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Summary

E volutionary processes can be considered at multiple levels of biological or-

ganization. The work developed in this thesis focuses on protein molecular

evolution. Although proteins are linear polymers composed from a basic set of

20 amino acids, they generate an enormous variety of form and function. Pro-

teins that have arisen by a common descent are classified into families; they often

share common properties including similarities in sequence, structure, and func-

tion. Multiple methods have been developed to infer evolutionary relationships

between proteins and classify them into families. Yet, those generic methods are

often inaccurate, especially when specific protein properties limit their applica-

tions. In this thesis, we analyse two protein classes that are often difficult for the

evolutionary analysis: the coiled-coils – repetitive protein domains defined by a

simple widespread peptide motif (chapters 2 and 3) and Rab small GTPases –

a large family of closely related proteins (chapters 4 and 5). In both cases, we

analyse the specific properties that determine protein structure and function and

use them to improve their evolutionary inference.

Coiled-coils are ubiquitous rod-like domains present in all living organisms

that comprise up to 10% of proteins encoded in a genome. They are involved

in multiple cellular processes, where they function as spaces separating func-

tional domains, or (and) interaction sites, often providing scaffolds for protein

complexes. Resolving evolutionary histories of coiled-coil proteins should shed

some light on the evolution of many intracellular processes and systems. Yet,

coiled-coils are considered difficult for evolutionary inference due to their low-

complexity: The domain consists of multiple repetitions of a simple peptide pat-

tern of seven amino acids. As a result, non-homologous coiled-coil domains can

converge to a similar sequence and structure; coiled-coils have independently

arisen multiple times in evolution.

In chapter 2 we analysed the evolutionary properties of coiled-coil sequences.

We showed that, despite the underlying simple pattern of hydrophobic and polar

residues, coiled-coil sequences are conserved and contain evolutionary relevant

information (similar to the globular domains). Yet, the patterns of amino acid

substitutions differ from those of globular domains. We developed a coiled-coil
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specific model (CC) that reflects this substitution patterns. In the context of phy-

logenetic reconstruction of coiled-coil proteins, it outperforms general models,

often leading to different tree topologies. For multidomain proteins, consisting

of both coiled-coil and globular domains, model partitioning involving the CC

model and a general model yields more likely tree estimates than a single model.

Lastly, the new model improves search sensitivity of (sequence similarity-based)

homology detection methods for coiled-coil proteins.

Proteins evolve by altering the composition of their primary sequence but

also by changing their length. Hence, to complement the analysis of the substitu-

tion patterns in coiled-coil domains we also analysed their length evolution. The

number of sequence repeats (in repetitive proteins), and as a consequence protein

length, varies across homologues. Yet, given the structural role in the spacer and

scaffold formation, we hypothesized, in chapter 3, that the length of coiled-coil

domains is largely conserved in evolution. Indeed, we observed high conser-

vation of coiled-coil regions length throughout the tree of life, even when the

remaining parts of the protein, including globular domains, change. This length

conservation is independent of the conservation of the amino acid composition.

It reflects the conservation of the physical length of the domain; contrary to the

globular domains, the size of the coiled-coil domains changes proportionally to

the change in the sequence length. Length conservation is functionally specific,

suggesting that the domain size is constrained by its function.

The remaining chapters focus on the Rab GTPases, a large protein family of

closely related proteins that regulates membrane trafficking by providing speci-

ficity to the system. Rabs are short single-domain proteins with a complex evo-

lutionary history: They have been subject to multiple general and taxon-specific

duplications (and losses). The family structure, its size, and a high level of se-

quence similarity pose a challenge for evolutionary inference methods. In chap-

ter 4 we present Rabifier2, a new version of a bioinformatic pipeline for Rab

GTPase identification and classification. The new Rabifier outperforms the ini-

tial version in both the annotation accuracy and speed. It is available as a web

service (RabDB, which also includes pre-computed annotations for sequenced

eukaryotic genomes) and a stand-alone package. Rabifier is distributed as an

open source software, which should foster its further community-driven develop-
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ment.

Mounting evidence suggests that the Last Eukaryotic Common Ancestor

(LECA) was a complex organism with many features characteristic of extant

Eukaryotes, including a large array of Rab GTPases. Yet, it remains unknown

how such elaborate repertoire had emerged. In chapter 5 we analysed the ori-

gin of eukaryotic Rabs. Using the new Rabifier pipeline, we predicted putative

Rab-like GTPases in Archaea and specifically in Lokiarchaeaon – an archaeal

species that contains several eukaryotic signatures, including an expanded reper-

toire of small GTPases. The phylogenetic analysis was inconclusive about the

position of the archaeal Rab-like proteins within the small GTPase family. Yet,

a detailed sequence- and structure-based analysis revealed a strict conservation

of Rab-specific motifs that mediate interactions with Rab regulators. A sensitive

search revealed that, indeed, putative Rab-binding proteins exist in Archaea, sup-

porting the hypothesis that some components of the eukaryotic endomembrane

system evolved before LECA.

This thesis focuses on analysing protein properties in the evolutionary con-

text. The incorporation of such protein class-specific information can often result

in a better inference of the protein evolutionary trajectory. These improvements

are, however, not restricted to protein evolution. The presence of characteristic

marker proteins in an organism is a strong indicator for the presence of specific

cellular processes and structures; conversely, the absence of a protein suggests

a missing functionality. Hence, the improved tools for inferring evolutionary re-

lationships between proteins should ultimately help to uncover the evolution of

cellular components and functions.
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Sumário

O s processos evolutivos podem ser observados em vários níveis de organiza-

ção biológica. Neste contexto, o trabalho desenvolvido nesta tese centra-se

na evolução molecular de proteínas. Apesar de as proteínas serem polímeros li-

neares compostos por um conjunto básico de 20 aminoácidos, podem gerar uma

enorme variedade de formas e funções. Proteínas que surgiram de um descen-

dente comum são classificadas por famílias, que têm geralmente propriedades

comuns, incluindo similaridades na sequência, estrutura e função. Vários mé-

todos têm sido desenvolvidos para inferir relações evolutivas entre proteínas e

classificá-las em famílias. No entanto, esses métodos genéricos são muitas ve-

zes imprecisos, especialmente quando propriedades específicas das proteínas li-

mitam a sua aplicação. Nesta tese, analisámos duas classes de proteínas que

apresentam dificuldades para a análise evolutiva: as proteínas ‘coiled-coil’ – do-

mínios de proteínas repetitivas definidas por um motivo simples peptídico ge-

neralizado (capítulos 2 e 3) e pequenas GTPases Rab – uma família grande de

proteínas muito próximas evolutivamente (capítulos 4 e 5). Em ambos os casos,

analisamos as propriedades específicas que determinam a estrutura e função das

proteínas, e usamo-las para melhorar a sua inferência evolutiva.

Proteínas ‘coiled-coil’ são domínios do tipo ‘rod’ omnipresentes em todos os

seres vivos e que abrangem até 10% de proteínas codificadas num genoma. Estas

estão envolvidas em vários processos celulares, onde funcionam como espaçado-

res, separando domínios funcionais e/ou pontos de interação, muitas vezes for-

necendo o molde para complexos de proteínas. A resolução da história evolutiva

das proteínas coiled-coil permite contribuir para o esclarecimento da evolução

de muitos processos e sistemas intracelulares. No entanto, devido à sua baixa

complexidade, as proteínas coiled-coil, no contexto da inferência evolutiva são

consideradas difíceis: o domínio consiste em múltiplas repetições de um padrão

peptídeo simples de sete aminoácidos. Como resultado, os domínios não homólo-

gos das coiled-coils podem convergir para uma sequência e estrutura semelhante

e as coiled-coils surgiram por várias vezes na evolução de forma independente.

No capítulo 2, analisamos as propriedades evolutivas de sequências de coiled-

coils. Mostrámos que, apesar da existência do padrão subjacente de resíduos sim-
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ples, hidrófobos e polares, as sequências em coiled-coil são conservadas e con-

têm informação evolutiva relevante (semelhante aos domínios globulares). No

entanto, os padrões de substituições de aminoácidos diferem dos domínios glo-

bulares. Desenvolvemos um modelo específico de coiled-coil (CC) que reflete

esses padrões de substituição. Quando aplicado na reconstrução filogenética de

proteínas coiled-coil, supera os modelos gerais, levando muitas vezes a diferen-

tes topologias de árvores. Para proteínas com vários domínios, que consistam

em domínios coiled-coils e domínios globulares, o particionamento do modelo

envolvendo o modelo CC e um modelo geral produz estimativas de árvores com

uma maior probabilidade, do que um único modelo. Por último, o novo mo-

delo melhora a sensibilidade de busca (baseada em similaridade de sequência)

de métodos de detecção de homologia para proteínas coiled-coils.

As proteínas evoluem pela alteração da composição da sua sequência primá-

ria, mas também pela alteração do seu comprimento. Assim, para complementar

a análise dos padrões de substituição nos domínios coiled-coil, também anali-

sámos a evolução do seu comprimento. Entre homólogos varia o número de

elementos repetitivos (em proteínas repetitivas), e como consequência, o compri-

mento das proteínas. No entanto, dado o papel estrutural como espaçadores e

de esqueleto modular, formulamos a hipótese, no capítulo 3, de que o compri-

mento dos domínios coiled-coil é largamente conservado na sua evolução. De

facto, observou-se uma elevada conservação no comprimento das regiões coiled-

coil em toda a árvore da vida, mesmo quando mudam as restantes partes da

proteína, incluindo domínios globulares. Esta conservação de comprimento é

independente da conservação da composição em aminoácidos. A conservação

do comprimento físico dos domínios coiled-coils varia proporcionalmente à al-

teração no comprimento da sequência em oposição ao observado em domínios

globulares. A conservação do comprimento é específica da funcionalidade, o que

sugere que o tamanho do domínio é limitado pela sua função.

Os restantes capítulos focam as Rab GTPases, uma família numerosa de pro-

teínas evolutivamente muito próximas, que regulam o tráfico membranar, forne-

cendo especificidade a este sistema. As Rabs são proteínas de domínio único

com uma história evolutiva complexa: foram sujeitas a duplicações (e perdas)

gerais múltiplas e taxonomicamente específicas. A estrutura desta família, o seu
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tamanho e um alto nível de similaridade de sequências representam um desafio

para os métodos de inferência evolutiva. No capítulo 4 apresentamos Rabifier2, a

versão atualizada de uma cadeia de comandos bioinformáticos para identificação

e classificação de Rab GTPases. O novo Rabifier supera a versão inicial, tanto

pela precisão na anotação como em velocidade. Está disponível como um ser-

viço web (RabDB, que também inclui anotações pré-analisadas para os genomas

eucarióticos já sequenciados) e um pacote ‘stand-alone’. O Rabifier é distribuído

como um software de código aberto, o que visa promover o seu desenvolvimento

pela da comunidade de utilizadores.

Evidências crescentes sugerem que o último ancestral comum de todos os

eucariotas (do inglês LECA) era um organismo complexo com muitas caracte-

rísticas típicas dos eucariotas atuais, incluindo uma grande variedade de Rab

GTPases. No entanto, continua a ser um mistério como terá emergido tal com-

plexidade. No capítulo 5, analisamos a origem das Rabs eucarióticas. Usando

a versão actualizada do Rabifier, previmos potenciais GTPases do tipo Rab em

Archaea e, especificamente, no Lokiarchaeaon – uma espécie de Archaea que

contém várias assinaturas eucarióticas, incluindo um repertório expandido de

pequenas GTPases. A análise filogenética foi inconclusiva sobre a posição das

proteínas Rab-like de Archaea, dentro da família das pequenas GTPases. No

entanto, uma análise detalhada baseada em estrutura e sequências revelou uma

conservação estrita de motivos específicos de Rab que medeiam as interações

com os reguladores Rab. Uma pesquisa fina revelou que, de facto, existem po-

tenciais proteínas de ligação a Rabs em Archaea, suportando a hipótese de que

alguns componentes do sistema endo-membranar eucariótico evoluíram antes do

LECA.

Esta tese centra-se na análise de propriedades de proteínas no contexto evo-

lutivo. A incorporação de informações específicas de classe de proteínas resulta

numa melhor dedução da trajetória evolutiva das proteínas. Estas melhorias, no

entanto, não são restritas à evolução de proteínas. A presença de proteínas de

características específicas num organismo são um forte indicador para a eventual

presença de processos e estruturas celulares específicas. Por outro lado, a ausên-

cia de uma proteína sugere uma funcionalidade perdida. Em última análise, a

disponibilização de melhores ferramentas para a aferição de relações evolutivas
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entre as proteínas deverá contribuir para a descoberta da evolução dos compo-

nentes e funções celulares.
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Chapter 1

Protein properties and evolution



Abstract Chapter 1

P roteins, linear polymers built by a limited set of amino acids, gen-

erate an enormous variety of forms and functions. Many methods

have been developed to describe and catalogue this diversity. Yet, their

performance is often limited by neglecting protein-specific properties. In

this chapter, we introduce concepts related to protein classification by

evolutionary inference. We first review and discuss the basic methods

used in molecular evolution, that is, putative homology detection using

sequence similarity as a proxy, multiple sequence alignments, and phy-

logeny reconstruction, followed by their applications and a description

of automated methods. In the following section, we describe properties

that define the accessible space of protein evolution. The available space

of protein structures is virtually infinite, yet, the observed proteins cover

only its tiny fraction. It is a result of constraints imposed on the sequence,

necessary to preserve protein structure and function. The presence of

such restraints, specific to each protein, alters the information content of

a sequence that can be used for evolutionary inference. We conclude by

describing two ‘difficult’ protein classes, challenging for an evolutionary

analysis, that are the objects of studies in the remainder of this thesis.

Author contribution: I reviewed the literature and wrote the chapter.
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1.1 Introduction

P roteins are fundamental building blocks of life. They are involved in virtu-

ally all biological processes, their function ranges from catalyzing diverse

biochemical reactions to providing the internal structure of the cell. Since their

discovery, proteins are at a main focus of the molecular biology research. The ar-

rival of the insulin sequence in early 1950s (Sanger and Tuppy 1951a; Sanger

and Tuppy 1951b), the first full protein to be ever sequenced, demonstrated

that proteins can be characterized by a linear combination of amino acids, the

building blocks of every protein (reviewed by, Stretton 2002). In the following

years, Sanger and co-workers obtained insulin sequences from a few different

species allowing for a comparative sequence analysis, which revealed that the

interspecies amino acid differences are confined to a single short region (Harris

et al. 1956). Since then, millions of proteins have been sequenced1; for example,

more than 40 million unique proteins have been deposited in the UniProt data-

base (UniProt Consortium 2015). Continuous growth in the amount of sequence

information allowed for comparative protein analyses and, given sequences of

related proteins from different species, sequence-based evolutionary analyses

(molecular traits can be used to reconstruct phylogenetic trees similarly to the

morphological features). In this chapter, we review the literature and describe

the advances in the field of molecular evolution with a special focus on protein

evolution. We first describe the importance of the evolutionary analysis and the

common methods used for the evolutionary inference. We then focus on pro-

tein properties and discuss how they can influence the analysis. We conclude

the chapter by describing problems and challenges in evolutionary inference and

discuss two cases of ‘difficult’ protein classes, which are the subject of the re-

maining chapters.

1.1.1 Biological classification: from organisms to molecules

Humans have always been intrigued by the natural diversity of living things and

tried to catalogue this diversity by describing relationships between organisms.

1In contrast to the early approaches, protein sequences are generally predicted from the corre-
sponding genomic DNA and mRNA sequences.
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The first major attempt to classify living things was proposed by Aristotle. He

grouped organisms based on their common features, for example, he separated

animals into two groups: ‘animals with blood’ and ‘animals without blood’, he

further divided the former into ‘live-bearing’ and ‘egg-bearing’. These groups

were arranged into a ranked linear structure based on their complexity of struc-

ture and function, scala naturae (‘ladder of life’), organisms ranked higher on

the ladder showed greater ability to move and sense. The first modern classifica-

tion system of living things was proposed by Carl Linnaeus in the 18th century.

In this system, each organism is represented by a list of ranked terms: Organ-

isms that share morphological similarities are grouped together into a taxon of a

given taxonomic rank; low-ranked taxa are then grouped into higher level taxa to

form a nested hierarchical structure, a taxonomy (reviewed, e.g., by Sivarajan and

Robson 1991; Ohl 2007). A major breakthrough in the biological classification

system came with the inception of the evolutionary theory. The incorporation of

the evolutionary theory into the biological classification created a modern system

based on the evolutionary relationships between species (both living and extinct)

rather than similarities in morphology. The theory introduced the temporal di-

mension to the taxonomy, which allowed asking questions not only about how

organisms are related to each other but also how distant they are, that is, when

(and what) was their common ancestor. In this system, species that share a com-

mon ancestor are organized into groups, called clades, that form a hierarchical

structure – a tree describing the evolutionary history of this group of organisms

(reviewed, e.g., by Queiroz and Gauthier 1994).

Predicting true evolutionary relationships between organisms using compara-

tive morphology can be especially challenging, for example, due to the presence

of analogous morphological traits (outcomes of convergent evolution) that group

together unrelated species. The recent revolution in molecular biology offers a

new set of features that can be used to infer evolutionary relationships between

species – nucleotide and peptide sequences. Sequences corresponding to the ho-

mologous genes, proteins or other fragments (e.g. RNA, non-coding DNA) in

multiple species can be treated as arrays of traits and used to build phylogenetic

trees representing relationships and distances between species. Molecular data

helped, for example, to solve the giant panda’s phylogeny (morphological data
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was inconclusive about panda’s classification with bears, raccoons or as a sepa-

rate family), placing it at the base of the Ursidae family (O’Brien et al. 1985).

The use of sequence data in building the biological classification of the liv-

ing things have largely replaced morphological information; it also marks the in-

ception of a new discipline, molecular evolution, whose applications go beyond

reconstructing species histories. Molecular evolution is an area of evolutionary

biology that studies evolutionary changes at the DNA, RNA and protein level

and the mechanisms that drive those changes (Li 1997). Proteins, similarly to

species, can be classified into hierarchical groups based on their common ances-

try, which is usually predicted from sequence similarities (related proteins often

share other similarities, e.g., structure, function). However, inferring protein evo-

lutionary histories is often challenging, due to a limited amount of information

present in the sequence and complex relationships between proteins (sequences

can arise not only by speciation but also by duplication events, they can be lost

from a genome or incorporated by horizontal gene transfer; reviewed, e.g., by

Koonin 2015). Hence, accurate methods are required to recover true relation-

ships between proteins.

1.1.2 Motivation

The methods of molecular evolution are not only suitable to resolve evolution-

ary histories of species or protein families, they also allow addressing a wide

range of biological questions. For example, to find mutations likely to be asso-

ciated with diseases (e.g., Fleming et al. 2003), in epidemiology to predict the

viral evolution (e.g., Bush 1999), to predict protein functional sites (e.g., La et

al. 2005), in drug design (reviewed by Searls 2003), to predict protein structure

and function (protein structure and function are usually conserved across homo-

logues, reviewed by Gabaldón and Koonin 2013). However, the final result of

those analyses depends on accurate detection of homologous sequences and cor-

rect mapping of evolutionary relationships between them. Many methods have

been developed to address these issues (a generic framework for molecular evo-

lutionary inference is the subject of section 1.2), which are successful in average

applications. Yet, the performance of generic methods can often be limited by

complex structures of protein families and specific molecular properties of dif-
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ferent protein classes, which impose specific constraints on sequence evolution

(e.g., intrinsically disordered proteins, Brown et al. 2010).

In this thesis, we analysed how specific molecular properties influence pro-

tein evolutionary trajectory by examining two protein classes that challenge the

existing methods for molecular evolution: the coiled-coils – widespread pro-

tein domains formed by a simple repetitive peptide motif; Rab small GTPases

– closely related proteins forming a large family with a complex structure. Based

on this analysis, we developed new tools and proposed changes to the existing

methods that improve homology detection and evolutionary analysis of coiled-

coil proteins and Rab GTPases. We used some of these developments to study

the origin of the eukaryotic endomembrane trafficking system.

1.2 Methods of molecular evolution

The methods of molecular evolution are used to describe the evolutionary process

that generates the observed molecular variation at the sequence level. A common

goal of an analysis is to identify proteins that originated from a common ancestor

(homologues) either in the species of interest or in all available sequence data.

Yet, even if the objective is more specific, detection of homologous sequences is

the necessary initial step, which determines the accuracy of the consecutive steps

of the analysis. In fact, each step of the analysis pipeline should be evaluated, as

any error will propagate to the subsequent steps of the pipeline and influence the

final result (e.g., Anisimova, Liberles, et al. 2013).

The classical phylogenetic analysis pipeline is usually divided into four steps

(Holder and Lewis 2003; Anisimova, Liberles, et al. 2013): identification of ho-

mologous sequences, construction of a multiple sequences alignment, tree es-

timation, and hypothesis testing on the constructed phylogeny. In this thesis

we mainly focus on two of these steps, that is, identification of the homolo-

gous/orthologous sequences and estimation of phylogenetic trees. We develop

dedicated models and tools to improve inference accuracy in the context of anal-

ysed protein classes. In this section, however, we describe and discuss all stages

of the molecular evolutionary analysis. Although we specifically focus on se-

quence evolution at the protein level, most of the techniques also apply to the

DNA sequences (some methods apply even to other types of data, for example,
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phylogenetic trees can be constructed based on sequences of morphological char-

acters, e.g., Lewis 2001).

1.2.1 Sequence search

The goal of the first step of an evolutionary analysis is the identification of pu-

tative homologous sequences. Proteins related by the common descent are ex-

pected to share common features, including similarities at the sequence level.

The premise of higher sequence similarity between related than unrelated pro-

teins is at the core of the homology detection methods. Arguably the most popu-

lar method is BLAST (Basic Local Alignment Search Tool, Altschul et al. 1990;

Altschul 1997; Camacho et al. 2009), a very fast search tool based on pairwise

local alignments, which allows scanning large sequence databases. However,

the algorithm loses sensitivity at larger evolutionary distances (high sequence

divergence); this deficiency can be improved by using multiple homologous se-

quences as a query instead of relying on pairwise comparisons (Park et al. 1998;

Madera 2002). Such sequences can be identified in an iterative search, where

the initial search detects similar sequences used to build a scoring profile that is

subsequently used to detect more distant sequences (e.g., PSI-BLAST, Altschul

1997). Even more sensitive methods (Madera 2002) use profile hidden Markov

models (pHMMs) that combine probabilities of both character substitutions and

insertion/deletion events at each position of a sequence to improve search accu-

racy (Krogh et al. 1994; Eddy 1996; Eddy 1998). This approach for similarity

search has been implemented in, for example, SAM (Hughey and Krogh 1996;

Karplus et al. 1998) and HMMER (http://hmmer.org). These similarity-based

methods identify putative homologues. Homologues are related to one another

in several ways (see fig. 1.1) and methods based solely on sequence similarity

comparisons can predict some of these relationships.

Orthologues are genes that originated from a single ancestral gene by spe-

ciation; (out)-paralogues are a product of a duplication event preceding a given

speciation event (Fitch 1970, fig. 1.1). This definition implies that orthologues

should be more similar to one another than to their paralogues (orthologues have

less time for divergence); hence, sequence similarity can be used to predict or-

thology. However, this assumption can be violated; for example, Koski and Gold-

http://hmmer.org
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Fig. 1.1. Evolutionary relationships between genes descended from a common ancestor
(homologues). Orthologues are genes that evolved from their most recent an-
cestor by speciation; paralogues evolved from a duplication event (Fitch 1970).
Genes are defined as out-paralogues if they duplicated before a speciation event
and in-paralogues if a duplication occurred after the speciation. In-paralogues
are collectively orthologous (co-orthologues) to other genes related by specia-
tion. For a more comprehensive description of homologous relationships see,
for example, a review by Koonin (2005).

ing (2001) reported that the closest BLAST hits are often not the nearest neigh-

bors on a phylogenetic tree. Such a situation can result from a difference in func-

tional constraints and rates of evolution across homologous genes (e.g., Koonin

2005; Studer and Robinson-Rechavi 2009). Despite these problems, sequence-

similarity-based methods are commonly used for orthology prediction due to

their speed and relatively good performance (e.g., Hulsen et al. 2006; Altenhoff

and Dessimoz 2009; Wolf and Koonin 2012). For example, in the popular bidi-

rectional best hits (BBH or reciprocal best hits, Overbeek et al. 1999) approach,

a pair of sequences in two different genomes is considered orthologous if they are

more similar to each other than to any other sequence in the other genome. BBH

allows finding probable pairs of orthologues, yet, an additional step is required

to obtain a group of orthologous sequences from multiple species: an all-against-

all BBH search generates orthologous pairs that are subsequently linked to form

clusters of orthologues (Tatusov 1997).

Although, the heuristic methods for homology detection are relatively simple,

they perform surprisingly well compared with more complex tree-based meth-
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ods (reviewed by Kristensen et al. 2011). They offer several advantages over

tree-based methods (e.g., Kuzniar et al. 2008). They are usually much faster and

easier to automate, which makes them especially useful for large datasets. Being

based on pairwise comparisons, they avoid errors associated with the construc-

tion of multiple sequence alignments, gene, and species trees. Yet, similarity-

based methods have several limitations. For example, BBH is susceptible to

taxon-specific gene loss, where it can erroneously assign orthology relationships

(e.g., Dessimoz et al. 2006; Scannell et al. 2006); for instance, in the example

presented in figure 1.1, genes from the mouse and platypus pair would be clas-

sified as orthologous (as the most similar hits in both genomes) due the loss of

complementing paralogues. Similarly, BBH also fails to identify many ortho-

logues in duplication-rich taxa (e.g., Dalquen and Dessimoz 2013). Heuristic

similarity-based methods are generally more suited for comparative studies; they

are unable to provide a detailed description of the evolutionary process that gen-

erated observed sequences.

A more general problem in sequence similarity detection is about the search

sensitivity and specificity. Failing to identify the correct sequences and includ-

ing unrelated hits impairs both heuristic and tree-based methods for homology

assignment. Although finding the best compromise between search sensitivity

and specificity is a general problem, it is especially pronounced in some specific

cases. For example, an increase in search sensitivity of homologous proteins with

highly divergent sequences will also greatly increase the number of false posi-

tives. Homology detection in the ‘twilight zone’ of sequence similarity (20–35%

of sequence identity between protein sequences) is challenging (Rost 1999); ho-

mologous proteins may share little sequence similarity despite having highly con-

served structures, which greatly reduces the accuracy of sequence-based methods

(Brenner et al. 1998). A similar problem of low accuracy is caused by low-

complexity sequences often composed of amino acid repeats. High but random

sequence similarities between non-homologous low-complexity regions increase

the probability of finding unrelated proteins by chance (Forslund and Sonnham-

mer 2009). For that reason, low-complexity regions are often masked in the sim-

ilarity search, for example, in BLAST using the SEG algorithm (Wootton and

Federhen 1993). The removal of this dubious information should decrease the



10 Chapter 1. Protein properties and evolution

number of false hits, yet, it also reduces the search sensitivity, especially when

the low-complexity regions span a significant part of the protein.

1.2.2 Sequence alignment

Given a set of candidate homologous sequences, the next step in the analysis is

the construction of a multiple sequence alignment. An alignment of biological se-

quences is formed by inserting gaps of varying length into sequences to form an

array where each column contains homologous residues: a given column is a hy-

pothesis that all residues at this position descended from a common ancestor. The

problem of finding an optimal multiple sequence alignment (MSA) can be solved

with a dynamic programming algorithm. However, the computational complex-

ity grows exponentially with the number of sequences, O(ln) where l is the av-

erage sequence length (Carrillo and Lipman 1988). Many heuristic algorithms

have been developed over the years to address this issue. The most widely used

methods are based on a progressive approach developed by Hogeweg and Hes-

per (1984). This algorithm is based on a two-step procedure. In the initial step,

the pairwise distances are calculated between all sequences to form a similarity

matrix, which is subsequently used to construct a guide tree using a distance-

based method (distance-based methods for tree estimation are described in sec-

tion 1.2.3). In the second step, the sequences are successively pairwise-aligned,

according to the branching pattern of the guide tree, to form the final MSA. Pair-

wise alignments are calculated between two sequences, a sequence and a profile

or two profiles (for internal nodes) using the accurate Needleman-Wunsch global

dynamic programming algorithm (Needleman and Wunsch 1970). Thompson,

Higgins, et al. (1994) implemented this progressive algorithm in ClustalX, the

most widely used software for aligning multiple sequences (and one of the top-

cited research papers of all time, Van Noorden et al. 2014). The progressive

algorithm allows to quickly construct large alignments, yet, it does not guarantee

to find a globally optimal MSA; finding an optimal alignment for early branches

may prevent from reaching the global optimum for the entire MSA, where these

early branches align suboptimally (Thompson, Higgins, et al. 1994). One way

to correct this problem is to use an iterative approach, where a new guide tree

is constructed from the initial MSA to build a more accurate MSA, the two-step
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procedure is repeated until convergence (e.g., Katoh 2002; Edgar 2004). Sev-

eral other methods have been proposed to improve MSA accuracy, for example,

T-Coffee (Notredame et al. 2000), MUSCLE (Edgar 2004), Probalign (Roshan

and Livesay 2006), Clustal Omega (Sievers et al. 2014). These methods differ in

the accuracy of the estimated MSA and computation speed (slower methods usu-

ally produce more accurate alignments). In this thesis, we mainly used MAFFT

(Katoh and Standley 2013), a computationally efficient method that offers high

MSA accuracy (Ahola et al. 2006; Nuin et al. 2006; Sievers et al. 2014; Thomp-

son, Linard, et al. 2011).

Protein structure is generally better conserved than sequence. Hence, the pro-

cess of sequence alignment may benefit from including structural information.

An experimental structure(s) of a sufficiently similar protein can serve as a tem-

plate for the alignment; gap insertions at structure-altering positions should be

rejected. However, if direct experimental data is unavailable, the alignment esti-

mation may be reinforced with information from secondary structure predictions

(e.g., PSIPRED, Jones 1999) and 3D structures of homologous proteins (3DCof-

fee, O’Sullivan et al. 2004); both sets of information are used in PROMALS3D

(Pei et al. 2008).

Widely used aligners find an optimal MSA by maximizing similarities be-

tween sequences for a given set of scoring parameters (substitution and gap

penalty). However, such alignment may not reflect correct evolutionary relation-

ships between sequences. A different class of aligners referred to as ‘phylogeny-

aware aligners’, constructs instead an MSA that gives the most likely phylogeny.

For instance, PRANK (Loytynoja and Goldman 2005; Loytynoja and Goldman

2008), one of the first phylogeny-aware methods, distinguishes insertions from

deletions yielding more accurate MSAs that better reflect the underlying phy-

logeny. SATé (Liu, Raghavan, et al. 2009) improves the MSA accuracy by co-

estimation of a sequence alignment with a phylogenetic tree within the maxi-

mum likelihood framework. Similarly, BAli-Phy uses Bayesian inference for

simultaneous estimation of both alignment and phylogeny (Suchard and Redel-

ings 2006). These methods, do not solely minimize score penalties by reducing

the number of gaps, but rather bring gaps back into the evolutionary context to

reflect the insertion/deletion events.
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Multiple sequence alignments are central to many sequence-based analyses

including phylogenetics, domain characterization and motif search; the outcome

of these analyses is strongly dependent on the accuracy of the alignment. Hence,

it is important to determine the overall alignment quality and find unreliable,

highly variable often gap-rich, regions. In fact, removing such unreliable posi-

tions often leads to an improvement in the downstream analysis (Talavera and

Castresana 2007). Different methods have been developed to analyse sequence

alignments (measure its quality and robustness) and find low-quality regions (for

example, Castresana 2000; Capella-Gutierrez et al. 2009; Wu et al. 2012; Sela

et al. 2015).

1.2.3 Phylogeny reconstruction

The goal of the phylogenetic reconstruction is to find the most probable hypothe-

sis describing the evolution of a set of sequences – the phylogenetic tree. In this

section, we briefly describe the most popular methods for phylogenetic inference

and discuss their advantages and disadvantages.

A simple approach to determine the relationships between sequences is to use

the maximum parsimony optimality criterion. The maximum parsimony method

searches for the shortest possible (most parsimonious) tree, that is a tree that

accounts for the fewest possible changes between sequences (Fitch 1971). Al-

though it is easy to count the number of changes for a given tree topology, the

method requires exploring the entire topology space to find the most parsimo-

nious tree, which is impractical for large alignments2. This method is conceptu-

ally simple and does not require any model of molecular evolution. This, how-

ever, may be problematic as all substitutions have equal weight, which in many

cases can produce wrong results. Due to its design, the method always finds the

shortest tree, often underestimating the true number of substitutions between se-

quences (multiple substitutions can occur at a single position), especially at long

evolutionary distances (Saitou 1989).

A different class of methods is based on pairwise distances between sequences.

2The number of tree topologies grows exponentially with the number of sequences. Exhaustive
search is possible only for a few sequences, for medium-sized alignments the “branch and bound”
algorithm can be used to find the optimal tree. Yet, for even larger samples it is necessary to use
heuristic algorithms that do not guarantee to find the best solution.
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In the simplest form, the distance can be expressed as the number of residue dif-

ferences, either nucleotide or amino acid, between two sequences. This approach

transforms a sequence alignment into a symmetric matrix of pairwise distances.

The distance matrix can be subsequently processed with widely used clustering

algorithms (e.g. UPGMA (Sokal and Michener 1958), Neighbor-Joining (Saitou

and Nei 1987)) to produce a hierarchical structure – a phylogenetic tree represent-

ing the relationships between the species. The branch lengths of the constructed

tree should approximate the pairwise distances of the distance matrix. Neighbor-

Joining (NJ) is a fast algorithm, it is especially suitable for large alignments or

for a bootstrap analysis, its execution time is proportional to the cube of the num-

ber of sequences, O(n3) (Studier and Keppler 1988). Distance based methods

have several problems and limitations. For example, the NJ algorithm does not

guarantee to construct tree branches with non-negative lengths if the distance

matrix is non-additive (Kuhner and Felsenstein 1994). NJ does not explore the

available topology space and compare different trees, compared to the methods

described below, its outcome is a single tree. Hence, it is not possible to analyse

other high-scoring trees that could support an alternative hypothesis about the

homologous relationships between sequences (see, e.g., Gascuel and Steel 2006,

for a review about NJ).

Assigning equal scores to all residue changes may result in incorrect phylo-

genies. The observed number of changes is often smaller than the real number,

especially at longer evolutionary distances or higher rates of evolution: mul-

tiple substitutions occurring at the same position in the sequence result in an

underestimation of the observed distance between sequences (Jukes and Can-

tor 1969). Both the stationary amino acid frequencies in protein sequences and

the substitution rates between them differ for each amino acid according to its

chemical and physical properties. For example, substitutions within polar, neg-

atively/positively charged, hydrophobic and aromatic groups are less prone to

influence structural and functional properties of a protein than substitutions be-

tween the groups. As a result, they are more frequent than the substitutions likely

to alter protein structure or function. To get a better estimate of the evolutionary

process that shapes protein sequences one needs to account for the patterns (fre-

quencies) of amino acid substitutions. This is achieved using substitution models
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that describe probabilities (rates) of changes for each pair of amino acids, or nu-

cleotides in the case of DNA (some models also exist for codon substitutions,

see e.g., Goldman and Yang 1994). Box 1.1 describes substitution models in a

greater detail. Substitution models can be used to compute distances between

sequences (Felsenstein 1989) to account for the type of the observed changes,

which should result in a more accurate estimation of the real evolutionary dis-

tance.

The probabilistic methods of phylogenetic inference, Maximum Likelihood

(ML) (Felsenstein 1981) and Bayesian inference (Rannala and Yang 1996; Yang

and Rannala 1997), offer many improvements over maximum parsimony and the

distance-based methods. Yet, the improvements provided by these methods come

at a much greater computational cost (only the recent growth of computational

power enabled the inference of large phylogenies in reasonable time). In the ma-

jority of cases, the probabilistic methods provide a more accurate estimate for

phylogenetic trees (see, e.g., Kuhner and Felsenstein 1994; Spencer 2005; Og-

den and Rosenberg 2006). ML and Bayesian methods infer phylogenetic trees di-

rectly using information contained in the sequence alignment in contrast with the

distance methods. As a result, no information is lost in the process of data trans-

formation from an alignment to pairwise distances between sequences. These

methods define probabilistic frameworks that are used to find the best tree for

the given alignment by exploring the available topology space. Every inspected

tree is scored, so the outcome of the analysis is, in fact, a collection of trees, each

with a confidence value assigned to it. Maximum Likelihood and Bayesian meth-

ods explore the parameter space to find the best set of parameters for the given

data. Tree topology and branch lengths are a subset of these parameters, arguably

the most interesting outcome of the analysis. However, other parameters must

be provided (or derived from the data) to compute the phylogeny. The crucial

set of parameters describe expected residue frequencies and the probabilities of

residue substitutions; it is defined by substitution models (Box 1.1). Many mod-

els have been defined for different protein classes to obtain optimal phylogenetic

estimates. Choosing an appropriate model is crucial; using a wrong model can

result in incorrect inference (Bruno and Halpern 1999). For example, Williams

and Embley (2014) showed that a poorly fitting substitution model can support



1.2. Methods of molecular evolution 15

a wrong hypothesis – Eukaryotes being a sister group to Archaea (Rinke et al.

2013). This demonstrates the importance of adjusting model parameters to ac-

count for specific sequence properties. Some additional parameters can also be

specified to improve inference. For example, positions in the alignment can be

divided into groups by their rate of evolution to account for the difference in

substitution rates along the sequence; this is usually accomplished by defining

several categories following the gamma distribution whose shape parameter (α)

can be co-estimated from the data (Yang 1996).

Box 1.1 Models of molecular evolution

Models of molecular evolution, or substitution models, describe the pro-

cess where one character replaces another (substitution) in a sequence of

characters of a given alphabet (e.g. nucleotides, amino acids). The mod-

els are usually represented in a form of a square transition matrix where

each element ai j describes the probability (rate) of change from the char-

acter i to j. The size of the matrix equals to the length of the alphabet.

Substitution models belong to two categories: mechanistic and empirical.

Parameters of mechanistic models are derived from the knowledge about

the fundamental processes that guide sequence evolution. Conversely,

parameter values of empirical models are estimated from alignments of

real sequences, without considering factors that led to the observed sub-

stitutions. A simple mechanistic model for DNA may define two parame-

ters that distinguish rates of transitions and transversions (Kimura 1980).

In the Maximum Likelihood framework, the values of both parameters

are simultaneously estimated with the parameters for tree topology and

branch lengths to maximize the probability of the model for the given

data. Mechanistic models are mostly defined for DNA and codons; at

the protein level, evolutionary processes are usually described with em-

pirical models. The first widely used model of amino acid substitution,

PAM (Point Accepted Mutation), was proposed by Dayhoff et al. (1978).

In this model, the substitution rates were estimated by counting changes

between closely related sequences. Yet, this approach ignores informa-
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tion from sequences separated by longer evolutionary distances. Recent

methods use the Maximum Likelihood framework to estimate substitu-

tion rates from large datasets covering different evolutionary distances.

For example, the widely used general WAG (Whelan and Goldman 2001)

and LG (Le and Gascuel 2008) models. Some models were designed to

address specific conditions, for example, a model for proteins encoded by

the mitochondrial DNA (Adachi and Hasegawa 1996) or even specifically

mitochondrial proteins from Arthropoda (Abascal et al. 2006).

Selecting a good model for given sequences can be difficult. How-

ever, it is possible, within the likelihood framework, to compare models

and select one that provides the best fit to the data. This can be achieved

by comparing likelihoods and the number of parameters for each model

using measures like AIC (Akaike information criterion, Akaike 1974) or

BIC (Bayesian information criterion, Schwarz 1978). The assumption

of independent evolution at each position in the sequence allows assign-

ing multiple best-fitting models to a protein (an approach named model

partitioning) to reflect a difference in the evolutionary process between

protein regions.

1.2.4 Applications

The final result of the phylogenetic reconstruction is an evolutionary tree – a

hypothesis describing the evolutionary process that generated the observed se-

quences from the common ancestor. Given the reconstructed gene/protein phy-

logeny and the corresponding species tree, it is possible to map homology re-

lationships (orthology, paralogy) between sequences in the process of tree rec-

onciliation (Goodman et al. 1979). In the parsimony framework, the process

minimizes the number of gene duplications and losses necessary to inscribe the

gene tree into the species tree (this and other algorithms for tree reconciliation

are described by Doyon et al. 2011).

Arguably the most common application of phylogenetic methods is the recon-

struction of species and gene/protein trees. Yet, these methods allow addressing

many other questions, below we briefly describe two further examples (see, e.g.,
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Holder and Lewis 2003, for more examples).

Trees inferred with Maximum Parsimony, Maximum Likelihood or Bayesian

methods (i.e. methods operating directly on sequence information, character-

based methods) contain estimates of the ancestral state at each of the internal

branches. This information presents an interesting opportunity to infer sequences

of ancient proteins. In fact, multiple reports describe not only theoretical predic-

tions but synthesis, or ‘resurrection’, of ancient proteins, based on the phyloge-

netic reconstruction, and subsequent exploration of their properties and function.

For example, Gaucher et al. (2008) showed higher thermostability of ancient

elongation factors, which coincided with Earth hotter environment. For more

examples and additional information see Thornton (2004).

Multiple substitution models can be compared to determine which one is

the best fit for the given sequence data. This approach can also be used for hy-

pothesis testing about the data. For instance, it is possible to detect selection by

comparing two nested models where one allows for sites under positive selec-

tion, another does not. If the more complex model, which includes selection, is

substantially better that the simpler one (as measured with likelihood ratio test,

AIC, or BIC) it is possible to conclude that some sites are under selection in

the analysed sequence (for more information see, e.g., Huelsenbeck et al. 1997;

Anisimova, Bielawski, et al. 2001; Yang 1998). For example, Gibbs and Rossiter

(2008) showed that venom coding genes in rattlesnakes are rapidly evolving by

positive selection; similarly, Bulmer and Crozier (2006) described positive selec-

tion in termite immunity genes.

1.2.5 Automatic methods

The traditional approach to the evolutionary analysis of sequence data involves

extensive manual interaction: each step (i.e. homology detection, sequence align-

ment, tree reconstruction) is run and validated by a human expert. The outcome

of such approach is expected to be more accurate than the result of an automatic

analysis. Yet, it often depends on subjective choices and is difficult to reproduce.

An alternative solution is to run the analysis using fully automated pipelines that

provide objective rules and verifiable results. Removing the ‘human factor’ from

the pipeline also enables to map evolutionary relationships between thousands of
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proteins across hundreds of species. Many tools and databases, which differ in

the applied methodology, taxonomic sampling, and performance, have been de-

veloped over the years. These methods can be divided into two categories: graph-

based methods that cluster orthologues based on their sequence similarities (e.g.,

COG, Tatusov (2000); EggNOG, Powell et al. (2014)) and phylogenetic tree-

based methods (e.g., PhylomeDB, Huerta-Cepas et al. 2014); hybrid approaches

combine both graph- and tree-based methods on different stages of the pipeline

(e.g., Ensembl Compara, Cunningham et al. 2015, generates sequence clusters

based on a BLAST-similarity-search graph, which are subsequently aligned and

used to build phylogenetic trees; finally the gene trees are reconciled with a

species tree to map duplication evens). Automatic methods allow annotating

full genomes, which is especially important given the recent developments in the

DNA sequencing technologies that greatly reduce the effort and time of obtaining

new genomes, often making the analysis and annotation the limiting step.

1.3 Protein space, constraints, and information content

The pipeline, described in the former section, provides a general framework for

a phylogenetic analysis. Yet, the details of an analysis may differ depending on

specific properties of a given protein. In this section we will describe factors

that may influence the evolutionary trajectory of a protein and as a consequence

require adjustments to the phylogenetic analysis.

1.3.1 Protein space

Theoretically, given that every position in a sequence can be occupied by one of

the 20 amino acids, the number of possible proteins grows exponentially with the

length (n) of the polypeptide chain (20n). For example, a relatively short peptide

of 100 residues can be built by 20100, or approximately 1.27 × 10130, different

sequences. This demonstrates that the ‘protein universe’, i.e. the space of all

possible proteins, is vast (Holm and Sander 1996). Yet, proteins are not free to

explore all possible states of their sequences; they are constrained by multiple

factors including structure, function, biophysical properties, interactions, local

and external environment. In the following sections, we describe how some of
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these factors influence protein evolution and, as a consequence, the challenges

they present to the evolutionary analysis. Yet, first, we describe the properties of

the observed protein space.

Proteins are composed of domains, continuous stretches of amino acids with

distinct structure, function and evolutionary history. A simple protein may con-

sist of only a single domain, yet, multi-domain proteins are more common (Te-

ichmann et al. 1998; Vogel et al. 2004). The same domain may exist in multiple

different proteins, its combinations with other domains form unique domain ar-

chitectures. Different architectures are formed by duplication, divergence, and

recombinations of existing domains (reviewed by Vogel et al. 2004). New protein

functions can arise from domain combinations, which differ from the functions of

single-domain proteins (Bashton and Chothia 2007). Domains are classified into

families: a domain family contains small single-domain proteins and fragments

of larger proteins that have arisen from the common ancestor. The distribution

of domain family sizes in individual genomes (and larger taxonomic groups) is

highly skewed, it follows the power-law distribution: a few families have many

members, the remaining families have only a few members. The family size dis-

tribution can be explained by a stochastic model of domain birth (duplication)

and death (loss) (see, e.g., Qian et al. 2001; Karev et al. 2002).

Most proteins require being properly folded into a three-dimensional struc-

ture in order to perform their function and interact with their partners (only 2-3%

of prokaryotic and 20-30% eukaryotic proteins contain long intrinsically disor-

dered regions, Dunker et al. 2001; Ward et al. 2004; Schlessinger et al. 2011).

Despite the enormous size of the universe of possible protein structures, a sur-

prisingly small space is used by nature. At the time of writing, the PDB database

(Protein Data Bank, http://www.rcsb.org) contains 36642 unique structures3, yet,

the total number of structural folds is estimated only in the order of thousands

(Wolf, Grishin, et al. 2000; Govindarajan et al. 1999) (for more information con-

cerning protein structural classification see Box 1.2). This implies that proteins

are restricted to a limited space of structural folds, which largely constrains their

sequence evolution. Indeed, the analysis of the available protein structures shows

that the observed protein folds occupy only four regions of the sparsely populated

3Non-redundant structures at 95% of sequence identity; at 70% the number of unique structures
drops to 31986.

http://www.rcsb.org
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protein structure space (Hou et al. 2003). These regions roughly correspond to

the four classes defined, in the SCOP classification, by their secondary structure

composition: all-α, all-β, α+β, α/β (see Box 1.2).

Box 1.2 Protein structural classification

Proteins are classified into different levels of organization that reflect

their structural and sequential similarities and evolutionary relatedness.

The SCOP (Structural Classification of Proteins) classification system

(Murzin et al. 1995), based on proteins with known three-dimensional

structures, provides a comprehensive description of structural and evolu-

tionary relationships between proteins. It classifies proteins into a number

of hierarchical levels, where family, superfamily, fold, and class are the

principal ones.

1. Family: Proteins classified at the family level are clearly evolu-

tionary related. They share high sequence similarity, the pairwise

sequence identity is usually greater than 30%. However, in some

cases, despite very low pairwise sequence similarity, proteins are

classified into a family based on similar function and high struc-

tural similarity, for example, globins.

2. Superfamily: Proteins are not necessarily related at the superfamily

level. Pairwise sequence similarities are low, yet, similarities in

structure and function suggest a common origin.

3. Fold: Proteins share a common fold if they have the same major

secondary structures in the same arrangement and the same topo-

logical connections. However, proteins with the same fold may

differ in peripheral secondary structure elements, which may com-

pose a substantial part of the entire protein. Despite the structural

similarity proteins that belong to a common fold, may not share a

common evolutionary origin, they may have evolved independently

to a similar fold as a consequence of similar physical and chemical
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conditions favoring certain structural arrangements.

4. Class: At the class level groups are formed based on the secondary

structure content and organization, that is, proteins formed only by

α-helices (all-α), only by β-strands (all-β), both α-helices and β-

strands that are largely segregated (α+β), and interspersed (α/β).

The SCOP classification is used by other services, for example, the SU-

PERFAMILY database (Gough et al. 2001) that builds hidden Markov

models based on SCOP superfamilies to annotate proteins in more than

2400 genomes. Alternative systems of protein structural classification

exist, for example, the CATH hierarchic classification of protein domain

structures (Orengo et al. 1997).

1.3.2 Structural constraints in protein evolution

Evolutionary processes that govern protein evolution are constrained by struc-

tural requirements of a protein to perform its function. Constraints differ not

only across protein families but also between different regions of a single pro-

tein. They depend on multiple factors that vary along the sequence (e.g., solvent

accessibility, local structure of the peptide chain) that define a local environment

of each residue in a folded protein, determining amino acid mutability at that

position (Overington, Johnson, et al. 1990; Overington, Donnelly, et al. 2008).

Regions of an amino acid sequence assemble into elements of secondary

structure that interact with each other, folding into a native, three-dimensional

protein structure. The most common secondary structure elements are classi-

fied into four types (α-helices, β-sheets, loops, and coils) based on the spatial

arrangement of the chain, defined by the dihedral angles of the peptide bond.

The space of energetically allowed dihedral angles differs for each amino acid;

it can be represented with the Ramachandran plot (Ramachandran et al. 1963).

To achieve a thermodynamically stable state, each class of secondary structure is

biased towards amino acids that allow angles required by the class. As a result,

amino acid substitution rates are constrained by the structural requirements of the

secondary structure. The difference in rates can be used to improve phylogenetic
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inference, for example, Thorne et al. (1996) developed a model that describes

the organization of the secondary structure along the sequence and substitution

rates for each structure.

Another factor that defines a local environment of an amino acid is solvent

accessibility. The rate of amino acid substitutions greatly varies between pro-

tein regions depending on their exposition to the solvent. The lowest rate of

substitution is in the solvent-inaccessible core of a protein and the most con-

served residues are polar residues buried inside the core (Overington, Donnelly,

et al. 2008). Information about solvent accessibility enriches the description of

protein local environments; it can be used to improve models of protein evolu-

tion. For example, Goldman, Thorne, et al. (1998) extended the earlier approach

(Thorne et al. 1996) to not only account for the difference in substitution patterns

between secondary structure elements but also for the solvent accessibility of

these elements.

The third major factor that determines the properties of a local environment

are side-chain interactions (both with the main-chain NH and CO groups and

other side chains), for example, the most ubiquitous hydrogen bonds. These in-

teractions are essential for correct folding and protein stability. The ability to

form a hydrogen bond with the main-chain groups restricts the set of possible

substitutions; residues with non-polar side chains are unable to form hydrogen

bonds. Hydrogen bonds reinforce the relative positions of secondary structure

elements in the three-dimensional space. The maintenance of the overall struc-

ture of a protein (for example, at the superfamily level) requires conservation

of crucial inter-chain interactions, which poses additional constraints on amino

acid substitutions at these positions. Side-chain hydrogen bonds contribute to the

maintenance of protein structure not only directly, by forming polar interactions

between chains, but also by improving atom packing density in the protein core.

Polar groups that are hydrogen bonded occupy a smaller volume than the groups

without the bond. This, in turn, reduces the distances between atoms, which in-

creases van der Waals interactions leading to even higher stability (Schell et al.

2005). Such buried polar residues provide a large contribution to protein stabil-

ity (Pace 2001); they are more conserved than their surface counterparts, buried

polar residues that are not hydrogen bonded and even buried non-polar residues
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(Worth and Blundell 2009).

Evolutionary constraints on protein structure are a consequence of its func-

tion: proteins need to fold into native three-dimensional structures to perform

their functions. However, specific functions (for example, catalytic activity or

interaction with other molecules) impose additional constraints on local amino

acid properties. Residues that are closer in space to the functional site are more

conserved (Chelliah et al. 2004). Proximity to the active site poses an additional

constraint on amino acid substitutions; it should be included in the description of

local environments.

Ultimately, the constraints that define a local environment, and limit amino

acid substitutions, are a product of the secondary structure, solvent accessibility,

features of the global protein architecture and functional requirements. A good

characterization of local environments may improve identification and classifica-

tion of protein family members, or help in predicting important regions (inter-

actions, catalytic activity) of unknown proteins. Using entire information about

amino acid local environments in an evolutionary analysis of a protein family

may not be practical or even possible. However, understanding specific con-

straints of a protein or, at least, its regions may improve the analysis.

1.3.3 Information content

Sequences of DNA, RNA and proteins are carriers of biological information.

The amount of information, or informativeness, can be measured in different

ways. However, one of the most commonly used descriptions comes from the

information theory developed by Claude Shannon (Shannon 1948) that measures

information in terms of entropy of an object4. Entropy describes an uncertainty

(how much is not known) about a state of an object (a random variable); it is

defined as a weighted sum of log-probabilities of possible states of a random

variable5.

4A different measure (Kolmogorov complexity) defines information as the length of the short-
est computer program that produces the observed sequence.

5Entropy is a subjective measure that depends on a given definition of the state space of the
object.
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H(X) = −
n
∑

i=1

p(xi) log p(xi) (1.1)

Conversely, information describes the amount of knowledge about the ob-

ject’s state; it allows to make a better prediction, than by chance, about the state

of a random variable. It is defined as the difference between the maximal entropy

(i.e. when nothing is known about the object, before the measurement) and the

observed remaining entropy (after the measurement).

I = Hmax − H(X) (1.2)

Information theory found many applications in analysing biological sequences.

For instance, the difference in information patterns along a genome (horizontal

information) can be used to distinguish coding from non-coding regions (Grosse

et al. 2000). Sequence information can also be used to improve the sequence

assembly process by clustering sequences bases on their mutual informativeness

(Otu and Sayood 2003). Here, we focus on the sequence information across

genomes (vertical information) that describes the evolutionary process.

Per-site information content can be calculated given an alignment of homol-

ogous sequences. The resulting profile provides a measure of conservation of

each position and is commonly used to construct sequence logos (Schneider and

Stephens 1990): a graphical representation of the alignment, where each position

is represented as a character stack, the height of each character corresponds to its

frequency at a given position and the height of the entire stack to the position’s

informativeness. Sequence logos are widely used in analysis and visualization of

binding sites, conserved motifs, protein domains, and many other applications.

A certain level of sequence conservation is necessary for an accurate detec-

tion of putative homologous sequences and to construct a sequence alignment.

It is also necessary for phylogenetic inference, for example, to avoid tree recon-

struction artifacts like long-branch attraction (Felsenstein 1976). Yet, sequence

conservation is not a perfect measure of the sequence informativeness for a phy-

logenetic analysis; some divergence is necessary to determine relationships be-

tween sequences. The global difference is the rates of evolution have been used to

select appropriate genes to resolve polytomies at different evolutionary distances:
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highly conserved genes for ancient events and rapidly evolving for recent events.

Yet, the choice of those genes is often arbitrary, since the informativeness of the

genes is not quantified.

Townsend (2007) proposed a measure of phylogenetic informativeness: the

phylogenetic power to resolve evolutionary relationships at a given time during

evolution of a gene. A sequence needs to have parts that evolve at an appropri-

ate pace to resolve a branching pattern at a given time. Positions evolving too

slowly are unlikely to change on a given short internal branch, conversely, po-

sitions that are evolving too fast are likely to change also in one, or more, of

the descendant clades. Hence, the positions with the highest informativeness

for a given inner branch evolve at optimal intermediary rates that maximize the

probability of a change occurring at the branch and not at the tips. Phylogenetic

informativeness is ultimately a measure of the rate of character change at a given

time. For instance, codon positions differ in the substitution rates, the third (most

variable) position is the most informative about the recent events, first and sec-

ond about more ancient events (Townsend 2007). Phylogenetic informativeness

differs from the branch support estimates (e.g., bootstrap values, posterior prob-

ability); it measures the power of a set of characters to define clades at a given

evolutionary time, it does not show how much data support a particular clade.

The amount of phylogenetic information at a given time may also reveal if a short

branch is a result of a rapid radiation event or lack of appropriate data. High in-

formativeness and low branch support indicate rapid radiation, conversely, both

low informativeness and low support suggest insufficient data to resolve a given

polytomy.

Phylogenetic informativeness is a quantitative measure of the power of a set

of related sequences to resolve their evolutionary history. It can indicate possible

limitations to resolve events at a given range of temporal divergence, which can

help to redesign the analysis and interpret the result. It also provides means to

compare the informativeness of different protein families.
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1.4 Problems, limitations, and challenges in studying pro-

tein evolution

Last decades delivered numerous computational methods for evolutionary anal-

ysis which, combined with the ever-increasing computing power, largely im-

proved the accuracy of evolutionary inference of gene and protein family histo-

ries. However, there are still many limitation and problems. This section briefly

describes some of the major challenges and focuses specifically on problems re-

lated to the selected protein classes that are the subject of the following chapters.

Accurate homology prediction is essential for evolutionary analysis. A wide

array of computational tools has been developed to infer evolutionary relation-

ships between sequences. These methods provide general frameworks for homol-

ogy inference. Yet, they differ in many ways, including the underlying method-

ology, its accuracy, and taxonomic sampling, which often leads to different pre-

dictions. Efforts, like ‘The Quest for Orthologs’ (Kuzniar et al. 2008), have been

made to standardize, benchmark and ultimately advance homology (orthology)

prediction methods. However, the application of general methods is often lim-

ited, especially in some specific cases of ‘difficult’ proteins.

As described in the previous section (section 1.3.3), a certain minimal amount

of information is required for an accurate evolutionary inference. Hence, low-

complexity repetitive sequences are generally considered problematic for evo-

lutionary studies. Due to their low-informativeness, it is difficult to construct

accurate sequence alignments, resolve phylogenetic trees, and detect putative

homologues (unrelated proteins can converge into similar low-complexity repeti-

tive sequences). Another common source of low information content in proteins

is related to the level of sequence divergence; proteins lacking positions evolving

at optimal intermediate rates may not have enough information to resolve their

full evolutionary histories. This problem is especially pronounced in some large

protein families. Below we focus on two examples of those ‘difficult’ proteins

classes.
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1.4.1 Problem type 1: Repetitive proteins – Coiled-coils

Sequences of many proteins contain regions composed of multiple repetitions of

a peptide motif. Both the size of a single repetitive motif and its total number in a

protein can considerably vary across proteins. Sequence repeats are often consid-

ered challenging for evolutionary analysis due to their low complexity (Forslund

and Sonnhammer 2009). Here, we focus on one class of repetitive sequences,

the coiled-coils, motifs present in up to 10% of all proteins encoded in a genome

(Liu and Rost 2001).

Coiled-coils are relatively simple protein domains formed entirely by α-heli-

ces. Their sequence is built by a repetitive peptide pattern of seven amino acids

(a heptad motif), where two hydrophobic residues are separated by two and three

polar residues – (abcdefg)n, where a and d are hydrophobic while bcefg are po-

lar, (HPPHPPP)n. The length of a coiled-coil forming sequence can vary from

just three heptad repeats (21 residues) to thousands, forming the longest known

protein domains (e.g., giantin, Linstedt and Hauri 1993). The model of the coiled-

coil structure was first proposed in 1952 by Francis Crick in his seminal paper

(Crick 1952). In this model, two or more α-helices wrap around each other to

form a superhelix, the coiled-coil. The specificity of this interaction is an out-

come of the distinct nature of the coiled-coil motif: the coiled-coil sequence

folds into amphiphilic α-helical structures, a result of the preferential localiza-

tion of the hydrophobic residues (at the ad positions) only at a single side of

the helix (fig. 1.2a), such amphiphilic helices interact with each other via their

hydrophobic interfaces (in the hydrophilic environment of the cytoplasm). The

interaction is strengthened by the van der Waals contacts between site chains of

the hydrophobic residues at the a and d positions, known as knobs into holes

packing. The overall strength of the interaction can be further reinforced by

ionic bonds between charged side chains of amino acids at the e and g positions

(Burkhard et al. 2002). An example of a canonical coiled-coil domain, GNC4

leucine zipper, is shown in figure 1.2b. Although the heptad repeat is required

for the formation of the coiled-coil structure, it is often imperfect; polar residues

can occupy normally hydrophobic positions (e.g., in GCN4 eukaryotic transcrip-

tional activator protein, asparagine is located at a core a position), and vice versa

(see, e.g., Mason and Arndt 2004, for a review).
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Fig. 1.2. A canonical coiled-coil domain. (a) A helical wheel representation of the
coiled-coil domain’s heptad motif, positions a and d, usually occupied by hy-
drophobic residues (highlighted with a dark background) face toward each
other. (b) A cartoon representation of a crystallographic structure of GNC4
leucine zipper two-stranded, parallel coiled-coil domain (PDB:2ZTA). Hy-
drophobic side chains are represented as sticks.
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The high prevalence of coiled-coils in proteins suggests that the domain is

involved in multiple molecular processes, for example, transcription regulation

(leucine zippers), chromatin dynamics (condensins, cohesins), endomembrane

trafficking (SNAREs, Golgins), motility (kinesins, dyneins, myosins), structur-

ing organelles (Bld10p and SAS-6 of the centrosome), among others. Coiled-coil

domains are often viewed as rigid rods that act as molecular spacers separating

functional domains, for example, the coiled-coil stalk domain of the motor pro-

teins that separates the motor domain (head) and the cargo-binding (tail) domain.

However, a coiled-coil region can be highly flexible, for example, in mitotic ki-

nesin centromere protein E (CENP-E) a very long (230nm) coiled-coil domain

provides a flexible, motile tether linking kinetochores to dynamic spindle micro-

tubules (Kim et al. 2008); long coiled-coils of the Golgi apparatus, important in

vesicle tethering, contribute to the specificity of the intracellular trafficking sys-

tem (Wong and Munro 2014). The structural properties of the coiled-coil domain

and its ability to form interactions with other proteins allow forming molecular

scaffolds of large complexes, for example, the cartwheel of the basal body.

The distinctive repetitive motif allows for a relatively easy detection of the

coiled-coil domain from the sequence data alone. The first computational method

for sequence-based coiled-coil domain prediction, COILS, was proposed by Lu-

pas et al. (1991). Later algorithms improved the accuracy of coiled-coil region

detection by applying more advanced tools, for example, hidden Markov mod-

els in MARCOIL (Delorenzi and Speed 2002), pairwise residue information in

Paircoil2 (McDonnell et al. 2006). Coiled-coil domains can be clustered based

on their topology, or oligomerization state, that is, the number of α-helices and

their orientation (parallel, anti-parallel). This criterion was used by Testa et al.

(2009) to create the ‘Periodic Table of Coiled-coil Structures’. Yet, such classi-

fication does not reflect the evolutionary relationships between proteins. Coiled-

coil structural data was further used, in a SUPERFAMILY-like approach, to de-

tect coiled-coil domains and predict their oligomeric states (SpiriCoil, Rackham

et al. 2010). SpiriCoil provides further improvements to the coiled-coil detection

problem. Although the method is restricted by the available structural data, it

provides some information about coiled-coil evolution: despite being build ac-

cording to the same principles, coiled-coil domains have independently arisen
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multiple times in evolution. The methods of coiled-coil region prediction use the

domain-specific properties to aid the prediction process. Yet, they do not provide

a comprehensive description of the unique properties of the heptad pattern (and

compare them with properties of other types of domains) that govern the evolu-

tionary process, which shapes the sequence and preserves the specific structure

of the domain. Such specific information should improve evolutionary inference

involving coiled-coil proteins. This is especially important for the accuracy of ho-

mology prediction; unrelated domains may evolve similar sequences, due to the

presence of similar constraints imposed by the simple heptad pattern, resulting

in incorrect homology assignments (e.g., Rose, Manikantan, et al. 2004; Rose,

Schraegle, et al. 2005; Zhang et al. 2009; Rackham et al. 2010; Walshaw et al.

2010; Azimzadeh et al. 2012).

1.4.2 Problem type 2: Large families of closely related proteins –

the Rab family of small GTPases

Sufficient amount of phylogenetic information is a prerequisite for an accurate

reconstruction of the evolutionary history of a protein family. To resolve a given

polytomy, sequences must contain positions evolving at appropriate rates (de-

scribed in section 1.3.3). Hence, the difficulty of an inference depends on se-

quence divergence, family structure, and its size (larger families require more

information to resolve more relationships). Here, we introduce the Rab family

of small GTPases, whose sequence properties and family structure challenge the

existing evolutionary methods.

Rabs are small (∼220 amino acid long) single-domain enzymes that belong

to the small GTPases of the Ras superfamily capable of binding and hydrolyzing

GTP (guanosine triphosphate) molecules. At the structural level, the small GT-

Pase domain is defined by the P-loop NTPase fold, a member of the α/β class:

the domain core formed mostly by parallel β-sheets is surrounded by α-helices

on both sides (fig. 1.3; see, e.g., Wennerberg et al. 2005, for a review about the

Ras superfamily). The P-loop NTPase fold, common to many families of GTP

and ATP-hydrolyzing enzymes, is the most widespread protein fold in most of

the cellular organisms, it is present in up to 18% of all proteins (Koonin et al.

2000). GTPases form a monophyletic group within P-loop NTPases which can
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be further divided into two groups, SIMBI (signal recognition particle, MinD,

and BioD) and TRAFAC (translation factors), each with a unique set of sequence

and structural signatures (Leipe et al. 2002). The Ras superfamily of small GT-

Pases belongs to the TRAFAC group. Ras-like proteins are present in all three

domains of life. Yet, they have largely expanded in Eukaryotes, where they are

usually divided into five major families (Arf, Rab, Ran, Ras, and Rho) involved

in signal transduction (see, e.g., Wuichet and Sogaard-Andersen 2015, for more

information about the prokaryotic small GTPases). Here, we focus on Rabs,

the largest family of small GTPases in Eukaryotes; the number of Rab coding

genes ranges from 7 in Schizosaccharomyces pombe, 11 in Saccharomyces cere-

visiae to approximately 60 in humans and Arabidopsis thaliana (Pereira-Leal

and Seabra 2001) and more than 100 in Entamoeba invadens (Nakada-Tsukui

et al. 2010).

Rab GTPases are key regulators of membrane trafficking in the eukaryotic

cell that provide specificity to the system: each Rab subfamily is associated with

a specific membrane compartment, its function is evolutionarily conserved (see,

e.g., Haubruck et al. (1989) and, for a review, Behnia and Munro (2005)). Rab

proteins cycle between the cytosol and their respective membrane compartment

(the ‘in’ and ‘out’ cycle) and switch between an ‘on’ (active, GTP-bound) and

‘off’ (inactive, GDP-bound) state. These two cycles regulate membrane traffick-

ing. After the translation, Rab protein binds to the REP chaperon (Rab Escort

Protein) which presents Rab to RabGGT (Rab geranylgeranyl transferase) that

catalyzes the addition of two geranylgeranyl (isoprenyl) lipid chains to the cys-

teine residues at the Rab C-terminus. It is subsequently anchored, with the iso-

prenyl chains, to the target membrane in its GDP-bound inactive state. GDP

is exchanged for GTP by GEF (guanine nucleotide exchange factor), which ac-

tivates the protein by changing the Rab conformation (the switch regions, see

fig. 1.3). This change is recognized by effector proteins that bind to Rab and

activate the respective pathway. Finally, Rab is inactivated by hydrolysing GTP

(the reaction is accelerated by GAP, GTPase-activating protein) and extracted

from the membrane by GDI (GDP dissociation inhibitor), REP homologue. For

more information concerning the Rab cycle regulation see, for example, Sten-

mark (2009), Kelly et al. (2012), and Pfeffer (2013).
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Fig. 1.3. G domain of Rab small GTPases. (a) Two-dimensional topology diagram of a
Rab protein generated with Pro-origami (Stivala et al. 2011). Switch regions
highlighted in blue (Switch I) and green (Switch II). (b) Three-dimensional
crystal structure of human Rab4A in its GppNHp-bound (GTP analog) active
conformation. Regions that change conformation upon GTP hydrolysis, the
switch regions, are highlighted in blue and green. Secondary structure labels
correspond to the numbering of α-helices and β-strands of panel ‘a’.

The evolutionary history of Rab GTPases is complex. Since the Last Eukary-

otic Common Ancestor (LECA), which already possessed a large Rab repertoire,
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Rab-coding genes were a subject of multiple general and taxon-specific duplica-

tion and loss events (Diekmann et al. 2011; Elias et al. 2012). Rab sequences con-

tain both highly conserved central regions and variable flanking regions. Many

conserved positions correspond to regions critical for the nucleotide-binding and

catalytic activity (for example, the P-loop NTPases’ Walker motifs) that are com-

mon to all small GTPases. Yet, some conserved positions correspond to the

unique signatures of the Rab family, for example, the RabF (Rab Family) motifs

(Pereira-Leal and Seabra 2000). Despite sequence similarities, inferring evolu-

tionary relationships within small GTPases is difficult. Several studies attempted

to resolve the phylogeny of the Rab family and its position within the Ras su-

perfamily (Elias et al. 2012; Klöpper et al. 2012; Rojas et al. 2012). Yet, many

parts of the evolutionary tree of small GTPases remain unresolved, including

the relationships between Ras families and the early-branching Rab subfamilies

(low branch support, discrepancies between studies). This presents a problem for

protein classification into appropriate families and subfamilies of small GTPases,

that is, assigning correct orthology/paralogy relationships. These difficulties are

an outcome of an insufficient amount of information, for phylogenetic methods,

contained within the short sequence of the Rab protein: only a small number of

positions evolves at the optimal rate that is suitable to resolve ancient polytomies.

New approaches should be devised to address this issue. The improved methods

could, for example, improve the classification accuracy into Rab subfamilies (al-

lowing to predict the existence of specific trafficking pathways in a cell, which is

especially important for functional annotation of new genomes), and ultimately,

given enough data, shed light on the origin of Rabs (and the membrane traffick-

ing system) and other eukaryotic small GTPases.

1.5 Outline of the thesis

In this chapter, we have considered the problem of inferring protein evolution

in the context of their molecular properties. We reviewed the current state of

the available methods for analysing evolutionary histories of protein families,

discussed their problems and limitations. We also described the constraints im-

posed by structure and function on sequence evolution, which affect evolutionary

inference. Finally, we introduced two classes of ‘difficult’ proteins for an evolu-
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tionary analysis: coiled-coils, protein domains formed by a repetitive peptide

motif, that are often not evolutionarily related; Rab small GTPases, a family of

closely related proteins with a complicated history. In the following chapters,

we analyse the specific nature of these proteins in the evolutionary context. We

present improvements to existing models and methods that take into account

protein-specific properties, which increase the quality of the evolutionary analy-

sis and lead to interesting biological findings.

In chapter 2, we focus on the sequence evolution of coiled-coil proteins. We

begin the analysis by comparing coiled-coil domains with globular domains to

estimate the informativeness and evolutionary potential of the coiled-coil repet-

itive pattern. Subsequently, we develop a new model specifically tailored for

coiled-coil proteins, which allows comparing the unique substitution patterns of

coiled-coil repeats with those of globular domains. Lastly, we use the new model

to improve homology mapping of coiled-coil proteins.

We continue the study of coiled-coil domains in chapter 3, by complement-

ing the analysis of the sequence evolution with the analysis of structure evolution.

We test the hypothesis that the coiled-coil regions of a protein, unlike other struc-

tured elements, preserve their length in order to maintain the physical size of the

coiled-coil domain.

In chapter 4, we present an automatic pipeline for detection and classification

of Rab GTPases, the Rabifier2. This bioinformatic sequence-based classifier

uses a multiple-step procedure that, first, distinguishes Rabs from other small

GTPases and then assigns a specific subfamily to the predicted Rab. Rabifier2 is

a major update over the earlier work by Diekmann et al. (2011). It improves on

the annotation accuracy and delivers a substantial increase in speed, allowing to

quickly annotate hundreds of genomes.

The origin of the Rab family of small GTPases is unknown. We attempted

to shed some new light on the problem by predicting Rab GTPases in Archaea

(using the updated Rabifier pipeline), and specifically the recently sequenced

archaeal species, the Lokiarchaeaon, that possesses several eukaryotic features

(Spang et al. 2015). Chapter 5 describes a detailed analysis of Rab-like sequences

from Loki and other archaeal species. In this analysis, we combine sequence- and

structure-based methods to answer the question about the origin of Rab GTPases
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and the eukaryotic membrane-trafficking system.
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Abstract Chapter 2

M odels of protein evolution are used to describe evolutionary pro-

cesses, for phylogenetic analyses and homology detection. Widely

used general models of protein evolution are biased toward globular do-

mains and lack resolution to describe evolutionary processes for other

protein types. As three-dimensional structure is a major constraint to

protein evolution, specific models have been proposed for other types of

proteins. Here, we consider evolutionary patterns in coiled-coil forming

proteins. Coiled-coils are widespread structural domains, formed by a

repeated motif of seven amino acids (heptad repeat). Coiled-coil form-

ing proteins are frequently rods and spacers, structuring both the intra-

cellular and the extracellular spaces that often form protein interaction

interfaces. We tested the hypothesis that due to their specific structure

the associated evolutionary constraints differ from those of globular pro-

teins. We showed that substitution patterns in coiled-coil regions are dif-

ferent than those observed in globular regions, beyond the simple heptad

repeat. Based on these substitution patterns we developed a coiled-coil

specific (CC) model that in the context of phylogenetic reconstruction

outperforms general models in tree likelihood, often leading to different

topologies. For multidomain proteins containing both a coiled-coil re-

gion and a globular domain, we showed that a combination of the CC

model and a general one gives higher likelihoods than a single model.

Finally, we showed that the model can be used for homology detection

to increase search sensitivity for coiled-coil proteins. The CC model,

software, and other supplementary materials are available at http://www.

evocell.org/cgl/resources.

This chapter has been published as: Jaroslaw Surkont and José B. Pereira-Leal.

(2015). Evolutionary Patterns in Coiled-Coils. Genome Biology and Evolution

7:545-556.

Author contribution: I conceived, designed and performed the experiments and

analysed the data. I wrote the paper together with José B. Pereira-Leal.
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2.1 Introduction

T he evolutionary trajectory of a protein is guided by structural and func-

tional requirements, resulting in constraints to its amino acid composition

and sequence. Thus, functional conservation often results in the conservation

of specific sequences. Conversely, multiple amino acid sequences can result in

the same three-dimensional (3D) structure, and thus proteins can accept muta-

tions without altering their biological function. This phenomenon is known as

protein structure designability, defined as the number of amino acid sequences

that have a single structure as their lowest-energy conformation (Emberly et al.

2002). As a result, certain amino acid substitutions are more likely to occur

than others in order to maintain a protein’s function and structure. Evolutionary

models, or substitution matrices, were developed to describe the probability of

one amino acid being replaced by another (reviewed in Thorne 2000). Descrip-

tive capabilities of a substitution model do not exhaust its applications. In the

classical phylogenetic analysis pipeline (Anisimova et al. 2013), an appropriate

model is essential for most if not all the stages: Identification of homologous

sequences, construction of a multiple sequence alignment, and phylogeny infer-

ence, which can be followed by more in-depth analyses like inference of sites

under selection. General empirical substitution models are mostly based on sol-

uble globular proteins. However, depending on the type of proteins under study,

different models are required, describing different constraints and evolutionary

trajectories. For example, Brown et al. (2010) show the difference between evo-

lution of proteins with well-defined 3D structure and disordered proteins, lacking

well-defined structure and long range interactions, by developing a model for un-

structured proteins. Another example is that of proteins encoded by organellar

genomes that share different genomic pressures from nuclear ones, prompting

Adachi and Hasegawa (1996) and Abascal et al. (2006) to propose models for

mitochondrial proteins; similarly Adachi, Waddell, et al. (2000) developed one

for chloroplasts. Yet another example is that of transmembrane proteins, where

the hydrophobic environment changes both amino acid composition and substitu-

tion patterns, requiring thus a specific evolutionary model (Ng et al. 2000). The

models mentioned above show improvements, in phylogeny reconstruction and



54 Chapter 2. Evolutionary patterns in coiled-coils

homology detection, over general models for their specific protein classes.

Here, we focus on evolutionary patterns governing the sequence evolution

of coiled-coil domains. The coiled-coil is an abundant peptide motif present in

all domains of life, which composes up to 10% of all proteins of a species (Liu

and Rost 2001). At the sequence level, it is defined by a repetitive heptad pattern

(abcdefg, (HPPHPPP)n) of two hydrophobic amino acids (H, at ad positions) sep-

arated by two and three polar amino acids (P, at bcefg positions). This leads to the

emergence of amphiphilic α-helices that interact between themselves by their hy-

drophobic interfaces through interlacing of side chains, known as knob-into-hole

packing (Crick 1952), to form a superhelix – the coiled-coil. Coiled-coils were

traditionally viewed as rod-like spacers separating functional domains; however,

growing evidence suggests that they frequently contain interaction sites and act

as protein effectors or scaffolds enabling protein–protein interactions (Zhang et

al. 2009; Munro 2011). Proteins containing coiled-coil domains play various bi-

ological roles, where the coiled-coil region can act as either (or both) a structural

or interacting component. They are involved in transcription regulation (leucine

zippers), chromatin and chromosome dynamics (condensins, cohesins); cell cy-

cle; recognition and transport in the endomembrane system (kinesins, dyneins,

SNAREs); motility (myosins); structuring organelles (golgins of the Golgi ap-

paratus, Bld10p and SAS-6 of the centrosome, the former was shown (Hiraki et

al. 2007) to alter the size and symmetry of the entire organelle when truncated)

among many others.

Coiled-coil motifs form well-defined 3D structures that appear in many oligo-

meric states, yet, they are dominated by simple dimers (Moutevelis and Woolfson

2009; Rackham et al. 2010) that usually form rod-like assemblies, for example,

stalks in motor proteins. Although coiled-coils are highly structured, they should

substantially differ from globular domains not only in the number of possible

folds (secondary structure is restricted just to the α-helix) but also in designabil-

ity: Presence of the heptad pattern limits the sequence space in comparison to an

unconstrained α-helix. Hence, we expect to observe different evolutionary pat-

terns in coiled-coil domains. However, it is also unclear how conserved coiled-

coil sequences are: Is the evolution governed solely by the requirement of the

heptad pattern per se, or is the identity of the specific amino acid also of impor-
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tance? In the first case, we would expect to observe relatively low sequence con-

servation: Many different amino acid combinations can satisfy the pattern. White

and Erickson (2006) showed examples of coiled-coil proteins with different lev-

els of sequence conservation and hypothesized that the conservation depends on

the number of interactions along the coiled-coil. They also presented evidence

that positions bcefg are more constrained in skeletal muscle myosin whereas ad

positions are more constrained for the analyzed spacer rods. Yet, the general ten-

dency of sequence conservation in coiled-coil regions, compared with globular

domains, remains unclear. Here, we address these questions by characterizing

the evolutionary patterns of coiled-coil domains and its differences to globular

domains. We use this characterization to develop a CC model that shows an im-

proved performance over general models in phylogeny inference and homology

detection of coiled-coil proteins.

2.2 Materials and Methods

2.2.1 Data Sets

Proteomes of all (66) available species were downloaded from the Ensembl data-

base, release 75 (Flicek et al. 2014), which covers Metazoa (largely represented

by vertebrates) and Saccharomyces cerevisiae. Ensembl Compara was used to

retrieve homology information and as a gold set to assess the performance of

tested homology prediction methods. Coiled-coil regions were predicted with

Paircoil2 (McDonnell et al. 2006) using default parameters. Globular domains

were mapped according to the Superfamily database (Gough et al. 2001) using

Ensembl’s interface.

2.2.2 Protein Sequence Alignment

Protein multiple sequence alignments were built with MAFFT, version 7 (Katoh

and Standley 2013) with high accuracy mode (--genafpair --maxiterate 1000).
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2.2.3 Protein Sequence Conservation

A multiple sequence alignment of a protein with its orthologs was used to assess

the conservation of amino acids at each position. Conservation was measured

using Shannon information entropy H(X) = −∑n
i=1 p(xi) loga p(xi) (Shannon

1948), where p(xi) is the probability (fraction) of the residue xi in the X column

of the alignment. This measures the uncertainty of the given column. Conser-

vation is defined as the difference between the maximum and observed uncer-

tainty, where maximum assumes equal residue probabilities, hence, in general

the residue conservation equals:

H′(X) = loga n +

n
∑

i=1

p(xi) loga p(xi) (2.1)

where n is the number of symbols in the alphabet (20 for amino acids, 4 for

nucleic acids) and a usually equals 2 giving bit as the unit of conservation, which

leads to a maximum conservation of approximately 4.32 bit for proteins and 2.0

bit for nucleic acids. Columns in an alignment may contain gaps, hence we

corrected the conservation value (H′c) by the fraction of gaps ( fg) in the column

H′c(X) = H′(X)(1 − fg), for ungapped columns H′c(X) = H′(X).

2.2.4 Model Estimation

A set of human proteins containing both coiled-coil regions and globular do-

mains was retrieved and orthologs corresponding to each of these proteins were

fetched from Ensembl. Each group of orthologs was aligned to create a multi-

ple sequence alignment. Alignments were restricted to coiled-coil parts by dis-

carding columns containing noncoiled-coil regions. Remaining parts of multi-

ple sequence alignments were inspected for low-quality regions: Any sequence

containing greater than 25% gaps, greater than 5% of unknown amino acids (de-

noted as X) or with average pairwise (the sequence with any other sequence in

the alignment) Hamming distance greater than 0.7 were deleted from the align-

ment. Finally, any column containing greater than 25% gaps was also discarded.

The total of 2175 high-quality multiple sequence alignments were used to build

the model.

Amino acid substitution rates were estimated using the Expectation Maxi-
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mization (EM) algorithm (Dempster et al. 1977), implemented in XRate (DART

version 0.2, Klosterman et al. 2006), which maximizes the likelihood L of a

model Q given multiple sequence alignments (Da) and corresponding phyloge-

netic trees (T a).

L =
∏

a

L(Q; Da,T a) (2.2)

The model was computed using an iterative approach, where the parameter

values of the current round are initialized with the parameter values from the pre-

vious round, until the likelihood of the model reaches maximum. To initialize

the first round of iteration, we tried three models (represented in a form of phylo-

grammars, Klosterman et al. 2006): LG (Le and Gascuel 2008), WAG (Whelan

and Goldman 2001), and XRate’s nullprot model. Trees were coestimated by

XRate based on the input alignments and the initial model: Neighbor-joining fol-

lowed by EM optimization on the branch lengths (default options). The model

was constrained to be reversible (default option). All models converged to simi-

lar parameter values and likelihoods. As the final model we chose the one with

the highest likelihood – initialized with LG. The model consists of a symmet-

ric amino acid exchangeability matrix R and a vector of amino acid equilibrium

frequencies Π. Assuming a general time reversible model of amino acid substi-

tutions and a constant, independent evolution at each site, R and Π can be used

to create an amino acid substitution matrix Q. The relationship between Q, Π,

and R is described with the following formulas:

qi j = π jri j, i , j

qii = −
∑

j,i

qi j
(2.3)

For more information concerning derivation of amino acid substitution models,

see Whelan and Goldman (2001) and Le and Gascuel (2008).

The model was then used to derive a series of scoring matrices (S) for homology

detection, similar to the PAM series (Dayhoff et al. 1978).

si, j = a logb



















q
(n)
i j

π j



















, (q(n)
i j
∈ Qn) (2.4)
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where n is the PAM distance; Qn denotes matrix exponentiation; a and b are

arbitrary constants (e.g., for PAM250 a = b = 10). Scores are rounded to the

nearest integers.

The entropy of a scoring matrix, average information per residue pair in the

alignment, was calculated as follows (Altschul 1991):

H =
∑

i, j

q∗i j log2













q∗
i j

πiπ j













(2.5)

where q∗
i j
= πiπ je

ln(2)si j , si j is calculated using equation 2.4 (a = 1, b = 2), which

gives q∗
i j
= πiq

(n)
i j

.

2.2.5 Model Validation

The performance comparison, between the new model and the general one, in

phylogeny reconstruction was done using RAxML (Stamatakis 2006). The test

set consisted of 179 alignments of orthologous, coiled-coil rich (>25%, no glob-

ular domain) proteins that were not used for the model estimation. All models

included gamma-distributed rate categories, the shape parameter of the distribu-

tion was estimated from the data. The F option was used to adapt the model to the

empirical amino acid frequencies: The amino acid composition of the multiple

sequence alignment. To calculate the difference between obtained estimates, we

applied the approach proposed by Le and Gascuel (2008): Measure the Akaike

information criterion, AIC (Akaike 1974) for each alignment and use the non-

parametric paired sign test on the likelihood values, which are estimated per

alignment site, to assess the significance of the difference between models. The

average AIC per site is defined as the ratio of the sum of AIC for all alignments

given the model and the total number of sites:
∑

a AIC(M,Da)/
∑

a sa. The differ-

ence between tree topologies was calculated using the Robinson–Foulds distance

(Robinson and Foulds 1981).

2.2.6 Model Partitioning

For every orthologous group, in the selected subset of coiled-coil proteins, the

CC (coiled-coil specific) model was assigned to the alignment region based on

the coiled-coil prediction for the human protein, the LG model was used for the
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remaining part. Phylogenetic analysis was performed with RAxML (Stamatakis

2006). Per site likelihoods of the partitioned method were compared with ones

obtained for a single model (either LG or CC) using the Wilcoxon signed-rank

test (Wilcoxon 1945).

2.2.7 Homology Detection

NCBI (National Center for Biotechnology Information) BLAST+ version 2.2.29

(Altschul et al. 1990) was used (with default parameters) for homology predic-

tion. A bidirectional best hit (BBH) algorithm was implemented in a custom

Python script. Predictions were validated using Ensembl Compara and Ensembl

Pan-taxonomic Compara databases. In order to test the performance of the new

model in homology detection, the source code of Basic Local Alignment Search

Tool (BLAST) was altered: The CC140 matrix values were included together

with the statistical parameters that are used by BLAST with BLOSUM62. The

performance of homology detection was analyzed by comparing the values of

sensitivity (fraction of actual positives that are correctly identified as such), pre-

cision (fraction of positive predictions that are actual positives), and Matthews

correlation coefficient (mcc, general performance of a predictor)

sensitivity =
T P

T P + FN
(2.6)

precision =
T P

T P + FP
(2.7)

mcc =
T P × T N − FP × FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(2.8)

where T P is True Positives, correctly identified positives; T N, True Negatives,

correctly identified negatives; FP, False Positives, negatives identified as posi-

tives; and FN, False Negatives, positives identified as negatives.
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2.3 Results

2.3.1 Sequence Conservation of Coiled-Coils

In order to infer evolutionary relationships between proteins, a certain level of

sequence conservation is required. To test whether coiled-coil regions carry phy-

logenetic information, we measured sequence conservation of coiled-coil regions

and compared it with globular domains in a collection of over 2000 orthologous

groups of metazoan proteins. We collected all orthologous groups that have an

ortholog in humans, and at least one coiled-coil and one globular domain that

serves as internal control. We aligned sequences within each ortholog group

and computed the average conservation of corresponding regions: Coiled-coil,

globular, and undefined (the remaining part of the protein). We used the Shan-

non entropy (Shannon 1948) to assess the degree of sequence conservation. The

Shannon entropy measures the amount of variation contained at each position in

a sequence, which can be interpreted as the level of conservation at that position,

and has previously been used, for example by Liu and Bahar (2012) and Schnei-

der and Stephens (1990) in a similar manner. It is suitable to measure conserva-

tion in multiple sequence alignments. Conservation is defined as the difference

between the maximum possible entropy for a given alphabet (e.g., amino acids)

and the observed entropy; hence, conservation of a protein sequence ranges from

zero bit (for a random sequence) to approximately 4.32 bit (full conservation).

As an example, figure 2.1a shows the crystal structure of SAS-6 homolog

protein from Chlamydomonas reinhardtii, containing both the globular head do-

main and the coiled-coil tail. Colors represent the sequence conservation at each

position between C. reinhardtii and multiple metazoan species. On average there

is no significant difference between the globular and the coiled-coil parts of this

protein, indicating that they contain similar level of phylogenetic information.

Similarly, a high level of conservation among coiled-coil domains emerges

from the global analysis (fig. 2.1b). As expected, regions with no domain assign-

ment are less conserved than the ones forming globular domains. In contrast,

coiled-coil regions are well conserved; on average, they are even slightly more

conserved than globular domains (3.46 bit for coiled-coils and 3.41 bit for globu-

lar, median values). The strong conservation of coiled-coil regions is surprising:
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a b

coiled-coil domain

head

domain

Fig. 2.1. Sequence conservation of protein regions. (a) Sequence conservation superim-
posed on the structure of SAS-6 homolog protein from Chlamydomonas rein-

hardtii (Protein Data Bank: 3Q0X, Kitagawa et al. 2011). Observed conserva-
tion ranges from 0.20 to 4.08 bit; blue indicates lowest and red highest conser-
vation. (b) Average sequence conservation in human coiled-coil proteins.

A certain level of sequence conservation is expected due to the coiled-coil con-

straint to preserve the heptad pattern, but this result suggests that a specific amino

acid sequence is preserved beyond the pattern per se.

Even though the entropy is a measure of sequence conservation, it is not an

ideal estimate of phylogenetic informativeness: The rate of evolution of a char-

acter at a given time period (Townsend 2007), an indicator of the evolutionary

distance between sequences. Yet, a direct estimation of phylogenetic informa-

tiveness is more complex; an assumption about the substitution model, the phy-

logenetic relationship between sequences and intense computation is required

(impractical for a large scale analysis). We tested whether entropy can globally

approximate phylogenetic informativeness in a comparative analysis on a ran-

dom sample (200) of sequence alignments. For each alignment, we compared the

difference in log-likelihood between the best (as estimated with maximum like-

lihood) and a random guess of the evolutionary relationship between sequences

to assess the amount of phylogenetic information that exists between sequences

for alignments build with coiled-coil and globular domains. The observed differ-

ence in likelihoods for coiled-coil and globular domains is qualitatively similar
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to that for entropy (supplementary fig. 2.A.1). This suggests that entropy, given

its limitations, can roughly approximate global phylogenetic informativeness and

is suitable for studies such as this, where a large number of sites and sequences

preclude more accurate approaches.

2.3.2 Substitution Model

In order to study the evolution of coiled-coils, we measured the amino acid fre-

quencies and substitution rates in coiled-coil domains from a collection of over

2000 orthologous groups of metazoan proteins (see above). After trimming the

multiple alignments to remove all noncoiled-coil domains, we developed a substi-

tution model (which we named “CC”) to describe the amino acid exchangeability

of the coiled-coil domain, and compared this model with the LG, a general em-

pirical model of protein evolution that was shown to outperform former general

models in reconstruction of protein phylogenies (Le and Gascuel 2008).

Amino Acid Frequencies

The amino acid composition of coiled-coil alignments used for creating the CC

model (equilibrium frequencies) shows that certain amino acids are preferentially

used in coiled-coil regions, whereas others are avoided when compared with

globular domains (fig. 2.2). Charged amino acids with long side chains are more

frequent in coiled-coil regions: Negatively charged glutamic acid (E ∼ 16%, the

most frequent amino acid), positively charged lysine (K ∼ 11%) and arginine (R

∼ 8%). Glutamine (Q), a neutral, polar amino acid with long side chain, is twice

as frequent as in globular domains. Among hydrophobic amino acids leucine (L)

is the most common and more frequent compared with the LG model. Aromatic

amino acids, that is, tryptophan (W), tyrosine (Y), and phenyloalanine (F) are un-

derrepresented, which is probably due to the exposed nature of the coiled-coil for

most of its length to the solvent, whereas globular domains form a hydrophobic

core. Similarly, glycine (G), a tiny, flexible amino acid with minimal side-chain

(a hydrogen atom) and proline, which disrupts secondary structures, are less com-

mon. Our observations are in agreement with the amino acid α-helix propensity

scale proposed by Pace and Scholtz (1998): EKRQ are more favored in a helix

whereas PG are the least favored.
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Fig. 2.2. Amino acid equilibrium frequencies (pi) in CC and LG models.

Due to the heptad repeat, (HPPHPPP)n, the expected ratio of hydrophobic

to polar amino acids in the coiled-coil is 2:5. Unexpectedly, the observed ratio

∼2.5:5 deviates from this ideal case: In some proteins “polar” positions are oc-

cupied by hydrophobic residues, which may, for example, lead to the emergence

of characteristic, highly stable structures (Deng et al. 2006; Liu, Zheng, et al.

2006). This suggests that evolution of coiled-coils goes beyond maintenance of

the heptad repeat. For comparison, in the LG model the ratio is close to 1:1.

Amino Acid Substitution Probabilities

Figure 2.3 shows exchangeability (substitution) rates between amino acids ac-

cording to the CC model (fig. 2.3a) and the comparison with the general LG

model (fig. 2.3b). In the CC model, the frequent amino acids, EQLK (glutamic

acid, glutamine, leucine, lysine) have low exchangeability rates, which suggest

that they are conserved, with just few exceptions: E↔D (K↔R) where both
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amino acids are negatively (positively) charged; Q↔H (L↔{F,M}) where Q and

H (L and F) are close with respect to the genetic code and substitutions to Q

(L) are more frequent than in the opposite direction, due to equilibrium frequen-

cies (see also supplementary fig. 2.A.2). In the CC when compared with the

LG model, the exchangeability rates for the four frequent amino acids are even

lower for most of amino acid pairs, which suggests that EQLK are even more

important and less prone to be substituted in coiled-coil regions. Similarly, high

exchangeability rates combined with low equilibrium frequencies indicate that

proline, tryptophan, and phenylalanine will be preferentially lost in coiled-coils.

Glycine is likely to be replaced by alanine (high α-helix propensity) or one of

the polar amino acids. If we consider long evolutionary distances, some amino

acids of similar physicochemical properties will be preferred due to their equi-

librium distribution: Glutamic acid (longer side chain, higher propensity to form

the α-helical structure (Pace and Scholtz 1998)) over aspartic acid, lysine over

arginine.

Fig. 2.3. Amino acid exchangeability rates. (a) Symmetric matrix of amino acid ex-
changeability rates for coiled-coil regions in the CC model. The area of each
bubble represents the value of exchangeability ri j between amino acid i and
j. (b) Heat map representation of the difference between amino acid substitu-
tion rates in CC and LG models. The value for each square is calculated as
log10

qi j(CC)
qi j(LG) . For both plots, values are scaled so that the expected number of

substitutions per site is 1.



2.3. Results 65

2.3.3 Phylogenetic Inference with the CC Model

Besides the descriptive capabilities, substitution models are also used for phy-

logenetic inference. Hence, we assessed the performance of the CC model on

phylogeny reconstruction by analyzing 179 orthologous groups of coiled-coil

rich proteins (defined as proteins where coiled-coil regions span >25% of the se-

quence and globular domains are absent) and compared the resulting trees with

those generated using the LG model, which outperforms previous general models

(Le and Gascuel 2008). To insure that we were not artificially improving scores

of the CC model over LG, we used different sets of orthologous groups to create

the CC model and to compare the performance of phylogeny reconstruction.

We analyzed the overall likelihood of a tree, differences in the tree length

and topology. We used the AIC (Akaike 1974) to measure the relative quality

of each model for the analyzed data; AIC compares likelihoods of two models

taking into account their complexity; hence, a model with more parameters is

not necessarily favored over a simpler one. To assess the statistical difference

between models, we used the nonparametric paired sign test, similarly to Le and

Gascuel (2008). To control for the influence of amino acid equilibrium frequen-

cies on tree estimation, we applied both models together with either the orig-

inal (model’s) frequencies or frequencies estimated from each of the analyzed

alignments (empirical frequencies, +F). Table 2.1 summarizes the results of the

analysis.

In most cases the CC model produces better trees (lower AIC) than the LG

model, even when empirical frequencies are used with LG (LG+F); CC+F model

is worse than LG (LG+F) in only 1 (2) case. We obtained similar results when

the CC model was compared with two other general empirical models: WAG

and JTT (data not shown). The CC model produces shorter trees than LG (∼14%

for CC/LG and ∼8% for CC+F/LG+F), indicating that the new model needs to

account for fewer hidden substitutions than the general model. Tree topologies

obtained with the CC model differ from their LG counterparts for most cases:

CC influences the likelihood of the tree, its length and also the shape. We also

compared predicted tree topologies with the reference (Ensembl Compara) and

observed that the topologies predicted with the CC model are closer to the ref-

erence in 42% of the cases, whereas the trees estimated with LG are closer to
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Table 2.1. CC and LG model comparison with 179 test alignments of coiled-coil rich
proteins

M1 M2 ∆AIC
(per site)

#M1AIC >

M2AIC

#M1>M2
(p < 0.01)

#M2>M1
(p < 0.01)

#T1>T2
(p < 0.01)

#T2>T1
(p < 0.01)

CC LG 0.57 143 104 23 98 23
CC LG+F 0.95 154 118 13 113 13
CC+F LG 0.90 161 145 1 140 1
CC+F LG+F 1.28 175 148 2 141 2

Trees were estimated with RAxML under either LG or CC model (+F indicates use of empirical
amino acid frequencies), using gamma-distributed rate categories. ∆AIC average per site differ-
ence in AIC between two models (M2 −M1), positive value M1 better than M2. #M1AIC > M2AIC

number of alignments where M1 has a better (lower) AIC value than M2. #M1 > M2 (p < 0.01)
number of alignments where the AIC of M1 is significantly better (lower AIC, p-value < 0.01
for paired sign test on per site likelihood values) than that of M2. #T1 > T2 (p < 0.01) number
of alignments where the AIC of M1 is significantly better than that of M2 and the tree topology
differs.

the reference in 31% of the cases, even though the reference trees are themselves

biased toward general models used in the Ensembl pipeline. In 27% of the cases,

CC and LG models result in trees that are equally distant to the reference. As

a control, we tested the performance of the CC model on globular proteins, and

as expected tree likelihoods are worse than for the LG model (data not shown).

These results show that the CC model clearly outperforms the general model in

phylogeny reconstruction of coiled-coil rich proteins.

2.3.4 Model Partitioning

Proteins rich in coiled-coil regions but lacking other domains are just a subset of

the universe of all coiled-coil proteins. Although it is clear that the CC model

is a better choice for reconstructing the phylogeny of coiled-coil rich proteins,

selecting an appropriate model for multidomain proteins is more complicated.

In those cases model partitioning, assigning different models to specific parts

of a protein, should improve phylogenetic inference. We tested whether this

is indeed the case on a small set of proteins (that allowed manual inspection of

the partitioning scheme) representing different levels of sequence divergence and

coiled-coil content (13 proteins compiled in White and Erickson 2006). Model

partitioning gives significantly higher tree likelihoods, than either of the models
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alone, for the majority of tested proteins and is not correlated with the sequence

conservation or coiled-coil content (table 2.2). In five cases we did not observe

any significant difference and in only one case a single model gives a better

description of the phylogenetic process, indicating that the entire protein evolves

according to that model, rather than to two different ones. As a rule of thumb,

model partitioning between the CC model and a more general model should

lead to better phylogenetic trees. A custom script that assigns a substitution

model to the corresponding sequence region based on the coiled-coil prediction

and produces an input file for RAxML (Stamatakis 2006) is available at http://

www.evocell.org/cgl/resources. An alternative to the manual model selection

for a partitioning scheme is to use a semiautomated approach, where the best

fitting model is chosen for each predefined partition. This functionality has been

implemented in PartitionFinder (Lanfear et al. 2012), yet, the CC model remains

to be incorporated into it.

Table 2.2. Model partitioning in coiled-coil proteins

Protein Conservation (bit) Coiled-coil content (%) Best model

SMC3 3.86 34 —
MYH6 3.78 56 CC+LG
Desmin 3.76 63 CC+LG
KIF5B 3.72 49 CC+LG
SMC1 3.66 46 —
MYH9 3.59 56 CC+LG
SMC4 3.25 39 CC+LG
SMC2 3.09 44 —
KIF4A 3.09 32 CC+LG
Ndc80 3.05 37 —
KIF7 3.03 33 CC+LG
NUF2 2.85 20 CC
NuMA 2.84 67 —

Phylogenetic inference using a single model or model partitioning in proteins with different
sequence divergence and coiled-coil content. The best model is chosen based on the Wilcoxon

test, ‘—’ indicates no significant difference between models.

2.3.5 Homology Detection

Amino acid repeat patterns often present problems for homology detection, by

influencing the sequence alignment, which is the common reason to mask low

http://www.evocell.org/cgl/resources
http://www.evocell.org/cgl/resources
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complexity regions. Coiled-coils are based on a relatively simple pattern, hence,

it is unclear if the pattern itself is introducing ambiguities in homology detection

and deteriorating search performance, an issue raised by several authors (Rose,

Manikantan, et al. 2004; Rose, Schraegle, et al. 2005; Zhang et al. 2009; Rack-

ham et al. 2010; Walshaw et al. 2010; Azimzadeh et al. 2012). We set out to

examine to what extent the coiled-coil region influences homology detection,

and subsequently test whether the CC model can be used to improve homology

detection of coiled-coil proteins.

To analyze and quantify the influence of the coiled-coil repeat on homology

detection we split each sequence into coiled-coil and globular regions (by mask-

ing appropriate regions), and used these fragments (as well as the full length se-

quence for comparison) to detect homologs by performing a search with BLAST

(Altschul et al. 1990) against species present in the Ensembl database; predic-

tions were validated based on Ensembl Compara for a range of different e value

thresholds. We observed that both coiled-coil and globular regions have sim-

ilar performance (fig. 2.4). On average the overall sensitivity decreases when

the query is restricted to a single domain type, compared with the full sequence

query, and the difference is bigger when the coiled-coil is used (globular do-

main is masked). This effect is more pronounced at very low e value thresholds.

Interestingly, the change in precision depends on the e value threshold; at low

thresholds the difference is similar to that of sensitivity, yet, at high thresholds

we observed the opposite: Searching with a single domain increases precision

and the gain is bigger for the coiled-coil (i.e., when globular is masked). The

overall performance (mcc, Mathews correlation coefficient) of homology detec-

tion increases when information from both domain types is used, suggesting that

the frequent practice of masking coiled-coil domains leads to reduced accuracy

when searching for homologs.

Given a query, BLAST searches for similar sequences in a library and assigns

a score to putative homologs based on a scoring matrix; the most common ma-

trix used for proteins is BLOSUM62 (Henikoff and Henikoff 1992), the default

option in BLAST. Scoring matrices are closely related to substitution matrices:

A set of scoring matrices can be derived given a substitution model. The perfor-

mance of different scoring matrices can be directly compared if the entropy of
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Fig. 2.4. Homology predictions (BLAST) of all human coiled-coil proteins containing
at least one globular domain across all species present in the Ensembl database.
Sensitivity, precision, and mcc are shown as cumulative plots of median values
for each e value threshold. ⋆ (+) denotes a significant difference (P < 0.01,
Mann–Whitney U test) between full sequence and masked either coiled-coil
regions or globular domains for a given threshold.
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matrices is similar, even if they were derived using different methods (Altschul

1991).

We decided to test whether using a scoring matrix derived from the CC model

can improve homology detection over the standard BLOSUM62 matrix. We cre-

ated a scoring matrix based on the CC model corresponding to the PAM distance

of 140 (Dayhoff et al. 1978), as this has a similar entropy to BLOSUM62, which

we will refer to as CC140. A set of CC scoring matrices and a script used to

derive them are available at our website (http://www.evocell.org/cgl/resources).

To analyze the influence of the scoring matrix on homology detection, we

restricted protein queries to coiled-coil regions by masking the remaining part of

the sequence and ran a BLAST search with a human sequence as a query against

all sequences available in the Ensembl database. In this way, we directly com-

pare the relative performance between matrices on the coiled-coil regions of the

sequence. Figure 2.5 shows the performance comparison between scoring matri-

ces at the e value threshold of 1e-08: The CC140 matrix significantly improves

both search sensitivity and precision (***P < 0.001, Mann–Whitney U test).

We observed similar gain at lower e value thresholds whereas at higher thresh-

olds precision decreases with increase in sensitivity (data not shown). Overall

(mmc), the new scoring matrix improves homology detection over BLOSUM62

when used with coiled-coil sequences, irrespectively of the e value threshold.

We further tested the performance of the new matrix by running orthology

prediction with the BBH heuristic (Overbeek et al. 1999) using coiled-coil re-

gions of human proteins against multiple eukaryotic species (present in Ensembl

Pan-taxonomic Compara). Similarly to the previous analysis we also observed

a significant increase in sensitivity (table 2.3), albeit of a smaller magnitude.

Surprisingly, the biggest difference between matrices occurs within the phylum

(Chordata) to which the query species belongs rather than between more distantly

related phyla. Subsequently, we tested whether the difference in performance is

affected by the length of the coiled-coil query (table 2.4). Indeed, for short coiled-

coil regions (<50 amino acids) the difference is bigger indicating that the new

model has relatively higher sensitivity given less signal; however, the gains are

still small. Will such small gains be relevant? The following example shows that

this is the case. We used BBH for ortholog detection of the human PBX4, where

http://www.evocell.org/cgl/resources
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Fig. 2.5. Homology search improvement under the CC model. Homology search com-
parison between CC140 and BLOSUM62 scoring matrix at the e value thresh-
old of 1e-08. Statistical significance between samples was estimated with the
Mann–Whitney U test (***P < 0.001).

the coiled-coil region spans only 30 amino acids (the remaining part was masked

as before). We found that even though CC140 returns four false positives, which

in this case are PBX4 paralogs, it overall recovers more true orthologs throughout

Metazoa, whereas BLOSUM62 misses all orthologs that belong to more distant

groups than reptiles (fig. 2.6).

Table 2.3. Orthology prediction comparison with BLOSUM62 and CC140 scoring
matrices

Pan-taxonomic Chordata
BLOSUM62 CC140 ∆CC140-

BLOSUM62

BLOSUM62 CC140 ∆CC140-

BLOSUM62

sensitivity (%) 35.42 36.14 0.72∗∗∗ 60.44 62.12 1.68∗∗∗

specificity (%) 97.53 97.10 -0.42∗∗∗ 87.25 85.27 -1.98∗∗∗

precision (%) 86.39 87.55 1.16 86.80 88.19 1.39∗

mcc (%) 39.59 39.94 0.34 24.84 24.59 -0.25

***P < 0.001, *P < 0.05, Wilcoxon test
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Table 2.4. Orthology prediction comparison with BLOSUM62 and CC140 for
coiled-coil shorter than 50 amino acids

Pan-taxonomic Chordata
BLOSUM62 CC140 ∆CC140-

BLOSUM62

BLOSUM62 CC140 ∆CC140-

BLOSUM62

sensitivity (%) 26.85 27.89 1.05∗∗∗ 47.40 49.88 2.47∗∗∗

specificity (%) 97.31 96.55 -0.76∗∗∗ 88.57 86.31 -2.26∗∗∗

precision (%) 82.67 85.44 2.77 80.58 84.82 4.24∗

mcc (%) 30.87 31.35 0.49 17.68 17.63 -0.05

***P < 0.001, *P < 0.05, Wilcoxon test

2.4 Discussion

In this work we described patterns of evolution in coiled-coil sequences, and

used these patterns to create a model of evolution that improves phylogeny infer-

ence and homology detection of coiled-coils. Despite their repetitive sequence,

coiled-coils show a level of sequence conservation similar to that of globular

domains. We observed major differences between our model and the general

LG model that reflect different properties and constraints of coiled-coil domains,

for example, equilibrium frequencies biased to charged and α-helix promoting

amino acids. We showed that the CC model outperforms general models in phy-

logeny inference for coiled-coil rich proteins, giving trees with higher likelihoods

and often different topologies. Additionally, in the case of multidomain proteins

containing both coiled-coil and globular regions, model partitioning is a useful

approach to resolve phylogenetic histories, which reflects the fact that distinct

folds within a protein may evolve according to different patterns, hence, should

be analyzed with different models. Finally, we showed that coiled-coils contain

valuable sequence information that can be used in homology detection and that

homology detection can be improved by using the CC model.

Our findings are supported by previously reported experimental evidence:

Substitutions even between amino acids with similar properties can change the

oligomerization state of the coiled-coil. Harbury et al. (1993) demonstrated that

by changing hydrophobic residues at ad positions in GCN4 leucine zippers, with

other hydrophobic residues, two-, three-, and four-helix structures are formed.

Similarly, Gonzalez et al. (1996) showed that the Asn16Gln mutation, despite
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Fig. 2.6. Human PBX4 (ENSP00000251203) orthology prediction against metazoan
species with BLOSUM62 and CC140 scoring matrices. Blue/red – cor-
rectly/incorrectly assigned ortholog. Ensembl Pan-taxonomic Compara was
used as the reference (REF).

chemical similarity, destabilizes GCN4 allowing two peptide states: Dimer and

trimer. Furthermore, Vincent et al. (2013) showed, in a large-scale analysis, that

specific pairs of hydrophobic amino acids are more likely to appear in certain

oligomeric states. Together those data strongly suggest that although the heptad

is necessary for the formation of the coiled-coil structure the specific sequence

determines higher orders of organization. We can also expect that the specific

sequence may contribute to coiled-coil stability, protein–protein interactions, and



74 Chapter 2. Evolutionary patterns in coiled-coils

possibly other factors.

In order to develop the CC model we used data from Ensembl, a compre-

hensive database containing sequence information for multiple species and evo-

lutionary relationships between them. The database consists mostly of metazoan

species, hence, the model is especially useful to describe the evolution of coiled-

coils in animals. Yet, our preliminary findings suggest that this model is also

applicable beyond the animal kingdom, and may therefore be a very general

model of coiled-coil evolution: 1) We tested the new model on homology de-

tection in plants (supplementary fig. 2.A.3) and observed a similar performance

improvement over BLOSUM62 to the one seen in animals (fig.e 2.5), and 2)

we developed another model, using the same approach, based on protein fami-

lies containing coiled-coils from Pfam database (Punta et al. 2012), which spans

throughout the tree of life and concluded that the model is qualitatively consis-

tent with CC (data not shown). However, in order to correctly define such a broad

model we will require a more comprehensive, and qualitatively better, collection

of homologous proteins.

An empirical substitution model, such as the one presented here, enables de-

scription and interpretation of a protein class by capturing its global biochemical

properties. Yet, like all other substitution models, it ignores local patterns within

a sequence; future avenues for improvement of the CC model may explore such

patterns. One approach could be to implement model partitioning by inferring

among-site variation from the alignment, for example, using a mixture model in

the context of a Bayesian framework, such as that developed by Lartillot (2004)

in PhyloBayes, where each site in the alignment falls into one of several classes

characterized by its own set of frequencies (CAT model). Although this approach

has shown some improvements in phylogenetic inference, especially in the pres-

ence of saturation, it is computationally expensive and mostly suited for long

alignments due to the necessity of inferring model parameters from the data. Al-

ternatively, in the case of coiled-coils it may be preferable to take advantage

of the repetitive nature of the sequence with hidden Markov models, where a

hidden state, representing position(s) of the heptad, has an associated phyloge-

netic model, such as in Thorne et al. (1996) or Goldman et al. (1998). These

approaches may bring further improvements in phylogenetic inference and ho-
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mology detection of coiled-coil proteins.

In this study, we showed that coiled-coils, due to their specific structure and

repetitive sequence pattern, differ from globular domains in evolutionary con-

straints. We used the underlying information contained within coiled-coil re-

gions to develop a new model that both describes evolutionary patterns in coiled-

coil sequences and provides an improvement over more general models; one

should consider using the CC model to improve the toolkit used in the classical

phylogenetic analysis pipeline for coiled-coil proteins.
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Appendix

2.A Supplementary figures

Fig. 2.A.1. Per site log-likelihood difference between a random and the best (maximum
likelihood) guess of the evolutionary relationship between sequences.
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Fig. 2.A.2. Amino acid substitution rates (qi j) in the CC model.

Fig. 2.A.3. Homology search improvement under the CC model in plants (Ensembl
Plants). Homology search comparison between CC140 and BLOSUM62
scoring matrix at the e-value threshold of 1e-08. Statistical significance be-
tween samples was estimated with the Mann-Whitney U test (***P < 0.001).
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Coiled-coil length: Size does matter



Abstract Chapter 3

P rotein evolution is governed by processes that alter primary sequence

but also the length of proteins. Protein length may change in differ-

ent ways, but insertions, deletions and duplications are the most common.

An optimal protein size is a trade-off between sequence extension, which

may change protein stability or lead to acquisition of a new function, and

shrinkage that decreases metabolic cost of protein synthesis. Despite the

general tendency for length conservation across orthologous proteins, the

propensity to accept insertions and deletions is heterogeneous along the

sequence. For example, protein regions rich in repetitive peptide motifs

are well known to extensively vary their length across species. Here,

we analyze length conservation of coiled-coils, domains formed by an

ubiquitous, repetitive peptide motif present in all domains of life, that

frequently plays a structural role in the cell. We observed that, despite

the repetitive nature, the length of coiled-coil domains is generally highly

conserved throughout the tree of life, even when the remaining parts of

the protein change, including globular domains. Length conservation is

independent of primary amino acid sequence variation, and represents a

conservation of domain physical size. This suggests that the conservation

of domain size is due to functional constraints.

This chapter has been published as: Jaroslaw Surkont, Yoan Diekmann, Pearl

V. Ryder, and José B. Pereira-Leal. Coiled-Coil Length: Size Does Matter. Pro-

teins: Structure, Function, and Bioinformatics 83:2162–2169.

Author contribution: Yoan Diekmann, Pearl V. Ryder performed preliminary ex-

periments. I conceived, designed and performed final experiments and analysed

the data. I wrote the paper together with José B. Pereira-Leal.
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3.1 Introduction

E volution shapes proteins via two fundamental processes: amino acid sub-

stitutions and insertion/deletion (indel) events. Any change in the primary

amino acid sequence may influence protein structure, stability, and function, yet

only indels alter sequence length. Sequence elongation can increase protein sta-

bility or improve its function, (Matsuura et al. 1999; Chow et al. 2003; Claverie

and Ogata 2003), but it also increases metabolic cost of protein synthesis (War-

ringer and Blomberg 2006); an optimal protein length is a trade-off between

sequence expansion and shrinkage that maximizes cell fitness. In contrast, non-

adaptive mechanisms contribute to sequence variation in general (Lynch 2007),

and may also contribute to protein length change. However, sequence length

is generally conserved across orthologous proteins (Zhang 2000; Wang 2004),

which suggests that within each group of orthologs the length has been largely

optimized. Likewise, length variation in the majority of globular domain families

is very limitedi (Sandhya et al. 2009). Given the general tendency to preserve

sequence length, it is interesting to observe high length variation in a number of

proteins, especially those containing repetitive motifs (e.g., leucine rich repeat,

tetratricopeptide repeat). Repeats primarily expand by internal tandem duplica-

tions (Andrade et al. 2001; Apic et al. 2001), their number can considerably

vary across orthologous proteins, greatly influencing the overall sequence length

and in turn protein size (Sandhya et al. 2009; Björklund, Ekman, et al. 2006),

which has been shown for KRAB zinc finger (Looman et al. 2002), LLR (Björk-

lund, Ekman, et al. 2006), and nebulin (Björklund, Light, et al. 2010) domains,

among others. For example in the case of Nebulin protein, the common ancestor

of human and chimpanzee underwent two tandem duplications that significantly

increased the number of nebulin domains and the overall length of the protein

by >1000 amino acids compared to other primates. Similar expansions were

observed in other branches of eukaryotes, which demonstrate, the propensity of

sequence repeats to rapidly change their overall length (Björklund, Light, et al.

2010). Less dramatic length changes, fewer amino acids in a single event are

caused by indel events. Contrary to domain duplications, where insertions of

long peptide chunks have global influence on protein structure, the impact of
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indels is generally local (Birzele et al. 2008; Kim and Guo 2010). Indels oc-

cur ubiquitously within proteins; however, they do not usually occur everywhere,

for example, fewer indels (and substitutions) are expected within enzyme active

sites. The nonuniform indel distribution was partly addressed by Light et al. 2013

who observed higher indel frequency in proteins enriched in intrinsically disor-

dered regions in some eukaryotic groups, yet it is not an universal property. Con-

versely, Kenyon and Sabree 2014 observed, in obligate insect endosymbionts,

elevated length variation in both functional domains and unstructured linker re-

gions, which contradicts the expectation that functional structured domains are

less prone to changes. The nonuniform nature of indel distributions in sequences

still remains ambiguous.

Here, we focus on the length evolution of coiled-coil regions, ubiquitous

repetitive peptide motifs composing up to 10% of organism’s proteins, spread

throughout all domains of life (Liu and Rost 2001). The coiled-coil motif is a

heptad repeat of two hydrophobic amino acids separated by two and three polar

residues (HPPHPPPn) that predominantly forms rod-like structures comprising

two or more α-helices (Moutevelis and Woolfson 2009). Coiled-coil domains

often act as spacers that separate functional domains (e.g. motor proteins like

kinesins and myosins) or scaffolds of large complexes (e.g. the cartwheel of the

basal body), strongly influencing physical shapes, and sizes of both molecules

and organelles. Given the specific properties of coiled-coils, a repetitive α-

helical peptide motif likely forming rod-like structures, we expect that any change

in the number of residues forming the coiled-coil will impact the physical length

of the domain, while for a globular domain the effect on size (volume) would be

negligible. We hypothesize that unlike other repetitive sequences, coiled-coils

should be conserved due to constraints imposed by the physical shape and size

of the domain, crucial for the domain to perform its frequent structural roles;

any change in the number of amino acids will alter protein physical dimensions.

We addressed the hypothesis by (1) comparing length conservation of coiled-coil

and noncoiled-coil regions across the tree of life, (2) quantifying the relationship

between primary sequence length and physical size of the coiled-coil domains.
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3.2 Materials and Methods

3.2.1 Data

All sequences were obtained from Ensembl (Flicek et al. 2014) (release 73),

eggNOG v4.0 (Powell et al. 2014) and GeneBank Benson et al. 2014. Ensembl

Compara was used for orthology mapping, unless explicitly stated otherwise.

Taxonomic information was obtained from NCBI Taxonomy database Benson

et al. 2014. Protein three-dimensional (3D) structures were downloaded from

Protein Data Bank Berman 2000.

3.2.2 Coiled-coil prediction

Sequence-based coiled-coil region prediction was done using Paircoil2 (McDon-

nell et al. 2006) and MARCOIL (Delorenzi and Speed 2002) with default pa-

rameters, the latter was used to confirm that the results are independent of the

coiled-coil prediction method (see discussion).

3.2.3 Protein alignment

MAFFT v7 (Katoh and Standley 2013) was used to build multiple sequence

alignments and needle (EMBOSS:6.5.7.0 Rice et al. 2000), which implements

the Needleman-Wunsch global alignment algorithm, for pairwise alignments.

3.2.4 Length variation

Given a set of orthologous proteins, coiled-coil regions were predicted in each

sequence and the total length was computed as the sum of the length of all re-

gions. Then the length variation was estimated as the standard deviation of the

length within a group of orthologs, values were log10-transformed. The length

of noncoiled-coil regions was calculated in a similar manner.

3.2.5 Sequence conservation

Sequence conservation of a protein region was calculated as the average Shannon

information entropy (Shannon 1948) of that region in a group of orthologous pro-

teins: a set of orthologous sequences was aligned and the entropy was calculated
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for each column that belongs to the specified region. Conservation is defined as

the difference between the maximum and observed entropy, for more details see

Surkont and Pereira-Leal 2015.

3.2.6 Gene set enrichment analysis (GSEA)

Gorilla (Eden et al. 2009), a tool for identifying enriched GO terms (Ashburner

et al. 2000) in a ranked list of genes, was used to determine if coiled-coils with

the most/least conserved lengths share common biological functions. A sorted

list of genes, by coiled-coil length variation in the ascending/descending order,

was used as input.

3.3 Results

3.3.1 Coiled-coil domain length is conserved

We measured the level of coiled-coil domain length variation, defined as the stan-

dard deviation of the number of residues belonging to corresponding regions in

orthologous proteins, by comparing the length of coiled-coil and noncoiled-coil

regions in a set of metazoan species. To ensure that the result is independent

of the orthology prediction method, we used Ensembl Compara and eggNOG

databases, a phylogenetics-based and clustering-based method respectively. We

observed, for both orthology prediction methods, that the length of coiled-coil do-

mains is well conserved compared to non-coiled-coil regions (fig. 3.1a, Support-

ing Information fig. 3.B.1). On average (median values) length variation is ∼3.6

times lower in coiled-coils. To control for the influence of the underlying sec-

ondary structure on the length conservation of coiled-coil domain we compared

length variation of sequences forming α-helical structures inside and outside of

coiled-coil domains in a random sample of 500 groups of orthologous proteins;

PSIPRED (Jones 1999) was used for protein secondary structure prediction. We

observed that on average lengths of coiled-coil forming α-helices are signifi-

cantly more conserved compared to those outside of coiled-coil regions: median

variation of amino acid number is 13 and 17, respectively, (P values < 0.001,

Mann-Whitney test). This demonstrates that length of coiled-coil domains is

conserved beyond what would be expected solely from their secondary structure.
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We illustrate the length conservation of coiled-coil domain with the transcription

factor CCAAT/enhancer-binding protein alpha, where we observed that while the

total length of the protein is highly variable even between closely related species,

the length of the coiled-coil DNA-binding domain remains strongly conserved

throughout all Chordata (fig. 3.1b,c).

P. troglodytes

H. sapiens

M. mulatta

O. garnettii

M. musculus

R. norvegicus

C. porcellus

O. cuniculus

M. putorius

S. scrofa

D. novemcinctus

L. africana

S. harrisii

O. anatinus

T. guttata

F. albicollis

P. sinensis

A. carolinensis

X. tropicalis

L. chalumnae

X. maculatus

O. latipes

T. rubripes

T. nigroviridis

O. niloticus

D. rerio

A. mexicanus

L. oculatus

P. marinus

C. intestinalis

C. savignyi

200 0100

a b

c

Fig. 3.1. (a) Sequence length variation of coiled-coil domains and adjacent noncoiled-
coil regions within 2848 orthologous groups of metazoan proteins. Variation
is expressed as a log-transformed standard deviation of the length of the cor-
responding regions within the group. Statistical significance between samples
was estimated with the Mann-Whitney test (*** P values < 0.001). (b) A car-
toon representation of the sequence length variation in the taxonomic context
of transcription factor CCAAT/enhancer-binding protein alpha: coiled-coil do-
main (dark gray) and the remaining part including unstructured regions (light
gray). (c) Quantification of the observed variation and a crystal structure of
the coiled-coil domain (dark gray) bound to the DNA sequence (PDB: 1NWQ)
with a dummy representation of the remaining sequence.



90 Chapter 3. Coiled-coil length: Size does matter

To assess the frequency and localization of insertions and deletions in coiled-

coil proteins we counted the number of indels in pairs of orthologous proteins

between two species: Homo sapiens and Mus musculus, Saccharomyces cere-

visiae, and Ashbya gossypii, Arabidopsis thaliana and Arabidopsis lyrata; a third

species was used as an outgroup to distinguish insertions from deletions (Bos tau-

rus, Yarrowia lipolytica and Brassica rapa, respectively). This set of species sam-

ples from more branches of the eukaryotic tree in relation to the previous experi-

ment, allowing us to draw more general conclusions about coiled-coil evolution.

Assuming a random indel distribution along a protein, the total number of indels

in a region is proportional to the length of that region. We compared coiled-coil

and noncoiled-coil regions (table 3.1) and observed that indels are less likely to

occur within coiled-coil regions (P values≪ 0.001, χ2 test). This again shows the

high level of length conservation in coiled-coils. Interestingly, deletions are more

frequent than insertions: coiled-coils are slightly biased toward sequence shrink-

age despite the general tendency to preserve the size. Likewise, deletions are

more frequent in non-coiled-coil regions of analyzed metazoans but not in fungi

and plants, where the ratio is close to 1 (Supporting Information Table 3.A.1).

The predominance of deletions is in agreement with what was observed in fish

(Taylor 2004) and rodents (Guo et al. 2012).

Table 3.1. Insertion/Deletion Events in Coiled-Coil Proteins Across Eukaryotes

Metazoa Fungi Plantae
cc non-cc cc non-cc cc non-cc

Observed 712 9682 297 3965 391 4964
Expected 1624 8770 538 3724 714 4641

The total number of indels in all proteins containing coiled-coil domains for selected eukaryotic
species. For each taxon a pair of species and an outgroup were selected: Homo sapiens, Mus

musculus, Bos taurus (outgroup); Saccharomyces cerevisiae, Ashbya gossypii, Yarrowia lipolytica

(outgroup); Arabidopsis thaliana, Arabidopsis lyrata, Brassica rapa (outgroup). The expected
number of indels was estimated proportionally to the total content of each region, that is,expected
number of indels in coiled-coil regions is equal to the total number of indels multiplied by the
number of amino acids that belong to coiled-coil regions and divided by the total number of amino
acids. χ2 test values (P values ≪ 0.001) show a significant difference between the observed and
expected number of indels in all taxa.

Scarcity of protein structural data, especially compared to sequence data, pre-

cludes many large scale analyses. For example, based on CC+ database (Testa
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et al. 2009) we found that only 38 out of 245 (15%) nonidentical structures con-

tain a long (>28 residues), canonical coiled-coil domain and a globular domain

(predicted with Superfamily Gough et al. 2001). Hence, we only used structural

information to illustrate indel distribution on protein 3D structures. For five pro-

teins containing both a coiled-coil and a globular domain in their crystal structure

we mapped indels using homologous sequences from relatively distant species

(NCBI BLAST, Altschul et al. 1990) and assigned them to corresponding do-

mains. In 9 out of 10 comparisons we observed less indels in the coiled-coil

part than expected (fig. 3.2), the only exception is moesin, where we observed

more indels between Spodoptera frugiperda and Bos taurus than expected in the

coiled-coil domain, this, however, can be an outcome of a significant change in

the average domain length between invertebrates (184 residues) and vertebrates

(202 residues).

Homolog
#indels observed (expected)

coiled-coil non-coiled-coil
OriginProtein

Moesin C. elegans

B. taurus

S. frugiperda

SAS6 Micromonas sp.

C. gigas

C. reinhardtii

NCD A. aegypti

D. virilis

D. melanogaster

LINE-1 ORF1P C. griseus

S. scrofa

H. sapiens

DNA repair 

protein XRCC4

X. maculatus

D. rerio

H. sapiens

0 (1.2)

5 (2.1)

1 (1.6)

1 (1.4)

0 (0.5)

0 (0.2)

0 (0.2)

0 (0.5)

1 (2.5)

1 (1.7)

6 (4.8)

5 (7.9)

5 (4.4)

4 (3.6)

3 (2.5)

1 (0.8)

1 (0.8)

2 (1.5)

5 (3.5)

3 (2.3)

Fig. 3.2. Indels in proteins with known 3D structure. Indels were counted only for the
sequence regions present in the 3D structure and the expected indel value was
estimated based on the total number of amino acids present in the 3D structure
that belong to the corresponding domain.
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3.3.2 Size conservation is weakly correlated with sequence similar-

ity

One possible explanation for strong size conservation is a selective constraint

on the primary sequence to preserve specific amino acid residues. To test this

hypothesis we compared length conservation with sequence similarity of coiled-

coil regions, defined as the average Shannon information entropy of correspond-

ing positions in the alignment of multiple orthologous sequences; entropy ranges

from 0 for random sequences to ∼4.32 bit for a completely conserved protein.

Figure 3.3a shows that on average both coiled-coil length and sequence are well

conserved (primary sequence was shown to be as conserved in coiled-coils as

in globular domains, (Surkont and Pereira-Leal 2015)), yet weakly correlated:

R2 = 0.16; the more sensitive Maximal Information Coefficient (MIC, Reshef

et al. 2011) = 0.2 also shows only weak correlation.

Figure 3.3b shows both the sequence similarity and length conservation of

an illustrative example: Kinesin-7, a motor protein involved in kinetochore-

microtubule attachment and chromosome congression, across Chordata. Se-

quence identity was computed by counting amino acid changes between the hu-

man coiled-coil sequence and its ortholog from a given species. Length was

normalized by dividing the length of a given coiled-coil by the coiled-coil length

in the human ortholog. As expected, on average both similarity scores decrease

with the increase in the evolutionary distance from the human sequence, yet,

length is on average more conserved, for example, in the case of Danio rerio

even though the sequence identity is as low as 66% the length is almost identical

to the human one (fig. 3.3b). Our results show that other factors must constrain

evolution of coiled-coil length especially when amino acid sequence diverges,

implying the importance of the physical size of the domain, not its specific se-

quence, in the biological process.

3.3.3 Coiled-coil length conservation is widespread

So far our analysis was mostly based on data from well supported resources

(PDB, Ensembl), yet with limited taxonomic sampling. In order to generalize our

observation to other domains of life we computed length variation in coiled-coil

proteins from Bacteria, Archaea, and Eukarya using eggNOG database to map
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Fig. 3.3. (a) The relationship between the primary sequence conservation and length
variation; R2 = 0.16, MIC = 0.2 (Reshef et al. 2011). (b) Sequence identity
(_) and length conservation (•) change of Kinesin-7 coiled-coil domain in the
taxonomic context.

evolutionary relationships. As we have shown above (fig. 3.1a, Supporting Infor-

mation fig. 3.B.1), while eggNOG and Ensembl methods to infer orthology are

very distinct, they support qualitatively similar results regarding coiled-coil vari-

ation. We observed that in all domains of life the length of coiled-coil domains is

more conserved than of noncoiled-coil regions. The level of length conservation

in coiled-coils is comparable between the three domains of life (fig. 3.4), and

similar to the one in metazoa (fig. 3.1). Interestingly, the average conservation of

noncoiled-coil regions differs between the three domains of life, reaching high-

est conservation in Bacteria and lowest in Eukarya, which results in a difference

in the relative conservation between regions: the length of coiled-coil regions is

∼3, 4, and 8 times more conserved, than noncoiled-coil regions, in Bacteria, Ar-
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chaea, and Eukarya respectively. Overall, this shows that the high level of length

conservation is a universal coiled-coil feature consistent throughout the tree of

life.

Fig. 3.4. Length conservation of coiled-coil domains and adjacent noncoiled-coil re-
gions within orthologous groups of proteins from the three domains of life
(2734, 244, and 3986 orthologous groups for Bacteria, Archaea, and Eukaryote,
respectively). Variation is expressed as a log-transformed standard deviation of
the length of the corresponding regions within the group. Statistical signifi-
cance between samples was estimated with the Mann-Whitney test (***P val-
ues < 0.001).

3.3.4 Length conservation is functionally specific

Although on average the length of coiled-coil domains is well conserved the

shape of the distribution implies that while some domains are likely under strong

evolutionary pressure to preserve their size, others are less constrained. We in-

vestigated if this heterogeneity can be explained by shared biological function.

GSEA results (Proteins, online supporting information Fig. S2-7 and Table S2-

7) indeed suggest that proteins containing both the most and least conserved

coiled-coil domains are enriched in some subcellular localizations and processes.

In summary, the most conserved localize in nucleoplasm and act in DNA bind-

ing and RNA metabolism; the least conserved are associated with microtubule

organizing centers, microtubules, cytoskeletal binding and motor activity. This

implies that (1) invariant domain size is required to maintain a specific set of bi-

ological functions, suggesting that any change in size has detrimental effects; (2)

coiled-coil domains involved in some processes are less constrained, potentially
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being able to quickly diversify, emerging new functions or developing species-

specific properties. In fact, in centrosomes where coiled-coil length tends to be

less conserved, we recently showed that orthologous regulators were unable to

complement loss of function in other species, supporting the notion of species

specificity of the properties of these variable coiled-coils (Carvalho-Santos et al.

2010).

3.3.5 3D-size is conserved in coiled-coils

We showed that the lengths of amino acid sequences that compose coiled-coil

domains are conserved and the level of conservation is related to the biological

process. Given the coiled-coil propensity to form distinct rod-like 3D structures

we hypothesized that physical size was the determining factor, expecting thus a

correlation between the sequence length and the physical size/length. To quantify

this relationship we collected the full set of non-redundant (≤ 70%) 3D structures

containing long (>28 residues), canonical coiled-coil domains from the CC+

database (Testa et al. 2009), obtaining 221 proteins. All most common oligomer-

ization states (dimers, trimers and tetramers) were present among the structures,

the complete list of structures and their oligomeric states is included in the Online

Supporting Information (Table S8). Coiled-coil domain size (length), defined as

the Euclidean distance between outermost atoms that belong to the coiled-coil,

was measured based on coiled-coil annotations (SOCKET, Walshaw and Woolf-

son 2001) retrieved from the CC+ database. Figure 3.5 shows that the physi-

cal length of a coiled-coil domain is proportional to the number of amino acids

(R2 = 0.99); the average length of a single residue is 1.48 ± 0.02Å, so a single

heptade repeat is ∼ 1 nm long. The figure also illustrates the distribution of size

in a set of >200 nonredundant, randomly selected structures (from Protein Data

Bank) of noncoiled-coil domains. Here, domain size is approximated by radius

of gyration (an overall spread of a molecule); for a coiled-coil domain radius of

gyration is proportional to domain length (data not shown). The observed corre-

lation of domain size and sequence length in noncoiled-coil domains (R2 = 0.55)

is much lower compared with coiled-coils. Even though we restricted the anal-

ysis to coiled-coil domains formed by multiple peptide chains, we observed a

similar correlation (0.99) for domains formed with a single polypeptide chain
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(minority of observed cases), yet with a smaller regression slope 0.73 (data not

shown). Irrespectively of the slope of the regression line, the analysis shows that

the number of residues forming the coiled-coil domain can serve as a proxy to

assess a physical quantity, the domain length. This implies that conservation of

sequence length corresponds to conservation of three-dimensional length of the

domain.

Fig. 3.5. Correlation of sequence length and physical size of protein domains. Coiled-
coil size/length is defined as the distance between outermost atoms that form
the domain (black, •). Noncoiled-coil domain size is described by radius of
gyration (gray, ×).

3.4 Discussion

In this work, we analyzed sequence length evolution in coiled-coil proteins. We

showed that unlike other repeat domains the length of coiled-coil domains is

highly conserved and typically less variable than the remaining part of the pro-

tein, including globular domains. Unique coiled-coil properties, a repetitive hep-

tad pattern forming rod-like domains, result in the explicit relationship between

the primary sequence length and the physical size of the 3D domain structure.

This may explain high conservation of coiled-coils: any indel event affects not
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only the length of the primary sequence but also changes the physical size of the

domain, which in turn can influence the structure and interactions formed by the

domain, and as the consequence impair its function. For example, truncation of

Bld10p, a coiled-coil protein present in the basal body cartwheel, changes not

only the size of entire structure, but also its symmetry (Hiraki et al. 2007). In the

case of cytoplasmic dynein both shortening and lengthening of the stalk-forming

coiled-coil largely reduces the speed of the motor (Carter et al. 2008). Deletion or

insertion of coiled-coil repeats not only changes the size of that domain but can

even contribute to change in size of other, nonamino acid based polymers: in the

WbdA-WbdD bacterial complex the coiled-coil domain is a molecular ruler that

determines the length of the polysaccharide molecule synthesized by the com-

plex (Hagelueken et al. 2014). Length conservation is independent of primary

sequence conservation (sequence similarity), which means that even though the

amino acid sequence of a coiled-coil may significantly change across evolution

of orthologous proteins, the length is maintained. Our results are independent

of the methods used to detect coiled-coils, as both Paircoil2 (McDonnell et al.

2006) and MARCOIL (Delorenzi and Speed 2002) give the same results (data

not shown).

Previous studies demonstrated that while the primary sequence length of an

average protein is relatively conserved throughout evolution, the propensity to

accept indels is heterogeneous along the sequence. This is particularly evident

in regions containing repetitive motifs that are susceptible to frequent length

changes. Hence, it is very interesting to observe a high level of conservation

in the highly repetitive coiled-coil domains. This is probably due to the unique

relationship between primary sequence length and the physical size of the do-

main, and the common biological role of the coiled-coil as spacers and scaffolds.

To our knowledge, this is the first study that describes protein size evolution not

solely as the evolution of protein’s primary sequence length, but also its physical

size.

Acknowledgments

The authors thank all members of the Computational Genomics Laboratory for

helpful discussions. Swadhin Jana, Krzysztof Kuś and Paula Ramos-Silva for
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Appendix

3.A Supplementary tables

Table 3.A.1. Insertions and deletions in coiled-coil proteins among Eukaryotes

Metazoa Fungi Plantae
cc non-cc cc non-cc cc non-cc

insertions 205 3687 109 1985 167 2524
deletions 507 5995 188 1980 244 2440

ratio 0.40 0.61 0.57 1.00 0.75 1.03

3.B Supplementary figures

Fig. 3.B.1. Per site log-likelihood difference between a random and the best (maximum
likelihood) guess of the evolutionary relationship between sequences.
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Chapter 4

Rabifier2: an improved bioinformatic

classifier of Rab GTPases



Abstract Chapter 4

T he Rab family of small GTPases regulates and provides specificity

to the endomembrane trafficking system; each Rab subfamily is

associated with specific pathways. Thus, characterization of Rab reper-

toires provides functional information about organisms and evolution of

the eukaryotic cell. Yet, the complex structure of the Rab family lim-

its the application of existing methods for protein classification. Here,

we present a major redesign of the Rabifier, a bioinformatic pipeline for

detection and classification of Rab GTPases. It is more accurate, signif-

icantly faster than the original version and is now open source, both the

code and the data, allowing for community participation.

Availability and Implementation: Rabifier and RabDB are freely avail-

able through the web at http://rabdb.org. The Rabifier package can be

downloaded from the Python Package Index at https://pypi.python.org/

pypi/rabifier, the source code is available at Github https://github.com/

evocell/rabifier.

This chapter has been submitted for publication

Author contribution: This work is based on the initial paper and code written

by Yoan Diekmann1. I wrote the new codebase for the classifier, performed the

benchmark and implemented the new website. I wrote the paper together with

José B. Pereira-Leal.
1Diekmann, Y., Seixas E., Gouw M., Tavares-Cadete F., Seabra M.C., and Pereira-Leal

J.B. (2011). Thousands of Rab GTPases for the Cell Biologist. PLoS Computational Biology

7:e1002217

http://rabdb.org
https://pypi.python.org/pypi/rabifier
https://pypi.python.org/pypi/rabifier
https://github.com/evocell/rabifier
https://github.com/evocell/rabifier
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4.1 Introduction

T he Rab family, the largest member of the Ras superfamily of small gua-

nine nucleotide-binding proteins, is a key regulator of vesicle trafficking

in eukaryotic cells. This highly paralogous family can be further divided into

subfamilies associated with specific trafficking pathways. Rab function tends to

be conserved across species, for example, Rab1 in mouse can functionally re-

place its orthologue in yeast (Haubruck et al. 1989). Hence, annotating Rabs

provides information about presence and evolution of particular cellular func-

tions and pathways in Eukaryotes. However, classification into subfamilies is

complicated as paralogues are very similar to each other, so it has traditionally

been done manually using bespoke approaches (e.g. Pereira-Leal 2008; Ackers

et al. 2005; Elias et al. 2012). Previously we developed a bioinformatic method

to automatically classify Rabs that uses multiple decision steps and a manually

curated reference set of Rab subfamilies (Diekmann et al. 2011). We also created

a web-accessible database (RabDB) where we display Rab annotation for all Su-

perfamily 1.75 (Gough et al. 2001) genomes available at the time, alongside a

web tool that allows users to annotate submitted sequences.

Rabifier and RabDB have provided means to the community to explore the

Rab universe. Yet, recent developments in bioinformatic methods prompted us

to improve the classifier, providing both better and faster annotations (the latter

is especially important given the ever increasing amount of genomic data). The

new version of the pipeline adds new features and improves on both accuracy and

speed of sequence classification. Rabifier has been released as an open-source

software to facilitate the further community-driven development of the classifier,

easily allowing for example its extension to other small GTPases.

4.2 Rabifier2& RabDB2

4.2.1 Overview

The Rabifier pipeline (fig. 4.A.1) has two main parts: an input protein sequence

is classified whether or not it belongs to the Rab family (phase 1), and if it is

a Rab, which subfamily it most likely belongs to (phase 2). Rab family assign-
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ment is based on satisfying three conditions: (1) presence of the G domain, (2)

the top hit against the reference database is a Rab, (3) at least one RabF motif

(Pereira-Leal and Seabra 2000) is present. In the second phase, Rabifier mea-

sures similarities between the query protein and the reference Rab subfamily

datasets to assign a confidence score to each subfamily prediction. Alternatively,

if the sequence is only marginally similar to any of the subfamilies, it is classi-

fied as RabX (unknown/new Rab). Both phases rely on manually curated sets of

protein sequences that include Rabs, representatives of each Rab subfamily and

other small GTPases of the Ras superfamily.

Rabifier updates include changes to both the reference databases and the

pipeline. Among numerous modifications to the original pipeline (see http://

rabdb.org/about), two are the most noticeable: (1) HMMER3 replaces BLAST

in the majority of similarity searches, (2) subfamily classification system is now

based on sequence score comparison against a model of each subfamily, which

is subsequently used as input for the naive Bayes classifier.

4.2.2 Improvements – performance

We measured classification performance of the new Rabifier pipeline on a refer-

ence set of more than 800 manually curated, eukaryotic Rabs (Elias et al. 2012)

and compared it with the original Rabifier; we used the same reference databases

for both versions, so the result reflects only the differences between implemen-

tations. The two phases are considered separately. The high performance of the

original classifier in phase 1 left little space for improvement, we observed only

a minor gain in sensitivity (0.5%) (fig. 4.A.2). Yet, in phase 2 the difference is

substantial: Rabifier2 is able to correctly assign more sequences into subfami-

lies (fewer RabX annotations), which increases sensitivity by 7.8%, precision by

0.3% and the overall performance (F1) by 4.7% (fig. 4.1A).

The Rabifier2 codebase has been redesigned and rewritten, the third party

software used in the pipeline has been updated to the most recent versions. This

resulted in a major speed improvement (up to 10 fold, fig. 4.1B). Rabifier2 makes

better use of parallel processing: the total computation time increases very slowly

with the number of simultaneously classified sequences, compared to the old

implementation. This major speedup allows for fast annotation of hundreds of

http://rabdb.org/about
http://rabdb.org/about
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Fig. 4.1. (A) Phase 2 performance comparison between Rabifier1 (light gray) and Ra-
bifier2 (dark gray), CA (Correct Annotation), IA (Incorrect Annotation), NA
(No Annotation), TPR (True Positive Rate, sensitivity), PPV (Positive Predic-
tive Value, precision), F1 (F-score). (B) Speed comparison between Rabifier1
(•) and Rabifier2 (×), the total time for a given number of sequences (left) and
time per sequence (right) using up to 4 CPU cores.

4.2.3 Improvements – access

Rabifier source code and the reference database are now freely available, which

allows running Rabifier locally. In addition, precomputed Rab annotations for

all (244) eukaryotic species present in Ensembl databases (Flicek et al. 2014) are

available in RabDB, which will remain up-to-date with new Ensembl database re-

leases, providing Rab annotation to newly sequenced species. The improved web

interface enables interactive exploration of the Rab family in selected species,

including the navigation of taxonomy, and drawing phylogenetic profiles of pres-
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ence/absence of Rab subfamilies in chosen taxa. Each protein contains a detailed

annotation and is linked to the corresponding entry in the Ensembl database. The

website also allows to submit protein sequences for classification; due to the per-

formance increase, user can now upload hundreds of sequences at a time, com-

pared to 5 sequences in the original version. It is also now possible to change

several parameters used by the classifier and view a detailed output for each an-

notation.

4.3 Conclusions

Rabifier2 provides major improvements in Rab annotation, both in terms of

speed and accuracy, over the initial version; it can now be used in genome anno-

tation pipelines. We used it to annotate Rab diversity across Eukaryotes, which

can be explored through the web. We have also released the source code of Ra-

bifier to facilitate further development of the pipeline; this framework can be

extended to include other small GTPases and, perhaps, other difficult families of

the P-loop NTPase fold (the most widespread protein fold in cellular organisms,

Koonin et al. 2000).
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Abstract Chapter 5

Acomplex endomembrane system is one of the hallmarks of Eukary-

otes. Vesicle trafficking between compartments is controlled by

a diverse protein repertoire, including Rab GTPases. These small GTP-

binding proteins contribute identity and specificity to the system, and by

working as molecular switches, trigger multiple events in vesicle bud-

ding, transport, and fusion. A diverse collection of Rab GTPases already

existed in the ancestral Eukaryote, yet, it is unclear how such elabo-

rate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota,

revealed that several eukaryotic-like protein systems, including small GT-

Pases, are present in Archaea. Here we test the hypothesis that the Rab

family of small GTPases predates the origin of Eukaryotes. Our bioin-

formatic pipeline detected multiple putative Rab-like proteins in several

archaeal species. Our analyses revealed the presence and strict conser-

vation of sequence features that distinguish eukaryotic Rabs from other

small GTPases (RabF motifs), mapping to the same regions in the struc-

ture as in eukaryotic Rabs. These mediate Rab-specific interactions with

regulators of the REP/GDI family. Sensitive structure-based methods fur-

ther revealed the existence of REP/GDI-like genes in Archaea, involved

in isoprenyl metabolism. Our analysis supports a scenario where Rabs

differentiated into an independent family in Archaea, interacting with pro-

teins involved in membrane biogenesis. These results further support the

archaeal nature of the eukaryotic ancestor and provide a new insight into

the intermediate stages and the evolutionary path towards the complex

membrane-associated signalling circuits that characterize the Ras super-

family of small GTPases, and specifically Rab proteins.

This chapter has been published as: Jaroslaw Surkont and José B. Pereira-Leal.

(2016). Are there Rab GTPases in Archaea? Molecular Biology and Evolution

doi: 10.1093/molbev/msw061

Author contribution: I conceived, designed and performed the experiments and

analysed the data. I wrote the paper together with José B. Pereira-Leal.



5.1. Introduction 117

5.1 Introduction

Amajor question in evolutionary biology is the origin of the Eukaryotic cell

plan, which is characterized by a multitude of intracellular organelles,

including the energy producing endosymbiotic organelles, complex endomem-

brane trafficking system, and a nucleus containing a large genome that encodes

thousands of genes. The protein repertoires associated with these organelles

have been found in most Eukaryotes, suggesting that they were already present

in the Last Eukaryotic Common Ancestor (LECA) (e.g., Field and Dacks 2009;

Schlacht et al. 2014). Like in other areas of the evolutionary biology, the search

for intermediate, transitional forms has attracted the attention of many, and eu-

karyotic-like cellular features or gene repertoires have been identified in different

prokaryotes, for example, having been termed as the ‘dispersed eukaryome’ in

Archaea (Koonin and Yutin 2014).

Inferring ancient events such as the origin of Eukaryotes or the origin of

their specific molecular traits is a very challenging task given the timescale, data

scarcity, and insufficient methods. Despite this, mounting evidence suggests that

the ancestral host cell that accommodated the endosymbiotic bacteria, which

gave rise to mitochondria, was from the archaeal lineage (Lake et al. (1984) and

Cox et al. (2008), reviewed in López-García and Moreira (2015)). This host cell

may have in fact evolved from within Archaea (the TACK superphylum), rather

than result from a much earlier branching as a sister group to all Archaea (Guy

and Ettema 2011; Kelly, Wickstead, et al. 2011; Williams, Foster, Nye, et al.

2012; Williams, Foster, Cox, et al. 2013; Williams and Embley 2014; Raymann

et al. 2015). This scenario suggests that the search for transitional states should

be carried out within the archaeal domain, and specifically the TACK superphy-

lum.

A recent metagenomic survey of a deep ocean sediment sample from the Arc-

tic Mid-Ocean Ridge revealed the existence of a new archaeal phylum within the

TACK superphylum, the Lokiarchaeota (Spang et al. 2015). The authors reported

that several building blocks characteristic of Eukaryotes are present in this taxon,

suggesting that Lokiarchaeota and Eukaryotes share a common ancestor and that

Lokiarchaeota is a modern descendant of that ancestor. Small GTPase gene fam-
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ilies are highly expanded in Lokiarchaeota compared with other Archaea, includ-

ing many small GTPases from the RAS superfamily; they form several distinct

clusters, yet their relationship to the eukaryotic GTPases remains unclear.

The eukaryotic RAS superfamily contains five major families Arf, Ras, Rho,

Ran, and Rab that are involved in the intracellular signaling and share the com-

mon G domain core (GTPase activity), responsible for the switching mechanism

between the GTP-bound active and GDP-bound inactive state. The Arf family

is involved in regulation of vesicular transport, Ras in response to diverse extra-

cellular stimuli, Rho in actin dynamics, and Ran in nucleocytoplasmic transport

(reviewed in Wennerberg et al. 2005). Here, we focused on Rab GTPases, critical

regulators of vesicular trafficking systems (Fukuda 2008; Stenmark 2009; Kelly,

Horgan, et al. 2012; Pfeffer 2013), included in the list of eukaryotic signature pro-

teins, that is, ‘proteins that are found in eukaryotic cells but have no significant

homology to proteins in Archaea and Bacteria’ (Hartman and Fedorov 2002).

This family has experienced extensive universal and taxon-specific duplications

associated with the emergence of major organelles and organelle specializations

of the endomembrane system; each Rab subfamily provides specificity to a par-

ticular component of the trafficking system and this function is generally con-

served throughout evolution (Dacks and Field 2007; Dacks, Peden, et al. 2009;

Brighouse et al. 2010; Diekmann et al. 2011). They form the largest RAS family,

with more than 60 Rab homologues in human (Pereira-Leal and Seabra 2001),

and several studies point to the existence of a rich Rab repertoire at the LECA

(Diekmann et al. 2011; Elias et al. 2012; Klöpper et al. 2012); however, they

have been so far restricted to the eukaryotic domain. Here, we test the hypothe-

sis that Rab GTPases predate Eukaryogenesis, by investigating the small GTPase

repertoire in Archaea, and in particular the expanded small GTPase family in the

recently described Lokiarchaea.
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5.2 Results

5.2.1 Multiple Rab-like sequences in Archaea

In the original metagenomic study by Spang et al. (2015) the assembly of a com-

plete archaeal genome defined a novel archaeal phylum, the Lokiarchaeota. In

this Lokiarchaeum genome, more than 90 members of the RAS superfamily were

predicted, yet it is unclear whether these proteins belong to any specific, previ-

ously described RAS family or constitute a novel group. Here, we systemati-

cally searched all complete archaeal genomes, including the Lokiarchaeum, for

members of the RAS superfamily of small GTPases and specifically annotated

Rab-like proteins. We used the Rabifier (Diekmann et al. 2011), a bioinformatic

pipeline that runs a series of consecutive classification steps as follows: 1) de-

termining if a protein contains the small GTPase domain, 2) whether it belongs

to the Rab family or another member of the RAS superfamily, and 3) what is

the most likely Rab subfamily assignment of the protein. We detected a to-

tal of 3152 proteins containing the small GTPase domain, of which 133 within

the Lokiarachaeum genome (the remaining an average of 13.6±3.4 proteins per

genome). Of this total, 42 were predicted as Rab-like GTPases without any spe-

cific subfamily annotation, that is, none of the Rab-like proteins is sufficiently

similar to any of the established eukaryotic subfamilies. Among the 42 Rab-like

proteins 37 belong to Lokiarchaeum, the remaining five (one copy per species)

were identified in Thermofilum pendens, Thermofilum sp., Caldiarchaeum subter-

raneum, Thermoplasmatales archaeon, and Aciduliprofundum sp. These species

are distributed across Archaea, they belong to one of two major superphyla, Eur-

yarchaeota and TACK. This raises a question about the origin of these Rab-like

proteins, as their phylogenetic profile (fig. 5.1) does not reveal any obvious pat-

tern of vertical inheritance.

5.2.2 Inconclusive phylogenetic positioning of Archaeal Rab-like se-

quences

Our bioinformatic analysis confirms the presence of many small GTPases in Ar-

chaea and identifies multiple Rab-like GTPases in diverse archaeal species, yet

without any subfamily assignment. To determine the position of archaeal Rab-
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Fig. 5.1. Phylogenetic profile of the Rab family in representative species of Eukaryotes
(magenta), Archaea (red) and Bacteria (blue). The remaining archaeal species
that were used in the analysis, without Rab-like protein predictions, are not
shown in the figure. A full (hollow) square indicates the presence (absence) of
at least one predicted eukaryotic Rab protein (black) or archaeal Rab-like pro-
tein (gray). The total number of Rab homologues is shown next to the square.
TACK refers to the superphylum that comprises the Thaumarchaeota, Aigar-
chaeota, Crenarchaeota and Korarchaeota phyla. Tree topology is consistent
with Spang et al. (2015).

like proteins within the superfamily of small GTPases and their relationship to

eukaryotic Rabs, we conducted a phylogenetic analysis of archaeal Rab-like pro-

teins together with the eukaryotic Rabs which are likely present in the LECA

(Diekmann et al. 2011; Elias et al. 2012), also including representative sequences

of other RAS families. We used both Bayesian and Maximum Likelihood ap-

proaches for the phylogenetic inference (see Materials and Methods for details).

As previously observed (Dong et al. 2007; Rojas et al. 2012), trees of small
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GTPases have very weak statistical support for basal branches (Rho vs. Rab

vs. Ras, etc.), and Rabs may appear in multiple independent basal branches

(fig. 5.2,fig: 5.B.1). Archaeal Rab-like sequences are monophyletic with the eu-

karyotic proteins, indicating that they are more similar to sequences from Eukary-

otes than to other small GTPases from Archaea (fig. 5.B.2). They are however

not monophyletic with any one specific small GTPase family, being part of a

basal polytomy (fig. 5.2).

RabRab-like Ran Rho Ras Arf

1.00

a b

Archaea Eukarya

Fig. 5.2. Phylogeny of small GTPases from Eukarya and Archaea using (a) Bayesian
and (b) maximum-likelihood inference. Representative eukaryotic members
of all RAS families (Rab, Ran, Rho, Ras and Arf) and putative archaeal Rab-
like are included. Black (gray) circle indicates a Bayesian posterior probability
value above 0.9 (0.6) and a bootstrap support value above 90 (60) for a branch
split. Branch lengths are proportional to the expected number of substitutions
per site, as indicated by the scale bar.

To gain a more detailed view on the Rab-like family structure, we constructed

a phylogenetic tree using only archaeal Rab-like sequences (fig. 5.B.3). Al-

though the deep branching pattern could not be reliably resolved, we observed

that most of the sequences cluster within several highly supported groups. Short

terminal branches suggest recent duplication of several Lokiarchaean proteins.

Proteins from Thermoplasmatales, Aciduliprofundum, and Caldiarchaeum form

long branches indicating very divergent sequences, which do not cluster together
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with Lokiarchaeum. In contrast, proteins from both Thermofilum species form a

distinct cluster with two other Lokiarchaean sequences.

Overall, this analysis suggests that phylogenetic methods alone are insuffi-

cient to determine the relationship between archaeal Rab-like GTPases and the

eukaryotic members of the RAS superfamily. This, however, raises the question

of why these sequences were classified as Rab-like.

5.2.3 Rab-like proteins contain typical eukaryotic Rab motifs

We next analyzed sequence properties of archaeal Rab-like GTPases at the family

level to further assess their similarity to other members of the RAS superfamily.

We constructed a sequence model for each family (Rab, archaeal Rab-like, Ran,

Rho, Ras, Arf). We first built multiple sequence alignments using representative

sequences for each family and a seed alignment of the small GTPase domain

(Pfam:PF00071) to guide the alignment process and improve an overall quality

of the alignment, the seed sequences were then removed from the final alignment.

The alignments were subsequently used to construct profile hidden Markov mod-

els (pHMMs) and generate plurality-rule consensus sequences that describe each

family.

We first calculated the overall, pairwise similarity between the families (ta-

ble 5.A.1) and observed a remarkable similarity of 78% (60% identity, local

alignment) between eukaryotic Rab and archaeal Rab-like GTPases (71% and

55%, respectively, for global alignment, table 5.A.2), much higher than between

the archaeal Rab-like family and any other member of the RAS superfamily. We

subsequently focused on a more specific comparison between Rab-like and Rab

proteins; we compared amino acid variation along the sequence across Rab par-

alogues in Lokiarchaeum and representative species from different major eukary-

otic groups (Homo sapiens, Trypanosoma brucei, and Guillardia theta). We

observed similar patterns of variation for all analyzed species (fig. 5.B.4): re-

gions of both low and high sequence conservation belong to the corresponding

positions in the Rab sequences from different species, suggesting that archaeal

Rab-like sequences are evolutionarily constrained in the same regions as the eu-

karyotic Rabs.

We next tested the hypothesis that sequence conservation between archaeal
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and eukaryotic sequences is associated with the Rab family (RabF) motifs – se-

quence motifs unique to the Rab family that are important for the interaction with

Rab effectors (Pereira-Leal and Seabra 2000). The results of this analysis are

summarized in figure 5.3. All positions that correspond to the RabF1 and RabF2

motifs in eukaryotic Rabs are conserved in the archaeal Rab-like sequence. For

comparison, in other families at most two amino acids are conserved at the corre-

sponding positions. In the remaining three motifs most of the residues are iden-

tically conserved between Rab and Rab-like sequences, some are similar, for

example, positively charged arginine and lysine in RabF4, aliphatic isoleucine

and leucine in RabF5, and aromatic tyrosine and phenylalanine in RabF5 (tyro-

sine is also the second most common amino acid at this position in the archaeal

sequences). From the sequence perspective, archaeal Rab-like proteins have all

the hallmarks of Rabs, including the motifs involved in binding Rab regulators

and effectors.

The major difference between eukaryotic Rab and archaeal Rab-like sequences

is the absence of C-terminal cysteine residues, the prenylation sites of the eukary-

otic Rabs, in all of the analyzed archaeal sequences. Rab-like sequences tend to

have a shorter C-terminal sequence, missing most of what is termed the (flexible)

hypervariable region in eukaryotic Rabs, known to be involved in associations

with the membrane.

5.2.4 Rab-like proteins are structurally similar to eukaryotic Rabs

Given a high level of the primary sequence similarity between the archaeal Rab-

like proteins and their eukaryotic counterparts, we modeled a putative 3D struc-

ture of a Rab-like GTPase and compared the location of Rab-specific features

at the structural level. We chose a Lokiarchaeum sequence that contains all five

RabF motifs (GenBank:KKK40223), as predicted by the Rabifier. To ensure a

high quality of the model, we selected four templates from different Rab subfam-

ilies that both have a high level of sequence identity to the archaeal homologue

and a good crystallographic resolution of the 3D structure: Rab8 (H. sapiens,

PDB:4LHW), Rab26 (H. sapiens, PDB:2G6B), Rab30 (H. sapiens, PDB:2EW1),

and Ypt1 (Saccharomyces cerevisiae, PDB:1YZN). All template structures were

in the active state, that is, bound to a GTP molecule. We used Modeller (Šali and
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Fig. 5.3. Sequence comparison of small GTPase families. (a) sequence logo compari-
son of RabF motifs between Rab and Rab-like families. (b) alignment of the
consensus sequences generated with profile hidden Markov models of the eu-
karyotic RAS families and the archaeal Rab-like family. RabF motifs in the
Rab family and identical residues at the corresponding positions in other fam-
ilies are highlighted in blue. Orange highlight denotes the guanine nucleotide-
binding positions. Red indicates positively charged C-terminal amino acids.
Yellow indicates the C-terminal cysteines, which are often post-translationally
modified. Upper case indicates residues with probability greater than 0.5 in the
HMM profile. Secondary structure elements are denoted by bars (α-helices)
and arrows (β-sheets).

Blundell 1993), a homology modeling platform to predict a putative structure of

the archaeal protein (using all four templates simultaneously) and subsequently

assessed its quality and stability. We obtained a similar structure using Phyre2

(Kelley et al. 2015), an automatic server for protein structure prediction and anal-

ysis (not shown). Figure 5.4 shows structures of both the model and the yeast

template. Rab motifs are highlighted in blue (RabF motifs) and orange (guanine
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nucleotide-binding residues). Both structures are very similar (0.41Å root-mean-

square deviation of the Cαatomic coordinates), motifs are localized at the same

structural elements and similarly exposed to the environment. We also compared

the location of hydrophobic (fig. 5.4b) and charged (fig. 5.4c) amino acids at

the protein surface and observed a similar distribution of the residues in both

structures.
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Fig. 5.4. Structure comparison between yeast Ypt1 (left, PDB:1YZN) and a model of
an archaeal Rab-like protein (right). (a) location of RabF motifs and guanine
nucleotide-binding motifs at the protein surface (b) surface distribution of hy-
drophobic (Ala, Gly, Val, Ile, Leu, Phe, Met) and (c) charged residues (posi-
tively charged Arg, His, Lys and negatively Asp, Glu).
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We assessed the putative GTPase activity and the nucleotide-dependent con-

formational change of the archaeal Rab-like protein by analyzing its thermody-

namic stability at both the GDP and GTP-bound state and predicting interactions

between the protein and the phosphate groups of the nucleotide. In addition to

the model of the GTP-bound state, we modeled the structure of the GDP-bound

form, again using several templates belonging to different Rab subfamilies: Rab1

(Cryptosporidium parvum, PDB:2RHD), Rab2 (H. sapiens, PDB:2A5J), Rab8

(H. sapiens, PDB:4LHV), and Rab43 (H. sapiens, PDB:2HUP). The analysis

of the structural predictions shows that the archaeal Rab-like protein is thermo-

dynamically stable in both conformations (both predicted structures are shown

in fig. 5.B.5). The interaction between the phosphate groups and the protein is

stabilized by several residues present in the protein active site. The presence

of Gln68 and its relative position to the GTP molecule enables the interaction

between a water molecule and the phosphate, necessary for the GTP hydrolysis

(Dumas et al. 1999). The analysis of structural models of the archaeal Rab-like

GTPase indicates that it can exist in two stable conformations and it is able to

cycle between an ‘on’ and ‘off’ state like other small GTPases and, in particular,

eukaryotic Rabs.

5.2.5 A Rab Escort Protein/GDP Dissociation Inhibitor ancestor in

Archaea

Our analysis so far suggests that Rab-like sequences predate Eukaryogenesis.

Surprisingly, we found motifs in archaeal Rab-like sequences that are known to

mediate interactions between eukaryotic Rabs and their regulators and effectors.

Eukaryotic Rabs are prenylated on the C-terminus, a post-translational modifi-

cation catalyzed by the enzyme Rab geranylgeranyltransferase, which requires

a chaperone termed REP (Rab Escort Protein) (Pereira-Leal, Hume, et al. 2001;

Leung et al. 2006); a paralogue of REP, termed GDI (GDP dissociation Inhibitor)

recycles Rabs in and out of membranes (Wu et al. 1996, fig. 5.5a). Binding of

Rabs to REP and GDI is mediated by residues in the RabF motifs (Rak, Py-

lypenko, Durek, et al. 2003; Rak, Pylypenko, Niculae, et al. 2004; Goody et al.

2005). The same regions are involved in binding other general Rab regulators –

Rab activity is regulated by guanine-nucleotide-exchange factors (GEF) that turn
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Rabs ‘on’ by promoting the GDP to GTP exchange, and by GTPase-activating

proteins (GAP) that increase GTP hydrolysis rate and turn Rabs ‘off’. Both sets

of proteins interact with Rabs with residues included in the RabF motifs (those

within the switch regions). The identification of RabF motifs in Archaea raises

the hypothesis that such proteins and interactions could also predate Eukaryoge-

nesis.

We used two approaches to test if homologues of these eukaryotic proteins

can be detected in Archaea, indicating that some of the complex Rab regula-

tory cycles could predate Eukaryogenesis. First, we used sequences of several

human regulators (GEFs, GAPs, FNT, PGGT1B, REP, RABGGT), performed

BLAST (Altschul et al. 1990) similarity searches against archaeal genomes and

found only hits with insignificant sequence similarity (not shown). As BLAST is

known to lack sensitivity to detect remote homologies, we then used a more sen-

sitive approach based on pHMM. We retrieved pHMMs (Pfam) of the domains

that are found in Rab-binding proteins (Mss4, Sec2, VPS9, DENN, RabGAP-

TBC, GDI/REP, Prenyltransferase, PPTA), which we then used as queries for a

similarity search using the HMMER package. In most cases, we found only scat-

tered hits on the tree with marginal sequence similarity (fig. 5.5b), suggesting

that either canonical Rab regulatory proteins are absent from Archaea or their

sequences diverged from the eukaryotic counterparts beyond the detection level

of standard automated methods. In one case, however, that of REP/GDI, even

though the statistics of the hits were poor, we observed repeated positive hits,

which we then investigated further.

We manually inspected putative GDI/REP domains in Archaea. The primary

sequence of GDI and REP domain containing proteins is generally weakly con-

served in Eukaryotes, both within each family and between GDI-REP paralogues

(e.g., 30% human and fruit fly REP, 21% human GDI1 and REP1, local align-

ment identity). Hence, given the evolutionary distance between Eukaryotes and

Archaea we expect that any putative archaeal homologs would be within the

‘twilight zone’ of sequence similarity, which precludes any automatic sequence-

based analysis. We used a fold recognition method (Jones 1999) with the best

scoring (HMMER) archeal GDI/REP protein to detect candidate proteins with

determined 3D structures. The best predictions belong to eukaryotic GDIs and ar-
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Fig. 5.5. Identification of Rab regulatory proteins. (a) schematic representation of the
Rab activation pathway. (b) homology detection by the similarity search of
structural domains characteristic to the Rab regulatory proteins. Numbers rep-
resent e-values of the best scoring proteins in a species for each domain. Bold
font indicates species predicted to contain Rab or Rab-like GTPases. Abbre-
viations: GEF (guanine nucleotide exchange factor), GAP (GTPase-activating
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prenyltransferase alpha subunit), PT (Prenyltransferase). (c) Structural align-
ment of GDI/REP-like proteins from Pyrococcus furiosus and a GDI-YPT1
complex from Saccharomyces cerevisiae. (d) Total number of proteins con-
taining the prenylation complex domains encoded in a genome. Each archaeal
family is represented by a species with the biggest number of proteins contain-
ing selected domains. Tree topology is consistent with NCBI Taxonomy.
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chaeal proteins without experimentally determined function (top three hits corre-

spond to proteins from Bos taurus PDB:1D5T, Pyrococcus furiosus PDB:3NRN,

and S. cerevisiae PDB:2BCG). These structures are also very similar to FAD-

containing monooxygenases and oxidases (Schalk et al. 1996), including ar-

chaeal geranylgeranyl reductases. While the sequence identity between putative

archaeal GDI/REP and eukaryotic GDI is very low, at the structural level both

domains (3NRN and 1UKV, a yeast GDI in complex with YPT1) are similar, in-

cluding the Rab-binding platform (fig. 5.5c); our structural comparison revealed

several residues that may form interactions with Rab switch regions (not shown).

Our results strongly support the existence of a REP/GDI-like molecule in the

TACK group, whose function implies an isoprenyl-binding ability.

We further used the same strategy to investigate whether the isoprenylation

machinery, specifically the two subunits (αand β) of the eukaryotic isoprenyl

transferases, is present in Archaea. Both approaches were inconclusive to de-

termine the existence of the αsubunit, as the tetratricopeptide repeat that char-

acterizes this domain is widespread and functionally promiscuous, precluding

any conclusion about function. However, we detected archaeal proteins whose

predicted fold matches several isoprenoid metabolism enzymes including the ger-

anylgeranyl transferase subunit β. We found multiple instances of genes contain-

ing these domains, observing some species where they co-occur (fig. 5.5d).

5.3 Discussion

In this work, we investigated the hypothesis that the separation of the eukaryotic

signature Rab sequences pre-dates the emergence of Eukaryotes. This hypothe-

sis follows from the recent discovery of a new archaeal group, the Lokiarchaeota,

that was claimed to be a sister group of Eukaryotes. Our Rabifier pipeline iden-

tified 42 candidate Rab-like sequences that have multiple features related to eu-

karyotic Rabs, they exist in several Archaea of both the TACK group and Eu-

ryarchaeota but are particularly abundant in Lokiarchaeum. Although phyloge-

netic methods alone were insufficient to determine the position of Rab-like pro-

teins within the RAS superfamily, our results indicate that these GTPases may

be Rab precursors. Surprisingly, we also found evidence for a GDI/REP-like

protein existing in Archaea, raising the possibility that this interaction pre-dates
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Eukaryogenesis.

Small GTPases are well known to exist in prokaryotes, where they mediate

diverse functions, for example, MglA regulates cell polarity and motility by accu-

mulating at a cell pole in its active GTP-bound state (Zhang et al. 2010). The clos-

est group to eukaryotic Rab/Rho/Ras/Ran are the Rup proteins (Ras superfamily

GTPase of unknown function in prokaryotes) (Wuichet and Sogaard-Andersen

2015). Phylogenetic analysis is not able to resolve the relationship between eu-

karyotic small GTPases and prokaryotic ones, so no claim can be made whether

these sequences are Rup-like or a new independent branch (fig 5.B.6).

We concentrated on characterizing sequence and structural features that could

shed light on the relationship between these sequences and eukaryotic Rabs. At

the family level, they are more similar to the Rab family than to other eukaryotic

small GTPases (Arf/Ras/Rho/Ran). We found extensive RabF motifs conserva-

tion, motifs that in Eukaryotes are diagnostic of this family, and that mediate

important protein interactions characteristic of Rabs. On the structural models

of archaeal Rab-like proteins, these motifs map to the same positions as their

eukaryotic counterparts, suggesting that they could mediate similar interactions,

which lends further support to their Rab-like classification. Our results thus point

to Archaea having Rab-like sequences, which although not being full-fledged

Rabs, as we will discuss below, are already differentiated intermediates to this

small GTPase family.

The presence of Rab motifs that are known to mediate interactions with other

Eukaryote-specific Rab regulators was puzzling and led us to test the hypothesis

that one or more of these interactions could have pre-dated eukaryogenesis. Us-

ing sensitive methods we found convincing REP/GDI-like proteins in multiple

Archaea that are involved in the biosynthesis of membrane lipids (geranylger-

anyl reductase, EC 1.3.1.101). An archaeal form of this enzyme had its crystal

structure solved and aligns well with the crystal structure of GDI:Rab complex.

It is thus very probable that the conservation of the RabF motifs in archaeal

Rab-like sequences points to an established interaction with this enzyme. The

functional meaning of this interaction is unclear, but the fact that this enzyme is

involved in the synthesis of the isoprenoids that are used in the lipid modification

of eukaryotic small GTPases is highly suggestive. Inspection of the structure of
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the archaeal enzyme suggests that although it has a binding pocket able to shield

the lipid groups from the cytosol as REP and GDI do, it is in a different orien-

tation, suggesting that it cannot chaperone lipid-modified eukaryotic Rabs that

have longer C-termini than the archaeal Rab-like sequences.

In Eukaryotes REP/GDI are chaperones of the lipid-modified Rabs, that de-

liver them to the membranes, where REP is doing so in the context of the lipid

modification reaction, as an accessory protein to the RabGGTase complex, and

where GDI recycles Rabs in and out of membranes. The presence of a REP/GDI

homologue in Archaea raises the hypothesis that membrane association of small

GTPases via prenylation may have preceded the emergence of Eukaryotes. There

is, at least, one report claiming isoprenylation of proteins in Archaea (Konrad

and Eichler 2002). However, the absence of an extended C-terminal region be-

yond the GTPase globular domain together with the absence of the prenylateable

C-terminal cysteine residues points against this. Furthermore, we found no ev-

idence of a polybasic region that is known to mediate membrane association

(Williams 2003), nor of any other membrane association signal. Our results thus

suggest that these Rab-like sequences are unlikely to associate with membranes

via lipidation. It is, however, interesting to note that archaeal homologues of

both the alpha and beta subunits of eukaryotic prenyltransferases are common,

although there is no evidence that they are able to form a heterodimer with the

prenyltransferase activity. The beta subunit homologues are involved in the iso-

prenoid metabolism and their structure is predicted to be similar to eukaryotic

prenyltransferases, which further supports the notion that some components of

the prenylation complex are present in Archaea.

Small GTPases are molecular switches that can cycle between two membrane-

associated states, as well as cycle in an out of membrane. Our results suggest that

these Archaea represent a snapshot of the evolution of this circuit, that resolves

part of the evolutionary path into membrane-associated protein trafficking regula-

tors. The Rab protein family is already individualized, even though we lack any

known internal membranes in the TACK Archaea. These proteins are apparently

active GTPases able to cycle between two structural states, but it is unclear if

they do it in the cytosol or if an ‘in’ and ‘out’ of membrane switch was already

established. In this scenario, an interaction with the protein that will become the
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chaperone that catalyses this second part of the Rab cycle is already established,

but in the absence of lipid modification. It is plausible that localization to mem-

branes may exist via protein-protein interactions. Finally, the building blocks for

a protein prenylation machinery are also found in multiple Archaea, suggesting

that even the emergence of this component of the Rab cycle may also pre-date

eukaryogenesis.

Our conclusions are possible because we were able to go beyond phylo-

genetic methods, which are clearly insufficiently sensitive to resolve events at

this order of temporal divergence, using instead our motif/domain-based tool

to identify Rabs, the Rabifier. It is important now to look into other small

GTPase families, as our preliminary data suggest that other members of the

Ras/Rho/Ran/Rab clade may have already been individualized in Archaea. It

is also important to investigate whether the interaction we predict here between

Rab-like and REP/GDI-like sequences does in fact exist, and what is the sub-

cellular localization of these small GTPases. Lokiarchaeota, are unlikely target

organisms for these experiments, as they exist in a difficult to reach environment.

However, organisms that are routinely cultured in the laboratory have these se-

quences (see fig. 5.5), which makes these experiments tractable. Furthermore,

we found that other environmental (marine) samples (Kawai et al. 2014) also

possess Lokiarchaeota-like small GTPases and specifically abundant Rab-like

sequences (117 proteins in the analyzed sample), which makes the possibility of

isolation and culture of these organisms more plausible. Our study gives further

support to the notion that Eukarya emerged from within Archaea, and may be

construed to support the notion that it was from within organisms close to the

recently identified Lokiarchaeum. We are convinced that in the near future we

will be able to resolve the origin of the in-out of membrane cycle of small GT-

Pases, and their association with specific eukaryotic processes. It is possible that

this cycle emerged in Archaea, even before the specific system they regulate in

Eukaryotes has emerged, and that have later been co-opted.
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5.4 Materials and Methods

5.4.1 Sequences

All complete archaeal proteomes (231) were downloaded from the UniProt data-

base (UniProt Consortium 2015), all Lokiarchaeum proteins (5384) were down-

loaded from GenBank (Benson et al. 2014). The complete list of species is

shown in the supplementary materials online (Molecular Biology and Evolution,

Supplementary Data). Eukaryotic and bacterial genomes were downloaded from

Ensembl (Cunningham et al. 2015).

5.4.2 Protein sequence alignments

Multiple sequence alignments were built with MAFFT 7.221 (Katoh and Stan-

dley 2013) using a high accuracy mode (--maxiterate 1000 --localpair). Tri-

mAl v1.2 (Capella-Gutierrez et al. 2009) was used to remove gap-rich regions

from alignments. Pairwise sequence alignments were constructed with water

(the Smith-Waterman local alignment algorithm) and needle (the Needleman-

Wunsch global alignment algorithm) from the EMBOSS package (Rice et al.

2000). Jalview 2.8.2 (Waterhouse et al. 2009) was used for alignment visualiza-

tion.

5.4.3 Phylogeny reconstruction

Phylogeny reconstruction using the Bayesian inference was conducted with Mr-

Bayes 3.2.5 (Ronquist et al. 2012) using the mixed amino acid model with gamma-

distributed rate variation across sites. Two parallel runs with four chains each

(Metropolis coupling) were run until the topologies converged (standard devia-

tion of split frequencies is below 0.05), first 25% generations were discarded as

the burn-in. RAxML 8.1.22 (Stamatakis 2014) was used for tree reconstruction

using the maximum likelihood method, a discrete approximation to the gamma

distribution with four categories was used to model across-site rate heterogene-

ity, the best-fitting substitution model (LG, Le and Gascuel 2008) was selected

using ProtTest 3.4 (Darriba et al. 2011). ETE2 (Huerta-Cepas et al. 2010) and

Dendroscope3 (Huson and Scornavacca 2012) were used for tree visualization.

http://mbe.oxfordjournals.org/content/early/2016/03/30/molbev.msw061
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5.4.4 Sequence analysis

pHMMs of protein families were build from sequence alignments using hmm-

build from the HMMER 3.1b2 software package (http://hmmer.org), plurality-

rule consensus sequences were generated with hmmemit. Sequence logos were

generated with WebLogo 3.4 (Crooks et al. 2004) from multiple sequence align-

ments.

Amino acid variation was calculated for each position in an alignment of par-

alogous proteins as the entropy of that position, H(X) = −∑n
i=1 p(xi) log2 p(xi),

where p(xi) is the fraction of the residue xi at the X column in the alignment.

5.4.5 Protein structure prediction

MODELLER v9.15 (Šali and Blundell 1993), a program which implements a

homology-based method for structure modeling, was used to predict protein

structures given templates with known structure that share a high level of se-

quence identity to the modeled protein. Model quality and stability were evalu-

ated with the DOPE potential (Shen and Sali 2006), ProSA (Sippl 1993; Wieder-

stein and Sippl 2007), and Verify3D (Lüthy et al. 1992). PyMOL (The PyMOL

Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.) was used for

structure visualization.
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Appendix

5.A Supplementary tables

Table 5.A.1. Family consensus sequence identity (lower triangle, gray background)
and similarity (upper triangle) calculated using the Smith-Waterman local
alignment algorithm.

Rab Rab-like Ran Rho Ras Arf

Rab 0.78 0.57 0.58 0.62 0.48
Rab-like 0.60 0.59 0.56 0.67 0.56
Ran 0.34 0.34 0.46 0.54 0.42
Rho 0.39 0.38 0.28 0.54 0.43
Ras 0.41 0.42 0.31 0.37 0.46
Arf 0.29 0.33 0.29 0.23 0.29

Table 5.A.2. Family consensus sequence identity (lower triangle, gray background) and
similarity (upper triangle) calculated using the Needleman-Wunsch global
alignment algorithm.

Rab Rab-like Ran Rho Ras Arf

Rab 0.71 0.53 0.56 0.60 0.41
Rab-like 0.55 0.47 0.52 0.57 0.51
Ran 0.32 0.26 0.41 0.47 0.30
Rho 0.37 0.35 0.25 0.51 0.38
Ras 0.40 0.36 0.27 0.35 0.39
Arf 0.25 0.30 0.20 0.20 0.24
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Fig. 5.B.1. (a) Bayesian phylogeny of Eukaryotic and Archaeal small GTPases with Mr-
Bayes (mixed model, across-site rate heterogeneity, 5000000 generations).
(b) Maximum likelihood phylogeny of Eukaryotic and Archeal small GT-
Pases estimated using RAxML with GAMMALG model, branch support was
estimated with 1000 rapid bootstraps. Branch lengths are proportional to the
expected number of substitutions per site, as indicated by the scale bar.
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Fig. 5.B.2. Maximum likelihood phylogeny of all archeal small GTPases and represen-
tatives from major eukaryotic RAS families. RAxML with GAMMALG+F
model was used to estimate the maximally supported tree. Proteins: 120
eukaryotic Rab, 23 other eukaryotic RAS, 35 putative Archeal Rabs, 2315
other small GTPases from Archaea.
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Fig. 5.B.3. Phylogenetic tree constructed using the Bayesian (a) and maximum likeli-
hood (b) inference of archaeal Rab-like proteins, members of the human Ras
family were used as an outgroup. Branch support is given with the Bayesian
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tional to the expected number of substitutions per site, as indicated by the
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Fig. 5.B.4. Sequence variation (H, entropy) across Rab paralogues in four species. Se-
quence were aligned for each species, amino acid variation was estimated
for each column in the alignment and consensus sequence was calculated
(X denotes positions where the frequency of the most common amino acid
is lower than 0.2). Plot shows the alignment of consensus sequences and
sequence variation at each site.
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Fig. 5.B.5. Archaeal Rab-like protein in the GTP and GDP-bound form.
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6.1 A brief summary

I n this thesis, I have focused on analysing the influence of protein properties

on evolutionary inference. Many methods have been developed over the years

to infer phylogenies and to map relationships between homologous proteins. Yet,

they often ignore specific properties that constrain protein evolution and, as a con-

sequence, yield suboptimal results. Here, I have considered two protein classes.

1) The coiled-coils, rod-shaped protein domains formed by a simple repetitive

peptide motif that has arisen multiple times in evolution. 2) Rab GTPases, a large

family of closely related proteins with a complex evolutionary history character-

ized by multiple duplications and losses. I have developed tools, which address

specific properties defining these proteins, to improve evolutionary inference.

Proteins consisting of repetitive sequences, due to their low-complexity, are

considered difficult for evolutionary studies. Yet, they are ubiquitous cellular

components, essential to many processes. Functional information is available for

only a handful of model organisms; accurate methods for homology mapping

are necessary to annotate the remaining species. Thus, we set out to improve

the evolutionary analysis for coiled-coils, prevalent repetitive domains with di-

verse functions. First, we estimated the phylogenetically predictive power of

coiled-coil regions by quantifying the amount of information in the sequence.

Surprisingly, despite the repetitive nature, coiled-coils contain a similar level of

information to the globular domains, which are commonly used for evolution-

ary studies. This analysis demonstrates that a premise derived from the general

properties (i.e. repetitive sequences have low-complexity and, as a result, low-

informativeness) can be misleading; the premise should be tested. Given the

specific constraints imposed on the coiled-coil sequence, we have developed a

new substitution model, substantially different from the general models, that in-

corporates these properties. We demonstrated that the new model provides a bet-

ter parameter estimate for evolutionary inference of coiled-coil proteins. It can

be incorporated into the existing tools for homology detection and phylogeny

reconstruction. Although we have not yet used the CC model to address spe-

cific biological questions, it has been used by others (Jose Pereira-Leal personal

communication with Joel Dacks). The repetitive nature of the coiled-coil do-
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main suggests that the model can be further improved. For instance, defining the

heptad motif positions with a hidden Markov model whose hidden states, cor-

responding to hydrophobic and polar positions would allow assigning different

substitution models to each hidden state. Such framework could also be used to

improve the sequence alignment process.

Proteins evolve by modifying the primary sequence composition and by chang-

ing their length by inserting new residues or deleting existing positions. Hence,

to obtain a more comprehensive view of coiled-coil evolution we analysed their

size variation. We hypothesized, given their structural role as spacers and scaf-

folds, that the size of the coiled-coil domain is conserved in evolution. Indeed,

we observed that the length of coiled-coil regions in more conserved than that of

globular domains and even the α-helical secondary structures of non-coiled-coil

regions. This observation is consistent throughout all three domains of life. It rep-

resents the conservation of the physical size of the coiled-coil domain. Despite

being generally conserved in length, both the most conserved and the most vari-

able proteins are enriched in specific cellular components and processes. Such

properties suggest that the length of the coiled-coil domain can be used as a pre-

dictor in various analyses, for example, in mapping evolutionary relationships or

for functional predictions. So far, we tested if the coiled-coil length co-evolution

can be used to detect protein-protein interactions, the results, however, were in-

conclusive (not shown).

In the second part, we have considered a case of a large family of closely

related proteins, Rab small GTPases, whose specific sequence properties impede

application of traditional protein annotation and classification methods. Such

complicated cases often require manual annotation by a human expert, which

is impractical in large-scale analyses. We described Rabifier2, a tool that of-

fers accurate automatic Rab annotations, which is achieved by combining com-

putational methods with manually curated datasets in an automated multi-step

pipeline. The new version of the pipeline provides more accurate annotations,

better accessibility, and a major speed increase over the initial version. Despite

these improvements, there still exist areas for further development. Rabifier clas-

sification capability is limited, by design, to existing Rab subfamilies that have

been manually curated; proteins that are not sufficiently similar to the existing
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subfamilies are collectively classified as RabX. However, the pipeline could au-

tomatically cluster such predictions into new subfamilies (and suggest their posi-

tion in the Rab family tree), for further manual verification.

Although Rabifier defines clear rules for Rab classification, it neither pro-

vides a direct description of the evolutionary history of the family nor points

to its origin within small GTPases. Yet, it can provide initial insight into these

problems and generate hypotheses that can be further tested. We investigated the

origin of Rab GTPases in Eukaryotes, based on the initial prediction, by Rabifier,

of the existence of putative Rab-like proteins in Archaea. Low-informativeness

of Rab sequences precludes any single method from revealing the early evolu-

tion of the family. However, a comprehensive manual examination involving

several methods analysing different Rab properties (i.e. sequence, structure, and

interactions), revealed that, indeed, proteins with Rab-like properties evolved in

Archaea. These results were possible because we were able to narrow the scope

of the analysis using Rabifier.

The results presented in this thesis show that often to obtain a more accurate

estimation of protein evolutionary histories it is necessary to include specific

models or tools that capture specific properties, characteristic of these proteins.

6.2 Outlook

The work presented in this thesis can be continued in several ways. Yet, there are

two main directions: multiple technical and methodological aspects of the pre-

sented tools can be further improved (some possible improvements have already

been mentioned throughout the thesis), and these tools can be used to analyse

protein and cell evolution.

The CC model improves homology inference for coiled-coil proteins by pro-

viding more accurate amino acid substation rate estimates. However, given the

periodicity of the coiled-coil sequences, it should be possible to further improve

the model by assigning a different set of substitution rates to different positions

of the pattern. The simplest implementation could define two models, one de-

scribing the rates at the hydrophobic positions (ad), the other at the hydrophilic

(bcefg) positions. Such models could be then assigned to the corresponding po-

sitions in two ways: based on the coiled-coil pattern register from a coiled-coil
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predicting tool or by maximizing the likelihood of the alignment for a given tree.

Yet, both approaches are contingent on the quality of the sequence alignment; a

misaligned coiled-coil pattern may result in hydrophobic and polar positions co-

occurring at the same alignment columns. Hence, another possible improvement

to the overall quality of the evolutionary inference of coiled-coil proteins could

involve an improved sequence alignment method that incorporates information

about the coiled-coil register (i.e. each residue has a corresponding a-g heptad

position assignment). These modifications to the classical pipeline should im-

prove the accuracy of phylogenetic inference. A different approach that could

bring further improvements to homology detection can involve heuristic meth-

ods, for example, using the length of the coiled-coil domain (which is generally

conserved in homologous proteins) and oligomerization state to increase predic-

tion confidence. For instance, given a low level of similarity between query

and target sequences, a method can compare the difference in length of the pre-

dicted coiled-coil domain (length variation depends on protein function, hence,

GO terms should be included) and its oligomerization state. This approach re-

sembles the manual curation process, where an expert compares many features

to improve the annotation. It should improve search specificity by discarding un-

likely hits, without sacrificing sensitivity (the trade-off between specificity and

sensitivity can be optimized in an appropriate benchmark).

Rabifier is a bioinformatic pipeline, it classifies Rab GTPases based on se-

quence similarities to the reference family and subfamilies profiles. Such ap-

proach is computationally very efficient, scaling well with the number of se-

quences and reference subfamilies. Yet, it ignores information about the phy-

logenetic relationships within the family; such information should improve pro-

tein classification by inserting the sequence in its appropriate phylogenetic con-

text. Classical phylogenetic methods are computationally too demanding to be

included in high throughput pipelines: each time a new sequence is classified a

tree, largely composed of reference sequences, must be re-computed. This cost

can be, however, decreased by using precomputed data, that is by extending the

existing reference tree/alignment with new sequences (the reference can also be

manually verified and corrected to improve the subsequent automatic classifica-

tion). Such solution has been implemented in PAGAN (Löytynoja et al. 2012),
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the algorithm aligns a new sequence to the existing multiple sequence alignment

in the phylogenetic context. PAGAN could be used in the final step of the Rab-

ifier pipeline, especially with low-scoring annotations. The addition of the phy-

logenetic component to the pipeline can also be used to automatically classify

unknown/new Rab GTPases (RabX) into new putative subfamilies. Rabs that do

not cluster together with existing subfamilies may form new distinct clades in

the Rab family tree. Such putative groups can be then manually inspected and

added to the set of Rabifier’s subfamily models.

Rabifier has been specifically designed to identify and classify Rab GTPases,

yet, a very similar framework can be used to classify other protein families with

similar properties (i.e. large families of closely related proteins). The most ob-

vious candidates are other small GTPases or even other families of the P-loop

NTPase fold1. This new tool could automatically classify proteins into respec-

tive families and subfamilies allowing for an easy, automated annotation of small

GTPases and prediction of the corresponding intracellular signalling pathways

in newly sequenced organisms. Such endeavour would mostly require compiling

additional reference datasets defining new families and subfamilies. Additional

annotation specificity can be obtained by defining conserved sequence regions at

the family level, similar to the RabF motifs.

Improved methods for molecular evolution allow inferring more accurate

evolutionary histories of protein families. This, however, has wider implications.

An accurate description of protein evolution is also informative about cellular

evolution: proteins are building blocks of cellular components, they are involved

in virtually all cellular processes, where they perform diverse molecular func-

tions. The analysis of cell biology in the evolutionary context has been termed

as Evolutionary Cell Biology (Brodsky et al. 2012; Lynch et al. 2014). Diversity

at all biological levels can ultimately be traced back to the change at the cellu-

lar level, which places cells at the focus of biological research. Multiple ques-

tions concerning cell biology can be asked in the evolutionary context to explain

the observed diversity of intracellular components. When did cellular innova-

tions arise? Did they evolve de novo or by co-option of existing components?

What are the processes that drive these innovations: natural selection, random

1An initial analysis of classification performance using simple methods (e.g., BLAST) is re-
quired to assess the necessity of developing a more complex tool.
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genetic drift? What constrains variation of cellular components? An integrative

approach involving different types of data (genomic, functional, morphological)

is required to answer these questions. Yet, most information is available for only

a few model organisms that do not represent complete biological diversity. They

are biased towards animals, fungi, plants and microbes of medical and industrial

interest. A feasible initial approach of capturing the existing diversity requires

sequencing genomes of new species to populate underrepresented taxa and pos-

sibly establish new ones. It can bring unexpected breakthroughs that introduce

new highly informative species like the Lokiarchaea (Spang et al. 2015). Large-

scale projects have been devised to sequence a yet unseen microbial diversity.

For instance, Rinke et al. (2013) sequenced more than 200 archaeal and bacterial

species from diverse environments that belong to the largely uncharted branches

of the tree of life (often referred to as the ‘microbial dark matter’). Unfortunately,

many species are uncultivable in the laboratory conditions, which precludes from

obtaining functional data. It also poses a challenge to the sequencing technolo-

gies (metagenomics and single-cell genomics), genome assembly and annota-

tion. Obtaining a comprehensive description of cellular evolution is contingent

on many factors including collecting genomic data from diverse organisms and

developing improved methods for analysing the data, for example, more accurate

methods for sequence annotation and homology detection.

In this thesis, we presented refined tools for protein homology mapping that

can be used in the context of the evolutionary cell biology. We studied the origin

of the eukaryotic endomembrane trafficking system. We detected putative Rab-

like GTPases in Archaea using Rabifier and other sensitive methods. Similarly,

Klinger et al. (2016) searched for the components of the endomembrane system

in Archaea. They identified two eukaryotic signature proteins (Gtr/Rag GTPases

and the RLC7 dynein component) and estimated a split of Arf-like and Ras-like

superfamilies in Archaea. Yet, they could not detect other components of the

trafficking system including golgin and SNARE (proteins composed of coiled-

coil domains). This indicates that more genomes, of sister species to Lokiarchaea

and Eukarya, are required for a more sensitive analysis. The origin of other

eukaryotic components is also elusive, for example, the Golgi apparatus and the

microtubule-organizing center. Coiled-coil proteins are crucial components of
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these organelles, hence, our description of coiled-coil properties, including the

model, may prove useful in this context.
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