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Abstract

In previous work, the authors describe certain configurations which give rise to
standard and to non-standard subgroups for linear recurrences of order k = 2, while
in subsequent work, a number of families of non-standard subgroups for recurrences
of order k ≥ 2 are described. Here we exhibit two infinite families of standard groups
for k ≥ 2.
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1 Introduction

In what follows, p will always denote a prime, q a power of p, Fq the field of
order q and Aq a fixed algebraic closure of Fq. We will assume that all our
finite extensions of Fq are subfields of Aq. Further, k will be a positive integer
and N will denote the set of all positive integers.

1.1 Definition. Let

f(t) = tk − fk−1t
k−1 − · · · − f1t− f0 ∈ Fq[t]

? This research was partially supported by the Fundação de Ciência e Tecnologia,
and was undertaken within the “Centro de Estruturas Lineares e Combinatórias da
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where f(0) 6= 0.
(a) An f -sequence in Aq is a (doubly-infinite) sequence S = (si)i∈Z of elements
si ∈ Aq such that

si = fk−1si−1 + · · ·+ f1si−k+1 + f0si−k

for all i ∈ Z.
(b) An f -subgroup is a finite subgroup M ≤ L∗, where L ⊆ Aq is a finite
extension of Fq, such that M may be written as (the underlying set of a
minimal periodic segment of) a periodic f -sequence

(· · · ,m0 = 1,m1, . . . ,m|M |−1, · · ·)

of least period |M |, where |M | denotes the order of M . In this situation we
say that the f -sequence (mi)i∈Z represents M as an f -subgroup.
(c) The f -sequence S = (si)i∈Z in A∗q is called cyclic if there exists λ ∈ A∗q such
that si+1 = λsi for all i ∈ Z; in this situation, λ will be called the common
ratio of S.
(d) The unit f -sequence, U = (un)n∈Z, is the f -sequence in Fq defined by
u0 = · · · = uk−2 = 0, uk−1 = 1 if k > 1; when k = 1 the unit f -sequence will
be the f -sequence defined by u0 = 1.
(e) The restricted period, δ(f) of f , is defined to be 1 if k = 1 and is the least
integer n > 0 with un = · · · = un+k−2 = 0 if k > 1 (see [3]).

In (a) it is known (because f(0) 6= 0) that an f -sequence must be periodic:
see 8.11 of [8]. In (e), it is clear that if k > 1 then δ(f) ≥ k.

The following lemma relates f -subgroups with cyclic f -sequences.

1.2 Lemma. Suppose that f(t) ∈ Fq[t] is monic of degree k with f(0) 6= 0.
(a) Suppose that S is a non-null cyclic f -sequence in A∗q with common ratio
λ 6= 0. If S contains 1 then S represents < λ >≤ A∗ as an f -subgroup and
f(λ) = 0.
(b) Let M be an f -subgroup. Then M is a cyclic group. If S is a cyclic f -
sequence which represents M then the common ratio λ of S satisfies M =<
λ > and f(λ) = 0.
(c) Suppose M ≤ A∗q is finite. Suppose M =< λ > and let m(t) be the min-
imum polynomial of λ over Fq. Then M is an m-group and also an f -group
for any multiple f(t) of m(t) in Fq[t].

Proof. For (a) and (b), see Lemma 1.3 of [5]. Note that in (a), S is periodic
because f(0) 6= 0 and so λ has finite multiplicative order, while in (b) a finite
subgroup of the multiplicative group of a field is always cyclic: see Exercise
2.9 in [8].
(c) It is clear that {1, λ, · · ·} exhibits M =< λ > as an m-sequence; then by
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Theorem 8.42 of [8], M is an f -subgroup for any multiple f(t) of m(t) in Fq[t].
2

The motivation for studying f -subgroups seems to go back to Somer [9], [10].
In particular, if ω ∈ A∗q is a root of f(t) ∈ Fq[t] then < ω >≤ A∗q may be
regarded as (the underlying set of) an f -sequence of minimal period |ω|:

< ω >= (· · · , 1, ω, ω2, · · · , ω|ω|−1, · · ·).

It can sometimes happen, for certain choices of Fq, f(t) and ω with f(ω) = 0,
that the subgroup < ω > may be represented in an alternative, “less obvious”,
manner as an f -sequence; this leads to the following definition:

1.3 Definition. Let f(t) ∈ Fq[t] be monic of degree k with f(0) 6= 0, and let
M be an f -subgroup. Then M is said to be non-standard (as an f -subgroup)
if M admits a representation as a non-cyclic f -sequence, while M is said to
be standard (as an f -subgroup) if all f -sequences that represent M are cyclic.

The authors studied this concept when f(t) has degree 2, in [2], [3] and
[4], while Hollmann [7] (using a result from [4]) classified standard and non-
standard subgroups when f(t) is irreducible of degree 2.
In [5] the authors exhibited certain configurations that give rise to non-standard
groups when f(t) has degree k ≥ 2.
In this paper the authors investigate two general configurations that give rise
to standard groups when k ≥ 2. The first configuration is when f(t) has just
one (repeated) root, and is studied in Section 2 (eee Theorem 2.3). The sec-
ond is when the order of the group in question is of a very special kind, and
is studied in Section 3 (see Theorem 3.4). In each case the results are proved
under very restrictive upper bounds on k in terms of the prime p; however,
for a given k we obtain standard groups over Fp for all primes p > k. It is
worth pointing out that the standard groups obtained in these two theorems
(or closely related groups: see Example 3.7 below) are the only ones we know
to be standard for k > 2 apart from a few examples when k ∈ {3, 4}.
The first configuration is when f(t) has just one (repeated) root and is stud-
ied in Section 2; the second configuration is when the order of the group in
question is of a very special kind, and is studied in Section 3.
Note that Corollary 3.2 of [7] draws a strong connection between an f -subgroup
being standard, or not, and the automorphisms of certain cyclic codes.

2 Polynomials with just one root

In this section we study f -sequences over a finite field of characteristic p where
f(t) is a polynomial of degree k ≤ p which admits just one root (of multiplicity
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k). Our main result here, Theorem 2.3, guarantees that in this situation an f -
subgroup is standard; the special case when k = 2 was proved as Proposition
1.7 of [2]. The restriction that k ≤ p is severe but we have been unable either
to remove it or to show it is necessary.
We start by computing the restricted period in Proposition 2.1. This is not
needed in the proof of Theorem 2.3, but it is simple and, given the part played
by this concept in [2], [3], [4] and [5], we think it is of interest.

2.1 Proposition. Let p be a prime and k, n be natural numbers with 2 ≤ k ≤
p. Write q = pn. Let r ∈ F∗q and f(t) = (t − r)k ∈ Fq[t]. Then the restricted
period of f is p.

Proof. Let U = (ui) denote the unit f -sequence. Then uj = 0 for 0 ≤ j ≤ k−2
while uk−1 = 1. By 8.23 of [8], which is applicable because k ≤ p, there exists
P (t) ∈ Fq[t], of degree at most k − 1, such that ui = P (i)ri for all i ∈ Z;
as usual, i is considered as an element of Fp when P (i) is to be evaluated.
Because r 6= 0, then P (j) = 0 for 0 ≤ j ≤ k − 2. But j and j + p represent
the same element in Fq and so uj+p = P (j + p)rj+p = 0 for 0 ≤ j ≤ k − 2.
It follows that the restricted period, δ(f), of f must divide p. But δ(f) ≥ k
when f(t) has degree k ≥ 2. Thus δ(f) = p. 2

2.2 Lemma. Let p be a prime and k, n be natural numbers with k ≤ p. Write
q = pn. Let r ∈ F∗q and write f(t) = (t − r)k ∈ Fq[t]. Suppose that M is an
f -subgroup. Then r ∈M .

Proof. By definition, there exists a finite extension L of Fq with L ⊆ Aq∗
such that M ≤ L∗.
Let (si)i∈Z be an f -sequence which represents M and write |M | = m. Again by
8.23 of [8], there exists P (t) ∈ L[t], of degree h ≤ k− 1, such that si = P (i)ri

for all i ∈ Z. Write ah for the leading coefficient of P (t) (so that ah 6= 0).
Fix i ∈ Z with 0 ≤ i ≤ p − 1. Because M has order m then si = si+m and
so P (i)ri = P (i + m)ri+m; thus P (i) = P (i + m)rm because r 6= 0. Write
D(t) = P (t)−rmP (t+m). Then D(t) is a polynomial of degree at most h < p
(the hypothesis k ≤ p is again used here) which admits every element of Fp
as a root, so that D(t) = 0. The coefficient of th in D(t) is ah − rmah. Thus
ah − rmah = 0, and because ah 6= 0 it follows that rm = 1. Thus r ∈M . 2

We now prove the main result of this section.

Theorem 2.3. Write q = pn where p is a prime and n ∈ N. Let k ∈ N with
2 ≤ k ≤ p. Suppose that f(t) = (t− r)k ∈ Fq[t] where r ∈ F∗q, and let M be an
f -subgroup. Then M is standard as an f -subgroup, |M | = |r| and M ≤ F∗q.

Proof. Write m = |M |. Note that M ≤ L∗ for suitable L as above and so
m ∈ N is coprime with p; we may thus, when convenient, view m as an element
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of F∗p. By hypothesis,

M = {s0, s1, . . . , sm−1}
where (si)i∈Z is an f -sequence. Without loss, suppose that s0 = 1.
Again by 8.23 of [8], there exists P (t) ∈ L[t], of degree at most k − 1, such
that si = P (i)ri for all i ∈ Z. We have 1 = s0 = P (0)r0 = P (0) and so 0 is a
root of the polynomial D(t) = P (t)− 1.
Because M is an f -subgroup of order m then 1 = s0 = sjm for all j ∈ Z, so
that 1 = P (jm)rjm for all j ∈ Z. But r ∈ M by the previous lemma, and so
rjm = 1. Thus, jm is a root of D(t) for all j ∈ Z. Thus, {jm : 1 ≤ j ≤ k − 1}
is a set of roots of D(t). Because m ∈ F∗p and k−1 < p, this set contains k−1
distinct, non-zero, elements. But also D(0) = 0 and so D(t), of degree at most
k − 1, has k roots. Thus D(t) = 0 and so P (t) = 1. It follows that si = ri for
all i ∈ Z and so M is standard; this also guarantees that |M | = |r| and then
that M ≤ F∗q because r ∈ F∗q. 2

3 Irreducible polynomials of order m = a
(
qk−1
q−1

)

We will need the following result whose proof may be found in 3.3 of [1]; a
sketch proof appears in 1.8 of [2]. Firstly, some terminology: if f(t) ∈ F[t] is
a polynomial and if m ∈ N, by “the reduction of f(t)(mod tm − 1)” we will
understand the unique polynomial f(t) ∈ F[t] of degree at most m − 1 such
that f(t) ≡ f(t)(mod tm − 1).

Theorem 3.1. Let K be a field. Suppose that G ≤ K∗, with |G| = m ∈ N,
and that p(t) ∈ K[t] permutes the elements of G. If b ∈ N then the constant
term of the reduction of p(t)b(mod tm − 1) is 0 if b 6≡ 0 (mod m) and is 1 if
b ≡ 0 (modm).

A polynomial p(t) ∈ K[t] that permutes the elements of G ≤ K∗ will be called
a group permutation polynomial of G. For the rest of this paper, indices (for
example in the expression nj+h) are understood to be taken (mod k) unless
specifically stated otherwise.

Lemma 3.2. Let p be a prime and q be a power of p. Let a, k be positive
integers with a | q − 1 and n0, · · · , nk−1 be non-negative integers. Write m =

a
(
qk−1
q−1

)
. Suppose that

k−1∑
j=0

njq
j ≡ 0 (modm).

If h ∈ Z then
k−1∑
j=0

nj+h q
j ≡ 0 (modm);
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that is, the first congruence remains valid after cyclic permutations of the nj
relative to the qj.

Proof. Because m = a
(
qk−1
q−1

)
with a | q − 1 then qk − 1 ≡ 0 (modm); so if∑k−1

j=0 njq
j ≡ 0 (modm), then we have

0 ≡ q
k−1∑
j=0

njq
j =

k−1∑
j=0

nj−1q
j + (1− qj)nk−1 ≡

k−1∑
j=0

nj−1q
j (modm),

This proves the result for h = −1. The general case follows by induction: we
need only consider those values of h whose residue (mod k) lies between 0
and k − 1. 2

Lemma 3.3. (Lucas’ theorem for the multinomial formula). For inte-
gers d ≥ 0, t ≥ 1 and m0, · · · ,mt ≥ 0, write

m0 = c0 + c1p+ · · ·+ cdp
d, 0 ≤ ci ≤ p− 1, i < d

mj = c0,j + c1,jp+ · · ·+ cd,jp
d, 0 ≤ ci,j ≤ p− 1, i < d, 1 ≤ j ≤ t

where cd, cd,j ≥ 0. Then

(
m0

m1, · · · ,mt

)
≡
(

c0
c0,1, · · · , c0,t

)
× . . .×

(
cd

cd,1, · · · , cd,t

)
(modp).

Proof. See congruence C2, of [6]. 2

The proof of Theorem 3.4, that certain f -sequence subgroups, M , of degree
k ≥ 2 are standard, is based on the method used (for k = 2) in the papers [2],
[3] and [4], and is divided into a number of steps, which we now outline for
the convenience of the reader.
In Step 1 we exhibit a group permutation polynomial, g(t), of M ; g(t) turns
out to be a linearized polynomial as defined in 3.49 of [8]. The coefficients of g
will depend on elements α1, · · · , αk in the splitting field of f which arise when
an f -sequence underlying M is written, via the Binet formula, in terms of the
roots of f . The exponents of t that arise in g(t) are powers of q. The aim is
to show that all but one of the elements αi must be zero, so that M may be
written as an f -sequence in essentially only one way.
Theorem 3.1 guarantees that, for certain powers b, the constant term of
g(t)b(mod(t|M | − 1)) must be zero; this then gives equations which involve
the αi. Our technique is to carefully choose relevant powers b so as to give
equations in the αi that can be solved to conclude that all but one of them
must be zero. The present situation, where k ≥ 2, is more complicated than
when k = 2 because the powers g(t)b are calculated by the multinomial for-
mula. The exponents of t that arise are linear combinations of the form

∑
i niq

i.
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In Step 2 we define S to be the set of indices i ∈ K = {0, · · · , k− 1} such that
αi 6= 0 and we write |S| = s; in these terms, our aim is to prove that s = 1.
In Step 3 we take b = ak and prove that at least one of the αi must be zero;
this means that S 6= K.
In Step 4 we take b = N where N depends not only on the value of s but
also on a certain supposition as to which of the αi are zero and which are
not. Ignoring the terms with zero coefficient (i.e., αi = 0) in the permutation
polynomial g(t), we raise g(t), now with s terms, to the power N . We need to
calculate the constant term of g(t)N(mod(t|M | − 1)) (see Step 5). The expo-
nents of t in g(t)N are of the form e = ni0q

i0 + · · · + nis−1q
is−1 where the nij

sum to N . Demanding that such an exponent be a multiple of |M | imposes
strong conditions on the nij . It turns out that cyclic permutations of the nij
in the expression for e send e to another exponent of t in g(t)N , which is also
a multiple of |M | (see Step 6). We choose a permutation that enables us to
find an exponent which is most suitable for the purpose of calculating the nij .
Eventually, the nij are uniquely determined in Steps 7 and 8 under the suppo-
sition that s > 1. After reversing the above permutation in Step 9, we are left
with a unique monomial as the constant term of g(t)N(mod(t|M | − 1)). This
constant term is a product of a non-zero scalar with powers of the αij ; these
αij are supposed to be non-zero because the ij belong to S. But, by Theorem
3.1, this coefficient must be zero. This, still under the supposition that s > 1,
is a contradiction. We finally conclude that s = 1 and that M is standard.

The hypothesis ak < p in Theorem 3.4 is very restrictive. To illustrate the
scope of this result, fix k ≥ 2, let p be a prime with p > k, let n ∈ N and
write q = pn. Suppose a ∈ N is such that a | q− 1 and ak < p ; certainly a = 1

satisfies these conditions. Then F∗qk contains an element α of order a
(
qk−1
q−1

)
. It

is not hard to check that Fqk = Fq(α) and that the minimum polynomial, f(t),
of α over Fq has degree k; the theorem guarantees that < α > is standard as
an f -subgroup.

Theorem 3.4. Let p be an odd prime and q be a power of p. Let f(t) ∈ Fq[t]
be irreducible of degree k ≥ 2, F be its splitting field over Fq and M ≤ F∗ be

an f -subgroup of order m. Suppose that m = a( q
k−1
q−1

) where a ∈ N is such that

a | (q − 1) and ak < p . Then M is standard as an f -subgroup.

Proof. Because an f -group of order qk − 1 is non-standard, for p an odd
prime (see Theorem 4.3 of [5]), we start by confirming that the hypotheses
imply that a < q− 1. Because p is an odd prime then q > 2 and so q

2
< q− 1.

Thus

a <
p

k
≤ q

2
< q − 1,

as claimed. The proof is divided into a number of distinct steps.

Step 1: The permutation polynomial. Here we exhibit a group permutation
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polynomial, g(t), of M . This will enable us to apply Theorem 3.1 at various
stages in the proof.
Because f(t) is irreducible of degree k over Fq, it admits k distinct roots in F,
which may be written in the form

ω, ωq, ωq
2

, · · · , ωqk−1 ∈ F∗.

Further, Theorems 8.28 and 3.3 of [8] guarantee that m = ord(f) = |ω| and so
M =< ω >. Suppose that (µi)

m−1
i=0 is a representation of M as an f -sequence.

By 8.21 of [8] there exist α0, · · · , αk−1 ∈ F such that

µi =
k−1∑
j=0

αj (ωi)q
j

for all i ∈ Z. Write K := {0, · · · , k − 1} and

g(t) :=
∑
j∈K

αj t
qj ∈ F[t].

The reasoning in the proof of Proposition 2.2 of [3] may be extended to the
case where f(t) has general degree k to show that g(t) is a group permutation
polynomial of M . Without loss of generality, we may suppose notation chosen
so that

1 = µ0 =
k−1∑
j=0

αj = g(1);

in particular not all of the αj can be zero.

Step 2: The set S.

Let S ⊆ K be such that i ∈ S if and only if αi 6= 0, where the αj are
as defined in Step 1. We will write |S| = s and S = {i0, · · · , is−1} where
0 ≤ i0 < i1 < · · · < is−1 ≤ k − 1; then s ≥ 1 because the αj are not all zero.
Our aim is to show s = 1, which will imply that M is standard.

Step 3: Proof that s < k.

We have

g(t)ak =
∑ (ak)!

n0! . . . nk−1!
αn0

0 · · · α
nk−1

k−1 tn0+n1q+···+nk−1q
k−1

,

where the sum is taken over all k-tuples (n0, · · · , nk−1) of non-negative integers
nj such that n0 + · · · + nk−1 = ak. Note that the multinomial coefficients
here are evaluated as natural numbers and then reduced (modp). Because
m = a(1 + q+ · · ·+ qk−1), the constant term of g(t)ak(mod tm− 1) is the sum
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of those terms for which the power of t is a multiple of m; that is, for which
there exist non-negative integers Q = Q(n0, · · · , nk−1) such that

n0 + n1q + · · ·+ nk−1q
k−1 = Qa(1 + q + · · ·+ qk−1). (1)

Because the ni are non-negative with nk−1 + · · ·+n0 = ak > 0 then Q > 0. By
hypothesis ak < p and so 0 ≤ n0, · · · , nk−1 < p ≤ q and also 0 < a < p ≤ q.
By (1) we have Qa ≡ n0( mod q). Because ni < q for i = 0, · · · , k − 1, then

n0 + n1q + · · ·+ nk−1q
k−1 < q(1 + q + · · ·+ qk−1).

Thus Qa < q and so Qa = n0 < q. But now both sides of (1) represent the
base-q expansion of the same number and then ni = Qa for i = 0, · · · , k − 1,
by the uniqueness of that expansion. Thus we have

n0 + · · ·+ nk−1 = k(Qa).

By hypothesis, n0+· · ·+nk−1 = ak and soQ = 1. But now n0 = · · · = nk−1 = a
and so the constant term of g(t)ak is given by

(ak)!

a! . . . a!
αa0 · · · αak−1.

Because p > ak, the term
(ak)!

a! . . . a!
is non-zero as an element of Fq. But,

because k ≥ 2,

m = a
qk − 1

q − 1
= a

k−1∑
j=0

qj > a
k−1∑
j=0

1j = ak

and so ak < m. Thus by Theorem 3.1 this constant term must be zero and so

αa0 · · · αak−1 = 0.

Thus αj = 0 for at least one j with 0 ≤ j ≤ k − 1 and so S 6= K and s < k.

Step 4: The definition of N .

Because αj = 0 if j ∈ K\S then

g(t) =
∑
j∈S

αj t
qj

, (2)

where g(t) is as in Step 1 and S = {i0, · · · , is−1} is as in Step 2. If n ∈ N then,
by Theorem 3.1, the constant term of g(t)n (mod tm − 1) must be zero (as an
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element of F) whenever n 6≡ 0 (modm). The multinomial formula, applied to
(2), gives

g(t)n =
∑ n!

ni0 ! . . . nis−1 !
αni0

i0
· · · αnis−1

is−1
tni0

qi0+···+nis−1
qis−1

(3)

where the sum is taken over all s-tuples (ni0 , · · · , nis−1) of non-negative integers
ni such that

∑
ij∈S nij = n. Again, the multinomial coefficients are evaluated

as natural numbers and then reduced (mod p).
The monomials in the right-hand side of (3) which contribute to the constant
term of g(t)n(mod tm − 1) are exactly those such that

m | ni0qi0 + · · ·+ nis−1q
is−1 .

Recall that we wish to prove s = 1. If s > 1, define θ : {0, · · · , s− 1} 7→ K by

θ(j) =

 ij+1 − ij − 1, 0 ≤ j ≤ s− 2

k − 1− is−1 + i0, j = s− 1.

The function θ is non-negative and measures the number of indices i ∈ K
strictly between ij and ij+1, where for these purposes is is identified with i0.
Note that θ(j) = 0 if and only if ij+1 = ij + 1. For completeness, when s = 1
we define θ(0) = k − 1. Write

N = a
s−1∑
j=0

(1 + q + · · ·+ qθ(j)) = a
s−1∑
j=0

θ(j)∑
b=0

qb ∈ N.

Note that N > 0, that N depends on the set S and that N ≡ as ( mod p). Now
s < k so as < ak < p, the final inequality by hypothesis. Thus 0 < as < p
and so N 6≡ 0 (mod p).
For each ij (0 ≤ j ≤ s− 1) write

Bj = {ij, ij + 1, · · · , ij + θ(j)} ⊆ K,

where we are reducing the elements of Bj (mod k). Thus Bj starts with the
index ij, for which αij 6= 0, and contains those indices l such that ij ≤ l < ij+1

for which αl = 0. The next index l for which αl 6= 0 is l = ij+1, and this index
is the starting point of Bj+1. Thus the sequence (0, 1, · · · , k− 1) is the disjoint
union of the blocks B0, · · · ,Bs−1. Note that when s = 1 we have just the block
B0 = {0, · · · , k − 1}.

Step 5: A specific constant term.

We study the constant term of g(t)N(mod tm − 1) where N is as above. By
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(3) we have

g(t)N =
∑ N !

ni0 ! . . . nis−1 !
αni0

i0
· · · αnis−1

is−1
tni0

qi0+···+nis−1
qis−1

(4)

where, as usual, the multinomial coefficients are reduced (mod p) and where
the sum is taken over all s-tuples (ni0 , · · · , nis−1) of non-negative integers nij
with ij ∈ S such that

s−1∑
j=0

nij = N. (5)

The constant term of g(t)N( mod tm−1) arises from the sum of all those mono-
mials in (4) (and thus subject to (5)) such that

∑
i∈S

niq
i =

s−1∑
j=0

nijq
ij ≡ 0 (modm). (6)

Step 6: Cyclic permutation of the nij .

We assume for the rest of the proof that the non-negative integers ni for
i ∈ S satisfy conditions (5) and (6). Define ni = 0 if i ∈ K\S, and recall our
convention that indices in expressions such as ni+h are taken (mod k). Note
that ni could be zero for some i ∈ S; this means that the maximum value,
θ0, of θ is less than or equal to the greatest distance between two consecutive
non-zero ni. Condition (6) now becomes∑

i∈S
niq

i =
∑
i∈K

niq
i ≡ 0 (modm) (7)

If h ∈ Z (with 0 ≤ h ≤ k − 1), Lemma 3.2 gives∑
i∈K

ni+h q
i ≡ 0 (modm). (8)

This corresponds to a cyclic permutation, πh, of the ni relative to the qi.
We may now choose, and fix, h in (8) so that the coefficient, nh, of q0 in
this sum is non-zero, while the maximum possible number of consecutive co-
efficients of the form nk−v+h, · · · , nk−1+h of qk−v, · · · , qk−1, respectively, are all
zero: this defines the integer v which then coincides with the maximum number
of cyclically-consecutive nj which can possibly be 0. Because the coefficient of
q0 is non-zero then v ≤ k − 1, while from the second sentence of this step we
have θ0 ≤ v.

11



Henceforth we will write n′i = ni+h where h is as just fixed. Then {n′0, · · · , n′k−1} =
{n0, · · · , nk−1}. In this notation, n′0 6= 0. Write

Sh = {(i+ h)(modk) : i ∈ S} = {(ij + h)(modk) : 0 ≤ j ≤ s− 1};

then i ∈ Sh if and only if (i − h)(modk) ∈ S, which holds if and only if
αi−h 6= 0. The condition ni = 0 if i ∈ K\S becomes n′i = 0 if i ∈ K\Sh.
In this notation, condition (5) gives

N =
s−1∑
j=0

nij =
∑
i∈S

ni =
∑
i∈K

ni =
∑
i∈K

n′i =
∑
i∈Sh

n′i =
s−1∑
j=0

n′ij+h (9)

while condition (7) becomes∑
i∈K

n′iq
i ≡ 0 (modm). (10)

This last congruence may be written∑
i∈K

n′iq
i = mQ (11)

where Q ∈ N depends on the n′i; note that Q 6= 0 because
∑k−1
i=0 n

′
i = N 6= 0.

Step 7: Calculation of the constant term when q ≤ aQ.

Suppose that q ≤ aQ. Recall from Step 6 that we chose notation so that n′0 6= 0
and that for some v with θ0 ≤ v ≤ k − 1, we have n′k−v = · · · = n′k−1 = 0.
Further, v is maximal such that this occurs.
Because q > 1, then if c0, · · · , ck−v−1 (note that k−v−1 ≥ 0) are non-negative
integers subject only to N =

∑k−v−1
i=0 ci, the expression

c0 + c1q + · · ·+ ck−v−1q
k−v−1

assumes its maximum value when ck−v−1 = N and c0 = c1 = · · · = ck−v−2 = 0;
this maximum is Nqk−v−1. In particular,

n′0 + n′1q + · · ·+ n′k−v−1q
k−v−1 ≤ Nqk−v−1. (12)

According to the definition of N in Step 4, an upper bound for N is given
by the product of s with the maximum possible value (as j varies) of the
expression a(1 + q + · · ·+ qθ(j)). The maximum value of this latter expression
occurs when θ(j) assumes its maximal value θ0. But θ0 ≤ v and s ≤ k, and so

N ≤ sa(1 + q + · · ·+ qθ0) ≤ ak(1 + q + · · ·+ qv).
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Thus

Nqk−v−1 ≤ ak(qk−v−1 + qk−v + · · ·+ qk−1).

But ak < p by hypothesis, and so

ak < p ≤ q ≤ aQ

while

qk−v−1 + qk−v + · · ·+ qk−1 ≤ 1 + q + · · ·+ qk−1

because k − v − 1 ≥ 0, as we have just seen; thus

Nqk−v−1 < aQ(1 + q + · · ·+ qk−1).

This gives the second inequality in the following expression; the first equality
is (11), the first inequality is given by (12) and the final equality is one of the
hypotheses:

mQ = n′0 + n′1q + · · ·+ n′k−1q
k−1 ≤ Nqk−v−1 < aQ(1 + q + · · ·+ qk−1) = mQ.

This is a contradiction. Therefore (9) and (11) admit no solution in the case
q ≤ aQ. Thus, it remains to consider the case aQ < q.

Step 8: Calculation of the constant term when aQ < q.

Suppose that aQ < q. By (11) and hypothesis we have∑
i∈K

n′iq
i = mQ = aQ(1 + q + · · ·+ qk−1).

By our choice in Step 6, n′k−v = · · · = n′k−1 = 0 and so

n′0 + n′1q + · · ·+ n′k−v−1q
k−v−1 = aQ(1 + q + · · ·+ qk−1). (13)

Since aQ < q, we have n′0 ≡ aQ(mod q); now write n′0 = aQ+m0q. Similarly
we can derive that

m0 + n′1 = aQ+m1q.

We continue the process, finding a new quotient mi ∈ N0 at each stage, until
we reach

mk−v−2 + n′k−v−1q
0 = aQ(1 + · · ·+ qv). (14)

Finally, we divide mk−v−2 + n′k−v−1 by q to give

mk−v−2 + n′k−v−1 = aQ+mk−v−1q

13



where mk−v−1 ∈ N0. We also deduce the following:

mk−v−1 = aQ(1 + · · ·+ qv−1).

From the above we may collect the equalities

n′0 = aQ+m0q (15)

m0 + n′1 = aQ+m1q

· · ·
mk−v−2 + n′k−v−1 = aQ+mk−v−1q.

Recall from Step 4 that, for j = 0, · · · , s− 1,

Bj = {ij, ij + 1, · · · , ij + θ(j)}.

Then (see Step 6) αij 6= 0, n′ij 6= 0 and n′ij+1 = n′ij+2 = · · · = n′ij+θ(j) = 0,

while also n′i 6= 0 only if i ∈ Sh. Now (9) gives

N =
∑
i∈K

n′i =
∑
i∈Sh

n′i.

We have, as a subset of (15), corresponding to the block Bj (and where, for
convenience, we set m−1 = 0):

mij−1 + n′ij = aQ+mijq

mij + n′ij+1 = aQ+mij+1q

· · ·
mij+θ(j)−1 + n′ij+θ(j) = aQ+mij+θ(j)q.

Thus we have

mij−1 + n′ij = aQ+mijq

mij + 0 = aQ+mij+1q

· · ·
mij+θ(j)−1 + 0 = aQ+mij+θ(j)q.

We start by substituting mij from the second equation into the first to obtain

mij−1 + n′ij = aQ+ (aQ+mij+1q)q.

We then substitute the value of mij+1 from the third equation, and so on. We
finally obtain, corresponding to the block Bi, the equality

mij−1 + n′ij = mij+θ(j)q
θ(j)+1 + aQ

θ(j)∑
u=0

qu.
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We have such an equality for each block B0, · · · ,Bs−1:

mi0−1 + n′i0 = mi0+θ(0)q
θ(0)+1 + aQ

θ(0)∑
u=0

qu (16)

· · ·

mis−1−1 + n′is−1
= mis−1+θ(s−1)q

θ(s−1)+1 + aQ
θ(s−1)∑
u=0

qu

We sum equations (16) from j = 0 to j = s − 1 (not forgetting that i0 = 0
and m−1 = 0):

s−1∑
j=0

mij−1 +
s−1∑
j=0

n′ij =
s−1∑
j=0

mij+θ(j)q
θ(j)+1 + aQ

s−1∑
j=0

θ(j)∑
u=0

qu (17)

Note that,
s−1∑
j=0

n′ij =
s−1∑
j=0

nij+h =
k−1∑
i=0

ni = N.

But we have seen that N = a
∑s−1
j=0

∑θ(j)
u=0 q

u. Thus (17) simplifies to

s−1∑
j=0

mij−1 +N =
s−1∑
j=0

mij+θ(j)q
θ(j)+1 +QN

that is,

s−1∑
j=0

mij−1 =
s−1∑
j=0

mij+θ(j)q
θ(j)+1 + (Q− 1)N (18)

Now, the second sum in (18) may be written as:

s−1∑
j=0

mij+θ(j)q
θ(j)+1 =

s−1∑
j=0

mij+θ(j)(q
θ(j)+1 − 1) +

s−1∑
j=0

mij+θ(j).

Recall that we wish to prove that s = 1. Suppose s > 1. Then from the
definition of θ(j) (for s > 1) we have ij + θ(j) = ij+1 − 1 when 0 ≤ j ≤ s− 2,
and then (18) may be written as

s−1∑
j=0

mij−1 =
s−1∑
j=0

mij+θ(j)(q
θ(j)+1 − 1) + (mis−1+θ(s−1) +

s−2∑
j=0

mij+1−1) + (Q− 1)N.

The first summand of the left-hand sum is mi0−1 = m−1 = 0 and so the sum,
in practice, runs from j = 1 until j = s − 1. This sum then cancels with
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∑s−2
j=0mij+1−1 and so we have

mis−1+θ(s−1) + (Q− 1)N +
s−1∑
j=0

mij+θ(j)(q
θ(j)+1 − 1) = 0.

Recall that for all j = 0, · · · , s− 1, we have mi ∈ N0 and qθ(j)+1− 1 > 0, while
also N > 0 (see Step 4). Thus the left-hand side here is a sum of non-negative
terms, and so

Q− 1 = mi0+θ(0) = · · · = mis−1+θ(s−1) = 0

that is, Q = 1, and then (16) implies that

n′ij =
θ(j)∑
u=0

aqu

for j = 0, · · · , s− 1.

Step 9: Conclusion.

We continue to suppose that s > 1. By Steps 7 and 8, the only solution to (9)
and (11) occurs when Q = 1 and is given by

nij+h = n′ij =
θ(j)∑
u=0

aqu

for j = 0, · · · , s− 1. We now apply the permutation π−h (the inverse of πh) to
nij+h to conclude that

nij =
θ(j)∑
u=0

aqu.

We saw above that the constant term of g(t)N(mod tm − 1) is given by

N !

ni0 !ni1 ! · · ·nis−1 !
α
ni0
i0 · · · α

nis−1

is−1

where the nij are as just described and where αi0 , · · · , αis−1 are all non-zero.
Now,

N =
s−1∑
j=0

nij = a
s−1∑
j=0

(1 + q + · · ·+ qθ(j))

where
nij = a(1 + q + · · ·+ qθ(j)).

Let r = max{θ(j) : j = 0, · · · s− 1}. Then

N =
s−1∑
j=0

(c0,j + c1,jq + · · · cr,jqr)
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where cr,j = a if i ≤ θ(j) and cr,j = 0 if i < θ(j). Thus

N =
r∑
j=0

c0j
+

r∑
j=0

c1j
q + · · ·+

r∑
j=0

crjq
r = C0 + C1p

n + · · ·+ Crp
rn,

where Ci =
∑r
j=0 ci,j. It is clear that, for each i, 0 < a ≤ Ci ≤ as < ak < p ,

thus Ci!6≡ 0 (mod p).

Recall also that N = ni0+ni1+· · ·+nis−1 ; the coefficient of pin in nij is a, and
a < p. Further, Ci counts the number of times that a appears as a coefficient
of qi in the whole nij . Now, using Lucas’ Theorem (Lemma 3.3) we have

N !

ni0 !ni1 ! · · ·niv !
≡ C0!C1! · · ·Cr!

(a!)C0(a!)C1 · · · (a!)Cr
6≡ 0 (mod p).

Theorem 3.1 implies that the constant term of g(t)N(mod tm− 1) is 0, and so
we must have

α
ni0
i0 · · · α

niv
iv = 0,

a contradiction. It follows that s = 1; thus the set S has only one member
and the group M is standard. This completes the proof. 2

Example 3.5. In Theorem 3.4, take q = 11 and k = 3. Now, 113−1
11−1

= 133.
The hypotheses of Theorem 3.4 are satisfied if a ∈ {1, 2} and so the subgroups
of orders 133 and 2 × 133 = 266 of F∗113 are standard as f -subgroups, where
in each case f(t) is the minimum polynomial over F11 of a generator of the
group in question.

We may use results from [5] to extend Theorem 3.4 to cover cases where it is
not immediately applicable. Suppose M ≤ A∗q is finite. It is shown in Section
2 of [5] that we may define the restricted period, δ(M), of M , as δ(h) where
h(t) is the minimum polynomial over Fq of a generator of the cyclic group M .
With this in mind, we have the following:

Corollary 3.6. Suppose that the hypotheses of Theorem 3.4 are satisfied by
f(t) and M . Let M1 ≤ M be an f1-subgroup such that δ(M1) = δ(M). Then
M1 is standard as an f1-subgroup.

Proof. If M1 were non-standard as an f1-subgroup, then by Theorem 3.1 of [5]
M would be non-standard as an f -subgroup, contrary to Theorem 3.4 above.
2

Example 3.7. Here we exhibit certain subgroups covered by Corollary 3.6
but not by Theorem 3.4. Take q = 7 and k = 3; then Theorem 3.4 guarantees
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that the subgroups of F73 of order

a

(
73 − 1

7− 1

)
= a× 57, a ∈ {1, 2}

are standard (for the respective minimum polynomials). We know from [5] that
if |M | = c

d
(q − 1) with gcd(c, d) = 1, then δ(M) = c. Thus the subgroups of

orders 57 (= 19
2
×6) and 114 (= 19

1
×6) both have restricted period 19. But the

subgroups of orders 19 (= 19
6
×6) and 38 (= 19

3
×6) in F∗73 also have restricted

period 19. Because both 19 and 38 divide 114, so that the relevant subgroups
are subgroups of the group of order 114, it follows from Corollary 3.6 that
the subgroups of orders 19 and 38, although not covered by the hypotheses of
Theorem 3.4, are also standard.
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