cellulose composite semicon-

ducting ink composition to be applied as channel in printed EGTs on paper:

-Characterization and optimization of the cellulose composite inks, studying the in-

fluence of each ink component to find the best combination of components and printing

conditions;

-Study of different paper substrates;

-Application and electrical characterization of the EGTs.
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2
Introduction

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0
International License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc/4.0/.

For a better understanding of this work, a brief introduction will be given, comprising

relevant topics starting with the materials under study, in this case ZnO and cellulose,

moving to some fundamentals and applications of transistors technology, focusing on

EGTs, as well as printed and paper electronics.

2.1 Zinc Oxide

Zinc oxide has great potential for electronic devices and is one of the main components

of this work. ZnO is a II-VI semiconductor with piezoelectric properties which draws

attention from researchers due to its optical properties such as transparency in the visible

and high infrared reflectivity. ZnO is characterized as an n-type inorganic semiconductor

with a bandgap of 3.38 eV.[5]

The controlled resistivity of ZnO ranges from 10−3 − 105Ωcm, making it interesting

for thick and thin films and playing a big role in many applications such as optical waveg-

uides, transparent conducting coatings, optical detector devices, mechanical actuators

and piezoelectric sensors. [15–17]

It possesses attractive physical properties such as high isotropic electron mobility

(>1 cm2V −1s−1) and low-temperature processability (<300 °C) and has been extensively

investigated as the active layer in thin-film transistors (TFTs), complementary inverters

and piezoelectric nanogenerators. [2]

ZnO can be synthesized and grown in various morphologies and dimensions, allowing

for a vast family of nanostructures such as nanorods, nanotubes, nanocorals, nanoflowers

5
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CHAPTER 2. INTRODUCTION

and nanowalls. [18] Different shapes, sizes and morphologies determine the physical

and chemical properties of ZnO, as well as the corresponding electrical, optical and

piezoelectric properties. [5]

It has been demonstrated [15] that deposition conditions and methods of printing ZnO

films greatly affect its physical properties. Sol-gel methods and chemical bath deposition

have been extensively investigated for use in TFT applications. These methods provide

a cheap solution and are capable of large-scale, roll-to-roll manufacturing via methods

such as dip-coating, spin coating and spray coating. [19] However, these techniques

require high temperature processing or long reaction times and therefore are not suitable

for flexible electronic applications. Therefore, a low temperature fabrication of ZnO

transistors with high mobility and low-voltage operation is required and an additive

manufacturing approach has been explored. Resistor-loaded inverters based on ZnO

films sintered at low temperatures have already been fabricated. [20]

High-performance, aerosol-jet-printed ZnO EGTs have been demonstrated by Hong

et al. [2], as well as all-inkjet-printed flexible ZnO micro photodetectors. [19] At CEN-

IMAT|i3N, screen-printed FETs based on ZnO NPs [5] along with handwritten ZnO

electronics on paper [4] have also been demonstrated. Remarkably, the latter work has

demonstrated the possibility of a handwritten functional semiconductor layer within and

on paper.

These applications have shown that there is potential for printing of other ZnO films

that require flexibility and simplicity of the fabrication process. In the following sec-

tion, a more detailed explanation of the desired application will be given, mentioning a

promising category of transistors, the electrolyte-gated transistors.

2.2 Transistor technologies and electrolyte-gated (EGT)

transistors

The field-effect transistor (FET) has become one of the most implemented semicon-

ductor devices in nearly every electronic product. [21] FETs are commonly used for

weak-signal amplification. In a FET, current flows along a semiconductor path called

the channel. At each end of the channel, there is an electrode, the source and drain. A

gate voltage (VGS ) induces charges at the dielectric/semiconductor interface, creating a

channel, enabling high current flow between the source and drain (IDS ).

FETs can be characterized by their transfer (IDS vs VGS ) and output (IDS vs VDS )

characteristics and IDS in the linear regime (at low VDS ) follows:

IDS,lin =W/LµFETCi(VGS −Vth)VDS (2.1)

The IDS in the saturation regime (at high VDS ) is:

IDS,sat =W/2LµFETCi(VGS −Vth)2 (2.2)

6



2.2. TRANSISTOR TECHNOLOGIES AND ELECTROLYTE-GATED (EGT)

TRANSISTORS

Where W is the channel width, L is the channel length, µFET is the field-effect mobil-

ity of the majority charge carriers, Ci is the geometric capacitance of the dielectric, VGS
is the voltage applied to the gate in respect to the source and VDS is the voltage applied

to the drain in respect to the source, which is grounded. [22]

Charge transport in the transistor channel occurs at the gate insulator-semiconductor

interface. Thus, the properties of the interface and the gate insulator can have a huge in-

fluence on the transistor characteristics. Alternatively, instead of a conventional dielectric

material such as SiO2 [8], an ionically conducting electrolyte yet electrically insulating

can be used as the gate insulator material, resulting in an EGT. [21]

Electrolytic gates possess a huge capacitance compared to conventional dielectrics

such as Ta2O5 and SiO2. The main advantage of large capacitances is that they allow

transistor operation at low voltages (<3 V) compatible with printed, thin film batteries

and the delivery of very large drive currents. However, EGTs can also suffer high para-

sitic capacitances and large gate-source leak currents which lower switching speeds and

consume power. [8, 23]

Depending on the permeability of the semiconductor layer and on the applied gate

voltage, EGTs are divided into electrical double layer transistors (EDLTs) or electrochem-

ical transistors (ECTs). The high ionic conductive layer as dielectric in these devices

promotes the accumulation of charges on the dielectric/gate and dielectric/semiconduc-

tor interfaces. Normally, this leads to the formation of two electrical double layers (EDLs)

on each of the interfaces (principle of work of EDLTs). However, when the semiconductor

is permeable to ions, reversible electrochemical doping occurs on this layer and only one

EDL is formed in the dielectric/gate interface, as the ions are expected to diffuse into the

semiconductor (principal of work of ECTs). [1]

The ion mobility depends on the state of the electrolyte, either liquid, gel or solid,

which also must be taken into consideration. [8] The electrolyte is crucial to the perfor-

mance, and in this work, a reusable cellulose-based hydrogel electrolyte (CHE) sticker

film was applied as gate dielectric, developed by Cunha et al. [8] This electrolyte is an

ion-gel and exhibits appealing properties, such as transparency, flexibility, transferability

and high capacitance ( 5µFcm−2), combining with the versatile and sustainable processing

strategy for implementation of the electrolyte (cut, stick and reuse).

EGTs have many applications, ranging from textile electronics, biosensors, superca-

pacitors, circuits or electrochromic displays.[5]

In this thesis, as depicted in Figure 2.1, printed ZnO transistors were produced on

cellulose-based papers using a conventional source and drain electrodes architecture with

an in-plane-gate configuration, meaning that the source, drain and gate electrodes are

all in the same plane. This type of architecture presents the advantage of reducing the

number of printing passes since the electrodes are all printed simultaneously in one step.

Since printing was selected as the deposition technique, the following chapter will

cover the topic of printed electronics techniques.

7
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Figure 2.1: a) Cross-section schematic representation of the EDL formations at each
interface. b) A 3D schematic representation, where the white substrate represents paper,
three black contacts representing carbon electrodes (the dashed line goes through the
gate electrode), blue layer as the ZnO NPs layer and the topmost layer between gate and
ZnO NPs layer as the CHE sticker.

2.3 Printing techniques

Printed electronics are an ever-increasing popular method for producing simple and

low-cost consumer electronic devices by combining functional components into printing

inks. Printing is an additive process which reduces wastage of materials as opposed to

subtractive processes such as lithography and etching. This makes printed electronics

viable for both large scale manufacturing and small product prototypes, as well as inex-

pensive and rapid design applications. [24] Besides, fast prototyping, control on the film

microstructure and low costs of printing facilities are some additional advantages. [25]

However, printing techniques continue to present resolution limits (from a few µm

to 500µm, depending on the method [26]) which affect the printed devices’ performance

as well as a requisite for a careful choice of the inks’ parameters such as their viscosity,

solvent compatibility, physical and chemical stability and surface energy compatibility.

[5]

Usual printing methods include screen-, inkjet-, gravure-, flexo- and offset printing.

Out of these, gravure printing provides the highest throughput and screen printing allows

for the greatest single layer thickness. [24] The selection of the best method depends on

the best properties for the specific application. For this thesis, screen printing was chosen

since it is versatile, provides high aspect ratios of printed objects, allows for a wide

range of thicknesses, ranging from a few µm to 100µm, can be used on different types of

substrates and solve the ink absorption problem typical of highly absorbent substrates,

such as paper, since the inks are viscous. [5, 24]

Paper serves as a cheap and easily disposable alternative to common plastic substrates,

greatly reducing negative environmental effects. [14] One of the biggest disadvantages of

paper substrates continues to be its surface roughness affecting carrier transport mobili-

ties and increasing leakage current of printed transistors, although it can be advantageous

8
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for other applications, such as microfluidics. [6] Paper can also be used as substrate and di-

electric simultaneously, with pioneering work done at CENIMAT|i3N. [14] Applications

include paper batteries and paper transistors [9], paper-based FETs [10, 11], write-erase

and read paper memory transistors [12], CMOS inverters based on paper [13, 14] and

handwritten oxide electronics on paper [4].

In this work, paper is solely used as the substrate, and screen-printing proves to be a

great technique since viscous inks can be used and absorb less into paper.

2.3.1 Screen printing

As illustrated in Figure 2.2, screen-printing is based on a squeegee which provides

shear stress to a paste making it flow through a patterned screen mesh, depositing a

pattern onto versatile substrates with tailored surfaces and compositions from rigid to

flexible substrates as well as materials either with smooth or rough surface.The paste

flows through the open areas of the mesh thanks to the lowered viscosity of the paste

provided by the squeegee. The system used in this work is manual and therefore many

variables are taken in account such as printing speed, angle and geometry of the squeegee,

mesh size, material, strength and snap-off (distance between screen and substrate), many

of which vary from user to user and affect replicability. This system can however be

automized, making the process faster and replicable. [5, 25]

Applying printing techniques to the deposition of functional materials requires the

formulation of suitable inks. Parameters such as viscosity, surface tension, wettability

and adhesion to substrate need to be adjusted in order to provide optimal printing per-

formance.

Viscosities, typically between 500-5000 cPs are referred to as desirable for screen-

printing, since inks with low viscosity will run through the mesh rather than dispensing

out of it. [5] One way of achieving these viscosities is by adding polymer binders, such

as cellulose, which avoid excessive spreading and leakage through the mesh, providing a

stabilizing and film-forming matrix hosting the semiconductive material that can adhere

to a paper substrate. [6] Cellulose therefore plays a big role in printed electronics and

will be covered in the following chapter.

To the best of the authors knowledge, the topic of printed inorganic semiconductors

has been poorly explored, and more specifically, little is known when it comes to func-

tionality of paper devices at room temperature. Pioneering work has been carried out by

Carvalho et al. [5], where ZnO NPs electrolyte-gated transistors were developed taking

advantage of screen-printing. However, the work resorted to high burn-out tempera-

tures as well as the use of harsh chemicals such as toluene. An eco-friendlier approach

has therefore been suggested, taking advantage of screen-printing with the final goal of

producing EGTs at room temperature.

By incorporating cellulose with the inks, the specific conductive properties of the

NPs can be combined with characteristic properties of cellulose such as high hydration,

9
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swellability, antimicrobial activity, biodegradable, enhanced mechanical properties. This

has already led to applications such as antimicrobials, functional chemical sensing and

biosensors. [27]

A custom-made screen printing station, illustrated in the following Figure 2.2, was

used to develop the EGT transistors, present at CENIMAT|i3N.

Figure 2.2: Schematic drawing of custom-made screen-printing system used at CENI-
MAT|i3N. [25]

2.4 Cellulose

Cellulose is nature’s most abundant biopolymer resource. The main source of cellulose

can be found in plant cell walls, but also some sea organisms, fungi and bacteria. It’s bio-

compatibility, high elastic modulus, thermal stability, nontoxicity and low density makes

it suitable for a wide range of applications, from paper and textile, food, pharmaceutical

and chemical industry to disposable electronics. [1]

However, processing cellulose is still a challenge due to its rigid long-chain and strong

intermolecular and intramolecular hydrogen-bonded structure, making its dissolution

without chemical modification or derivitization difficult. Cellulose is therefore converted

into derivatives which are easily dissolved in ordinary solvents. Some examples are

ethyl cellulose (EC), hydroxypropyl cellulose (HPC), methyl cellulose (MC), sodium car-

boxymethyl cellulose (CMC) and cellulose acetate (CA). [1, 8]

By combining cellulose or its derivatives with conductive materials through doping,

blending or coating, new functional composite materials can take place in the form of

microspheres, fibers or membranes, with the electroconductive material dispersed on

the surface or within the matrix. This approach is an extremely attractive, inexpensive

and advantageous approach, allowing the combination of electrical properties with high

hydration, swellability and biocompatibility properties inherent of cellulose compounds,

with applications as thickening, water-binding, suspension, stabilizing and emulsifying

agents [1, 6]
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Cellulose can therefore be used for the development of composites from solutions,

providing a stabilizing and film-forming matrix hosting the ZnO NPs, as in this case, as

well as providing high viscosity for solutions intended for screen-printing.
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3
Materials and Methods

This chapter aims to describe all the steps that were taken to develop and character-

ize EGTs on paper. The first step explains the formulation of the cellulose composite

semiconductor inks based on ZnO NPs forming printable inks compatible with screen-

printing. The following step consists of the characterization of the printed films. Lastly,

the application and characterization of the flexible EGTs is described, covering the fol-

lowing topics: concentration of functional material, concentration and type of cellulose

derivatives, number of printing passes, paper substrate, annealing time and temperature.

3.1 Formulation of the cellulose semiconducting composite

inks

All reagents were used as received. Deionized water (Millipore) was used in all ex-

periments. Carboxymethyl (CMC) and hydroxypropyl (HPC) cellulose were explored as

cellulose derivatives, for which two cellulose solutions were prepared, and both were com-

pared to ethyl cellulose (EC) using the ink developed by Carvalho et al. as the reference.

[5]

The EC solution was prepared previously by dissolving 5 wt.% ethyl cellulose 300 cP

(CAS: 9004-57-3, Aldrich) on an 80:20 toluene/ethanol solution (CAS: 108-88-3/ CAS:

64-17-5) and then adding 40 wt.% of ZnO nanopowder, < 100 nm particle size (CAS:

1314-13-2), to this solution. [5]

Aqueous solutions of CMC with different viscosities were prepared varying the amount

of CMC (average Mw ≈ 250.000, CAS: 9004-32-4, Aldrich) from 3 to 5 wt.%. After com-

plete dissolution which takes around 3 hours stirring at 300 rpm, to this solution 40

wt.% and 50 wt.% of ZnO nanopowder, < 100 nm particle size (CAS: 1314-13-2), were
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prepared. The HPC cellulose solutions were prepared by varying the amount of hydrox-

ypropyl cellulose (average Mw 100.000, CAS: 9004-64-2, Aldrich) from 5 to 15 wt.%

in ethanol (CAS: 64-17-5). Dissolution also takes around 3 hours stirring at 300 rpm.

Different concentrations of ZnO nanopowder (40 wt.% and 50 wt.%) were added to the

previously prepared HPC solution. Continuous stirring is necessary until complete dis-

persion, for both derivatives. Table 3.1 summarizes all of the developed inks and their

constituents, with a nomenclature for each ink to simplify description.

Table 3.1: Table summarizing all developed inks with a nomenclature for each formula-
tion.

Nomenclature Cellulose Formulation Concentration
derivative of ZnO NPs (wt%)

Z40EC5 Ethyl 5wt% EC in EtOH:toluene 40
cellulose (EC) (20 : 80%v/v)

Z40C3 Carboxymethyl 3wt% CMC in 40
Z50C3 cellulose (CMC) water 50
Z40C5 5wt% CMC in 40

water
Z40H5 Hydroxipropyl 5wt% HPC 40
Z50H5 cellulose (HPC) in EtOH 50
Z40H10 10wt% HPC 40

in EtOH
Z40H15 15wt% HPC 40

in EtOH

3.2 Characterization techniques

In order to find the best formulation composition and printing conditions, several

characterization techniques were used to study the formulated inks as well as the result-

ing printing patterns deposited on different paper-based substrates namely office paper,

FS2 paper and tracing paper.

Thermogravimetric and differential scanning calorimetry (TG-DSC) measurements

were also carried out on the semiconductor ink to study its thermal degradation using a

Simultaneous Thermal Analyzer (TG-DSC – STA 449 F3 Jupiter), from room temperature

to 550 °C with a heating rate of 5 °C/min, in an aluminium crucible, under ambient

conditions.

Fourier Transform Infrared spectroscopy was used in order to study the drying con-

ditions. The ZnO inks were screen-printed onto glass substrates, previously cleaned in

acetone, IPA and DI water and then exposed to three different annealing temperatures, 25,

60 and 120 °C on a hotplate, for different times. The spectra was acquired at room tem-

perature between 4500 and 500 cm−1 using a Thermo-Nicolet 6700 spectrophotometer

from Thermo Electron Corporation operating in attenuated total reflection (ATR) mode.
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3.3. FABRICATION AND CHARACTERIZATION OF ELECTROLYTE-GATED

TRANSISTORS ON CELLULOSE-BASED PAPER SUBSTRATES

The morphology of the printed semiconductor layers was analyzed by scanning elec-

tron microscopy (SEM) using a Carl Zeiss AURIGA CrossBeam workstation instrument.

Samples were coated with a thin layer of iridium ( 15 nm thickness) using a Q300T D

Quorum sputtering system.

The structural analysis of the samples printed on glass substrates was obtained by

X-Ray Diffraction (XRD) using a PANalytical X’Pert Pro-x-ray diffractometer.

3.3 Fabrication and characterization of electrolyte-gated

transistors on cellulose-based paper substrates

The conductive ink used for the patterning of source, drain and gate electrodes (il-

lustrated in Figure 2.1) consisted of a carbon paste (TU-10s, Asahi Chemical Research

Laboratory Co., Ltd). The conventional pattern (W = 2000 µm, L = 100 µm, W/L = 20)

was defined using a screen mold made of polyester with the following conditions: mesh

model, 77-55; mesh count, 190 mesh/inch; aperture, 81 µm; thread diameter, 55 µm;

opening, 30%; fabric thickness, 88-97 µm. The carbon electrodes were cured at 70 °C for

30 min in air.

The semiconductor layer was printed with a different polyester screen mold with the

same characteristics of the one used to define the carbon electrodes and dried at room

temperature. The gap between the gate electrode and the printed semiconductor layer is

400 µm. Lastly, the CHE was cut, transferred and laminated onto the devices to connect

the transistors’ channel and gate electrode.

The flexible printed ZnO EGTs were electrically analyzed in the dark in air and at

room temperature (24 ± 2°C, 38 ± 4 RH%) using a microprobe station (Cascade Microtech

M150) connected to a semiconductor parameter analyzer (Agilent 4155C) controlled by

the software Metrics ICS.
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4
Results and Discussion

4.1 Characterization and properties of cellulose composite

semiconducting inks and resulting printed patterns

This section will focus on the development of inorganic semiconductor inks compat-

ible with screen-printing and paper electronics. The aim is therefore to use low-cost

abundant materials naturally found on Earth and environmentally friendly, with the goal

of developing eco-friendly inks.

The first step consist of developing several inks in order to find out the best combina-

tion of components (cellulose derivative as binder vs. ZnO as functional material) search-

ing for semiconducting properties of the resulting cellulose composite printed layer on

cellulose-based paper substrates at room temperature. In this work, the figures of merit

which were taken into account for the formulation of the ZnO NPs ink were the type of

cellulose derivative (HPC, CMC and EC) and its concentration, and the concentration of

functional material.

4.1.1 Influence of binder and functional material concentration on print
quality of the cellulose composite semiconducting inks

Considering Table 3.1, the inks that were not studied were Z50C5, Z50H10 and

Z50H15 since these proved to be too viscous for screen-printing. No formulations be-

low 40 wt.% of ZnO NPs were developed since the behaviour of the semiconductor is

not demonstrated at room temperature and therefore no results are presented for those

concentrations.
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4.1.2 Influence of drying conditions on solvent evaporation from the
printed cellulose composite semiconducting layer

The thermal behaviour of the vehicle was studied via Thermogravimetric-Differential

Scanning Calorimetry (TG-DSC). This way, the range of temperatures needed to burn out

the vehicle can be established. The TG-DSC measurements were performed from room

temperature to 550 °C. For Z40C3, the maximum peak of 2.15 mWmg−1 is observed for

92 °C as seen in Figure 4.1, associated to an endothermic reaction. Considering that the

solvent in this case is water which evaporates at 100 °C, a significant mass loss is observed

at this temperature, which confirms the evaporation of the solvent. The ink is stable until

around 250 °C, after which further mass loss suggests the beginning of CMC degradation.

[5, 6] It is noticeable that there is still ZnO powder present in the crucible until 550 °C

since the data shows a positive mass value, reaching 40-50 % of initial mass for all ZnO

NPs inks, the rest of which are shown in Figure II.1.

Figure 4.1: TG-DSC curves of Z40C3 ink.

For the HPC-based inks, maximum peaks of 0.35 mWmg−1 at 39 °C, 0.37 mWmg−1

at 66 °C and 0.4 mWmg−1 at 66 °C are observed for Z40H5, Z40H10 and Z40H15 inks,

respectively, associated to an endothermic reaction, which in turn is associated to the

evaporation of the solvent. Figure 4.2 shows the TG-DSC curves of Z40H5 ink. A compar-

ison of all the TG-DSC curves are shown in Annex II. The HPC-based inks are stable until

around 300 °C after which further mass loss suggest the beginning of HPC degradation.

For temperatures above 350 °C there is no notable mass loss suggesting that HPC was

fully degraded. In conclusion, CMC and HPC-based inks are thermally stable under 250
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SEMICONDUCTING INKS AND RESULTING PRINTED PATTERNS

and 300 °C, respectively. According to that and, since water and ethanol have boiling

points below 100 °C (100 and 78 °C, respectively [1]) the influence of drying conditions

on the print quality and electrical performance of the printed patterns was studied.

Figure 4.2: TG-DSC curves of Z40H5 ink.

This next part will focus on the annealing process but this time on ZnO NPs ink

screen-printed on glass substrates. The idea is to verify through the Attenuated Total

Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), if thick films exhibit

the same behaviour in relation to the increase in temperature, as in the previous subsec-

tion concerning their ink form.

The drying conditions of the water content within the printed patterns of ink for

Z40C3 was studied considering the obtained FTIR spectra. Figure 4.3 shows the FTIR

spectra for 25 °C, 60 °C and 120 °C. The spectra are normalized by the 2900 cm−1 band

which is quite insensitive to variations in the composition, crystallinity and water content

of the cellulose. The spectra show that the carboxymethyl and hydroxyl functional groups

the following peaks: the peak at 1592 cm−1 is related to C=O of -COO carboxyl group;

1411 cm−1 corresponds to -OH stretching; 1324 cm−1 is related to -C-H stretching in

symmetric planes of the CMC group. The broad absorption band at 3374 cm−1 is due

to stretching frequency of hydroxyl group (-OH) and can be associated with the water

content within the printed patterns, which is the main band of interest to study water

evaporation. The band at 2915 cm−1 is due to carbon-hydrogen (C-H) stretching. [5, 6,

28]

There is a notable reduction in the peak at 3374 cm−1 for 120 °C, indicating that with

the increase of annealing temperature, there is a reduction in the amount of water in the
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Figure 4.3: FTIR spectra of Z40C3 for three temperatures, 25, 60 and 120 °C.

sample. Between 25 and 60 °C, the peak is coincident, meaning that between these two

temperatures, drying at room temperature is more convenient. Even though at 120 °C the

water content is the least, the objective for this work was to explore working conditions at

room temperature which also simplifies the process, which is why the drying temperature

was set at room temperature.

Figures 4.4, 4.5 and 4.6 show the FTIR spectra for Z40C3 varying with time, at 25,

60 and 120 °C, respectively. For 25 °C, there is no significant reduction in the broad

absorption band around 3374 cm−1. However for 60 °C, there is a clear reduction in the

same peak over time, which corresponds to a greater reduction in the amount of water

over time, whereas for 120 °C, these results are less apparent. These results show that

annealing of these inks can be carried out at room temperature, on paper substrates,

reducing the device fabrication process steps by avoiding high temperature and vacuum

processes.
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Figure 4.4: FTIR spectra of Z40C3 for 25 °C varying with time.

Figure 4.5: FTIR spectra of Z40C3 for 60 °C varying with time.
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Figure 4.6: FTIR spectra of Z40C3 for 120 °C varying with time.

4.1.3 Structural and morphological characterization of the printed cellulose
composite semiconducting layer

Morphology of the ZnO NPs in the ink printed onto different paper substrates was

examined by SEM. As can be seen in Figures 4.7, 4.8 and 4.9, all samples demonstrate

agglomerates and macropores, which may be due to undispersed ZnO NPs in the solvent

and rapid solvent evaporation, respectively. For the CMC-based samples, the morphology

of the film remains the same except for FS2 paper, presenting some fissures. Comparing

to the HPC-based based inks, the CMC-based samples present a smoother and homoge-

neous surface. Cellulose fibers are most visible in H5Z40 samples, and in all samples,

nanospheres, hexagonal nanorods and tripods are visible. Cracks in the semiconductor

film can be seen more visibly for the HPC based inks (Figure 4.8 and Figure 4.9), which

may be due to rapid drying of the solvent (ethanol). A fast evaporation of the solvent leads

to a poorly organized layer, increasing surface roughness. [29] Regarding the HPC-based

samples, a higher concentration of HPC provides a smoother surface and less visible

agglomerates.

The type of paper substrate which presents better uniformity and replicability is the

office paper.

Figures 4.7, 4.8, 4.9 show a comparison of all the printed inks, side by side.
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Figure 4.7: SEM images of Z40C3 ink printed on different substrates, from left to right,
office paper, tracing paper and FS2 paper.

Figure 4.8: SEM images of Z40H5 ink printed on different substrates, from left to right,
office paper, tracing paper and FS2 paper.

Figure 4.9: SEM images of Z40H15 ink printed on different substrates, from left to right,
office paper, tracing paper and FS2 paper.

XRD diffractograms for the developed inks are shown in Figure 4.10 and Figure 4.11.

In Figure 4.10, there is a broad peak at 2Θ = 19.60°, (120), and in Figure 4.11, the XRD

diffractogram shows a broad peak at 2Θ = 19.94° (110), characteristic of CMC and HPC

respectively (ICDD File: 00-056-1717). [5, 30, 31] However, for Z40C3 and Z40H5, the

broad cellulose peak seems to dislocate to 2Θ = 26.36° (122) and 2Θ = 24.38° (200),

respectively. Various factors could influence this apparent change in planes. The fact that

glass substrates were used might influence the change in 2Θ and therefore the planes, as

well as possible interference of ZnO. The broad peak could also simply be associated to

glass, due to the used glass substrates, and not to the suggested cellulose planes.

As to Z40C3, the distinct diffraction peaks at 34.88, 37.52 and 59.71° correspond to

(002), (101), and (110) planes, respectively, evidencing the formation of zinc oxide with

a hexagonal wurtzite structure, in accordance with literature. [5, 20] On the other hand

at 39.36° calcium carbonate (CaCO3) is observable, which is due to the use of pigments

commonly used in papermaking. [5]
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For Z40H5, distinct diffraction peaks at 31.70, 34.34, 36.18, 56.54° correspond to the

(100), (002), (101), and (110) planes, respectively, of a hexagonal wurtzite structure with

hexagonal symmetry. [5] At 47.48°, the presence of CaCO3 is also observed.

The crystallite size of both samples was calculated by the Debye-Scherrer method.

This comes to approximately 17 nm for both samples and is in accordance with the

particle size observed by SEM.

Figure 4.10: XRD diffractogram of CMC powder and Z40C3.

Figure 4.11: XRD diffractogram of HPC powder and Z40H5.
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4.2 Electrical characterization of printed ZnO transistors on

paper

4.2.1 Influence of ink formulation

In this subsection, the influence of the ink formulation on the performance of the

devices will be studied. This takes in account the type of cellulose derivative used in

the ink formulation, its concentration as well as the ZnO NPs concentration for each

ink. For these devices, all of the layers apart from the dielectric have been deposited by

screen-printing. The theoretical value for the width (W) and length (L) of the electrodes

are 2000µm e 200µm, respectively. However, the determined value for W and L are 2072

±51 µm and 136 ±30 µm on average, respectively. This deviation in values is related to

screen-printing variations, more specifically, the spreading of ink which leads to wider

W and shorter L values. In Annex I an image of the screen-printed carbon contacts is

displayed as well as a table with the considered number of samples for the determination

of an average of W and L.

Table 4.1 provides the resume of the main electrical parameters obtained for the

EGTs, which include turn-on voltage (VOn), IOn/Of f , transconductance (gm, (∂IDS/∂VGS )),

subthreshold swing (SS) and saturation mobility (µsat). The electrical parameters were

obtained in the forward sweep direction, from negative to positive gate voltage, with

VDS=1 V and a scan rate of 200 mV s−1. The SS was calculated according to Equation 4.1:

SS =
(
∂ log IDS
∂VGS

∣∣∣∣∣
max

)−1

(4.1)

The saturation mobility (µsat) of the devices was determined through Equation 4.2:

µsat =
(
∂
√
IDS

∂VGS

)2
2L
WC

(4.2)

Where IDS is the drain current, VGS is the gate voltage, C is the capacitance CDL of the

CHE, and W and L correspond to the width and length of the channel, respectively. The

specific capacitance C of the ion gel is required for calculation of field-effect mobilities.

This has been determined by Cunha et al.[8] to be 5 µF cm−2 for the CHE in use.

Office paper was chosen as the substrate, since, in accordance to the previous chapter,

it presented best uniformity and replicability of the printed films. Figure 4.12 shows the

transfer curves of the developed inks on office paper, underlying the influence of polymer

and ZnO NPs concentration, followed by table 4.1 summarizing the electrical character-

ization. The developed inks have been summarized in a specific notation according to

Table 4.1, and the number of samples tested for each formulation was 5.

The devices exhibit a typical n-type behavior and low operating voltage (<2.5 V).

The Ion/of f ratio for the CMC-based EGTs ranges from three to almost five orders of

magnitude, larger than the HPC-based EGTs (three to four orders of magnitude). The

HPC-based EGTs present higher transconductance values. The transconductance (gm),

25



CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.12: Influence of the formulation of the semiconducting inks, dried at room tem-
perature, on the transfer curves: polymer concentration (top) and ZnO NPs concentration
(bottom).

Table 4.1: Electrical parameters of the EGTs considering CMC and HPC

Substrate VOn(V ) IOn/Of f gm (mS) SS (V/dec) µsat(cm2V −1s−1)

Z40C3 0.7±0.21 (8.26±2.84)× 104 0.41±0.13 0.25±0.09 8.9±2.8
Z50C3 0.3±0.29 (6.12±1.22)× 103 0.2±0.17 0.29±0.13 2.9±3.8
Z40C5 0.5±0.43 (5.31±1.99)× 103 0.2±0.15 0.2±0.1 0.3±1.9
Z40H5 1.2±0.22 (2.45±1.76)× 104 0.2±0.06 0.1±0.1 4.1±1.5
Z50H5 0.6±0.21 (3.47±1.35)× 104 0.6±0.33 0.2±0.05 1.3±5.9
Z40H15 0.7±0.0 (3.58±1.54)× 103 0.7±0.0 0.4±0.02 1.6±0.01

i.e., the output current change per unit input voltage change (∂IDS/∂VGS ) is dependent

on the gate capacitance besides the aspect ratio. A high gm is desired for circuit design,

as it allows the desired drain-source current to be achieved at lower operating voltages.

[9, 14]

The EGTs exhibit gate leakage currents of 10−6 A. The use of papers with thinner

fibers, making the paper surface smoother, could result in reduced leakage current. [14]

Relatively to the subthreshold swing (SS), which corresponds to the necessary VGS to alter

the IDS by one decade, the devices all show a SS lower than 1, which indicates that the
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devices can modulate more current with a lower VGS , lowering power consumption. [5,

8] The CMC-based EGTs vary between 0.2 and 0.29 V/dec and HPC-based EGTs vary

between 0.1 and 0.4 V/dec. The highest SS is 0.4 V dec−1, for Z40H15, and the lowest SS

(0.1 V/dec) for Z40H5.

It is important to note the µsat values of Z50C3 and Z50C5: the standard deviation

is higher than the average value, which is due to the high viscosity of these inks, which

can affect the printing quality, i.e., formation of clusters, rough film surface and non-

homogeneous surface combined with the irregular surface of paper.

For both cellulose derivatives, it is noticeable that higher polymer concentrations and

higher ZnO NPs concentrations yield lower Ion/of f ratios. The highest µsat values were

close to 9 cm2 V −1 s−1, corresponding to Z40C3.

There is noticeable hysteresis which increases with faster scan rates, associated to a slow

response of the ions to VGS . This observed hysteresis behaviour can be attributed to a

combination of ion migration and charge trapping effects. [14, 22] For slower VGS scan

rates, the ions have enough time to diffuse into the semiconductor, promoting electro-

chemical doping. Hysteresis is a bistability in the operational transistor current. It is

shown as a difference in IDS values observed during forward and backward sweeps of

the gate voltage (VGS ). [22] Hysteresis in the current-voltage characteristics has poten-

tial characteristics in nonvolatile memory devices, however it is unwanted in standard

integrated circuits. [8]

The biggest difficulty encountered during the development of the EGTs was related

to the screen-printing of the devices. Short-circuits between S and D contacts were

frequently obtained which happened because of the ink spreading whilst being screen-

printed, mostly due to nonuniform application of force and speed of the carbon ink layer.

The semiconductor layer also proved difficult to reproduce since the alignment of the

mask in accordance with the previously deposited contacts depended not only on ink

spreading, velocity and applied force, but also on the precision of the eye. These results

therefore suggest that the best formulations consider the lowest polymer and ZnO NPs

concentrations out of the formulated concentrations. Automatic screen-printing could

also be used in order to avoid the previously mentioned screen-printing difficulties.

4.2.2 Influence of number of printed layers on EGTs performance

The influence of the number of printing passes of the semiconductor layer will be

studied in this subsection. Up to five layers were screen-printed, with a drying period of

around 5 minutes for each layer. Figure 4.13 compares the devices with different numbers

of semiconductor layers relative to the device performance, for Z40C3.

The results demonstrate a slight decrease of the electrical performance with the in-

crease of semiconductor layers. The fact that the On current increases (reducing the

IOn/Of f ratio) with the semiconducting layers suggests that surface roughness increases

in the contact zone with the semiconductor and the electrolyte. This is confirmed with the
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Figure 4.13: Transfer curves of Z40C3 printed on office paper, comparing up to 5 semi-
conductor layers.

Table 4.2: Electrical parameters of ZnO NPs ink printed on office paper, comparing up to
5 semiconductor layers.

Passes VOn(V ) IOn/Of f gm (mS) SS (V/dec) µsat(cm2V −1s−1)

1x 0.8 8.26×104 0.41 0.25 8.9
2x 0.7 3.28×104 0.43 0.31 10.28
3x 0.6 2.04×104 0.25 0.35 5.02
4x 0.4 5.63×103 0.16 0.41 3.58
5x 0.5 2.07×104 0.39 0.41 7.87

increase of SS values. Therefore, surface roughness of the semiconductor layer must be

reduced to provide maximum contact between semiconductor and electrolyte, resulting

in better electrical performance.

There is a decrease in the VON with the increase of semiconductor layers. The results

for 4 passes are not in accordance with the rest of the results and are therefore considered

as an error in the screen-printing technique. These results continue to be dependent

on the screen-printing technique and the small variations could be uncorrelated to the

present study. The devices for the rest of this work were fabricated considering one layer

of semiconductor ink to simplify the process.

The fact that only one layer of film is necessary in order to have a functional ZnO film

at room temperature compatible with paper and without the need for sintering is very

appealing in terms of simplicity for the fabrication of the devices.
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4.2.3 Influence of drying conditions on EGTs performance

This next subsection will focus on the influence of the ink drying temperature on the

electrical characterization of the devices. As done for FTIR-ATR, several devices were

screen-printed on office paper and annealed at 25, 60 and 120 °C for 15 minutes. The

results are displayed in Table 4.3. Z40C3 ink was used since it is the most reproducible

ink with best results and 3 samples were used for each temperature. Figure 4.14 shows

an example of the aspect of the printed Z40C3 film on office paper.

Figure 4.14: Aspect of printed semiconductor film for Z40C3, on office paper.

Figure 4.15: Transfer curves of printed ZnO EGTs on office paper and annealed at 25, 60
and 120 °C, showing three samples for each temperature.

Table 4.3: Electrical parameters of printed ZnO EGTs on office paper and annealed at 25,
60 and 120 °C.

Z40C3 VOn(V ) IOn/Of f gm (mS) SS (V/dec) µsat(cm2V −1s−1)

25 °C 0.7±0.26 (8.26±3.50)× 104 0.41±0.03 0.25±0.12 8.9±1.4
60 °C 0.7±0.15 (2.14±1.09)× 103 0.40±0.20 0.28±0.05 9.7±4.5
120 °C 1.0±0.06 (4.05±8.64)× 103 0.10±0.18 0.3±0.04 2.2±4.1

It is clear that annealing at 120 °C provides the worst results in terms of µsat. This

may be due to the morphology of the film: rapid evaporation of the solvent could lead

to the formation of defects (fissures) in the film. Moreover, the standard deviation of
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the parameter values is elevated for the samples annealed at 60 and 120 °C, providing

unreliable results. Thus, drying at room temperature is advantageous for the device

performance and desirable for the fabrication of simpler, low cost and environmentally

friendly devices.

4.2.4 Influence of cellulose-based paper substrate on EGTs performance

Taking advantage of the low processing temperature of the EGTs, other types of paper

substrates were studied to compare electrical performance. Office paper, FS2 paper

and tracing paper were used as substrates for the devices (Figure 4.16). The electrical

characterization is shown in Table 4.4.

Figure 4.16: Transfer curves of printed ZnO EGTs on office paper, FS2 paper and tracing
paper using Z40C3 ink.

Table 4.4: Electrical parameters of printed ZnO EGTs using Z40C3 on office paper, FS2
paper and tracing paper.

Substrate VOn(V ) IOn/Of f gm (mS) SS (V/dec) µsat(cm2V −1s−1)

Office 0.8±0.1 (8.26±3.50)× 104 0.41±0.09 0.25±0.05 8.9±2.7
FS2 0.6±0.1 (8.20±4.69)× 105 0.62±0.21 0.12±0.11 5.5±1.5
Tracing 0.5±0.4 (3.75±7.63)× 103 0.13±0.07 0.35±0.02 2.2±1.6

FS2 paper had the highest Ion/of f ratio (nearly 6 orders of magnitude) while office and

tracing paper allowed for an Ion/of f ratio of 4 and 3 orders of magnitude, respectively. FS2

paper exhibits a much smoother and nanoporous surface contrasting with conventional

printing paper. [1] This reduces surface roughness and therefore increases the device

performance. [5] According to the output characteristics, the EGTs can reach high IDS
values at very low VGS (2.5 V) and VDS (1 V) which are significantly higher for the office

paper EGTs. Tracing paper presents high standard deviation values for the Ion/of f ratio,

surpassing the average value, which is in accordance with the unreliability of the printed
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film. The most reliable results originated from the office paper EGTs, which out of the

three papers, is the best choice.

4.2.5 Comparison of cellulose derivatives on EGTs performance

This subsection will focus on comparing the best formulations previously established

from both cellulose derivatives, with an ethyl cellulose based formulation previously

studied. [5] This will consider Z40C3, Z40H5 and Z40EC5, all with 40 wt.% ZnO NPs.

The following Figure 4.17 compares these three formulations according to their electrical

performance, followed by Table 4.5 summarizing these results.

Figure 4.17: Comparison of transfer curves from the three best formulations considering
three cellulose derivatives.

Table 4.5: Electrical parameters of the printed ZnO EGTs on office paper considering
three samples for each of the three formulations.

Office paper VOn(V ) IOn/Of f gm (mS) SS (V/dec) µsat(cm2V −1s−1)

Z40C3 0.7±0.26 (8.26±3.50)× 104 0.41±0.03 0.25±0.12 8.90±1.37
Z40EC5 0.9±0.19 (2.59±0.89)× 103 0.05±0.02 0.22±0.10 0.75±0.27
Z40H5 1.2±0.22 (2.45±0.18)× 104 0.16±0.06 0.10±0.09 4.10±1.52

Figure 4.18 compares the gate leakage currents of each formulation, side by side. It

is clear that the lowest leakage current originates from Z40C3, followed by Z40H5 and

then Z40EC5.

All results still show some amount of hysteresis which can be reduced by decreasing

paper roughness, compacting the paper, scaling down the built devices as well as reducing

the gate electrode area. [5]

Even though the performance of Z40C3 and Z40H5 are similar, certain aspects of

their performance are better relative to one another depending on the specific character-

istic (replicability, type of solvent, saturation mobility VS IOn/Of f ratio, among others),
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Figure 4.18: Comparison of transfer curves from the three best formulations considering
three cellulose derivatives, showing each leakage current.

which is why the choice of the best ink will depend on the requirements and application.

However, the high saturation mobility of Z40C3 (8.9 cm2V −1s−1) as well as the easy repro-

ducibility of the semiconductor film makes this ink the preferable choice. Following these

results, it is shown that the performance of both Z40C3 and Z40H5 surpass the perfor-

mance of Z40EC5, not only in electrical characterization, but also by using eco-friendly

solvents without the need for sintering, demonstrating the industrial applicability of

these devices and an attractive alternative to previously formulated inks. [5]
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5
Conclusion and future perspectives

5.1 Final conclusions

In this work, the main objectives were successfully achieved as follows:

1) The influence of different cellulose derivatives in regards to the semiconductors’ ink

performance in printed transistors were studied, with special attention on the dispersion

of ZnO NPs in hydroxypropyl and carboxymethyl cellulose.

2) The developed cellulose-based inks were applied in flexible electrolyte-gated tran-

sistors on paper at room temperature, taking advantage of screen-printing and using

an ion gel based on a cellulose matrix with incorporated lithium ions. The electrical

characterization of the ZnO NPs EGTs was performed in order to understand their per-

formances.

Out of all the inks (in reference to Table 3.1), Z40C3 and Z40H5 presented best

printing quality and reproducibility.

The study on drying conditions on solvent evaporation proved that CMC and HPC-

based inks are thermally stable under 250 and 300 °C, respectively. Considering that the

objective was to apply the cellulose-based inks at room temperature, the results prove it

possible to implement these inks on flexible substrates such as paper.

Out of office paper, FS2 paper and tracing paper, office paper presented best unifor-

mity and replicability of the printed film.

Relatively to the best ink formulations, all devices exhibited a typical n-type behavior,

low operating voltage (<2.5 V) and an Ion/of f ratio ranging from three to almost five

orders of magnitude. CMC and HPC-based inks both proved that higher polymer con-

centrations and higher ZnO NPs concentrations yield lower Ion/of f ratios. The best Ion/of f
ratio encountered resulted from Z40C3 with a ratio of 8.26×104, along with the highest

gm of 0.4 mS. Z40C3 presented best µsat values, close to 9 cm2 V −1 s−1, as well as being
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the most reproducible ink.

Between the three types of tested paper substrates, FS2 paper had the highest Ion/of f
ratio (nearly 6 orders of magnitude) whilst office and tracing paper allowed for an Ion/of f
ratio of 4 and 3 orders of magnitude, respectively. Despite this, EGTs with office paper as

substrate proved the most replicable and therefore reliable choice.

The final comparison of cellulose derivatives showed that Z40C3 and Z40H5 both

outperform Z40EC5 in electrical performance, with Z40C3 being the outstanding ink.

5.2 Future perspectives

Previous work by Carvalho et al. [5] showed that by using only screen-printing, ZnO

NPs EGTs could be developed. This work showed great improvements by developing ZnO

NPs EGTs, at room temperature, exploring different cellulose derivatives and using an

ion gel based on a cellulose matrix with incorporated lithium ions, thus improving device

performance and simplifying the process as well as creating an eco-friendlier version of

cellulose-based inks.

The use of an automatic screen-printing station would be beneficial, since many issues

such as replicability and short-circuits between S and D contacts frequently obtained

due to ink spreading because of nonuniform application of force and speed could be

avoided. Consequently, a better understanding of the influence of snap-off, shear rate,

angle, geometry and squeegee type could be investigated.

For future work, it would also be interesting to focus on how the different polymers af-

fect the charge transfer between nanoparticles, including a study of channel conductivity

in function of temperature.

This work brings new insights to advanced functional materials based on cellulose,

toward a new generation of bioinspired electronics devices based on cellulose and inor-

ganic functional materials. Cellulose has been explored extensively at CENIMAT/i3N

and together with this work, this is certainly the beginning of challenging innovations as

far as low-cost, flexible, eco-friendly electronics on paper is concerned.
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Table I.1: Selected number of samples for
the determination of channel width (W) and
length (L)

N° of Samples Length (µm) Width (µm)

1 114 2027
2 139 2110
3 194 2056
4 115 2000
5 166 2166
6 111 2054
7 139 2083
8 111 2083

Average 136±30 2073±51

Figure I.1: Amplification of pat-
terned electrodes showing the
width (W) and length (L) of the
channel.
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Figure II.1: TG-DSC curves of the ZnO NPs inks. Top, from left to right: Z40C3, Z50C3
and Z40C5. Bottom, left to right: Z40H5, Z40H10 and Z40H15.
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