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Summary 
 

The study of adaptation in microorganisms has led to a significant 

expansion in knowledge at many biological levels, ranging from biochemistry and 

genetics, to ecology and demography. Experimental evolution, in particular, has 

been invaluable at elucidating how complex the adaptive dynamics in microbial 

populations can be. One of the most fundamental characteristics of these 

dynamics is the distribution of beneficial mutations driving the adaptive process. 

How often do microorganisms acquire these mutations? And what are their 

expected effects? These questions have been at the heart of evolutionary biology 

from the very beginning, and the studies that have tackled these difficult issues 

have been tremendously enlightening about adaptive processes. However, the 

increasing awareness of the complexity of the environment where microorganisms 

live requires constant development of new approaches to answer these 

fundamental questions about their evolution. Large population sizes lead to 

increased levels of clonal interference, and thus to a deviation from the expected 

outcome in classical regimes of periodic selection. Genetic variation within an 

evolving population, which is now easily detected by sequencing technologies, can 

create complex interactions between phenotypes. Environments with antagonistic 

biotic interactions, pose very different selective pressures from the ones 

experienced when a species grows alone. All these factors influence adaptation in 

microorganisms and, importantly, drive the pathogenicity traits that create severe 

clinical and epidemiological problems. 

 

The main goal of the research presented in this thesis is to address some 

of these outstanding questions by experimentally evolving the bacterium 

Escherichia coli, in scenarios that are closer to clinically relevant conditions. We 

study a particular pathogenic trait, antibiotic resistance, by first addressing 

compensatory adaptation in multiple resistant backgrounds. By performing whole 

genome sequencing of the evolved populations, we were able to uncover, for the 

first time, the genetic basis for compensation in bacteria resistant to both 
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rifampicin and streptomycin. Moreover, we showed that the paths taken for 

compensating resistance costs in multiple resistant strains differ substantially from 

the ones observed in the corresponding individual resistant alleles.  We also 

studied compensatory adaptation in populations with standing genetic variation for 

resistance, a scenario closer to the that found in clinical infections, showing that 

the relative fitness difference between the different resistances is not predictive of 

their long-term maintenance in the population. Instead, the fate of resistances is 

highly dependent on their potential for adaptation. We also investigate the 

adaptation of a commensal E. coli in a biotic environment where antagonistic 

interactions with cells of the immune system play a crucial role in driving the 

transition into pathogenicity. We identified potential pathoadaptive targets, 

observing the existence of antagonistic pleiotropy and clonal interference as main 

drivers in the transition from commensalism to pathogenicity. Across these 

studies, we use and develop new theoretical methods to estimate important 

evolutionary parameters from experimental data and study the dynamics of 

individual mutations in evolving populations in the context of Fisher Geometric 

Model. 

 

Using an integrative approach involving experimental evolution, theoretical 

modelling and next generation sequencing, we studied the adaptive dynamics of 

evolving microorganisms, in the hope that these sort of studies may contribute to 

potential avenues to more efficiently predict, prevent and reverse diverse microbial 

pathologies. 
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Resumo 
 

O estudo da adaptação em microrganismos levou a importantes 

desenvolvimentos no conhecimento a vários níveis biológicos, desde bioquímica e 

genética, até ecologia e demografia. A contribuição da evolução experimental, em 

particular, tem sido inestimável ao elucidar a complexidade envolvida nas 

dinâmicas de adaptação em populações microbianas. Uma das questões mais 

fundamentais destas dinâmicas é a distribuição de mutações que impele o 

processo adaptativo. Com que frequência são estas mutações adquiridas pelos 

microrganismos? E quais são os seus efeitos esperados? Estas questões têm 

sido centrais à biologia evolutiva desde a sua génese, e os vários estudos que 

abordam estes assuntos complexos têm sido tremendamente instrutivos acerca 

do processo adaptativo. No entanto, há uma consciência crescente de que o nível 

de complexidade do ambiente onde habitam os microrganismos requer o 

desenvolvimento constante de novas abordagens de modo a responder a estas 

questões fundamentais acerca da sua evolução. Populações de grande tamanho 

levam à presença de interferência clonal e, portanto, a desvios das observações 

esperadas em regimes clássicos de seleção periódica. A variação genética 

gerada nas populações em evolução,  que é agora facilmente detectada através 

de tecnologias de sequenciação, leva a interações complexas entre os fenótipos. 

Ambientes com interações antagonistas bióticas colocam diferentes pressões 

selectivas daquelas encontradas quando uma espécie cresce em isolamento. 

Todos estes factores influenciam a adaptação de microrganismos sendo muito 

importantes no desenvolvimento de características patogénicas que criam sérios 

problemas clínicos e epidemiológicos. 

 

O objectivo principal  da investigação apresentada nesta tese é responder 

a algumas destas questões prementes através da evolução experimental de 

Escherichia coli, em cenários que se aproximam de condições clinicamente 

relevantes. Estudámos uma característica patogénica específica, a resistência 

antibióticos, investigando a adaptação compensatória em genomas bacterianos 
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com múltiplas mutações de resistências. Através de sequenciação completa do 

genoma das populações evoluídas, descobrimos, pela primeira vez, a base 

genética de compensação em bactérias resistentes a rifampicina e streptomicina. 

Adicionalmente, mostrámos que os caminhos que levam à compensação de 

resistências custosas em estirpes com resistências múltiplas diferem 

substancialmente daquelas observadas com as correspondentes resistências 

individuais. Estudámos também adaptação compensatória em populações com 

variação genética para a resistência, um cenário mais próximo daquele 

encontrado em infecções bacterianas na clínica, mostrando que as diferenças 

relativas de fitness entre as resistências não prevê a sua manutenção a longo 

termo na população. Em vez disso, o destino das resistências é altamente 

dependente do seu potencial adaptativo. Investigámos também a adaptação de 

uma estirpe comensal de E. coli a um ambiente biótico, onde interações 

antagonistas com células do sistema imunitário são um factor crucial na transição 

para a patogenicidade. Identificámos potenciais alvos genéticos patoadaptativos, 

observando a existência de pleiotropia antagonista e interferência clonal como 

alguns dos principais impulsionadores na transição entre comensalismo e 

patogenicidade. Ao longo destes estudos, usámos e desenvolvemos novos 

métodos teóricos para estimar importantes parâmetros evolutivos a partir de 

dados experimentais, e estudamos as dinâmicas de mutações individuais em 

populações em evolução no contexto do Modelo Geométrico de Fisher. 

 

Ao usar uma abordagem integrativa, envolvendo evolução experimental, 

modelação teórica e sequenciação de nova geração, estudámos as dinâmicas de 

adaptação durante a evolução de organismos, na esperança que este tipo de 

estudos possa contribuir para potenciais caminhos que levem a meios mais 

eficientes de prever, prevenir e inverter diversas patologias microbianas. 
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Thesis Outline 
 

The main and unifying purpose of this thesis, and the main driver of the 

work performed during these last years, is to better understand how adaptation 

occurs across increasingly complex adaptive environments, from simple and 

monoclonal populations, to polymicrobial populations, and finally in an 

environment where strong antagonistic interactions occur. We start by developing 

theoretical methods and simulations to infer key evolutionary parameters from 

biological observations. We then use antibiotic resistance as a trait to understand 

compensatory evolution and the role of epistasis in compensation under strong 

clonal interference, both in single and multiple antibiotic resistant backgrounds. 

Next, we explore the evolutionary parameters underlying adaptation in populations 

initially composed of different antibiotic resistance alleles, as observed in 

polymicrobial infections. Finally, we use a biotic environment that includes 

macrophages to understand the adaptive processes in the transition of a 

commensal into a pathogen, and how clonal interference might generate dynamics 

that strongly influence this process.  

First, Chapter I introduces some fundamental concepts in evolutionary 

biology, with a focus on experimental evolution of microbial organisms, as well as 

antibiotic resistance and the interaction of bacteria with the innate immune system. 

Chapter II presents and discusses a computational method to infer the 

beneficial mutation rate and the distribution of arising beneficial mutations, from 

populations undergoing experimental evolution tracked by neutral markers. 

Then, in Chapter III, we use Fisher’s Geometric Model to study the 

dynamics of individual mutations and their aggregation in cohorts, under scenarios 

of intense clonal interference.  

We move away from purely theoretical scenarios in Chapter IV, where we 

study the compensatory process of antibiotic resistant Eschericha coli, and try to 

understand whether the compensatory process is shaped by epistatic interactions 
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between different resistances. We characterize this process in terms of adaptive 

dynamics and fitness increase, both of which we use to infer evolutionary 

parameters, and we describe the genetic basis of compensation of double 

resistant bacteria.  

In Chapter V we study a similar compensation process, but with E. coli 

populations that are composed of different antibiotic resistant clones to begin with. 

We ask if the initial relative fitness difference between these resistant mutants can 

predict the outcome of composition of the population, or if their different 

evolvability determines adaptation. 

Chapter VI explores a more complex biotic environment, where we study 

the initial steps of E. coli adapting to the intracellular environment of macrophages. 

We describe this adaptation in phenotypic terms and provide the genetic basis for 

this transition. 

In Chapter VII, we discuss the ability of clonal interference to generate 

genetic variation that explains morphologic and phenotypic dynamics in the 

adaptation of E. coli coexisting with macrophages. 

Finally, Chapter VIII summarizes and discusses the investigation 

presented in the previous chapters, contextualizing the results in the current and 

updated literature and debating future avenues of research.  
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Microbial adaptation and experimental evolution  

 

Evolution, the change in heritable traits over time, is a unifying principle 

that holds information on why something is or behaves in a certain way. This 

variation in traits within a population, however, is not random, and it is observed 

across many biological levels of organization, from molecules to interactions 

between individuals. Therefore, understanding why certain traits are selected over 

others – that is, why they are adaptive – is fundamental in order to understand life 

itself. The primary mechanism of evolution is the generation of mutations, random 

changes in the genome of an organism. Most importantly, the emergence of these 

genetic variants means there is variation on the phenotype of an organism (be it 

how many offspring it can generate or the color of its fur) over which natural 

selection can then act. Most of these changes are neutral or even detrimental to 

an individual, but there is also a chance for a mutation to confer a beneficial effect, 

either by optimizing a given trait or by creating a novel adaptive one. Whenever 

such an event occurs, this new variant should increase in frequency in the 

population, replacing the worse variants. This fundamental principle drives 

adaptation in a population, through the emergence of new adapted phenotypes.  

One way to better understand adaptation is by studying microbial evolution. 

Microbes are incredibly diverse and inhabit a vast multitude of habitats, from the 

depths of oceans (DeLong 2005) to the mammalian digestive system (Jeffrey I 

Gordon 2012). This microbial diversity is likely to be due to the tremendous 

adaptive potential of microorganisms. Their large population sizes and fast 

generation times, with some microorganisms dividing within minutes (Sezonov et 

al. 2007), allow adaptation to occur and be observed in a matter of a few days 

(Lenski et al. 1991; Novella et al. 1995). The rapid generation of diversity from a 

single microbial genotype leads to the coexistence of multiple clonal variants, 

which can then either compete for resources (Fredrickson & Stephanopoulos 

1981; Orr 1998; Hibbing et al. 2010) or interact cooperatively (Deborah M Gordon 

2014). Many complex microbial community behaviours can be observed, ranging 
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from motility (Zhang et al. 2009) to biofilm formation (Xavier & Foster 2007). 

Competition between microbes has been, however, the most frequently used 

scenario for studying adaptive dynamics (Gerrish & Lenski 1998; Sniegowski & 

Gerrish 2010). A wide and well-established set of molecular, genetic and 

technological tools facilitates the study of microorganisms. While the genetic 

manipulation of microbial genomes allows putting forward hypothesis regarding 

the role and effect of particular mutations on the phenotype of an organism, 

advances in genomic sequencing technology allow the observation of genetic 

changes that underlie adaptation (Lee et al. 2012; Chedom et al. 2015). 

Another significant advantage in studying microbial adaptation concerns 

the clinical relevance of microorganisms to human hosts. Microbes can be a 

vicious pathogenic foe, but also a powerful commensal ally, and often the same 

organism can display both these characteristics, depending on environmental 

conditions (Littman & Pamer 2011). Phenotypic changes allowing a commensal to 

become a pathogen (Ebert & Bull 2008; Leimbach et al. 2013), or a microbial 

invader to acquire resistance to an antibiotic (Paulsen et al. 2003; O'Neill et al. 

2001), can occur very quickly. Moreover, certain microbial genomes have mobile 

DNA, such as plasmids (Touchon et al. 2012) or other mobile genetic elements 

(Touchon et al. 2014), which can cause horizontal gene transfer of pathogenic 

traits to occur (Iwasaki & Takagi 2009; Gluck-Thaler & Slot 2015), enhancing their 

ability to adapt under strong selective pressures. Thus, investigating how 

adaptation occurs in microbes can not only lead to useful insights on the key 

principles of adaptation, but also to increase our knowledge on pathologies and 

the evolution of infectious diseases. The information gathered in microbial 

adaptation studies can help to exploit their weaknesses and curb their effects on 

human health. 

A very useful tool for studying the adaptation of microbial populations in 

real time is experimental evolution, where evolutionary scenarios can be created 

by starting from a common ancestral genotype and controlling the conditions 

experienced by the organisms, such as the size of populations, temperature or 
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resource availability (Kawecki et al. 2012; Adams & Rosenzweig 2014). It usually 

consists on several independent replicate populations evolving in parallel, which 

are then analyzed for traits that have changed during adaptation. Phenotypic 

changes, such as the growth rate or the ability to consume a given resource, as 

well as genomic changes, can be tracked over time. Asking how these 

modifications have occurred across replicate populations can assess the spectrum 

of adaptive mutations arising under specific conditions (Lang & Desai 2014) or the 

even how predictable is adaptation (Blank et al. 2014; Barroso-Batista et al. 2014). 

Experimental evolution has therefore been used to estimate evolutionary 

parameters (Hegreness 2006) and test evolutionary hypothesis (Perfeito et al. 

2007; Fitzpatrick et al. 2007). A wide range of organisms have been studied under 

this framework, including Drosophila melanogaster (Simões et al. 2008) or 

Arabidopsis thaliana (Kolodynska & Pigliucci 2003). However, many studies that 

use this tool focus on microorganisms (for instance, virus (Bull et al. 2003), 

bacteria (Barrick et al. 2009), yeast (Ratcliff et al. 2015) or nematodes (Denver et 

al. 2012)), due to their easy manipulation and storage. In what is arguably the 

most famous foray into an experimental evolution study, Richard Lenski’s research 

group has been propagating several replicate Escherichia coli populations in 

minimal media supplemented with glucose for more than 25 years, having now 

surpassed 64000 generations (Lenski et al. 1991; Maddamsetti et al. 2015). While 

the initial response of interest was the change in mean fitness of populations over 

time, it has now spawned a myriad of interesting observations, from the genetic 

constraints to evolvability (Woods et al. 2011), to selection in mutation rates 

(Sniegowski et al. 1997) and adaptation involving the cross-feeding between 

individuals (Rozen et al. 2009). Because populations are frozen and stored every 

500 generations, it is even possible to go back to a previous point and replay 

evolution to understand its contingency (Woods et al. 2011) or the reasons for the 

extinction of ecotypes (Turner et al. 2015). This hallmark study from Lenski, as 

many others that followed, focuses on how microorganisms improve in a given 

environment, but the reverse question is also being explored using a similar 

framework. Mutation accumulation experiments, which consist in applying drastic 
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population bottlenecks (usually a single individual or colony), study how the 

accumulation of mutations in the absence of selection impacts the fitness of 

organisms over time (Kibota & Lynch 1996; Perfeito et al. 2014). Clinically, 

experimental evolution has somewhat played an ancient role in the creation of 

vaccines (Woo & Reifman 2014), which consists in the serial passage of 

pathogens until their disease causing traits were severely impaired. Nowadays, 

however, experimental evolution can be used to assess, for instance, the speed 

and types of mutations associated with drug resistance to a certain antibiotic, by 

evolving bacteria in media supplemented with the drug (Perron et al. 2006; Palmer 

& Kishony 2013). 

Although based on simple principles, adaptive processes occurring in 

evolving populations are complex and can sometimes display cryptic properties. 

They are also fairly difficult to analyze quantitatively and comparatively. 

Theoretical models, by making certain explicit evolutionary assumptions, allow the 

interpretation and quantification of adaptive processes, putting forward testable 

predictions (Smith & Haigh 1974; Wahl & Gerrish 2001). Furthermore, they allow 

inferring key parameters from experimental observations. For instance, the rates 

and effects of mutations can be inferred from marker dynamics in an experimental 

evolution setup (Hegreness 2006; Barrick et al. 2010). Historically, mathematical 

modeling provided, for instance, a crucial intellectual convergence by conciliating 

Mendelian genetics with the effect of natural selection on the change in gene 

frequencies, mainly through the work of Ronald A. Fisher, Sewall Wright and 

J.B.S. Haldane (Ronald Aylmer Fisher 1930; S Wright 1932; Haldane 1927). 

Theoretical models have since then been very useful in untangling adaptive 

processes and explaining certain evolutionary observations, be it at the level of 

linkage between genes (Desai & D S Fisher 2007), changes in fitness along time 

(Wiser et al. 2013), organism complexity (Wang et al. 2010), or social interactions 

in meta-populations (Bucci & Xavier 2014). Developing a useful model, however, 

requires careful identification of the relevant processes for the particular question 

one proposes to tackle. As John H. Holland put it, model building can be an art, 
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because it stems from a process of induction in choosing the relevant parameters 

(Holland 1995). Therefore, it is crucial to identify and understand what are the key 

evolutionary processes that underlie the dynamics observed in bacterial evolution. 

 

Patterns and dynamics in bacterial evolution 

Generation of bacterial variants 

The spontaneous mutation rate in bacteria is estimated to be in the order of 

10-3 mutations per cell per generation (Lee et al. 2012). This rate, combined with 

the large population sizes of bacteria, results in a fast generation of genetic 

diversity within a population. From all these mutations, the vast majority will have a 

deleterious or neutral effect on an organism (Drake et al. 1998; Eyre-Walker & 

Keightley 2007), but beneficial mutations, although rare, are the drivers of long-

term adaptation (Sniegowski & Gerrish 2010; Frenkel et al. 2014). The fraction of 

beneficial mutations is strongly dependent on the initial level of adaptation of an 

organism to a given environment, and the true distribution of effects of these 

arising beneficial mutations is very hard to determine experimentally (Hietpas et al. 

2011). Once a beneficial mutation appears, because it is initially rare in the 

population, it has to survive stochastic fluctuations in the production of offspring, a 

process known as genetic drift (Orr 1998). Indeed, many arising beneficial 

mutations are lost due to drift. Since the probability of a mutation not being lost 

due to drift is ~2s (Haldane 1927), with s being its fitness effect (or, more 

precisely, !!!
!!!"#
!

!!!!!!"#
, where N and Ne are the total and effect population, 

respectively) (Kimura 1962), mutations of stronger beneficial effects have a lower 

likelihood of being lost due to this process. Natural selection is less effective in 

smaller populations, as these are more susceptible to these stochastic fluctuations 

(Lanfear et al. 2013). A mutation that is able to overcome drift will start to increase 

in frequency and, if no other beneficial variant of a similar or higher effect appears, 

it will sweep to fixation. This occurs in a regime where adaptation is driven by 
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Figure 1. Dynamics in regimes of periodic selection and clonal interference. 
Different colors represent alleles emerging and segregating through time, with grey 
being the ancestral genotype. In panel A, the successional mutation regime is 
represented, where the periodic sweep of each beneficial allele. Panel B represents 
a regime of clonal interference, where multiple mutations segregate simultaneously 
and interfere with the other variants. Adapted from (Marx 2013). 

successional accumulation of mutations, and is typically observed when 

populations are small and beneficial mutations are rare (Atwood et al. 1951). 

However, larger populations with a higher influx of beneficial variants will lead to 

alternative regimes (Desai & D S Fisher 2007).  

Competition between beneficial variants – Clonal Interference 

Beneficial alleles that survive loss by drift and start increasing in frequency 

in the populations are considered contending, or competing, mutations (Gerrish & 

Lenski 1998). In regimes of large population sizes and high frequency of beneficial 

mutations, it is expectable that, contrary to the successional regime, multiple 

beneficial variants arise and segregate simultaneously. Because microbes 

reproduce mainly asexually, the emergence, through recombination, of clones with 

multiple beneficial mutations (Ronald Aylmer Fisher 1930; Felsenstein 1974) in the 

same individual is rare. As a consequence, individual mutations compete against 

each other for increase in frequency and, ultimately, for fixation. This is a process 

that is known as clonal interference (Gerrish & Lenski 1998). 
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While in the successional regime any mutation that survives drift can reach 

fixation, regardless of its fitness advantage, in regimes of clonal interference there 

is an enrichment of mutations with stronger effects, since these are the ones that 

are able to outcompete the other beneficial variants. Moreover, because mutations 

interfere with each other’s segregation, the fixation of single alleles is less 

common than expected if such interference did not occur. Fixations take a longer 

time to occur, and there is higher likelihood for observing genetic diversity within a 

population (Comeron & Kreitman 2002; de Visser 2005). These predictions have 

been observed across experimental evolution studies that use large population 

sizes (de Visser 2005; Lang et al. 2013). Moreover, clonal interference has also 

been observed in clinical settings, notably in persistent infections of antibiotic 

resistant pathogens (Navarro et al. 2011) or viral evolution (Chedom et al. 2015; 

Zanini et al. 2016). For instance, temporal analysis of tuberculosis infections has 

show that clonal interference is prevalent (Eldholm et al. 2014), and can even 

occur within the same host (Al-Hajoj et al. 2010). The Influenza virus has also 

been shown to evolve under strong clonal interference, with selection for viral 

strains of increasingly stronger beneficial mutations (Strelkowa & Lässig 2012). 

Other biological processes that rely on clonal reproduction have also been 

observed to be under the influence of clonal interference. Namely, in cancer 

development and progression (Ding et al. 2012), where fast division times and 

high mutation rate of deregulated cells originates genetic diversity and competition 

between different cancer lineages (Greaves & Maley 2012). Across all these 

systems, one important consequence of the longer fixation times caused by clonal 

interference is that there is time, before the fixation of an allele, for a genetic 

background to acquire subsequent mutations. 

Interactions between mutations – Epistasis 

If the effect of a mutation depends on whether another mutation is present 

in the genome, that is, if it depends on the genetic background where it occurs, 

there is epistasis between these mutations (Bateson 1910; Phillips 2008). The 

likelihood for any two mutations to interact (and the strength of this interaction) 
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depends on the connectedness of the processes that are affected. For instance, 

mutations that affect a similar biosynthetic pathway or cellular process are more 

likely to conflict than functionally distinct mutations (Phillips 2008). There are two 

main types of epistasis: magnitude and sign. For magnitude epistasis, two 

mutations can interact antagonistically, if the combined effect of the mutations is 

smaller than predicted by their individual effects, or synergistically, if it is bigger 

than expected. An extreme case of this latter type of epistasis is synthetic lethality, 

where a specific mutation becomes lethal if it co-occurs with another one (St Onge 

et al. 2007). Sign epistasis occurs if the sign of the effect of a mutation changes: 

e.g., a beneficial mutation becomes deleterious in the presence of another 

mutation. The extreme version of this type of interaction is called reciprocal sign 

epistasis, and it occurs if two deleterious mutations result in increased fitness 

when put together (Kvitek & Sherlock 2011). 

Evolutionarily, the concept of epistasis is crucial because it can effectively 

constrain the adaptive paths an organism can follow (Fenster et al. 1997), since a 

modified allele might have a different spectrum of subsequent mutations that 

become deleterious in that background. Therefore, it has an important role in the 

predictability of evolution (Weinreich et al. 2006) and can also constrain the 

evolution of genetic architecture (Kondrashov 1988; Gros et al. 2009). Epistasis 

ultimately defines the ruggedness of the adaptive landscape of organisms 

(Kauffman & S Levin 1987; Martin et al. 2007). Fitness landscapes (S Wright 

1932) were once discussed purely in conceptual terms, but this is now changing, 

as real genetic landscapes, built by constructing genotypes with the different 

possible mutations are being explored (Jacquier et al. 2013). By performing 

combinations between the mutations, it is possible to clearly map the landscape 

with types of combinations that are viable (Khan et al. 2011). The role of epistasis 

in health is also very important. One particular example is regarding the 

emergence of multiple drug resistances (Chakrabarti & Gorini 1977; Hall & 

MacLean 2011), where it is important to understand the likelihood of multiple 

mutations that confer resistance to different drugs to accumulate in a genetic 
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background. Understanding an epistatic interaction between two resistance alleles 

could predict a given cost of resistance, and the correspondent likelihood for 

certain resistance alleles to co-occur together (Trindade et al. 2009).  

Segregation and competition of haplotypes 

Once multiple mutations accumulate in a genome, and unless their 

epistatic interactions are completely known, it is difficult to disentangle the effects 

of single alleles. Instead of referring to a beneficial variant, the term haplotype is 

used, denominating the group of polymorphisms that are inherited together. 

Haplotypes can be composed entirely by beneficial mutations, but might also 

include neutral, or even slightly deleterious alleles, which hitchhike with the ones 

that are positively selected (Smith & Haigh 1974; Desai & D S Fisher 2007). 

Experimental evolution studies, coupled with sequencing technologies, allow the 

observation of the dynamics of individual mutations in evolving populations (Lang 

et al. 2013; Zanini et al. 2016). The general observation is that there is an 

impressive level of polymorphism in populations and that selective sweeps of a 

single mutation are rare. Instead, multiple mutations are usually seen in 

aggregates – cohorts – that change in frequency together, competing with other 

groups of mutations and eventually fixing as a group (Lang et al. 2013). Similar 

observations come from the analysis of bacterial infections, where a mutation that 

provides resistance to an antibiotic segregates with other additional mutations that 

might improve their otherwise costly fitness effect (Comas et al. 2012). 

 

Antibiotic resistance and compensatory adaptation 

The history and ecology of antibiotics 

One of the most important medical advances of the past century is the 

discovery and development of drugs to treat bacterial infections. Recognized as a 

clinical threat in late 19th century, the first therapeutic agent developed against 

these infections came almost half a century later, with serendipitous discovery of 
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penicillin by Alexander Fleming in 1929, and the development of its antibiotic in 

1942. Fleming left plates cultured with Staphylococcus aureus for a long time in 

the laboratory, and upon his return from summer holidays he realized that the 

fungi that had contaminated his petri dishes were inhibiting the growth of S. aureus 

(Hare 1982). This marked the beginning of a golden era for clinicians and humans 

in general. For the first time in history, infections were manageable by therapeutics 

and even invasive surgery was possible. The discovery of antibiotics provided 

several clinical breakthroughs and, since then, millions of deaths have been 

prevented each year, with the consequent increase in the average life expectancy 

of humans. Perhaps overly optimistic by the success of antibiotic treatments, 

society started to overuse these drugs, which may have played an important role 

in directing us back to a state of increasing powerlessness against these 

pathogens (World Health Organization 2014). 

An antibiotic treatment imposes a very strong selection for bacteria that 

survive exposure to the drugs. This strong selective pressure, together with the 

ability of microbes to quickly adapt, lead to the emergence of bacteria that are 

resistant against the treatment of antibiotics (Abraham & Chain 1940; J Davies & 

D Davies 2010). The full extent of this ability was only fairly recently realized, since 

microbiologists thought that the frequency of resistance mutations was too low to 

be an actual threat (J Davies 1994). However, the potential dangers that come 

with the misuse of antibiotics were identified as soon as after the discovery of 

penicillin, when Fleming himself realized that some bacteria had the ability to 

become resistant to the treatment. In his own words, “the time may come when 

penicillin can be bought by anyone in the shops. Then there is the danger that the 

ignorant man may easily underdose himself and by exposing his microbes to non-

lethal quantities of the drug make them resistant” (Fleming 1945). The first 

identified acquisition of resistance to an antibiotic treatment marked the beginning 

of an arms race between scientists and the ever-adaptable microbes, where the 

discovery of new treatments was – and is – soon counteracted by the evolution of 

resistance mechanisms (Hede 2014).  
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Figure 2. Timeline of antibiotic clinical introduction and emergence of 
resistance. Upward arrows indicate when the drug was introduced as therapeutic 
treatment; downward arrows indicate when resistance was first detected. Retrieved 
from (Hede 2014). 

 

 

Despite this recent (from a human standpoint) competition between drug 

development and resistance, one has to keep in mind that this process has been 

occurring for far longer than humans even existed (Brown & Gerard D Wright 

2016). Both antibiotic production and mechanisms of resistance are ancient tools 

that microorganisms have been evolving for millions of years, using these secreted 

weapons competitively against other strains and species, but also as means of 

communication (Romero et al. 2011). In fact, many of the antibiotics used 
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clinically, like the case of penicillin, are identified and isolated from 

microorganisms themselves (e.g., vancomycin (Levine 2006)). When surveying 

microorganisms in various environments, either from the soil (Forsberg et al. 2012) 

or isolated bacterial communities (Bhullar et al. 2012), several studies have 

realized that the resistome (Gerard D Wright 2010), a global collection of genes 

conferring resistance, is genetically diverse, environmentally widespread and 

predates by far the clinical use of antibiotics (Brown & Gerard D Wright 2016). 

While the evolutionary and ecological aspects of antibiotic production and 

resistance are far from being completely understood, the unrestrained use of 

antibiotics by humans applied a tremendous selective pressure for the selection 

and dissemination of these resistance genes (Gullberg et al. 2011; World Health 

Organization 2014). 

Types of antibiotics and mechanisms of action and resistance 

Antibiotics fall into three main categories: natural antibiotics, which are 

isolated from living organisms (e.g., aminoglycosides); others are semi-synthetic 

modifications of natural compounds (e.g., beta-lactam or carbapenems); the 

remaining ones are completely synthetic (e.g., sulfonamides and quinolones). 

Streptomycin, for instance, is a naturally isolated aminoglycoside that binds to the 

ribosome and inhibits elongation of protein synthesis (Luzzatto et al. 1968), and 

the resulting misfolding of proteins produces many toxic and pleiotropic effects 

(Abad & Amils 1994). It is a drug that has been paramount in controlling infections 

of tuberculosis, and, according to the WHO, is one essential medicinal compound. 

Another example of a semi-synthetic antibiotic is rifampicin, which was derived 

from the naturally isolated rifamycin. This drug inhibits the RNA polymerase, 

impairing the synthesis of RNA (Wehrli 1983), causing cell death, and it is also one 

of the most widely used drugs to treat many different bacterial infections, such as 

tuberculosis and MRSA. 

The main function of antibiotics is to perturb important biochemical processes, 

therefore disrupting the normal functioning and the survival ability of cell. 
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Antibiotics can have bactericidal properties, meaning that they actively kill bacteria 

by targeting the cell wall, membranes or essential enzymes and functions; or they 

can be bacteriostatic, meaning that bacterial reproduction is prevented by 

targeting protein synthesis (Yamori et al. 1992). Although these are the two 

classical means of describing an antibiotic, whether they actively kill a cell or 

simply stop its reproduction is strongly dependent on the concentration of the 

compound, as protein synthesis are also required for cell survival (Pankey & 

Sabath 2004). 

Resistance to the action of an antibiotic can be of different types (Tenover 

2006; Blair et al. 2014): 1) inactivation or modification of drug compound, by the 

production of additional residues that are added to the antibiotic molecule and 

prevent binding its target; 2) modification of the target site, by conformational 

changes; 3) reduction of levels of the drugs, for instance through efflux pumps 

located in the cell wall that export antibiotics out of the bacterial cell; and 4) 

modification of the metabolic pathway affected by a drug, by relocating the 

metabolic functions through other means. Many of these mechanisms are not 

readily at the dispose of a bacterial cell. Resistance can often be obtained through 

the exchange of DNA from one bacteria to another, through conjugation or plasmid 

mediation (Maiden 1998; van Hoek et al. 2011). Genomic islands with entire 

collections of antibiotic resistance genes can be transmitted through horizontal 

gene transfer, which has been shown to play a crucial role in the spread of 

resistance in bacteria populations, particularly for MRSA (Kriegeskorte & Peters 

2012). Other means of acquisition of resistance involve modifications in the 

essential proteins and mechanisms targeted by antibiotics (Jacoby & Archer 1991; 

Spratt 1994; Blair et al. 2014). For instance, in Mycobacterium Tuberculosis, drug 

resistance arises almost exclusively through chromosomal mutations in genes that 

are required for antibiotic action, i.e., genes that encode the proteins targeted by 

the drugs or the enzymes required for drug activation (Sun et al. 2012; Farhat et 

al. 2013; Zhang et al. 2013). This is the case for mutations in a gene coding for the 

beta subunit of RNA polymerase, rpoB, which are known to confer resistance to 
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rifampicin (Telenti et al. 1993). Similarly, mutations in genes coding for ribosomal 

proteins (for instance, rpsL (Kurland et al. 1996)), allow bacterial cells to survive 

exposure to streptomycin. These chromosomal mutations can occur at relatively 

high rates. Resistance to rifampicin, for instance, can spontaneously arise at 

frequencies higher than 10-8 in E. coli (M R Baquero et al. 2004). How these 

resistances spread in bacterial communities depend also on demographic 

parameters such as the population size and bottlenecks (Schrag et al. 1997; 

Andersson & Hughes 2011).  

Polymorphism in antibiotic resistant populations 

Given both the high rate of generation of resistant mutants and the multiple 

targets that confer resistance to an antibiotic, the emergence, competition and co-

existence between different resistance alleles are to be expected. Clonal 

interference plays an important role in clinical infections (Miralles et al. 1999; 

Mariam et al. 2011), since it can select for the most fit resistant clones (Hughes & 

Andersson 2015). This has been observed in several studies that sampled clones 

from infections at multiple time points, where diverse segregating resistant 

backgrounds are observed (Al-Hajoj et al. 2010; Navarro et al. 2011). As an 

example, in a study where 3 patients infected with M. tuberculosis were followed 

along time, 4 different resistant clones were detected to be segregating 

simultaneously, while no resistance had been previously detected (Sun et al. 

2012). At the last time point sampled, 94% of the population had a single resistant 

allele, whilst the remaining 6% had other resistance mutations. Another study 

followed a single tuberculosis patient for 42 months, a period over which 12 drug 

resistance mutations where detected above a frequency of 25% in the population. 

Over this time period, only 7 of these mutations reached fixation status (Eldholm et 

al. 2014). Clonal interference and cohort fixation were also shown to be involved in 

virus evolution, where each selective sweep detected in influenza A was inferred 

to be composed of 3 or 4 mutations on average (Strelkowa & Lässig 2012). The 

observations that there are complex dynamics occurring within an infection point to 

the importance of detecting these clinical cases early, in order to avoid selection 
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Figure 3. Dynamics of clonal interference in an M. tuberculosis infection. 
Many clonal lineages harbouring different drug resistance mutations (DRM, 
identified by asterisks) appear along time and compete amongst themselves. 
Some of these lineages eventually fix in the population (green), whilst others 
never reach fixation status (blue). Brown background indicates lineages with 
mutations not known to confer DRM (identified by circles), and mutations for 
which inferred trajectories differ from clonal dynamics are in red. Based on the 
data from (Eldholm et al. 2014), figure retrieved from (Wilson et al. 2016). 

for stronger resistance mutations. Additionally, they also imply that practices of 

isolating a single resistant clone from infections might be misleading, since there 

the level of diversity is high. Recognizing the segregation of cohorts of mutations 

that hitchhike with the fitter resistant alleles is also fundamental to understand the 

chains of transmission of infections between patients (Eldholm et al. 2014). 

 

Compensation to costly resistance mutations 

Mutations that confer resistance to antibiotics allow bacteria to survive in 

the presence of the drugs, but most of them are actually costly to the cell (Schrag 

& Perrot 1996; B R Levin et al. 1997; Andersson & Hughes 2010) (but see also 

(Rodríguez-Verdugo et al. 2013) for a study where rifampicin resistance has 

emerged in the absence of the antibiotic). Because many antibiotic resistance 

mutations occur in genes that encode essential cellular mechanisms (Spratt 1994; 

Andersson & Hughes 2010; Melnyk et al. 2015), this cost is usually expressed in 
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terms of growth rate, virulence and competitive performance (Björkman et al. 

1998). For instance, resistance to fluoroquinolones can cause impaired motility 

(Stickland et al. 2010), while resistance to aminoglycosides can interfere with the 

structure of the ribosome, reducing the translation rate and impairing growth in rich 

media (Schrag et al. 1997; Paulander et al. 2007). These deleterious effects of 

antibiotic resistance mutations are mostly prevalent when the drug is withdrawn, 

and the resistant cells have a competitive disadvantage to sensitive cells 

(Andersson & Hughes 2010). Therefore, without the selective pressure of 

antibiotics, resistant cells should decrease in frequency, ultimately driven to 

extinction by sensitive cells. Indeed, the fitness cost of resistant cells is the main 

responsible for the decrease in frequency of resistant variants in bacterial 

communities, as postulated theoretically (B R Levin et al. 1997; 2000), and 

assuming no further adaptation would occur. 

There are two main strategies for resistant bacteria to avoid extinction: the 

first is through a mutation that reverts the resistance allele, returning the bacteria 

into a sensitive state (Gifford & MacLean 2013); the second is by acquiring 

additional chromosomal modifications, in other sites of the genome, that buffer the 

deleterious effects of the resistance mutation, conferring a compensatory effect 

(Schrag et al. 1997; Reynolds 2000; Björkman et al. 2000; Maisnier-Patin et al. 

2002; Brandis & Hughes 2013). The latter is arguably the worse outcome for the 

host, because it allows bacteria to maintain their resistance ability, but at a much 

lower competitive cost. As a consequence, a resistance allele might be stabilized 

in the population (Schrag & Perrot 1996; Andersson & B R Levin 1999), because 

its fitness cost is either reduced or non-existent, and a reversion of the mutation 

now lies across an adaptive valley (B R Levin et al. 2000). Compensatory 

adaptation is not limited to antibiotic resistance mutations, potentially occurring 

whenever there is a deleterious modification in the genome (Szamecz et al. 2014; 

Bouma & Lenski 1988). A deleterious mutation was estimated to have, on 

average, 12 possible compensatory mutations (Poon & Chao 2005) and therefore, 

because the number of sites in a genome that can compensate a costly mutation 



  Introduction 
	  

	   37	  

is higher than the single allelic location that can lead to a back mutation, 

compensation is more likely to occur than true reversions (B R Levin et al. 2000). 

Even if a reversion has a strong beneficial effect, since it restores the original state 

of an individual, its low rate of appearance explains why compensatory mutations 

of lower beneficial effects can dominate a population. Once a reversion appears, 

different compensatory alleles are already segregating, and its relative lower effect 

increases the likelihood of being lost by drift (Gifford & MacLean 2013). 

Discovering the evolutionary dynamics of acquisition and segregation of 

these compensatory mutations is the subject of intense investigation, because it is 

paramount to predict stabilization and avoid the long-term maintenance of the 

resistance mutations and the spread of drug resistance (Andersson & Hughes 

2011; Hughes & Andersson 2015). Compensatory adaptation has been observed 

and studied both in laboratory and clinical settings, and has been shown to be 

strongly dependent on the demographic conditions of the populations (Maisnier-

Patin et al. 2002). When E. coli resistant to streptomycin, through mutations in 

rpsL, was serially passaged in streptomycin-free media, the populations 

maintained the resistance to the drug whilst acquiring compensatory mutations in 

other loci, restoring the efficacy of translation (Schrag & Perrot 1996). Mutations 

compensatory for a resistance mutation in the rpsL gene were estimated to occur 

at a rate of at least 10-7 per cell per generation (Maisnier-Patin et al. 2002). In 

another study by Björkman and colleagues, S. typhimurium populations resistant 

to streptomycin, rifampicin or nalidixic acid were serially passed in laboratory mice 

without antibiotic treatment. The virulence of these strains was initially impaired, 

but after evolution this ability was restored, and in the majority of cases these was 

due to mutations in other loci (Björkman et al. 1998). In clinical settings, a study by 

Comas et al has shown that the genomes of rifampicin resistant isolates of M. 

tuberculosis harboured mutations in other loci, such as rpoA or rpoC, that 

compensated the fitness cost without the loss of resistance (Comas et al. 2012).  

Importantly, studying compensatory adaptation has also shed light on 

important cellular functions, including functional interactions between ribosomal 
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proteins (Maisnier-Patin et al. 2007). This is due to the fact that many 

compensatory mutations occur either in the same protein where the original 

resistance mutation emerged, or on functionally connected proteins (Brandis et al. 

2012). These secondary mutations that interact epistatically with drug resistance 

mutations are important factors that need to be incorporated when making 

predictions about the epidemiological consequences of drug resistance mutations 

(Wilson et al. 2016).  

Multiple antibiotic resistances 

Because organisms adapt to the cost of resistance mainly through 

mutations in other alleles, if an infection is maintained, or re-occurs, the same 

antibiotic is ineffective and cannot be used again. Occasionally, some resistance 

mutations acquired in the presence of an antibiotic are known to, by themselves, 

confer resistance to other drugs. This effect is called collateral resistance, or 

cross-resistance, and it renders certain alternative treatments less efficient (Lázár 

et al. 2014). However, the most common scenario is that resistance is specific to a 

certain drug and, in such cases, alternative antibiotics can be used to curb 

infections (Kim et al. 2014). This new pressure can, however, lead to the 

acquisition of yet another resistance, thus increasing the repertoire of antibiotics to 

which a microorganism can survive, and increasingly constrain the options for the 

treatment of infections. The emergence and spread of these multiple drug 

resistances (MDR) are increasing at an alarming rate (World Health Organization 

2014). In some case, bacteria seem to acquire resistance faster than new 

antibiotics are developed and, for antibiotic treatments, technology might be losing 

the arms race with evolution (Hede 2014). In some extreme cases, namely for 

tuberculosis, extensively drug resistance (XDR) strains have been clinically 

detected, meaning that they are resistant to the majority of known therapeutics, 

rendering clinical treatment highly ineffective (Velayati et al. 2009). A broad 

research effort is dedicated on how to deal with these MDR pathogens, including 

how to effectively use antibiotic therapeutics to minimize the emergence of these 

strains or even revert their multiple resistant state (Kim et al. 2014). 



  Introduction 
	  

	   39	  

An interesting aspect of MDR is that different resistance mutations are 

known to interact epistatically (Borrell et al. 2013; Trindade et al. 2009). This is not 

surprising, since, as discussed, antibiotic resistance mutations often modify 

proteins that are responsible for essential machinery of the cells, which commonly 

interact and are part of the same cellular processes. So, for instance, it is likely 

that a mutation affecting translation interacts epistatically with another that affects 

transcriptional processes (Hall et al. 2011). The actual mechanistic processes 

involved in these interactions are, for the most part, unknown. However, research 

suggests that different allelic mutations in the same genes display a variety of 

epistatic effects (Durão et al. 2015; Trindade et al. 2009). Of particular concern is 

the fact that some secondary resistant mutations are themselves compensatory for 

the fitness deficits imposed by one of the resistance alleles (Hall & MacLean 

2011). For instance, a study by Borrell and colleagues indicates that 35% of 

combinations of Mycobacterium smegmatis resistant to both rifampicin and 

oflaxocin have a higher fitness than at least one of the corresponding single 

resistant mutant (Borrell et al. 2013). These observations indicate that not only the 

acquisition of multiple antibiotic resistances has a non-linear effect on the cellular 

processes, but also that the interactions can be intricate and concealed by other 

effects. A possible implication from this observation is that the compensatory 

adaptation of multi-resistant bacteria might differ from what is known regarding 

single resistant alleles. So far, this question remains unexplored (MacLean & 

Vogwill 2015). 

 

The immune system as an adaptive pressure 

The thin line between pathogenicity and commensalism 

Many laboratory studies that follow real-time adaptation in microorganisms 

are performed in simple abiotic environments, with either single or multiple sugars, 

and constant, daily bottlenecks (Kawecki et al. 2012). There is a vast array of 

known and unknown differences between controlled laboratory conditions and the 
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real world of organisms. Therefore, parameters inferred from such in vitro 

experiments, like mutation rates and selective effects, might differ from the ones 

where microorganisms normally exist. For instance, the effects of antibiotic 

resistance mutations are very different when assessed in vitro or in vivo (Martinez 

& F Baquero 2000; Luangtongkum et al. 2012). Although recently experimental 

evolution studies following adaptation in more realistic and complex environments 

have begun to be explored (Gordo et al. 2014; Hindré et al. 2012), most of the 

knowledge about evolutionary parameters originates from adaptation to abiotic 

conditions.  

One of the complex environments where microorganisms live is within a 

mammalian host, where they can play both the role of commensals and pathogens 

(Leimbach et al. 2013). Often this definition is ambiguous, because it depends 

strongly on the conditions experienced by a microorganism. Disease or illness 

symptoms within a host are commonly the result of the wrong cell multiplying in a 

wrong place at the wrong time. For instance, Klebsiella Pneumoniae, an 

opportunistic pathogen that causes pneumonia and urinary tract infections, is a 

normal commensal member of the mammalian gut flora (Lau et al. 2008). Another 

example is found when bacterial cells take advantage of a disrupted 

gastrointestinal barrier to invade the blood stream and cause septicemia 

(Rowlands et al. 1999; Macpherson et al. 2005). Therefore, uncontrolled growth of 

bacteria that would, otherwise, be harmless can spell disaster to its host. This is 

why the control of bacterial populations by the immune system is crucial.  

The antagonism of the innate immune system 

Whilst the immune response to the presence of a pathogen is part of a 

complex cascade, the first responders to an invasion are usually components of 

the innate immune system (Akira et al. 2006). Macrophages are one of the key 

elements of this system, providing defense against invading bacteria by the direct 

and immediate bactericidal response through phagocytosis (Underhill & Ozinsky 

2002). This process is complex, and involves several steps, through which a 
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bacterial cell is recognized, engulfed and destroyed within the macrophages. First, 

recognition is mediated by pattern-recognition receptors (PRR), which identify 

molecular structures in the surface of the bacterial cell (Medzhitov 2007). The 

main structures targeted by PRRs are microbe-associated molecular patterns 

(MAMPs), which can include lipopolysaccharides, peptidoglycans, carbohydrates 

and endotoxins (Medzhitov 2007). Different pathways can be activated upon a 

successful recognition, and depending on the type of activation, macrophages are 

modified physically and chemically in order to engulf the microbes (Mauel 1982). 

When this happens, bacteria are confined to phagosomes, which are endocytic 

vessels that undergo a continuous fusing process (first with early and then with 

late endosomes, and finally with lysosomes) (Vieira et al. 2002). At the end of this 

process, bacteria are destroyed through mechanisms such as dramatic increases 

in pH and the deployment of high concentrations of reactive oxygen species and 

antimicrobial peptides (Slauch 2011). 

Pathoadaptative mutations 

With such strong antagonistic interactions with macrophages, bacteria face 

a tremendous selective pressure. Many bacterial pathogens have evolved 

mechanisms to escape, resist or even kill phagocytic cells (Rosenberger & Finlay 

2003; Baxt et al. 2013). These mechanisms include avoidance of detection by the 

innate immune system (by modifying the molecules that trigger TLR signaling, for 

instance (Le Negrate 2012)), inhibition of engulfing by macrophages (through the 

secretion of proteins that interfere with the phagocytic process (Celli & Finlay 

2002)), or survival in the intracellular environment within phagocytes (by 

increasing its resistance mechanisms against the microbicidal attacks of the cell 

(Ernst et al. 1999)). This latter strategy is particularly interesting, because it marks 

the beginning of an adaptive path that may lead to pathogens that were once 

extracellular to be able to survive (and even replicate (Helaine et al. 2010)) within 

host cells. Inhabiting a host cell can serve both the purpose of avoiding other 

elements of the immune system (Li & Yang 2008), or to acquire nutrients from 

eukaryotic cells (Saka & Valdivia 2010). While some microbes become obligate 
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intracellular pathogens, as in the case of Chlamydia (Fields et al. 2011), many 

pathogens are facultative intracellular, being able to survive both inside and 

outside eukaryotic cells (Silva & Pestana 2013). This is the case for Shigella, 

Salmonella or M. tuberculosis, the last of which inhabits macrophages by arresting 

phagosome maturation and avoiding delivery to the lysosome (Kelley & Schorey 

2003). The exit of the intracellular niche usually implies that the host cells are 

destroyed in the process, through microbial induction of cell death, for instance 

(Hybiske & Stephens 2008).  

Adaptation to endure encounters with the immune system can occur 

through the acquisition of pathoadaptive mutations, which are changes in 

particular traits that increase pathogenicity behaviours in bacteria (Sokurenko et 

al. 1999). It is then important to understand what are the types of genomic 

adaptations that can lead to pathoadaptive mutations, and what are the dynamics 

of clonal interference that give rise to strong pathoadaptations. It is likely that 

studying these dynamics in complex environments differ from the ones observed 

in abiotic environments, due to different ecological and demographic processes, 

such as intracellular replication rates (Helaine et al. 2010) or the existence of 

spatial structure in the gut (Lu et al. 2014). The mere presence of an additional 

species in a medium can influence the dynamics of adaptation of bacteria, as 

suggested by the increased rates of adaptation and diversification of E. coli 

evolving in the presence of phages (Buckling & Rainey 2002). Therefore, it is 

crucial to understand how biotic environments and antagonistic interactions with 

the immune system shape the adaptation of bacteria and drive the important 

transition from commensalism to pathogenicity. 
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Abstract 

Determining the distribution of adaptive mutations available to natural 

selection is a difficult task. These are rare events and most of them are lost by 

chance. Some theoretical works propose that the distribution of newly arising 

beneficial mutations should be close to exponential. Empirical data are scarce and do 

not always support an exponential distribution. Analysis of the dynamics of adaptation 

in asexual populations of microorganisms has revealed that these can be 

summarized by two effective parameters, the effective mutation rate Ue and the 

effective selection coefficient of a beneficial mutation Se. Here we show that these 

effective parameters will not always reflect the rate and mean effect of beneficial 

mutations, especially when the distribution of arising mutations has high variance, 

and the mutation rate is high. We propose a method to estimate the distribution of 

arising beneficial mutations, which is motivated by a common experimental setup. 
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The method, which we call One Bi-allelic Marker ABC, makes use of experimental 

data consisting of periodic measures of neutral marker frequencies and mean 

population fitness. Using simulations, we find that this method allows the 

discrimination of the shape of the distribution of arising mutations and that it provides 

reasonable estimates of their rates and mean effects in ranges of the parameter 

space that may be of biological relevance.   

Keywords 

Experimental Evolution, Mutation Rate, Distribution of Fitness Effects, Parameter 

Estimation 

 

Introduction 

At what rate do beneficial mutations arise and what are their fitness effects? 

These are two of the most important questions regarding adaptation of organisms to 

novel environments (Kimura and Ohta 1974; Lang, Botstein, et al. 2011). Reflecting 

its importance, estimating genomic mutation rates of new beneficial alleles (U) and 

uncovering the mean effects of those beneficial mutations (E(S)) have been the 

subject of many studies (Bataillon, Zhang, et al. 2011; Estes, Phillips, et al. 2011; 

MacLean and Buckling 2009; Perfeito, Fernandes, et al. 2007; Rozen, de Visser, et 

al. 2002; Sawyer, Parsch, et al. 2007; Sousa, Magalhães, et al. 2012). Experimental 

evolution in clonal populations presents some advantages in determining these 

parameters, but some difficulties still arise, even in these controlled and relatively 
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simple environments. One of these difficulties is being able to assay all the beneficial 

mutations. Different distributions of fitness effects are important to the adaptive 

process: the distribution of newly arising mutations, the distribution of contending 

mutations, which escape initial stochastic loss, and the distribution of mutations that 

survive competition with other mutations (clonal interference) and are able to actually 

fix, contributing to long term adaptation (see (Gordo, Perfeito, et al. 2011) for a 

review). The greatest difficulty is to uncover the distribution of arising mutations, 

because they may easily be lost before reaching detectable frequencies. Despite this 

difficulty, determining the distribution that characterizes arising mutations, f(S),  is 

important, because it is this distribution that determines the nature of adaptation (Orr 

2010; Perfeito, Fernandes, et al. 2007; Rozen, de Visser, et al. 2002; Sousa, 

Magalhães, et al. 2012). For this reason, some studies have tried to determine this 

distribution in viruses (Rokyta, Beisel, et al. 2008; Sanjuán, Moya, et al. 2004), in 

bacteria (Kassen and Bataillon 2006; Stevens and Sebert 2011) and in other 

organisms (Burke, Dunham, et al. 2010; Desai, Fisher, et al. 2007; Orozco-terWengel, 

Kapun, et al. 2012; Schoustra, Bataillon, et al. 2009). Experimental support for an 

exponential distribution of arising beneficial mutations has been obtained (Kassen 

and Bataillon 2006; MacLean and Buckling 2009), but this has not always been the 

case in all organisms and environments (Barrett, MacLean, et al. 2006; Bataillon, 

Zhang, et al. 2011; Gordo, Perfeito, et al. 2011; Mcdonald, Cooper, et al. 2011; 

Rokyta, Beisel, et al. 2008). From the mutations that arise, those that end up 

outcompeting other beneficial mutations will drive long-term adaptation (Gerrish and 

Lenski 1998; Good, Rouzine, et al. 2012). The difference between the distributions of 
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arising, contending and fixed mutations is expected to depend on the effective 

population size (Crow and Kimura 1970), the mutation rate (Charlesworth, Morgan, et 

al. 1993) and on the level of mal-adaptation, with increasingly adapted organisms 

having access to increasingly lower amount of beneficial mutations (Fisher 1930), 

The biggest challenge in determining f(S) lies in the rarity of beneficial 

mutations. In principle, this distribution can be determined directly by measuring 

fitness effects of extremely large samples of mutants (Hietpas, Jensen, et al. 2011; 

Lind, Berg, et al. 2010). It can also be inferred from sequence data collected from 

natural populations (Eyre-Walker and Keightley 2007; Jensen, Thornton, et al. 2008a; 

Jensen, Thornton, et al. 2008b; Nielsen 2005; Schneider, Charlesworth, et al. 2011). 

Indeed, scans for signatures of positive selection across the genome of different 

species, including our own, have been performed (Biswas and Akey 2006; Cutter and 

Choi 2010; Enard, Depaulis, et al. 2010; Grossman, Andersen, et al. 2013; Hancock 

and Di Rienzo 2008). Disentangling the signature of selection from that caused by a 

complex demography is difficult (Grossman, Shlyakhter, et al. 2010; Sinha, Dincer, et 

al. 2011), and checking the performance of different methods under departures from 

model assumptions is therefore an important task (Keightley and Eyre-Walker 2010). 

Recent advances have been made in developing methods for estimating selection 

coefficients from time series data of allele frequencies (Bollback, York, et al. 2008; 

Malaspinas, Malaspinas, et al. 2012; Mathieson and McVean 2013) and also in 

disentangling alleles under positive selection from passenger mutations (Illingworth 

and Mustonen 2011). In the context of experimentally evolved populations, where 

typically the experimenter imposes a particular demographic regime, one method that 
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has been used proposes to study beneficial mutations through assaying the 

evolutionary dynamics of neutral markers in asexual populations (Hegreness, 

Shoresh, et al. 2006; Imhof and Schlotterer 2001). The basic principle underlying this 

method relies on the “hitchhiking effect” of a neutral allele with mutations that give an 

advantage to the organism (Maynard-Smith and Haigh 1974). This same principle is 

at the heart of methods to detect positive selection across the genome of sexually 

reproducing organisms (Thornton, Jensen, et al. 2007). In experimentally evolved 

populations, the frequency of a neutral allele can be easily measured (e.g. by using 

neutral fluorescent markers), and inferring evolutionary parameters from neutral 

marker dynamics can thus be performed under certain theoretical assumptions 

(Barrick, Kauth, et al. 2010; Dykhuizen and Hartl 1983; Hegreness, Shoresh, et al. 

2006; Illingworth and Mustonen 2012).  A simple and quite elegant method was 

proposed by Hegreness et al. (Hegreness, Shoresh, et al. 2006): using simulations, 

they showed that a simple population genetics model, where all beneficial mutations 

have the same effect, is able to reproduce the dynamics of a commonly used marker 

system involving one locus with two neutral markers. The dynamics can therefore be 

summarized by 2 parameters that theoretically represent the evolutionary process: 

the effective mutation rate (Ue) and the effective selection coefficient (Se). Barrick et 

al. extended this method and determined the values of Ue and Se in different strains of 

Escherichia coli (Barrick, Kauth, et al. 2010; Woods, Barrick, et al. 2011). While it may 

be useful to be able to summarize the process under a single mutational effect, far 

more realistic distributions of fitness effects can also explain the data. Recently, 

Illingworth and Mustonen (Illingworth and Mustonen 2012) proposed a new method to 
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estimate the distribution of haplotype fitnesses in experimentally evolving populations. 

When tested against simulated data under the assumption of an exponential 

distribution of arising beneficial mutations, the method is able to retrieve the correct 

distribution of haplotype fitnesses for values U below 10-6. It is however not known 

how the method performs for other distributions of arising beneficial mutations and for 

larger values of U. Moreover, this method estimates the distribution of haplotype 

fitnesses segregating in populations and not the distribution of beneficial arising 

mutations. Here we ask two questions: how do the effective parameters compare with 

the more biologically meaningful parameters U and E(S)?; and, since frequency 

dynamics appear insufficient to distinguish between different distributions (Hegreness, 

Shoresh, et al. 2006), is there a reasonable set of data that can be obtained, which 

allows the determination of the distribution of arising beneficial mutations?  

We address both these questions from a theoretical perspective, taking a 

commonly used experimental setup to study the adaptation of asexual populations in 

controlled environments as a motivation. This setup simply involves tracking a marker 

locus with two neutral alleles. We show that the effective evolutionary parameters can 

provide good estimates of U and of the mean effect of beneficial mutations only when 

the distribution of effects of arising mutations has limited variance. However, when the 

variance is increased (for example, if arising mutations follow an exponential 

distribution), we find that Ue can underestimate the true value U, while Se can 

overestimate the true value of E(S). We propose a new method based upon 

measurements of both the frequency of neutral markers and mean population fitness, 

at periodic time intervals. This method, which was motivated by typical experimental 
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setups easily applied to experimental evolution, is theoretically expected to estimate 

the mutation rate reasonably well, and allows distributions of arising beneficial 

mutations with different shapes to be distinguished. 

 

Methods 

Model of adaptation to simulate evolutionary dynamics 

We assume a clonal population reproducing according to the Wright-Fisher 

model, where periodic bottlenecks occur (with a period of Tbot). The population is 

initially isogenic, with the exception of a neutral marker, which is biallelic and has a 

frequency f0=0.5 for one of the alleles. The initial population size is N0. Generations 

are discrete and the population doubles each generation for t < Tbot. With period Tbot, 

the population size is reduced by random sampling to N0. This assumed demography, 

involving periodic bottlenecks where the number of individuals is fixed, is typical of 

most experimental setups, where daily passages of a sample of the population are 

performed, and population numbers are experimentally controlled. At each 

generation, mutations occur at a rate U per genome, following a Poisson distribution. 

All mutations are beneficial and the effects of each mutation (S) are drawn from a 

continuous distribution f(S). We allow for variation of the selective effects of arising 

mutations, assuming a Gamma distribution, with shape and scale parameters, α and 

β, respectively, implying a mean E(S) = αβ. Like other studies that previously 

proposed to estimate the distribution of arising deleterious mutations (Eyre-Walker 

and Keightley 2007; Keightley 1998), we have assumed a Gamma distribution 
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because it can have a wide range of shapes.  Multiplicative fitness is assumed, so 

that the effects of mutations do not depend on the genetic background where they 

arise. This is obviously an oversimplification, since the distribution can change along 

the adaptive walk (Martin and Lenormand 2006; Sousa, Magalhães, et al. 2012), but 

we consider a short-term evolution scenario where U and f(S) may be assumed 

constant. Genetic drift is modeled by sampling, from a multinomial distribution, 

classes of individuals with the same fitness. The frequency dynamics of the neutral 

marker (f(t)), as well as the mean population fitness (w(t)), are followed. This model of 

adaptation is used to produce a set of simulated evolutionary dynamics, from which 

evolutionary parameters are estimated using different methods: a method developed 

by Hegreness et al. (and extended by Barrick et al), and a new method that we 

propose here that simultaneously tries to estimate U and f(S) (see below).  

The range of parameters chosen to produce simulated data with the described 

model was made in accordance with current estimates in different systems, but 

mostly in microorganisms. U is currently estimated to achieve values between 10-4 

and 10-9, depending on the environment and genetic background (Denver, Wilhelm, et 

al. 2012; Drake, Charlesworth, et al. 1998; Lang, Botstein, et al. 2011; Perfeito, 

Fernandes, et al. 2007). An effective population size Ne=105 was assumed 

(corresponding to bottlenecks with a period tbot=5 generations) for all simulations 

except when indicated differently. 
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Generating pseudo-observed data  

Pseudo-observed data sets were generated under the model of adaptation 

described above, with a specific value of the mutation rate U and a specific Gamma 

distribution (with parameters α and β) with mean E(S). These data sets represent 

biological data that can be acquired in an experiment. The new method proposed 

here with the goal of estimating f(S) and U, requires the periodic measure of the 

frequency of the neutral markers and the mean population fitness (every 50 

generations for a 300 generation experiment). These appear reasonable to obtain 

experimentally and require experimental work that is typical in evolution experiments 

performed in controlled environments: in addition to assaying the frequency of the 

markers (as already is typically done (Woods, Barrick, et al. 2011)), fitness has to be 

measured by performing either a direct competitive fitness assay against the 

ancestral strain or a measurement of the population growth rate at different times 

along the experiment (Gordo, Perfeito, et al. 2011). Furthermore, the choice of 

studying 100 replicate populations reflects the 100 or 96 well plate experimental setup 

that is commonly used (Kvitek and Sherlock 2011; Lemonnier, Levin, et al. 2008). 

These plates are affordable by most labs, and, with a multichannel pipet, several 

passages can be performed in little time, space, and at low cost, particularly when 

studying microbial populations. Regarding the markers, many strains expressing 

different fluorescent alleles are available, which makes the acquisition of frequency 

data a relatively easy task. This can be performed using flow cytometry or another 

fluorescence reader. Competitive fitness measurements (Elena and Lenski 2003) can 

also be easily performed using a similar setup.  
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 The pseudo-observed data therefore consist of the marker frequencies and 

the fitnesses at periodic time points of the experiments (ti) for n independently 

evolved populations. Different pseudo-observed data sets assuming different 

distributions of S were generated to test the two different methods: Barrick et al. 

method (which requires the marker frequencies only), to compare Ue with U and Se 

with E(S), and the One Bi-allelic Marker ABC (which requires both the marker 

frequencies and the fitnesses) to assess its ability to estimate U, α and β (see later). 

Estimation of U and E(S) by Ue and Se based upon the dynamics of the first significant 

deviation of f(t)  

For a given set of pseudo-observed data we obtained the effective parameters 

Ue and Se and compared them with the biologically meaningful values of U and E(S). 

To obtain Ue and Se we followed Barrick at al. A large set of simulated evolutionary 

dynamics under the assumption that all beneficial mutations have the same value of 

S was generated. This simulated data consists of sets of 100 replicate populations 

evolved under different parameter combinations of U and S. The range of log10(U) 

was [-8; -3.95], with increments of 0.15, and the range of S was [0.01; 0.18], with 

increments of 0.01. This simulated data is the input of Barrick et al. method (Barrick, 

Kauth, et al. 2010) to obtain Ue and Se. For each simulation it consists of the logarithm 

of the ratio of the two subpopulation frequencies (Rf=f(ti)/(1-f(ti)) at several time 

points, ti, (ln(Rf(ti))), where ti=5*i. We then use this input in the program 

marker_divergence_fit.pl, whose output is fed into the program marker_divergence_significance.pl, both 

available at http://barricklab.org/twiki/bin/view/Lab/ToolsMarkerDivergence, to obtain Ue 



     One Bi-allelic Marker ABC 
	  

	   71	  

and Se. The first program summarizes the evolutionary dynamics (both in the 

simulated data sets and in the pseudo-observed data) in two statistics: τe and αe. The 

first is the time, τe, where a significant deviation of Ln(Rf(τe)) from Ln(Rf(t=0)) occurs. 

The second is the rate of change of Ln(Rf(t)) with time, i.e. τe sets the time of 

divergence of marker frequency and αe the rate of divergence. Each replicate 

population is summarized by a single value of τe and αe., and the n replicate 

populations (characterized by a given combination (U , S)) result in a distribution of 

T(τe) and A(αe). These distributions are then compared, using the second program, to 

the distributions of τe and αe that summarize the pseudo-observed data To(τe) and 

Ao(αe) using a two-dimensional Kolmogorov-Smirnov to test the fit between the 

simulated data and the pseudo-observed data. The combination (U, S) that gives rise 

to the highest P-value is taken as Ue and Se, even when the hypothesis that the 

distributions are different cannot be rejected.  

This procedure was done to obtain the results in Figures 1, S1 and S4, where 

twenty independent replicates of each pseudo-observed data set (under the same U, 

α and β) were performed and the average of Ue and Se obtained for each pseudo-

observed data set is presented.  

 

New estimation method based upon the dynamics of frequency and fitness  

We propose a new method, the One Bi-allelic Marker ABC (Figure 2), which 

aims to infer the distribution of arising mutations. The pseudo-observed data used to 

infer the performance of the method are generated under the model of adaptation 
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explained before, but the method now analyses the distributions, along time intervals 

(ti), of both marker frequency (f(ti)) and fitness (w(ti)), where ti=i*50 generations (i=0 

to 6) are measured for 100 replicate populations evolving under a given U, α and β. A 

large data set with 1 million simulated evolutionary dynamics is produced, each with a 

set of 100 replicate populations evolving under a specific combination of parameters 

U, a and b. For each of the simulations, each parameter is randomly chosen from the 

following distributions: log10(U) ~ Uniform [-9;-4]; a ~ Uniform  [0.5; 15]; and log10(b) ~ 

Uniform [-4;-0.08]. Both the pseudo-observed data and the simulated data are 

summarized as the distribution of the values of |0.5-f(ti)| represented as a histogram, 

with 5 binned classes, for the marker frequency at different time points (ti), and of the 

distribution of fitness effects at the same time points, w(ti), represented as a 

histogram with  6 binned classes. This results in 11 summary statistic values for each 

of the 6 time points used in the analysis (table in Figure 2). 

Summary statistics from pseudo-observed and simulated data are compared 

using an Approximate Bayesian Computation (ABC) method (Beaumont, Zhang, et al. 

2002) implemented in R (Csilléry, François, et al. 2012) (package downloaded from 

and available at http://cran.r-project.org/web/packages/abc/index.html). ABC 

approaches have previously been used, for example, to determine rates of selective 

sweeps using sequence data from populations of Drosophila melanogaster (Jensen, 

Thornton, et al. 2008a). The input of the ABC method are the summary statistics of 

the 100 replicate populations that compose the pseudo-observed data (S(y0)) and the 

previously described 1 million simulations (S(yi)). The ABC method computes the 

posterior probability distribution of a multivariate parameter, θ (composed of a 
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combination of U, α and β). A value for this parameter, θi, is sampled from the prior 

distributions, and the summary statistics computed from simulated data S(yi) are 

compared to those of the pseudo-observed data S(y0) using the Euclidian distance d. 

If d is below a given threshold, the parameter value θi is accepted. The threshold 

(tolerance) chosen was 0.5%, which corresponds to the proportion of accepted 

simulations. The estimation of the posterior probability distribution for θ can be 

improved by different regression-based methods available in the ABC R package 

(Csilléry, François, et al. 2012): local linear regression and neural networks. We used 

the neural network method, which performs a dimensionality reduction in the 

summary statistics, and is suggested to be appropriate for use with high 

dimensionality (Csilléry, François, et al. 2012). Through this procedure, we obtain 

estimates for U, α and β, outputted as posterior distributions for each parameter. For 

each combination of parameters (U, α and β), twenty independent pseudo-observed 

data sets were considered to produce the statistics presented in the results. A 

scheme with the different steps described here is represented in Figure 2. 

Effect of variation in initial frequency of marker and presence of deleterious mutations 

We tested the effect of small variations in the initial frequency of each of the 

initial subpopulations (Figure S3) as they may occur in any experimental setup. We 

also tested how the estimates would be affected by the occurrence of deleterious 

mutations (Figure S2). For the first scenario, we generated pseudo-observed data 

sets under the same assumptions of the adaptation model described above except 

that the initial frequency of the neutral marker f(t=0)=0.5 + e, where e  is drawn from a 
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Uniform distribution, e ~ Uniform [-0.03, 0.03] (Figure S3). For testing the effect of 

deleterious mutations we generated pseudo-observed data sets assuming that, in 

addition to beneficial mutations, deleterious mutations can also occur at a rate of 10-3 

and each having a selection coefficient Sdel = 2%. Multiplicative fitness was also 

assumed (Figure S2). All other assumptions were kept the same. Pseudo-observed 

data sets for both cases were generated with a Gamma distribution of fitness effects 

with α = 1. 

 

Results 

Comparison of effective parameters Ue and Se with U and the average effect of 

beneficial mutations 

To determine if the effective parameters Ue and Se are good estimates of U 

and S, we generated pseudo-observed data for a given value of U and with fitness 

effects drawn from a Gamma distribution with different shape and scale parameters 

(Figure 3). For populations with Ne=105, the estimated values of the effective 

parameters are shown in Figure 1, where we also have included results for the case 

where pseudo-observed data was generated under a model where all beneficial 

mutations have the same effect, since this is the case where the estimates are 

expected to perform best. Figure 1A shows that Ue provides a good estimate of U 

for Gamma distributions with shape parameter bigger than 1. This is observed in the 

cases where U is low (<10-6), but when U=10-5 and E(S)=0.02, Ue
 underestimates U 

by a quarter of its real value. Larger biases can be seen for the Exponential 
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distribution (α=1), particularly under high mutation rates (>10-7), where clonal 

interference may be more pronounced. We find that when the distribution of S is 

Exponential with mean 2% and the mutation rate is 10-5 (parameters that have been 

estimated in some bacteria evolution experiments (Perfeito, Fernandes, et al. 

2007)), Ue considerably underestimates the real value of U by an order of 

magnitude. This also happens when the mean effect of beneficial mutations is 6%. 

The underestimation becomes smaller when either the mutation rate or the variance 

in S decreases. As expected, Ue provides an accurate estimate of U when S is 

constant (except for the case where a high value of the mutation rate is considered). 

Figure 1B shows that Se overestimates E(S) 2 to 4 times for a mutation rate higher 

10-6, with a=1. For α=10 this overestimation is small (less than 1.5-fold). Importantly, 

however, most of these values for Se seem to provide an estimate of the order of 

magnitude of the mean effect of beneficial mutations. To test if the bias in Ue and Se 

increases with clonal interference, we also studied populations with increased 

effective population size (Ne=106). Indeed, we find that both Ue (Figure S1A) and Se 

(albeit to a lesser extent) (Figure S1B), show larger deviations from U and E(S), 

that can be up to a 50 fold underestimates of U and a 6 fold overestimates of E(S). 

In sum, higher levels of clonal interference (more pronounced in larger populations 

and with higher values of the mutation rate) lead to larger biases in Ue and Se. 

These biases are dependent upon the underlying distribution of beneficial mutations.       
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Figure 1: Performance of the single S model, according to the highest 
scoring estimates for pseudo-observed data with f(S) as Gamma 
distributions of different variances. A) Ratios of estimates of U over real 
parameter U; B) Ratios of estimates of S over the mean effect of S. The box plots 
of 20 independent estimation processes are shown, with the median indicated as 
a bar. Asterisks indicate cases where none of the 20 independent replicates was 
fitted significantly. 

 



     One Bi-allelic Marker ABC 
	  

	   77	   

0 

0.2 

0.4 

0.6 

0.8 

1 

0 50 100 150 200 250 300 

M
ar

ke
r 

Fr
eq

ue
nc

y 

Time (Generations) 

ABC Posterior 
Distributions

Summary Statistics 
(Experimental)

Summary Statistics 
(Priors)ABC Inference vs

1 million simulations generated with parameters uniform and randomly chosen from:

Priors for U Priors for α Priors for β 
-9 -8 -7 -6 -5 -4

0.
00

0.
05

0.
10

0.
15

0.
20

density.default(x = sims.params[, "UB"])

N = 999999   Bandwidth = 0.08196

D
en
si
ty

0 5 10 15

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

density.default(x = sims.params[, "Alpha"])

N = 999999   Bandwidth = 0.2377

D
en
si
ty

-4 -3 -2 -1 0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

density.default(x = sims.params[, "Beta"])

N = 999999   Bandwidth = 0.06434

D
en
si
ty

Priors for ABC Inference

Transform simulations into the summary statistics created with experimental data

Posterior for U (log10) Posterior for α Posterior for β (log10)

0.65 0.1 0 0.1 0.15

0.15 0.1 0 0 0.75

0.1 0 0 0.05 0.85

0.05 0.05 0 0.05 0.85

0.05 0.05 0 0 0.9

1 0 0 0 0

Gen. 50

Gen. 100

Gen. 150

Gen. 200

Gen. 250

Gen. 300

0.65 0.1 0.1 0.05 0.05 0.05

0.35 0.2 0.2 0.1 0.05 0.1

0.35 0.3 0.1 0.1 0.1 0.05

0.2 0.2 0.15 0.15 0.15 0.15

0.2 0.25 0.15 0.15 0.15 0.1

0.15 0.25 0.2 0.25 0.05 0.1

Summary Statistics

Experimental Data

Difference in Frequency = |0.5 - Frequency| Average Population Fitness

BinInterval =
MaxDistance�MinDistance

5
BinInterval =

MaxAverF itness�MinAverF itness

6
Minimum Distance Maximum Distance

[0.00'0.10]))))[0.10'0.20]))))))[0.20'0.30]))))))[0.30'0.40]))))))[0.40'0.50]

[0.02'0.12]))))[0.12'0.21]))))))[0.21'0.31]))))))[0.31'0.40])))))[0.40'0.50]

[0.11'0.19]))))[0.19'0.27]))))))[0.27'0.34]))))))[0.34'0.42]))))))[0.42'0.50]

[0.01'0.11]))))[0.11'0.21]))))))[0.21'0.30]))))))[0.30'0.40]))))))[0.40'0.50]

[0.40'0.42])))[0.42'0.44])))))))[0.44'0.46]))))))[0.46'0.48]))))))[0.48'0.50]

[0.50'0.50])))[0.50'0.50])))))))[0.50'0.50]))))))[0.50'0.50]))))))[0.50'0.50]

[1.00'1.07])))[1.07'1.14])))[1.14'1.21])))[1.21'1.28])))[1.28'1.34]))))[1.34'1.41]

[1.15'1.23])))[1.23'1.30])))[1.30'1.38])))[1.38'1.45])))[1.45'1.53]))))[1.53'1.60]

[1.39'1.54])))[1.54'1.68])))[1.68'1.82])))[1.82'1.96])))[1.96'2.10]))))[2.10'2.24]

[1.58'1.76])))[1.76'1.94])))[1.94'2.12])))[2.12'2.30])))[2.30'2.48]))))[2.48'2.66]

[1.87'2.13])))[2.13'2.39])))[2.39'2.65])))[2.65'2.90])))[2.90'3.16]))))[3.16'3.42]

[2.29'2.63])))[2.63'2.98])))[2.98'3.32])))[3.32'3.67])))[3.67'4.02]))))[4.02'4.36]

Fr
ac

tio
n 

of
 p

op
ul

at
io

ns
 

at



Chapter II 
	  

	  78	  

Figure 2: Schematic description of the One Bi-allelic Marker ABC.  
Data is obtained from an evolution experiment (here called pseudo-
observed data), at specific time points, involving replicate adaptations to a 
common environment (an example of 20 replicate populations is shown). 
For each time point the data is condensed to summary statistics, for 
marker frequency and mean population fitness, which are histograms with 
the frequency of populations that fall in different bins (5 for frequency data, 
6 for fitness data) at every 50 generations (Gen.). The choice of the bin for 
the frequency statistics is dictated by the module of the difference 
between the initial and current frequency of the subpopulations, so that 
this value is, at most, 0.5 (for marker frequencies of 1 or 0). A large 
simulated data set is built against which the experimental data is 
compared. The priors chosen to produce the simulated data set, which 
consist in 1 million simulations, are shown. Each simulated data (obtained 
with a given value of U, α and β) is then classified according to the same 
summary statistics as calculated for the observed data – called Summary 
stats (Priors) and Summary stats (Experimental), respectively. Using ABC 
inference these summary statistics are compared and the ones closest to 
the experimental data chosen. The 5000 top ranked values (0.5%) of each 
of the parameters are shown as the posterior distribution where the 
median value is highlighted in red. 

Figure 3: Theoretical distributions of beneficial selective coefficients 
assumed to produce pseudo-observed data.  A) Gamma distribution with 
shape parameter α=1 (Exponential distribution), for different scale (β) 
parameters; B) Gamma distribution with shape parameter α=10, for different 
scale (β) parameters. 
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Estimation of the distribution of arising beneficial effects  

To go beyond the mean effect of beneficial mutations and to try to estimate the 

distribution of arising beneficial mutations, we developed a new method, which we call 

One Bi-allelic Marker ABC (Figure 2). To test its performance in retrieving the 

evolutionary parameters U, α and β, we explored different sets of pseudo-observed 

data with combinations of parameter values that seem reasonable given the current 

literature (Denver, Wilhelm, et al. 2012; Lang, Botstein, et al. 2011; Perfeito, 

Fernandes, et al. 2007).  

In Figure 4 we show the ability of the One Bi-allelic Marker ABC method to 

estimate U, α and β, when the distribution of arising mutations is Exponential. This is 

the most commonly assumed distribution in theoretical studies of the adaptive 

process (Betancourt & Bollback, 2006; Orr, 2010). Figure 4A shows that the One Bi-

allelic Marker ABC method provides estimates of U within an order of magnitude, for 

all cases tested. The worst performance lies in retrieving U for both high values of 

E(S) (5% and 10%) and high U (3x10-5), but even in these cases the estimated value 

allows for a correct estimate of the order of magnitude of U. For the intermediate 

value of the mutation rate studied (U=3x10-6) the method provides an accurate 

estimate of U. Figures 4B and 4C provide the results for the estimates of the shape 

and scale parameters of f(S). As shown in Figure 4B, the estimate of the shape 

parameter a is close to 1 or 2, for the majority of the cases considered. Exceptions 

occur for the high mutation rate and the larger β values, which have a very high 
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Figure 4: Performance of the One Bi-allelic Marker ABC method, for 
pseudo-observed data generated with f(S) as a Gamma distribution with 
α=1 and different scales (β). Labels above the bars show the mean selection 
coefficient for each case, and x-axis shows the value assumed for the mutation 
rate. A) Ratios of estimates of U over real parameter U; B) Estimates of the 
shape (α) parameter; C) Ratios of estimates of the scale (β) parameter over the 
real scale parameter. The box plots of 20 independent estimation processes are 
shown, with the median indicated as a bar. 

variance. Estimation of β, shown in Figure 4C, is remarkably good, across the 

parameter range studied, being always below 2-fold the real value of β.  
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We also studied the case where the distribution of arising beneficial mutations 

has a different shape, specifically α=10 (see Figure 3). As shown in Figure 5A, the 

estimated values of U are very close to the real ones in this case, rarely exceeding 2 

times the real U values, although it can be either over or underestimated, depending 

upon the average selective effect. The two parameters characterizing the 

distribution of arising mutations are also remarkably close to the real values. Figure 

5B shows that α is always estimated to be close to its true value (between 7 and 

12), irrespectively of the value of U. Importantly, this estimate of α allows us to 

detect that the distribution of arising mutations is not Exponential. The method, 

therefore, has power to reliably distinguish between distributions of effects with 

distinct shapes. In Figure 5C the performance of the estimates regarding the β 

parameter of the distribution of effects is shown. β is well estimated, never 

exceeding twice the real value. 
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Figure 5: Performance of the One Bi-allelic Marker ABC method, for pseudo-
observed data generated with f(S) as a Gamma distribution with α=10 and 
different scales (β). Labels and symbols are as in Figure 4.	  

 

To further assess the power of the method in distinguishing distributions with 

different shapes, we studied intermediate values of α, between 0.75 and 10. In 

Figure 6, we show that the One Bi-allelic Marker ABC method is able to discriminate 

not only between the two limiting cases in our simulations, but also between 
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Figure 6: Estimates for the shape (α) parameter, for pseudo-observed data 
generated with f(S) as a Gamma distribution with varying α and scales (β), 
in order for E(S) to be constant within a mutation rate. Labels show the α 
parameters used as pseudo-observed data for each case. The box plots of 20 
independent estimation processes are shown, with the median indicated as a 
bar. 

intermediate α values. The method fails to distinguish the shape of the distribution of 

arising mutations when 0.75 < a < 2, especially when U is large. In these cases, α is 

overestimated (by about 2 fold). When a > 2, estimates of a consistent with the true 

value are obtained. When a=4, rejection of an exponential distribution is obtained. 

Overall, the method provides a reliable distinction between different shapes of the 

distribution of arising mutations, although distinguishing between α values lower 

than 2 remains difficult. 
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Discussion 

In order to estimate the parameters that describe the dynamics of adaptation, 

we need powerful methods. Beneficial mutations are essential in driving adaptation 

and their statistical properties remain an open question (Orr 2010). Although 

methods developed to tackle this subject may never perfectly capture the complete 

nature of the evolutionary process, they can provide reasonable estimates regarding 

the strength of the forces involved in the process (Keightley and Eyre-Walker 2010; 

Thornton, Jensen, et al. 2007). 

A simple theoretical approach assumes that all mutations have the same 

fitness effect and has been shown to have predictive power in explaining certain 

patterns of data obtained in experimentally evolved populations (Hegreness, 

Shoresh, et al. 2006). Notwithstanding, several direct measurements of mutation 

effects point to the existence of considerable variation (Kassen and Bataillon 2006) 

which motivates the development of new methods that try to infer the underlying 

distribution of arising beneficial effects.  

Regarding the estimated effective evolutionary parameters studied here, it 

seems clear that the relation with the real parameters is dependent on the actual 

distribution of effects of arising mutations: exponential-like distributions of beneficial 

effects result in values of Ue below the true mutation rate and values of Se above the 

true mean effect of mutations, with the difference being reduced when the 

distribution of effects decrease in variance. Nevertheless, assuming a fixed value for 

S has been a commonly used method to infer the evolutionary parameters from 
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experimental data, for example in studies that address how evolvability is dependent 

upon the genetic background. In one such study, Barrick et al. (Barrick, Kauth, et al. 

2010) isolated 8 clones of Escherichia coli with different mutations in the rpoB gene, 

encoding the β subunit of RNA polymerase. As these mutations are generally 

deleterious in environments without antibiotics, and they can cause a wide range of 

fitness defects (Trindade, Perfeito, et al. 2010), the authors estimated Ue and Se to 

determine the evolvability of different (but related) genotypes. The two neutral 

markers dynamics were used to estimate the evolutionary parameters and, from 

these dynamics, it was inferred that mutants with a higher fitness defect had a 

higher evolvability caused by a stronger selective effect of beneficial mutations. 

Interestingly, the inferred mutation rate (through Ue) appears to be independent of 

the genetic background. Since we show here that Ue may be below U and Se above 

E(S), some caution is to be taken when drawing conclusions regarding the relation 

between evolvability and fitness effects of such mutations. Similar caveats apply in 

the study of Woods et al. (Woods, Barrick, et al. 2011). That study involved a long-

term evolution experiment, running for more than 50,000 generations, where clones 

sampled at generation 500 were found to carry mutations in topA and rbs. These 

were shown to be beneficial and fixed after generation 1500, and their carriers were 

called “eventual winners”. Other contemporaneous genotypes (with other mutations) 

were deemed “eventual losers”. Even though both sets of clones had increased 

fitness related to the ancestral, the “eventual losers” also had, counter intuitively, 

increased fitness relative to the “eventual winners”. To understand why the “eventual 

winners” ultimately won the competition, their evolvability was studied, and U and 
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E(S) were inferred (through Ue and Se ) by assaying neutral marker dynamics. The 

authors found that “eventual winners” had, indeed, the ability to generate beneficial 

mutations with stronger effects, compared to the “eventual losers”.  

The approach used in both studies to determine evolvability may provide an 

overestimate of the mean selective coefficient in the order of two to three times the 

real values if the mutation rates are in the order estimated by the authors, or even 

more, if the mutation rates are underestimated (see Figure 1B). As a consequence, 

this could imply that the actual mean selective coefficients are lower than the one 

estimated, and small differences in evolvability may be difficult to detect.  

In general, inferring evolutionary parameters and, more specifically, the 

distribution of arising mutations, from data of evolving populations is a difficult task. 

Experimentally, one way to gain further insight into the distribution of effects is to use 

more than two neutral markers, which can bring more power (Perfeito, Fernandes, et 

al. 2007). Theoretically, we can expect that new and improved methods are likely to 

emerge. Recently, Zhang et al. (Zhang, Sehgal, et al. 2012) extended the previous 

model by Hegreness et al. to incorporate a continuous initial growth phase, dividing it 

in 50 time intervals, and developing an analytical model to find the distributions of 

estimators for U and S. Like the previous work, however, only the initial dynamics are 

considered (the first significant deviation), and the method does not consider the 

occurrence of clonal interference. Illingworth and Mustonen (Illingworth and Mustonen 

2012), on the other hand, developed a maximum likelihood method where the marker 

dynamics over the total amount of time followed is used. The method determines the 
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minimum number of mutations that best describe the dynamics and allows inferring 

the distribution of haplotype fitnesses that are segregating. Although the performance 

of the method is quite good under certain conditions, it is not clear how it will perform 

under a wide range of mutation rates.  

Here we propose a new theoretical approach that is expected to contribute to 

improved insight regarding the distribution of arising beneficial mutation effects. Using 

Approximate Bayesian Computation, we propose a set of summary statistics to be 

used under a simple experimental setup, where distributions of marker frequencies 

and the mean fitness of the population are recorded at periodic time intervals. These 

statistics allow a reasonable estimation of the distribution of arising mutations and of 

the mutation rate, provided that we accept that such a distribution may be well 

approximated by a Gamma. Combining the parameters of the Gamma distribution (α 

and β), it is also possible to estimate the mean effect of arising beneficial mutations 

(E(S)). Figure 7 shows the estimates of E(S) given by the method when α=1 or α=10. 

Under an Exponential distribution of fitness effects (Figure 7A), which is commonly 

assumed, the mean effect can be overestimated up to 5 or 6 fold, for large values of 

the mutation rate. For α=10, the estimate E(s) is very accurate, reflecting its real value 

for every condition tested (Figure 7B).  
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Figure 7: Ratios of estimated average beneficial selective coefficient over 
the real average beneficial selective coefficient (both calculated as αβ). 
Labels above the bars show the mean selection coefficient for each case, and x-
axis shows the value assumed for the mutation rate. Pseudo-observed data was 
generated with f(S) as a Gamma distribution with α=1 (Exponential distribution of 
f(S)) (A) or α=10 (B). The box plots of 20 independent estimation processes are 
shown, with the median indicated as a bar. 

 

The One Bi-allelic ABC method seems to allow distinguishing between 

distributions with different shapes and scales. The underlying model used makes 

several assumptions, which could be violated in a real experiment. In particular, it 

assumes that the initial population is composed of two equally sized subpopulations, 

each with a different marker, and it also assumes that no deleterious mutations occur. 

To test the robustness of the approach in the face of these assumptions, we 

performed new simulations where pseudo-observed data was generated. In one 
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case, the initial marker frequency was allowed to deviate from its expectation of 0.5 

(Figure S3). In the other case, deleterious mutations were allowed to occur with rates 

and effects typical of those inferred from mutation accumulation experiments with 

bacteria (Kibota and Lynch 1996; Trindade, Perfeito, et al. 2010) (Figure S2). In both 

these cases, the inference of the values of U, α and β were similar to those obtained 

before.  

We performed the analysis of a method, which assumes a common 

experimental setup with only one neutral locus with 2 alleles and fitness 

measurements at periodic time intervals. In principle this setup can be extended to 

follow variation of one locus with more alleles or neutral variation at more loci. The 

method could then be extended and a thorough study of the best summary statistics 

would be needed to ask what would be the minimal set of data required to reasonably 

estimate the rate and distribution of arising beneficial mutations. 

 We have also tested the effect of considering a smaller number of populations 

in order to determine if the approaches can provide reasonable estimates when 

applied to data that have been obtained in studies involving experimental evolution 

with fewer replicates. Figure S4 shows the comparison of Ue with U and Se with E(S) 

when the number of replicate populations is 10, which corresponds to the 

approximate size of previously published experiments (Barrick, Kauth, et al. 2010; 

Hegreness, Shoresh, et al. 2006; Woods, Barrick, et al. 2011). We observed similar 

biases to those found when considering 100 replicate evolved populations. Regarding 

the One Bi-allelic Marker ABC approach, we can observe that even with these 
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reduced number of populations, reasonable estimates of U can be obtained; the 

estimated values of a tend to produce an overestimation which can be up to 15 fold, 

while the estimates of β are close to the real ones (Figure S5). 

The One Bi-allelic Marker ABC method, as the alternatives discussed above, 

displays certain limitations in its performance, which are particularly apparent when 

dealing with very intense clonal interference, for which a system with more markers 

would be desirable. It is a method that tries to estimate the distribution without limiting 

the number of mutations in a given genetic background, and taking into account the 

dynamics of the entire process of adaptation. For a wide spectrum of mutation rates, 

we are able to estimate the parameters of the underlying distribution of beneficial 

mutations. The One Bi-allelic Marker ABC method was tested over a range of 

distributions of beneficial selective coefficients and beneficial mutation rates, including 

high mutation rates, which are typically not studied in the analysis of other methods. 

This gives us a fairly good degree of confidence that, in applying the method to real 

biological data from adaptation experiments of clonal populations using the two-

marker methodology, we are able to gain information on the distribution of beneficial 

arising mutations. 

 

Acknowledgments 

We thank Lilia Perfeito, Ana-Hermina Ghenu, Lindi Wahl, the Gordo’s Lab members, 

two anonymous referees and the editor for their comments and suggestions.  The 

research leading to these results has received funding from the European Research 



     One Bi-allelic Marker ABC 
	  

	   91	  

Council under the European Community’s Seventh Framework Programme 

(FP7/2007-2013) / ERC grant agreement nº 260421 – ECOADAPT. JAMS 

acknowledges the scholarship support provided by FCG and FCT. IG acknowledges 

the salary support of LAO/ITQB & FCT. PC acknowledges financial support from 

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação 

de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) and 

program PRONEX/MCT-CNPq- FACEPE. 

 

References 

Barrett RDH, MacLean RC, Bell G 2006. Mutations of intermediate effect are 
responsible for adaptation in evolving Pseudomonas fluorescens populations. 
Biology Letters 2: 236-238. doi: 10.1098/rsbl.2006.0439 

Barrick JE, Kauth MR, Strelioff CC, Lenski RE 2010. Escherichia coli rpoB Mutants 
Have Increased Evolvability in Proportion to Their Fitness Defects. Molecular 
Biology and Evolution 27: 1338-1347. doi: 10.1093/molbev/msq024 

Bataillon T, Zhang T, Kassen R 2011. Cost of Adaptation and Fitness Effects of 
Beneficial Mutations in Pseudomonas fluorescens. Genetics 189: 939-949. doi: 
10.1534/genetics.111.130468 

Beaumont MA, Zhang W, Balding DJ 2002. Approximate Bayesian computation in 
population genetics. Genetics 162: 2025-2035.  

Biswas S, Akey JM 2006. Genomic insights into positive selection. Trends Genet 
22: 437-446. doi: 10.1016/j.tig.2006.06.005 

Bollback JP, York TL, Nielsen R 2008. Estimation of 2Nes from temporal allele 
frequency data. Genetics 179: 497-502. doi: 10.1534/genetics.107.085019 

Burke MK, et al. 2010. Genome-wide analysis of a long-term evolution experiment 
with Drosophila. Nature 467: 587-590. doi: 10.1038/nature09352 



Chapter II 
	  

	  92	  

Charlesworth B, Morgan MT, Charlesworth D 1993. The effect of deleterious 
mutations on neutral molecular variation. Genetics 134: 1289-1303.  

Crow JF, Kimura M. 1970. An introduction to population genetics theory. New 
York,: Harper & Row. 

Csilléry K, François O, Blum MGB 2012. abc: an R package for approximate 
Bayesian computation (ABC). Methods in Ecology and Evolution 3: 475-479. doi: 
10.1111/j.2041-210X.2011.00179.x 

Cutter AD, Choi JY 2010. Natural selection shapes nucleotide polymorphism 
across the genome of the nematode Caenorhabditis briggsae. Genome Research 
20: 1103-1111. doi: 10.1101/gr.104331.109 

Denver DR, et al. 2012. Variation in base-substitution mutation in experimental 
and natural lineages of Caenorhabditis nematodes. Genome biology and 
evolution. doi: 10.1093/gbe/evs028 

Desai MM, Fisher DS, Murray AW 2007. The speed of evolution and maintenance 
of variation in asexual populations. Curr Biol 17: 385-394. doi: 
10.1016/j.cub.2007.01.072 

Drake JW, Charlesworth B, Charlesworth D, Crow JF 1998. Rates of spontaneous 
mutation. Genetics 148: 1667-1686.  

Dykhuizen DE, Hartl DL 1983. Selection in chemostats. Microbiol Rev 47: 150-
168.  

Elena SF, Lenski RE 2003. Evolution experiments with microorganisms: the 
dynamics and genetic bases of adaptation. Nat Rev Genet 4: 457-469. doi: 
10.1038/nrg1088 

Enard D, Depaulis F, Roest Crollius H 2010. Human and Non-Human Primate 
Genomes Share Hotspots of Positive Selection. PLoS Genet 6: e1000840. doi: 
10.1371/journal.pgen.1000840.t002 

Estes S, Phillips PC, Denver DR 2011. Fitness recovery and compensatory 
evolution in natural mutant lines of C. elegans. Evolution 65: 2335-2344. doi: 
10.1111/j.1558-5646.2011.01276.x 

Eyre-Walker A, Keightley PD 2007. The distribution of fitness effects of new 
mutations. Nat Rev Genet 8: 610-618. doi: 10.1038/nrg2146 



     One Bi-allelic Marker ABC 
	  

	   93	  

Fisher RA. 1930. The genetical theory of natural selection. Oxford,: The Clarendon 
press. 

Gerrish PJ, Lenski RE 1998. The fate of competing beneficial mutations in an 
asexual population. Genetica 102-103: 127-144.  

Good BH, et al. 2012. Distribution of fixed beneficial mutations and the rate of 
adaptation in asexual populations. Proceedings of the National Academy of 
Sciences of the United States of America 109: 4950-4955. doi: 
10.1073/pnas.1119910109 

Gordo I, Perfeito L, Sousa A 2011. Fitness effects of mutations in bacteria. J Mol 
Microbiol Biotechnol 21: 20-35. doi: 10.1159/000332747 

Grossman SR, et al. 2013. Identifying recent adaptations in large-scale genomic 
data. Cell 152: 703-713. doi: 10.1016/j.cell.2013.01.035 

Grossman SR, et al. 2010. A composite of multiple signals distinguishes causal 
variants in regions of positive selection. Science 327: 883-886. doi: 
10.1126/science.1183863 

Hancock AM, Di Rienzo A 2008. Detecting the Genetic Signature of Natural 
Selection in Human Populations: Models, Methods, and Data. Annu. Rev. 
Anthropol. 37: 197-217. doi: 10.1146/annurev.anthro.37.081407.085141 

Hegreness M, Shoresh N, Hartl D, Kishony R 2006. An equivalence principle for 
the incorporation of favorable mutations in asexual populations. Science 311: 
1615-1617. doi: 10.1126/science.1122469 

Hietpas RT, Jensen JD, Bolon DNA 2011. From the Cover: Experimental 
illumination of a fitness landscape. Proc Natl Acad Sci USA 108: 7896-7901. doi: 
10.1073/pnas.1016024108 

Illingworth CJ, Mustonen V 2011. Distinguishing driver and passenger mutations in 
an evolutionary history categorized by interference. Genetics 189: 989-1000. doi: 
10.1534/genetics.111.133975 

Illingworth CJR, Mustonen V 2012. A method to infer positive selection from 
marker dynamics in an asexual population. Bioinformatics 28: 831-837. doi: 
10.1093/bioinformatics/btr722 



Chapter II 
	  

	  94	  

Imhof M, Schlotterer C 2001. Fitness effects of advantageous mutations in 
evolving Escherichia coli populations. Proceedings of the National Academy of 
Sciences of the United States of America 98: 1113-1117. doi: 
10.1073/pnas.98.3.1113 

Jensen JD, Thornton KR, Andolfatto P 2008a. An Approximate Bayesian Estimator 
Suggests Strong, Recurrent Selective Sweeps in Drosophila. PLoS Genet 4: 
e1000198. doi: 10.1371/journal.pgen.1000198.t003 

Jensen JD, Thornton KR, Aquadro CF 2008b. Inferring Selection in Partially 
Sequenced Regions. Molecular Biology and Evolution 25: 438-446. doi: 
10.1093/molbev/msm273 

Kassen R, Bataillon T 2006. Distribution of fitness effects among beneficial 
mutations before selection in experimental populations of bacteria. Nat Genet 38: 
484-488. doi: 10.1038/ng1751 

Keightley PD 1998. Inference of genome-wide mutation rates and distributions of 
mutation effects for fitness traits: a simulation study. Genetics 150: 1283-1293.  

Keightley PD, Eyre-Walker A 2010. What can we learn about the distribution of 
fitness effects of new mutations from DNA sequence data? Philos Trans R Soc 
Lond, B, Biol Sci 365: 1187-1193. doi: 10.1098/rstb.2009.0266 

Kibota TT, Lynch M 1996. Estimate of the genomic mutation rate deleterious to 
overall fitness in E. coli. Nature 381: 694-696. doi: 10.1038/381694a0 

Kimura M, Ohta T 1974. On some principles governing molecular evolution. 
Proceedings of the National Academy of Sciences of the United States of America 
71: 2848-2852.  

Kvitek DJ, Sherlock G 2011. Reciprocal Sign Epistasis between Frequently 
Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. 
PLoS Genet 7: e1002056. doi: 10.1371/journal.pgen.1002056.g005 

Lang GI, Botstein D, Desai MM 2011. Genetic variation and the fate of beneficial 
mutations in asexual populations. Genetics 188: 647-661. doi: 
10.1534/genetics.111.128942 

Lemonnier M, et al. 2008. The evolution of contact-dependent inhibition in non-
growing populations of Escherichia coli. Proc Biol Sci 275: 3-10. doi: 
10.1098/rspb.2007.1234 



     One Bi-allelic Marker ABC 
	  

	   95	  

Lind PA, Berg OG, Andersson DI 2010. Mutational robustness of ribosomal protein 
genes. Science 330: 825-827. doi: 10.1126/science.1194617 

MacLean RC, Buckling A 2009. The distribution of fitness effects of beneficial 
mutations in Pseudomonas aeruginosa. PLoS Genet 5: e1000406. doi: 
10.1371/journal.pgen.1000406 

Malaspinas AS, Malaspinas O, Evans SN, Slatkin M 2012. Estimating allele age 
and selection coefficient from time-serial data. Genetics 192: 599-607. doi: 
10.1534/genetics.112.140939 

Martin G, Lenormand T 2006. The fitness effect of mutations across environments: 
a survey in light of fitness landscape models. Evolution 60: 2413-2427.  

Mathieson I, McVean G 2013. Estimating selection coefficients in spatially 
structured populations from time series data of allele frequencies. Genetics 193: 
973-984. doi: 10.1534/genetics.112.147611 

Maynard-Smith J, Haigh J 1974. The hitch-hiking effect of a favourable gene. 
Genet Res 23: 23-35.  

Mcdonald MJ, Cooper TF, Beaumont HJE, Rainey PB 2011. The distribution of 
fitness effects of new beneficial mutations in Pseudomonas fluorescens. Biology 
Letters 7: 98-100. doi: 10.1098/rsbl.2010.0547 

Nielsen R 2005. MOLECULAR SIGNATURES OF NATURAL SELECTION. Annu. 
Rev. Genet. 39: 197-218. doi: 10.1146/annurev.genet.39.073003.112420 

Orozco-terWengel P, et al. 2012. Adaptation of Drosophila to a novel laboratory 
environment reveals temporally heterogeneous trajectories of selected alleles. Mol 
Ecol 21: 4931-4941. doi: 10.1111/j.1365-294X.2012.05673.x 

Orr HA 2010. The population genetics of beneficial mutations. Philos Trans R Soc 
Lond, B, Biol Sci 365: 1195-1201. doi: 10.1098/rstb.2009.0282 

Perfeito L, Fernandes L, Mota C, Gordo I 2007. Adaptive mutations in bacteria: 
high rate and small effects. Science 317: 813-815. doi: 10.1126/science.1142284 

Rokyta DR, et al. 2008. Beneficial fitness effects are not exponential for two 
viruses. J Mol Evol 67: 368-376. doi: 10.1007/s00239-008-9153-x 



Chapter II 
	  

	  96	  

Rozen DE, de Visser JAGM, Gerrish PJ 2002. Fitness effects of fixed beneficial 
mutations in microbial populations. Curr Biol 12: 1040-1045.  

Sanjuán R, Moya A, Elena SF 2004. The distribution of fitness effects caused by 
single-nucleotide substitutions in an RNA virus. Proceedings of the National 
Academy of Sciences of the United States of America 101: 8396-8401. doi: 
10.1073/pnas.0400146101 

Sawyer SA, Parsch J, Zhang Z, Hartl DL 2007. Prevalence of positive selection 
among nearly neutral amino acid replacements in Drosophila. Proceedings of the 
National Academy of Sciences of the United States of America 104: 6504-6510. 
doi: 10.1073/pnas.0701572104 

Schneider A, Charlesworth B, Eyre-Walker A, Keightley PD 2011. A method for 
inferring the rate of occurrence and fitness effects of advantageous mutations. 
Genetics 189: 1427-1437. doi: 10.1534/genetics.111.131730 

Schoustra SE, Bataillon T, Gifford DR, Kassen R 2009. The Properties of Adaptive 
Walks in Evolving Populations of Fungus. PLoS Biol 7: e1000250. doi: 
10.1371/journal.pbio.1000250.t001 

Sinha P, et al. 2011. On Detecting Selective Sweeps Using Single Genomes. 
Front. Gene. 2: 1-5. doi: 10.3389/fgene.2011.00085 

Sousa A, Magalhães S, Gordo I 2012. Cost of antibiotic resistance and the 
geometry of adaptation. Molecular Biology and Evolution 29: 1417-1428. doi: 
10.1093/molbev/msr302 

Stevens KE, Sebert ME 2011. Frequent beneficial mutations during single-colony 
serial transfer of Streptococcus pneumoniae. PLoS Genet 7: e1002232. doi: 
10.1371/journal.pgen.1002232 

Thornton KR, Jensen JD, Becquet C, Andolfatto P 2007. Progress and prospects 
in mapping recent selection in the genome. Heredity: 1-9. doi: 
10.1038/sj.hdy.6800967 

Trindade S, Perfeito L, Gordo I 2010. Rate and effects of spontaneous mutations 
that affect fitness in mutator Escherichia coli. Philos Trans R Soc Lond, B, Biol Sci 
365: 1177-1186. doi: 10.1098/rstb.2009.0287 



     One Bi-allelic Marker ABC 
	  

	   97	  

Woods RJ, et al. 2011. Second-Order Selection for Evolvability in a Large 
Escherichia coli Population. Science 331: 1433-1436. doi: 
10.1126/science.1198914 

Zhang W, et al. 2012. Estimation of the rate and effect of new beneficial mutations 
in asexual populations. Theor Popul Biol 81: 168-178. doi: 
10.1016/j.tpb.2011.11.005 

 

Supplementary Figures 

 

Figure S1: Performance of the single S model, according to the highest scoring 

estimates for experimental data with f(S) as Gamma distributions of different 

variance and Ne=106. A) Ratios of estimates of U over the real parameter U; B) Ratios 

of estimates of S over the mean effect of S. The box plots of 20 independent 

estimation processes are shown, with the median indicated as a bar. Asterisks indicate 

cases where none of the 20 independent replicates was fitted significantly. 
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Figure S2: Effect of the presence of deleterious mutations in the estimation of U, 

a, b and E(S) with the One Bi-allelic Marker ABC method. Pseudo-observed data 

sets were generated with a model where deleterious mutations occurred at rates 

Ud=0.001, each having an effect 0.02. Beneficial mutations were sampled from a 

gamma distribution with α=1. A) Estimation of U; B) Estimation of α;  C) Estimation of 

β;  D) Estimation of the mean beneficial effect αβ . Asterisks indicate the cases where 

the inferences for pseudo-observed data sets with both beneficial and deleterious 

mutations is significantly different (Mann-Whitney test P < 0.05) from the inference 

from pseudo-observed data sets without deleterious mutations. 
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Figure S3: Effect of uncertainty in the value of the initial marker frequency when 

estimating U, a, b and E(S) under the One Bi-allelic Marker ABC method. Pseudo-

observed data sets were generated assuming random variation around the initial 

marker frequency (0.5) by adding a random error uniformly distributed [-0.03; 0.03]. A) 

Estimation of U; B) Estimation of α ;  C) Estimation of β;  D) Estimation of the mean 

beneficial effect αβ. Asterisks indicate the cases where the inferences for pseudo-

observed data sets including error in initial frequencies is significantly different (Mann-

Whitney test P < 0.05) from the inference without error. 
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Figure S4 Estimation of U and S through the effective evolutionary parameters 

(Ue and Se) with pseudo-observed data from 10 replicate populations with f(S) as 

Gamma distributions of different variances and Ne=105. A) Ratios of estimates of U 

over real parameter U; B) Ratios of estimates of S over the mean effect of S. The box 

plots of 20 independent estimation processes are shown, with the median indicated as 

a bar. Asterisks indicate cases where none of the 20 independent replicates was fitted 

significantly. 
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Figure S5 Estimation of U, a, b and E(S) with the One Bi-allelic Marker ABC 

method with pseudo-observed data from 10 replicate populations. A) Estimation 

of U; B) Estimation of α;  C) Estimation of β;  D) Estimation of the mean beneficial 

effect αβ. Asterisks indicate the cases where the inferences are significantly different 

(Mann-Whitney test P < 0.05) from those derived from 100 replicate populations. 
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Abstract 

One of the simplest models of adaptation to a new environment is Fisher’s 

Geometric Model (FGM), in which populations move on a multidimensional 

landscape defined by the traits under selection. The predictions of this model have 

been found to be consistent with current observations of patterns of fitness 

increase in experimentally evolved populations. Recent studies investigated the 

dynamics of allele frequency change along adaptation of microbes to simple 

laboratory conditions and unveiled a dramatic pattern of competition between 

cohorts of mutations, i.e. multiple mutations simultaneously segregating and 

ultimately reaching fixation. Here, using simulations, we study the dynamics of 
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phenotypic and genetic change as asexual populations under clonal interference 

climb a Fisherian landscape, and ask about the conditions under which FGM can 

display the simultaneous fixation of mutations along the adaptive walk. We find 

that FGM under clonal interference, and with varying levels of pleiotropy, can 

reproduce the experimentally observed competition between different cohorts of 

mutations (“cohort interference”), some of which have a high probability of fixation 

along the adaptive walk. Overall, our results show that a simple version of FGM is 

able to capture the dynamics of cohorts of mutations that are observed in 

experiments involving the adaptation of microbial populations. 

Keywords: Fisher Geometric Model, clonal interference, genetic hitchhiking, 

natural selection. 

 

Introduction 

Understanding the mechanisms and dynamics underneath the adaptive 

process is still a great challenge in evolutionary biology. Even in relatively simple 

environments, evolution experiments demonstrate that this process often involves 

complex dynamics such as: (1) competition between clones carrying different 

adaptive alleles (Maharjan & Ferenci 2015; Desai & D S Fisher 2007; Perfeito et 

al. 2007) , (2) hitchhiking, along with beneficial alleles, of neutral and even 

deleterious mutations (Maharjan & Ferenci 2015; Gerrish & Lenski 1998; Desai & 

D S Fisher 2007; Lang et al. 2013; Perfeito et al. 2007), (3) second-order selection 

of mutations which lead to increased mutation rates and mutator phenotypes 

(Maharjan & Ferenci 2015; Sniegowski et al. 1997; Desai et al. 2007; Tenaillon et 

al. 2001; Perfeito et al. 2007; Barrick et al. 2009; Wielgoss et al. 2013), or (4) the 

emergence of negative frequency-dependent interactions between genotypes 

(Desai & D S Fisher 2007; Maharjan & Ferenci 2015; Lang et al. 2013; Maharjan 

2006; Gerrish & Lenski 1998; Desai et al. 2007; Herron & Doebeli 2013; Perfeito et 

al. 2007). It is increasingly evident that not only these dynamics influence the 

adaptive process but also that they emerge as a result of the adaptive process. 
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For instance, the fixation of mutator phenotypes has been typically observed in 

adapting populations, as their higher mutation rate provides them with a higher 

probability of acquiring and hitchhiking with rare beneficial mutations (Desai & D S 

Fisher 2007; Chao & Cox 1983; Lang et al. 2013; Taddei et al. 1997; Tanaka et al. 

2003; Gentile et al. 2011; Torres-Barceló et al. 2013). More recently, experimental 

findings from microbial evolution experiments coupled with sequencing analysis 

unveiled that a dramatic level of polymorphism in populations can occur during 

adaptation. Interestingly, a pattern of aggregation and hitchhiking of multiple 

mutations is observed – cohorts – in populations adapting to the same 

environmental laboratory conditions. Synchronous increase or decrease in 

frequency of these mutations, competition between distinct cohorts and the 

simultaneous fixation of the mutations that form the cohorts is pervasive during 

this laboratory microbial adaptations (Sniegowski et al. 1997; Lang et al. 2013; 

Tenaillon et al. 2001; Ming-Chun Lee & Marx 2013; Barrick et al. 2009; 

Maddamsetti et al. 2015; Wielgoss et al. 2013).   

A classical model of adaptation to a novel environment is Fisher’s 

Geometrical Model (FGM), where a population adapts towards a fixed optimum 

(Ronald Aylmer Fisher 1930). FGM considers the process of adaptation assuming 

that individuals are defined by their traits under selection, which are geometrically 

represented in a defined multidimensional landscape. In this model, directionality 

in selection emerges by assuming that fitness is related to the distance of each 

phenotype to the optimum. Thus, a population moves towards the fitness peak 

through the gradual accumulation of beneficial mutations. FGM has been 

extensively studied beyond its original scope to make predictions under different 

scenarios about the distribution of beneficial mutations during adaptation (Orr 

1998; Martin & Lenormand 2008; Bataillon et al. 2011), the level of epistasis 

between mutations (Martin et al. 2007; Blanquart et al. 2014), the effects of 

deleterious mutations accumulated under relaxed selection (Martin & Lenormand 

2006; Perfeito et al. 2014), the effect of drift load in the fitness at equilibrium  (Otto 

& Orive 1995; Lourenço et al. 2011), sympatric speciation in an environment with 
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multiple fitness peaks (Barton 2001; Sellis et al. 2011) and the effect of mutation 

pleiotropy (the number of traits affected by a single mutation) in adaptation (Welch 

& Waxman 2003; Chevin, Martin, et al. 2010b; Lourenço et al. 2011). Martin 

(Martin 2014) recently proposed that FGM basic assumptions can emerge from 

models which consider the nature of complex metabolic networks within a cell. 

FGM predictions are largely compatible with observations coming from 

experimental evolution studies, mostly in microorganisms (MacLean et al. 2010; 

Chou et al. 2011; Khan et al. 2011; Gordo & Campos 2013; Sousa et al. 2012; 

Weinreich & Knies 2013; Tenaillon 2014).  

Here we ask whether the patterns of competition and fixation of 

simultaneous segregating mutations (cohorts) along an adaptive walk observed 

experimentally can be reproduced under FGM. Since the simplest version of FGM 

assumes full mutational pleiotropy, which is a restrictive assumption and thought 

to bear poor biological realism (Welch & Waxman 2003; Orr 2005; Wang et al. 

2010; Chevin, Lande, et al. 2010a; Wagner & Zhang 2011; Lourenço et al. 2011), 

we also studied a model assuming partial pleiotropy. The degree of mutational 

pleiotropy is expected to influence the dynamics of adaptation (Wagner & Zhang 

2011). In our model of partial pleiotropy, similar to that of (Lourenço et al. 2011), a 

single mutation can only change a subset of traits (m), taken at random from the 

full set of traits (n) that contribute to fitness. When populations have small sizes or 

mutation rates are low, the analytical expressions for predicting the rate of 

adaptation under this model suggest that mutational pleiotropy can affect the 

dynamics of adaptation of populations approaching a fitness peak (Lourenço et al. 

2011). However, such analytical results rely on a strong simplifying assumption: 

the populations are monomorphic most of the time. This assumption is quite 

restrictive given the increasing experimental evidence for high rates of beneficial 

mutations both in natural (Eyre-Walker & Keightley 2007; Jensen et al. 2008) and 

in experimental populations (Perfeito et al. 2007; Good et al. 2012), which 

promptly produce competition between segregating mutations arising in distinct 

lineages and drive the dynamics of cohorts described above. To address these 
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more relevant scenarios, we use stochastic simulations of FGM for populations 

undergoing strong clonal interference. We consider large populations and values 

of mutation rate and mean effect of mutations that are in reasonable agreement 

with current estimates for microbial populations (Gordo et al. 2011; Perfeito et al. 

2014).  

Most of theoretical analysis done so far focused on predicting the 

equilibrium mean fitness, and did not address the time scale at which such 

equilibrium is in fact reached. As experiments where evolution is followed for 

longer and longer periods are emerging (Barrick & Lenski 2013; Lang et al. 2013), 

it is also important to have theoretical expectations on the full dynamics of the 

approach to equilibrium under classical models of adaptation, both at the 

phenotypic and genotypic level, as we do here. By tracking each individual 

mutation during the adaptive walk as the populations approach the optimum, we 

find that the simplest version of FGM can generate the complex cohort dynamics 

observed in microbial adaptation experiments, under specific evolutionary 

parameters within a biological realistic range.  

 

Methods 

Simulation Methods of Fisher Geometrical Model 

FGM considers each individual as a point in a n-dimensional space, where 

n is the number of traits under selection. Each individual is characterized by a 

vector of coordinates (z1, z2,…, zn) that gives the position of the individual in the 

fitness landscape. This vector represents the phenotypic values for each trait. 

Without loss of generality, we define the optimum as the origin of the n-

dimensional space. As commonly done, we assume that fitness is given by a 

Gaussian function of the distance to the optimum, .  We assume 

that mutations follow a Poisson distribution with a genomic mutation rate U, per 

w = exp − zi
2

i=1

n∑( )
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individual, per generation. Each mutation changes m traits chosen at random from 

the total n traits, and the effect it causes in each affected trait follows a normal 

distribution with mean 0 and variance s2.  We consider a Wright-Fisher model and 

assume multinomial sampling with fixed population size N. The contribution of 

each individual to the next generation is proportional to its fitness. We assume 

large population sizes and consider values of genomic mutation rates (U ~0.001) 

that are reasonable estimates for the genome-wide mutation rate in DNA microbes 

(Drake et al. 1998; H Lee et al. 2012). The code for the simulations is provided as 

supplementary material. 

 

Results 

Dynamics of approach to equilibrium mean fitness  

 We start by studying the dynamics of fitness increase along tens of 

thousands of generations for different levels of phenotypic complexity, pleiotropy 

and mean effect mutations. Figure 1A shows that the initial rate of fitness increase 

is lower under low pleiotropy across all values of the mean fitness effect of 

mutations (E(S)) studied. The effect is particularly strong for large values of E(S) 

(E(S)>0.01). However, in the long run populations with lower pleiotropy reach 

higher levels of mean fitness (see also Supplementary Figure S1). Increasing 

genetic complexity (n), while maintaining a similar level of pleiotropy, shows a 

similar pattern for the fitness plateau, where populations with fewer traits reach 

higher fitness values (Figure 1B).  
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Figure 1: Dynamics of mean fitness increase under FGM with partial 
pleiotropy 

A) Dynamics of mean fitness of asexual populations with varying degrees of 
pleiotropy. All populations have high complexity (n=96) and distributions of 
fitness effects (DFEs) with different means are studied. Other parameters are 
N=104, U=0.001 and the initial fitness w0=0.5. B) The effect of increasing 
phenotypic complexity (n) on the dynamics of fitness increase. Other population 
parameters are: N=104, U=0.001, s2=0.004, m=3 and the initial fitness w0=0.5. 
Short term dynamics are highlighted as an inset. 
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Cohort of mutations fixed in the initial steps of adaptation 

Next, we studied the dynamics of mutation fixation along the adaptive walk. 

We first studied populations with maximum pleiotropy and various degrees of 

complexity across different E(S) and mutation rates, and ask how many mutations 

fix simultaneously in the first step. Figure 2 shows that fixations of cohorts of 

mutations can be very common, reflecting the degree of clonal interference 

occurring in these large populations. Across all parameters, the major determinant 

of the number of mutations fixing in cohorts is the mean effect of mutations (E(S)), 

with lower effect mutations promoting fixation of cohorts of larger size. The other 

relevant parameter to the size of the fixed cohorts, as expected, is the mutation 

rate, with an increased mutation rate showing the largest cohorts of mutations 

fixed. Therefore, the combination of small effect mutations generated at a high rate 

leads to the fixation of larger cohorts. We performed the same analysis on 

simulations where we relax the assumption of full pleiotropy. Populations with 

partial pleiotropy (m=3, 10 or 20) for the highest level of complexity previously 

tested (n=30) show patterns that are qualitatively similar (Supplementary Figure 

S2). The main difference detected occurs in simulations with a high mutation rate, 

where the likelihood of observing large cohorts of stronger effect mutations 

increases relative to the case of full pleiotropy. Additionally, both in the cases of 

full or partial pleiotropy, the complexity of evolving populations shows a minimal 

effect on the size of the fixed cohorts of mutations. Therefore, the number of 

mutations observed fixing simultaneously in the first step of adaptation is mainly 

determined by the mutation rate and the mean selective effect of mutations. 
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Figure 2: FGM can lead to simultaneous fixation of cohorts of mutations. The 
probability distribution of the number of mutations fixed during the first fixation event 
in the adaptive walk. Parameter values are N=104, the initial fitness w0=0.5 and 
other parameters as indicated in each panel. Data is shown for 100 simulations per 
combination of parameters.  
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Cohort of mutations fixed along the adaptive walk 

In order to understand how the probability of observing the fixation of 

cohorts changes along the adaptive walk, we next study the distribution of 

mutations fixed beyond the first step of adaptation.  Figure 3 shows the pattern of 

cohorts fixed along an adaptive walk lasting 30000 generations. Each point in the 

panels of Figure 3 corresponds to a fixation event occurring during this time 

period, with the number of mutations (i.e., the size of the cohorts) that compose 

each of these fixations represented in the y-axis. The probability of observing 

cohorts consisting of a large number of mutations later in the adaptive walk is 

strongly dependent on the average selective effect of these mutations. Lower 

effect mutations lead to the fixation of cohorts of larger sizes not only in the first 

steps, but also as populations approach the equilibrium fitness. Interestingly, we 

observe that, for the lower values of E(S), the likelihood of fixing cohorts of larger 

sizes (from 4 to 8 mutations) increases for populations with a higher complexity, 

throughout the adaptive walk. For high values of E(S) and populations with a lower 

number of traits, fixation of large cohorts becomes an increasingly rare event once 

they approach the fitness equilibrium. Overall, along the adaptive walk, the size of 

fixed cohorts tends to shrink, at a faster pace for large E(S). Therefore, for long-

term adaptation in populations approaching a fixed optimum, fixation of single 

mutations is expected to become the dominant pattern. However, when E(S) is 

small (right panel in Figure 3) that regime may take a substantial time to be 

reached. 
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Figure 3: Number of mutations fixed (cohort size) along the adaptive walk. 
Parameter values are N=104, the initial fitness w0=0.5 and other parameters as 
indicated in each panel. In all panels full pleiotropy is assumed (m=n). Data is 
shown for 100 simulations per combination of parameters. 

 

Dynamics of cohorts of mutations 

Finally, we study the dynamics of polymorphism expected in populations 

climbing the Fisherian landscape. We focus our simulations on short-term 

evolution, a time scale for which polymorphism data has been obtained recently 

(Lang et al. 2013). Figure 4 shows the dynamics of frequency change of each 

individual mutation segregating in populations evolving for 1000 generations. 

Aggregation of cohorts of mutations can be clearly observed across the different 

replicate populations, all with the same evolutionary parameters. The parameter 

set shown was chosen to be one where we could find a pattern similar to that 

observed in the evolution experiments done in yeast (Lang et al. 2013). In the 

replicate simulated populations, cohorts of different sizes emerge and compete 

against each other, with some achieving fixation and others being outcompeted. 



Chapter III   
	  

	  116	  

Figure 4: Dynamics of frequency change of individual mutations along time 
across independently evolving populations. Aggregation of multiple mutations 
in cohorts can be easily detected by the simultaneous increase in frequency of 
different mutations (in different colors). Competition between cohorts can be 
commonly observed during the first 1000 generations of adaptation. Parameter 
values used are N=105, the initial fitness w0=0.5, n=10, m=3 and E(S)=0.012. 
Gaussian noise (mean 0, variance 0.02), mimicking experimental error, was 
added to the dynamics for increasing visibility and comparison with experimental 
data. 

Although this phenomenon of “cohort interference” is more likely for cohorts 

competing at lower frequencies (where many mutations are segregating), it can 

also be observed when mutations reach high frequencies (e.g., first and third 

panels in the first row). Even under the same parameter values different patterns 

can be observed among the replicates:  sequential fixation of cohorts of low size in 

some populations (e.g., fourth and seventh panels) and fixation of cohorts of large 

size in other populations (e.g., fifth, sixth and ninth panels). The same qualitative 

behavior is observed when simulating a higher number of replicate populations 

adapting under FGM (see Supplementary Figure S3).  
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Discussion 

With the advances of next generation sequencing, increased power to 

observe the dynamics of adaptation at the resolution of individual mutations has 

emerged. The data recently gathered indicates that adaptation of microbial 

populations adapting in laboratory environments exhibit patterns very distinct from 

the classic single selective sweep model of periodic selection. Instead the 

dynamics of molecular evolution in these microbes evolving in real time shows that 

aggregates of beneficial mutations segregate and fix simultaneously (Lang et al. 

2013; Maddamsetti et al. 2015; Zanini et al. 2016). Given the easiness of FGM to 

produce dynamics of fitness change similar to those observed in such 

experiments, we asked if such dynamics of molecular change could be expected 

under this model. The simulations performed, show that Fisher’s Geometric Model, 

in its simplest version, can reproduce dynamics of cohort interference such as the 

ones observed in experimental settings. Cohort interference can be common 

during the initial steps of adaptation, but it is more likely if the mean effect of 

mutations is small and mutation rates are not too small. In these scenarios many 

small effect mutations simultaneously segregate, each taking a long time to reach 

fixation, which likely results in the acquisition of additional mutations (either 

beneficial, neutral or slightly deleterious) in the same genetic background. In 

contrast, when E(S) is large, beneficial mutations sweep to fixation faster, and the 

likelihood of acquiring additional mutations in their background diminishes. As 

expected the size of the interfering cohorts increases as the mutation rate 

increases, since an increased amount of mutations segregating in these high U 

populations prevents the fast fixation of a single mutation. Remarkably when 

simulating the dynamics of individual mutations produced under FGM, we could 

find patterns very similar to the ones that are increasingly being assayed through 

whole genome sequencing of evolving microbial populations (e.g. compare Figure 

4 with Figure 1 in (Lang et al. 2013)). Although such pattern is dependent on the 

parameters used, it could be observed in simulated populations assuming a set of 

parameters within a biological plausible range: a mean effect of mutations around 
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1% (Eyre-Walker & Keightley 2007; Gordo et al. 2011) and a genomic mutation 

rate of 10-3 (H Lee et al. 2012).   

The relationship between the size of cohorts and both the mean effect of 

mutations and the mutation rate is also detected when we study adaptation over 

longer periods (Figure 3). The size of fixed cohorts tends to shrink along the 

adaptive walk, and does so at a faster pace for large values of E(S). Therefore, for 

populations approaching a fixed optimum the pattern of long-term adaptation is 

expected to become dominated by fixation of single mutations. However if E(S) is 

small such pattern may take many thousands of generations to be detected (right 

panels in Figure 3), a time scale that is out of reach for most laboratory 

experiments so far studied. The famous LTEE in Escherichia coli constitutes an 

important exception, where patterns of adaptation can be studied over periods as 

long as 60000 generations (Lenski et al. 1991; Maddamsetti et al. 2015). The 

access to samples frozen every 500 generations allows the tracking of individual 

mutations and the reconstruction of the evolutionary genetic history of an 

individual population. Maddamsetti et al tracked the emergence of 42 mutations in 

one of the evolving populations and showed competition and interference between 

lineages carrying several mutations, including the simultaneous fixation of these 

sets (Maddamsetti et al. 2015). In this population however, not only clonal 

interference was observed but also frequency-dependent selection was important 

in driving the dynamics of mutation cohorts. On a shorter-term experiment, also 

with E. coli but now evolving in a chemostat, Maharjan and colleagues detected 

synchronous sweep of multiple mutations but the levels of polymorphism were 

also driven by frequency dependent interactions between clones (Maharjan et al. 

2015). As we show here clonal interference alone can lead to dynamics of cohort 

interference, but given the emergence of frequency dependent selection even in 

the simplest environments it will be important in future work to model other fitness 

landscapes which can allow for the simultaneous occurrence of both processes. 
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Conclusions 

In the current work, we study a simple version of the Fisher’s Geometrical 

Model that assumes partial or full pleiotropy. Despite its simplicity, FGM has been 

successfully used to reproduce patterns of the dynamics of the adaptive process 

(Chevin, Martin, et al. 2010b; Martin 2014). A common pattern emerging from the 

short-term dynamics of populations of microorganisms evolving in laboratory 

conditions is the finding that mutants carrying multiple segregating mutations can 

go to fixation (Lang et al. 2013; Maddamsetti et al. 2015). Before resorting to more 

complex models of fitness landscapes, we inquired whether a simple and less 

parameterized model, such as FGM, could capture the essence of this sort of 

observation under reasonable parameters.  Assuming large population sizes close 

to those in the experiments, and mutation rates typical of microbes, thus naturally 

driving population to a clonal interference regime, we show that FGM, both under 

full and partial pleiotropy, generates patterns of segregation and competition of 

cohorts of mutations that are consistent with experimental observations. 
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Supplementary Figures 

 

 

Supplementary Figure S1: Long term dynamics of mean fitness of 

populations as a function of the mean effect of mutations (E(S)). Dynamics 

are shown for high and low levels of pleiotropy (m=96 and m=3). Other parameters 

are as in Figure 1. 
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Supplementary Figure S2: Effect of pleiotropy in the simultaneous fixation of 

cohorts of mutations during the first step of adaptation. The complexity, n, is 

fixed at 30 while the pleiotropy, m, varies between 3, 10 and 30 (full pleiotropy). 

Remaining parameters are as in Figure 3. 
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Supplementary Figure S3: Additional simulations showing the dynamics of frequency 

change of individual mutations along time. The diverse patterns of cohorts observed 

emerge from the dynamics of adaptation under FGM. Parameters are as in Figure 4.

Figure S3

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0

0
20
0
40
0
60
0
80
0
10
00

0.0

0.2

0.4

0.6

0.8

1.0



	  

 

	  

	  

	  

	  

	  

	  

	  

CHAPTER IV 
Epistatic interactions shape compensatory 
adaptation of multiple antibiotic resistances 

	  

	  

	  

	  

	  

Manuscript in preparation 
 
The author of this thesis performed the competitive and sensitivity assays, 
theoretical simulations and estimation of parameters and the analysis of the 
whole genome sequencing of the evolved populations. Hajra-bibi Ali provided 
technical help in the propagations and competitive assays, as well as the DNA 
extraction for sequencing. Roberto Balbontín performed the allelic 
reconstructions. 

 



Chapter IV   
	  

	  130	  

  



	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Compensatory adaptation in multi-resistant bacteria	  
	  

	   131	  

Epistatic interactions shape compensatory adaptation of multiple antibiotic 
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Abstract 

The rate and effects of compensatory mutations are key determinants for the 

maintenance of costly antibiotic resistance mutations. While compensation of 

single resistance mutations has been well studied, this process may differ in multi-

resistant strains, due to epistasis between resistance alleles. Using experimental 

evolution and whole genome sequencing, we compared the pace and genetic 

basis of compensation of a streptomycin and rifampicin double resistant 

Escherichia coli with those of each of the respective single mutants. We found 

minimal overlap between the compensatory mutations acquired by double 

resistant bacteria and those found in single resistance strains, and provide direct 

evidence for mutations that compensate specifically for the interaction between the 

resistant alleles. Furthermore, the pace of compensatory evolution is higher in the 

double resistant strain due to rapid accumulation of adaptive mutations with 

stronger fitness benefits. This is the first study describing the compensatory 

landscape of double resistant bacteria and demonstrating that the process of 

compensation is shaped by the epistatic interaction between mutations for 

different resistances. 
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Introduction 

 Antibiotics are one of the most important medical advancements in history, 

preventing millions of deaths from bacterial infections. Nevertheless, bacteria 

engage in a constant arms race, through the acquisition of genes or chromosomal 

mutations that confer resistance to the drugs (J Davies & D Davies 2010; Hughes 

& Andersson 2015; van Hoek et al. 2011). Resistance mutations are widely spread 

in bacterial populations, both in clinical (Gullberg et al. 2011; MacLean & Vogwill 

2015; Hughes & Andersson 2015) and environmental settings (Forsberg et al. 

2012; Bhullar et al. 2012), providing a reservoir of genetically encoded antibiotic 

resistance that can be transmitted by horizontal gene transfer (van Hoek et al. 

2011; Kriegeskorte & Peters 2012). Moreover, as microbes become resistant to a 

specific drug, the subsequent use of alternative antibiotics might create further 

resistance, thus leading to the increasing threat of multi-drug resistant strains 

(Hughes & Andersson 2015; Mwangi et al. 2007; Velayati et al. 2009; Zhang et al. 

2013). This is a prevalent case in Staphylococcus aureus, Escherichia coli or 

Mycobacterium tuberculosis, for instance, where multiple resistances pose a 

serious threat to human health (Hede 2014; Petty et al. 2014; Mwangi et al. 2007; 

Warner et al. 2014). Determining the evolutionary dynamics governing the 

emergence of these mutations and the mechanisms behind resistance is 

paramount to design more effective treatments. Although the effects vary across 

environments, mutations conferring resistance are typically deleterious in the 

absence of antibiotics (Schrag et al. 1997; Sousa et al. 2012), where resistant 

strains should be outcompeted by sensitive bacteria. Yet, the widespread 

prevalence of resistance mutations in bacteria indicates that populations can curb 

this deleterious effect. In order to understand how antibiotic resistant bacteria 

survive, spread in populations and acquire further resistances, it is crucial to 

realize how this fitness cost is overcome.  

 Mutations conferring antibiotic resistance typically alter bacterial targets 

involved in key processes, such as the ribosome, for the case of resistance to 

stremptomycin (Luzzatto & Apirion 1968; Couturier et al. 1964) or the RNA 
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polymerase, for resistance to rifampicin (Wehrli 1983; Goldstein 2014). The 

changes in essential machinery caused by resistance mutations usually lead to 

deleterious effects and, in the absence of antibiotics, resistant strains face different 

possible outcomes: extinction, reversion of the resistance mutation, or acquisition 

of further mutations that compensate for the fitness cost (Schrag et al. 1997; 

Reynolds 2000; Andersson & Hughes 2010; Brandis et al. 2012). The latter is, 

arguably, the worse outcome for the host, since antibiotic resistance alleles might 

become stabilized in the population while paying little or even no cost (Levin et al. 

2000). Acquiring additional mutations to overcome the fitness cost of resistance is 

also more likely to occur than the reversion of the resistance mutation, since the 

genomic target range for compensation is much broader (Levin et al. 2000; Poon 

2005). Therefore, understanding the key evolutionary dynamics of compensatory 

adaptation is necessary to predict and counteract the survival and spread of 

antibiotic resistant strains.  

 Compensation for the cost of resistance by further genetic changes has 

been widely described both in clinical (Comas et al. 2012; Zhang et al. 2013) and 

laboratory (Reynolds 2000; Maisnier-Patin et al. 2002; Qi et al. 2016) settings. The 

rate of compensation depends on the resistance alleles, whose compensatory 

targets might differ in nature and size, and might have different distributions of 

effects (Moura de Sousa et al. 2015). The dynamics of compensatory adaptation 

depend also on populational parameters, such as bottleneck size (Maisnier-Patin 

et al. 2002) and mutation rate (Levin et al. 2000). Over the last decades, 

numerous targets of compensation for single resistance alleles have been 

described (e.g. (Maisnier-Patin et al. 2002; Brandis & Hughes 2013; Qi et al. 

2016)). However, compensation in bacteria harbouring more than one resistance 

mutation is likely to be different, because these alleles are often known to interact 

(Borrell & Gagneux 2011). This epistasis might originate from the fact that 

resistance mutations affect functionally interconnected cell machinery (Chakrabarti 

& Gorini 1977; Chao 1978). Thus, different, co-occuring, genetic modifications (for 

instance, in proteins involved in transcription and translation) might lead to 
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functional conflicts that diverge their cumulative effects from linearity (Trindade et 

al. 2009; Hall & MacLean 2011; Borrell et al. 2013). We hypothesize that, for 

cases of strong negative epistasis, genetic reversions in one of the original 

resistance alleles are amongst the strongest beneficial mutations, since it 

compensates both the individual effect of the reverted allele and the synergistic 

cost. Thus, reversions could be more frequently observed in these cases, 

compared to single resistance backgrounds, where their effect is limited to the cost 

of the resistance itself. Moreover, certain targets of compensation can be specific 

to these epistatic interactions, and thus the effects of compensatory mutations 

may be different in single or double resistance strains. In this scenario, the rate, 

targets and effects of compensatory mutations in multi-resistant bacteria could 

deviate considerably from the ones observed during compensation of single 

resistances. 

 In order to investigate this question, we performed experimental evolution, 

in antibiotic-free media, of three different Escherichia coli resistant genotypes: 

RpoBH526Y (conferring resistance to rifampicin), RpsLK43T (conferring resistance to 

streptomycin), and a double resistant mutant (RpoBH526YRpsLK43T) that shows 

negative epistasis for fitness costs of double resistance. Neutral marker dynamics 

indicated a faster pace of adaptation in double resistant bacteria, while whole 

genome sequencing of clones of evolved populations revealed minor overlap 

between the genetic targets of compensation in double resistant strains and those 

in each of the single resistant alleles. Unexpectedly, genetic reversions of the 

RpoBH526Y allele were detected both in the single RifR and the double resistant 

background at non-significant different frequencies (2 out of 12 and 1 out of 24, 

respectively). While no reversion for StrR was detected, overlap at the level of 

single nucleotide polymorphisms occurred in three of the putative compensatory 

targets for the StrR mutation. By testing the effects of a specific allele in the original 

resistance backgrounds, we showed it could compensate specifically for the 

epistatic interaction between the resistances, being deleterious in the single 

resistant background where it was expected to provide a benefit. Together, these 
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results indicate that the pattern of compensation can be specific to the interactions 

between different resistance alleles in multi-drug resistant bacterial strains. 

Faster pace of adaptation in double resistant populations 

 E. coli independent populations were founded from one of three different 

antibiotic resistant genetic backgrounds: 12 populations which are RifR 

(RpoBH526Y), 12 populations which are StrR (RpsLK43T) and 24 double mutant 

populations RifRStrR (RpoBH526YRpsLK43T). These genetic backgrounds have 

different fitness costs (see Extended Data Fig. 1), and the double mutant shows 

negative epistasis (i.e. its fitness cost is bigger than the sum of the costs of the 

single resistances). The resistant backgrounds were tagged with a fluorescent 

marker (either CFP or YFP) and the replicate populations were serially passed for 

22 days in rich media without antibiotics (see Methods). The fluorescent markers 

hitchhike with beneficial mutations and allow tracking adaptive events in evolving 

populations (Hegreness 2006). Therefore, the frequencies of the markers were 

followed during the adaptive process (Fig. 1). We observed that, for double 

resistant RifRStrR E. coli (Fig. 1c), markers deviate from their initial frequency 

faster and with steeper slopes, compared to the populations in either one of the 

corresponding single resistant bacteria, RifR (Fig. 1a) or StrR (Fig. 1b). In double 

resistant populations, the markers either sweep to near fixation within the first 6 

days or show strong signs of clonal interference, which is indicative of multiple 

adaptive clones competing against each other. In single resistant bacterial 

populations, near fixation (>0.95) of a marker is only observed in a minority (3 out 

of 12 RifR and 1 out of 12 StrR populations) of the independently evolving 

populations, and only after 14 days of evolution. Moreover, the dynamics of all RifR 

alone show no obvious sign of clonal interference, whereas in StrR some 

populations are likely adapting by acquiring compensatory mutations in both CFP 

and YFP backgrounds (e.g., populations 3 and 11). As expected, given its much 

lower fitness, the double resistant populations show more signs of interference. 

This suggests that the pace of adaptation is faster for the bacteria harbouring two 

resistance alleles. 
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Figure 1: Faster compensatory evolution in double antibiotic resistant 
bacteria. Dynamics of a fluorescent neutral marker during adaptation to rich 
media without antibiotics in (A) 12 independent Escherichia coli populations 
resistant to rifampicin (RpoBH526Y); in (B) 12 populations resistant to 
streptomycin (RpsLK43T) and in (C) 24 populations resistant to both rifampicin 
and streptomycin (RpoBH526YRpsLK43T). 
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Faster adaptation of RifRStrR is driven by beneficial mutations with stronger 
effect 

 To understand why double resistant populations adapt faster than single 

resistant ones, we measured the average competitive fitness of the evolving 

populations (see Methods) at days 5, 9, 15 and 22 along the adaptive process 

(Fig. 2a). Despite variation between the populations, the general pattern of fitness 

increase differs between the resistances. While the RifR populations on average 

increase in fitness linearly over time (Fig. 2a, leftmost panel), both the StrR 

populations and the RifRStrR populations show a substantial increase in fitness at 

day 5 and subsequently reach a plateau (Fig. 2a, middle and rightmost panel, 

respectively). Moreover, the fitness increase in RifRStrR bacteria is both 

remarkably strong and fast, with the high initial cost of the double resistance (red 

dashed line in rightmost panel of Fig. 2a) being on average completely mitigated 

at day 5. Interestingly, while all populations show increased competitive fitness 

compared to the ancestral resistances, we see stabilization at different fitness 

peaks (Fig. 2a and Extended Data Figure 2), which suggests multiple pathways 

for compensation.  

Rate and effects of compensatory mutations 

 The higher fitness increase in double resistant bacteria can be due to 

either a higher rate of acquisition of beneficial mutations (due to a large target 

size, for instance) or to the acquisition of mutations with stronger beneficial effects. 

Using a modified version of the TwoMarkerABC algorithm (Moura de Sousa et al. 

2013) that considers both the marker dynamics and the fitness along the adaptive 

walk (see Methods), we inferred the rate of acquisition of beneficial mutations and 

the distribution of effects of arising beneficial mutations for each of the 

backgrounds. We found that the inferred rate of acquisition of beneficial mutations 

is not significantly different between the double resistance and the RifR populations 

(around 3x10-6), although both are significantly lower compared to the StrR genetic 

background, which is in the order of 10-5 per cell per generation (Fig. 2b). 
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However, the mean selective effect of beneficial arising mutations is significantly 

higher for the RifRStrR background, compared to either of the individual single 

resistances (around 0.18, versus 0.1 for the RifR and 0.05 for the StrR) (Fig. 2c). 

This suggests that beneficial mutations with higher mean selective effect are 

available to the double resistant bacteria. These observations point to the 

existence of different compensatory paths, which might entail the acquisition of 

different mutations in each background.  
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Figure 2: Compensatory mutations have stronger effects in double 
resistant mutants. A) Competitive fitness of each evolving population at 
different days during adaptation. Each circle corresponds to a population with 
similar color shown in figure 1. Red dashed lines correspond to the fitness of 
the ancestral resistance mutant strain. B) Estimation of the rate of acquisition of 
beneficial mutations and (C) mean selective effects of arising beneficial 
mutations are shown in the violin plots, and correspond to the distribution of the 
top 20 simulations that best explain the experimental data. In panel B Red line 
indicates the median of the distributions. 
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The genetic basis of compensation 

 Selective effects between double and single resistances suggests that the 

mutations underlying compensation could either be diverse and specific for each 

background or, alternatively, that similar targets have distinct effects depending on 

the resistant background. In order to analyse the genetic basis of compensatory 

adaptation, we performed whole genome sequencing of one clone, from the 

fluorescence at the highest frequency, from each evolved population at the end of 

the experiment. For each resistance background, the clones from all populations 

were pooled and sequenced together (see Methods), in order to capture a broad 

spectrum of the compensatory landscape (Fig. 3 and Extended Data Table 1). 

We found that mutations are, indeed, diverse and strikingly more so for the double 

resistance background (37 different gene targets) (Fig. 3c) compared to either of 

the single resistances (9 and 16 genes targeted in RifR and StrR evolved 

populations, respectively) (Fig. 3a and b). Several mutations in RifR (10 out of 16 

allelic changes) and RifRStrR (16 out of 52) were detected in known compensatory 

targets for the single resistance mutations in either rpoB (rpoB itself, rpoA and 

rpoC) or rpsL (rpsE, rpsD and tufA) (see expanded arrows in Fig. 3). Other novel 

putative compensatory targets were identified, which point to an overlap in 

functional targets of compensation, namely in genes encoding membrane proteins 

(i.e., ybjO and nanC in RifR; ydhK in RifR and StrR; yeaI and yojI in StrR; ompF and 

ydiY in RifRStrR) and ribosomal proteins (rplL in RifRStrR and rplI in StrR). On the 

other hand, mutations affecting other genes involved in DNA replication, 

transcription and translation (i.e., dnaG, multL, rpiR, secE (nusG) and rpsJ (nusE)) 

seem to occur preferentially in the double resistant evolved populations. At the 

allelic level, we found that a genetic reversion in rpoB and three StrR mutations 

overlap between the double resistance and either of the two single resistances. 

This minimal parallelism indicates that either numerous targets of compensation 

exist or that there is an abundance of targets specific to the double resistant 

background. 
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Figure 3: Distinct allelic targets of compensation in double resistant 

bacteria. Genetic targets associated with compensatory adaptation for each 

antibiotic resistant background were identified through metapopulation 

sequencing. Mutations detected at least in one population map 

(approximately) at the position indicated  (see Extended Table 1). Zoomed 

genes indicate known targets of compensatory mutations for the 

corresponding resistant background. A) In blue, mutations found in the 12 

independently evolved RifR populations. B) In green, mutations found in the 12 

independently evolved StrepR populations. C) In black, mutations found in the 

24 independently evolved RifRStrepR, with mutations found also in single 

resistant populations indicated in the correspondent color. In A) and C) a red 

box indicates a reversion of the original resistance mutation (RpoBY526H). In all 

panels, stars indicate mutations that were likely in more than one population 

(i.e., frequency of reads was above the one expected for one clone in the 

population pool).  

 

Genetic reversion of RifR mutation 

 The only allelic mutation that was found to be shared between the RifR and 

the RifRStrR evolved populations is a back mutation in rpoB (red squares in Fig. 3a 

and c). Reversions are rare in single resistance backgrounds (Levin et al. 2000; 

Poon 2005), but clinically relevant, since bacteria regain sensitivity to the 

antibiotic. In either the single or double resistant background, reversion here was 

also rare, being detected in 2 out of 12 RifR populations and 1 out 24 RifRStrR 

populations (see Extended Data Table 1), all of which were confirmed to be 

sensitive to rifampicin (Extended Data Table 2). The difference in the number of 

reversions is non-significant between the single and double resistant mutations 

(P=0.243, Fisher exact test). Given the epistatic interaction in the double 

resistance, this mutation should have a very strong beneficial effect (~23%), 

accounting for a substantial portion of the fitness increase (see Fig. 2a). However, 

its low frequency across double resistant evolved populations is indicative that 
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there are many other strong effect beneficial mutations that compensate the 

fitness cost of a double resistant background without the loss of resistance. 

Notably, a reversion of the RpsLK43T allele, which would also confer a 20% fitness 

benefit, was not detected through sequencing, although there are one StrR and two 

RifRStrR evolved lines that have subpopulations of clones with increased sensitivity 

to Streptomycin (Extended Data Table 2). The fact that, contrary to expectations, 

reversions are seldom seen in compensated double resistant populations is in 

agreement with our inference of a distribution with high mean selective effects for 

this background.  

 

RpoCQ1126K shows sign epistasis between RifR and RifRStrR 

 The limited parallelism for compensatory mutations between the RifRStrR 

background and the corresponding single resistances can be expected under two, 

non mutually exclusive, hypothesis: i) the number of targets for compensation can 

be so large that our assay was insufficient to capture its full spectrum; and ii) many 

mutations are only beneficial when both resistances are present. Because rpoC is 

a common compensatory target for rifampicin resistance mutations in the rpoB 

gene (De Vos et al. 2013; Brandis et al. 2012; Comas et al. 2012), we selected 

two mutations appearing in this gene, RpoCH450P and RpoCQ1126K. The first one 

was detected in the evolved single RifR populations and the second was observed 

in the evolved double RifRStrR background. We reconstructed new strains (see 

Methods) harbouring one of the original resistance allele(s) (RpoBH526Y or 

RpoBH526YRpsLK43T) and either one of these putative compensatory mutations. We 

then competed these reconstructed strains against their corresponding ancestral 

(i.e., only the resistance allele(s)) in order to assert its fitness advantage, if any 

(Fig. 4). As expected, the reconstructed double mutant RpoBH526YRpoCH450P has a 

competitive fitness advantage (0.05±0.01) over the ancestral strain (RpoBH526Y) but 

the beneficial effect of this mutation is higher (0.10±0.013) in the double resistance 

background (RpoBH526YRpsLK43TRpoCH450P) (Fig. 4a). Given the strong advantage 
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conferred by this allele, the fact that it was not observed in any of the 24 evolved 

RifRStrR populations is indicative of the existence of many strong compensatory 

mutations competing, supporting the first hypothesis (the compensatory targets 

were not exhausted) and in concordance with our inference (Fig. 3c). To test for 

the second hypothesis, similar competitive assays were performed with the 

second mutation in rpoC (RpoCQ1126K), which arose in the RifRStrR populations. As 

expected, the triple mutant RpoBH526YRpsLK43TRpoCQ1126K shows a high fitness 

advantage over its ancestral (RpoBH526YRpsLK43T) but, strikingly, this mutation 

shows decreased fitness in the single resistant strain (RpoBH526YRpoCQ1126K) with 

respect to its ancestral (RpoBH526Y) (Fig. 4b). Therefore, the beneficial effect of the 

RpoCQ1126K mutation is conditional to the presence of the second resistance allele 

RpsLK43T, being deleterious in the context of the RpoBH526Y mutation alone. This 

provides evidence for the second hypothesis, suggesting that this mutation might 

be specifically compensating for the epistatic interaction between the two resistant 

alleles. 
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Figure 4: A compensatory mutation buffers the epistasis between RifR and 
StrepR. Strains reconstructed to incorporate compensatory mutations are 
competed against their corresponding ancestral (i.e., the resistant strain without 
the compensatory mutation). A) A compensatory mutation of RifR populations, 
mapping in the rpoC gene (RpoCH450P), is beneficial also in the RifRStrepR 
background, with an even stronger compensatory effect in the latter, 
demonstrating a remarkably broad range for compensatory targets. B) The allele 
RpoCQ1126K, found in adapted RifRStrepR populations, is beneficial in that 
background but deleterious in the single RifR mutant, indicating that it 
compensates specifically for the epistasis between RifR and StrepR alleles. Mean 
values and standard error bars correspond to 3 replicate competitions for each of 
the 4 independently constructed clones for each allelic replacement. 
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Discussion 

 As concerns increase regarding the generation and spread of multi-drug 

resistant bacteria, it is of crucial importance to understand how these resistant 

alleles are maintained in populations (Hughes & Andersson 2015). Investigating 

the process of acquisition of compensatory mutations is essential and, although 

compensation for single resistance mutations has been well described, our 

findings suggest that these observations are not entirely transferrable into the 

compensatory process of multi-drug resistant strains. The results presented here 

demonstrate that RifRStrR bacteria, when compensating for their fitness cost, can 

follow an evolutionary path that is distinct from either one of its corresponding 

single resistances. Not only the pace of adaptation is faster, but the double 

resistant background also has access to stronger effect mutations. The results 

from our theoretical inference provide support for this observation, with estimates 

of the rate of acquisition of mutations that range from 10-6 in RifR and RifRStrR 

populations to 10-5 in StrR (per cell, per generation). These are slightly above the 

ones estimated in compensation of the K43N allele in Salmonella Thypimurium, 

which is in the order of 10-7 (Maisnier-Patin et al. 2002). Since this rate was 

estimated from the rate of fixation of mutants, in scenarios of intense clonal 

interference this value could be an underestimation of the true compensatory rate. 

It is important to notice here that the underlying model of adaptation used for the 

estimation of these parameters in our work does not take into account epistasis 

(Moura de Sousa et al. 2013), which is very likely affecting mutations acquired 

during adaptation. Therefore, both the rate of acquisition of beneficial mutations 

and the average mean effects of beneficial mutations are probably 

underestimated, particularly for the StrR and RifRStrR, where fitness increases 

shows more prevalent diminishing returns. However, our inference of higher 

selective effects in the double resistant populations is in agreement with their 

measured competitive fitness, which also show a higher increase. In principle, this 

could be due to the fact that the RifRStrR is inherently more costly, and thus similar 

mutations could have a stronger effect in this less adapted background. However, 
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the genetics of evolved populations indicate a different story. The minimal overlap 

between the putative compensatory mutations identified in the evolved populations 

is indeed suggestive of alternative evolutionary paths that are shaped by the 

epistatic interaction between the two resistant alleles. We had a priori indications 

that the we would not be able to completely exhaust the targets of compensation, 

first because the known targets of compensation for streptomycin, for instance, 

can be very diverse, of at least 35 allelic changes in the genes coding for 

ribosomal proteins alone (Maisnier-Patin et al. 2002). Moreover, we sequenced 

only one clone per population, and our sequencing protocol does not have a 

resolution that would enable the detection of every single compensatory mutation. 

Nevertheless, and even with this limited sampling procedure, we found that 3 

mutations co-occur between StrR and double resistant evolved populations, 

suggesting that some of compensatory mutations can be strongly selected in both 

the single and double resistant backgrounds. The fixation of a reversion in the 

RpoBH526Y allele in two out of 12 RifR evolved populations indicates that the rate of 

reversion for this particular allele might be higher than previously thought. 

However, the fact that the reversion was observed at a comparable frequency in 

both the single RifR and double resistant populations was surprising, since this 

mutation should have a very strong beneficial effect on the latter background. We 

reasoned this might indicate competition with several other compensatory 

mutations that have high selective effects. Moreover, the fact that we do not detect 

genetic reversions for the StrR evolved populations is indicative that the 

compensatory spectrums differ between the resistance mechanisms, possibly both 

in size and effects. Of notice, however, is the fact that some evolved StrR (and 

some RifRStrR) populations show increased sensitivity to streptomycin. No 

reversion of the original RpsLK43T was found in our sequences, meaning that an 

eventual reversion, if it emerged, has not swept to fixation as in the RifR 

populations. It is also possible that this is a phenotypic reversion caused by 

mutations in other genes, which we are currently investigating. For instance, some 

of the alleles where we detected mutations in rpsD and rpsE are known to confer a 

ribosomal ambiguity phenotype (Maisnier-Patin & Andersson 2004; Ogle & 
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Ramakrishnan 2005), which might functionally revert the effect of the original StrR 

RpsLK43T mutation, rendering the cells sensitive to the antibiotic.  

 Several mutations observed in the ribosomal genes in the evolved StrR 

(RpsEA110V) in RifRStrR (RpsDT86A, RpsDD50Y, RpsET103P and RpsEG109R) 

backgrounds affected residues previously described as compensatory for the 

RpsLK43N resistance allele in S. Typhimurium, at least at the level of the residue 

(Maisnier-Patin et al. 2002). Some of the SNPs in rpoA (RpoAT196I) and in rpoC 

(RpoCH450P) where also previously identified as compensatory for the RpoBH526Y 

allele (Moura de Sousa et al. 2015). Nevertheless, many of the remaining putative 

compensatory targets identified here are, to the best of our knowledge, previously 

unidentified in the literature. The minimal allelic overlap between the mutations 

acquired in the three different backgrounds suggests that these mutations confer 

specific compensatory effects instead of general adaptation to the selected growth 

conditions. Additionally, the fact that some of the targets are directly related to the 

cellular mechanisms of replication, transcription and translation, provides further 

indication of their compensatory role. The double resistant background in 

particular accumulates a staggering amount and diversity of mutations, which span 

multiple cellular characteristics and mechanisms. Importantly, functional 

mechanisms specifically targeted by compensatory mutations in the RifRStrR 

background include DNA transcription and translation, and might modulate the 

interaction between the resistances themselves. A particular mutation, RpoCQ1126K, 

even though it maps in a gene known to harbour compensatory mutations for RifR, 

becomes deleterious when associated with the original RpoBH526Y alone, while 

being beneficial in the double resistance background (RpoBH526YRpsLK43T). Thus, 

this mutation could specifically compensate for the epistatic interaction between 

the resistance alleles. If this is true, it would be extremely interesting to disclose 

the molecular mechanisms underlying this compensatory effect. Moreover, other 

identified mutations provide an interesting indication of compensation for the 

interaction between resistances. For instance, mutations affecting the regulatory 

regions of rpsJ (nusE) or the secE-nusG operon target proteins that constitute the 
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physical link between transcription and translation machineries (Burmann et al. 

2010), suggesting that they could compensate for the epistasis by affecting the 

coordination between these two processes. Furthermore, to the best of our 

knowledge, these targets have not been identified in studies of compensation in 

single resistance alleles. We expect that our current analyses of the specific 

effects of these mutations will provide new insights on the molecular mechanisms 

involved. Since many resistance mutations affect essential mechanisms that 

commonly interact (Borrell et al. 2013; Durão et al. 2015), there are plenty of 

opportunities for a spectrum of mutations that supress or correct these epistatic 

interactions, which will be missed by studying the individual resistance alleles 

alone (MacLean & Vogwill 2015). The ability to identify them and determine how 

they affect the interactions between the resistant alleles is determinant for 

understanding how multi-resistances emerge and persist in bacterial populations. 

This may provide a theoretical framework for the development of new antimicrobial 

strategies that exploit potential weaknesses of multi-drug resistant bacteria. 

 

Material and Methods 

Strains and growth conditions  

 E. coli K12 MG1655 marked with constitutive expression of yellow (YFP) or 

cyan (CFP) fluorescent proteins (∆lacIZYA galK::CmR YFP/CFP) and with 

chromosomal resistance to either streptomycin (RpsLK43T allele), rifampicin 

(RpoBH526Y allele) or both, was used in the long term propagation experiment in to 

Luria-Bertani broth (LB) without the presence of antibiotics. Cultures were grown in 

a 96-well plate incubator at 37º C with shaking (700rpm). Non-fluorescent wild-

type E. coli K12 MG1655, was used as reference strain for the competition fitness 

assays. 
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Experimental evolution for compensation  

In order to acclimatize bacteria to the environment, strains were grown 

separately from frozen stocks in LB media (150ul per well) in 96-well plates at 37º 

C with shaking (12 replicates per strain were inoculated in a checkered format to 

avoid cross-contaminations). After 24h, 10ul of bacteria culture diluted by a factor 

of 10-2 was transferred into 140ul fresh LB media and let grow for additional 24h. 

Isogenic strains differing only in the marker were diluted again by a factor of 10-2 

and then mixed based on their cell numbers given by the Flow Cytometer (LSR 

Fortessa) in order to obtain an initial ratio of 1:1. A total of 48 competitions were 

initiated by inoculating 140ul of LB media with 10ul of each mixed population 

which were allowed to grow for 24h, reaching a concentration of, approximately, 

109 CFU/ml. After every 24h of growth, and for 22 days, these cultures were 

propagated by serial passage with a constant dilution factor of 10-2 (10 ul of 

diluted culture was transferred into 140 ul of fresh medium). In parallel, cell 

numbers were counted using the Flow Cytometer in order to measure the 

frequency of each strain in the mixed population during the experiment, by 

collecting a sample (10ul) from the spent culture each day. Samples were frozen 

at days 5, 9, 12, 15, 18 and 22. 

 

Competitive fitness assays  

 The relative fitness of each evolved population at the end of the 

propagation experiment, at day 22, was measured by competitive growth against 

the reference strain E. coli K12 MG1655. The competitor (each evolved 

populations, potentially composed of both YFP and CFP) and the reference 

(unmarked) strains were first unfrozen and acclimatized separately for 48h (with 

two growth periods of 24h) and then mixed in a proportion of 1:1 using a method 

similar to the one preveiously described. To assess the cost of the resistances 

themselves before any compensation, control competitions were performed 

between the ancestral of each resistant mutant and the reference strain by mixing 
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25% of YFP + 25% of CFP with 50% of the unmarked strain. Thus, a total of 52 

competitions were initiated by inoculating 140ul of LB media with 10ul of each 

mixed population and allowed to compete for 48h. The initial and final frequency of 

the strains was obtained by counting their cell numbers in the Flow Cytometer. 

Generation time was estimated from the doubling time of the reference strain 

(approx. 8 generations) and the fitness was determined as the average of three 

independent replicates for each competition.  

 

Sensitivity assay of evolved populations 

 Evolved cultures were grown in 96 well plates with LB for 24h and 

subsequently plated in antibiotic-free solid media. From each evolved population 

clones were picked with a pipette tip, which then was used to inoculate 

sequentially both a spot in antibiotic (plates containing media with 100ug/ml of 

rifampicin, streptomycin or both drugs) and antibiotic-free plates (LB agar only). 

Clones were classified as sensitive if they grew on an antibiotic-free media but not 

on media with antibiotic(s). 50 clones were initially tested for each population. 

Populations where sensitive clones were found were subsequently tested for 

another 150 clones. 

 

Estimation of evolutionary parameters 

 The method used to estimate the rate of acquisition of beneficial mutations 

and the distribution of selective effects was modified from the one published in 

(Moura de Sousa et al. 2013). Briefly, the method simulates 1 million marker 

dynamics with parameters (mutation rate, shape and mean of a gamma 

distribution for the selective effects of new mutations) chosen from a uniform 

distribution. Afterwards, marker frequency and average population fitness is used 

to summarize both the experimental data and the simulated dynamics. This data is 

used as summary statistics to be compared by Approximate Bayesian 
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Computation (ABC). The difference in the method used here is that instead of 

using the neural network function in ABC, a simple ranking and rejection method 

was used, where simulations are ranked by the Euclidean distance between 

summary statistics form the simulated and experimental data, and the top 20 

simulations were chosen for the distributions of parameters. 

 

DNA extractions  

 The evolved populations were plated onto LB agar plates and grown for 

24h at 37º C. One colony, with the most frequent marker, was picked from each 

population was grown overnight into 10 mL of liquid LB, at 37º C with shaking. The 

bacterial DNA was then extracted and its concentration and purity were quantified 

using Qubit and NanoDrop, respectively. Following quantification, equal 

concentration of each DNA sample was taken and pooled together with the clones 

from the populations of similar resistant background, resulting in 3 pools of DNA 

(RifR pool with 12 clones, StrR pool with 12 clones and RifRStrR pool with 24 

clones). 

 

Whole Genome Sequencing Analysis 

 The DNA extracted was sequenced using the Miseq Illumina platform. 

Coverage of the different pools was as following: 521x for 12 clones in the RifR 

pool; 640x for 12 clones in the StrR pool; 631x for 24 clones in the RifRStrR pool. 

The resulting sequences were analysed in Breseq version 2.3, using E. coli K12 

genome NC_000913.2 as a reference, and with the polymorphism option selected 

and following parameters: a) rejection of polymorphisms in homopolymers of 

length greater than 3; b) rejection of polymorphisms that are not present in at least 

3 reads in each strand; c) rejection of polymorphisms that don not have a p-value 

for quality bigger than 0.05. All other Breseq parameters were used as default. 
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Allelic reconstructions and competitions 

 The putative compensatory mutations located in rpoC were co-transduced 

together with rpoB H526Y to wild-type (∆lacIZYA galK::CmR YFP/CFP) and rpsL 

K43T backgrounds by P1vir transduction, using the propagated line harbouring 

each rpoC mutation as donor and either wild-type (∆lacIZYA galK::CmR YFP/CFP) 

or the rpsL K43T ancestral as recipient strains, and selecting for rifampicin 

resistance. The presence of the desired mutations in the transductant isolates was 

assessed by amplification of the rpoC gene and sequencing. The resulting strains, 

which were stored at -80ºC, harbour either the rpoC mutation linked to the rpoB 

H526Y allele (reconstruction of the rpoC mutation in the single resistant 

background) or these two mutations and the rpsL K43T allele (reconstruction of 

the rpoC mutation in the double resistant background). Both reconstructed strains 

and ancestral resistant strains were unfrozen and acclimatized during 24h, to 

avoid compensatory mutations to appear in the more costly backgrounds. 

Reconstructed mutants were competed against the respective ancestral strain to 

assess their competitive advantage per generation, assuming the competition lasts 

8 generations, or 24h. 
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Supplementary Figures and Tables 

 

 

Extended Data Figure 1: Competitive fitness at 48h of the resistant strains used 

in this study. The RifRStrepR background shows strong negative synergistic 

epistasis. 
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Extended Data Figure 2: Dynamics of competitive fitness increase for the 

RifRStrepR populations show stabilization at different levels of fitness. Error bars 

indicate the standard error across 3 independent replicates. In A are the dynamics 

of all the 24 populations, and in B are shown 6 indicative populations, for clarity. 
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Mutations in H526Y Evolved Populations (12)
Genome Position Gene(s) Mutation Region Frequency
897,450 ybjO T→C I80T (ATC→ACC) 6.10%
1,720,637 ydhK Δ3 bp coding 1%
1,876,095 yeaP A→G G119G (GGA→GGG) 8.10%
2,438,935 fabB Δ135 bp coding 1%
3,056,065 serA Δ3 bp coding 7%
3,438,465 rpoA G→A T196I (ACC→ATC) 16.40%
4,179,832 G→A D189N (GAT→AAT) 10.50%
4,180,843 T→C Y526H (TAC→CAC) 19.30%
4,180,886 G→A R540H (CGT→CAT) 6.00%
4,182,538 G→A G1091S (GGT→AGT) 6.40%
4,182,629 C→T A1121V (GCG→GTG) 7.70%
4,184,672 A→C I434L (ATC→CTC) 8.40%
4,184,721 A→C H450P (CAC→CCC) 6.70%
4,186,458 C→T T1029I (ACC→ATC) 8.00%
4,187,043 G→A R1224H (CGT→CAT) 6.10%
4,537,292 nanC A→G V78A (GTT→GCT) 9.50%

Mutations in K43T Evolved Populations (12)
Genome Position Gene(s) Mutation Region Frequency
751,564 ybgD G→A S152L (TCA→TTA) 6.80%
880,317 dacC A→T D123V (GAC→GTC) 0.70%
1,721,544 ydhK A→T Q467L (CAA→CTA) 0.90%
1,868,555 yeaI T→C G49G (GGT→GGC) 7.70%
1,894,732 nudL T→G I180R (ATA→AGA) 6.30%
1,994,442 sdiA Δ88 bp coding (328‑415/723 nt) 0.80%
1,977,514 insA/uspC IS1 (+) +9 bp intergenic (‑275/‑255) 49.80%
2,305,001 yojI G→C T546R (ACG→AGG) 8.50%
3,281,366 kbaY G→A A68T (GCC→ACC) 9.10%
3,350,771 arcB Δ42 bp coding (236‑277/2337 nt) 6.3%/8.7%
3,442,923 rpsE G→A A110V (GCA→GTA) 7.50%
3,468,261 tufA A→T I364N (ATC→AAC) 18.50%
4,122,178 A→C L101R (CTG→CGG) 6.70%
4,122,338 C→G A48P (GCC→CCC) 6.30%
4,122,434 C→T A16T (GCC→ACC) 8.80%
4,178,694 rplL Δ6 bp coding (112‑117/366 nt) 17%/14.8%
4,424,464 rplI A→C K112Q (AAG→CAG) 8.10%
4,638,061 arcA A→G I90T (ATT→ACT) 8.30%

rpoB

rpoC

cytR
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Mutations in H526Y-K43T Evolved Populations (24)
Genome Position Gene(s) Mutation Region Frequency
22,409 ileS A→C T7P (ACC→CCC) 8.40%
134,997 speD Δ150 bp coding (437‑586/795 nt) 3.10%
231,469 yafD A→G A116A (GCA→GCG) 3.60%
501,096 ybaL A→C L456R (CTG→CGG) 2.30%
965,210 ycaI C→T S556S (AGC→AGT) 5.70%
985,489 ompF A→G G239G (GGT→GGC) 4.70%
1,319,447 trpE G→A R508R (CGC→CGT) 5.10%
1,364,027 puuE G→A A152T (GCG→ACG) 4.40%
1,457,453 paaH A→G T126A (ACC→GCC) 6.30%
1,555,702 ddpF A→G L121L (TTG→CTG) 6.90%
1,803,390 ydiY T→C T240A (ACC→GCC) 6.60%
1,977,418 insA/uspC IS1 (+) +8 bp intergenic (‑179/‑352) 14.10%
2,149,881 yegK T→C T206A (ACC→GCC) 7.80%
2,173,375 gatZ C→T P323P (CCG→CCA) 6.40%
2,236,388 IS1 (+) +9 bp coding (916‑924/1521 nt) 6.10%
2,236,609 IS1 (+) +9 bp coding (695‑703/1521 nt) 3.00%
2,237,521 G→A Q284* (CAG→TAG) 3.00%
2,238,169 G→A Q68* (CAG→TAG) 5.00%
2,238,178 G→A Q65* (CAG→TAG) 3.50%
2,346,145 nrdB A→G Q247R (CAG→CGG) 4.40%
2,445,777 prmB A→C L229R (CTG→CGG) 4.40%
2,759,683 yfjK A→G V627A (GTG→GCG) 3.90%
3,209,504 dnaG T→C F126L (TTT→CTT) 4.00%
3,273,728 garD T→C V142A (GTC→GCC) 4.60%
3,438,854 rpoA A→C H66Q (CAT→CAG) 4.70%
3,439,442 T→C T86A (ACC→GCC) 5.80%
3,439,550 C→A D50Y (GAC→TAC) 3.10%
3,442,927 C→G G109R (GGT→CGT) 5.20%
3,442,945 T→G T103P (ACC→CCC) 2.90%
3,451,341 rpsJ / gspB A→G intergenic (‑49/+189) 3.90%
3,468,261 tufA A→T I364N (ATC→AAC) 10.40%
3,961,252 gpp G→T A334E (GCG→GAG) 4.80%
3,977,997 wecG G→A A7T (GCA→ACA) 4.00%
4,032,002 trkH G→T G279C (GGC→TGC) 4.40%
4,175,194 tufB / secE T→C intergenic (+43/‑187) 4.40%
4,178,694 rplL Δ6 bp coding (112‑117/366 nt) 4.90%
4,180,843 rpoB T→C Y526H (TAC→CAC) 6.30%
4,181,500 G→A E745K (GAA→AAA) 10.90%
4,182,295 Δ9 bp coding (3028‑3036/4029 nt) 3%
4,185,654 C→A A761E (GCG→GAG) 3.50%
4,185,723 C→T A784V (GCG→GTG) 4.00%
4,186,209 C→T A946V (GCT→GTT) 2.30%
4,186,461 A→C E1030A (GAA→GCA) 26.10%
4,186,748 C→A Q1126K (CAG→AAG) 26.70%
4,186,991 G→T G1207C (GGT→TGT) 2.30%
4,187,115 T→C I1248T (ATT→ACT) 3.80%
4,305,980 alsE A→G G174G (GGT→GGC) 6.40%
4,310,594 rpiR C→G A141P (GCC→CCC) 3.70%
4,397,222 mutL Δ1 bp coding (1788/1848 nt) 4.20%
4,587,664 yjiY A→G W547R (TGG→CGG) 5.70%

rpsD

rpsE

rpoB

rpoC

mglA

mglB
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Extended Data Table 1: Mutations acquired during the 22 days adaptation to 

antibiotic free media. Mutations are shown for the 3 different resistant 

backgrounds, along with the frequency at which they were detected. Mutations in 

known compensatory targets are marked in bold. 

 

 

Extended Data Table 2: Sensitivity assays in the evolved populations. Shown are the populations 

that show sensitivity (see Methods) in all (orange) or just a fraction (yellow) of the clones tested.

Rif Strep Rif)+)Strep
H2 Full$Reversion
H11 Full$Reversion

K5 Revertant$Population

HK2 Revertant$Population Revertant$Population
HK9 Revertant$Population Revertant$Population
HK11 Full$Reversion Full$Reversion

KH4 Revertant$Population Revertant$Population

Single)Resistant

Double)Resistant
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ABSTRACT Aim: To investigate the cost of antibiotic resistance versus the 

potential for resistant clones to adapt in maintaining polymorphism for resistance. 

Materials & methods: Experimental evolution of Escherichia coli carrying different 

resistance alleles was performed under an environment devoid of antibiotics and 

evolutionary parameters estimated from their frequencies along time. Results & 

conclusion: Costly resistance mutations were found to coexist with lower cost 

resistances for hundreds of generations, contrary to the hypothesis that the cost of 

a resistance dictates its extinction. Estimated evolutionary parameters for the 

different resistance backgrounds suggest a higher adaptive potential of clones with 

costly antibiotic resistance mutations, overriding their initial cost of resistance and 

allowing their maintenance in the absence of drugs. 

KEYWORDS: Evolvability; Antibiotic Resistance; Experimental Evolution; 

Epistasis; Clonal Interference; 

 

INTRODUCTION 

Bacterial populations can acquire antibiotic resistance (AR) as a result of 

transfer and acquisition of new genetic material between individuals of the same or 

different species but also by chromosomal DNA mutations, which alter existing 

bacterial proteins. One landmark example of this second process is provided by 
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Mycobacterium tuberculosis (the etiologic agent of tuberculosis in humans), which 

albeit incapable of horizontal gene transfer can display “total drug resistance” 

(Velayati et al. 2009). This kind of resistance is typically acquired by the sequential 

accumulation of mutations that alter the cellular target for the drug action. During 

this process extensive clonal competition has also been observed (Solomon H 

Mariam et al. 2011). Understanding how these AR determinants disseminate and 

are maintained in bacterial populations is therefore of paramount importance.  

Mutations that confer spontaneous AR can occur at relatively high rates 

(Mwangi et al. 2013). For instance, rifampicin (Rif) resistance occurs 

spontaneously at frequencies that can be higher than 10-8
 in wild isolates of E. coli 

(Baquero et al. 2004). In fact, the levels of resistance in pathogenic populations 

continue to rise at an alarming rate (Walsh 2000; Laxminarayan et al. 2013) 

having reached the same significance as any other virulence factor (J Davies & D 

Davies 2010). However, in the absence of the drug, AR mutations typically bear a 

cost (Andersson & Levin 1999; Lenski 1998; Andersson & Hughes 2010). This 

cost depends on the specific resistance allele (Deneke H Mariam et al. 2004), on 

the environment (Björkman et al. 2000; Chait et al. 2007) and on the genomic 

background where the mutation happens to arise (Trindade et al. 2009; Angst & 

Hall 2013). Nevertheless, suppressive mutations that mitigate this cost can occur 

either in the presence or absence of antibiotics. In the absence of drugs, one can 

expect that sensitive bacteria, will sweep through the population, driving the AR 

mutant to extinction. However, more often than not, resistant strains have been 

observed to acquire additional beneficial mutations that reduce the costs of 

resistance without loss of resistance, thus preventing the elimination of resistance 

alleles (Maisnier-Patin & Andersson 2004). These compensatory mutations are 

common in clinical isolates (Comas et al. 2012; De Vos et al. 2013) and hinder the 

possibility of reverting the resistance mutation, due to their epistatic nature (Davis 

et al. 2009). Since the probability of a compensatory mutation tends to be much 

higher than that of reversion for several resistance mutations (Andersson & 

Hughes 2010; Levin et al. 2000; Poon 2005; Sousa et al. 2012; Gifford & MacLean 
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2013), it is likely that resistance alleles may take long periods of time to be 

eliminated from populations.  

Many mutations that confer AR occur in essential genes and are likely to 

result in pleiotropic effects altering several bacterial traits. Important examples 

include resistance to Rif and streptomycin (Str) (Couturier et al. 1964; Romero et 

al. 1973). Rif is one of the frontline anti-tuberculosis drugs (Koch et al. 2014). The 

co-occurrence of resistance to this antibiotic and isoniazid typically classifies M. 

tuberculosis as multi-drug-resistant. These are the two most commonly used and 

effective drugs for the treatment of tuberculosis. The main genetic target for Rif 

resistance is rpoB, which codes for the β subunit of the RNA polymerase. Besides 

typically decreasing the rate of transcription and consequently the growth rate, 

rpoB resistance mutations are probably some of the most pleiotropic among AR 

mutations. Their effects can range from regulation of competence, sporulation and 

germination in Bacillus subtilis (Maughan et al. 2004), temperature and phage 

sensitivity in E. coli (Jin et al. 1988), growth advantage in stationary phase in E. 

coli and Salmonella enterica (Wrande et al. 2008), increased antibiotic resistance 

in Staphylococcus aureus (Cui et al. 2010; Watanabe et al. 2011), amongst others 

(see (Koch et al. 2014) for a review). rpoA and rpoC, as well as additional 

mutations in rpoB, have been pointed as targets for compensatory mutation 

relieving the deleterious effects of rpoB Rif resistance mutations in M. tuberculosis, 

S. enterica and E. coli (Comas et al. 2012; Brandis et al. 2012; Brandis & Hughes 

2013; Reynolds 2000). Another frequent resistance is Str, occurring through 

mutations in the rpsL gene, which codes for the S12 subunit of the ribosome 

compromising translational speed and accuracy. Compensatory mutations for Str 

resistance have been observed in Salmonella thyphimurium, and some of the 

target genes include rpsL, rpsD, rpsE and rplS (Schrag et al. 1997; Björkman et al. 

2000; Maisnier-Patin et al. 2002), which encode the ribosomal subunits S12, S4, 

S5 and L19. Recent analysis of 161 genomes of M. tuberculosis with a broad 

range of resistance profiles, revealed seven possible additional targets for 

compensatory mutations to Str resistance (Hongtai Zhang et al. 2013).  
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Given such broad targets for increasing the fitness of AR mutants we may 

expect that these resistances change the evolvability of bacteria, through altering 

the range of beneficial mutations that can be accessed by a given resistance 

genotype. Here we use the term evolvability as “the genome’s ability to produce 

adaptive variants” (Wagner & Altenberg 1996). In this sense, a costly AR mutant 

may be able to effectively compete with a less costly resistance allele (i.e., with a 

higher selective coefficient when in direct competition) if the evolvability of the 

former is higher. The conditions for this to happen will depend on the distribution of 

effects of beneficial mutations (DEBM), as well as on the rate of beneficial 

mutations available to each genotype (Handel et al. 2006; Sousa et al. 2012; 

Barrick et al. 2010).  

Most studies addressing the competitive fitness effects associated with AR, 

consider resistant strains competing with the ancestral sensitive strain. However, 

in many natural environments the frequency of resistance can be very high and 

competition between different resistant alleles may be a common event (Farhat et 

al. 2013; Hongtai Zhang et al. 2013; Forsberg et al. 2012; Nolan et al. 1995; 

Mwangi et al. 2007; Solomon H Mariam et al. 2011; Sun et al. 2012). For instance 

in (Solomon H Mariam et al. 2011), a monoclonal Mycobacterium tuberculosis 

infection was followed and both clonal sweeps and the coexistence of different 

resistant mutants were observed in the dynamics of the population. Competition 

between different resistant strains is also likely to occur whenever there is spatial 

heterogeneity, with different areas posing different selective pressures (Hermsen 

et al. 2012; Q Zhang et al. 2011; Solomon H Mariam et al. 2011). Furthermore, 

bacteria with multiple resistance alleles are also commonly segregating in natural 

populations (Wright 2010; Borrell et al. 2013; Merker et al. 2013). This competitive 

context might therefore play a crucial role in the maintenance of antibiotic 

resistance. 

Here we study the process of fitness recovery mimicking an environment 

with different resistance backgrounds competing at high frequency. We use an 

experimental evolution approach (Jansen et al. 2014) to test the ability of clones 
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with costly AR alleles to coexist or even outcompete clones with less costly 

resistances. In a drug free environment, the differences in the fitness costs of 

resistance alleles should determine their probability of extinction. Contrary to this 

simple expectation, we observe the maintenance of costly resistance alleles over 

hundreds of generations even when their fitness impairment should predict fast 

extinction. We infer that differences in adaptive potential for each AR mutant exist 

and suggest that these can explain the observed outcomes in the evolution of 

resistance. 

 

MATERIALS AND METHODS 

Bacterial strains and growth conditions 

All bacterial strains used in this study were derived from Escherichia coli 

K12 MG1655 and have in common the following genotype: galK::yfp/cfp cmR 

(pKD3), ΔlacIZYA.  The yellow (yfp) and cyan (cfp) alleles were integrated at the 

galK locus under the control of the lac promoter and were constructed by P1 

transduction(Silhavy et al. 1984) of yfp/cfp inserts from previously constructed 

strains (Hegreness 2006).  In these strains the fluorescence marker is 

constitutively expressed. In this common backbone different antibiotic resistance 

mutations were introduced by P1 transduction. The donor strains were 

spontaneous antibiotic resistant mutants previously obtained by plating the 

sensitive bacteria in Luria-Bertani (LB) supplemented with agar and 100 mg/mL of 

either streptomycin or rifampicin (Trindade et al. 2009). A total of eight strains were 

constructed: K43TStr-YFP, S531FRif-YFP, H526YRif-YFP, H526DRif-YFP and 

K43TStr-CFP, S531FRif-CFP, H526YRif-CFP, H526DRif-CFP, such that the same 

resistance allele was introduced in the two fluorescence backgrounds. K43TStr 

confers resistance to streptomycin and all the other aminoacid changes confer 

resistance to rifampicin. In order to confirm the identity of the mutations transferred 

by P1 transduction, the antibiotic resistance target gene (rpoB for rifampicin or 

rpsL for streptomycin) was amplified and sequenced using the following primers: 
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for the relevant fragment of the rpoB gene, 5’-CGTCGTATCCGTTCCGTTGG-3’ 

and 5’-TTCACCCGGATAACATCTCGTC-3’ and for the rpsL gene, 5’-

ATGATGGCGGGATCGTTG-3’ and 5’-CTTCCAGTTCAGATTTACC-3’. Each 

resistant clone was grown from a single colony in LB medium supplemented with 

the respective antibiotic at 37ºC with aeration and stored in 15% glycerol at - 80°C.  

Fitness assays and test for frequency dependent selection  

The fitness costs of antibiotic resistance mutations were first measured in 

competition against a sensitive reference strain (Table S1). The reference strain 

carried a yfp allele if the resistant strain carried the cfp allele (and vice versa). 

Competitions were done after acclimatization, where each bacterial strain was 

grown in the same environment of the competition: in a 96 well plate with 150µL of 

LB per well at 37°C with aeration.  Acclimatization consisted of two consecutive 

passages where 5µL from the first 24 hour grown culture were used to inoculate a 

new plate for another 24h. Competitions were performed by inoculating ~105 cells 

of both competitor and reference strain in LB medium and allowed to grow for 24 

hours (~9 generations). The initial and final ratios of both strains were determined 

by Flow Cytometry. Fitness effects of the resistance mutations were estimated as 

the slope between 0 and 24h of the ln(f(NR)/(1-f(NR))), where f(NR) is the frequency 

of resistant bacteria in the population or one of the reference resistance 

backgrounds, in the case of the competitions of the evolved clones.  

H526YRif and H526DRif strains were tested for negative frequency 

dependent selection in the same conditions as described above, and the number 

of cells was measured using the Flow Cytometer BD LSR Fortessa (BD 

Biosciences), at different initial ratios of the two strains: 100:1, 10:1, 1:1, 1:10 and 

1:100 (H526YRif:H526DRif). 

Long-term propagation of resistant populations  

Prior to the start of the long-term competitions, acclimatization of the 

bacterial strains was performed in plates with a checkered arrangement (one plate 

for YFP strains, another for CFP strains). Each well was inoculated with an 
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independent starting sample, from a frozen culture, into 150ml of LB medium, to 

maximize the probability of sampling a large pool of beneficial mutations. We note 

that it is possible that beneficial mutations occur during the acclimatization period, 

since the rate of mutations which compensate for the cost of resistance can be 

very high. After 24 hours, 5ml of the grown cultures where inoculated into fresh LB 

media and after 48h the numbers of bacteria were measured. Appropriate dilutions 

were done to achieve the required initial ratio (1:1) of YFP and CFP strains for the 

long-term evolution of competing clones. This evolution was performed in the 

same conditions as the fitness assays, with daily passages of about ~105 bacteria 

for ~280 generations (30 days). Samples of the evolving populations were frozen 

every day, from which the relative abundance of each resistance was followed by 

measuring the frequencies of their linked fluorescent alleles by Flow Cytometry. 

The following three pairs of mutants were studied: K43TStr vs S531FRif, H526YRif vs 

H526DRif and H526YRif vs S531FRif. For each pairwise competition of mutants, 16 

replicas were performed: half where one of the resistances, say R1, was linked to 

the yfp background and the other half where it was linked with the cfp background. 

Pairwise combinations of mutants (R1-YPF vs R2-CFP and R1-CFP vs R2-YFP) 

were settled in a checkerboard arrangement (Figure 1), where half of the wells 

were filled solely with LB to control for external contamination.  

 

Estimation of relative parameters of beneficial mutations  

The dynamics of a given costly resistance allele (R1) when competing with 

another resistant clone (R2), with a different fitness cost, were analyzed under a 

simple model of positive selection, that assumes the occurrence of new beneficial 

alleles which are sweeping towards fixation. We first fitted the simplest possible 

model (Model 1), which can allow for a costly resistance allele to be maintained for 

hundreds of generations despite its initial cost. In this model we assume an initial 

population composed of two distinct genotypes, with different resistances and 

initial fitnesses, wR1 and wR2. The initial frequency of the more costly genotype, 

R20, is taken from a uniform distribution within the interval R2Experimental0 ± 0.1, while 
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that of the other genotype is R10=1-R20. At generation TN a new genotype, with 

fitness wN, is assumed to have arisen and reached a frequency N0=0.001. From 

that time onwards it is assumed to change in frequency deterministically towards 

fixation. Therefore, we modeled selection deterministically in discrete time with two 

genotypes for t<TN, and three for t>TN. We estimated, by maximum likelihood, the 

parameters R20, TN and wN that best fit the observed values of ln(M/(1-M)), where 

M is the measured frequency of a fluorescent marker, at several time points, 

assuming a normal distribution for  measurement error (with average 0 and 

standard deviation 0.2). The search for the set of parameters that maximize the 

likelihood of the data in the space of the possible parameters was performed using 

the Nelder-Mead Method, as implemented in Mathematica 8.0 

(http://mathworld.wolfram.com/Nelder-MeadMethod.html), with 100 iterations and 

repeated for 100 realizations with different initial starting combinations of 

parameter values. While Model 1 could provide a reasonable fit for some of the 

replicate experimental lines, for others it did not. We therefore fitted the next 

simplest model (Model 2) which assumes that two beneficial mutants (N1 and N2), 

one for each background and fluorescent marker (with fitnesses WN1 and WN2), 

emerged at times (TN1 and TN2). We selected the model with the lower AIC (Akaike 

Information Criteria) to test if the different resistances would have distinct 

evolvabilities. Specifically, for each pair of competing resistances and each 

experimental evolved population, we asked if the times of appearance of beneficial 

mutations or the effects of accumulated beneficial mutations were significantly 

different. If the genetic target for acquiring beneficial mutations is larger for 

resistance background R2 than for R1, but the effects of the compensatory 

mutations are similar, then we expect the time of appearance of mutations to be 

smaller in R2 than in R1. If the target is similar but the effects depend on the 

background we expect to observe a significant difference between the effects 

accumulated in one resistance background versus the other. The method used 

here is a discrete adaptation of existing methodologies to infer evolutionary 

parameters (Illingworth & Mustonen 2012), with the added difference of allowing 

for different initial fitness values in competing genetic backgrounds. Code for these 
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simulations is available upon request. The inference process and summary relative 

effects are shown for a single line, as an example, in Figure S1. 

Whole genome sequencing of H526YRif and S531FRif evolved clones 

A single clone of each resistance (H526YRif and S531FRif) from each 

evolved population was isolated in LB agar plates with rifampicin at the end of the 

evolution experiment. In six populations the frequency of clones from the S531FRif 

background was very low and no resistant clone was sampled. DNA was extracted 

from each sampled clone, and then pooled according to resistance background. 

Paired-end sequencing using Illumina MiSeq Benchtop Sequencer, with mean 

coverage of 207x was performed. The resulting reads were trimmed at a Phred 

quality score of 99.9%, and were then aligned using Escherichia coli K12 MG1655 

(NC_000913.2) as the reference genome. Mutation prediction was done using 

version 0.23 of the BRESEQ analysis pipeline available for download at 

http://barricklab.org/twiki/bin/view/Lab/ToolsBacterialGenomeResequencing, with 

polymorphism detection on. Other settings were used as default except for: a) 

requirement of a minimum coverage of 3 reads on each strand per polymorphism; 

b) polymorphism predictions occurring in homopolymers of length greater than 3 

were discarded; c) polymorphism predictions with significant (p-value<0.05) strand 

or base quality score bias were discarded. 

 

RESULTS 

Pairwise competitions between different AR alleles were performed in an 

antibiotic free environment for around 280 generations. Each strain carries a 

neutral fluorescence marker. Three pairs of resistance mutations were studied: 2 

pairs involving 3 different Rif resistance alleles, and one pair involving a Str and a 

Rif resistance allele (Figure 1). The costs of each resistance allele measured 

against a sensitive reference strain of E. coli are shown in Table S1. The cost of 

resistance in relation to the sensitive is higher for the S531FRif mutation (0.1 ± 

0.01) and the K43TRif mutation (0.09 ± 0.03), followed by H526YRif (0.07 ± 0.01) 
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and H526DRif (0.06 ± 0.02) mutations. We then inferred the fitness cost of the 

same resistance mutations but this time in the presence of another resistance. 

Whether a resistance allele was more or less costly was estimated from the 

change in frequency of the fluorescent markers, linked to the resistances, during 

the first three days of evolution where the pairs of AR mutants were competing 

(Figure 2, 3 and 4, and also Figure S2 for each of the replicates identified by its 

neutral marker). We assume that during this short period new beneficial mutations 

have not yet arisen, or are at a frequency too low to interfere with the relative 

fitness differences that both clones may have.  

For each pairwise evolution experiment we query whether different AR 

mutants show distinct adaptive potential. For that, we inferred the fitness effects of 

new beneficial mutations that could explain the observed long-term frequency 

dynamics of the AR alleles. We allowed for one or two beneficial mutations of 

different effects to emerge at different times, in either of the backgrounds (see 

Methods). We sought to infer the combination of parameters (time of emergence, 

effect of the beneficial mutation, and the initial frequency of one of the resistance 

alleles) that provided the best fit to the observed evolutionary dynamics. We 

started by fitting a model where a single new beneficial mutation (with effect SN, at 

time TN) escapes stochastic loss in the background with lower initial fitness (Model 

1). We estimated the value of SN and TN that best fits the dynamics of each 

resistance, under this model. We then used a model assuming that two beneficial 

mutations had increased in frequency, one in each background, and fitted the 

parameters of this second model (TN1, SN1, and TN2, SN2) to the dynamics 

observed. The lines shown in Figure S3 represent the model that best fits the 

data, and the inferred parameters are presented in Table 1, 2 and 3.  
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Figure 1. Testing the evolvability of different antibiotic resistances. First, 
polymorphic populations are created by mixing, in a 1:1 ratio, clones with two 
different antibiotic resistance mutations. All clones are isogenic, except for this 
different resistance mutation and a neutral fluorescent marker. 16 replicate 
populations are followed for each competition, where half of these replicates 
have one of the resistances linked with one of the neutral markers, while the 
other to the other marker. 3 different competitive scenarios were studied, 
between Rifampicin mutations (circles) and between Rifampicin and 
Streptomycin (squares). Next, populations are passaged in rich media in 96 
well plates, organized in a checkered layout and separated by control wells 
(with media but without bacteria). Every 24 hours, all populations are 
passaged serially into a new 96 well plate with fresh media, during 30 days. 
The frequencies of the neutral markers (and hence the resistance alleles) are 
analyzed to unravel possible differences in the evolutionary parameters 
according to the resistance background. 

 

 

Potential for adaptation causes the maintenance of high cost resistance 

We first studied the fate of two AR mutations, conferring resistance to the same 

antibiotic – Rif – and altering the same aminoacid in the β subunit of RNA 

polymerase: H526YRif and H526DRif. While the costs of these resistances are not 

statistically different when measured against a sensitive strain, their relative fitness 
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cost differs when they compete. From the initial generations of competition 

between these two strains, a fitness difference of 0.074 was inferred, with strain 

H526YRif being highly detrimental in this competitive environment (Figure 2A, 

black solid line). The cost carried by strain H562YRif leads to the rapid decline in its 

frequency, detected in the first tens of generations. With such a relative fitness 

cost, it should go extinct in 100 generations (as indicated by the black line). 

Strikingly though, H526YRif is clearly able to resist extinction in the majority of the 

replicate lines that were evolved. Four of the lines show a frequency too low to be 

reliably detected by Flow Cytometry. However, plating these populations at 

generation 280 allows observing the presence of fluorescent colonies of the 

H526YRif background at extremely low frequencies. This lack of extinction can be 

expected under two different scenarios: negative frequency-dependent selection 

and/or an ability to access higher effect beneficial mutations. We therefore tested 

for a possible signature of negative frequency-dependent selection, i.e., advantage 

from rarity of the H526YRif mutation when competing against H526DRif. In 

competitions between these two backgrounds, starting with different frequencies of 

the H526YRif allele, no advantage from rarity can be detected (Figure S4), so 

frequency-dependent selection is unlikely to be responsible for the observed lack 

of extinction of this mutation. On the other hand, analysis of the long-term 

frequency dynamics revealed a significant difference between the fitness effects of 

the mutations inferred to have emerged, with its median difference (sH526YRif – 

sH526DRif) deviating from 0 (P<0.001, Wilcoxon Signed Rank Test, Figure 2B). 

The mean difference in fitness effects between these two genetic backgrounds 

was 0.07 (Table 1, Figure 2B), with H526YRif background accumulating stronger 

effect mutations. Regarding the times of appearance of new beneficial mutations, 

no significant difference was detected between the backgrounds (P=0.41, 

Wilcoxon Signed Rank Test, Figure 2C). When considering these results together, 

there is a strong indication that the mean effect of beneficial or compensatory 

mutations for H526YRif is higher, thus qualifying the strain with the H526YRif 

mutation as more evolvable than the strain with the H526DRif mutation. Such 
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Figure 2. High evolvability of costly H526Y allows its long-term 
maintenance A) Long-term dynamics, for 30 days (280 generations) of 
evolution in 15 replicates of a population composed of resistance strain 
H562Y and resistance strain H526D. Shown are the dynamics for the H526Y 
background. The slope of the black line represents the initial difference in 
fitness between the resistances. B) Whisker-box shows the relative fitness 
differences inferred for new beneficial mutations between the two resistant 
backgrounds, with H526Y background as a reference. C) Whisker-box shows 
the relative differences in time of appearance inferred for new beneficial 
mutations between the two resistance backgrounds. 

higher evolvability can explain the avoidance of extinction of background H526YRif, 

contrary to the a priori expectation based on its lower initial fitness.  
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Table 1. Evolutionary Parameters estimated for the competition between 
strains H526Y and H526D. W stands for the fitness of the emerging haplotype 
and T its time of appearance. Initial Freq stands for the inferred initial frequency 
of the H526Y background. In the cases where only one of the backgrounds has 
acquired a mutation, the inferred parameters are in bold for the background 
where no mutation was inferred. 

 

Higher evolvability of H526YRif upheld in competition with an alternative resistance 

We then studied the ability of the H562YRif background to outcompete a 

mutant bearing a resistance mutation in a different aminoacid, S531FRif. 

Resistance to the antibiotic rifampicin is now provided by mutations causing 

different aminoacid substitutions in the β subunit of RNA polymerase. . Relative to 



                               Potential for adaptation overrides cost of resistance 
	  

	   179	  

the sensitive strain, H526YRif is estimated to impose a smaller mean fitness cost 

than S531FRif (see Table S1), although the difference is not significant. The 

relative fitness difference between strains H562YRif and S531FRif inferred from their 

direct competition is 0.015 (Figure 3A, black solid line). All lines initially decrease 

in frequency, in accordance with a cost of H526YRif, but in all replicates this 

tendency is inverted. After generation 30, the frequency of each of the resistance 

background stabilizes at 50% in all populations. After generation 125, additional 

changes in frequency can be detected. This is expected if other arising beneficial 

mutations increase in frequency in one or both backgrounds. In some replicate 

lines one of the resistance alleles starts to increase in frequency but later 

decreases. This is likely the result of clonal interference (Sniegowski & Gerrish 

2010), with multiple beneficial mutations competing amongst them. There were 

more replicates in which H526YRif increased in frequency than expected, even 

under the assumption that the initial fitness difference between the backgrounds 

would be negligible. At generation 280, 14 out of 16 lines have a frequency of this 

allele above that expected by chance (p=0.004, Binomial two-sided test), which is 

even more striking considering that its initial frequency is below 50% in most of the 

lines. This deviation suggests again differences in the adaptive potential between 

the resistance backgrounds.  

We tested for possible differences in the adaptive potential of each strain 

by inferring the time of appearance and fitness effects of new beneficial mutations 

that could explain the changes in frequency of the neutral markers (Figures 3B 

and 3C). The mean value for differences in fitness between the two genetic 

backgrounds was 0.034 (see Figure 3B and Table 2). The median of the 

distribution of relative effects deviates significantly from 0 (P<0.001, Wilcoxon 

Signed Rank test, Figure 3B). The times of appearance of the new inferred 

beneficial mutations, however, did not appear to be significantly different between 

the genetic backgrounds (P=0.3, Wilcoxon Signed Rank test, Figure 3C). The 

overrepresentation of the H526YRif resistance background in the evolving 

populations, together with this analysis, indicates that H526YRif has a higher 
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Figure 3. Different evolvabilities between Rifampicin resistance alleles A) 
Long-term dynamics, for 30 days (280 generations) of evolution in 16 replicates of 
a population composed of resistance strain H562Y and resistance strain S531F. 
Shown are the dynamics for the H526Y background. The slope of the black line 
represents the initial difference in fitness between the resistances. B) Whisker-
box shows the relative fitness differences inferred for new beneficial mutations 
between the two resistant backgrounds, with H526Y background as a reference. 
C) Whisker-box shows the relative differences in time of appearance inferred for 
new beneficial mutations between the two resistance backgrounds. 

evolvability across different competitive contexts and therefore can be easily 

maintained.  
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Table 2. Evolutionary Parameters estimated for the competition between 
strains H526Y and S531F. The meaning of the parameters is as in Table 1. 

 

Potential for adaptation drives the fate of resistances to different antibiotics 

Differences in evolvability are expected to be larger amongst resistances 

affecting different genes than between alleles from the same gene. This is so 

because the target for beneficial mutations is expected to be more similar between 

mutations affecting the same function than between mutations impairing different 

traits. To query if the costs or the evolvabilities are determinant to the competition 

of resistances to distinct drugs, we studied the fate of the Str resistance allele 
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(K43TStr) when in competition with the Rif resistance allele (S531FRif). K43TStr is 

estimated to impose a cost to the sensitive strain of ~0.09, which is not statistically 

different from the cost imposed by S531FRif. However, upon competition between 

these two strains, K43TStr shows a disadvantage of around 0.03 relative to 

S531FRif (Figure 4A, black solid line). This is observed in the initial 25 generations, 

where K43TStr decreases in frequency in most replicate competitions. The long-

term evolutionary dynamics, however, depart from those observed in the previous 

studied cases. In Figure 4A, a higher variation in the outcome of which resistance 

wins the competition emerges in this pair of competing resistances. In the vast 

majority of the replicate lines the K43TStr mutation survived extinction for the 

duration of the experiment, contrary to what would have been expected from its 

initial relative fitness cost. In most of the lines, K43TStr is kept at a stable frequency 

of around 30% and in three lines it rises in frequency, sweeping to majority status 

(above 99% frequency) by generation 280. Contrary to expectations, extinction 

(frequency below 1%) of the more costly allele was only observed in two of the 

populations. Most of the lines where the K43TStr resistance was kept at a stable 

but low frequency at the middle time points had different outcomes, with some 

rising and others decreasing in frequency. Overall, at the end of the 280 

generations, the background with the K43TStr allele reached a frequency higher 

than 50% in 6 out of 15 evolved replicate lines. The inference of evolutionary 

parameters performed for the long-term dynamics indicates that there is a 

significant difference in the strength of mutations acquired by each background 

(P=0.014, Wilcoxon Signed Rank Test, Figure 4B). K43TStr acquires beneficial 

mutations of a stronger effect than does the background S531FRif (mean difference 

0.03, Table 3). No significant difference was detected for the times of appearance 

of beneficial mutations between both backgrounds (P=0.6, Wilcoxon Signed Rank 

Test, Figure 4C). The differences inferred from the dynamics in Figure 4A 

therefore depart from the expectation of a non-epistatic model of beneficial 

mutations, where both backgrounds would access mutations of similar effect. 

Extinction might have been avoided for this Str resistance mutation by its ability to 

accumulate stronger effect mutations when competing with the Rif resistant strain. 
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Figure 4. Differences in evolvability between Rifampicin and 
Streptomycin resistance alleles A) Long-term dynamics, for 30 days (280 
generations) of evolution in 14 replicates of a population composed of 
resistance strain K43T and resistance strain S531F. Shown are the dynamics 
for the K43T background. The slope of the black line represents the initial 
difference in fitness between the resistances. B) Whisker-box shows the 
relative fitness differences inferred for new beneficial mutations between the 
two resistant backgrounds, with K43T background as a reference. C) Whisker-
box shows the relative differences in time of appearance inferred for new 
beneficial mutations between the two resistance backgrounds. 
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Table 3. Evolutionary Parameters estimated for the competition between 
strains K43T and S531F. The meaning of the parameters is as in Table 1. 

 

Genetic characterization and fitness determination of evolved clones isolated from 

the long-term competition between  H526YRif and  S531FRif 

In the three cases of long-term competitions studied, the differences in 

evolvability inferred resulted from differences in the effects of the beneficial 

mutations acquired. We inferred that H526YRif could acquire higher effect 

mutations, relative to those emerging in S531FRif clones, even though these two 

different alleles cause very similar fitness costs. To gain further insight into the 
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mutations acquired by the H526YRif background in this competitive context, we 

performed whole genome sequencing (see Methods for a description of the 

procedure) of a sample of H526YRif and of S531FRif clones, after these two 

lineages had evolved in competition (Figure 3). Table 4 shows the mutations 

identified in each of the evolved backgrounds. We could identify 12 (in 10 distinct 

genes or intergenic regions) for possible beneficial (and compensatory) mutations 

in H526YRif (all single point mutations), and 10 (all in different genes/intergenic 

regions) in S531FRif (seven of them were single point mutations , the other three 

involved transpositions of insertion sequence elements). Mutations in the H526YRif 

background were observed at a higher frequency compared to the ones observed 

in S531FRif. This suggests that the mutations appearing in the H526YRif 

background have stronger effects, since they are acquired by different replicate 

evolving populations, pointing to a rapid fixation due to their beneficial effect. To 

enquire if this is indeed the case we performed competition assays between each 

individual clone and the ancestral strains. Since the whole genome sequencing 

was performed with a mixture of clones (see Methods) we targeted sequencing 

each individual clone to gain access to the haplotypic composition of each clone. 

For the clones carrying the H526YRif mutation, we targeted the most prevalent 

mutations detected (see Table 4). Fifteen out of the 16 H526YRif clones carried at 

least one mutation in the target genes (Supplementary Table 2) and one clone 

was found to have two mutations, one single point mutation in rpoA and another in 

waaZ. The aminoacid change T196I in rpoA was present in 8 independently 

evolved clones. Since all of them have the same genetic background (H526YRif 

YFP), this suggests that this mutation could already have been present prior to the 

long-term evolution experiment. All S531FRif clones, except one, carried one of the 

previously identified mutations (Supplementary Table 2) and rpoC was also a 

target for beneficial mutations in this RifR background. We then measured the 

competitive fitness of each of these evolved clones to directly assay their fitness 

advantage. In order to increase in frequency during the long-term propagation, 

these mutants had to outcompete their ancestral and also the competitor with a 

different resistance background. Figure 5 shows that when competing either 
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Table 4. Potential compensatory mutations identified in the genomes of the clones 
evolved in the competition between resistances H526Y and S531F 

Mutations were identified in the genomes of the evolved clones in comparison with a 
reference genome. Shown are the Single Nucleotide Polymorphisms (SNPs) or Insertion 
Sequence (IS) events identified in either of the backgrounds, and the frequencies at which 
they were detected. Mutations that occurred between genes (intergenic) are identified as 
such; otherwise all remaining mutations occurred within the gene indicated. The mutations 
previously identified to be compensatory are identified with a grey shaded cell. 

against their respective ancestral or the other resistance clone, the selective 

effects of the evolved H526YRif clones are stronger than the selective effects of the 

mutations acquired by the S531FRif background. For the latter background, the 

mutations are advantageous against their ancestral, supporting their increase to 

detectable frequencies, but most are neutral or even deleterious versus the 

opposite H526YRif background. Remarkably, mutations in rpoA and rpoC provided 

the strongest competitive fitness advantages. Overall, these results therefore 

provide further support for the previously identified higher evolvability of the 

H526YRif background and strongly suggest that the H526YRif resistance may be 

easily maintained in populations. 
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Figure 5. Differences in selective effects of evolved clones from the 
competition between H526YRif and S531FRif. A) Fitness effects of 
selected clones evolved from the H526YRif background, when in 
competition with their ancestor (light bars) or against their other resistant 
competitor (S531FRif, dark bars). B) Fitness effects of selected clones 
evolved from the S531FRif background, when in competition with their 
ancestor (light bars) or against their other resistant competitor (H526YRif, 
dark bars). 
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DISCUSSION 

In order to understand the relative role of cost versus evolvability in the 

maintenance of AR mutations we studied how subpopulations carrying different 

resistant alleles compete. This system mimics the composition of a population 

after drug exposure, where the different AR mutants co-exist at relatively high 

frequencies. This scenario has rarely been studied, though it possibly occurs in 

natural contexts, as has been observed in strains sampled from the same patient 

(Solomon H Mariam et al. 2011; Sun et al. 2012). Here we address this situation 

by following the fate of pairwise combinations of different alleles conferring 

resistance to the same or different drugs. We observe that the cost of resistance 

measured in competition against the sensitive bacterium is not always a good 

predictor of the difference in costs between two resistance mutations, and 

transitivity between these two fitness measures is not always observed. Therefore, 

to understand why some resistant alleles are rarely segregating while others are 

pervasive, it is important to also measure their selective coefficients when in 

coexistence in addition to measure their costs against the sensitive strain.  

In this work we studied two sets of mutations whose fitness costs were 

barely distinguishable when compared with the sensitive strain. The first set 

comprised 3 alleles of the same gene (H526YRif, H526DRif and S531FRif), thus 

conferring resistance to the same drug; the second group comprised alleles of 

different genes, (S531FRif and K43TStr), thus conferring resistance to different 

antibiotics. In the first set we found that H526YRif has a very significant cost (0.074) 

when competing with mutation H526DRif and it is less costly when competing with 

S531F (0.015), implying that, all else being equal, H526YRif should rapidly go 

extinct when competing with H526DRif, but do so at a slower pace when in 

competition with S531FRif. The long-term outcome of these competitions indicated 

that this does not always occur and the H526YRif allele can be maintained in both 

cases. The evolvability analysis undertaken suggests that the difference between 

H526YRif and H526DRif could be attributed to a higher mean effect of beneficial 

mutations accessible to H526YRif. This result was unexpected, because this pair of 
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mutations involves the same aminoacid replacement and the different single point 

mutations cause a fitness defect of similar magnitude. Given this, one could expect 

similar evolvabilities between the resistance backgrounds (Fisher 1930). The 

outcome of the competition between H526YRif and S531FRif (mutations in different 

aminoacids but again in the same gene) shows a tendency for the former to 

increase in frequency, and this could also be due to access of the former 

background to higher effect mutations, when in comparison with the latter. This 

observation is further supported by the different competitions between H526YRif 

and S531FRif clones, where competitive fitness assays showed stronger effects of 

the mutations acquired by H526YRif, as predicted by our theoretical analysis. The 

two cases of competition between different AR mutations both show a long-term 

advantage of the H526YRif allele, through its higher mean effect of mutations. 

Interestingly, H526YRif has been reported to be the second most frequent mutation, 

in a variety of clinical settings, among the ones that confer Rif resistance in M. 

tuberculosis, even though it was also estimated that this mutation was the third 

mutation more costly in the same set (Gagneux et al. 2006; Trauner et al. 2014). 

This could be explained by the particularly high evolvability of this mutation. In the 

case of the pair of AR mutants composed of K43TStr and S531FRif, differences in 

evolvability were expected a priori since these mutations alter genes responsible 

for different cellular traits. In fact, evolution was less reproducible in this situation, 

with different replicates following different dynamics. Our results indicate that 

K43TStr acquired beneficial mutations of stronger effect than S531FRif, suggesting 

that their DEBM and hence their evolvability are different.  

The ability to access specific subsets of beneficial mutations determines 

how evolvable an organism is. If there were no constraints, then all genotypes, 

regardless of their composition or competitive context, would be able to adapt in a 

predictable sequence of mutational events. However, pleiotropy and epistasis may 

limit the access to new beneficial mutations (Trindade et al. 2009; Khan et al. 

2011; Woods et al. 2011), imposing different evolutionary outcomes in different 

genetic backgrounds, environmental conditions and/or competitive contexts. This 

is particularly relevant in the context of AR, as emergence of resistance mutants is 
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fairly common. The resistant clones would presumably be driven to extinction 

when competing against less costly strains, in the absence of the drugs. Here we 

show that it is very likely that such extinction events will not occur and, instead, 

mutations that buffer the effects of resistance alleles will accumulate (Maisnier-

Patin et al. 2002; 2007; Hall & MacLean 2011; Borrell et al. 2013), allowing their 

maintenance. Our results indicate that different adaptive abilities and the access to 

strong effect beneficial mutations depends on the genetic background and the 

competitive context, determining the long-term fate of a given resistance allele. 

Antibiotic based treatments focus on immediate clinical results, but the 

adaptive potential of resistant bacteria is subtle (Read et al. 2011; Stearns 2012) 

and we suggest it can affect their long-term fate within a host or between hosts. An 

interesting recent observation suggests that the effects of mutations conferring 

resistance to streptomycin tend to be smaller for genotypes that are well adapted 

to a given environment, relative to genotypes not adapted at all (Angst & Hall 

2013). This observation, along with the one we have made here, indicates that it is 

relevant to determine the relative roles of cost versus evolvability in other 

environments of special clinical relevance (Miskinyte et al. 2013), in order to be 

better able to predict the evolution of pathogens carrying resistance alleles.  

CONCLUSIONS 

The frequency of antibiotic resistance constitutes an alarming concern for 

public health. A key factor determining the extinction or maintenance of resistance 

alleles is the fitness costs they may entail. High cost resistance alleles are 

expected to rapidly go extinct. However, this may not be an inescapable fate. If the 

availability of beneficial mutations is dependent on the genetic background, clones 

with less fit resistance alleles may also have higher evolvability, i.e. a higher 

potential for adaptation. If so, this will lead to the maintenance of resistances with 

a higher initial cost in populations. Here we perform competitions between strains 

of Escherichia coli, which carry resistance alleles of different costs, and estimate 

the relative differences in their adaptive potential. We demonstrate that costly 

resistance alleles can coexist with resistance alleles of lower cost for hundreds of 
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generations, suggesting that their adaptive potential can override the initial relative 

cost of resistance. 

 

FUTURE PERSPECTIVE 

Antibiotic resistance poses an ever-increasing danger to public health, and 

its maintenance is the result of a multitude of processes, which require increasing 

evaluation. How the costs of resistance depend both on the specific resistant 

alleles, the environment where the bacteria grow and the ecological context to 

which they are exposed should lead to a better understanding on how resistance 

can be reduced or avoided. The ability of resistant bacteria for acquiring 

compensatory mutations and revert to sensitive state across environments should 

also be evaluated with the help of increasing powerful genomic technics. This is 

especially important for bacteria carrying multiple resistances as these are 

becoming more and more common. Assaying the ability of resistance alleles to 

emerge and thrive in ecologically relevant contexts, which are very likely to include 

several resistances competing simultaneously and multiple biotic factors will 

become crucial for our proper understanding of their long-term pathogenicity.  

 

EXECUTIVE SUMMARY 

Long-term evolution of polymorphic antibiotic resistance populations  

- In all three pairwise competitions studied, the more costly resistance 

avoided extinction with high probability. 

- In the majority of populations the costly resistance did not sweep to 

fixation.  

- The second most frequent rifampicin resistance mutation to segregate in 

natural pathogen populations (H526YRif) shows a high cost but also higher 

resistance to extinction, across multiple competitive contexts. 
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Estimation of evolutionary parameters  

- The distribution of effects for the beneficial mutations depends on the 

resistance background, with more costly resistance backgrounds acquiring 

mutations of stronger effects. 

- Differences in rate of acquisition of beneficial mutations were not detected 

between the resistance backgrounds. 

Sequencing and competitive fitness of evolved populations  

- Whole genome sequencing of the evolving replicate populations with the 

H526YRif and S531FRif competing clones revealed that the H526YRif 

background acquired more mutations at higher frequencies pointing 

towards its increased adaptive potential.  

- The number of targets identified for beneficial mutations was not 

significantly different between the resistance backgrounds, supporting the 

results from the theoretical analysis. 

- Competitive fitness assays showed that the mean effect of beneficial 

mutations is different between these two resistant backgrounds (H526YRif 

and S531FRif), as inferred from theoretical modeling. 

Conclusions  

- The initial relative difference in fitness costs between resistances is not 

predictive of their long tern evolution. 

- The long-term outcome of competitions between pairs of distinct antibiotic 

resistance alleles is polymorphism for resistance.   

- The results indicate that it is crucial to understand the ecological contexts 

and the adaptive potential of antibiotic resistance mutations in order to 

make informed clinical decisions regarding the treatment of bacterial 

infections.  
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SUPPLEMENTARY FIGURES AND TABLES 

 

Figure S1. Example of the fitting process for a simulated experimental 
population. Experimental data, shown as blue circles, was simulated with a given 
set of parameters. Normally distributed noise (with mean 0 and standard deviation 
0.2, shown also as error bars) was added to the experimental points. Red lines 
show the inferred trajectories given by simple model (one mutations) and the 
model assuming two mutations, with the fitness of the mutant (WN) and its time of 
appearance (TN) as parameters. Dotted arrows show the time at which sweeping 
beneficial mutants effectively change the dynamics of the resistance allele. Shown 
are also the calculations to obtain the relative parameters used in the distributions 
of relative effects and time. A) Model 1, with a single mutation. B) Model 2, with a 
mutation in each background, which has a lower AIC and is, therefore, chosen as 
the best model to explain the data. 
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Figure S1. Example of the fitting process for a simulated experimental population.
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Figure S2. Long-term dynamics with the identification of the fluorescent 
backgrounds. Dynamics are shown as in Figure 2, but here the color of each line 
corresponds to the fluorescent marker of the mutation whose logarithm of the ratio 
is being plotted. A) Competitions between resistances H526Y and H526D. B) 
Competitions between resistances H526Y and S531F. C) Competitions between 
resistances K43T and S531F. 
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Figure S3. Long-term dynamics from the inferred parameters for each 
replicate population. Inferred dynamics are shown as solid lines and 
experimental data is shown as full circles. A) Competitions between resistances 
H526Y and H526D. B) Competitions between resistances H526Y and S531F. C) 
Competitions between resistances K43T and S531F. 
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Figure S3. Long-term dynamics from the inferred parameters for each replicate population
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Figure S4. Test for negative frequency dependence selection in competitions 
between resistance strains H526Y and H526D. X-axis shows the initial 
frequency of the H526Y strain and Y-axis shows the fitness effect inferred from the 
slope of the dynamics for the first 24 hours of the competition. 

 

Table S1. Fitness costs imposed by the antibiotic resistance alleles (K43T, S531F, 
H526Y, H526D) measured in competition against the sensitive reference strain.  
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Figure S4. Test for negative frequency dependence selection in competitions 
between resistance strains H526Y and H526D

Table S1. Fitness costs imposed by the antibiotic resistance alleles (K43T, S531F, H526Y, H526D) measured in competition against the sensitive 
reference strain.!
!
!

!!
Antibiotic!
Resistance! Target!Genes! Aminoacid!change!(location)!

Fitness!cost!
(relative!to!wild:type)! Standard!Err!

K43T% Streptomycin! rpsL% AAA!:!ACA!(128)! 0.092% 0.034!
S531F% Rifampicin! rpoB% TCC!:!TTC!(1592)! 0.096% 0.011!
H526Y% Rifampicin! rpoB% CAC!:!TAC!(1376)! 0.073% 0.014!
H526D% Rifampicin! rpoB% CAC!:!GAC!(1576)! 0.064% 0.017!

!
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Table S2. Genotypes of the evolved clones from the long–term competition 
between H526YRif and S531FRif

Table S2. Genotypes of the evolved clones from competition between H526YRif 
and S531FRif 

!
!

!
!

Genotype(of(H526Y(Evolved(Clones
galK:YFP,*rpoB*(H526Y),*rpoA*(T196I),*waaZ*(S280P)
galK:YFP,*rpoB*(H526Y),*rpoA*(T196I)
galK:YFP,*rpoB*(H526Y),*rpoA*(T196I)
galK:YFP,*rpoB*(H526Y),*rpoA*(T196I)
galK:YFP,*rpoB*(H526Y),*rpoA*(T196I)
galK:YFP,*rpoB*(H526Y),*rpoA*(T196I)
galK:YFP,*rpoB*(H526Y),*rpoA*(T196I)
galK:YFP,*rpoB*(H526Y),*rpoA*(T196I)
galK:CFP,*rpoB*(H526Y),*rpoC*(Unknown)
galK:CFP,*rpoB*(H526Y),*yifE*(G39D)
galK:CFP,*rpoB*(H526Y),*rpoC*(R1224C)
galK:CFP,*rpoB*(H526Y),*rpoC*(S486P)
galK:CFP,*rpoB*(H526Y),*rpoC*(S486P)
galK:CFP,*rpoB*(H526Y),*rpoC*(S486P)
galK:CFP,*rpoB*(H526Y),*rpoC*(H540P)

Genotype(of(S531F(Evolved(Clones
galK:YFP,*rpoB*(S531F),*envR*(IS5)
galK:YFP,*rpoB*(S531F),*znuA*(F37L),*sspA*(L156P)
galK:YFP,*rpoB*(S531F),*znuA*(F37L),*sspA*(L156P)
galK:YFP,*rpoB*(S531F),*yeaR*(IS186)
galK:YFP,*rpoB*(S531F),*nadK/recN*(Intergenic),*yedW*(IS1)
galK:YFP,*rpoB*(S531F),*rpoC*(K50T)
galK:YFP,*rpoB*(S531F),*paoB*(V231E)
galK:YFP,*rpoB*(S531F),*nrfG/gltP*(Intergenic)
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Abstract  

The bacterium Escherichia coli exhibits remarkable genomic and phenotypic 

variation, with some pathogenic strains having evolved to survive and even 

replicate in the harsh intra-macrophage environment. The rate and effects of 

mutations that can cause pathoadaptation are key determinants of the pace at 

which E. coli can colonize such niches and become pathogenic. We used 

experimental evolution to determine the speed and evolutionary paths undertaken 

by a commensal strain of E. coli when adapting to intracellular life. We estimated 

the acquisition of pathoadaptive mutations at a rate of 10-6 per genome per 

generation, resulting in the fixation of more virulent strains in less than a hundred 

generations. Whole genome sequencing of independently evolved clones showed 

that the main targets of intracellular adaptation involved loss of function mutations 

in genes implicated in the assembly of the lipopolysaccharide core, iron 

metabolism and di- and tri-peptide transport, namely rfaI, fhuA and tppB, 

respectively. We found a substantial amount of antagonistic pleiotropy in evolved 

populations, as well as metabolic trade-offs, commonly found in intracellular 

bacteria with reduced genome sizes. Overall, the low levels of clonal interference 
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detected indicate that the first steps of the transition of a commensal E. coli into 

intracellular pathogens are dominated by a few pathoadaptive mutations with very 

strong effects. 

 

Introduction  

Bacterial populations have an enormous potential to adapt to their 

environments. This is inferred from studies of molecular evolution and variation 

that find signatures of selection in many genes (Chattopadhyay et al. 2009; 

Guttman & Dykhuizen 1994). The remarkable pace of bacterial adaptation can 

also be directly demonstrated in the laboratory by following evolution in real time, 

over many generations, in controlled environments with specific selection 

pressures (Barrick et al. 2009; Kawecki et al. 2012; Gordo & Campos 2013). Many 

studies of microbial evolution in real time involve studying adaptation to simple 

abiotic environments consisting of single or multiple sugars (Maharjan 2006; 

Herron & Doebeli 2013), characterizing compensation to the costs of deleterious 

mutations, such as antibiotic resistance genes in drug free environments (Barrick 

et al. 2010; Sousa et al. 2012), or studying adaptation in spatially structured 

environments (Perfeito et al. 2008; van Ditmarsch et al. 2013; Schoustra et al. 

2009). Complex environments, in which multiple, more natural, selective pressures 

are present, have received far less attention (Barroso-Batista et al. 2014). The 

vast majority of these experiments demonstrate the acquisition of adaptive 

mutations at high rates, with swift genetic and phenotypic changes. One way to 

quantify these evolutionary parameters is by following the dynamics of neutral 

markers in evolving clonal populations, where rapid and large allele frequency 

changes indicate the occurrence of a high rate adaptive mutations with strong 

selective effects (Moura de Sousa et al. 2013; Hegreness 2006; Koeppel et al. 

2013). 

Rapid adaptation is also detected in pathogen populations colonizing 

humans during infection (Sun et al. 2012). In these natural environments, where 
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bacteria are likely to encounter many different types of cells, key antagonistic 

interactions are imposed by the host innate immune system. Overcoming these 

interactions is often part of the transition from commensalism to pathogenesis 

(Leimbach et al. 2013; Pérez et al. 2013). Different strains of E. coli can be either 

commensals or versatile pathogens, and even switch between the two, and there 

is increasing evidence that some pathogenic strains evolved from commensal E. 

coli (Crossman et al. 2010; Tenaillon et al. 2010).  Several natural E. coli 

pathovars have been studied, some of which use common mechanisms to 

increase their virulence. Many of such virulence traits are encoded in pathogenicity 

islands (blocks of genes found in a pathogen but not in related nonpathogenic 

strains (Hacker & Kaper 2000; Schmidt & Hensel 2004)), plasmids or prophages, 

highlighting the importance of successful horizontal gene transfer in pathogen 

adaptation to new niches. In addition to gene acquisition, gene loss can also 

contribute to the emergence and diversity of existing E. coli pathovars (Maurelli 

2007), as well as other genome modifications which may lead to increased 

bacterial pathogenesis in the absence of horizontal transfer. These are usually 

called pathoadaptative mutations ( Sokurenko et al. 1999). For instance, the 

knockout of hemB, an hemin biosynthetic gene, in Staphylococcus aureus, which 

leads to increased ability to persist intracellularly, constitutes a pathoadaptive 

mutation and mutations in hemL of E. coli, encoding glutamate-1-semialdehyde 

aminotransferase, can also confer pathogenic properties [Ramiro, Costa and 

Gordo, submitted]. Another common pathoadaptive mutation is the loss of the 

gene mucA, which in Pseudomonas aeruginosa increases its ability to evade 

phagocytosis and resist to pulmonary clearance (Limoli et al. 2014). In another 

remarkable example, Koli and colleagues (Koli et al. 2011) showed that two 

genetic changes in commensal E. coli K-12 were sufficient to reprogram its cellular 

transcription and render it invasive in eukaryotic cells, both in vivo and ex vivo. 

Macrophages (MFs), one of the major cell types of the innate immune system, are 

a typical intracellular niche for certain E. coli pathovars, including Shigella, 

enteroinvasive E. coli (EIEC) and adherent-invasive E. coli (AIEC). The former, for 

instance, is commonly found in patients of Crohn’s disease, can adhere to 
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intestinal epithelial cells and invade and survive in epithelial cells and 

macrophages (Smith et al. 2013). Characterization of these pathoadaptive 

mutations is therefore important to understand the emergence of bacterial 

pathogenesis. We have previously studied the short-term adaptation of E. coli to 

recurrent encounters with macrophages and found that mucoid clones, which carry 

IS1 insertions into the regulatory region of yrfF and that overproduce colanic acid, 

repeatedly evolved (Miskinyte et al. 2013). 

Here, we use experimental evolution to study E. coli adaptation to the intra-

macrophage environment and to dissect the possible initial adaptive steps for a 

bacterium to adopt such a lifestyle. We used an established two-marker system to 

study bacterial adaptation in vitro and to determine the rate and fitness effects of 

pathoadaptive mutations. We then characterized phenotypically the bacteria that 

evolved and used whole genome sequencing to determine the most likely 

pathoadaptive evolutionary paths for the first steps in the transition into an 

intracellular environment. 

 

Materials and Methods 

Ethics statement 

All experiments involving animals were approved by the Institutional Ethics 

Committee at the Instituto Gulbenkian de Ciência (project nr. A009/2010 with 

approval date 2010/10/15), following the Portuguese legislation (PORT 1005/92) 

which complies with the European Directive 86/609/EEC of the European Council. 

Endpoints to euthanize the animals were defined prior to the experiment. The 

specific signs used to make the decision of euthanizing the animals were: weight 

drop of 20% and/or body temperature decrease below 28ºC (for two consecutive 

days). Despite the frequent monitoring of the animals’ health (at least two times a 

day), the aforementioned signals were not observed in any of the animals and, 

therefore, there was no need to perform euthanasia. 
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Strains and media 

The murine macrophage cell line RAW 264.7 (Sigma-Aldrich) was 

maintained in RPMI 1640-GlutaMAX I (Gibco) supplemented with 1 mM Sodium 

Pyruvate (Invitrogen), 10 mM HEPES (Invitrogen), 100 U/ml penicillin/streptomycin 

(Gibco), 50 µM 2-mercaptoethanol solution (Gibco), 50 µg/ml Gentamicin solution 

(Sigma) and 10% heat-inactivated FBS (standard RPMI complete medium). 
Culture conditions were at 37ºC in a 5% CO2 atmosphere. 

All bacterial cultures were grown in the same conditions as the 

macrophage line but using only 100µg/mL of streptomycin (RPMI-Strep medium) 

instead of the three antibiotics present in RPMI complete medium. The same 

medium was used for the infection assays of MΦ with bacteria. The Escherichia 

coli strains used were MC4100-YFP and MC4100-CFP (MC4100, galK::CFP/YFP, 

AmpR StrepR), which express constitutively either the yellow (yfp) or the cyan (cfp) 

alleles of GFP integrated at the galK locus in MC4100 (E. coli Genetic Stock 

Center #6152) (Bateman & Seed 2012; Hegreness 2006). Unlike certain 

pathogenic E. coli strains, our commensal strain is a derivative of K12 which is not 

able to replicate within macrophages [27]. 

Evolution Experiment 

The evolution experiment was started from two single colonies of either 

MC4100-YFP or MC4100-CFP grown in RPMI-Strep in the same conditions as the 

cell line. The two bacterial cultures were mixed in equal proportion (5x103 colony 

forming units (cfu) each) and used to infect the activated MΦ, in 20 replicates. 

Before the infection MФs were centrifuged at 201 g for 5 min and re-

suspended in RPMI-Strep. After this step ~ 105 cells per well were used to seed a 

24-well microtiter plate and incubated over-night at 37ºC with 5% CO2. 

Subsequently, activation was done by adding 2 µg/ml of CpG-ODN 1826 

(5´TCCATGACGTTCCTGACGTT 3´ - Sigma) (Utaisincharoen et al. 2002) and 

incubating at 37ºC with 5% CO2 for 24h. Following activation, cells were washed 

and infected with 104 bacteria mix (multiplicity of infection (MOI) = 1 cfu: 10 MФs). 
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After infection we centrifuged the plates at 201 g for 5min (to increase the contact 

between MФs and bacteria) and then incubated at 37ºC with 5% CO2 for 24h 

(Bateman & Seed 2012). Next we discarded the extracellular bacteria, washed the 

MФs with RPMI-Strep two times and added 100µg/mL of Gentamicin solution or 

1h at 37ºC with 5% CO2 (Mittal et al. 2010). Gentamicin penetrates poorly the 

macrophages and therefore whereas intracellular bacteria are protected from the 

bactericidal action of the antibiotic the extracellular are killed (Vaudaux & 

Waldvogel 1979). After washing out the gentamicin with PBS 1X, cells were lysed 

using a 0.1% Triton-X – PBS solution for 15 minutes (Bokil et al. 2011). 

Intracellular bacteria were collected, washed with PBS 1X and counted by flow 

cytometry using LSR Fortessa cytometer (BD Biosciences). From approximately 

106 intracellular bacteria collected, we pooled 104 and infected a new batch of 

activated MФs, in the same manner as described previously. This procedure was 

repeated for 26 days, a period after which fixation of one of the fluorescent 

markers could be observed for most of the replicate experiments, an indication of 

adaptation. This propagation protocol allows ~ 7 generations per day, calculated 

by Log2 (Nf/Ni), where Nf is the number of intracellular bacteria 24h post-infection, 

and Ni is the bacterial inoculum used to infect the macrophages (Miskinyte et al. 

2013). 

Fitness measurements 

Fitness increases of the evolved populations were estimated by 

competitive fitness assays in the presence or in the absence of MФs. A sample of 

30 clones carrying the fluorescence marker which achieved the highest frequency 

in a given population was competed against the ancestral strain labeled with a 

different marker. These samples of clones were assumed to be representative of 

the population. The competition assays for each evolved population were done in 

triplicate in the same conditions as the evolution experiment, for two passages - 

48h. The neutrality of the fluorescent marker was tested by competition of the two 

ancestral strains (9 replicates). Relative fitness, expressed as a selection 

coefficient, was estimated by calculating the slope of the natural logarithm of the 
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ratio of evolved over ancestral bacteria per generation of ancestral bacteria 

(Miskinyte & Gordo 2014). 

Whole genome re-sequencing and mutation prediction 

Ancestral genome 

The sequence reads were mapped to the reference strain Escherichia coli 

K12 MG1655 BW2952 (reference NC_012759.1). The two ancestors carry 

mutations in relation to the reference (Miskinyte et al. 2013). The sequenced 

evolved clones were then compared to the ancestral genome and the mutations 

identified are represented in Fig. 3 and listed in Table 2. 

Clone analysis 

In the last time point of the evolution experiment, we isolated a clone from 

each evolved population carrying the fluorescent marker with higher frequency. In 

the populations where both markers reached similar frequencies at the last time 

point, one clone from each marker subpopulation was isolated. Each of these 

clones was then grown in 10mL of RPMI at 37ºC. DNA isolation from these 

cultures was subsequently obtained according to (Wilson 2001).   

The DNA library construction and sequencing was carried out by the in-

house genomics facility. Each sample was paired-end sequenced using an 

Illumina MiSeq Benchtop Sequencer. Standard procedures produced data sets of 

Illumina paired-end 250bp read pairs. Genome sequencing data have been 

deposited in the NCBI Read Archive http://www.ncbi.nlm.nih.gov/sra (accession 

no. SRP066892). The mean coverage per sample was ~35x. Mutations were 

identified using the BRESEQ pipeline (Barrick et al. 2009). To detect potential 

duplication events we used ssaha2 (Ning et al. 2001) with the paired-end 

information. This is a stringent analysis that maps reads only to their unique match 

(with less than 3 mismatches) on the reference genome. Sequence coverage 

along the genome was assessed with a 250 bp window and corrected for GC% 

composition by normalizing by the mean coverage of regions with the same GC%. 
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We then looked for regions with high differences (>1.4) in coverage. Large 

deletions were identified based on the absence of coverage. For additional 

verification of mutations predicted by BRESEQ, we also used the software IGV 

(version 2.1) (Robinson et al. 2011). 

Phenotypic characterization of evolved clones 

Growth in single carbon sources 

The same samples of clones from the populations which were tested in the 

competition assays were used to estimate the growth curves in different carbon 

sources. Two media were used: M9 Minimal Media (MM) supplemented with 

maltose 0.4% or with glucose 0.4%. The growth curve assays were performed on 

a Bioscreen C microplate reader, using a volume of 150µL per sample and an 

inoculum of ~104 CFUs. Plates were incubated at 37ºC with shaking before each 

optical density measurement (OD at 600nm). All growth measurements were 

repeated at least twice. 

Fitness of effect of fhuA mutant under oxidative stress 

To test if the mutation on the fhuA gene conferred some advantage to the 

evolved bacteria in specific selective pressures characteristic of the macrophage 

intracellular environment, we grew ancestral and mutant clones under oxidative 

and iron limitation stresses. We combined different concentrations of Fe3+ (Iron (III) 

Chloride hexahydrate, Alfa Aesar #A16231) with the ferrichrome siderophore 

(Ferrichrome Iron-free, Santa Cruz Biotechnology # sc-255174) and added 

hydrogen peroxide (H2O2) (Hydrogen Peroxide solution 30% (w/w), Sigma # 

H1009). Ferrichrome captures iron III and the resulting complex is imported into 

the cell by the FhuA outer membrane transporter. Excess iron inside the cell may 

be detrimental in the presence of H2O2, due to the Fenton reaction. In the KO 

mutant of fhuA, ferrichrome-dependent uptake of iron does not occur, which could 

provide an advantage to the bacteria when exposed to oxidative stress. The 

mutant used for this experiment was the sequenced clone of population C (fhuA 

KO and selC IS), which was compared to an ancestral clone. The two clones were 
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first grown in M9 Minimal Media supplemented with 0.4% Glycerol in an orbital 

shaker at 37ºC with 230rpm, to an OD600nm of 1 (stationary phase). The cultures 

were then diluted and grown again in the same conditions until they reached an 

OD600nm of 0.4-0.6 (exponential phase). After normalization to the same O.D, 

samples were diluted 100x, divided in equal parts and centrifuged at 3220 g for 30 

minutes, before being re-suspended in the same growth media either 

supplemented, or not, with Fe3+ and Ferrichrome at two different concentrations: 

0µM Fe3+ + 100µM Ferrichrome and 100µM Fe3+ + 1000µM Ferrichrome. Samples 

were acclimatized at 37ºC with agitation for ~15 minutes before the addition of 

H2O2 to a final concentration of 2 mM. Samples were then left at 37ºC without 

agitation and collected after 1h, washed in PBS 1X and plated on LB agar. Plates 

were incubated for 16h at 37ºC, followed by CFU counting. 

Analysis of rfaI conservation in other E. coli strains 

A list of all sequenced strains of E. coli was retrieved from the European 

Bioinformatics Institute database (www.ebi.ac-uk/genomes, accessed on April 

2014). The meta-information for all the strains (i.e., laboratory origin, pathogen or 

commensal) was manually curated by accessing several different public microbial 

databases. The fasta sequences were retrieved for each of the genes comprising 

the rfa locus in Escherichia coli BW2952 (rfaBCDFGIJLPQSYZ and waaAU) and 

then BLASTed against the sequenced genomes of the genus Escherichia and 

Shigella (74 genomes in total), using Biopython. If, for a given strain, the query 

was returned as empty, we considered the gene to be absent. Otherwise, the gene 

was present but with varying degree of conservation, although not below 82% 

similarity.   

In vivo test for increased pathogenesis 

C57/BL6 mice, aged 7-10 weeks (in house supplier, Instituto Gulbenkian 

de Ciência) were given food (RM3A(P); Special Diet Services, UK) and water ad 

libitum, and maintained with a 12 hour light cycle at 21ºC. The animals were 

infected intra-peritoneally with 2x107 CFUs of either the ancestral clone or evolved 
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clone I (carrying two IS insertions, Fig. 3) diluted in 100µl of PBS. Furthermore, as 

a control, in each experimental block we injected a group of 2–3 mice with 100 ml 

of saline (these animals did not display any signs of disease). Mice were followed 

for 4 days post infection and their weights and temperatures were monitored daily. 

The infections were performed in two blocks, with n=3 mice per bacterial strain per 

block. A linear mixed effect model, with bacterial strain and day post-infection as 

factors and mouse as a random effect, was used to determine if significant 

increases in weight loss occurred in an infection with the evolved clone. 

 

Results and Discussion  

Dynamics of E. coli adaptation to intracellular life  

We followed the evolutionary dynamics and adaptation of twenty 

independent populations of E. coli during repeated exposure to the intracellular 

environment of MFs. The bacterial populations were all founded from an equal mix 

of two ancestral clones, which were isogenic except for a distinct neutral 

fluorescent marker. Under the hypothesis that periodic selection will dominate the 

pathoadaptive process, the occurrence and spread of a strong beneficial mutation 

in one of the clones with a given fluorescent marker will cause the extinction of all 

other clones and hence the loss of diversity at the marker locus (Barroso-Batista et 

al. 2014; Atwood et al. 1951). A more complex pattern may emerge if adaptive 

mutations are very common and cause clonal interference (Hegreness 2006), 

which may slow the loss of neutral variation (Barroso-Batista et al. 2014), or if 

coexisting interdependent ecotypes emerge (Maharjan et al. 2012; Koeppel et al. 

2013).  

In our experimental evolution protocol, MFs (105/ml) were infected with E. 

coli for 24 hours, after which all extracellular bacteria were killed with gentamicin. 

104 bacteria sampled from the intracellular environment of Mfs were then used to 

infect new uninfected MFs. The evolution experiment was followed for 26 days and 

the occurrence of adaptive mutations was detected through the observation of 
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Fig. 1. Evolutionary dynamics of the populations evolved within 
macrophages. Dynamics of frequency of neutral marker in the 20 replicate 
evolving lines (in (A) lines A to J; in (B) lines K to T) and variation in population 
size along the evolution experiment (in (C) lines A to J; in (D) lines K to T).  

rapid and consistent changes in the frequency of the neutral marker (Fig. 1A and 

1B). After 10 days of propagation, consistent changes in frequency started to be 

detected in some populations and by day 15 most of the populations showed 

significant deviations from the initial marker frequency (15 out of 20 populations 

showed deviations above 10%), suggesting that beneficial mutations had spread 

through the populations (Fig. 1A and 1B). During the 26 days of evolution, in only 

one of the populations (O) the deviation from the initial marker frequency was less 

than 10%. A significant increase in the total number of bacteria after infection was 

also detected after 100 generations in all the lines evolved (Fig. 1C and 1D and 

Supplementary Table S1). The increase in carrying capacity (K) of the evolving 

populations tends to be observed in synchronicity with the changes in the marker 

frequency, indicating that this fitness trait is being modified by occurring adaptive 

mutations.  
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Pathoadaptation occurs at a high rate and involves strong effect mutations  

The rapid and consistent changes in the frequency of each of the 

fluorescent alleles imply the occurrence of strong beneficial mutations. Assuming a 

simple model of positive selection we can estimate their rate and effect through 

the deviations of the neutral markers (Hegreness 2006; Illingworth & Mustonen 

2012). We have estimated these key evolutionary parameters using two different 

approaches: Marker Divergence Analysis (Hegreness 2006; Barrick et al. 2010), 

which summarizes the neutral marker dynamics using two parameters: the 

effective mutation rate (Ue) and the effective selection coefficient (Se), by fitting 

simulations to the marker dynamics. This method, which assumes all mutations 

generated within a replicate population to have a given fixed effect, has been 

shown to perform acceptably for scenarios of low clonal interference (Moura de 

Sousa et al. 2013) and summarizes the adaptive dynamics of all the populations 

by a single value of Ue and Se. The second method, Optimist (Illingworth & 

Mustonen 2012), determines the likelihood that the frequency of a neutral marker 

results from a given number of haplotypes, arising at a given time and segregating 

with a particular effect. For each particular replicate population, the number of 

haplotypes that best explains the marker frequency dynamics is chosen by the 

lowest Akaike Information Criteria (AIC), resulting in a distribution of the number of 

haplotypes, as well as their effects, for all the replicate populations. 

From the dynamics in Fig. 1A and 1B, the best estimates of Ue and Se 

were 1.6x10-6 (mutations per genome per generation) and 0.26, respectively. 

Using the method implemented in Optimist, we find a mean increase in fitness of 

mutations of 0.09 (see Table 1 for the estimated parameters and Supplementary 

Fig. S1 for the corresponding simulated dynamics that best fit the experimental 

data). These estimates of the rate and strength of fitness effects of adaptive 

mutations can be compared with those obtained in bacterial adaptation to other 

environments, and using similar methods of inference. E. coli rates of adaptation 

to compensate for the costs of antibiotic resistance were found to lay in the range 

of 10−7, and mean s in the range of 5 to 15%, dependent on the strain that evolved 
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(Barrick et al. 2010; Illingworth & Mustonen 2012). Using a different experimental 

system with more neutral markers, (Sousa et al. 2012) estimated higher rates of 

compensatory mutations to resistance U~10−5, with mean effects of 2.5 and 3.6% 

dependent on the resistance mutation. It is becoming well established that the 

distribution of effects of adaptive mutations markedly depends on the genetic 

background. For E. coli strains with the same genetic background as the ones 

used here, but adapting to a simpler environment (Luria-Bertani rich medium) 

Hegreness et al (Hegreness 2006) found Ue = 2x10-7 and Se = 0.05. These 

estimates are considerably smaller than the estimates found here, when the strain 

faces harsher conditions. Since the same strain and the same method of 

estimation were used in our experiment, the comparison of the combined 

estimates demonstrates that the evolutionary parameters strongly depend on the 

environment. They furthermore support the idea that in more stressful 

environments, where strong biotic interactions prevail, higher rates and effects of 

adaptive mutations are to be expected (Dobzhansky 1950).   
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Population # of W Time W Time 
A 2 0.101 28 0.073 28 
B 1 0.054 0   
C 1 0.109 63   
D 1 0.063 14   
E 1 0.056 7   
F 2 0.091 21 0.134 35 
G 2 0.123 7 0.099 14 
H 2 0.134 42 0.109 42 
I 2 0.090 7 0.094 42 
J 1 0.071 28   
K 2 0.141 63 0.121 63 
L 0     
M 1 0.027 0   
N 1 0.053 0   
O 2 0.054 14 0.063 35 
P 2 0.073 0 0.060 7 
Q 2 0.112 35 0.111 77 
R 2 0.101 35 0.103 77 
S 2 0.151 56 0.124 63 
T 2 0.043 7 0.089 98 

 

Table 1. Inferred selective effects of beneficial haplotypes. The number of 
mutations inferred for a specific population is indicated in the 2nd column. W 
mut#1 and T mut#1 (3rd and 4th columns) indicate, respectively, the inferred 
fitness improvement and time of appearance (in generations) of the first mutant. 
W mut#2 and T mut#2 (5th and 6th columns) indicate the same inferred 
parameters for the second mutant. Shaded cells indicate a mutation inferred in 
the CFP background. 

 

Competitive fitness assays reveal two distinct strategies of pathoadaptation  

The changes in frequency of each fluorescent allele suggested a strong 

effect of the beneficial mutations that occurred. To support this inference and 

directly estimate the strength of these mutations, we performed competitive fitness 

assays, in the presence of macrophages, of evolved clones against the ancestral 

strain marked with a different fluorescence. Fig. 2 shows that all populations 
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exhibit a significant fitness increase and are therefore better adapted to the 

environment with macrophages. The mean competitive fitness increase observed 

was 7%, with a minimum of 5% and a maximum of 12% (Fig. 2, blue bars). These 

values are in close agreement with those estimated from the changes in marker 

frequency alone and assuming the simplest model of positive selection (mean of 

9% with a minimum of 4% and a maximum of 15% (see Table 1 and 

Supplementary Table 2). Although there is a slight overestimation of the fitness 

effects inferred by the marker deviations, they can be explained by a number of 

reasons. Firstly, and contrary to what is assumed by the model, selection in such 

complex environments might not be constant, leading to non-linear effects of 

beneficial mutations. Secondly, theoretical approaches are known to overestimate 

the effects of mutations when there is more than one mutation (i.e., cases of 

higher clonal interference) (Illingworth & Mustonen 2012; Moura de Sousa et al. 

2013). Finally, the AIC criteria (see methods) might be too stringent in selecting 

models that postulate an increased number of haplotypes, which will lead to 

stronger effect mutations. Nevertheless, both fitness measures are in agreement 

that the most likely form of selection taking place in this environment involves 

sweeps of beneficial mutations of strong effects. 

One possible trait that could be expected to evolve as an adaptation to the 

selective pressure imposed in this experiment would be an increased ability to 

grow in the abiotic environment external to the macrophages (RPMI). If a variant 

with increased fitness in RPMI would emerge, then its frequency outside 

macrophages could increase and dominate the population; a likely scenario if such 

a mutant did not have any cost inside macrophages nor in the external 

environment as it becomes conditioned by those cells. To determine whether the 

evolved populations increased in fitness in RPMI, i.e. in the absence of 

macrophages, we performed competitive fitness assays against the ancestor in 

the medium alone (Fig. 2, orange bars). The results show that in 3 out of 14 

populations there is, indeed, a significant fitness increase in the abiotic 

environment, suggesting that increasing growth in RPMI can be beneficial in the 

presence of macrophages. We note that during the evolution the abiotic 
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Fig. 2. Fitness measures of evolved clones. In blue, the competitive fitness 
of evolved populations in the presence of MΦ: evolved clones (a sample of 30 
from each indicated population) were competed against the ancestral clone 
(1:1). In orange, competitive fitness assay in the absence of MΦ. Error bars 
correspond to 2SE.  
 

environment outside macrophages is likely to change, so a mutant which is 

beneficial in RPMI may change its advantage as this medium becomes 

conditioned by the presence of macrophages. The results also show a correlation 

between the changes in fitness in the absence of macrophages to the increase in 

fitness in their presence (Pearson r=0.688, P=0.0065, Fig. 2). In half of the 

populations (A,F,G,K,N, R and S) a clear trade-off was detected (Fig. 2). For these 

cases, accumulation of mutations with significant advantage in the presence of 

macrophages led also to a decreased competitive ability in their absence.  This 

indicates a specialization in the transition to intracellular life. Together, the results 

suggest different adaptive strategies adopted by similar bacteria adapting 

independently to the same environment, but with distinct genetic mechanisms 

evolved to cope with the same antagonistic interaction.  
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Genetic basis of the intracellular adaptation reveals common evolutionary 
paths 

Given the dynamics of neutral markers observed (see Fig. 1A and 1B), the 

short duration of the experiment (~175 generations) and the estimates of only a 

few of beneficial mutations being responsible for the adaptive process (see Table 

2), we predict that each population is dominated by a single clone with one or two 

mutations. In order to unravel the number of genetic changes that occurred and to 

reveal the underlying evolutionary paths taken by the populations, we performed 

whole genome sequencing of independently evolved clones. The evolved strains 

and their ancestor were sequenced to a minimum of 16x coverage on the Illumina 

Miseq platform. Table 2 shows the genetic changes detected and Fig. 3 their 

position along the chromosome. Overall, 25 different mutational targets were 

detected amongst the adapted clones. As expected, each clone carries an 

average of 2 mutations. Most of the mutations occurred in coding regions and 14 

out of 34 in total involved insertions of transposable elements IS1, IS5 and IS186. 

The first two have been found to transpose at higher rates than other elements 

(Sousa et al. 2013) and are therefore more likely to contribute to adaptation. 

Among the gene targets for the mutations detected, two occurred in 4 and 8 

clones (fhuA and rfaI, respectively) and one occurred in two independently evolved 

clones (tppB). Parallelism is a hallmark of adaptation since the probability that 

mutations in the same gene increase in frequency by random chance in at least 

two independent lines, over such a short period, is very low (Lang & Desai 2014; 

Adams & Rosenzweig 2014). Given the parallelism observed involving the gene 

targets rfaI and fhuA, we can safely assume that these changes are adaptive. 

Furthermore, the change hitting the coding region of tppB (either through an 

insertion or by a small deletion) in two independent clones, together with it being 

the sole detected mutation (B CFP and Q YFP) suggests that loss-of-function of 

tppB, coding for a proton-dependent transporter of di- and tri-peptides could be an 

important pathoadaptive mutation.  
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Fig. 3. Genomic maps of the mutations detected in the sequenced evolved clones. 
Red inverted triangles represent insertions of IS elements, blue lines mark single 
nucleotide polymorphisms and green triangles denote small insertions (pointing 
downwards) or deletions (pointing upwards). All events have either the aminoacid 
changes associated (for SNPs), the IS element inserted or the small number of base 
pairs deleted or inserted. 
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Clone 
(Coverage) 

Genome 
Position 

Gene Mutation Annotation S  Tradeoff 
without Mfs 

A YFP (36x)  
2649245 yfjL/yfjM +GCACTATG intergenic (-258/+102 nt) 

7% Yes 3293960 panF T→G L395R (CTG→CGG) 

3689096 rfaI IS5 + 4bp coding (312/1020 nt) 

B CFP (35x) 1603229 tppB IS1 + 5 bp coding (378/1503 nt) 11% No 

C CFP (73x) 169014 fhuA G→A W511* (TGG→TAG) 12% No 
3722624 selC IS1 + 8bp non coding (47/95 nt) 

D YFP (20x) 
168462 fhuA +A coding (980/2244 nt) 

6% No 2039547 yegI Δ3 bp coding (1944-1946/1947 nt) 

3809621 gidB C→T R139H (CGC→CAC) 

E YFP (93x) 3070100 yqiC Δ1 bp coding (91/291 nt)     

168929 fhuA IS1 + 8bp coding (1447/2244 nt)     

F YFP (16x) 
3219882 ispB/sfs

B 

G→A intergenic (131/-197 nt) 
7% Yes 608471 glnS Δ5 bp coding (396-400/1665 nt) 

3689096 rfaI IS5 + 4bp coding (312/1020 nt) 

G CFP (40x) 3758025 dgoT A→C I21S (ATC→AGC) 7% Yes 
3689065 rfaI IS1 + 8bp coding (343/1020 nt) 

H YFP (20x) 2541599 hscA Δ3 bp coding 8% No 
3689096 rfaI IS5 + 4bp coding (312/1020 nt) 

I YFP (148x) 167493 fhuA IS1 + 8bp coding (11/2244 nt)     
3689096 rfaI IS5 + 4bp coding (312/1020 nt) 

J YFP (346x) 3971199 fdoG Δ6 bp coding (2311-2316/3051 nt) 7% No 

K YFP (28x) 3689096 rfaI IS5 + 4bp coding (312/1020 nt) 5% Yes 

N CFP (34x) 

75049 glnH/dps A→T intergenic (-295/+109 nt) 

5% Yes 4410884 yjgJ G→A M1I (ATG→ATA) 

1769910 yeaR IS186 + 10bp coding (122/360 nt) 

3688872 rfaI IS5 + 3bp coding (536/1020 nt) 

O CFP (35x) 1129729 cvrA Δ1 bp coding (296/1737 nt)     
3223632 yrbD IS1 + 11bp coding (9/522 nt) / intergenic 

(-1/+4) 

P CFP (29x) 

70580 araC T→C V65V (GTT→GTC) 

7% No 1072984 ycfS G→A O180L (CCG→CTG) 

1247732 puuP C→T C110Y (TGT→TAT) 

3708996 spoT Δ6 bp coding (247-252/2115 nt) 

Q YFP (34x) 1602868 tppB Δ1 bp coding (17/1503 nt) 10% No 

S YFP (29x) 1404545 ydcU C→T P221L (CCG→CTG) 6% Yes 
3689096 rfaI IS5 + 4bp coding (312/1020 nt) 

T CFP (30x) 4546582 prfC A→C E221A (GAA→GCA)     

  Table 2. Mutations identified in the sequenced clones. Coverage for each clone is 
indicated in the first column. The 6th column (S) indicates the selective effect of the 
evolved clones in the presence of macrophages, compared to the ancestor, and the 7th 
column indicates whether there is a selective tradeoff (i.e., fitness in the absence of 
macrophages is lower than ancestor). 
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Fig. 4. Invasion of an adaptive mutation at the rfaI locus. The blue line 
shows the selective sweep leading to the fixation of an IS5 insertion likely 
causing gene loss of function. In the inset an estimate of the selection 
coefficient (s) of this mutation is given. s is the slope of the logarithm of the ratio 
between the number of clones carrying the mutation and those with the wild-
type allele. 

Loss of rfaI leads to a strong selective sweep during adaptation to 
macrophages 

In 47% of the evolved populations, mutations in rfaI (all of them IS 

insertions presumably leading to gene inactivation) were detected, suggesting this 

to be a preferential target and, therefore, one with high beneficial effect. We 

followed the emergence of this adaptive mutation in one of the adapted 

populations (population I), by targeted PCR for the presence of IS5 element in rfaI, 

as this element had been identified in the evolved clone sequenced from this 

population. Fig. 4 shows that the mutation could be detected by day 6, with a 

frequency 4.1% (SE 0.04) and rapidly swept to fixation, being detected in all tested 

clones (n=60) at day 26. We could directly estimate its selective effect, from its 

initial change in frequency, to be 0.09 (see inset of Fig. 4).  
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We also found a strong correlation between the presence in a clone of a 

mutation in rfaI and a competitive tradeoff (i.e., benefit in the presence of 

macrophages, but disadvantage in their absence) of the populations where that 

clone mutation emerged (p<0.01, Pearson correlation). rfaI is a 

glycosyltransferase and part of the lipo-polysaccharide (LPS) synthesis machinery 

present in bacteria. LPS are unique and complex glycolipids that provide 

characteristic components in the outer membranes of bacteria and as such are a 

critical component of their interaction with cells from the immune system (Beutler & 

Rietschel 2003). The rfa locus itself is composed of 15 different genes, which are 

responsible for generating different parts of the LPS structure (Schnaitman & 

Klena 1993). rfaI is involved in the outer part of the core oligosaccharide, 

connecting the lipid A (inner part) and the O-antigen (outer part) of LPS. Since the 

strain used in this study is devoid of O-antigen, the outer part of the core is the 

LPS terminal section, and it is likely acting as one of the main interfaces between 

the bacterial cell and the cells from the immune system. Modifications in the LPS 

structure, and the outer core in particular, are known to modify the behavior of 

bacterial cells regarding adhesion to epithelial cells and biofilm formation in 

enterohemorrhagic E. coli (Torres & Kaper 2003; Torres et al. 2005), and 

intracellular invasion of different serovars of Salmonella enterica (Hoare et al. 

2006). Moreover, mutations in the outer core structure of Brucella abortus can 

induce pro-inflammatory responses and enhanced macrophage activation (Conde-

Álvarez et al. 2012). Interestingly, many genes in the rfa locus itself are a target for 

bacterial persistence in E. coli (Girgis et al. 2012), and the operon seems to be 

poorly conserved in a vast group of E. coli pathovars, with several pathogenic (and 

non-pathogenic) strains missing many of its genes (including rfaI) (see Analysis of 

rfaI conservation in other E. coli strains (section) in Material and Methods). This 

suggests that, in these strains, the rfa genes could be common mutational targets. 

Together, both our results and these observations seem to indicate an important 

role of the LPS structure both in the interaction with the immune system and in the 

transition to a pathogenic lifestyle, implying the changes in rfaI detected in 8 

independently evolving populations as a recurrent pathoadaptive target. 
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fhuA pathoadaptive mutant is beneficial under the combined pressure of 
iron limitation and oxidative stress  

The beta barrel protein FhuA is involved in the active transport of ferric 

siderophores across the outer membrane of Gram-negative bacteria (Ferguson et 

al. 1998). Iron homeostasis is crucial to the lives of both bacteria and 

macrophages therefore both cells have exquisite mechanisms to achieve 

physiological levels of iron and to keep it in a safe intracellular non-toxic form. 

Although oxidative stress can be generated by aerobic respiration, it is also one of 

the microbicidal pressures generated by the macrophages in the harsh 

phagosomal environment. Superoxide and hydrogen peroxide (O2
- and H2O2) are 

moderately reactive oxygen species, however, upon interaction with iron, the 

highly reactive hydroxyl radical (OH-) can be created (Fenton reaction) (reviewed 

in (Andrews et al. 2003)).  Since phagocytosed bacteria can face high levels of 

oxidative stress inside macrophages we tested the survival of a fhuA mutant in 

different conditions regarding the presence/absence of H2O2 (2mM H2O2) and 

different concentrations of Ferrichrome plus Fe3+. Ferrichrome is a siderophore 

which binds iron III and enables it to be transported through the FhuA outer 

membrane transporter. We find that in the presence of Ferrichrome alone 

(100mM) or complexed with Fe3+ (100mM Fe3+, 1000mM Ferrichrome), survival of 

the fhuA mutant is indistinguishable from that of ancestral bacteria (Fig. 5A). A 

similar result was obtained in the presence of H2O2 (Fig. 5B).  A fitness advantage 

of the evolved clone was however detected in an environment comprising 

oxidative stress in conjunction with Ferrichrome, or with Ferrichrome and Fe3+. 

Under these conditions the survival of fhuA mutant clones is significantly increased 

in relation to that of ancestral bacteria (P=0.001 and P=0.008 respectively) (Fig. 

5C). The difference between the mutant and the ancestor is observed even in the 

absence of Fe3+ supplementation. This could be justified by the fact that bacteria 

are able to grow under limited amounts of this element, which is present under 

most biological conditions (Hartmann & Braun 1981). These results therefore 

indicate that this mutation may have evolved to decrease the amount of OH- inside 

the bacterial cells.  
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Fig. 5. Bacterial survival under iron and or oxidative stress. Log10(Number of 
bacteria after 1h)- Log10 (Number bacteria at 0h) in the environments: (A) Effect of 
Fe3+ depletion tested in minimal media supplemented with the indicated 
concentrations of Fe3+ and Ferrichrome; no significant difference between evolved 
and ancestral clones could be detected (T-test, P=0.8 and P=0.6, n=5) (B) Effect 
of H2O2 stress tested in minimal media supplemented 2mM of H2O2; no significant 
difference between evolved  and ancestral clones (T-test, P=0.8, n=10). (C) 
Fitness advantage of evolved clone is detected under both selective pressures, 
i.e. minimal media supplemented with the Fe3+, Ferrichrome and 2mM of H2O2 (T-
test, P=0.016, P=0.02, n=5). 

An in vitro evolved double mutant of rfaI and fhuA shows increased 
pathogenic potential in vivo  

We tested for increased virulence of one of the MΦ adapted clones. This 

clone carries two of the mutations that repeatedly emerged during the evolution: 

an insertion into rfaI and an insertion into fhuA (clone I Fig. 3). By infecting mice in 

the intra-peritoneal cavity with either the ancestral strain or the double mutant we 

find that, although mouse survival is similar for both strains, the weight loss 

caused by the infection of the evolved strain was significantly higher (P=0.046 for 

strain and P=0.003 for time, in a linear mixed effects model, with mouse as a 

random effect and strain and day of infection as factors, see Fig. S2). Given that 

the increased pathogenic potential of the double mutant was significant but not 

very strong we did not test each of the single mutants. Besides weight loss, a 

common phenotype to assay pathogenicity in vivo, we also measured 

temperature, but found no significant difference.  
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Pathoadaptation to macrophages can lead to metabolic tradeoffs 

Bacteria fully adapted to intracellular life tend to have small genomes 

(Moran 2002). Amongst the species of E. coli, Shigella strains have undergone a 

considerable amount of genome reduction (Hershberg et al. 2007). During its 

evolution from an extracellular inhabitant of the mammalian gut to an intracellular 

pathogen, Shigella accumulated a plethora of pseudogenes, with genes coding for 

carbon utilization, cell motility, transporter or membrane proteins more likely to 

become inactivated (Feng et al. 2011). While part of this gene loss may be the 

outcome of intensified genetic drift and inefficient selection, it can also be the 

result of positive selection for loss of anti-virulent functions, constituting adaptive 

losses in the intracellular niche (Andersson & Kurland 1998; Moran 2002). Such 

losses may entail antagonistic effects in extracellular environments. We tested the 

adapted clones for differences in their ability to grow on single carbon sources and 

found that some exhibited a strong metabolic trade-off when growing on either 

glucose or maltose (Fig. 6). We found that all the clones carrying the 

pathoadaptive loss of rfaI failed to reach high carrying capacity on minimal media 

with either of the sugars. In contrast, the mutants with pathoadaptive mutations in 

tppB, involved in the transport of peptides, showed increased growth in maltose 

(Fig. 6, red lines). Interestingly, subsequent mutations on the rfaI mutant 

background restore the ability to grow to similar levels as the ancestor, showing 

that the pleotropic effects of such pathoadaptation can be compensated to better 

grow on both poor and rich media.  
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Fig. 6. Growth curves of evolved populations and the ancestral strain in 
minimal media with maltose or glucose (0.4%). Each color on the growth 
curves represents similar patterns amongst the populations. 

 

Conclusions 

Characterizing the evolutionary and genetic mechanisms underlying the 

transition from commensal to pathogenic lifestyle is paramount in understanding 

the particularities of what makes pathogens dangerous and often fatal to their 

hosts. Here, we followed the evolution of a commensal strain of E. coli under the 

selective pressure imposed by the intracellular niche of MΦs to identify the most 

probable paths of this adaptation. All evolved populations show an increased 

ability to survive in the presence of macrophages, as the result of acquisition of 

strong beneficial mutations, which we estimate and measure to be around 7 to 

10%, on average. The characterization of their genetic basis unveiled mutation 

that were highly likely to be pathoadaptive mutations, namely those involving 

changes in LPS, crucial in the interaction with the immune system, and in iron 

metabolism, essential for both protecting against high levels of toxicity and to 

acquire the necessary resources to survive. Given the strong pressure imposed in 

our experimental system, our results show that commensal bacteria are able to 

acquire adaptations to increase their intracellular survival at a fast pace. 

Importantly, the adaptive mutations identified in this study suggest possible new 
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therapeutic targets to counteract pathogenic intracellular parasites. 
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Supplementary Figures and Tables 

 

 

Fig. S1. Inferred Evolutionary Dynamics. Simulated dynamics of the model of 
positive selection (Illingworth & Mustonen 2012) with the parameters that provide 
the best fit to the data of changes in marker frequencies (displayed as points). 
Each color represents an independently evolved population. 
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Fig. S2. rfaI and fhuA double mutants increase weight loss in mice. The 
change in weight of mice (as a percentage) after intra-peritoneal infection with 
ancestral or evolved (clone I) bacteria.  
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S1 Table. Increase in bacterial loads along the experiment. The majority of 
lines show a significant increase in bacterial loads. The slope of Log10(CFUs) 
along the 26 days of evolution, from a linear regression, is indicated in the 1st 
column and P value of slope indicated in the 2nd column. 

 

S2 Table. Correspondence between experimental and inferred fitness. The 
experimental values measured through competitive fitness assays are indicated 
with their errors (2SE), along with the fitness inferred through the marker dynamics 
of the respective population. In the majority of populations (with the exceptions of 
populations B, K and S), the two measures are either in agreement or the inferred 
fitness is slightly overestimated (see the main text for discussion).

Population Slope P,Value
A 0.025 0.005
B 0.017 0.05
C 0.016 0.057
D 0.017 0.038
E 0.012 0.184
F 0.023 0.009
G 0.03 <0.001
H 0.022 0.009
I 0.03 <0.001
J 0.019 0.022
K 0.028 0.002
L 0.016 0.052
M 0.018 0.031
N 0.027 0.002
O 0.021 0.011
P 0.024 0.0056
Q 0.029 0.001
R 0.032 <0.001
S 0.03 <0.001
T 0.019 0.024

Experimental Inferred
A YFP [0.06 - 0.08] 0.1
B CFP [0.10 - 0.12] 0.05
C CFP [0.11 - 0.13] 0.11
D YFP [0.05 -0.07] 0.06
F YFP [0.05 - 0.09] 0.13
G CFP [0.06 - 0.08] 0.12
H YFP [0.07 - 0.09] 0.13
J YFP [0.06 - 0.08] 0.07
K YFP [0.03 - 0.07] 0.14
N CFP [0.04 - 0.06] 0.04
Q YFP [0.8 - 0.12] 0.11
R YFP [0.05 - 0.07] 0.1
S YFP [0.05 - 0.07] 0.15





	  

	  

	  

	  

	  

	  

	  

	  

	  

CHAPTER VII 
Clonal interference is sufficient to explain the 
pathoadaptive phenotype emerging during 
Escherichia coli adaptation to escape macrophage 
phagocytosis 

	  

	  

	  

	  

Research included in the manuscript “The Genetic Basis of Escherichia 
coli Pathoadaptation to Macrophages”, published in PLoS Pathogens, in 
December 2013 
 
The author of this thesis performed all the theoretical simulations and their 
analysis described in this chapter. All figures were retrieved from the original 
publication. 
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Clonal interference is sufficient to explain the pathoadaptive phenotype 

emerging during Escherichia coli adaptation to escape macrophage 
phagocytosis 

	  

Abstract 

Antagonistic interactions are common in the microbial world, driving the adaptation 

of microorganisms. Here we aim to understand the importance of clonal 

interference in an experiment involving the adaptation of Escherichia coli under 

antagonistic interaction with macrophages during 30 days. Morphological diversity 

was observed to rapidly emerge from this adaptive process, generating small 

colony variants and large translucid mucoid colonies. Moreover, a remarkable 

genetic parallelism was detected at the end of the experiment, across 

independently evolving populations. We developed a theoretical model that 

attempts to explain the dynamics of frequency change of the mucoid phenotype, 

taking into account the mutational events observed. We show that a simple model 

of clonal interference is able to generate the complex dynamics observed during 

adaptation to the presence of macrophages. 

	  

Introduction	  

Emergence of morphological diversity in Escherichia coli adapting to the presence 

of macrophages 

	  

Macrophages are a key component of the host defense mechanisms 

against pathogens (Wynn et al. 2013) and thus provide a strong antagonistic 

interaction to which bacteria must adapt. In Chapter VI, we discussed an 

ecological scenario where bacteria adapted to inhabit the intracellular milieu of 

macrophages, prompted by the supplementation of media with an antibiotic to 
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which they were susceptible. However, adaptation to the presence of 

macrophages is not limited to adopt an intracellular lifestyle, since escape and 

avoidance strategies can also evolve from this interaction (Baxt et al. 2013). In 

(Miskinyte et al. 2013), E. coli was allowed to evolve under continuous selective 

pressure of macrophages, but without the application of gentamycin, thus allowing 

bacteria to survive by more efficiently escaping the predatory behaviours of 

macrophages. In order to assert the speed and genetic basis of adaptation to this 

antagonistic interaction, six independently evolved populations were followed for 

30 days, during which distinct colony morphologies emerged across the replicate 

populations and coexisted with the ancestral colony phenotype: small colony 

variants (SCVs) and large translucid mucoid (MUC) colonies. SCVs were 

observed in 5 out of the 6 populations, but only transiently and at low frequencies. 

In contrast, MUC clones, which were detected in all populations, rose in frequency 

and reached fixation in 5 out of the 6 populations, showing complex frequency 

dynamics (Figure 1). Both these phenotypes are known to emerge in clinical 

infections (Funada et al. 1978; Besier et al. 2008) and, therefore, it is important to 

understand their molecular and evolutionary dynamics.  
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Figure 1. Emergency of morphological diversity in the bacterial populations 
adapting to MΦ. 

(A) Examples of the variability for colony morphology that emerged in E. coli 
populations adapting to MΦ, from left to right – ANC stands for morphology of 
ancestral, SCV for the small colony variants morphology and MUC for the mucoid 
colony morphology. (B) Dynamics of frequency change of the evolved phenotypes 
in each replicate evolving populations (M1 to M6): white squares indicate ANC, 
black triangles SCV, black circles MUC phenotypes.  
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Genetic basis of adaptation to macrophages  

In order to uncover the molecular basis of the MUC phenotype dynamics, 

whole genome sequencing was performed not only for the evolved clones at day 

30, for all populations, but also for one of the clones in population M3, at day 19. 

The mutations found are represented in Figure 2 and Table 1, and the frequency 

of transposon insertions (IS) along the experiment was detected by PCR (Figure 

2b). There is a high level of parallelism across the independently evolving 

populations, namely with the regulatory region of the yrfF gene being interrupted 

by an IS, in all six replicate populations. The homologue of yrfF in Salmonella 

(igaA) prevents the over-activation of the Rcs regulatory system, which controls 

the production of colanic acid capsule synthesis (Bernal & Pucciarelli 2004). This 

mutation is likely altering E. coli’s ability to produce colanic acid, in concordance to 

the MUC phenotype observed. To further understand the dynamics of adaptation 

in each independent evolved bacterial population, the frequency of the mutations 

found was assessed in mucoid clones sampled along the evolution experiment. 

Adaptation involved the competition between distinct haplotypes and the 

successive accumulation of beneficial mutations, mainly caused by IS insertions 

(Figure 2). Such haplotype dynamics is characteristic of clonal 

interference (Sniegowski & Gerrish 2010), where clones carrying distinct beneficial 

mutations compete for fixation. 
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Figure 2. Genetic characterization of adaptive mutations and the dynamics of 
their appearance. 
(A) Mutations identified in MUC1 to MUC6 clones isolated from M1 to M6 populations 
(evolved for 450 generations), represented along the E. coli chromosome. For 
simplicity, the genomes are represented linearly and are horizontally drawn. The 
types of mutations are represented in the following way: SNPs are shown as crosses, 
IS insertions as inverted triangles and deletions as triangles. Filled symbols represent 
mutation in the coding region of the gene and empty symbols in the regulatory region. 
(B) Emergence and spread of adaptive mutations in M1 to M6 populations. Dynamics 
of haplotype frequencies in evolving populations at different days of evolution 
experiment are represented by circles. The color and symbol (IS insertions are 
represented as circles and other mutations as crosses) of each sector represents 
different haplotypes and the area of the circle their frequency in the population. Grey 
area represents the frequency of clones in the population that were typed for existing 
mutations in the population and did not differ from ancestral haplotype. 
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Table 1. Mutations acquired by evolved clones identified through whole 
genome re-sequencing (WGS). 
Mutations in intergenic regions have the two flanking genes listed (e.g., 
clpX/lon). SNPs are represented by an arrow between the ancestral and the 
evolved nucleotide. Whenever a SNP gives rise to a non-synonimous mutation 
the amino acid replacement is also indicated. The symbol Δ means a deletion. 
For intergenic mutations, the numbers in the “Mutation” row represent 
nucleotides relative to each of the neighboring genes, here + indicates the 
distance downstream of the stop codon of a gene – indicates the distance 
upstream of the gene, that is relative to the start codon. Insertions of IS 
elements are denoted by the specific IS element followed by the number of 
repeated bases caused by its insertion. 
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Model and Results  

 

Model of clonal interference for the antagonistic interaction between bacteria and 

macrophages 

 

In order to understand whether clonal interference could reproduce the 

mucoid and ancestral-like frequency dynamics observed, we modeled this process 

within the basic ecological scenario of our experiment. We assume a simple model 

for the interaction between bacteria and macrophages:  

Eq. 1: 
dB
dt

= B(r − B
K
+ amMΦe

−δt )  

Here, B represents the number of bacteria along time, r their growth rate, K their 

carrying capacity and am is the factor of bacterial death by macrophages (am<0); 

MΦ represents the number of macrophages and δ their death rate. For the initial 

conditions we used, in accordance with the experimental setup, MΦ=106 and 

B(0)=106. During a 24 hour period the infection dynamics expected under this 

model are similar to those obtained experimentally, with r=2.3 (per hour), K=108 

and δ=0.1 (per hour) (Figure 3). As in the experiments, every 24 hours bacterial 

population numbers are reduced to B(0) and macrophage numbers increased to 

MΦ.  
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Figure 3: Infection dynamics of the ancestral strain.  

Variation in numbers of bacteria (A) and MΦ (B) during an infection with the 

ancestral clone (ANC) at MOI (1∶1). (C) Simulated dynamics of a population of 

ancestral bacteria (black line) dividing in the presence of MΦ (purple line) for 24 

hours, following the deterministic model, with the following parameter values: 

B(0) = 106; MΦ = 106; r = 2.3; K = 108; am = −3.7*10−6; δ = 0.1. We assume that MΦ 

decay at linear rate of 0.1 following the data of (B). 

 

Having these initial conditions, we then assume that new mutants arise and 

are not stochastically lost at a given rate. More specifically, the ancestral clone can 

mutate to two new types of adapted clones: one by transposition (upstream of 

yrfF) and another by point mutation. These mutations can have different rates 

(Sousa et al. 2013; Foster et al. 2015) and can also cause changes in both r and 

am, i.e., the growth rate of mutant bacteria (rmuc) can change and their ability to 

interact with macrophages (ammuc) can also change. We assume that mucoid 

bacteria will exhibit an increased ability to escape macrophages ammuc < am but 

also a decreased growth rate rmuc < r, due to the cost of producing 
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exopolysaccarides. While in some cases the mucoid haplotype displays an 

apparently simple phenotypic sweep (see, for instance, M2 or M6 in Figure 1B), in 

other instances the frequencies of the morphologies have a higher degree of 

complexity (M4 as an extreme cases in Figure 1B). This seems to indicate that 

the level of clonal interference could be different amongst the populations. 

Therefore, and in order to model different orders of clonal interference under an 

antagonistic interaction, we start with the following equations in order to describe 

the frequencies of the ancestral background and a derived mucoid haplotype: 

Eq. 2a: dB
dt

= B r − (B +Muc)
K

+ amMΦe
−δt#

$
%

&

'
( −UisB  

Eq. 3a: dMuc
dt

= Muc rm −
(B +Muc)

K
+ ammucMΦe

−δt#

$
%

&

'
(+UisB  

Here Uis is the rate of occurrence of successful transpositions leading to the 

mucoid haplotype. B represents the number of bacteria with the ancestral 

genotype and Muc of the mucoid genotype that emerges. From the experimental 

data, we know that the non-mucoid (or ancestral-like) phenotypes sometimes 

increase in frequency and are maintained in the populations (white squares in 

Figure 1B and grey areas in Figure 2B). Therefore, to simulate some of the 

dynamics in Figure 1B, we postulate that a phenotype derived from ancestral type 

(B’), which is non-mucoid, can emerge in the population at rate U, with growth r’ 

and macrophage interaction amb. Note that both U and Uis are the spontaneous 

rate of mutation times the probability that such mutation is not lost by drift. 

Eq. 2b: dB
dt

= B r − (B +Muc + B ')
K

+ amMΦe
−δt#

$
%

&

'
( −UB −UisB  

Eq. 4a: dB '
dt

= B r '− (B +Muc + B ')
K

+ ambMΦe
−δt#

$
%

&

'
(+UB  
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Moreover, because successional mutations are acquired in the background of the 

mucoid phenotype (Figure 2B), we also postulate that subsequent mucoid 

haplotypes can originate from the first one, at a rate Uis’ and with growth r’m and 

macrophage interaction ammuc’. The complete set of equations for a model 

consisting of the segregation of an ancestral and 3 new haplotypes is the 

following: 

Eq. 2c: dB
dt

= B r − (B +Muc + B '+Muc ')
K

+ amMΦe
−δt#

$
%

&

'
( −UB −UisB  

Eq. 3b: 

dMuc
dt

= Muc rm −
(B +Muc + B '+Muc ')

K
+ ammucMΦe

−δt#

$
%

&

'
( −Uis 'Muc +UisB  

Eq. 4b: dB '
dt

= B r '− (B +Muc + B '+Muc ')
K

+ ambMΦe
−δt#

$
%

&

'
(+UB  

Eq. 5: dMuc '
dt

= Muc ' r 'm−
(B +Muc + B '+Muc ')

K
+ ammuc 'MΦe

−δt#

$
%

&

'
(+Uis 'Muc  

In this model of clonal interference, we make the simplifying assumption 

that two traits, growth rate (r) of bacteria and their ability (am) to escape MΦ, are 

the most important for bacterial fitness in this environment. Both these traits can 

evolve, as it is evident from the emergence of new morphologies (in particular 

mucoid morphs) and phenotypic tests of the evolved clones. Figure 4 shows 

simulations of adaptive dynamics over the period of the experiment (30 days), 

where the frequencies of mucoid (MUC) phenotypes are plotted and can be 

compared to those observed in the experiments (Figure 1B). The solutions for the 

equations were obtained in Mathematica v8.0 (the full script can be found as 

supplementary material in (Miskinyte et al. 2013)). These parameters were chosen 

because they depict the initial infection dynamics of the ancestral strain (Figure 1) 

and its relation with the derived evolved clones. We are able to find conditions that 
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can reproduce the observed dynamics of morphs under a scenario of intense 

clonal interference and accumulation of multiple beneficial mutations (see Figure 

5). The parameters used to obtain these dynamics, which are indicative of the 

rates and strength of mutations that drive this clonal interference process, are 

shown in Table 1. For some of the dynamics, further haplotypes, both mucoid and 

non-mucoid, were required to explain the dynamics, and the parameters for these 

are shown in Table 2. The model is able to reproduce the observed changes in 

frequency of the mucoid and non-mucoid phenotypes, if we assume that distinct 

beneficial mutations occur and change each of the two fitness traits in both 

morphs. Specifically, we assume that a successful beneficial mutation occurs, 

which produces the first mucoid morph. Such mutation is assumed to increase the 

ability of bacteria to escape MΦ, but also carry a cost in that it diminishes the 

growth rate (see Figure 6 for the conditions under which such a mutation can 

invade). This mucoid morph can acquire further beneficial mutations that alter 

those traits values, such that a new derived mucoid haplotype can have a reduced 

cost of producing colanic acid and/or an increased ability to escape macrophages. 

Importantly, we also assume that clones with ancestral colony morphology can 

acquire beneficial mutations that increase their growth rate. Under these 

assumptions, and with the direct evidence that several distinct clones are 

segregating in the populations, complex dynamics are to be expected (Figures 4 

and 5).  
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Figure 4. Predictions of model of clonal interference for changes in mucoid 
frequencies with time. 
Simulations of the adaptive dynamics over the period of the experiment (30 days). 
The frequencies of mucoid phenotypes are plotted and can be compared to those 
observed in the experiments (Figure 1B). The values of parameters used are 
shown in Tables 1 and 2 and the dynamics of haplotypes that compete for fixation 
are shown in Figure 5. 
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Figure 5. Dynamics for the different haplotypes under the model of 
clonal interference.  
Simulated frequencies of the different haplotypes that result in the frequencies 
of the mucoid phenotypes of Figure 4. r = 2.3, am = −3.7×10−6 and the other 
parameters used are shown in Table 1. In this table, the cases where more 
haplotypes were assumed to reproduce the experimental dynamics are 
marked with *, and the additional parameters are in Table 2. 
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 U 

(x10-7) 

Uis 

(x10-7) 
rm ammuc  

(x10-6) 

Uis’ 

(x10-7) 
r’ amb 

(x10-6) 
rm’ ammuc’ 

(x10-6) 
M1 3 4 2.1758 -3.23 12 2.369 -3.7 2.2171402 -3.23 
M2 0.96 4.45 2.21122 -3.2 3.84 2.392 -3.7 2.2554444 -3.2 
M3* 0.43 4 2.185 -3.24 1.72 2.3609 -3.7 2.2724 -3.24 
M4* 0.1 10 2.1988 -3.2 5 2.4104 -3.7 2.2691616 -3.2 
M5* 0.43 6.94 2.180768 -3.28 0.107 2.346 -3.7 2.180768 -2.86 
M6 3 4 2.1758 -3.23 12 2.3736 -3.7 2.2247555 -3.23 

 
Table 1. Parameters used in modeling the dynamics of the different 
haplotypes. Parameters used for the dynamics in Figure 5. Cases where more 
haplotypes were assumed to reproduce the experimental dynamics are marked 
with *, and the additional parameters are in Table 2. 

 

 

 U’’(B’->B’’) r’’ amb’ 

(x10-6) 
Uis’’(Muc’->Muc’’) rm’’ 

ammuc’’ 

(x10-6) 
M3* 4.3 x 10-8 2.47309513 -3.7 1.72 x 10-7 2.3428444 -3.24  
M4* 1 x 10-8 2.494764 -3.7 1 x 10-8 2.3202177

4 
-2.99  

M5* 4.3 x 10-8 2.482068 -3.7    
 
Table 2. Parameters for the additional haplotypes for the modelled 
dynamics. Parameters in the additional haplotypes required to obtain the 
dynamics in Figure 5. 
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Figure 6. Region of parameter space theoretically expected for the invasion 
of first mucoid morph. Colored areas show the parameter region (rm/r and 
ammuc/am) where a mucoid genotype (mimicking the IS insertion upstream of yrfF 
in the experiment) that has emerged is able to increase in frequency so that it can 
survive the bottleneck imposed every 24 hours in the experiment. The equations 
for these simulations are:  

 

 

with initial conditions Muc(0)=1, B(0)= 106 and the other parameter values as in 
Figure 3: M0=106; r=2.3; K=108; am= 3.7*10-6; d=0.1. Note that the escape 
parameter is negative (according to the mathematical model) and, therefore, a 
value lower than 1 indicates a higher ability to escape predation. Warmer colors 
show higher frequency of the mucoid genotype in the population after 24 hours of 
its emergence as a single copy. The yellow dot indicates the value of rm and 
ammuc, of the first mucoid haplotype assumed to emerge in the 6 models that 
produced the dynamics in Figures 4 and 5. 
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Discussion 

The complex adaptive dynamics driving the pathoadaptive process of E. 

coli in the presence of macrophages are difficult to disentangle in an environment 

that poses antagonistic biotic interactions and the generation of multiple 

phenotypes and haplotypes, as shown by the genetic analysis. One of the drivers 

of this process is clonal interference. Here we studied if clonal interference alone 

could explain the dynamics of the morphologies emerging during the evolution, 

under specific parameter values for the rate and effects of mutations causing the 

observed phenotypes. One of the strongest assumptions of the model, regarding 

the existence of only two main phenotypic traits (growth and escape from 

predation), might be too simplistic, even in this simple ecological setup. Other 

traits and environmental conditions that we did not consider might play a role. 

These include the structure of the environment, differential variation in the cell 

densities, or the possibility of frequency dependent selection emerging from the 

secreted expolysaccharide potentially becoming a public good. Therefore, it is 

important to note that we cannot exclude the possible occurrence of other forms of 

selection during the evolution experiment. Indeed it is known that even in simple 

abiotic environments adaptive diversification, involving frequency dependent 

selection can repeatedly evolve (Lenski et al. 1991; Maddamsetti et al. 2015). It is 

generally difficult to distinguish this form of selection from simple clonal 

interference. However, if strong negative frequency dependent selection would 

have occurred in our lines, it would have led to the maintenance of distinct 

lineages along the evolutionary process. Such expectation seems inconsistent at 

least with the fixation of the IS insertion upstream of yrfF and the observed fixation 

of the mucoid phenotype in the majority of the lines, but could explain further 

diversification across replicate populations and the complex dynamics observed in 

some of them.  

Whilst our model of clonal interference, can reasonably describe the 

complex dynamics of the evolved phenotypes, we should stress the considerable 

amount of sensitivity in the assumed model. Indeed, a minor change in one of the 
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parameters results in very different haplotype dynamics. The sensitivity of the 

model to slight changes in parameter values is expected under intense clonal 

interference, but it is also suggests that the assumptions to generate the 

competition between the haplotypes might be an oversimplification of the real 

system. Nevertheless, the lack of theoretical approaches that are able to model 

selection under clonal interference and antagonistic interactions requires an initial 

analysis under the most basic scenarios of adaptation, before invoking other forms 

of selection. This is fundamental in order to distinguish cases where clonal 

interference cannot explain certain observations. Here we have shown that such a 

simple model, where distinct haplotypes carrying new transposon insertions and 

other mutations, increase in frequency and compete for fixation, can reasonably 

explain the adaptive dynamics, indicating that clonal interference might be the 

main driver of pathoadaptation in our basic ecological scenario. Nevertheless, 

further experiments in the lab involving competitions between mucoid and 

ancestral phenotypes suggest that frequency-dependent selection may have also 

played a role. Models that consider both forms of selection might therefore be 

necessary to better understand these complex adaptive dynamics. 
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Understanding the dynamics involved in the exploration of adaptive 

spaces, as well as the evolutionary parameters that drive this process, is essential 

not only for understanding adaptation, but also for predicting, preventing and 

reversing diverse pathologies inflicted by microbial infections. The studies 

presented in this thesis, as well as recently published research (e.g., (Strelkowa & 

Lässig 2012; Lang et al. 2013; Maharjan et al. 2015; Maddamsetti et al. 2015; 

Wilson et al. 2016; Barroso-Batista et al. 2014; Comas et al. 2012; Lieberman et 

al. 2014)), establish the influence of clonal interference in adaptation across a 

range of increasingly complex ecological scenarios and organisms. We started by 

developing tools and algorithms for estimating evolutionary parameters from 

experimental evolution studies that use neutral markers to track adaptive events. 

Both our method and ones developed by other groups (Hegreness 2006; Barrick 

et al. 2010; Illingworth & Mustonen 2012) were used to analyze the outcomes of 

evolving Escherichia coli populations. We studied how the genetic background 

affects adaptation, using compensation of single and multiple antibiotic resistant 

bacteria as a model. We also studied adaptation across different environmental 

contexts, including antagonistic interactions with cells of the immune system in an 

attempt to uncover likely paths of acquisition of pathogenic traits. Understanding 

how adaptation proceeds in these clinically relevant cases, using theoretical 

methods to infer important parameters, is paramount to quantify the strength of 

selection for new mutations that might lead to pathoadaptation. 

Determining, from the entire spectrum of new variants, the rate, fraction 

and shape of the distribution of beneficial mutations is quite difficult to do 

experimentally, because many of these will be lost before reaching detectable 

frequencies. However, these evolutionary parameters underlie the adaptive paths 

that microorganisms can follow. It is thus important to understand whether strong 

effect mutations are rare (e.g., if new mutations are exponentially distributed) or if, 

on the other hand, they are the most likely, or the only expected mutations to 

occur. In Chapter II, we showed that the assumption that all mutations have a 

similar fitness effect, while useful in explaining certain adaptive dynamics 
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(Hegreness 2006; Barrick et al. 2010), might mislead the inference of the 

beneficial mutation rate (U) and the mean effect of mutations (E(S)), 

underestimating the former and overestimating the latter. Since there is 

experimental evidence that beneficial mutations have a considerable variation in 

their fitness effects (Kassen & Bataillon 2006), wrongly estimating the selective 

effects can mislead the interpretation of evolutionary outcomes. This is important, 

for instance, in studies addressing the evolvability of a genetic background 

(Barrick et al. 2010; Woods et al. 2011). We proposed a method to infer the 

underlying distribution of effects of arising beneficial mutations, as well as the rate 

at which they arise in an evolving population, by tracking two neutral markers and 

the population fitness over time. With the technological advances and the 

increasing widespread use of dozens or even hundreds of replicate populations in 

experimental evolution studies (Maisnier-Patin et al. 2002; Lenski et al. 2015; Lang 

et al. 2013; Barroso-Batista et al. 2014), methods that use direct measures from 

the adaptive dynamics are needed to extract important quantitative parameters 

from experimental data. The methodology we propose to estimate these 

evolutionary parameters is, like the work of other groups (Hegreness 2006; Barrick 

et al. 2010; Illingworth & Mustonen 2012), simple and relatively inexpensive to 

use, since it uses data routinely acquired during experimental evolution. Across all 

these methods, the difficulty in accurately assessing these parameters is strongly 

dependent on the magnitude of clonal interference (Sniegowski & Gerrish 2010), 

as well as in assumptions of frequency independent effects (Maddamsetti et al. 

2015) and an additive effect of mutations (i.e., that no epistasis occurs, but see 

(Wiser et al. 2013) for an example of an underlying model that assumes epistasis 

to infer the dynamics of fitness increase in the LTEE). Moreover, there is a 

limitation imposed by the use of only two markers, since once one of these 

markers reaches fixation, new mutations cannot be detected. This problem can be 

alleviated by using additional information, such as the fitness of populations, as 

considered in our method, but the information given by the marker dynamics is 

lost. This is especially problematic for stronger effect mutations leading to rapid 

marker fixation. Alternative methods have been proposed in order to tackle the 
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question of determining the distribution of arising beneficial mutations, which 

involve single cell barcoding of the population (Levy et al. 2015). These methods 

allow for an exquisite level of resolution of the generation of diversity within a 

population but are, however, still technologically demanding. A possible tradeoff 

can be reached with experimental systems that use several neutral markers (such 

as microsatellites (Imhof & Schlotterer 2001; Perfeito et al. 2007), although an 

appropriate model for how these mutate is needed, as well as theoretical methods 

that allow the simulation of such data. 

With the power and increasing accessibility of NGS data, the dynamics of 

adaptation are now being studied by following individual mutations and their fate in 

evolving populations. Recent experimental data disclosing these dynamics 

corroborate the idea that beneficial alleles generally do not segregate alone and 

are, instead, associated with further allelic modifications (Lang et al. 2013; 

Maddamsetti et al. 2015; Maharjan et al. 2015). More than simply competing 

against each other, these variants aggregate in cohorts, forming phenotypes that 

hide complex genetic compositions (Maharjan et al. 2015). Recently, these 

dynamics have also been tracked and comparatively studied between sexual and 

asexual Saccharomyces cerevisiae populations, showing the magnitude of linkage 

in segregating mutations across backgrounds (McDonald et al. 2016). In Chapter 

III we use a classical model of adaptation, Fisher’s Geometric Model (FGM), to ask 

if these dynamics are commonly observed during the evolutionary ascent of a 

fitness peak in haploid populations. We observe that the patterns observed 

experimentally, the formation of cohorts and their “interference”, can be 

reproduced under the simplest version of FGM, pointing to the ubiquity of these 

types of adaptive dynamics. Moreover, we were able to define a range of 

parameters where we expect these cohorts to have a higher prevalence. It would 

be interesting to test experimentally the dynamics of individual mutations in 

different environments, or in backgrounds with increased mutation rates, to test 

the predictions of the model. Since FGM can lead to epistasis (Weinreich & Knies 

2013), it would also be compelling to disclose the fraction of cohorts that are 



Chapter VIII 
	  

	  266	  

simply passenger mutations, hitchhiking with beneficial alleles, from those that are 

composed of synergistic beneficial mutations. In principle, this could be tested by 

separately testing the vector change caused by the different mutations in an 

ancestral genotype. It has recently been proposed that, under FGM, epistasis is 

expected to be more prevalent closer to the optimum (Blanquart et al. 2014). 

Therefore, it would be interesting to ask if the fraction of cohorts with synergistic 

mutations is dependent also on the distance to a fitness peak. Moreover, although 

the model we considered assumes that only competitive interactions occur, the 

dynamics and coexistence of different cohorts have been proposed to be also a 

consequence of frequency dependent interactions (Maddamsetti et al. 2015; 

Maharjan 2006). Since both processes can drive these dynamics, it is important to 

develop methods that can account for both processes, and that are able to 

distinguish their relative roles in the dynamics of cohorts of mutations.  

The dynamics of beneficial mutations studied in Chapters II and III show 

that distinct evolutionary parameters lead to very different adaptive dynamics. 

Importantly, different genotypes (due to epistatic interactions) or environments 

(due to specific selective pressures) might entail distinct evolutionary trajectories 

caused, for instance, by different underlying distributions of arising beneficial 

effects. One very relevant scenario, in which it is crucial to disclose these 

fundamental aspects of adaptation, is the acquisition and maintenance of antibiotic 

resistant traits, a prevalent clinical problem (World Health Organization 2014; 

Hughes & Andersson 2015). While stabilization of single resistances through 

compensation has been extensively studied (see, for instance, (Levin et al. 2000; 

Reynolds 2000; Maisnier-Patin et al. 2007; Qi et al. 2016)), compensation of 

multidrug resistances, particularly when there are epistatic interactions between 

the resistance alleles (Hall & MacLean 2011; Trindade et al. 2009; Durão et al. 

2015), has been far less explored. In Chapter IV we described the compensatory 

process in a multi-resistant E. coli, resistant to both rifampicin and streptomycin. 

Our initial hypothesis was that, since the two resistance alleles display strong 

negative synergistic epistasis, the pattern of compensation might be distinct from 
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the ones observed in the single resistance alleles. Indeed, our results show that 

the double resistant background followed an evolutionary path that seems to 

deviate from the ones pursued by the single resistances and, consequently, the 

observations acquired from studies of the latter might not be entirely transferrable 

to cases of multi-resistant strains. Evidence for the compensation of the epistatic 

interaction comes from a particular mutation (rpoCQ1126K) that, while beneficial in a 

RifRStrR background (where it emerged), confers a deleterious effect upon allelic 

reconstruction in the single RifR ancestral background. An alternative explanation 

that is currently being tested is whether this particular allele is beneficial in the StrR 

ancestral background, a result that would be surprising (since rpoC is a traditional 

target for compensation of rifampicin resistance (Brandis et al. 2012; De Vos et al. 

2013; Comas et al. 2012)) but with important clinical implications. However, under 

the assumption that a subset of mutations is compensating specifically the genetic 

interactions between the resistance alleles, other questions arise. For instance, 

what is the fraction of this subset of compensatory mutations? Is it the majority? 

And how would these patterns of compensation look like in bacteria with 

resistance alleles that either a) are non-epistatic or b) display positive epistasis? 

Would an increased overlap of allelic targets be observed between these multi-

resistant strains and their correspondent single resistant backgrounds? Or, on the 

other hand, are we really far from exhausting the compensatory targets for a given 

resistance allele? As in our study, the mutational targets identified in experiments 

involving compensatory adaptation allow further understanding of the mechanisms 

driving epistasis. Testing specific mutations that emerge during the compensatory 

process, and measuring relevant parameters, such as the speed of transcription 

and translation (for the particular resistance mutations we used in our work), could 

elucidate how these two fundamental cellular mechanisms interact. Another 

important question regards the types of compensatory targets that can be 

expected. Many studies so far have focused on genes that are known to be targets 

for compensatory adaptation, such as rpoA, rpoB or rpoC for the case of 

compensation to rifampicin resistance (Brandis & Hughes 2013) or genes coding 

for ribosomal proteins for streptomycin resistance (Maisnier-Patin et al. 2007). 
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However, the availability of NGS allows uncovering in further detail the genomic 

basis of compensation, both in laboratory (Qi et al. 2016) and clinical (Comas et al. 

2012; Zhang et al. 2013; Lieberman et al. 2014) settings. In a recent study, the 

group of Craig MacLean has observed that compensation to rifampicin in P. 

aeruginosa occurs through mutations in the expected RNA polymerase genes 

when the resistance mutations are costly, but when the resistances are of low 

cost, adaptation occurs through mutations in the lasR gene, which is a highly 

pleiotropic regulator (Qi et al. 2016). Studying these alternative targets, and 

whether they have a direct relationship with the cellular mechanism of resistance, 

will further increase our knowledge of compensatory adaptation.  

Whilst many compensatory mutations have been detected to segregate in 

clinical populations, especially for cases of infection by M. tuberculosis (e.g., 

(Comas et al. 2012; Zhang et al. 2013)), translating the studies of compensatory 

adaptation in the laboratory to both clinical and in vivo studies has not been 

straightforward (MacLean & Vogwill 2015). One of the reasons might be the one 

tackled in Chapter IV, but other factors might play an important role. For instance, 

the fitness cost of a resistance in vitro needs not to be the one expressed in vivo 

(Björkman et al. 2000; Martinez & Baquero 2000; Luangtongkum et al. 2012) or be 

similar across different environments (Trindade et al. 2012; Gifford et al. 2016); the 

usage of sub-lethal doses of antibiotics might lead to different resistance 

mechanisms (Andersson & Hughes 2014); or the compensation of resistance 

genes encoded in plasmids or other MGE, which typically have lower fitness costs 

(Vogwill & MacLean 2014), might occur through different processes. In Chapter V, 

we argue that ecology, through the coexistence of several resistance alleles within 

a population, might also play a role. The simple question we asked was whether 

the initial relative fitness cost of the resistances is predictive of its long-term fate. 

Should the more costly resistances be extinct or, on the other hand, can this 

disadvantage be overcome by an increased evolutionary potential to acquire 

compensatory mutations? To answer this question, we performed long-term 

competitions between E. coli subpopulations with different resistance alleles. This 
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is a scenario of standing genetic variation that is uncommonly studied in 

compensatory adaptation, even though it mimics ecological conditions that are 

much closer to a clinical infection (Wilson et al. 2016; Lieberman et al. 2014). The 

surprising outcome, for the 3 different combinations of resistant alleles we studied, 

is that the initial relative fitness cost is a poor predictor of the long-term 

maintenance of these alleles, as the more costly populations rarely got extinct, due 

to their evolvability. It would be interesting to study larger poly-resistant bacterial 

populations, in order to understand if evolvability plays a more outstanding role 

whenever there are more than 2 backgrounds in competition. Because 

compensation in different resistance alleles might occur within the same bacterial 

population, clonal interference will occur between the beneficial variants of either 

background. If their distributions of beneficial mutations are significantly distinct 

(for instance, due to epistasis with the resistance allele), then the outcome of 

clonal interference might bias the selection of beneficial variants from the 

background with a distribution with higher mean selective effect. Such a scenario 

would be unnoticed in the compensation of each of the resistant backgrounds 

alone. Whilst in the cases studied here, the evolutionary potential seems to play a 

major role in the maintenance of resistance, the coexistence of multiple resistant 

strains gives rise to plenty of opportunities for interactions to occur, and therefore 

shaping the composition of clinical infections. This is particularly likely for 

resistances that act through the production of public goods (Lee et al. 2010) and 

infections occurring in highly structured environments, such as cystic fibrosis 

(Lieberman et al. 2014; Winstanley et al. 2016). One interesting observation, that 

seems to point in this direction, is the apparent lack of transitivity in the fitness 

costs of the resistances we tested, where the cost against a sensitive ancestral is 

not transferrable to the competitions between the resistances. Why this lack of 

transitivity is observed (and what is its extent) is something that begs to be 

understood. Nevertheless, our results highlight the importance of measuring 

important evolutionary parameters in populations within contexts analogous to the 

one observed in clinically relevant scenarios (Eldholm et al. 2014), and thus closer 

to the ecological settings experienced by the microorganisms.  
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Ecology and environmental context seem then to be crucial in assessing 

adaptive dynamics in bacteria. An additional way to bridge the gap between real 

world microbial environments and the laboratory is through the study of adaptation 

in environments where biotic interactions are key to get closer to the conditions a 

given microbe is likely to encounter (Meyer & Kassen 2007; Gordo et al. 2014). 

The presence of cells from the innate immune system is one of the most relevant 

contexts for microbial evolution (Wynn et al. 2013; Schmid-Hempel 2008). The 

antagonistic interactions between these immune defenses and bacteria provide a 

strong environmental pressure and adaptation to withstand antimicrobial activity 

leads to severe pathogenic phenotypes (Sokurenko et al. 1999; Bokil et al. 2011; 

Brunke et al. 2014). Moreover, the ability of bacteria to survive in intracellular 

environments is also used as a strategy to avoid exposure to antibiotics, as in the 

case of S. aureus (Garzoni & Kelley 2011). What is, then, the genetic basis that 

leads to these pathogenic traits? In Chapter VI we studied the initial adaptive 

steps that might lead to the transition from commensalism to pathogenicity, by 

evolving E. coli in the intracellular environment of macrophages. Strong effect 

mutations, that increased the survival of evolved bacteria within macrophages 

relative to the ancestral, were acquired very rapidly, but this advantage was, in 

some cases, accompanied by a tradeoff in their absence. Adaptation to this 

environment was driven mostly by mutations in genes that code for two very 

relevant traits in the survival of E. coli in the presence of macrophages, the 

lipopolysaccharide structure and an iron transporter. Interestingly, clonal 

interference did not seem to be particularly prevalent here, and these few strong 

effect mutations dominated the adaptive process, possibly due to the lower 

effective population sizes resulting from the intracellular environment. However, in 

the conditions studied in Chapter VII, clonal interference was paramount in 

generating variation in the frequency of the emergent phenotypes. In the design of 

that study, we let both the bacteria and macrophages co-exist in the same 

environment and allow for mutations that could increase intracellular survival 

and/or extracellular fitness.  The dominant mucoid phenotype only swept to 

fixation in 2 out of 6 replicate populations, while in the others its frequency varied 
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greatly along time. A model postulating clonal interference between haplotypes 

showed that the fast input of genetic mutations could, indeed, drive the dynamics 

observed in the frequencies of the morphologies. It is important to be able to 

distinguish whether clonal interference can explain the observed data, since 

several factors could account for a mode of selection that involves interactions 

between the evolved cells. Both the existence of spatial structure (Xavier & Foster 

2007; Libberton et al. 2015) (through a static environment and the surface 

proportioned by macrophages) and the increased production of public goods (Lee 

et al. 2010)  (colanic acid exopolysaccharides, in our study) could lead to 

frequency-dependent selection and the coexistence of several haplotypes and 

phenotypes (Stein et al. 2013; Maddamsetti et al. 2015; Cordero & Polz 2014). 

Moreover, in both our studies we detected single mutational events that increased 

the pathogenic traits in E. coli. Others studies that follow have observed similar 

patterns, namely in the fungi Candida albicans, where a single SNP can lead to a 

hypervirulent strain that is able to escape phagocytes (Brunke et al. 2014). In a 

clinical context, Lieberman and colleagues have studied the evolution of 

Burkholderia dolosa in cystic fibrosis, both across and within patients (Lieberman 

et al. 2011; 2014), identifying targets of pathoadaptive mutations recurrently 

acquired by this pathogen in vivo. Their results indicate the coexistence of different 

lineages within a single individual, but also genetic records of adaptation that 

include antibiotic resistance across individuals (Lieberman et al. 2014). However, 

the study of Pseudomonas aeruginosa in a similar cystic fibrosis context has 

indicated high levels of genetic convergence (Yang et al. 2011; Marvig et al. 

2014), suggesting different evolutionary paths. These observations, both from our 

studies and others, show that the experimental evolution setup we used might be 

particularly suited to understand these important adaptive dynamics, and may 

contribute to anticipate the likely paths in the transition from commensal to 

pathogenic lifestyles. 

Overall, the research explored in this thesis reinforces something fairly well 

known, but that sometimes is easily dismissed: microbes do not usually adapt in 
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simple environments, uncoupled from diversity and ecology, and, therefore, their 

adaption should also be studied under those more realistic scenarios. 

Experimental evolution has been, and still is, an invaluable tool to evolutionary 

biology, and has been key in recreating adaptive processes in increasingly 

complex ecological scenarios. The results we present and discuss here indicate 

that one of the fundamental characteristics of adaptation, the distribution of effects 

of beneficial mutations, depends on both the genetic background and the 

environmental context. Nonetheless, our studies are still very much abstractions of 

the real environments encountered by microbes, and further work to create 

conditions that are closer to the real world of microorganisms are necessary. In 

parallel, theoretical models used in the estimation of evolutionary parameters also 

need to be improved. Technological advances leading to the streamlining of data 

acquisition allows using further information from experimental studies, such as 

measures of population fitness, as we propose, or even data from whole genome 

sequencing of populations or clones. Simultaneously, using models that are 

considerably more complex, by taking into account epistasis between mutations 

(Hall & MacLean 2011; Wiser et al. 2013) or interactions between co-existing 

haplotypes that go beyond competitions (Maddamsetti et al. 2015; Stein et al. 

2013), will be very useful to simulate data that can be compared with experimental 

observations. 

Ultimately, an integrative approach to study adaptation – including 

experimental evolution, the assessment of genomic data at different time points 

and ecologically complex environments and theoretical approaches – is key to 

understand what is arguably the most essential process in biology. Evolutionary 

biology depends on the harmonious integration of these different approaches and 

the outcomes of these studies can also have a strong clinical and immediate 

application. 
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