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Abstract 

This thesis focuses on the development and optimization of a technique known as self-assembly 

colloidal lithography (CL) to fabricate transparent conductive electrodes. These contacts are of utmost 

importance for high performance optoelectronic devices, such as thin film solar cells. As of this moment, 

indium tin oxide (ITO) is the preferred transparent conductive oxide (TCO), but to improve the cell 

efficiency new materials with lower sheet resistance and better optical properties should be used. 

Besides, ITO is relatively expensive, so alternative Earth-abundant materials are highly desired to 

improve the devices’ cost-effectiveness. Conductive metallic micro-meshes within two thin TCO layers 

were investigated to improve the sheet resistance while maintaining an anti-reflection coating (ARC) 

type layer. The meshes were fabricated by CL after studying the influence of the main process 

parameters: polystyrene sphere sizes, etching times, aluminum and silver for the mesh and indium zinc 

oxide (IZO) and aluminum zinc oxide (AZO) for the TCO layer were studied. The resulting contacts were 

analyzed through UV-VIS-NIR spectrophotometry, hall-effect, scanning electron microscopy (SEM) 

equipped with energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The results 

showed that 1.6 µm precursor spheres etched for 150s were the most reliable to produce closely-packed 

structures and to obtain low sheet resistance, while 5 µm spheres etched for 120s showed the best 

optical performance over the UV-VIS-NIR range. The contacts which showed the best optical and 

electrical results were produced with silver and IZO: when produced with 1.6 µm spheres the contacts 

presented sheet resistances as low as 10.6 Ω/sq and transmittances up to 75 %, and when produced 

with 5 µm spheres obtained transmittance up to 85 % with sheet resistance of 121 Ω/sq. The results 

reveal that our innovative large-area micro-meshed metallic electrodes fabricated by CL can attain 

performances close to those off state-of-art ITO (10 Ω/sq for 80 % transmittance and 100 Ω/sq for 90 % 

transmittance), but with superior transmittance mainly in the near-infrared range. This can be highly 

interesting, for instance, for the intermediate electrodes in multi-terminal multi-junction solar cell 

architectures. 

 

Keywords: Transparent conductive electrode, Colloidal lithography, Langmuir-Blodgett, Self-

Assembly, anti-reflection coating 
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Resumo 

Esta tese foca-se no desenvolvimento e otimização de uma técnica conhecida como litografia 

coloidal de auto assemblagem para fabricação de elétrodos condutores transparentes. Estes contactos 

são importância extrema para dispositivos eletrónicos de alta performance, tais como células solares 

de filme fino. De momento, o óxido de índio dopado com estanho (ITO) é o óxido condutor transparente 

(TCO) preferido, mas de forma a melhorar a eficiência da célula novos materiais com menor resistência 

de folha e melhores propriedades óticas devem ser usados. Foi introduzida uma rede de metal entre 

duas camadas finas de TCO para melhorar a resistência de folha ao mesmo tempo que se mantêm a 

camada de anti reflexão (ARC). Tamanhos de esferas de polistireno, tempos de erosão, alumínio e 

prata para a rede e óxido de índio dopado com zinco (IZO) e óxido de alumínio dopado com zinco (AZO) 

para a camada de TCO foram estudados. Os contactos foram analisados através de espetrofotómetro 

de UV-VIS-NIR, efeito de Hall, microscópio eletrónico de varrimento (SEM) e microscópio de força 

atómica (AFM). Os resultados mostram que esferas de 1.6 µm erodidas durante 150 s foram as mais 

consistentes a produzir estruturas com maior empacotamento e menor resistência de folha, enquanto 

as esferas de 5 µm erodidas durante 120 s mostraram melhores capacidades óticas no espectro UV-

VIS-NIR. Os contactos com melhores propriedades óticas e elétricas foram produzidos com prata e 

IZO: quando produzidos com esferas de 1.6 µm os contactos apresentaram resistências tão baixas 

quanto 10.6 Ω/quadrado e transmitâncias tão altas quanto 75 % e quando produzidos com esferas de 

5 µm os contactos apresentaram transmitâncias tão altas quanto 85 % e resistência folha de 121 

Ω/quadrado. Os resultados revelam que os nossos inovativos elétrodos micromesh metálicos de larga 

área fabricados por CL atingem performances próximas das do ITO estado da arte (10 Ω/sq a 80% 

transmitância e 100 Ω/sq a 90%), mas com muito melhor transmitância para comprimentos de onda 

próximos do infravermelho. Tal pode ser altamente interessante, por exemplo, em elétrodos intermédios 

em arquiteturas de células solares de multi-junção e multi-terminais. 

Palavras-chave: Elétrodo condutor transparente, Litografia coloidal, Langmuir-Blodgett, Auto 

assemblagem, camada anti refletora 
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Motivation and Objectives 

With increasing demand in high-performance transparent conductive electrodes, and with ITO 

reaching fundamental optical and electrical limits, new materials and techniques must be investigated 

to produce high-performance optoelectronic devices [1]. This work aims to produce a transparent 

contact to be applied in solar cells that can compete with ITO, in both optical and electrical properties, 

while trying to reduce the overall layer thickness (thus lowering the material costs). We set a target of 

10 Ω/sq sheet resistance and 80% transmittance (averaged along the main solar spectral range) for a 

thickness rounding the 70 to 110 nm. For context, 400 nm of ITO deposited at room temperature would 

be needed to achieve this sheet resistance. 

The contacts are fabricated on a glass substrate using an innovative colloidal lithography (CL) 

technique. This employs polystyrene (PS) microspheres to produce the mask which will allow the 

creation of the metallic micromesh. Such technique replaces the use of traditional photolithography 

masks and equipment, resulting in lower costs of production. Furthermore, CL has virtually no limitations 

in the patterned area, thus allowing high-throughput fabrication, is safe and environmental friendly as 

the only materials used are PS, ethanol and deionized water. 

Ultra-thin (30-40 nm) transparent conductive oxide layers are used both on top and below the 

micromesh to reduce reflection and passivate the metal against environmental degradation. 

 

Work strategy 

This work focused on controlling various fabrication processes whose experimental parameters 

affect the quality and reproducibility of the resulting transparent electrodes. The main processes 

optimized here were: 

 

1. Langmuir-Blodgett – Improving the quality of the deposition of the colloidal PS microspheres 

starts by optimizing the surface tension, allowing the formation of a monolayer of spheres 

on the water surface, plus the volume and concentration of sphere solution needed to 

sustain the surface tension value throughout the deposition. In a first stage, only one sphere 

size solution was used but by the end of this work three different sphere sizes were 

analysed. 

 

2. Reactive ion etching (RIE) – RIE was used to shape the deposited PS colloids, in order to 

tune their inter-particle distance. To establish good etching times, power and pressure 

values were tested based on previous studies conducted at CEMOP [2], and various times 

were used. The preferential set of etching conditions is the one that consistently allows the 

formation of a continuous metal mesh in between eroded spheres. Times higher than this 

are used to study the variation in optical and electrical properties of the samples. 

 

3. Metal used and thickness – Aluminium and silver micromeshes were compared to find a 

good compromise between optical and electrical properties. After settling for one metal, 

different thickness values were evaluated, again to find a good compromise between 

electrical and optical properties. 

 

4. Transparent conductive oxide (TCO) – AZO and IZO layers were tested to coat the 

micromesh on the rear and front, checking the impact of the differences on complete 

electrodes. AZO is much lower cost, making it an interesting alternative. 

 

5. The optical and electrical properties of the samples were characterized by UV-VIS-NIR 

spectrophotometer and hall-effect, respectively. The morphology of the different structures 
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was characterized by scanning electron microscopy (SEM) and atomic force microscopy 

(AFM). 
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Chapter I: Introduction 

  

1.1. Transparent conductive electrodes 

 

Top contact electrodes are of extreme importance for high performance optoelectronic devices 

such as thin film solar cells, organic light emitting diodes (OLEDs) and display panels. To maximize their 

efficiency, these electrodes must display characteristics such as high broadband transmittance and 

electrical conductivity [3–6]. 

Presently, the preferred material used to fabricate these transparent conductive electrodes 

(TCEs) is indium tin oxide (ITO), but ITOs optimization has reached fundamental limits. There are also 

problems concerning ITOs usage as the TCE, as indium is a rare metal and suffers from large price 

fluctuations that make it undesirable for commercial applications. Furthermore, ITO presents major 

drawbacks such as a strong absorption in the near ultraviolet (near-UV) and infrared (IR) spectral range 

and brittleness, which make it unsuitable for flexible substrate applications. The deposition process also 

poses some issues, as ITO is commercially deposited by dc-magnetron sputtering at high temperatures, 

which is costly and prevents the use in temperature-sensitive substrates (e.g. most flexible materials) 

due to the elevated temperatures required for a good quality deposition [1, 3, 4, 6, 7, 8–10]. 

Currently, there are plenty of materials and geometries being investigated for TCEs, such as 

macroscopic metallic grids, nanoimprinting, solution-based random metal nanowires (NWs), carbon 

nanotubes (CNTs) and metal nano/micro-meshes fabricated by various lithography processes. CNTs 

and metal NWs are two promising candidates to replace ITO as top electrode, with metal NWs having 

an advantage over the CNTs because of the higher conductivity the metal has to offer [3, 7, 11]. 

Different methods are used to produce metal NWs such as chemical synthesis, electrospinning, 

lithographic processes and nanoimprinting. Random silver (Ag) NWs produced by solution-based 

synthesis have shown better optical and electrical properties compared to ITO films, but the use of silver 

still carries the cost problem since silver prices are comparable to indium prices. The need to decrease 

prices lead to research with copper (Cu) NWs. This metal is less expensive than silver or indium, being 

around 100 times cheaper and about 1000 times more abundant [3, 7, 11, 12]. Printable Cu NWs have 

shown optical and electrical properties comparable to ITO, but these structures pose some problems. 

High aspect ratio NWs are needed to maintain high transmittance and, to achieve this, sophisticated 

solution processes/processing methods must be used. In addition, the density of the NWs must be 

above the percolation threshold to form a low resistance pathway and, at the same time, be as low as 

possible as to minimize the reflectance due to the metal. This compromise between electrical and optical 

properties is proving especially difficult to achieve for Cu NWs, which have high contact resistance 

between NWs and are easily oxidized.[3, 12] 
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Figure 1 Graph of transmission vs sheet resistance of different methods for fabricating TCEs. Transmission 

values do not include losses due to substrate. Figure adapted from [3]. 

 

The market for TCEs has been increasing over the years, especially for ITO alternatives due to 

the reasons mentioned previously. In Figure 2, future market predictions for 2016 for ITO in current 

existing applications and ITO alternatives for emerging applications are shown. ITO is predicted to 

remain the dominant TCE. However, upcoming applications demand ITO alternatives at a much higher 

rate than currently existing applications. The market for ITO alternatives for upcoming applications is 

predicted to sharply increase, representing around 40% of the total market [13]. 

 

 

Figure 2. Share of ITO and ITO alternatives in the current existing applications (left) by 2016 and in 

upcoming applications by 2026 (right). Figure adapted from [13]. 

 

1.2. Colloidal lithography 

 

A recent method used to produce similar structures to Cu NWs is self-assembled colloidal 

lithography (CL). This is a low-cost, fast and scalable method that uses a monolayer of colloidal particles 

as a mask for subsequent material patterning. This is used in an analogous way to lift-off lithography 

where the particles act similarly to the photoresist in common lithography processes. The process 

consists in the four steps represented in Figure 2. 

In the first step (Figure 3 a), colloidal suspensions of polystyrene (PS) spheres were used, 

purchased from Microparticles GmbH, with a diameter of 1.3 µm and 1.6 µm dispersed in a mixture of 

water and ethanol (1:3) solutions at a concentration of 2.5% wt. A monolayer of such microspheres is 

directly deposited on the surface of the substrate following a Langmuir-Blodgett (LB) wet-coating 

methodology [2]. This process started by depositing a colloidal suspension in the interface between 
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water and air, using a syringe. The barriers of the LB system are then closed at a controlled speed, 

driving the floating spheres to self-assemble at such interface in an ordered close-packed hexagonal 

array. Afterwards, the obtained monolayer is transferred to the surface of the prepared samples by dip 

coating, with controlled withdrawal speed (see Figure 3 a). Although the deposition occurs relatively 

fast, one critical condition must be met for the deposition to be successful. This technique is very 

sensitive to surface tension variations and any contamination in the water can lead to undesirable 

results.  

In the second step (Figure 3 b) after the deposition, the spheres are eroded using reactive ion 

etching (RIE) and openings are formed in between them. This will allow us to deposit a conductive 

material, typically a metal, around the spheres (step three - see Figure 3 c). After the removal of the 

spheres by an ultra-sonic bath in toluene, the thin metal micromesh is created (step four - see Figure 3 

d). The morphology of the resulting mesh can be much better controlled over large areas and has more 

uniform electrical properties than random NWs and the holes formed after the removal of the spheres 

allow for high transmittances [3, 13, 14]. Toluene isn’t an environmentally friendly chemical and some 

tests have been conducted using IPA paralel to this work showing promising results. 

The final TCE should have similar properties to the one presented in fig. 4 

 

 

Figure 3 Schematic of colloidal lithography process. a) Close-packed monolayer of colloidal micro-

spheres deposited on top of the substrate, forming a regular honeycomb array. b) Non-closed-packed array of 

spheres formed after dry-etching under O2 atmosphere. c) A metal film is deposited on top and in between 

spheres. d) Structured thin metal film resultant from the removal of spheres. 

 

 
Figure 4 SEM images of samples produced by self-assembly colloidal lithography on a flexible 

substrate.[3] 

 

This technique has been studied before for this specific application, however, this work shows 

promising results by using spheres with higher diameters than the visible wavelength. This nullifies the 

decrease in transmittance caused by the second order plasmon resonance seen in other works [6]. 
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1.3. Effect of metallic materials on the optical properties of the contact 

 

Metallic materials, such as those used for the conductive pathway, tend to produce a strong and 

undesired reflection of sunlight. However, when structured in nanoscale wires or even wavelength-sized 

voids, these materials introduce new ways to manipulate light at a subwavelength or wavelength scale 

[16]. When light hits this structure, the electrons on the material surface oscillate at a certain frequency, 

driven by the incident electric field. When the frequency of this field matches the natural oscillating 

frequency of the free electrons in the metallic structure, a resonance can occur, known as a plasmonic 

mode. The frequency at which the electrons oscillate depends on the structure size, shape and 

periodicity; in this case, the hole diameter and array pitch. As light penetrates the material, the 

wavelengths near the resonance frequency can be strongly absorbed and diffracted. By adjusting the 

original sphere size and etching times we are able to control this resonance frequency and, therefore, 

the diffracted wavelengths. This can be useful to increase the total pathway of NIR light inside the active 

layer of thin film solar cells [3, 13, 16–19]. 

The metallic mesh is typically incorporated within an antireflection coating (ARC) layer, such as 

ITO or silicon nitride (SiNx). The optimal ARC thickness is around 70-80 nm and serves to reduce the 

reflection occurring in the metal and in its void areas, while also protecting the metal from oxidation [4]. 

The introduction of a conductive micro-mesh on large area solar cells allows for higher spacing within 

its typical metal fingers, which are used as the pathway for the photocurrent. This can therefore reduce 

the undesired effects caused by the presence of such metal fingers (sunlight reflection/shading) which 

lower the current and cell efficiency [4, 14]. 

 

1.4. Effect of top contact resistance 

 

In solar cells, the top transparent contact is usually the main contributor for the series resistance 

of the devices. This is a parasitic parameter responsible for dissipating power and consequently, 

lowering the overall efficiency of the cell. As such, with increasing sheet resistance the maximum power 

point (MPP) decreases and this effect is demonstrated in Figure 5. 

When considering that solar cells are low voltage but high DC current generators, we can 

understand that small resistance variations will translate in significant power losses [20–22]. 

 

 

Figure 5 Influence of series resistance on the maximum power point of a solar cell [23]. 
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As stated previously, contacts with higher sheet resistant call for lower spacing within metallic 

fingers to minimize total sheet resistance, which will increase shading, reduce incident radiation and 

therefore, lower power generated. An optimal finger spacing can be calculated to reduce overall power 

losses by considering individual losses due to shading, series resistance and finger resistance. 

However, lowering such losses should begin by improving the illuminated top contact. In this work, we 

will evaluate our contacts according to the figure of merit (FOM) calculated using the equation 1, where 

T is the mean transmittance within a certain wavelength range and Rsh is the contact sheet resistance 

[20–22]. 

 

𝐹𝑂𝑀 =
𝑇10

𝑅𝑠ℎ
             Equation 1 

 

Note that the transmittance is highly valued (elevated to the power of 10) due to how critical 

optical losses are to the cell efficiency. Optical properties will determine how much current the cell can 

generate, meaning that the maximum power generated by a cell is highly dependent on the 

transmittance through the contact. Another reason for valuing the transmittance so highly relative to the 

sheet resistance is the fact that optical losses cannot be recuperated. Although the sheet resistance can 

have a significant impact on the cell efficiency, its effects can be minimized, for example, by using 

fingers. 

1.5. Shading effect on solar cells 

 

Solar cell arrays are composed by individual cells connected in series and/or parallel to meet the 

intended voltage and current. In solar cell modules, different outputs are bound to exist from one series 

to another. This is called mismatch and it is a major cause for power losses, as the overall module power 

output is dependent on the worst performing series. There are a few causes for this mismatch, with 

partial shading being the most important one. When the module, or even a single solar cell, is partly 

shaded some of its cells become reverse biased and act as loads, as opposed to power generators. 

The cells acting as loads will dissipate power generated by nonshaded cells and will drastically reduce 

the module power output. In extreme cases, the power dissipated by a shadowed cell can be so high or 

so localized that the cell reaches its thermal breakdown point. In this case, the cell becomes irreversibly 

damaged in a phenomenon designated as hot-spot [23–27]. 

Concerning the structures produced in this work, shading effects are reduced by optimizing the 

silver micro-mesh. This optimization is done by obtaining a good sphere deposition, forming a 

honeycomb structure and therefore, reducing shading from excessive silver.  
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Chapter II: Experimental 

2.1. TCE fabrication 

Various procedures were used due to different variables being studied at distinct stages of this 

work. This means that the following procedure gives a good description of the method used to produce 

some of the samples with the best results but does not completely reflect all batches of samples 

prepared.  

 

  

Figure 6 Depiction of a transparent conductive electrode (TCE) produced by colloidal lithography in this 

work. 

 

 

2.1.1. Glass preparation 

 

Glass was cut into squares of 2.5 cm × 2.5 cm, rubbed with detergent and cleaned using 10 minutes 

sonication in acetone, 10 minutes in IPA and 10 minutes in deionized water. The substrates were then 

dried using a flow of compressed nitrogen. 

 

2.1.2. TCO deposition 

 

Both IZO and AZO were studied, with IZO performing slightly better and due to easier access to the 

deposition equipment, IZO was chosen for all other depositions. 

The glass squares were loaded onto the 3-target system and secondary vacuum was produced. 

The initial pressure must be lower than 5 × 10−6 mbar to minimize contamination. A partial pressure of 

1 × 10−5 mbar of O2 and 1.5 × 10−3 mbar of Ar was set, and the plasma power was set to 50 W. Before 

the deposition, we waited 15 minutes for pre-sputtering, followed by 12 minutes of sputtering to grow 30 

nm of IZO. 

 

2.1.3. Langmuir-Blodgett 

 

Using the KSV NIMA equipment, various sizes of colloidal spheres were used but the overall 

procedure is the same. The differences in the procedure refer to volume of solution and surface tension 

values used. 



Microstructured transparent conductive metallic electrodes fabricated by colloidal lithography 

 
10 

After making sure that the surface tension is stable at 0 value, this can be achieved by 

vacuuming impurities, the substrates were lowered, maximum two at a time, and stopping and starting 

positions were set. 

A solution of 600 µL of polystyrene (PS) spheres diluted in ethanol is prepared maintaining a 

concentration of 25 µg/mL and added slowly to the water surface of the Langmuir-Blodgett using a 

syringe. 

Using the software KSV NIMA we set the surface tension value at which the deposition will take place 

and the barrier speed to reach said value and start the process. For 1.6 µm spheres the surface tension 

set was 19 mN/mm. Once the surface tension value set is reached, a new tab is opened, and we set 

the speed at which the dipper is raised and start the deposition on the substrate(s). In the end a closely 

packed monolayer of PS spheres should be obtained. 

 

2.1.4. Dry etching 

 

To shape the deposited array of colloidal spheres and form a non-close-packed mask, each sample 

was etched individually using a Minilock – Phantom RIE ICP in 250 mtorr of O2 with 20 sccm of O2 flow 

and a plasma produced with 90 W. The etching times varied but the most commonly used were 90 s, 

120 s, 150 s and 180 s. 

 

2.1.5. Metal deposition 

 

Both aluminum and silver were tested for the conductive electrodes, with silver being the most used 

throughout the work since aluminum does not come close to achieve the targeted goals. 

To deposit silver, the samples are loaded in the E-Beam chamber and secondary vacuum is 

produced. Once the pressure reaches values below 5 × 10−6 mbar the silver is evaporated with an 

electron beam and once a good rate is achieved (0.3nm/s to 0.4 nm/s) the shutter is opened and the 

deposition starts. 

 

2.1.6. Sphere removal (Lift off) 

 

After the deposition of metal and before the final deposition of TCO the spheres must be removed. 

The samples are submitted to an ultrasonic bath in a toluene recipient for 30 min. 

 

2.1.7. Second TCO deposition 

 

A final layer of TCO is deposited, to finalize the ARC layer and encapsulate the metallic material, 

using the same procedure employed in the first deposition (section 1.2). In the end, a silver micromesh 

is formed covered by two layers of 30 nm of IZO each. 

2.2. Characterization 

2.2.1. UV-Vis Spectrophotometry 

The optical characterization of the contacts was based on total transmittance (Tt) and reflectance 

(Rt) acquired by a Spectrometer UV-Vis-NIR - Perkin Elmer Lambda 950 equipped with an integrating 

sphere. 
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2.2.2. SEM-EDS 

The morphology of the complete contacts was examined by scanning electron microscopy (SEM) 

using a Carl Zeiss Auriga crossbeam (SEM-FIB) workstation instrument equipped with an Oxford X-ray 

energy dispersive spectrometer, and with a Tabletop Microscope TM3030 Plus + Quantax 70 SEM.  

 

2.2.3. AFM  

The surface topography of the contacts was also analyzed by atomic force microscopy (AFM, 

Asylum MFP3D) to analyze contamination observed in SEM images and more accurately measure silver 

thickness. 

 

2.2.4. Hall-effect 

The electrical properties of the contacts, sheet resistance, mobility and number of carriers were 

measured using the Hall effect - BioRad HL5500 equipment.  
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Chapter III: Results and Discussion 

 

In this chapter we discuss the optimization of the different variables involved in the fabrication 

processes, such as colloidal sphere size, etching time, metal used and metal thickness, as well as their 

influence in the optical and electrical quality of the final metallic nanostructured electrodes. 

In the appendices we provide detailed descriptions of the initial test depositions that were 

performed before attaining the desired etching times, etching pressures and toluene bath times. 

3.1. Sphere sizes and reproducibility 

In a first stage we compared two different colloidal PS sphere diameters, 1.3 µm and 1.6 µm. 

Both sphere sizes were compared based on the quality of deposition (good formation of a monolayer 

with honeycomb structures over large areas) and optical and electrical properties of the micro-mesh 

structures obtained by using them as lithography mask. To do so, we fixed the rest of the experimental 

parameters: TCO layer thicknesses, etching time. We used two different silver thicknesses for each 

sphere size. Samples are labeled according to the metal used and thickness of such metal and 

according to the sphere size used to produce the mask for the micro mesh. These conditions are 

summarized in table 1. 

 

Table 1: First batch of targeted sample properties to study sphere size influence on the optical and 

electrical properties. 

Sample 
Bottom IZO 

thickness (nm) 

Sphere 

diameter (µm) 

Ag thickness 

(nm) 

Top IZO 

thickness (nm) 

Ag_20nm_1.3µm 
40 1.3 20 30 

Ag_40nm_1.3µm 40 1.3 40 30 

Ag_20nm_1.6µm 40 1.6 20 30 

Ag_40nm_1.6µm 40 1.6 40 30 

 

 

 

 

Figure 7 shows SEM images of the top view of the different samples analyzed. Their respective 

total transmittance and reflectance spectra are plotted in the curves of Figure 8. 

As can be seen in Figure 7, the 1.6 µm spheres were well deposited forming a honeycomb 

structure which allows higher transmittance. On the other hand, 1.3 µm spheres were poorly deposited, 

with more non-uniformities in the array, which resulted in worse transmittance values. Still, we can 

observe the plasmon resonance for both spheres as the transmittance values drops near the wavelength 

correspondent to the hole diameter. This dip occurs because the resonant light is being mainly absorbed 

in the contacts, revealing that the absorption cross section associated to such resonance dominates 

over the scattering cross section. Therefore, it is preferable to use sphere sizes above the wavelengths 

of interest for each application. Those used in this work (>1.3 m diameter) would be suited, for instance, 

for silicon-based solar cells (or any other PV material with higher bandgap), since these cells can only 

generate photocurrent for wavelengths up to 1100-1200 nm. 
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Figure 7 SEM image of the samples prepared using 1.3 μm and 1.6 μm spheres and varied silver 

thickness. a) sample fabricated with 1.3 μm spheres and 20 nm of silver. b) sample fabricated with 1.3 μm 

spheres and 40 nm of silver. c) sample fabricated with 1.6 μm spheres and 20 nm of silver. d) sample fabricated 

with 1.6 μm spheres and 40 nm of silver. 

 

 

Figure 8 Spectrophotometer results for the samples produced with both 1.3 μm and 1.6 μm spheres and 

either 20 or 40 nm of silver thickness. 

 

To better evaluate the spheres, we prepared a second batch of samples to try to get a better 

deposition with 1.3 µm spheres and compared with a sample having a flat silver film against samples 

with structured silver. 
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Table 2: Second batch of targeted sample properties to study sphere size influence on the electrical and 

optical properties of the resulting micro-mesh electrodes. 

Sample 
Bottom IZO 

thickness (nm) 

Sphere diameter 

(µm) 

Ag thickness 

(nm) 

Top IZO 

thickness (nm) 

Ag_30nm_Flat 
40 - 30 30 

Ag_30nm_1.3µm 40 1.3 30 30 

Ag_30nm_1.6µm 40 1.6 30 30 

 

As can be seen in Figure 9, the deposition of 1.6 µm spheres was, once again, much better than 

the deposition of 1.3 µm spheres, showing a much clear honeycomb structure and a better micromesh 

coverage overall. 

 

 

Figure 9 SEM image of the samples prepared using 1.3 μm (a) and 1.6 μm (b) sphere, and 30 nm of 

silver 

 

 

Analyzing the spectrophotometer results shown in Figure 10 we can see that the optical 

properties of samples produced with 1.6 µm spheres are better than samples produced with 1.3 µm 

spheres at almost all wavelengths. Samples produced with 1.6 µm lose to 1.3 µm in transmittance for 

wavelengths close to 1.5 µm which is due to the plasmon resonance of the structure produced with 1.6 

µm spheres. Both structures have similar transmittance for wavelengths higher than 1.6 µm. As 

expected, both samples with structured silver showed much better optical results than the sample with 

a flat silver film. 
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Figure 10 Spectrophotometer results for the 30 nm silver thick samples produced without spheres and with 

both 1.3 μm spheres and 1.6 μm spheres. Flat 30 nm silver film is represented in black, micromesh produced with 

1.6 and 1.3 μm spheres are represented in blue and red respectively. Dash lines represent reflection of each 

sample. 

 

 

Table 3: Electrical properties obtained for samples with 30 nm of silver thickness and different sphere 

sizes. The quantities are defined in section 2.4. 

Sample Rsh (Ω/sq) µ (cm2/V-s) n (1017/cm2) 

Ag_30nm_Flat 
0.57 20.7 5.23 

Ag_30nm_1.6 µm 4.8 4.21 3.11 

Ag_30nm_1.3 µm 4.05 4.55 3.38 

 

 

The electrical results obtained through Hall-effect (see Table 1 give an advantage to the sample 

produced with 1.3 µm spheres). These results are to be expected as the sample produced with 1.3 µm 

spheres has a higher silver coverage than the sample produced with 1.6 µm. Around 42% of the 

structure fabricated with 1.3 µm spheres is covered with silver, as opposed to 35% estimated for the 

sample fabricated with 1.6 µm spheres. This was calculated using the Gatan Microscopy Suite Software. 

The flat sample as much lower sheet resistance than both structured samples, however this cannot be 

used as it acts like a mirror for all wavelengths. 

 

Table 4: Average structural properties of samples with 30 nm silver thickness. Grid spacing represents the 

average hole diameter and correlates with the plasmon resonance of such structures, the linewidth represents the 

average distance between holes and silver area represents the percentage of surface covered in silver. 

Sample Grid spacing, G (µm) Linewidth, W [µm] Silver Coverage (in 100 µm2 area) 

1.3 µm 1.12 0.18 42% 

1.6 µm 1.5 0.13 35% 

 

Considering these two batches and previous tests with 1.3 µm spheres we decided that they 

are not reliable enough to use in further depositions. The structures fabricated with 1.6 µm spheres show 

better uniformity over large areas, depositions were consistently better, showed better optical behavior 

until higher wavelengths and showed similar electrical properties to structures fabricated with 1.3 µm 

spheres despite having much lower area of silver.  

 

3.2. Silver vs Aluminum for the metallic meshes 

 

After choosing the size of colloidal spheres to be deposited we proceeded to test two different 

metals, silver and aluminum. While silver is a better conductor, aluminum is much more affordable and 

has higher transparency in the visible range. Two batches of samples were prepared. The first batch 

consisted of two samples, one being a flat aluminum film (used as reference) and the other being an 

aluminum micromesh produced using 1.6 µm spheres. The second batch consisted as well of one flat 

silver film (used as reference) and two samples with silver micromesh. One produced using 1.3 µm 

spheres and the other using 1.6 µm spheres. All samples had two layers of IZO, a top layer with 30 nm 

and a bottom layer with 40 nm. 
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Table 5 summarizes the features of each sample proposed in this section and Figure 11 shows 

the spectrophotometer results for these samples. Metal thickness variation was due to flawed 

measurement of aluminum thickness. 

 

Table 5: Targeted sample properties to study the influence of using aluminum (Al) on the electrical and 

optical properties. 

Sample name 
Bottom IZO 

thickness (nm) 

Dry Etching 

time (s) 

Al thickness 

(nm) 

Top IZO 

thickness (nm) 

Al_35nm_Flat 
40 - 35 30 

Al_35nm_1.6µm 40 90 35 30 

 

 

These aluminum samples were compared with the previous 30 nm of silver samples fabricated 

with 1.6 µm spheres and without spheres. 

Taking into account the corresponding spectrophotometer results shown in Figure 11, we can 

conclude that the optical properties of the aluminum and silver structures are similar. However, analyzing 

the electrical properties shown in Table 6, we notice a clear difference between silver and aluminum. A 

flat aluminum film presents roughly the same sheet resistance as a structured silver film, and the sheet 

resistance of a structured aluminum film is much higher than our targeted value of 10 Ω/sq. In order to 

improve the electrical properties, we need to sacrifice the optical properties and vice-versa. Considering 

that aluminum falls short on both, this metal is not the suitable to achieve our goal of 10 Ω/sq and 80% 

average transmittance. 

The silver micromesh shows similar optical properties to the aluminum micromesh and there is 

still room for improvement by reducing the silver thickness due to the excellent electrical properties. 

 

 

Figure 11 Spectrophotometer results for the 30 nm silver thick samples produced with and without 1.6 

μm spheres, blue and black respectively and 35 nm aluminum thick samples produced with and without 1.6 μm 

spheres, red and gray respectively. 
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Table 6: Electrical properties of silver and aluminum samples. 

Sample Rsh (Ω/sq) µ (cm2/V-s) n (1017/cm2) 

Al_35nm_flat 4.72 3.7 3.57 

Al_35_1.6µm 26.3 8.52 0.27 

Ag_30nm_flat 0.57 20.7 5.23 

Ag_30nm_1.6µm 4.8 4.21 3.11 

 

 

3.3. Etching time 

 

To reach 80% average transmittance we reduced the silver layer thickness and tested different 

etching times. By modifying the etching times, we can control the amount of metal (mainly the linewidth, 

W, see Figure 6, deposited in posterior steps, which enables the study of the influence of W on the 

optical properties. This should have a noticeable effect on the light transmittance through the silver layer. 

Samples are labeled according to the metal used and its thickness, mesh structure (flat or structured 

with a sphere with a certain size) and etching time used when applied. 

 

Table 7: Targeted sample properties to study the etching time influence on the electrical and optical 

properties. 

Sample 
Bottom IZO 

Thickness (nm) 

Etching 

time (s) 

Top IZO 

Thickness (nm) 

Ag_10nm_Flat 
40 - 30 

Ag_10nm_1.6µm_90s 40 90 30 

Ag_10nm_1.6µm_120s 40 120 30 

Ag_10nm_1.6µm_150s 40 150 30 

Ag_10nm_1.6µm_180s 40 180 30 

 

Analyzing the SEM images in Figure 12 we can see that good quality meshes, with a regular 

array and low defect density, were created for all etching times. The increase in wire width and silver 

area with etching time is also noticeable, and the approximate values are represented in Table 8. 
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Figure 12 SEM image of the samples prepared using 1.6 µm spheres and varied etching times: a) 90s. 

b) 120s. c) 150s. d) 180s.  

 

Table 8: Structural properties of the micro-meshes obtained with 10 nm silver thickness and varied etching 

times. 

Sample Grid spacing, 

G (µm) 

Linewidth, 

W [µm] 

Silver Coverage 

(in 100 µm2 area) 

Ag_10nm_1.6µm_90s 
1.38 0.20 28 % 

Ag_10nm_1.6µm_120s 1.34 0.21 31 % 

Ag_10nm_1.6µm_150s 1.26 0.24 40 % 

Ag_10nm_1.6µm_180s 1.25 0.35 40 % 

 

Observing the spectrophotometer results shown in Figure 13, we can see that all samples 

(except the one fabricated with 180 s of etching) reached >70% peak transmittance. The flat film actually 

shows the highest peak transmittance at around 75-%, but its transmittance drops sharply right after the 

peak. The structured samples show great transmittance gains relative to the flat Ag film sample in the 

near infra-red (NIR) region and show a clear correlation between silver area coverage and transmittance 

in this region. Lower etching times keep the plasmon effect (dip in transmittance in the NIR) to a 

minimum and allow for better recovery of transmittance at all wavelengths. 
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Figure 13 Spectrophotometer results for 10 nm Ag thick samples fabricated with 1.6 μm spheres under 

varied etching times and a flat (non-structured) 10 nm thick Ag film. 

 

Analyzing the electrical properties shown in Table 9, we can see that two samples, fabricated 

with 150 s and 180 s of etching, are very close to the targeted 10 Ω/sq. Unexpectedly, the sample 

fabricated with 180 s of etching shows similar but slightly worse electrical properties than the sample 

fabricated with 150 s. Both samples were prepared simultaneously at all stages, except for the dry 

etching process. However, it is possible that some contaminations during the sphere deposition or non-

uniform silver deposition during the e-beam process might have worsen the properties of this 

Ag_10nm_1.6µm_180s sample. 

 

Table 9: Electrical properties of 10 nm silver thick samples with varied etching times. 

Sample Rsh (Ω/sq) µ (cm2/V-s) n (1017/cm2) 

Ag_10nm_Flat 
2.64 16.7 14.1 

Ag_10nm_1.6µm_90s 26.4 8.08 2.9 

Ag_10nm_1.6µm_120s 16.4 6.27 6.1 

Ag_10nm_1.6µm_150s 10.6 5 11 

Ag_10nm_1.6µm_180s 12.8 3.78 13 

 

 

Overall, the reduction of metal thickness translated to higher transmittance, as expected. We 

reached a maximum of 72% and 73 % transmittance for the samples corresponding to 90 s and 120 s 

of etching, respectively, yielding the highest transmission so far. It is also observed that lower etching 

times means lower impact of the plasmon effect on the transmittance, translating in a better recovery of 

transmittance in the NIR region at some expense of the electrical properties. To find the best 

compromise between electrical and optical properties we used the figure of merit (FOM) given by the 

equation 1 (shown in Figure 14), where T is the mean transmittance ranging from 300 nm to 1300 nm 

and Rs is the sheet resistance of the sample. 
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Figure 14 Figure of merit as a function of etching time produced with 10 nm of flat Ag and using 1.6 μm 

spheres under different etching times. The mean transmittance, T, was calculated between 300 nm and 1300 nm. 

The FOM for a flat 60 nm IZO (contact thickness without metallic grid) is shown for comparison. 

 

Comparing the different samples based on the figure of merit we conclude that the sample 

fabricated with 150 seconds of etching shows the best compromise between optical and electrical 

properties. Samples fabricated with both 90 s and 120 s show similar figure of merit, but their sheet 

resistance is quite higher than the targeted 10 Ω/sq. The Ag_10nm_1.6µm_150s sample shows a peak 

transmittance above 71% and 10.6 Ω/sq sheet resistance and considering both IZO layers we should 

have a 70 nm thick TCE. For comparison, 80 nm of ITO fabricated at room temperature translates in 

110 Ω/sq. 

 

3.4. TCO thickness 

 

High losses due to reflection can be observed in the previous spectrophotometer results. In an 

attempt to reduce these losses, we increased the upper TCO layer thickness to see if the reflectance 

from the metal could be reduced in favor of the overall transmittance, meaning an enhancement of the 

ARC structure over the Ag material. Samples are labeled in Table 10 according to the metal, metal 

thickness and sphere size used (if applied) to produce the micromesh and according to the upper IZO 

thickness layer. Both structured samples were eroded under 120 s of etching under the same conditions 

as previous samples (250mtorr O2 with 20 sccm of O2 flow and 90 W of RIE power). 

 

Table 10: Targeted sample properties to study TCO thickness influence on the electrical and optical 

properties. 

Sample 
Bottom IZO 

thickness (nm) 

Sphere 

diameter (µm) 

Ag thickness 

(nm) 

Top IZO thickness 

(nm) 

Ag_10nm_Flat_85nm 
30 - 10 85 

Ag_10nm_1.6µm_85nm 30 1.6 10 85 

Ag_10nm_1.6µm_30nm 30 1.6 10 30 
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Observing the spectrophotometer results in Figure 15, we can conclude that some reflectance 

for wavelengths close to 500 nm was reduced, but the reflectance for wavelengths higher than 1300 nm 

was increased. The reduction in reflectance for wavelengths close to 500 nm did not translate into higher 

transmittance, suggesting that any possible reduction of reflectance was lost to absorption within the 

contact. 

Overall, the increase in TCO thickness showed only negative results, mainly due to the higher 

parasitic absorption occurring in the IZO material, except for a small decrease in sheet resistance as 

can be seen in Table 11. 

A sample with only 60 nm of IZO is including in Table 11 to demonstrate the sheet resistance 

gain by introducing a structured Ag layer. This sample is studied further in appendix D. 

 

 

Figure 15. Spectrophotometer results for 10 nm thick samples fabricated with 1.6 μm spheres with 

different TCO thickness and flat 10 nm film of silver with higher TCO thickness. 

 

Table 11: Electrical properties of 10 nm silver thick samples with varied TCO thickness. 

Sample Rsh (Ω/sq) µ (cm2/V-s) n (1017/cm2) 

Ag_10nm_Flat_85 nm 
2.64 16.7 14.1 

Ag_10nm_1.6µm_85 nm 16 2.13 1.8 

Ag_10nm_1.6µm_30 nm 16.4 6.27 6.1 

60nm_IZO 252 29.9 0.008 

 

3.5. Different TCO material 

 

As stated previously, minimizing costs is also a point of interest in this work, so we tested AZO 

against IZO, as aluminum is considerably less expensive than indium. Two identical samples were 

prepared except for the TCO layers. All stages of fabrication were done simultaneous for both samples 

with the exception of the deposition of the TCO layers, to allow a better comparison between the 

samples. Samples are labeled in Table 12 according to the metal, metal thickness and sphere size used 

(if applied) to produce the micromesh and according to TCO used in both layers. Both structured 

samples were eroded under 120 s of etching under the same conditions as previous samples (250mtorr 

O2 atmosphere with 20 sccm of O2 flow and 90 W of RIE power). 
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Table 12: Targeted sample properties to study the influence of the TCO material used on the electrical and 

optical properties.  

Sample TCO material TCO thickness (nm) Ag thickness (nm) 

Ag_10nm_Flat_AZO 
AZO 30 (2 layers) 10 

Ag_10nm_1.6µm_AZO AZO 30 (2 layers) 10 

Ag_10nm_1.6µm_IZO IZO 30 (2 layers) 10 

 

As can be seen from the spectrophotometer results shown in Figure 16 and electrical results 

shown in Table 13, the micro-meshed TCE with AZO seems to be worse than the sample with IZO both 

in optical and electrical properties. Considering that we have not yet achieved the targeted results, sheet 

resistance barely higher than 10 Ω/sq and peak transmittance around 71 %, it is preferential to use IZO 

in further depositions.  

Taking a closer look to the flat 10 nm sample fabricated with AZO, we notice that the sheet 

resistance is almost half of the sheet resistance for a flat 10 nm film with IZO. Considering that IZO 

performed better than AZO in both mobility and density of carriers in the micro-meshed TCEs it would 

be expected for ITO to outperform AZO in a flat film as well. This can be attributed to an uncertainty in 

measuring the deposition rate during the silver deposition process, as in these samples any small 

nanometric variation in silver thickness can provide considerable differences in the sheet resistance. 

While this can have an effect when comparing samples from different batches, it does not affect samples 

within the same batch, as the silver is deposited at the same time for all samples. 

 

   

Figure 16. Spectrophotometer results for 10 nm thick samples fabricated with 1.6 µm diameter spheres 

under 250 mtorr O2 atmosphere with 20 sccm O2 flow, 90 W RIE power, 120 s of etching and either IZO or AZO 

as TCO plus a 10 nm flat film of silver with AZO. 
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Table 13: Electrical properties of 10 nm silver thick samples with either IZO or AZO as the TCO material. 

Sample Rsh (Ω/sq) µ (cm2/V-s) n (1017/cm2) 

Ag_10nm_Flat_AZO 
1.37 22.8 2.0 

Ag_10nm_1.6µm_AZO 16 2.13 1.8 

Ag_10nm_1.6µm_IZO 13.1 6.02 7.9 

 

3.6. Higher colloidal sphere diameter 

 

In the previous experiments, the use of micro-spheres with size close to the NIR wavelengths 

induced a plasmon resonance which increased the absorption of radiation (dip in transmittance) at 

wavelengths close to the spheres’ diameter, as such diameter defines the array pitch. This means that 

the light close to these wavelengths is being absorbed by the contact material, which is an optical loss 

caused by such resonant effect. 

To improve the optical properties in the NIR region, we tested colloidal PS spheres with 

diameters larger than 2 µm. After trying with four different sizes, two close to 2.5 µm and two close to 5 

µm, we chose one of the solutions with spheres having 5 µm diameter. The use of spheres of this size 

ensures that the plasmon resonance is shifted to much larger wavelengths that fall outside the spectral 

range of interest for photovoltaics, thus allowing the use of this electrodes for multiple junction cells with 

multiple terminals [29, 30], in which infrared radiation is of high importance. Samples are labeled in 

Table 14 according to the metal, metal thickness plus sphere size and etching time used (when applied). 

In all structured samples, the spheres were eroded under 250mtorr O2 atmosphere with 20 sccm of O2 

flow and 90 W of RIE power. 

 

Table 14: Targeted sample properties to study the influence of higher sphere sizes on the electrical and 

optical properties of the TCEs. 

Sample 
Top IZO thickness 

(nm) 

Sphere diameter 

(µm) 

Etching 

time (s) 

Bottom IZO 

Thickness (nm) 

Ag_10nm_Flat 
30 - - 30 

Ag_10nm_5µm_120s 30 5.0 120 30 

Ag_10nm_5µm_180s 30 5.0 180 30 

Ag_10nm_5µm_240s 30 5.0 240 30 

 

From previous SEM images using a SEM Hitachi TM 3030Plus Tabletop we noticed quite a bit 

of debris on the samples, and spheres that remained after the toluene bath. To better evaluate the 

structures, we used the SEM-FIB – Zeiss Auriga CrossBeam Workstation which provides better 

resolution and allows for energy dispersive spectroscopy. 

Observing the SEM results for the 10 nm silver samples fabricated with 5 µm and 120 s of 

etching shown in Figure 17 a) and Figure 17 b) we notice that a very thin silver film is present and quite 

a bit of debris can be seen inside the holes, suggesting some PS impurities from the spheres remained 

after the toluene bath. From these images, it is clear this was a bad sphere deposition. In Figure 17 a) 

we can see that only 5 holes surround the hole on the center of the image instead of 6 and because of 

this, high linewidth variation follows. 
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Figure 17 SEM images of the sample fabricated with 5 μm spheres, 10 nm of silver and 120 s of etching. 

a) Top view of the contact. b) Tilted view with 30 º angle. 

 

During the SEM characterization we used the EDS functionality to obtain more information about 

the contaminations seen in the SEM images, which were attributed to PS remnants. The characterization 

was conducted in a hole and on top of the mesh.  

As expected, indium, zinc and silver are found in much lower quantity than the other elements. 

This is due to the small thickness of the contact compared to the glass substrate. The only result that 

stands out is the amount of carbon present in the sample. It is not unusual to find carbon in EDS 

characterizations, however it is present in much larger amounts than normal. The most likely explanation 

for this is the carbon that constitutes the PS spheres. 

Comparing results from both spots we notice that a small amount of silver is found in the EDS 

characterization conducted inside the hole. This can be due to cross contamination during the silver 

deposition, which will cause a decrease in transmittance through the holes (see appendix C for SEM 

image of the characterization site and EDS graphs). 

 

Table 15: EDS results conducted inside a hole and on the mesh. 

Element Hole (atomic %) Mesh (atomic %) 

C 
41.65 41.61 

O 
29.62 27.16 

Na 3.53 3.77 

Si 19.09 19.01 

Zn 0.29 0.32 

Ag 0.2 2.28 

In 1.56 1.83 

 

To obtain a more precise value for the real silver thickness and to obtain more information on 

the debris present in the samples, AFM was conducted, and an image of the sample surface can be 

seen in Figure 18. As expected from previous SEM observations, we found that the thickness of silver 

present in the sample was much lower than the intended 10 nm, standing at only around 3 nm. The big 

spikes present in the surface might result from sphere remnants and can have an influence in both 

optical and electrical properties of the sample. A supposedly PS layer inside the holes can also be seen 

in Figure 18 and has an average thickness of 10 nm. 
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Figure 18 AFM image of the sample fabricated with 5 μm spheres, 10 nm of silver and 120 s of etching 

 

From the AFM results the actual silver thickness was measured, standing at around 4 nm. This 

is not enough to form a completely uniform film which is why the surface is much rougher than in previous 

depositions.  

 

 

 

Figure 19Spectrophotometer results for 10 nm thick samples fabricated with 5 μm spheres under varied 

etching times and a flat 10 nm thick sample. 

 

Considering the very thin silver layer deposited, and the high sphere diameter, high broadband 

transmittance was expected but bad electrical properties should follow, especially considering the poor 

quality of sphere deposition. 
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Table 16: Electrical properties of 10 nm silver thick samples with 5 μm spheres and varied etching times. 

Sample Rsh (Ω/sq) µ (cm2/V-s) n (1017/cm2) 

Ag_10nm_Flat 
3.41 12.8 1.43 

Ag_10nm_5µm_120s 121 29 0.01 

Ag_10nm_5µm_180s 126 30 0.01 

Ag_10nm_5µm_240s 134 - - 

 

These samples presented better optical but worse electrical properties than the previous ones 

with 1.6 um spheres. The flat silver film sample also presented higher sheet resistance than previous 

samples which are supposed to have 10 nm of silver. This, again, shows a flaw in the measurement of 

the silver deposition rate. Possible causes for this are poor calibration of the equipment, low resolution 

of the deposition rate and the need to manually stop the deposition when closing the shutter. 

The silver thickness in this samples was so inconsistent that the increase in etching time did not 

result in better electrical properties, suggesting that a big percentage of the conduction is being done 

through the TCO layers as opposed to the silver mesh. 

 These samples show good optical behavior in the infrared region, however, when 

considering the electrical properties, it is still preferable to just use ITO as it will present similar qualities 

with fewer steps. 

3.7. Different metal thickness with 5 µm diameter spheres 

 To circumvent the problem of the poor measurement of silver thickness, we increased 

the intended thickness to 20 nm and 40 nm. This should also facilitate the study of this spheres size at 

earlier stages. Samples are labeled in Table 17 according to the metal, metal thickness plus sphere size 

and etching time used (when applied). The spheres in all structured samples were eroded under 

250mtorr O2 atmosphere with 20 sccm of O2 flow and 90 W of RIE power. 

 

Table 17: Targeted sample properties to study the influence of silver thickness on the electrical and optical 

properties when using 5 μm colloidal spheres. 

Sample 
Top IZO 

Thickness (nm) 

Sphere diameter 

(µm) 

Etching 

time (s) 

Ag (nm) Bottom IZO 

thickness (nm) 

Ag_20nm_Flat 
30 - - 20 30 

Ag_40nm_Flat 
30 - - 40 30 

Ag_20nm_5µm_120s 30 5.0 120 20 30 

Ag_40nm_5µm_120s 30 5.0 240 40 30 

Ag_20nm_5µm_120s 30 5.0 120 20 30 

Ag_40nm_5µm_240s 30 5.0 240 40 30 

 

 

Observing the SEM images shown in Figure 20 for the 20nm silver thick sample produced with 

5 µm spheres and 120 s of etching, we can see that the quality of sphere deposition is slightly better. 

Due to the short etching time, several wires are cut which will affect the electrical properties, but overall 

the spheres are arranged much more closely packed. 
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Figure 20 SEM images of the sample fabricated with 5 μm spheres, 20 nm of silver and 240 s of etching. 

a) Top view of the contact. b) Close up of the top view. c) Tilted view with 30 º angle. 

 

Once again, AFM images were taken for the samples prepared with 120 s of etching. In Figure 

21, we can see a much clearer differentiation between silver and holes due to the higher silver thickness. 

The average silver thickness was 25 nm, being relatively close to the intended 20 nm. The supposed 

PS contamination is also present in this sample, with some spikes inside the holes and a thinner film, 

again with around 10 nm of thickness. 

 

 

Figure 21: AFM images (with different height, z, scale) of the sample fabricated with 5 μm spheres, 20 nm 

of silver and 120 s of etching 

 

Analyzing the spectrophotometer results shown in Figure 22, we can see a decrease in 

transmittance when compared to the previous samples (Figure 22), as expected. These samples show 

considerably more silver and are still not fully optimized. Nonetheless, the sample produced with 120 s 

of etching shows an average 65 % transmittance from 300 nm to 2000 nm which shows some potential 

for use in cells which make use of higher wavelength radiation, such as multi-junction solar cells. 
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Figure 22 Spectrophotometer results for 20 nm thick samples fabricated with 5 μm spheres under varied 

etching times and a flat 20 nm thick sample9 

 

When analyzing the SEM images of samples produced with 40 nm of silver we notice a similar 

good quality of sphere deposition. There are some defects present, such as missing holes, as can be 

seen in Figure 23 a), and cut silver pathways as can be seen on the bottom left of Figure 23 b). 

 

 

Figure 23. SEM images of the sample fabricated with 5 μm spheres, 40 nm of silver and 120 s of etching. 

a) Top view of the contact. b) Top view of the contact. with higher magnification c) Tilted view with 30 º angle. 

 

However, the AFM analysis obtained for this sample showed much higher silver thickness than 

intended, standing at around 75 nm instead of 40 nm. This explains the mirror like properties of the flat 

silver film seen in Figure 24. Once again, a thin layer with around 10 nm, possibly of PS remnants, was 

measured inside the holes of these samples. 

 

 

Figure 24. AFM image of the sample fabricated with 5 μm spheres, 40 nm of silver and 120 s of etching 
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Figure 25 Spectrophotometer results for 40 nm thick samples fabricated with 5 μm spheres under varied 

etching times and a flat 40 nm thick sample 

 

Table 18: Electrical properties of samples fabricated using 5 μm spheres and varied silver thickness and 

etching time. 

Sample Rsh (Ω/sq) µ (cm2/V-s) n (1017/cm2) 

Ag_20nm_Flat 
1.33 24.3 1.93 

Ag_20nm_5µm_120s 69.7 21 0.04 

Ag_200nm_5µm_240s 22.1 6.63 0.42 

Ag_40nm_Flat 0.3 27.3 7.31 

Ag_40nm_5µm_120s 18.3 5.87 0.58 

Ag_40nm_5µm_240s 6.1 3.89 2.63 

 

Analyzing the electrical results for samples with 20 and 40 nm of silver we can see that only one 

structured sample (Ag_40nm_5µm_240s) presents sheet resistance lower than the targeted value. 

These results suggest that the targeted sheet resistance value may not be possible to achieve without 

sacrificing optical properties. Although some improvements in sphere deposition can be achieved to 

obtain better optical results, the fact that only the 40 nm silver sample with 240 s of etching broke the 

targeted value indicates that the main focus for these contacts should be on the transmittance instead 

of sheet resistance. 

 

Samples produced with 5 µm diameter spheres were compared with previous samples using 

the figure of merit. The IR range was increased to 2000 nm as these spheres are meant to produce 

samples with better transmittance at higher ranges. This range can be used for multi-junction solar cells 

and other optoelectronic devices. 

From Figure 26, the sample Ag_10nm_5µm_120s stands out as the top contender for 

application in solar cells where higher wavelengths in the NIR are of considerable importance, mainly 
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due to its better transmittance. Considering the lackluster sphere deposition, this sample might achieve 

better electrical and optical results. 

 

 

Figure 26. FOM as a function of etching time produced with 10 nm of silver flat and using 1.6 μm spheres 

and produced with 5 μm spheres with varying silver thickness. The mean transmittance was calculated between 

300 nm and 2000 nm. The FOM for a flat 60nm of IZO is also shown – note that its high value is mainly due to 

better transmittance, but its sheet resistance (252 /sq) is much higher than our target of 10 /sq. 

3.8. Attempt to improve contacts 

 

To try to work around the PS contamination we prepared another batch of samples. Four 

samples were prepared in total. A sample with flat 60 nm of IZO, a sample with flat 15 nm of silver in 

between two IZO layers 30 nm thick, a sample with 15 nm structured film in between two IZO layers 30 

nm thick and a sample with both 15 nm silver film and top 30 nm IZO structured on top of the bottom 30 

nm thick IZO layer. The IZO layer was also structured to reduce its absorption and reflection. The 

samples were meant to be subjected to dry etching after the removal of the spheres, to attempt to etch 

the PS remnants, however we noticed that this process damaged the sample with structured silver. So, 

we skipped this stage on the other sample. This process might still be a viable option to remove the PS 

contamination, however, lower power and lower etching times must be used. Also, different gases and 

pressures should be tested in the RIE chamber. 

 

Table 19: Electrical results of the different samples prepared 

Sample Rsh (Ω/sq) µ (cm2/V-s) n (1017/cm2) 

Ag_15nm_Flat 
1.47 24.7 1.79 

Ag_15nm_1.6µm_Ag 3230 9.23 0.002 

Ag_15nm_1.6µm_Ag/IZO 6.91 6.11 1.48 

60nm_IZO 252 29.9 0.008 
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Chapter IV: Conclusions and Future Trends 

Innovative metallic, transparent, nanostructured electrodes were developed using a colloidal 

lithography method. To achieve our best performing contact, we studied the different experimental 

variables, going from perfecting the deposition of polystyrene spheres with 1.6 um and studying other 

sizes to find the best etching parameters. We also studied the behavior of aluminum and silver with 

different thicknesses and how they translate into optical and electrical properties, and we tested two 

transparent conductive oxides to obtain the best optical properties within the anti-reflection coating layer. 

The most challenging part of this work is to assure a good deposition of PS spheres through the 

Langmuir-Blodgett method, and this stage proved fatal for spheres with 1.3 µm and so far, for 5 µm 

spheres as well. In the first part of this work we tested 1.3 µm and 1.6 µm PS spheres, however we were 

only able to obtain consistent high-quality depositions for spheres with 1.6 µm diameter. Spheres with 

1.3 µm showed good optical and electrical properties in some depositions, but they were more 

unreliable, resulting in low quality depositions most of the time. 

The reaction ion etching time was another important variable we investigated during this thesis. 

First, we established a minimum time which would allow for a continuous mesh to be formed. At earlier 

stages the time used was 60 s, however we observed in subsequent samples that this time was not 

enough to consistently produce an unbroken mesh, so the time was then increased to 90 s. The best 

overall time, 150 s, was extracted from looking at the FOM of different samples. This time should give 

us the best balance between optical and electrical properties. However, it is of our opinion that the 

transmittance is valued too greatly (i.e. elevated to the power of 10) in the equation used to obtain the 

FOM, when the sheet resistance is also of high importance for opto-electronic devices as large-area 

solar cells. Therefore, the determining evaluation must be performed by applying these contacts in solar 

cells, to check which would produce the best performing cells. 

After settling for a sphere size, we tested aluminum against silver for the mesh material. 

Aluminum was an interesting choice for the mesh as it is much lower cost than silver, however it simply 

could not compete with silver as was shown. The optical differences between the two were barely 

noticeable, but silver was always better in terms of sheet resistance. Unlike with silver, the aluminum 

sheet resistance and transmittance were already respectively higher and lower than the values we 

aimed to obtain, 10 Ω/sq and 80% transmittance. This means that we could not reduce aluminum 

thickness to achieve the 80% as it would increase the sheet resistance, nor could we increase aluminum 

thickness to achieve 10 Ω/sq as it would decrease transmittance. 

The last variable investigated was the material of the TCO layer. We tested IZO and AZO and 

tested the influence of the thickness of the TCO layer in optical and electrical properties. AZO was an 

interesting choice for the TCO layer much like aluminum was as a contender for the mesh, as aluminum 

is much cheaper than indium; but once again, we could not reaching desired results, with IZO showing 

better optical properties over all radiation ranges. As for the different TCO thicknesses, the little research 

we conducted proved useless at reducing reflectance losses and even resulted in the opposite effect 

for higher NIR wavelengths. 

When incorporating the best results of all the analyses, (silver, two layers of IZO  30 nm thick , 

1.6 µm diameter spheres and 150 s of etching) we obtained a contact with 10.6 Ω/sq, 75 % peak 

transmittance and 63.7% average transmittance, almost reaching the target we set and achieving the 

highest FOM for the 300 nm to 1300 nm range (1.04x10-3 (Ω/sq)-1). 

Additional research with 5 µm spheres was conducted with the intention of shifting the plasmon 

transmittance dip to irrelevant wavelengths. Using different sphere size means different Langmuir-

Blodgett parameters, such as solution volume, sphere to solvent ratio and surface tension used to 

deposit the spheres. These parameters were not perfected to the same level of the 1.6 µm spheres 

parameters, which is one cause for the sub-optimal results we see from these samples. Nonetheless, 

we still achieved high transmittance, peaking at around 85% and averaging at 78,9% for a contact 

produced with these spheres, although the sheet resistance is much higher than the target value, 

standing at 126 Ω/sq. This sample did not reach a FOM quite as high as a 60 nm IZO film (7.77 x10-4
 

(Ω/sq)-1 for the Ag_10nm_5µm_120s sample and 8.67 x10-4 (Ω/sq)-1 for the flat IZO film) but presented 
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half the sheet resistance. If the transmittance is too highly valued in the FOM equation a non-fully 

optimized Ag_10nm_5µm_120s sample might still be better than a simple flat 60 nm IZO layer. 

Both of these structured samples were compared in Figure 1, in yellow, and as can be seen, 

they are about as efficient as ITO. However, the sample Ag_10nm_1.6µm_150s has a great advantage 

over ITO as it far thinner. In order to achieve 10 Ω/sq with, we would need a 400 nm thick layer. As was 

stated in the Introduction, ITO is very brittle and by replacing it for IZO, which is not as brittle, and by 

fabricating a contact almost 6 times thinner we can increase its resistance to physical stress. 

To finalize the work, we tried to optimize the structures by producing one last batch of samples 

where one had an upper layer of structured IZO and introducing one more dry etching step to remove 

the PS contamination. Though this batch did not prove to be as successful as we intended, due to the 

failed dry etching step, we managed to produce another structure that shows some potential for future 

trials. The sample with structured silver and IZO showed good electrical and optical results despite the 

low-quality silver mesh. 

Future perspectives 

 

In future works, AZO should be considered for more trials as a replacement for IZO in low cost 

solar cells with high band gap such as perovskite. Even though IZO proved better optically, the 

differences were not that significant until longer NIR wavelengths where solar power is not as strong. In 

this work we settled for IZO not only because of the slightly better optical properties but also because 

of the easier access to the deposition equipment. Given the limited time to complete this thesis, and the 

fact that IZO does indeed produce higher quality contacts, we focused on using the best materials to 

achieve the goal set in the beginning. As a result, little research was done using AZO.  

Throughout this work we noticed some spheres remained inside the mesh and after SEM and 

AFM characterization we observed thin films, around 10 nm thick, of PS in every hole of the mesh. Even 

though the films are very thin, some optical losses are bound to exist. To try and remove all spheres, 

more time should be used for toluene bath or even find another way to remove said spheres. The thin 

films can be removed submitting the samples to another dry etching with mild conditions after the toluene 

bath and before the deposition of IZO. 

IPA might be a good alternative to toluene for the removal of PS spheres as it showed 

comparable results and is much more environmentally friendly than toluene.
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Appendices 

At the start of this work, we aimed to produce meshes with 100 nm linewidth, and to do so we 
tested different conditions of etching time and pressure based on previous results conducted at CEMOP, 
RIE power and O2 flow were fixed at 90 W and 20 sccm respectively. 

 

A. First study of width variation with pressure and etching time 

 

A total of seven samples were produced with 1.3 μm spheres. Four samples were produced 

under fixed 120 s of etching and varying pressures of 200, 225, 250 e 250 mTorr, and the other three 

were produced under 250 mTorr and varying times of 90, 150 and 180 s. 

 

From the SEM images in Figure 27 it is clear that an increase in etching pressure leads to a 

decrease in etching rate of the PS spheres. 

 

Figure 27 SEM images for the samples prepared with 120 s of etching time and varying etching pressures. 

a) 200 mTorr. b) 225 mTorr. c) 250 mTorr. d) 275 mTorr. 

 

At this point, the quality of sphere deposition was not optimized and therefore a very poor 

deposition was conducted, which makes it harder to measure the actual spacing between spheres. To 

work around this problem the sphere diameter after the etching was measured instead of the spacing 

between the spheres. 

 

Table 20: Average sphere diameter obtained for samples produced under 120 s of etching and varying 

etching pressures. 

Sample (120 s etching) 200 mTorr 225 mTorr 250 mTorr 275 mTorr 

Sphere diameter after 

etching (μm) 0,912 0,940 0,967 1,009 
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From these results and considering the original 1.3 μm diameter of the spheres we can conclude 

that even at 275 mTorr, 120 s is too much to produce a mesh with 100 nm linewidth. In future samples, 

the minimum pressure used was 250 mTorr. 

 

 

 

Figure 28 SEM images for the samples prepared with spheres with 1.3 μm spheres in an O2 atmosphere 

of 250 mTorr and O2 flow of 20 sccm, 90 W RIE power and varying etching times. a) 90 s. b) 120 s. c) 150 s. d) 180 

s. 

 

Table 21: Average sphere diameter obtained for samples produced under 250 mTorr etching pressure and 

varying etching times. 

Sample (250 mTorr etching) 90 s 120 s 150 s 180 s 

Sphere diameter after 

etching (μm) 1.104 0.967 0.874 0.799 

 

After testing with 1.3 μm, one trial with 1.6 μm spheres was also conducted. For this trial we 

prepared 4 samples with fixed 120 s of etching time and varying etching pressures. One sample was 

not subjected to etching and the other three were subjected to 225, 250 and 275 mTorr etching 

pressures. 

As can be seen by comparing the depositions in Figure 28 with the depositions in Figure 29, 

there is a clear difference in quality of sphere deposition between 1.3 µm and 1.6 µm spheres, even at 

early stages. Once again, the final sphere diameter was measured to reach the best conditions needed 

to obtain a mesh with 100 nm of width. 
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Figure 29 SEM images for the samples prepared with 1.6 μm spheres in an O2 atmosphere of varying 

pressures, O2 flow of 20 sccm, 90 W RIE power and 120 s of etching. a) No etching. b) 225 mTorr. c) 250 mTorr. 

d) 275 mTorr. 

 

Table 22: Average sphere diameter obtained for samples produced under 120 s etching time and varying 

etching pressures. 

Sample (120 s etching) Ref 225 mTorr 250 mTorr 275 mTorr 

Sphere diameter after 

etching (μm) 1.567 1.306 1.322 1.381 

  

Again, the conditions used would produce a mesh with linewidth larger than 100 nm, so another 

batch of samples was produced with lower etching times. This time we fixed the pressure at 250 mTorr 

and used 4 different etching times, 30 s, 60 s, 90s and 120 s. This way the highest mesh width possible 

should be around 180 nm, as we saw in Table 22, allowing the production of a 100 nm conductive 

meshes. 

Besides the deposition shown in Figure 30 d), good quality depositions were achieved. These 

images should allow us to extrapolate good etching conditions to obtain the intended mesh linewidth. 
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Figure 30 SEM images for the samples prepared with 1.6 μm spheres in an O2 atmosphere of 250 mtorr, 

O2 flow of 20 sccm, 90 W RIE power and varying etching times. a) 30 s. b) 60 s. c) 90 s. d) 120 s. 

 

Table 23: Average sphere diameter obtained for samples produced under 250 mtorr etching pressure 

varying etching times. 

 

Sample (120 s etching) 30 s 60 s 90 s 120 s 

Sphere 

diameter after etching 

(μm) 1.555 1.479 1.451 1.401 

 

Comparing the sphere diameter obtained for the sample with 120 s and 250 mTorr, we notice 

quite a difference from the previous value. This is due to both noise in the SEM image and poor 

resolution in the measurement of sphere diameter. Nonetheless, this should still give a decent 

approximation to the mesh linewidth. The sample with just 30 s should produce a mesh with 100 nm 

width, however, after depositing metal we checked the electrical properties and it was not conductive. 

This test allowed us to establish a critical time necessary to produce conductive meshes, but in 

later tests we found that even 60 s can show some issues with electrical properties. Only 60 s of etching 

is not enough to allow many wires to be formed and great sheet resistance variation was seen in samples 

produced with this etching time. Therefore, at least 90 s etching is recommended. 

B. Study of toluene bath for the removal of spheres 

 

After the metal deposition, the spheres need to be removed to form the micromesh. This process 

is done through a toluene bath using ultrasounds. In this section we studied 4 different bath times to 

obtain the minimum time necessary to remove all spheres. 

Figure 31  c) and  Figure 31d) show no spheres, however, as was seen in previous SEM images 

in chapter IV, even with 15 min of toluene bath in ultra sounds some PS spheres are still present. Some 
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IPA testing was conducted showing comparable results to toluene. Samples can be subjected to longer 

ultra sound baths in IPA to try to remove all spheres. 

 

 
Figure 31 SEM images of samples after toluene bath. a) 1 min of toluene bath in ultra sounds. b) 3 min of 

toluene bath in ultra sounds. c) 5 min of toluene bath in ultra sounds. d) 15 min of toluene bath in ultra sounds. 

C. Energy dispersive spectroscopy results 

 

As stated in chapter 4.8, an EDS characterization of the samples was conducted. The SEM 

image showing the characterization sites and respective EDS graphs can be seen below (Figure 32 to 

Figure 34). 

 

 

Figure 32: SEM image showing the sites where the EDS characterizations were conducted 
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Figure 33: Plot of the EDS characterization conducted inside a hole (spectrum 1 shown on Figure 32) 

 

Figure 34: Plot of the EDS characterization conducted inside a hole (spectrum 2 shown on Figure 32) 

 

D. Contact improvement study 

 

Three samples were prepared, consisting of a sample with flat 15 nm film of silver in between 

two 30 nm thick IZO layers, one sample with structured silver in between two IZO layers and one where 

both the silver layer and the upper IZO layer were structured. The IZO was structured in the same way 

as the silver, meaning the second IZO deposition is conducted before the removal of the spheres. Both 

structured samples were fabricated using 1.6 µm spheres. The silver thickness was chosen to be 15 nm 

to avoid the formation of a film like the one in Figure 17.  
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Figure 35 SEM image of the sample produced with 15nm of structured silver and 30 nm of structured IZO. 

a) Top view of the contact. b) Tilted view of the contact at an angle of 30 º. 

 

This sample had good sphere deposition, however the silver deposition did not form a uniform 

mesh. 

All samples and an extra sample with just 60 nm of IZO were characterized by 

spectrophotometer and hall-effect. However, due to the spectrophotometer used in previous 

characterizations being under repair, an older model had to be used. This equipment cannot measure 

the total transmittance for wavelengths higher than 800 nm.  

The second dry etching was so destructive to the contact that even a sample with only IZO 

performed almost 13 times better. The sample with structured silver and IZO showed superior 

performance electrically and optically, despite the poor silver deposition. Future depositions as these 

ones should be conducted to obtain more accurate results. 

From the spectrophotometer results seen in Figure 36 and Figure 37, we can see that the 

sample produced with structured silver and IZO has similar behavior to previous samples produced with 

1.6 µm spheres. A noticeable difference in total transmittance and direct transmission can be seen for 

this sample in Figure 37 for wavelengths higher than 450 nm, which indicates that the sample has a 

much better behavior in the near infrared region than is shown. 

 

Figure 36 Spectrophotometer results for the direct transmittance of the different samples used. 
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Figure 37 Spectrophotometer results comparing total transmittance and direct transmittance. 

 

Lastly, some samples were prepared without any TCO layer. however, it was noticed that the 

sphere deposition was improved by a bottom TCO layer and a top TCO layer is necessary for 

encapsulation. 

 


