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Abstract 

 

Tuberculosis (TB), despite being a completely curable disease, has reemerged due to drug 

resistance and deadly synergism with HIV infection, which limit the success of its management. 

Lung tuberculosis is the main manifestation of TB. Thus, exploring the inhalable route for a local 

delivery of antitubercular drugs seems a promising therapeutic approach. Partially hydrolyzed 

guar gum (PHGG) is a strong candidate as matrix material for antitubercular drug carriers. This 

is mainly due to its affinity for macrophages, the hosts of mycobacteria, which is mediated by 

the binding of sugar units to macrophage surface receptors. In this work, PHGG-based 

microparticle formulations were produced by spray-drying, evaluated for cristallinity pattern (X-

ray diffraction) and ability for drug association, and in vitro drug release profiles were 

determined. The cytotoxicity of microparticles was also evaluated (MTT and LDH release 

assays). Additionally, the therapeutic effect of drug-loaded microparticles was evaluated in vitro 

on macrophage-like cells infected with mycobacteria strains. The results showed that 

microparticles exhibited suitable properties for pulmonary delivery (aerodynamic diameter 

between 1 and 3 μm). A favorable cytotoxic profile was evidenced, as no overt toxicity was 

detected in representative respiratory cell lines (A549 and Calu-3 cells), although a mild toxic 

effect was observed in macrophage-like cells. The in vitro response of infected macrophages to 

drug-loaded PHGG microparticles was considered promising, as only 20% of mycobacteria 

remained viable upon a single treatment with microparticles. This thesis addresses 

macrophages as therapeutic target, unraveling the unique role of polysaccharides on pulmonary 

drug delivery in the ambit of tuberculosis therapy.   

Key words: Guar gum, macrophage targeting, microparticles, spray-drying, tuberculosis 

therapy. 
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Resumo 

 

Tuberculose (TB), apesar de ser uma doença totalmente curável, tem reemergido devido à 

resistência a fármacos e ao sinergismo fatal com o VIH, o que limitou o sucesso de sua gestão. 

Tuberculose pulmonar é a principal manifestação da TB, assim, explorar a rota inalável para 

uma entrega local de fármacos antituberculares parece ser uma abordagem terapêutica 

promissora. Goma guar parcialmente hidrolisada (PHGG) é um forte candidato, como material 

matriz transportadora de fármacos antituberculares. Isto principalmente devido à sua afinidade 

para os macrófagos, os hospedeiros de micobactérias, mediada pela ligação de unidades de 

açúcar aos recetores de superfície de macrófagos. Neste trabalho, as formulações de 

micropartículas baseadas na matriz de PHGG foram produzidas por atomização, os seus 

padrões de cristalinidade (difração de raios-X) foram avaliados, a sua capacidade de 

associação de fármacos e o perfil de libertação in vitro de fármacos foram determinados. A 

citotoxidade das micropartículas foi também avaliada (ensaios de MTT e libertação de LDH). 

Além disso, o efeito terapêutico de micropartículas com fármacos, foi avaliado in vitro em 

células similares a macrófagos infetadas com estirpes micobacterianas. Os resultados 

mostraram que as micropartículas exibiram propriedades adequadas para entrega pulmonar 

(diâmetro aerodinâmico entre 1 e 3 μm). Evidenciaram um perfil citotóxico favorável, na 

ausência de citotoxicidade detectável nas linhas de células respiratórias representativa (A549 e 

Calu-3 células), apesar de um ligeiro efeito tóxico observado em células similares a 

macrófagos. A resposta in vitro de células similares a macrófagos infetadas por micropartículas 

de PHGG com fármacos antituberculares foi considerada promissora, uma vez que a 

viabilidade micobacteriana de 20% foi obtida após um único tratamento com micropartículas. 

Esta tese aborda os macrófagos como alvo terapêutico, desvendar o papel único de 

polissacarídeos na entrega da droga pulmonar no âmbito da terapia da tuberculose. 

Palavras-chave: Atomização, goma guar, micropartículas, terapêutica da tuberculose, 

vetorização para os macrófagos. 
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Chapter I - Introduction 

1.1. Historical perspective and epidemiology of tuberculosis  

 

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). It has 

been reported since the ancient Greco-Roman and Egyptian civilizations, for about 3.000 years 

BC [1,  2]. The disease was initially reported as consumption or phthisis, which means decline. 

Laennec, the inventor of the stethoscope, discovered that tubercles, characteristic lesions found 

in the lungs, were also found in other locations, such as the spine and lymph glands. Therefore, 

he realized that this disease occurred throughout the body. Curiously he died of tuberculosis 

after publishing his research [3]. 

Although MTB had been always present, it was regarded as an unimportant pathogen to man, 

until a tuberculosis epidemic was unleashed in result of urbanization and industrialization 

around the globe [2, 3]. Known as the “great white plague”, TB was the main death cause in 

Europe and in United States of America, in the mid-1700’s and 1800’s [1, 2]. In 1882, Robert 

Koch, a German physician presented his research on the tubercle bacillus, which turned out to 

be crucial in the understanding of the most significant infectious disease of the period. Later on, 

in 1905, his work on tuberculosis earned him a Nobel Prize [3, 4]. 

With the establishment of the World Health Organization (WHO), tuberculosis was recognized 

as a top priority. Therefore, as an effort towards its control, the Bacillus Calmette-Guérin (BCG) 

vaccine and antibiotic drugs were developed. The vaccine is based on the attenuated virulence 

of M.bovis and still remains one of the most used worldwide.  

Another important mark was the discovery of streptomycin by Waksman and Schatz, but the 

antibiotic quickly showed several problems concerning its price, side effects and the developed 

resistance. Cheaper synthetic compounds like aminosalicylic acid and isoniazid (INH) were 

produced, but one major problem remained, as the treatment required the hospitalization for 12 

to 18 months. The evolution of therapy has dictated a reduction in the treatment period to six 

months, making patient compliance less complicated, but still not satisfactory [1, 3]. 

Nowadays, TB remains a major global health burden, continuously spreading and infecting 

millions of people each year [5, 6]. TB is considered the second most deadly infectious disease 

worldwide, after the human immunodeficiency virus (HIV). In 2013 the reports estimated that 

there were 9.0 million new TB cases and 1.5 million TB deaths (0.4 million among HIV positive 

people).  

The greatest number of cases in 2013 occurred in Asia (56%) and Africa (29%), while a smaller 

number of cases occurred in the Eastern Mediterranean Region (8%), European Region (4%) 

and America (3%). One of the greatest problems related with TB disease relies on the co-

infection with HIV. The proportion of co-infection cases revealed to be higher in Africa, with 

more than 50% of the cases occurring in the Southern African Region (Figure 1.1) [7]. 
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Figure 1.1 – Estimated co-infected TB with HIV cases all over the world.  

Reprinted from: WHO, World Heal. Organ., 2014 [7]. 

 
 

The current epidemic is being maintained and sustained in the presence of immunosuppressive 

conditions like diabetes, alcoholism, malnutrition, chronic lung disease and HIV [5, 8]. It is well 

established that the immune system is compromised by HIV infection, which will predispose for 

the development of TB. As result of HIV infection, CD4
+
 T-lymphocytes decrease, leading 

consequently to the acquired immunodeficiency syndrome (AIDS). Therefore, the risk of 

acquiring TB in a compromised individual is 30%. In contrast, a healthy individual has only a 3% 

probability of contracting TB. The infection caused by MTB was reported as being the most 

lethal and opportunist pathogenesis when is found in a synergic co-infection with HIV [4]. 

1.2. Pathogenesis of tuberculosis 
 

TB is a respiratory contagious bacterial infection, occurring when an uninfected person inhales 

an infected droplet which was produced from an individual with active TB [5, 6]. The content of 

this droplet then deposits at the terminal airways or pulmonary alveolus [2, 5, 11, 12]. The 

infecting mycobacteria colonize primarily the lungs (pulmonary TB), but they can disseminate to 

extra-pulmonary areas of the organism, mainly the circulatory and nervous systems [5, 9]. The 

resulting symptoms of pulmonary TB are chronic bloody coughs, night sweats and weight loss. 

Extra-pulmonary TB can manifest as pericarditis, meningitis, or spinal TB [12].  

Once inside the pulmonary alveoli, the bacilli will interact with dendritic cells, alveolar 

macrophages (AMs) and pulmonary epithelial cells. Capable of invading any of these, their 

preference is to be hosted by AMs [13]. AM pathogen recognition receptors recognize 

pathogen-associated molecules pattern, mediating phagocytosis, a normal innate immune 

response [12, 13]. This recognition can be made by surface receptors, namely complement 
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receptors, or through recognition of mannose residues, specifically mannose-capped 

lipoarabinomannan (LAM) through mannose receptors. This route will direct the bacteria to the 

phagosome, leading to its arrest [13]. The infected cells release pro-inflammatory cytokines 

leading to the recruitment of mononuclear cells. After this event, the antigens are presented to 

specific T-lymphocytes which become activated as well. Cytokines IL-12 and IL-18 are secreted 

from infected cells and induce Natural Killer (NK) cell activity; thereby NK cells produce 

Interferon-γ leading to the activation of other macrophages, which results in the production of 

tumor necrosis factor-α [10, 11]. In a posterior phase, macrophages, lymphocytes and 

extracellular matrix proteins surround the infected macrophages in a structure called granuloma 

[12]. Within this structure MTB can be contained, leading to the formation of another structure 

called tubercle, resulting in latent TB infection, characterized by the permanence of the 

pathogen in a dormant state at the arrested site, for indefinite time. However, if the host immune 

system is compromised, the above described response is not adequate and the pathogen will 

systematically multiply, resulting in reactivated TB [11, 12, 14]. The final outcome is thus fully 

dependent on the immunological response given by the affected individual [12, 14]. 

Reports by Yuk and Jo (2014) and Welin (2010) indicate that MTB might be phagocytized by 

AMs and eliminated via apoptosis or autophagy. If the bacteria gets arrested, but not 

eradicated, the disease gets in a latent assymptomatic state. Latent TB infection is developed 

by 90-95% of infected individuals. In the case that MTB surpasses the host immune system, 

replication inside AM occurs followed by dissemination through the lungs, which results in the 

development of active TB (Figure 1.2). A progression of latent TB infection may however occur 

in case of simultaneous HIV infection, prescription with immunosuppressive drugs, or through 

re-infection, for example [12, 15]. The eradication of mycobacteria implies the maturation of the 

phagosome, leading to “classical activation” response of the macrophage, implying calcium 

mobilization, followed by a respiratory burst featuring the formation of free radicals, resulting in 

an acidification of the phagosome and therefore the digestion and destruction of the foreign 

material. In the case of an “alternative activation” the activated macrophages show different 

gene regulation resulting in different expression of cell-surface pathogen recognition receptors, 

production of other cytokines and chemokines. In addition, alternatively-activated macrophages 

produce reduced amount of nitric monoxide. Importantly, this kind of activation is reported to 

support mycobacterial growth rather than inhibition [16]. 
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Figure 1.2 – Schematic diagram of the events occurring on macrophages infected with MTB. In 90-95% of 
the cases the disease stays arrested in the latent form, which is asymptomatic. In 5-10% of cases, MTB 
replicates inside the macrophage and the disease stays active, developing typical symptoms.  

Reprinted from: Yuk and Jo, Clin. Exp. Vaccine Res., 2014 [15]. 

1.3. Mycobacterium spp. 
 

Mycobacteria belong to the Actinomycetales order, and Mycobacteriaceae family. The following 

taxonomy is based on three criteria: resistance to alcohol-acid decolourisation; mycolic acid 

synthesis and percentage of cytosine and guanine [1, 16]. Mycobacterium genus includes the 

M. tuberculosis complex (MTBC), the M. avium complex and other saprophytic mycobacteria 

species [1]. The MTBC includes several related species: M. tuberculosis M. bovis, M. africanum, 
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M. microti, M. pinnipedii, M. caprae and M. cannetti [1, 11]. Kazda [17] classified mycobacteria 

from a pathogenic point of view, into three groups: strictly pathogenic, potentially pathogenic 

and rarely pathogenic or saprophytic. All MTBC members are strictly pathogens, causing 

tuberculosis, and are closely similar from a genetic point of view. For example, the genome of 

MTB shows only <0.05% difference with M. bovis [11, 12]. 

MTB are rod-shaped mycobacteria with a length of 1-4 μm and about 0.5 μm of diameter. They 

are classified as Gram positive, although poorly staining crystal violet. The complex cell wall 

composition gives resistance to decolourisation by acid during staining procedures. For this 

reason they are termed acid fast bacilli [17]. MTB is an intracellular pathogen that survives 

inside the phagosomes of macrophages preventing their maturation to phagolysosomes. It is a 

strict aerobic and replicates very slowly, with a doubling time roughly 24 hours [1, 10, 17]. The 

distinction between fast and slow growing species is determined based on whether a visible 

colony grows in less or more than seven days [1]. 

The knowledge and understanding achieved on survival mechanisms used by mycobacteria 

inside the organism cells might be useful for the elimination of these pathogens. The research 

assays made in this thesis involve two important strains that belong to the Mycobacterium 

genus, M. bovis and M. smegmatis, which characteristics are detailed below. 

1.3.1. Mycobacterium bovis   

 

M. bovis comprises slow-growing mycobacteria that have a doubling time of 18-20 hours. The 

slow growing is mainly related with the complexity of the cell wall and the high nutritional 

demands [18]. M. bovis is the main responsible pathogen in livestock and wild animals, causing 

bovine tuberculosis. This might contaminate humans as well, causing a type of tuberculosis that 

is indistinguishable from the one caused by M. tuberculosis [11, 19]. The contamination of 

humans has been usually mediated by ingestion of non-pasteurized cow’s milk [9]. 

BCG became an attenuated strain of M. bovis and was first administered to humans as a 

vaccine in 1921. It contains posterior deletions with the loss of a 10 Kb region of deletion 1 from 

the DNA, that has the gene ESAT-6, thus resulting in an attenuation of its virulence [1, 11]. BCG 

is the most used vaccine worldwide, presenting advantages, such as low production cost, safety 

and stability, long immunization protection provided by a single dose and possibility of 

administration to newborns [20]. 

1.3.2. Mycobacterium smegmatis 

 

M. smegmatis was isolated for the first time by Alvarez and Travel, in 1885 [20]. This is a fast-

growing strain,  which has a doubling time of 4-6 hours, but besides this different characteristic, 

it shows some similar features with the pathogenic M. tuberculosis [11, 21]. 

M. smegmatis is a saprophytic strain, classified as non-pathogenic [1, 11]. As it lacks the 

pathogenic properties of M. tuberculosis, it is consequently not suitable for virulence studies, but 

is largely used for physiological studies [9].  
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The essential difference between non-pathogenic and pathogenic strains is that during 

phagocytosis, the non-pathogenic strain gets rapidly destroyed by proteases from the resulting 

arrest in phagosomes of infected host; while the expressed antigens are quickly absorbed, 

inducing a strong immune response [20]. Although M. smegmatis is widely considered to be 

non-pathogenic, some data report that it behaves as a pathogen capable of manipulating the 

system [22]. 

1.3.3. Mycobacterial cell wall 

 

The mycobacterial cell wall has unique characteristics and some of its components are 

responsible for the inherent resistance to several drugs. Mycolic acid is responsible for 

conferring resistance to the previously mentioned alcohol-acid decolourisation, as well as to 

chemical agents and antibiotics [17]. Figure 1.3 illustrates the composition of MTB cell wall, 

where long chains of fatty acids defined as mycolic acids are linked to arabinogalactan, which is 

covalently linked to the peptidoglycan, forming the MA-AG-PG complex. This  complex is 

insoluble and considered an important core of the mycobacterial cell wall [4, 22]. PG is 

constituted of alternating units of N-acetyl glucosamine and a N-glycolylated muramic acid [4]. 

Lipoarabinomannan (LAM) and phosphatidylinositol mannoside (PIM), a biosynthetic precursor 

of LAM, are lipoglycans non-covalently attached to the cell wall through their 

glycosylphosphatidylinositol anchors [10, 22].  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 – Representative scheme of M. tuberculosis cell wall structure. The figure shows the major 
components of the cell wall and their distribution. Schematic complex MA-AG-PG, mannose-capped 
glycoproteins, lipomannan and mannoglycoproteins are displayed. 

Reprinted from: J. Kleinnijenhuis et al, Clin. Dev. Immunol, 2011 [24]. 

 

Both phosphatidylinositol derivatives PIM and LAM resemble typical mammalian 

phospahtidylinositol, which generate membrane traffic-regulating species. PIM has an inositol 

ring glycosylated with mannose; its role is to stimulate the fusion between phagosomes and 

early endosomes [25]. LAM acts as a virulence factor of MTB, being responsible for the 

phagosome maturation arrest, inhibiting the increase of cytosolic [Ca
2+

]. This blocks the 

successive steps of phagolysosome maturation and acidification [26], affects T-cell activation, 

http://www.ncbi.nlm.nih.gov/pubmed/21603213
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avoids reactive species of oxygen and reactive nitrogen intermediates to act through 

antimicrobial mechanisms, and inhibits several transduction cascades regulated by protein 

kinase C [4, 10]. In slow-growing pathogenic mycobacteria, such as MTB, these LAMs are 

capped with mannose residues and are denominated as ManLAMs, whereas fast-growing such 

as M. smegmatis, have phosphoinositol-capped LAMs referred as PILAMs [10, 22]. 

These phosphatidylinositols display several immunomodulatory proprieties by interaction with 

several receptors of the immune system. PIMs and ManLAMs are recognized by C-type lectins 

and the macrophage mannose receptors [27]. 

1.4. Diagnosis and treatment of tuberculosis  

 

Diagnostic methods for TB include chest radiography (CRX), sputum smear microscopy, 

tuberculin skin test, interferon-γ release assay, line probe assay and automated nucleic acid 

amplification tests (NAATs), among others [10, 25]. CRX is useful to detect the presence of 

fibrous scarring of the lung parenchyma, and other pulmonary lesions, indicating if tuberculosis 

is already established and/or active. Computed tomography is an additional imaging modality to 

study TB, useful after an inconclusive CRX screening [29]. The nucleic acid amplification tests 

(NAATs) are based on amplifying regions specific to the MTBC.  

All the mentioned detection methods have advantages and inherent limitations; as described in 

Table 1.1. 
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Table 1.1 – Tuberculosis diagnostic methods in use, recently approved by WHO. 

Method Use Advantages Limitations 

Smear 

microscopy 

Rapid tubercle 

bacilli detection 

Moderate 

training, low price 

Low sensitivity 

Chest 

radiography 

Pulmonary TB 

detection 

Indications and 

use not restricted 

to TB 

Low specificity and 

sensitivity, 

trained clinician 

Tuberculin skin 

Test 

Detection of M. 

Tuberculosis 

Extensive clinical 

and published 

experience 

Low sensitivity in 

immunocompromised 

patients, positive for 

vaccinated BCG persons 

γ-Interferon 

release assay 

Detection of M. 

tuberculosis 

infection 

Highly specific 

for M. tuberculosis 

Trained 

personnel, poor 

sensitivity 

Automated 

nucleic acid 

amplification 

tests (NAATs) 

Pulmonary TB 

detection 

High sensitivity, 

detection of 

mutations in MDR-

TB strains 

Moderately trained persons 

and equipment, laborious and 

possible cross-contamination 

Line probe 

assay 

TB detection and 

drug susceptibility 

testing 

Short analysis time Labor intensive, potential for 

cross-contamination, requires 

much training 

Adapted from: Kanwar, Underst. Tuberc. - Glob. Exp. Innov. Approaches to Diagnosis, 2012 [28]. 

The conventional therapeutic approach of tuberculosis is based on oral antibiotherapy. WHO 

recommends an oral co-administration regimen of four first-line antibiotics: isoniazid (INH), 

rifampicin (RIF), ethambutol (EMB) and pyrazinamide (PZA). Monotherapy is not recommended 

for TB. Instead, a correct drug association, in adequate doses during the time prescribed is a 

standard measure to avoid bacterial persistence and resistance to antibiotics  [27, 28]. 

Antibiotherapy is administered by Directly Observed Treatment and Short-course drug therapy 

(DOTS) programs, which ensures compliance on the patience’s behalf through their observation 

[12]. During the initial 2 months the four first-line antibiotics are prescribed, being then reduced 

to RIF (600 mg or 450 mg daily) and INH (300 mg daily) [4] for the following 4 months. A long 

prescription is normally associated with compliance issues, and may lead to serious secondary 

toxic effects provoked by several of these antibiotics. For instance, INH induces hepatotoxicity 

in humans, which is potentiated when co-administrated with RIF, due to a bigger induction of 

CYP450 enzymes, and overproduction of toxic hydrazine metabolite [32]. 

One important factor to be reckoned is the widespread emergence resistance of MTB to the 

most effective anti-TB drugs [12, 30]. Different mechanisms are assumed to result in the 

development of drug resistance, but in the case of MTB the main mechanism is attributed to 
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gene mutations [4]. It is reported that more than 3% of TB patients worldwide are resistant to 

two of the major first-line anti-TB drugs, INH and RIF, condition referred as multidrug resistance 

(MDR-TB). About 9% of MDR-TB cases can also show resistance to second-line anti-TB drugs, 

a condition called extensively drug-resistant TB (XDR-TB). When these conditions are 

observed, the implemented therapeutic protocols differ from the conventional one, requiring 

instead at least five drugs which are less strong, showing higher toxicity and being more 

expensive [3, 30]. 

1.5. Antitubercular drugs  
 

TB can be effectively treated with the use of first-line drugs, INH, RIF and derivatives such as 

rifabutin and rifapentin, PZA, EMB and streptomycin. However, this therapy can fail for several 

reasons. As previously mentioned, the emergence of drug resistant mycobacteria is one crucial 

challenge regarding tuberculosis therapy, demanding the use of second-line antitubercular 

drugs (fluoroquinolones, aminoglycosides, cycloserines and ethionamides/prothionamides) [34]. 

In this thesis two first-line drugs were used, INH and rifabutin. Their main characteristics are 

described below.  

1.5.1. Isoniazid (INH) 
 

INH, which chemically is pyridine-4-caboxylic acid hydrazide (Figure 1.4), is denoted with the 

formula C6H7N3O. It has a molecular weight of 137.14 g/mol and is highly soluble in water (125 

mg/mL) [31]. This antitubercular agent is a hydrophilic pro-drug that is activated by the gene 

katG, encoding the catalase peroxidase enzyme which causes a lethal effect on intracellular 

pathogens. INH is only active against growing tubercle bacilli. Activated INH inhibits the 

synthesis of mycolic acids by inhibition of NADH-dependent enoyl-acyl carrier protein reductase 

encoded by the gene inhA [34]. 

 

 

 

 

 

Figure 1.4 – Chemical structure of isoniazid. 

It has been reported that mutations in the genes katG, inhA and ahpC are related with INH 

resistance. MTB is normally susceptible to INH (MIC 0.02-0.2 μg/mL), however there are 

isolates that might lose their protein katG activity, interrupting the bacteriostatic action onto the 
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bacilli. Ser315Thr is the most common mutation, leading to the inactivation of catalase 

peroxidase enzyme. A high INH resistance has been observed in other mycobacterium strains, 

such as M.smegmatis and M.bovis, with MIC values ranging between 0.2 and 256 μg/mL. This 

high resistance values are mainly explained by katG mutations [32, 33]. InhA mutations are less 

frequent than katG mutations, often resulting in low-level resistance (MIC 0.2-1 μg/mL). If for 

instance, a resistant strain harbors both mutations, this will result in a synergetic outcome and 

higher levels of INH resistance. AhpC gene codes for an alkyl hydroperoxidase reductase, 

implying protection against reactive oxygen and nitrogen intermediates, avoiding the 

antimicrobial action due to the interruption of the defense macrophage mechanism [34]. 

1.5.2. Rifabutin (RFB) 
 

Rifamycins (rifampicin, RFB and rifapentin) belong to the same family, represented by their 

unique molecular architecture composed by aromatic groups linked by aliphatic chains in non-

adjacent positions. Figure 1.5 represents the specific chemical structure of RFB [36].  

 

 

 

 

 

 

 

 

Figure 1.5 – Chemical structure of rifabutin. 

RFB, has the molecular formula of C46H62N4O11, a molecular weight of 847.005 g/mol and is 

poorly soluble in water (0.19 mg/mL) [31, 37]. It is a first-line antitubercular drug particularly 

used in patients co-infected with AIDS, due to its lack of interaction with retroviral drugs [38]. Its 

mechanism of action is based on binding to the β-subunit of RNA polymerase (rpoB), inhibiting 

the transcription activity and leading to the organism death. An important advantage of this drug 

resides in its action on growing and non-growing bacilli, an ability not evidenced by INH, as 

commented before. Most part of MTB isolates resistant to RIF show mutation in the gene rpoB, 

which translates in a conformational change with low affinity to the drug, consequently leading 

to resistance [34]. Although RIF is very frequently used in TB therapy, RFB presents longer half-

life, lower toxicity outcomes, is active at lower doses than RIF and has equal propensity to 

trigger drug resistance [38]. Pharmacokinetic and pharmacodynamic data obtained in a mouse 
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model suggest additional advantages of RFB over RIF, such as minimal induction of CYP3A4/5 

and a fast eradication of MTB infection [31]. The only valid disadvantage regarding the use of 

RFB over RIF is its higher cost [39]. 

RFB’s MIC for MTB susceptible strains is around 0.004 μg/mL, while resistant strains having 

resistance mutations in gene rpoB, show MIC values varying between 0.25 and 16 μg/mL, 

depending on the mutation [40].  

1.6. Pulmonary drug delivery  

 

As mentioned above, the conventional treatment of TB usually involves systemic delivery of 

antitubercular drugs through the oral route. The major disadvantages related with this 

conventional approach are the undesirable side effects and toxicity associated to the 

administered doses. Taking into account that TB is an airborne infection, with a great 

accumulation of mycobacteria in the lung alveoli and, particularly, in the alveolar macrophages, 

pulmonary drug delivery could represent a great alternative to reach effective drug 

concentrations in the alveolar macrophages. With this strategy, lower doses could be 

administered, as the drugs would be co-localized with the infecting agents [38–40]. This would 

possibly reduce dose frequency and the duration of treatment, lowering the systemic toxicity, 

and ultimately improving patient compliance [15, 40]. 

An effective administration of drugs by the pulmonary route requires the application of carriers, 

not only because these will provide protection to the encapsulated molecules, but also due to 

the required characteristics to reach the alveolar region and trigger macrophage uptake. 

Carriers of size between 1 and 2 μm have been reported to have a maximized probability of 

phagocytosis by AM [44] and, within the set of available carriers, microparticles (MPs) are those 

described on most occasions. In MPs, having a low density provides improved dispersibility and 

lowers the aerodynamic diameter, which can help reaching the alveolar zone and emitting 

doses from the inhalers [43, 45]. Particle deposition takes place by inertial impaction, 

sedimentation, and diffusion. Whereas microparticles > 5 μm tend to deposit by impaction in 

extra thoracic zones, particles with size of 1-5 μm deposit deeper in the lungs reaching the 

alveoli by inertial impaction and sedimentation, while very small particles of < 1 μm are driven 

by diffusion, with a high chance to be exhaled [8, 40]. Hence, the aerodynamic diameter of 

microparticles designed with the purpose of carrying drugs, should range from 1 to 5 μm to 

guarantee a maximum deposition in the deep lung [44]. The relation between deposition (%) 

and particle size (μm) is presented in Figure 1.6. 
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Figure 1.6 –Lung particle deposition pattern according to particle size. 

Adapted from:  Patton and Byron, Nature Reviews Drug Discovery, 2007 [46]. 

Although pulmonary drug delivery has been referred very frequently in the ambit of the design of 

therapeutic approaches for systemic diseases, this route is considered the most appropriate 

route for the treatment of pulmonary diseases like asthma and chronic obstructive pulmonary 

disease, and a very promising alternative in the case of lung cancer and tuberculosis [42]. 

1.7. Polymeric microparticles of partially hydrolyzed guar gum 
 

A multitude of materials are known for their ability to encapsulate, entrap or attach to a matrix, 

and there are different types of materials of interest in this area. However, there is a limited 

number of materials certified as “generally recognized as safe” (GRAS) by the FDA and the list 

is even narrower when regarding materials approved for pharmaceutical applications [47]. 

Various synthetic and natural polymers revealed to be useful in the formulation of inhalation 

therapies. Synthetic materials present significant limitations, for instance the generally reported 

low drug association rates and their high cost. In turn, the selection of natural polymeric 

materials as matrix components, such as polysaccharides, is frequently observed in drug 

delivery research. These have been described as the most suitable for this kind of application, 

owing to their structural flexibility, biodegradability, biocompatibility, hydrophilic character and 

availability at relatively low prices [5]. These polymers are mainly composed by sugar residues, 

such as mannose, galactose and fucose. Having these units on their composition offer 

polysaccharides a great ability to directly target macrophages. As said in section 1.2, 

macrophages have several surface receptors, one of them being the mannose receptor. This is 

capable or recognizing units such as those referred above to compose polysaccharides [48]. 

Therefore, polysaccharides bearing these units might mediate macrophage targeting. Natural 

polysaccharides can be obtained essentially from three main sources: plant, marine and 

microbial/animal origin [47]. Because of the above indicated properties of natural polymers, their 

pharmaceutical applications have been growing in number and variety. In a general manner (not 

restricting to pharma applications), natural gums have been the most widely used. In the 
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pharmaceutical field their application is mainly dedicated to tablet production and stabilization of 

processes [44, 45]. 

Guar gum is a natural water soluble, nonionic polysaccharide extracted from the endosperm of 

guar beans of Cyamopsis tetragonolobus, a leguminous plant cultivated essentially in India and 

Pakistan. Chemically, guar gum belongs to the galactomannan family, showing the structure 

that is represented in Figure 1.7 [47, 48]. FDA has approved gum guar for secure human usage, 

being normally utilized as a dietary fiber, thickener in lotions and creams, tablet binder, 

emulsion stabilizer and also as a controlled release polymer, due to its high hydration rate.  

Guar gum is constituted by long chains of α-D-mannopyranosyl units linked together by β-D-(1-

4)-glycosidic linkage. Side groups of α-D-galactopyranose appear linked to the main mannose 

chain, in a ratio of mannose to galactose of approximately 2:1.  The molecular weight of guar 

gum is estimated to be around 200.000 to 300.000 daltons [52]. 

 

 

Figure 1.7 – Chemical structure of guar gum. 

Due to its high molecular weight and ability to incorporate water, guar gum forms very viscous 

solutions that impose various limitations in the processing and application of the molecule. 

There is a commercial variant consisting of partially hydrolyzed guar gum (PHGG), which is 

produced by partial hydrolysis with β-endo-mannanase or pectinase, which presents lower 

molecular weight (with an average of 20.000 daltons) and, consequently, viscosity [53]. The 

whole process of hydrolysis is described on a representative scheme below (Figure 1.8).  

 

Figure 1.8 – Manufacture scheme of PHGG, step by step. 

Adapted from: Yoon et al, J Clin Biochem Nutr, 2008 [52]. 

Microencapsulation might be processed by a variety of physical and chemical methods, 

including extrusion, spray-drying, coacervation and polymerization, among others. The selection 

of a method is strongly dependent on the final application of the microparticles and the required 
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properties of the carriers [50]. Spray-drying is considered a mild technique and is one of the 

most used, particularly regarding applications in inhalation. It permits the control of microparticle 

properties (i.e. size, density and shape) depending on the operating conditions. Additionally, it 

offers rapid processing and is a continuous and one step process, which guarantees simplicity 

and cost effectiveness. The process consists firstly on the entrance of a drying gas (air, 

nitrogen) at the top of the spray-dryer apparatus (Figure 1.9), where it is heated to a previously 

set temperature. The gas interacts with the liquid formulation being simultaneously introduced in 

the nozzle of the equipment, resulting in the formation of a spray. The high temperature induces 

the evaporation of the liquid of each formed droplet, thus only remaining the solid content of 

each of the droplets, which corresponds to the microparticles. These are separated by a 

cyclonic separator and accumulate in the collecting vessel, from which they are collected at the 

end of the process,  using a rubber and/or metallic spatula [50, 51]. 

 

 

Figure 1.9 – Diagram of spray-drying method. Aqueous solution is fed through Büchi B-290 Mini Spray 
Dryer, where the solvent is evaporated, and spray-dried powder (microparticles) is collected at the end of 
the process.  

In some cases, spray-dried formulations include excipients such as mannitol (Figure 1.10), 

lactose or leucine, which are included to modulate the stability, drug release or flowing 

properties of the resulting powders [50]. 

 

 

Figure 1.10 – Chemical structure of excipient mannitol.  
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Chapter II – Aims  

 

2.1. Main aim 
 

 To evaluate PHGG microparticles as carriers of antitubercular drugs for delivery via 

inhalation. 

 

2.2. Partial aims 
 

 To evaluate the crystallinity pattern of PHGG microparticles containing antitubercular 

drugs; 

 To determine drug association efficiency and drug release profiles; 

 To evaluate the cytotoxic behaviour of drug-loaded PHGG microparticles in relevant cell 

lines (A549, Calu-3 and differentiated THP-1 cells) for the objective of pulmonary 

delivery in the ambit of tuberculosis therapy; 

 To determine the minimum inhibitory concentrations of drug-loaded microparticles in 

relevant bacterial strains for the aim of tuberculosis therapy (M. bovis and M. 

smegmatis); 

 To determine in vitro the therapeutic effect provided by drug-loaded PHGG 

microparticles. 
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Chapter III - Materials and Methods 

 

3.1. Microparticle preparation 
 

Microparticles based on partially hydrolyzed guar gum (PHGG, Taiyo Kagaku, Japan) were 

prepared from solutions of the polymer at a concentration of 2% (w/v). A formulation of PHGG 

microparticles containing mannitol (Man, Sigma-Aldrich, Germany) was also prepared. In that 

case, a solution of PHGG at 2% (w/v) was prepared and mannitol dissolved directly in this 

solution to a final concentration of 0.5% (w/v). 

Isoniazid (INH, Sigma-Aldrich, Germany) and rifabutin (RFB, Chemos GmbH, Germany) were 

the antitubercular drugs associated to the microparticles, either individually or in association. 

Microparticles containing INH were prepared using a matrix of PHGG:Man (PHGG at 2% and 

mannitol at 0.5% as described before). All other formulations, either containing rifabutin or the 

association of both drugs, were prepared in a matrix of PHGG only. In summary, 5 formulations 

were prepared, with the denominations described as follows (in parenthesis is indicated the 

mass ratio between materials): PHGG; PHGG:Man (10:2.5); PHGG:Man:INH (10:2.5:1); 

PHGG:RFB (10:1); PHGG:INH:RFB (10:1:1). In all cases, the final volume of the aqueous 

solution prepared for spray-drying was 30 mL. Both drugs required grinding in a mortar prior to 

solubilization in Milli-Q water. In the case of RFB, it was further needed to add HCl to obtain a 

clear solution. Briefly, in the case of INH-loaded microparticles (no RFB present), PHGG was 

solubilized in water at a concentration of 2% (w/v). Mannitol was then solubilized directly into 

this solution to a final concentration of 0.5 % (w/v). In parallel, INH was grinded in a porcelain 

mortar and then solubilized in water. The obtained INH solution was then added to the previous 

solution of PHGG:Man, and left under stiriring (Velp Scientifics, Italy) for 20 minutes. INH was 

added to have a final concentration of 10% with respect to the polymer, thus representing a 

polymer/drug ratio of 10:1 (w/w). For RFB-loaded microparticles, PHGG 2% (w/v) and RFB were 

simultaneously grinded in a glass mortar and then solubilized in Milli-Q water. In order to 

achieve an optimum dispersion in the presence of an hydrophobic drug such as RFB, the 

addition of HCl (Sigma-Aldrich, Germany) proved to be useful, as it protonates the drug. HCl 

was used at the concentration of 0.001 M and a satisfactory dispersion was obtained with 1.4 

mL. The resulting solution was left under stirring for 40 minutes. RFB was added to obtain a 

final concentration of 10% with respect to the polymer, also representing a polymer/drug ratio of 

10:1 (w/w). Finally, in the case of the formulation containing both drugs, PHGG 2% (w/v) and 

RFB were grinded simultaneously in a glass mortar, whereas the same amount of HCl 0.001 M 

was added. Another solution, with INH, was prepared separately as described above. Both 

solutions were mixed under stirring for 40 minutes. The final polymer/drug ratio for 

PHGG:INH:RFB microparticles was 10:1:1 (w/w).  

Dry powder formulations were obtained by spray-drying (Büchi B-290 Mini Spray Dryer, Büchi 

Labortechnik AG, Switzerland), with the equipment operating in an open mode configuration, 
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with compressed air used for the evaporation of the solvent of the aqueous solution. The 

parameters for the spray-drying of PHGG to obtain the MPs with the desired characteristics for 

deep lung delivery were previously optimized by Ana Grenha’s team and are shown in Table 

3.1. 

Table 3.1 – Spray-drying parameters for the production of PHGG-based microparticles (air flow set at 400 

Nl/h). 

Formulation T inlet (º C) Aspirator (%) Feed speed (mL/min) T outlet (º C) 

PHGG 160 ± 1 80 1 90 ± 4 

PHGG:Man 170 ± 1 80 2 98 ± 2 

PHGG:Man:INH 175 ± 1 85 1 104 ± 3 

PHGG:RFB 160 ± 1 80 1.5 91 ± 4 

PHGG:INH:RFB 170 ± 1 75 1.5 96 ± 3 

 

The production of each formulation was repeated in triplicate (n = 3). All dry powders were 

stored in desiccators until further use. The aqueous solutions and the resulting dry powders 

loaded with drugs were protected from light in every step of manipulation and storage. 

3.2. Microparticle characterization 
 

Microparticle surface morphology was characterized by field emission scanning electron 

microscopy (FESEM, Ultra Plus, Zeiss, Germany). Production yield of the process was 

calculated based on the comparison of total solids weight with the resultant powder weight after 

spray drying, through the following equation: 

 

                     
                      

                   
      

(Eq.1) 

Size was assessed manually by optical microscopy (Microscope TR 500, VWR International, 

Belgium) as the Feret’s diameter (estimation of 300 microparticle measurement for each 

replicate). Tap density was obtained by measuring the volume of a known weight of powder 

upon being placed in a 10 mL graduated cylinder after mechanical tapping (30 tap/min) using a 

tap density tester (Densitap, Deyman, Spain). After registration of the initial volume, the tapping 

process continued until constant volume was achieved according to the method description 

made in [44]. Bulk density was determined as the ratio of the mass to the volume of the powder 

samples after inserting the powder in a graduated cylinder. Real density was determined using 

a Helium pycnometer (Accupyc II 1340, Micrometrics, USA). A theoretical estimation of the 
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aerodynamic diameter was calculated using the values of real density and Feret’s diameter, 

through the following formula: 

 

          
     

 
 

 

(Eq.2) 

Where dae represents aerodynamic diameter; dg is the geometric diameter (Feret’s diameter), 

ρreal is the real density and χ represents the shape factor of MP (1 for spherical microparticles; 2 

for irregular microparticles). Carr’s Index is a parameter that measures the microparticles 

flowability. It derives from bulk density and tapped density data and  values lower than 25% 

indicate an optimum flowing pattern, between 20-30% still indicates good powder flow 

properties [56, 57]. The Carr’s index was calculated based on the following formula: 

 

                 
                         

           
      

(Eq.3) 

3.3. Determination of powder cristallinity 
 

The crystalline pattern of the original polymer (PHGG), pure drugs INH and RFB, and spray-

dried microspheres was assessed by Powder X-ray diffraction. All the produced microparticle 

formulations, as referred in section 3.1., were analyzed. A representative replicate of each 

formulation was analyzed with a PANalytical X’Pert Pro diffractometer using CuKα radiation 

filtered by Ni and an X’Celerator detector. The patterns were obtained by reflection mode from 

5º to 70º 2θ, at a step rate of 0.05º and 1500 seconds per step, with the diffractometer operating 

at 45 kV and 35 mA. 

3.4. Drug association efficiency and loading capacity 
 

In order to determine the amount of drug associated to each formulation, the samples were 

dissolved using different protocols. PHGG:RFB microparticles (20 mg) were dissolved in 10 mL 

of HCl 0.1M; PHGG:INH:RFB microparticles (10 mg) were dissolved in 20 mL of HCl 0.1M and 

5 mg of PHGG:Man:INH were solubilized in 20 mL of 0.1M HCl. After dissolution, the solutions 

were filtered (0.45 μm) and retained for further analysis. The drug content was determined by 

spectrophotometry (UV-1700 Pharmaspec, Shimadzu, Japan) at 268.5 nm (INH) and 500 nm 

(RFB), after establishing calibration curves. The association efficiency (AE) was calculated as 

the ratio between the real amount of drug contained in the MPs and the theoretical quantity 

added to prepare the microparticles. The calculation was made using the following equation: 
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(Eq. 4) 

The drug loading capacity (LC) was calculated as the recovered drug mass (real amount) as a 

function of MPs weight:  

       
                         

            
 

(Eq. 5) 

3.5. In vitro drug release profile  
 

The drug release profile of each formulation was determined in a medium representative of the 

lung lining fluid. This medium is composed of Phosphate Buffered Saline (PBS, VWR, USA) pH 

7.4, thus representing the local pH of the lung, added of 1% (v/v) Tween 80 (Merck, USA), 

which represents the lung surfactant. The assays were conducted respecting sink conditions. 

An amount of 15 mg of PHGG:RFB and PHGG:INH:RFB microparticles were incubated in 10 

mL of release medium and placed under stirring (100 rpm) at 37 ºC. At pre-established time 

intervals from 5 to 90 minutes, samples were collected, filtered (0.45 μm) and drugs quantified 

by UV-Vis, as described above. Adequate calibration curves were established. The assays were 

performed in triplicate.  

3.6. Cell Lines 

 

Cell lines representative of the lung epithelia were used. A549 cells (American Type Culture 

Collection – ATCC CCL-185, USA), representative of alveolar epithelium, were used between 

passages 35-45; and Calu-3 cells (ATCC HTB-55, USA), representative of bronchial epithelia 

were used between passages 20-31. THP-1 cells (DSMZ, ACC 16, Germany), a human 

monocytic cell line, were used between passages 12-22. Both A549 and Calu-3 cells were 

cultured in DMEM (Sigma-Aldrich, Germany), supplemented with 10% (v/v) Fetal bovine serum 

(FBS, Gibco, USA), 1% (v/v) non-essential aminoacids (Gibco, UK), 1% (v/v) L-glutamine 200 

mM (Gibco, UK) and 1% (v/v) penicillin/streptomycin (VWR, Germany). THP-1 cell line was 

cultured in RPMI 1640 medium (VWR, Belgium), supplemented with 10% (v/v) FBS, 1% (v/v) L-

glutamine 200mM and 1% (v/v) penicillin/streptomycin.  

All the cultures were maintained in 75 cm
2
 T-flasks, in an incubator at 37 ºC and 5% CO2. In all 

cases the medium was changed each 2-3 days, A549 and THP-1 cells were subcultured every 

week, while, Calu-3 cells were submitted to the process each 15 days. A549 and Calu-3 cells 

are adherent cells and required the use of trypsin/ EDTA (Sigma-Aldrich, Germany) for 

detaching process required for subculturing. 
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THP-1 cells remain in suspension, and were into macrophage-like cells upon a specific 

treatment. This consisted in adding 50 nM phorbol myristate acetate (PMA, Sigma-Aldrich, 

Germany) into the medium during 48 hours, followed by a period of 24 hours incubation in cell 

culture medium without PMA. 

3.7. Evaluation of microparticle cytotoxicity 

 

The cytotoxicity of microparticles was assessed on the cell lines mentioned above. The 

cytotoxic profile was evaluated using two different techniques, the 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT, VWR, USA) assay and the determination of released 

lactate dehydrogenase (LDH). The MTT assay is based on the formation of formazan by the 

reduction of the tetrazolium salts by mitochondrial reductases present on metabolic active cells 

dependent of NAD(P)H, as is shown in Figure 3.1. The amount of formed formazan reflects the 

number of viable cells. Therefore, low cell viability results on a minor spectrophotometric signal.  

 

Figure 3.1 – Basic principle of the MTT assay. Yellow tetrazolium salt is reduced by mitochondrial 
reductases into dark red/purple formazan. 

Adapted from: Liu and Nair, J. Nat. Prod., 2010 [58]. 

All developed formulations were tested at the concentrations of 0.1, 0.5 and 1 mg/mL. Cell 

culture medium (CM) and dodecyl sodium sulphate (SDS, Sigma-Aldrich, Germany) at a 

concentration of 2% (w/v) were tested as positive and negative controls of cell viability, 

respectively. Therefore, the result of CM represents 100% of cell viability. Cells at an 

appropriate density of 0.1 or 0.2 x 10 
6
 for A549 and Calu-3 cells, respectively, were cultured in 

96 well plates and allowed to adhere for 24 hours. After that time, the medium was removed 

and replaced for a DMEM medium without FBS containing the samples (microparticles 

formulations and antitubercular drugs microparticles). Removing the FBS avoids any 

interference of proteins with the solutions and controls. The formulations and controls to be 

tested were incubated with the cells during 3 or 24 hours. After that procedure, MTT (0.5 mg/mL 

in PBS, pH 7.4) was added for an incubation of 2 hours. The formed formazan crystals were 

solubilized with dimethyl sulphoxide (DMSO, VWR Chemicals, France) and the absorbance was 

measured by spectrophotometry (Infinite M200, Tecan, Austria) at 540 nm (background 

correction at 650 nm). For THP-1, the reagent used for the solubilization of formazan crystals 

was SDS 10% and a short period of stirring (30 minutes, 150 rpm, 37 ºC) was required to 
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promote a better dissolution. In that case, 96-well plates were read at 570 nm (background 

correction at 650 nm).  

The following formula was used to determine the cell viability:  

                  
       

      
 

(Eq.6) 

Where Abs stands for absorbance of the test substance, CM is the absorbance upon incubation 

with culture medium, and S the absorbance for negative control SDS 2%. 

The LDH assay is a procedure to measure either the number of cells via total cytoplasmatic 

LDH or membrane integrity as a function of the amount of cytoplasmic LDH released into the 

medium. LDH catalyzes the conversion of lactate to pyruvate, based on the reduction of NAD
+
 

to NADH. Then diaphorase uses NADH to reduce iodonitrotetrazolium (INT) to a red formazan 

product (Figure 3.2). The resulting colored compound is measured spectrophotometrically. The 

greater the loss of integrity, the greater will be the read absorbance (reflecting higher amount of 

released LDH).  

 

Figure 3.2 – Basic metabolic reaction occuring in LDH assay.  

Reprinted from: www.lifetechnologies.com 

The formulations were generally tested at the concentration of 1mg/mL, although those 

containing rifabutin as sole drug and incorporated in formulations, were also tested at the 

concentration of 0.5 mg/mL. The same set of experiments used for the MTT assay (which 

directly used the cells for the assay procedure) was used for the LDH assay, in this case 

analyzing the supernatant of cells upon incubation with samples. A specific kit was used to 

perform the assay (LDH kit, Sigma-Aldrich, USA). CM and a lysis buffer provided in the kit were 

tested for the released LDH as controls, and a non-cytotoxic effect is described for a value until 

100%. The value obtained for CM is considered 100% LDH and assumed as regular/normal 

LDH release.  

Aliquots (100 μL) of cell supernatant samples were removed from the cell plates upon exposure 

to the formulations/drugs. The aliquots were placed into eppendorfs and centrifuged at 16.000 x 

g for 5 minutes. The supernatant obtained upon centrifugation was transferred (50 μL) to a new 

96-well plate and 100 μL of the tampon mix (substrate solution, preparation cofactor and dye 
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solution from the LDH kit) were added. After 20 minutes, the reaction was stopped with 15 μL of 

HCl 1.0M. The absorbance was measured by UV/Vis spectrophotometry, at 490 nm 

(background correction at 690 nm).  

The % of released LDH was determined based on the formula: 

                  
   

   
      

(Eq. 7) 

Where Abs stands for absorbance corresponding to incubation with test samples and CM is that 

resulting from the incubation with culture medium. 

3.8. Bacterial strains and growth conditions  

 

The mycobacterial strains used were the M. smegmatis 4XR2 that was a gift from Professor 

Peter Andrew, Department of Infection, Immunity and Inflammation, at Leicester, UK; and the 

M. bovis BCG DSMZ 43990.  Both strains were cultivated in Middlebrook 7H9 (M7H9) broth 

(Remel, Lenexa, USA) (users recommendation of 4.7 g per liter), supplemented with 10% 

OADC (oleic acid, albumin, dextrose and catalase) (Remel, Lenexa,USA). The addition of 0.5% 

(w/v) of aqueous kanamycin (0.005 mg/mL) (Fisher Scientific, China) and 0.2% (v/v) of glycerol 

(Sigma-Aldrich, Germany) was used for M. smegmatis growth. In fact, M. bovis does not 

degrade carbon sources like glycerol, so the medium for M. bovis was devoid of it [1]. The 

addition of 0.05 % of Tween 
80, allowed a better observation of growth of this strain. 

Mycobacteria were manipulated observing safety rules, inside a laminar flux chamber (Bio48 

Faster, Italy) to prevent infection. All the material in contact with the bacteria was sterilized by 

autoclave (Uniclave88, Portugal). The stocks of bacteria were conserved and stored inside an 

ultra-low temperature freezer -80 ºC (U725 Innova New Brunswick Scientific, USA).  

M. smegmatis 4XR2 was grown at 37 ºC for 2 days in liquid medium (M7H9), then transferred to 

solid medium, M7H9 prepared with bacteriological agar type E (Biokar diagnostics, France) to 

ensure the purity of the colonies for 3 days. Then, it was again transferred to liquid medium to 

proceed with growth assays. The assays were conducted after achieving an optical density 

value (ODnm) of approximately 0.2., at 600 nm. The bacterial strain M. bovis was grown for 21 

days. The assays were conducted after the OD reached approximately 0.2. At this point, a 

live/dead staining was conducted to check the viability of bacteria using the epifluorescence 

microscope (Axio Imager Z2 Fluorescence microscope, Germany). Nucleic acid stains provide a 

quick approach to distinguish live bacteria with intact membranes, stained in green (Syto 9), 

from dead bacteria with compromised membranes, stained in red (Propidium iodide). 
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3.9. Minimal inhibitory concentration (MIC) determination 

 

MIC is defined as the concentration of antimicrobial agent, such as an antibiotic, required to 

inhibit the bacterial growth [59]. Determination of antibiotic MIC plays an important role to 

measure their susceptibility to the drug. The MTT assay was adopted to quantify bacterial cell 

viability, as it is easily detected through colour change [60]. The INH (Sigma-Aldrich, Germany) 

stock solution was prepared at a concentration of 1 mg/mL in a solution of PBS. The RFB 

(Chemos GmbH, Germany) stock solution was prepared at the concentration of 1 mg/mL in a 

solution of DMSO. To guarantee sterility, the solutions were filtered with a disposable 0.22 μm 

sterile filter. When in association, a mixture of the antibiotics was dissolved in a 50:50 

PBS:DMSO solution. Based on the calculations to achieve the desired concentrations, the stock 

solutions were then diluted in complete medium (M7H9). A solution of the higher drug(s) 

concentration was prepared in complete medium and 360 μL introduced directly in the 

designated wells of 96-well flat-bottom microplates (Orange Scientific, Belgium). Two-fold serial 

dilutions were continuously made using a multichannel pipette.  

INH concentrations varied between 32 and 0.5 μg/mL, while RFB concentrations were from 0.8 

to 0.025 μg/mL. M. smegmatis was initially cultured in 7 mL of fresh M7H9 complete medium, in 

triplicate, and adjusted to a McFarland 1.0. Then, the bacteria were centrifuged and transferred 

to 1 mL eppendorfs containing the ressuspended inoculums in complete medium, M7H9. A 20 

μL of this bacterial suspension was introduced into the wells containing 180 μL of drug dilutions 

(completing the final volume of 200 μL per well). Each bacterial triplicate (1, 2 and 3) was added 

in A-B, C-D, and E-F rows, respectively. The bottom lines (H-G) were dilution controls, no 

bacteria was inoculated. Columns 2 and 4 represent negative (culture medium, 200 μL) and 

positive control (bacteria 20 μL + 180 complete medium with no agent), respectively, as shown 

in Figure 3.3. 
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Figure 3.3 –The 96-well plate template in which column 2 had the medium (M) and column 4 the bacteria 
in triplicate, 1, 2 and 3 respectively. The columns 3-12 and rows A-F, contained the various drug dilutions 
with bacteria, and the rows G-H the drug dilutions in absence of the bacteria. The assay was done using 6 
technical replicates (n=6).   

 

The plates were covered, sealed with parafilm and incubated at 37 °C (Binder, USA). After 18 

hours of incubation, 30 μL of MTT sterile solution were added to each well. A 6 hour period of 

incubation was allowed (completing 24 hours), after which 50 μL of DMSO were introduced into 

wells, resulting in a change of colour from yellow to dark gold for growing bacterial cells. Data 

was retrieved from the plate reader at 540 nm. Agar plates with solid media M7H9 were also 

used, in order to examine the recovery of viability. For this drops of 10 μL from the 96 well 

plates were transferred to the agar plates (before adding MTT). MICs were obtained based on 

these two methods. To test the MIC corresponding to MPs, the powders of each formulation 

were weighed into a test tube and sterilized by UV light, for 15 minutes. Then the samples were 

solubilised and the higher concentration was prepared in complete liquid medium M7H9 and 

added to the 96-well plates, based on the same protocol made for drug solutions. The 

established concentrations were on a range of 32 to 0.5 μg/mL (MPs with only INH), 0.8 to 

0.025 μg/mL (MPs with only RFB), and 2 to 0.125 μg/mL (MPs with the association of drugs).  

The same process was carried out for M. bovis, but the outside lane (a frame-like) was all filled 

with fresh medium (or sterile water), thus avoiding the evaporation of liquid from the wells. The 

inside wells were used to proceed with the MIC determination. The established higher 

concentrations of individual drugs, drug association and MPs were established at 1 μg/mL and 
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diluted two-fold. After 7 days of incubation, MTT was added and 24 hours of incubation were 

allowed before adding DMSO in order to retrieve a reliable result.  

3.10. Infection procedure 
 

THP-1 human derived macrophage-like cells were cultivated in RPMI 1640 complete medium 

and incubated at 37 ºC in 5% of CO2, starting with a cellular density of 0.2x10
6
 cells/mL [60]. 

THP-1 cells were differentiated into macrophages with a treatment of 48 hours with 50 nM of 

PMA and left for an additional 24 hours in absence of PMA allowing the cell line to recover [61]. 

The resulting adherent host cells were counted for the 24 well plates (Orange Scientifics), 

where a procedure of 4 and 24 hours of infection took place. The cell medium was replaced with 

the bacterial growth medium.  

In the case of M. smegmatis that forms clumps, a brief sonication of 5-10 minutes 

disaggregates them.  An OD of 0.1 at 600 nm from the suspension corresponds to 1 x 10 
7 

bacteria per mL [62]. Based on this fact an estimated a multiplicity of infection (MOI) of 10 was 

achieved, obtaining the desired volume of bacteria to add into each well (approximately 100 μL 

in each well) [61, 62]. The cells were left in contact with the bacteria for  3 hours inside an 

appropriate  incubator (Sanyo CO2 incubator MCO-18AIC, Japan) [56, 57]. The culture medium 

was removed and the infected cells were washed three times with sterile PBS 1x, in order to 

remove the bacteria that were not captured by macrophages. The antibiotics and MPs were 

dissolved in bacterial medium at the MIC value previously determined for the formulation with 

both drugs. The solutions were added into the defined wells. The associated drugs and loaded 

MPs with INH and RFB were in contact with the infected macrophages, for 4 and 24 hours. The 

24-well plates were divided into three groups, as presented in Figure 3.4.  

 

 

 

 

 

 

 

Figure 3.4 – Scheme of the 24-well plate. Column 1: infected cells with M. smegmatis triplicates (1, 2 and 

3); Columns 2 and 3: infected cells with associated drugs (INH and RFB), MIC =1 μg/mL. Columns 4, 5 

and 6: infected cells with MPs loaded with both drugs, same MIC.  
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The lysis agent Triton X-100 (Ameresco, USA) was added (1 mL, 1:100) to each well after 

washing with PBS again, in order to lyse the cells but not the bacteria. The plate rested during 

15 minutes, at room temperature. The suspension was mixed several times using an automatic 

pipette, 20 μL were taken from the suspension and added to 180 μL M7H9 on 96-well plates. 

Serial dilutions were made, passing 20 μL of the content. The dilutions ranged 10
-1 

– 10 
-6

.  

Drops of 10 μL were inoculated into agar plates and incubated at 37 ºC in a CO2 incubator to 

allow the mycobacteria growth under these conditions, in order to observe the free drug effect 

and MPs effect against the mycobacteria. MTT procedure was performed on the 96-well plates, 

as described above, to determine bacterial viability. For counting the bacterial cells 10 μL of 

each dilution were inoculated into agar plates and incubated at 37 ºC. After 24-48 hours the 

colonies became visible and were counted with the help of a magnifier [62]. 

3.11. Statistical analysis 
 

The t-test and the one-way analysis of variance (ANOVA) with the pairwise multiple comparison 

procedures (Student–Newman–Keuls method) were performed to compare two or multiple 

groups, respectively. The analysis was made using the SigmaStat statistical program (Version 

1, Jandel Scientific, USA) and differences were considered to be significant at a level of p < 

0.05.  
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Chapter IV – Results and Discussion 

 

4.1. Microparticle preparation and characterization 
 

As stated in the methodology, several formulations of microparticles based on PHGG were 

produced aiming at an application as inhalable treatment of lung tuberculosis. The literature 

only refers the use of guar gum in pharma applications regarding the formulation of oral 

systems [50–52]. However, the majority of gum guar related works are devised to food 

applications. In this work, two model antitubercular drugs were associated (INH and RFB) with 

microparticles, which were produced with the required characteristics to enable inhalation. In 

this regard, considering that MTB is hosted by alveolar macrophages, the designed 

microparticles need to reach the alveolar zone, which requires good flowing properties.  

The formulation comprising only PHGG was the only one not enabling adequate optimization, 

as the formation of large agglomerates could not be prevented by the combined modification of 

the parameters of the spray-dryer. In that case, poor flowing properties were macroscopically 

observed for the resultant dry powder, which was in line with the calculated Carr’s index, 

displayed in Table 4.1 (32 ± 6%). All other formulations had been previously optimized by Ana 

Grenha’s team, and were reproduced with success during this work. It was verified 

macroscopically that the presence of RFB improved the flowability of the dry powders (the 

Carr’s index of PHGG:RFB microparticles was the lowest, 26 ± 7%, while that of 

PHGG:INH:RFB microparticles was 31 ± 4%). Therefore, formulations containing this antibiotic 

could be developed comprising PHGG by itself as matrix material. On the contrary, as INH was 

not observed to induce the same effect on flowability, the formulation containing only INH 

(PHGG:Man:INH) had to be added of mannitol to achieve the desired flowing properties. 

Although the flowing ability of this formulation was satisfactory macroscopically, the relatively 

high Carr’s index value was 30 ± 5%. The inclusion of mannitol in order to improve flowing 

properties was previously reported in the literature and was also demonstrated in previous 

works of the group [50].  It is important to mention that, in spite of the obtained Carr’s index 

values above the recommended 25%, the flowability of the optimized microparticle formulations 

was considered reasonably good [56].  

Microparticle morphology was verified by FESEM and the respective microphotographs are 

depicted in Figure 4.1. 
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Figure 4.1 – FESEM microphotographs of different formulations of microparticles. A) PHGG, B) 
PHGG:Man, C) PHGG:Man:INH, D) PHGG:RFB, E) PHGG:INH:RFB.  

In this figure, two kinds of morphology are perceptible. PHGG:Man MPs, displays a more 

spherical and smooth surface, while all the other formulations show various surface 

irregularities. PHGG MPs show a convoluted and irregular shape, which becomes more 

spherical when mannitol is added. This phenomenon is reported in other works where mannitol 

also produces spherical particles [65]. The surface of microparticles obtained by spray-drying 

pure INH has been reported to usually show corrugations [11]. However, PHGG MPs combining 

both INH and mannitol produced in this work, the surface has only a slight corrugated effect and 

the particles are almost spherical. Pure RFB also shows an irregular shape upon spray-drying, 

with rough surface [66]. The interaction of RFB with PHGG matrix in spray-drying was still 

resulting in microparticles with corrugated surface, as shown in this work. PHGG:INH:RFB 

microparticles show an even more corrugated morphology. This was expected based on the 

reports of irregular morphology for both antitubercular drugs upon spray-drying and because, in 

this formulation, mannitol is not present and it was seen to be the excipient improving the 

regularity of microparticles. Microparticles with a different matrix composition (polylactic acid), 

curiously described the same irregular surface when in presence of both associated drugs [31]. 

A corrugated morphology associated with low tap density (0.1 g/cm
3
) is reported to positively 
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affect powder dispersibility by minimizing the contact areas, and also to lower the aerodynamic 

diameter, which is essential for an efficient pulmonary drug delivery [45]. 

The yield of the spray-drying process was calculated at the end of each process, reaching 

values considered very reasonable and in certain cases inclusive very good (68% - 85%). In 

fact, it is not very frequent to see in the literature such yield values, which is very relevant, 

because it means a low loss of materials and indicates the effectiveness of the technique. One 

of the reasons most likely contributing to this yield values was the use of the high performance 

cyclone, instead of the conventional cyclonic separator. This cyclone was already reported to 

improve the production yields [67]. 

Given the application in inhalation, the prepared formulations were characterized by their 

aerodynamic properties, which include the determination of the Feret’s diameter, tap and real 

densities, and aerodynamic diameter. The obtained results are shown in Table 4.1. 

Table 4.1 – Aerodynamic characteristics of dry powders (Feret’s diameter, bulk, tap and real densities, 

theoretical aerodynamic diameter and Carr’s index). (Mean ± Standard deviation, n = 3). 

Formulations 
Feret’s 

diameter 
(μm) 

Bulk 
density 
(g/cm

3
) 

Tap 
density 
(g/cm

3
) 

Real 
density 
(g/cm

3
) 

Aerodynamic 
diameter 

(μm) 

Carr’s 
Index (%) 

PHGG 1.60 ± 0.77 0.33 ± 0.04 0.50 ± 0.04 1.56 ± 0.08 1.41 ± 0.17* 32 ± 6 

PHGG:Man 1.80 ± 0.99 0.32 ± 0.04 0.48 ± 0.02 1.54 ± 0.01 2.23 ± 0.04
#
 29 ± 7 

PHGG:Man:INH 1.54 ± 0.82 0.32 ± 0.06 0.43 ± 0.06 1.52 ± 0.03 1.34 ± 0.03* 30 ± 5 

PHGG:RFB 1.63 ± 0.82 0.26 ± 0.04 0.39 ± 0.01 1.51 ± 0.07 1.43 ± 0.05* 26 ± 7 

PHGG:INH:RFB 1.75 ± 0.87 0.26 ± 0.01 0.37 ± 0.05 1.51 ± 0.06 1.52 ± 0.02* 31 ± 4 

#
Shape factor 1 used in calculation; 

*
Shape factor 2 used in calculation. 

The characterized properties were not very different among formulations. The Feret’s diameter 

varied between 1.54 and 1.80 μm, while real densities were around 1.5 g/cm
3
 in all cases. 

Similar real density values are frequently reported for spray-dried powders [44]. Regarding the 

size, a small particle size is reported to confer a higher surface area to volume ratio, which for 

instance permits higher encapsulation of drugs, but also usually results in rapid release of drugs 

[68]. Bulk densities were around 0.3 g/cm
3
 and tap densities increased a little bit in comparison 

with the former, which is expected because of the method used for the determinations. Density 

is the inverse of porosity. Therefore, as bulk density is the measurement of the volume of a 

known amount of powder that was not submitted to a compression force, many hollow spaces 

are present and there is an inefficient packing. When the tapping is performed the powder gets 

compacted, and the hollow spaces are filled with efficacy, thus justifying the increase of tap 

density when compared with bulk density.  The conjugation of real density and Feret’s diameter 

enabled the calculation of the theoretical aerodynamic diameter. For this calculation, the shape 
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factor was χ = 1 for PHGG:Man microparticles which exhibit a spherical shape, while a shape 

factor of χ  =  2 was considered for the rest of microparticle formulations, having irregular 

shapes. These factors were assigned according to the shapes observed in FESEM 

microphotographs and are noted in each case in Table 4.1. The fact that the shape factor 

assumes different values (1 or 2), which are then applied in the equation referred in section 3.2 

to calculate aerodynamic diameter, results in that the microparticles showing a lower 

aerodynamic diameter are those attributed a shape factor of 2. Aerodynamic diameters varied 

between 1.3 and 2.2 μm in all cases, suggesting that all microparticle formulations have 

adequate proprieties for lung delivery, at least from a theoretical point of view. Moreover, 

considering that reaching the alveolar zone requires aerodynamic diameters between 1 and 3 

μm [44, 66], the designed drug-loaded formulations are apparently adequate for the strategy of 

inhalable tuberculosis therapy. Also important is the fact that macrophage capture is maximized 

for 1 – 2 μm particles [44], which is absolutely coincident with the characteristics of the 

developed formulations. 

4.2. Microparticle X-ray diffraction evaluation 

 

The diffraction of X-rays consists in the scattering of a beam of X-rays, producing a diffraction 

pattern. XRD technique is useful to determine whether a compound is stable or unstable, based 

on a resulting crystalline or a more amorphous structure. A crystalline drug structure has a 

specific signature for physical and chemical proprieties which influences its solubility, and 

release profile for example [70].  

The diffraction patterns of mannitol (commercially provided) and spray-dried (SD) mannitol are 

depicted in Figure 4.2. 
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Figure 4.2 – X-ray diffraction patterns of mannitol in pure state and spray-dried (SD) mannitol. 

Mannitol (blue) adopts the form of polymorph β [71]. The XRD pattern of mannitol after the 

spray-drying process (red) shows a significant decrease of the intensity. A very interesting 

report made by Hulse et al (2009) also shows a decrease of mannitol crystallinity [72]. The 

authors suggest that a difference between intensities of the same substance (for the same 

amount irradiated) may result from a difference in the size of the crystals or some loss of 

ordering might be due to the appearance of crystalline defects, residual humidity incorporated in 

the microparticles or maybe a long storage may also affect the stability. In the case of the 

present work it is reasonable to accept that the spray-drying process may give rise to smaller 

crystals of mannitol and broader peaks when compared with the parent material. A plausible 

explanation for a lower observable intensity relies on rapid crystallization or even dehydration by 

spray-dying. It should be noted that the same polymorph is observed before and after the spray-

drying process [72]. 

The diffraction patterns of PHGG (commercial) polymer and PHGG spray-dried are represented 

in Figure 4.3. 
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Figure 4.3 – X-ray diffraction patterns of PHGG polymer and spray-dried (SD) PHGG. 

The PHGG polymer XRD pattern (orange), displays some broad peaks with low intensity, which 

indicates some degree of crystallinity. These peaks completely vanish in the pattern of PHGG 

microparticles (blue). This behavior indicates that the spray-drying process promotes a less 

ordered arrangement of the polymer chains removing the crystalline domains present in the 

parent material. 

The diffraction patterns of Man SD and PHGG:Man microparticles are represented in Figure 4.4. 
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Figure 4.4 – X-ray diffraction patterns of spray-dried (SD) mannitol and PHGG:Man.  

The pattern of PHGG:Man (green) exhibits peaks of rather low intensity due to the dilution effect 

of mannitol onto the polymer matrix. Although the polymorph β could still be identified, the peak 

at the lowest angle is characteristic of the polymorph γ of mannitol [71]. Comparing the relative 

intensities of the two polymorphs [65], one can assume that the majority of mannitol present is 

indeed in the form of polymorph γ. The phenomenon of polymorphism is known as the ability of 

a compound to crystallize in more than one distinct crystal structure [70]. In this case, different 

polymorphs will lead to different interaction forces between the polymer and the excipient. 

The crystalline structures of each of the formulations containing microparticles related with INH 

and spray-dried pure INH on its own, were analyzed during XRD, as shown at Figure 4.5.  
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Figure 4.5 – X-ray diffraction patterns of isoniazid (INH) in pure state and spray-dried (SD), PHGG spray-
dried (SD), PHGG:Man and PHGG:Man:INH microparticles. 

Analyzing the diffraction pattern of INH (black) on its saline form, there is a presence of sharp 

and intense peaks. After being submitted to spray drying, INH adopts a pattern with less 

intensity, as observed in the case of mannitol. The same result  was reported by Rojanarat et al 

(2011) [65]. PHGG:Man (green) and PHGG:Man:INH (purple) at a 10:1 polymer/drug ratio, 

exhibit the same baseline of PHGG SD and some characteristic peaks of mannitol polymorphs β 

and γ, as previously mentioned. The peaks of INH do not transpose into the microparticles, the 

pattern that prevails is from mannitol polymorphs β and γ. The data obtained for the 

microparticles do not show the presence crystals of INH in number and/or size to be detected 

by XRD, which implies that the crystallization process under spray-drying conditions is rather 

complex and understanding in which ways to maintain its reactional stability requires further 

experimental efforts.  

The crystalline structures of each of the formulations containing microparticles related with RFB 

and spray-dried pure RFB on its own, were also analyzed during XRD, as shown at Figure 4.6. 

0 35 70 

Angle (2Ɵ) 

INH INH SD PHGG SD PHGG:Man PHGG:Man:INH 



 

35 
 

 

Figure 4.6 – X-ray diffraction patterns of rifabutin (RFB) in pure state and spray-dried (SD), PHGG spray-
dried (SD), PHGG:RFB and PHGG:INH:RFB microparticles. 

After the spray-drying process, the pattern of RFB does not show any peak of significant 

intensity. However, the data on the related formulations of PHGG:RFB and PHGG:INH:RFB 

reveal that, some peaks derived from RFB in pure state, at lowest angles, more conserved. This 

might be connected to the usage of less concentrated HCl, which did not affect drastically the 

structure, maintaining some of the drug properties. The results from other data shows a similar 

profile for RFB drug in pure state [66]. Some compounds could be present in a non-crystalline 

state, although the existence of small crystals that were not detected by this technique cannot 

be discarded. The suggestive amorphous pattern displayed at the diffractogram for 

microparticles loaded with RFB, suggests a possible instability of the compounds, which might 

be translated in different chemical and physical properties. However, PHGG:INH:RFB seems to 

maintain a more crystalline form than PHGG:RFB, so comparatively the association of both 

drugs provides more reactional stability. 

4.3. Drug association efficiency and loading capacity 

 

Drug association efficiency and drug loading capacity greatly depend on the solid-state drug 

solubility in the matrix material, which is related with the polymer composition, the molecular 
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weight, and the drug-polymer interactions based on the end functional groups [73] (hydroxyl 

groups in the case of PHGG). Despite important aqueous solubility differences of INH and RFB 

(125 mg/mL and 0.19 mg/mL, respectively), the association of both drugs to PHGG 

microparticles was possible. The values of association efficiency and loading capacity are 

displayed in Table 4.2. 

Table 4.2 – Drug association efficiency (AE) and microparticle loading capacity (LC) of PHGG-based 

microparticles (Mean ± Standard deviation, n = 3). 

Formulation AE (%) LC (%) 

PHGG:Man:INH 63.3 ± 1.5 6.33 ± 0.15 

PHGG:RFB 67.8 ± 1.1 6.78 ± 0.11 

PHGG:INH:RFB 
65.0 ± 3.3 (INH) 
57.2 ± 7.9 (RFB) 

6.06 ± 0.4 (INH) 
5.72 ± 1.2 (RFB) 

 

A previous test confirmed that the polysaccharide did not interfere with drug signals at the 

established wavelengths. The association efficiency of drugs varied roughly between 50% and 

70% and was considered to occur with approximate effectiveness both when the drugs were 

associated individually or in combination, with a small difference observed for RFB. In fact, 

when comparing microparticles with each of the drugs individually with the formulations of drug 

combination, it is observed that the association of INH did not vary significantly, but the 

association of RFB decreased (P < 0.05) approximately 10% (comparison of mean values). The 

literature does not provide data on spray-dried guar gum based microparticles associated with 

INH or RFB. However, for chitosan for instance, which is the most common polysaccharide 

being used in drug delivery, association efficiencies around 80% are usually reported [44, 72]. 

In the Grenha’s lab other formulations of polysaccharide-based microparticles are under 

development, using other polymers (carrageenan, locust bean gum, glucomannan) but the 

same antitubercular drugs. The observed results are variable regarding the ability to associate 

the drugs. Locust bean gum microparticles, for example, associate RFB (alone) with 100% 

efficiency [76], but in the case of carrageenan microparticles associating both drugs, the results 

were much more similar (74% for INH and 57% for RFB) [77] with those reported in this thesis. 

In a general manner, although with some exceptions, it was verified that PHGG formulations 

associated INH with efficiency approximately similar to other formulations developed by the 

team having a different polysaccharide composition. In turn, that was not the case for RFB, as 

lower association efficiency was generally observed in this work. The explanation for that effect 

is possibly related with the used amount of HCl. All formulations having RFB require the use of 

HCl for solubilization of the antibiotic, although different concentrations of HCl might be used in 

different works (that is, for different polysaccharides). PHGG microparticles were prepared using 

HCl 0.001M, but other formulations used higher concentrations (up to 0.1M). A lower 

concentration of HCl does not allow as much protonation of rifabutin and perhaps in that way 
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weaker interactions were established with the polymer, thus resulting in lower association of the 

drug.  

Regarding the loading capacity, it ranged within 6-7%, which is in line with some reports on the 

literature for inhalable antibiotics that affirm that the drug is often less than 10% loading, with an 

average of about 5% [74]. It is important to mention that establishing comparisons with results 

available on the literature was quite a difficult task due to a wide variation of polymer/drug 

ratios, which results in a disparity of values. 

4.4. In vitro drug release profile  
 

The drug release profile is an important parameter to characterize in the development of a drug 

delivery system. The drug release rate is reported to depend on the solubility of the free drug, 

its desorption from the surface, drug diffusion on the microparticle matrix, microparticle matrix 

degradation, and combination of degradation/diffusion processes [73]. Maintaining sink 

conditions requires keeping the drug concentration in the release medium low enough not to 

affect the concentration gradient for drug release. This could be a challenge if the drug is 

hydrophobic, so it is recommended that the drug concentration must be kept below 30% of 

saturation to maintain sink conditions [78]. Figure 4.7 depicts the release profile of RFB from 

PHGG:RFB microparticles and Figure 4.8 that of both INH and RFB from PHGG:INH:RFB 

microparticles in a medium composed by PBS pH 7.4 and Tween 
80. This medium was used in 

order to mimic the lung environment that microparticles are expected to find after inhalation and 

reaching of alveolar zone. PBS has a pH resembling that of lung lining fluid, which is reported to 

be around 7 [79]. Additionally, the alveolar zone counts with the presence of lung surfactant, 

which is composed of 80% phospholipids [80]. Tween 80 was added to resemble this content 

of tensioactive substances. In parallel, its presence is beneficial for the solubilization of the 

hydrophobic RFB, thus enabling the performance of the release assays in proper conditions. 

In both tested formulations, the release of RFB was in general quite fast, as approximately 80% 

- 90% of the drug is released in 15 minutes. However, during the first 15 minutes the release is 

progressive, an effect that is not observed for INH. For the latter drug, 75% of drug is already 

quantified after 5 minutes. 
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Figure 4.7 – RFB release profile from PHGG:RFB microparticles in PBS/Tween, at 37 ºC (Mean ± 
Standard  deviation, n = 3).  

 

 

Figure 4.8 – INH and RFB release profile from PHGG:INH:RFB microparticles in PBS/Tween, at 37 ºC 
(Mean ± Standard deviation, n = 3).  

The rate of RFB release is thus a little slower than that of INH, which is probably related with the 

higher aqueous solubility of INH. In both formulations, the maximum release of RFB was 

achieved at approximately 30 minutes, while that of INH was registered around 15 minutes. 

The release from the formulation PHGG:Man:INH was not determined in this thesis, because it 

was characterized in a previous work of the group. Although in that case the referred assay was 

performed using only PBS pH 7.4 as release medium, no Tween being included, the release 

was also very rapid (100% in 20 minutes, data not shown). In fact, owing to the high solubility of 

INH, the presence of Tween is not expected to have a significant effect on the release rate. As 

a whole, the reason for the rapid release of the drugs is mainly attributed to the fact that the 

medium is hydrophilic and the matrix of the microparticles is highly soluble, due to its exposed 

hydroxyl groups.  
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4.5. Evaluation of microparticle cytotoxicity 

 

Evaluating the cytotoxic profile of drug formulations is a relevant parameter in the development 

of any therapeutic strategy. Several tests can be performed to do this evaluation and in this 

thesis two different assays were selected, which focus cell metabolic activity (MTT assay) and 

cell membrane integrity (LDH release assay) [81]. The MTT assay is often used, although it has 

the limitation of not permitting a clear differentiation between cell cycle inhibition and cellular 

death. The LDH release assay is often applied complementarily and involves the quantification 

of a cytoplasmic enzyme which only releases to cell culture medium if cell membrane is 

damaged [82]. 

The assays were conducted on three cells lines. Two are respiratory carcinoma cell lines 

representative of the bronchial and alveolar epithelia, Calu-3 and A549 cells, respectively. 

These are very similar from a physiological point of view, although A549 cells do not form 

confluent and tight monolayers. In particular, Calu-3 cells present high similarity to in vivo 

physiology [83]. Regarding the purpose of this thesis, the A549 cells will be those providing 

perhaps the most relevant information on cytotoxicity, as the formulations are designed and 

expected to reach the alveolar zone in high amounts. However, Calu-3 cells are also relevant, 

because it is known that there is always a certain amount of dry powder depositing in the 

bronchial area. The third cell line consists of THP-1 cells differentiated to macrophage-like cells, 

which were used to provide indications on the cytotoxicity of formulations towards alveolar 

macrophages, which are the targets of the developed therapeutics.  

4.5.1. MTT assay 

 

Figure 4.9 represents the cell viability obtained for INH and RFB at different concentrations, at 

the end of 3 and 24 hours exposure to A549 cells. Extending the assays until 24 hours is a 

relevant issue, because it represents the clearance time of foreign substances from the lung 

[84]. 
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Figure 4.9 – Cell viability of A549 cells, after 3 and 24 hours of incubation with antitubercular drugs INH 
and RFB (Mean ± SEM, n = 3). Dotted line indicates 70%. 

Drug concentrations ranged between 0.01 and 0.1 mg/mL, approximately corresponding to the 

amounts present in drug-loaded microparticles. Considering that drugs were associated to 

microparticles at a polymer/drug mass ratio of 10:1, the amount of drug is approximately 10% 

that of the total mass. As the formulations were tested at the concentrations of 0.1, 0.5 and 1 

mg/mL, drug concentrations representing 10% of that were those selected to be assessed 

(0.01, 0.05 and 0.1 mg/mL). Results from the figure indicate an absence of toxic effect for a 

contact time of 3 hours, as cell viability remains above 70% in all tested conditions and that is 

the value established by ISO 10993 below which toxic effects are considered to occur [85]. 

Regarding INH, it induces cell viability between 80% and 100% in all occasions, either at 3 or 24 

hours. The scenario changes upon exposure to RFB, which has a clear concentration- and 

time-dependent behavior. While at 3 hours no significant cytotoxicity is observed, upon 24 hours 

exposure a cytotoxic effect appears (p < 0.05). For that exposure time, the concentration of 0.05 

mg/mL already results in cell viability a little below 70%, and the value decreases to 44% for 0.1 

mg/mL of RFB (p < 0.05). This indicates that cell metabolism is highly inhibited in the presence 

of higher concentrations of this drug. Figure 4.10 also depicts cell viability obtained upon 

exposure to INH and RFB, but in Calu-3 cells. 
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Figure 4.10 – Cell viability of Calu-3 cells, after 3 and 24 hours of incubation with INH and RFB (Mean ± 
SEM, n = 3). Dotted line indicates 70%. 

Although with some variations, the comparison of these results with those obtained on A549 

cells reveals the same trend. In fact, at 3 hours no cytotoxic effect is observed (cell viability 

above 70% in all cases), INH does not decrease cell viability to significant levels even upon 24 

hours incubation and, finally, RFB induces both a time- and concentration-dependent effect (p < 

0.05). Regarding the latter, while at 3 hours no decrease in cell viability is observed beyond the 

threshold of 70%, upon 24 hours a strong decrease is registered, reaching its minimum for the 

concentration of 0.1 mg/mL (48%, p < 0.05). Regarding the most detrimental condition (RFB 

exposure for 24 hours at 0.1 mg/mL), the resultant cell viability is very similar between the two 

cells lines. It is interesting to note that the incubation with INH resulted in some cases in cell 

viability well above 100%. This effect has been reported in the literature upon contact with some 

substances such as saccharides [79, 84]. Additionally, a similar non-cytotoxic effect towards 

different respiratory cell lines, at concentrations below 2.5 mg/mL, was reported for free INH 

and INH-proliposome formulation [65]. Figure 4.11 represents the corresponding results for 

macrophage-like cells (differentiated THP-1 cells). These cells are apparently less sensitive 

than the other two cells lines, as more amenable effects were observed. In fact, all conditions 

resulted in cell viability above 70%, with the exception of that of RFB incubated for 24 hours at 

the higher concentration tested (0.1 mg/mL). Even in that case, cell viability was of 60%, thus 

reflecting a less pronounced effect. Again, RFB has shown a time- and concentration-

dependent effect (p < 0.05). 
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Figure 4.11 – Cell viability of macrophage-like cells, after 3 and 24 hours of incubation with INH and RFB 
(Mean ± SEM, n = 3). Dotted line indicates 70%. 

 

Apart from testing the free drugs, it is of relevance to determine the effect of the materials 

composing the matrix of the developed microparticle formulations. In this manner, the three cell 

lines were also exposed to the presence of PHGG as obtained commercially, PHGG after 

spray-drying and the spray-dried mixture of PHGG and mannitol (PHGG:Man). Results obtained 

upon 24 hours exposure in macrophage-like cells (derived from THP-1 cells) are depicted in 

Figure 4.12. This figure is considered representative of what occurred in the other two cell lines, 

as cell viabilities remained very close to 100% in almost all cases (and never decreased from 

80%), independently of the cell line being used. Figures depicting the results of other assay 

times and cell lines are available in Chapter VII – Annexes. 
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Figure 4.12 – Cell viability of macrophage-like cells (differentiated THP-1 cells), after 24 hours of 
incubation with PHGG polymer, spray-dried PHGG and PHGG:Man microparticles (Mean ± SEM, n = 3). 
Dotted line indicates 70%.  

Drug-loaded formulations were also tested in all three cell lines. Figure 4.13 shows the results 

for A549 cells. 

 

Figure 4.13 – Cell viability of A549 cells, after 3 and 24 hours of incubation with PHGG:Man:INH, 
PHGG:RFB and PHGG:INH:RFB microparticles (Mean ± SEM, n = 3).  

Microparticles loaded with INH, RFB or both drugs do not display cytotoxicity for the 

concentrations of 0.1 and 0.5 mg/mL, either at 3 or 24 hours. Upon 24 hours exposure some 

decrease on cell viability was observed at the concentration of 1 mg/mL, but the lowest cell 

viability value was of 72% (PHGG:RFB), thus being devoid of physiological relevance. 

Considering that RFB analyzed as free drug has shown great toxicity at the same conditions 

(44% cell viability), the plausible explanation for these cell viability results of RFB-loaded 

microparticles is the not so high association efficiency of RFB (around 60%). Taking this into 
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account, the real amount of RFB in microparticles will be more equivalent to the concentration 

of 0.05 mg/mL than to 0.1 mg/mL. The former induced in A549 cells viability above 60%, thus in 

line with what is obtained for RFB-loaded formulations.  

Calu-3 cells revealed a similar trend of response to the exposure of drug-loaded PHGG 

microparticles (Figure 4.14). As observed, in no case does cell viability decrease below 70%. 

Although in some cases cell viability decreases to a significant statistical level, as for the 

incubation with RFB-loaded microparticles either alone or in combination with INH, after 24 

hours at 1.0 mg/mL (p < 0.05), cell viability is still considered very acceptable (> 80%).   

 

Figure 4.14 – Cell viability of Calu-3 cells, after 3 and 24 hours of incubation with PHGG:Man:INH, 
PHGG:RFB and PHGG:INH:RFB microparticles (Mean ± SEM, n = 3). Dotted line indicates 70%. 

The results obtained for macrophage-differentiated THP-1 cells also generally followed the 

trend exposed for the other cell lines, as no overt toxicity was detected and cell viability values 

were above 70% (Figure 4.15).  
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Figure 4.15 – Cell viability of macrophage-differentiated THP-1 cells, after 3 and 24 hours of incubation 
with PHGG:Man:INH, PHGG:RFB and PHGG:INH:RFB microparticles (Mean ± SEM, n = 3). Dotted line 
indicates 70%. 

The lower cell viabilities were found at the concentration of 1 mg/mL, but only the exposure to 

PHGG:RFB microparticles for 24 hours induced a value below 70%, more precisely 66%. The 

fact that only in this cell line the viability decreased below 70% for this formulation might be 

related with the fact that PHGG is composed of mannose units which are favorably recognized 

by macrophage mannose receptors. Therefore, microparticles have possibly a stronger 

interaction and internalization with these cells, which results in increased toxicity.  

4.5.2. LDH assay 
 

As stated in the methodology section, the LDH assay provides a quantification of the 

cytoplasmic enzyme LDH released to the supernatant of cells upon exposure to a potential 

toxicant. Based on the results obtained on the MTT assay, the free drugs and microparticle 

formulations were evaluated for an exposure of 24 hours at the higher concentrations tested 

(0.1 mg/mL for drugs and 1 mg/mL for microparticles). An assessment of RFB as free drug at 

the concentration of 0.05 mg/mL was also performed due to the higher toxicity induced by this 

drug. 

Figure 4.16 shows the results obtained upon exposure of the three cell lines to free drugs. The 

amount of LDH released by cells incubated with culture medium only was assumed as 100% 

LDH release, so any result above that value indicates a certain level of cell membrane damage. 
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Figure 4.16 – Released LDH (%) upon exposure of A549, Calu-3 and differentiated THP-1 cells to INH and 
RFB drugs at different concentrations (Mean ± SEM, n = 3). Dotted line represents 100% LDH release. 

The contact with INH induces in all cases a result similar to that of the control, as all values are 

around 100 – 110%. The exposure to RFB at 0.05 mg/mL showed a significantly higher release 

of LDH in A549 cells (155%, p < 0.05) and also in Calu-3 cells, although in this case a much 

lower amount was registered (121%, p < 0.05). These results demonstrate again that THP-1 

cells are more robust and A549 cells the most sensitive of the three. At the concentration of 0.1 

mg/mL, RFB induced stronger increase in released LDH (p < 0.05), with values between 170% 

and 190% in all cell lines. There are significant differences between RFB concentrations, 

evidencing that the cytotoxic effects are dose-dependent (p < 0.05). However, the LDH release 

induced by incubation with the drugs is in all cases much lower (p < 0.05) that that induced by 

the lysis buffer, inducing values between 550% and 830%. The results generated by exposure 

to RFB as free drug are considered in line with those obtained in the MTT assay, as the 24 hour 

incubation with 0.1 mg/mL RFB also resulted in a considerably detrimental effect to the cells 

independently of the cell line.  

The assessment of the unloaded microparticles and drug-loaded microparticles demonstrated to 

be in line with previous findings. In fact, PHGG polymer as obtained commercially or in the form 

of spray-dried microparticles, and PHGG microparticles containing the adjuvant excipient 

mannitol, registered LDH release values around 100% when exposed to A549 cells, not 

evidencing any damaging potential (Figure 4.17). 
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Figure 4.17 – Released LDH (%) upon A549 cell exposure for 24 hours to PHGG microparticles containing 
or not INH and RFB, at the concentration of 1 mg/mL (Mean ± SEM, n = 3). Dotted line represents 100% 
LDH release. 

The association of INH to the microparticles did not induce any alteration, demonstrating again 

an absence of cytotoxicity of this antibiotic. In turn, the incorporation of RFB, either alone or in 

combination with INH, was found to increase the released LDH (p < 0.05) to 141% and 168%, 

respectively. 

Calu-3 cells displayed a similar profile (Figure 4.18), but possibly because of their robustness as 

compared with A549 cells, the observed effects were less pronounced.  

 

Figure 4.18 – Released LDH (%) upon Calu-3 cell exposure for 24 hours to PHGG microparticles 
containing or not INH and RFB, at the concentration of 1 mg/mL (Mean ± SEM, n = 3). Dotted line 
represents 100% LDH release 

The exposure of these cells to PHGG polymer, PHGG microparticles, PHGG:Man and 

PHGG:Man:INH microparticles, resulted in LDH release varying within 86% and 103%, thus not 

indicating any membrane damaging potential. Microparticle formulations containing RFB 

(PHGG:RFB and PHGG:INH:RFB microparticles) resulted in values around 120%, which 

although statistically significant different (p < 0.05) are not as strong as those found in A549 
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cells, the effect being considered mild. Finally, a rather different response to the RFB-loaded 

microparticles was found for macrophage-differentiated THP-1 cells. As depicted in Figure 4.19, 

unloaded or INH-loaded microparticles result in values quite close to 100%, being devoid of 

toxicity, but the exposure to microparticles containing RFB resulted in LDH release exceeding 

200% (228% for PHGG:RFB and 230% for PHGG:INH:RFB).. 

 

Figure 4.19 – Released LDH (%) upon 24 hours exposure of macrophage-differentiated THP-1 cells to 
PHGG microparticles containing or not INH and RFB, at the concentration of 1 mg/mL (Mean ± SEM, n = 
3). Dotted line represents 100% LDH release. 

These values are of statistical significance (p < 0.05) and evidence strong toxicity against these 

cells. In this case, the results are not in line with those obtained in the MTT assay, as the 

present assay indicates a much higher level of toxicity. Based on the literature, the use of PMA 

induces a certain cell cycle arrest following by THP-1 cell differentiation [87], conditioning the 

results based on the MTT assay, since it is not as sensitive as LDH.  

4.6. The susceptibility of M. smegmatis  
 

The MIC values for INH, RFB and associated drugs against M. smegmatis (Figure 4.20) were 

determined. The same determination was then performed for the MPs PHGG:INH, PHGG:RFB 

and PHGG:INH:RFB, using the  MTT and recovery drop methods, as previously mentioned 

(section 3.9 from Materials and Methods). In Table 4.3 is shown the MIC value for MPs with 

INH, RFB and associated drugs. 
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Figure 4.20 – M. smegmatis cells observed A) by differential interference contrast, B) by fluorescence 

(bacterial cells were stained with Live/Dead Molecular Probes (Invitrogen). (Scale: 5 μm). 

Table 4.3 – Viability (%) of M. smegmatis exposed to different concentrations (16-0.25 μg/mL) of MPs with 

INH, RFB (0.8-0.025 μg/mL), and both drugs INH and RFB (2-0.015 μg/mL) as determined by the MTT 

test. Data represent mean  Standard deviation of three replicates per 2 wells (n = 6). 

MPs loaded with INH 

Control 
culture 

32 16 8 4 2 1 0.5 

98.4±9.9 18.0±5.4 16.3±2.8 19.6±5.7 27.2±8.5 84.0±11.5 108.8±10.4 113.9±12.4 

MPs loaded with RFB 

Control 
culture 

0.8 0.4 0.2 0.1 0.05 0.025 

100.8±8.1 10.2±8.4 12.0±3.0 34.6±9.3 63.7±4.3 75.5±6.2 89.7±5.6 

MPs loaded with INH and RFB 

Control 
culture 

2 1 0.5 0.25 0.125 0.06 0.03 0.015 

97.1±17.1 7.0±9.0 38.5±5.9 73.9±9.9 113.3±7.2 110.6±2.1 
102.7
±8.6 

127.0
±9.2 

130.1±7.7 

 

The MIC value for INH drug against M. smegmatis was 4 μg/mL, which is similar to the previous 

MIC value reported by Wang and Marcotte (2008) [21]. The data retrieved from the MTT plates 

showed that the mean value for bacterial growth with the presence of 4 μg/mL of INH drug was 

27.2 ± 8.5% viability, turning to 84.0 ± 11.5% on the following concentration (2 μg/mL). The 

same MIC value was observed by recovery drops in agar plates, where a few colonies still 

persisted, but the majority was inhibited. This MIC value suggests that this strain of M. 

smegmatis shows resistance to INH, and might carry a mutation on katG gene or in other genes 

[88]. The MIC value for MPs could have been lower than for the INH drug, because the drug 

association percentage (AE%) was below 100%, serial two fold dilutions should have been 

done with different values between 4 and 2 μg/mL. The RFB MIC value for M. smegmatis, 

determined by the MTT test and confirmed by recovery drops, was 0.2 μg/mL, at which 

B A 
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concentration was achieved a 34.6 9.3% viability, following at the next concentration a viability 

value of 63.7 ± 4.3 %. Our RFB MIC value is similar to the previously reported,  that was 0.25 

μg/mL [89]. Such slightly differences on the RFB MIC value may be related with the strain and 

the different methodology used. The determined MIC for both drugs was 1 μg/mL. Analyzing the 

data retrieved from Table 4.3, the viability of M. smegmatis in the presence of 1 μg/mL of both 

drugs was 38.5 ± 5.9%, turning to 73.9 ± 9.9% on the following concentration (0.5 μg/mL). This 

MIC value seems to be accurate, because it is comprehended between 4 and 0.2 μg/mL, 

respective MIC values for INH drug and MPs loaded with INH; RFB drug and MPs loaded with 

RFB alone, correspondingly.  

4.7. The susceptibility of M. bovis  

 

The MIC values were determined for the MPs PHGG:INH and PHGG:RFB using the MTT test. 

In Table 4.4 the MIC value for MPs loaded with INH and with RFB against M. bovis is shown. 

Table 4.4 – Viability (%) of M. bovis exposed to different concentrations (1-0.015 μg/mL) of MPs with INH, 

and with RFB (1-0.015 μg/mL), determined by the MTT assay. Data represent Mean  Standard deviation 

of three replicates per 2 wells (n = 6). 

MPs loaded with INH 

Control 
culture 

1 0.5 0.25 0.125 0.06 0.03 0.015 

93.7±10.9 18.5±9.4 21.1±2.6 27.1±5.6 28.5±3.4 87.2±5.1 91.5±9.4 103.0±4.7 

MPs loaded with RFB 

Control 
culture 

1 0.5 0.25 0.125 0.06 0.03 0.015 

91.5 ± 15.1 11.5±3.6 18.0±4.2 23.9±3.3 21.8±4.4 22.5±5.4 73.5±9.8 92.1±10.8 

 

For the MPs loaded with INH, MIC value for M. bovis was 0.125 μg/mL, at which concentration 

was achieved a 28.5  3.4% of viability, following at the next concentration a viability value of 

87.17 ± 5.13%. This MIC value is similar to the M. bovis BCG-Connaught strain previously 

reported by Ritz et al (2009) [90]. The MIC value of MPs with RFB for M. bovis was 0.06 μg/mL 

at which concentration achieved 22.5  5.4% viability following, at the following concentration a 

viability value of 73.5 ± 5.4%. The same MIC value has been observed in several strains of M. 

bovis BCG [90]. 

Due to time consuming growth conditions and material delay, it was not possible to determine 

the MIC value for MPs with the combination of drugs, thus the hypothetically MIC value should 

have ranged between 0.125 and 0.06 μg/mL (≈ 0.08 μg/mL). Additionally, the MIC values of free 

drugs should have been determined in order to compare the susceptibility of M.bovis with the 

antitubercular free drugs, and in contact with the MPs.  
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The M. bovis strain displayed MIC values lower than the ones displayed by M. smegmatis, 

which implies that M. bovis is more susceptible to these antitubercular drugs than M. 

smegmatis. Since M. bovis is highly pathogenic showing a susceptibly level of few μg/mL of the 

evaluated antitubercular drugs, shows that a theoretical therapeutic approach may require low 

concentration doses to eliminate M. bovis infection. 

4.8. Therapeutic effectiveness in vitro 
 

The assay of in vitro infection of macrophage-like cells with M. smegmatis was conducted 

during 4 and 24 hours. Table 4.5 shows the viability of the intracellular M. smegmatis exposed 

to free drugs and MPs with both drugs, after 4 and 24 hours of infection. 

Table 4.5 – Viability (%) of control, M. smegmatis exposed to associated free drugs (MIC = 1 μg/mL), and 

with MPs with both drugs (MIC = 1 μg/mL). Data represents the Mean  Standard deviation  of three 

replicates for each plate (n = 6).  

 
Control (No drugs 

added) 
Free drugs INH and 

RFB 
MPs  with both drugs 

M. smegmatis viability 
(%) after 4 h 

exposure 
110.5 ± 3.0 62.2 ± 10.5 27.6 ± 6.0 

M. smegmatis viability 
(%) after 24 h 

exposure 
51.1 ± 7.3 46.0 ± 7.1 22.5 ± 9.6 

 

After 4 hours exposure of M. smegmatis to the free drugs the mycobacterial viability was 

reduced to 62.2 ± 10.5%, in contrast to the exposure to the MPs with both drugs that caused a 

viability reduction of 27.6 ± 6.0%. The control culture after 4 hours achieved 110.5 ± 3.0% of 

viability.  

These results suggest that microparticles loaded with both drugs, effectively targeted the 

macrophage-like cells, possibly mediated by the mannose and galactose receptors. This effect 

of MPs on the mycobacterial viability is promising in the elimination of the intracellular pathogen 

in comparison to the free drugs.  

After 24 hours of infection in the presence of free drugs the mycobacterial viability was 46.0 ± 

7.1%, in contrast to the exposure to MPs with both drugs, for which a viability of 22.5 ± 9.6% 

was observed. The control culture showed a 51.1 ± 7.3% of viability after the same time interval. 

The latter reduction on the viability of intracellular M. smegmatis cells is possibly related with the 

absence of antiphagocytic mechanisms in this species, as is observed for M. tuberculosis. 

Nevertheless, it is important to stress that after the same time interval, the action of MPs against 

M. smegmatis reached almost a double reduction of the mycobacterial population, in 

comparison to the free drugs. Altogether, these results highlight the potential use of MPs loaded 

with antitubercular drugs to control mycobacterial infections.  
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The infection of macrophage-like cells with M. bovis was not possible to perform, due to time 

constraints. Considering the pathogenicity of this strain, the assay would have been more 

representative of the processes occurring with MTB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V – Conclusions 
 

This thesis proposes a novel therapeutic approach to tuberculosis, based on pulmonary drug 

delivery of antitubercular drugs. Spray-dried PHGG microparticles proved to present suitable 

properties for lung delivery in the ambit of tuberculosis therapy. The microparticles successfully 

encapsulated isoniazid and rifabutin, two first-line antitubercular drugs, either alone or 
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combined, in all cases with efficiencies between 55% and 70%. The release of drugs in a 

medium resembling the alveolar environment was rapid (100% RFB at 30 minutes and at 15 

minutes for INH), owing to the hydrophilic character of PHGG. A lack of overt toxicity was 

generally observed for all developed drug-loaded microparticle formulations by the MTT assay 

in conditions involving up to 24 hours exposure and concentrations varying between 0.1 and 1 

mg/mL. Three cell lines representing the respiratory area and relevant for the work were used 

(alveolar A549, bronchial Calu-3 and macrophage-differentiated THP-1 cells) and cell viabilities 

did not decrease below 66%. The lower cell viability values corresponded to RFB-containing 

microparticles. However, the LDH release assay revealed considerable degree of cell 

membrane damage in certain cases, particularly for formulations containing RFB. The in vitro 

response of macrophages infected with Mycobacterium smegmatis to the presence of drug-

loaded PHGG microparticles was favorable regarding the elimination of bacteria. The incubation 

of infected macrophages with PHGG/INH/RFB microparticles reduced the infection level to 

around 20% in 24 hours, comparing with 46% obtained for free combined drugs. Taking into 

account the whole set of results, it seems adequate to assume that PHGG microparticles are 

suitable vehicles of antitubercular drugs to be proposed as an alternative inhalable therapeutic 

approach to lung tuberculosis therapy. 
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Chapter VII – Annexes 

Figure 7.1 and Figure 7.2 show non-toxic formulations of PHGG polymer, PHGG and 

PHGG.Man in contact with A549 cells, during 3 and 24 hours of incubation. 

 

Figure 7.1 – Cell viability of A549 cells, after 3 hours of incubation with PHGG polymer, PHGG and 
PHGG:Man microparticles (Mean ± SEM, n = 3). 

 

Figure 7.2 – Cell viability of A549 cells, after 24 hours of incubation with PHGG polymer, PHGG and 
PHGG:Man microparticles (Mean ± SEM, n = 3). 

Figure 7.3 and Figure 7.4 show non-toxic formulations of PHGG polymer, PHGG and 

PHGG.Man in contact with Calu-3 cells, during 3 and 24 hours of incubation. 

0 

20 

40 

60 

80 

100 

120 

140 

160 

0.1 0.5 1.0 

C
e
ll

u
la

r 
V

ia
b

il
it

y
 (

%
) 

Concentration mg/mL 

PHGG polymer 

PHGG 

PHGG:Man 

0 

20 

40 

60 

80 

100 

120 

140 

160 

0.1 0.5 1.0 

C
e
ll

u
la

r 
V

ia
b

il
it

y
 (

%
) 

Concentration mg/mL 

PHGG polymer 

PHGG 

PHGG:Man 



 

61 
 

 

Figure 7.3 – Cell viability of Calu-3 cells, after 3 hours of incubation with PHGG polymer, PHGG and 
PHGG:Man microparticles (Mean ± SEM, n = 3). 

 

 

Figure 7.4 – Cell viability of Calu-3 cells, after 24 hours of incubation with PHGG polymer, PHGG and 
PHGG:Man microparticles (Mean ± SEM, n = 3). 

Figure 7.5 show non-toxic formulations of PHGG polymer, PHGG and PHGG.Man in contact 

with macrophage-like cells, during 3 hours of incubation. 
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Figure 7.5 – Cell viability of macrophage-like cells, after 3 hours of incubation with PHGG polymer, PHGG 
and PHGG:Man microparticles (Mean ± SEM, n = 3). 
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