
Original Article

Genetic Risk Analysis of Coronary Artery Disease in a Population-
based Study in Portugal, Using a Genetic Risk Score of 31 Variants
Andreia Pereira,1 Maria Isabel Mendonça,1 Sofia Borges,1 Sónia Freitas,1 Eva Henriques,1 Mariana Rodrigues,1  
Ana Isabel Freitas,2 Ana Célia Sousa,1 António Brehm,2 Roberto Palma dos Reis3

Unidade de Investigação, Hospital Dr. Nélio Mendonça,1 Funchal – Portugal
Laboratório de Genética Humana, Universidade da Madeira,2 Funchal – Portugal
Faculdade de Ciências Médicas, Universidade Nova de Lisboa,3 Lisboa – Portugal

Mailing Address: Andreia Pereira  •
Avenida Luís de Camões, nº 57. Postal Code 9004-514, Funchal – Portugal
E-mail: andreiapereira21@gmail.com
Manuscript received June 14, 2017, revised manuscript October 12, 2017, 
accepted February 22, 2018

DOI: 10.5935/abc.20180107

Abstract

Background: Genetic risk score can quantify individual’s predisposition to coronary artery disease; however, its 
usefulness as an independent risk predictor remains inconclusive.

Objective: To evaluate the incremental predictive value of a genetic risk score to traditional risk factors associated with 
coronary disease.

Methods: Thirty-three genetic variants previously associated with coronary disease were analyzed in a case-control 
population with 2,888 individuals. A multiplicative genetic risk score was calculated and then divided into quartiles, 
with the 1st quartile as the reference class. Coronary risk was determined by logistic regression analysis. Then, a second 
logistic regression was performed with traditional risk factors and the last quartile of the genetic risk score. Based on 
this model, two ROC curves were constructed with and without the genetic score and compared by the Delong test. 
Statistical significance was considered when p values were less than 0.05.

Results: The last quartile of the multiplicative genetic risk score revealed a significant increase in coronary artery disease 
risk (OR = 2.588; 95% CI: 2.090-3.204; p < 0.0001). The ROC curve based on traditional risk factors estimated an AUC 
of 0.72, which increased to 0.74 when the genetic risk score was added, revealing a better fit of the model (p < 0.0001).

Conclusions: In conclusion, a multilocus genetic risk score was associated with an increased risk for coronary disease 
in our population. The usual model of traditional risk factors can be improved by incorporating genetic data. (Arq Bras 
Cardiol. 2018; [online].ahead print, PP.0-0)

Keywords: Coronary Artery Disease / history; Coronary Artery Disease / morbidity; Mortality; Polymorphism, Genetic; 
Epidemiology; Risk Factors.

Introduction
Coronary artery disease (CAD) has become a major health 

problem worldwide, with increasing prevalence and high 
morbidity and mortality. Traditional risk factors (TRFs) are 
insufficient to identify asymptomatic high-risk individuals. 
Epidemiology and family studies have long documented that 
approximately 50% of the susceptibility for heart disease is 
genetic.1 Knowledge of genetic predisposition to cardiac disease 
is crucial for its comprehensive prevention and treatment.

Although much of the genetic basis of coronary disease remains 
to be discovered, some progress has been made using both 
candidate gene and genome-wide association studies (GWAS).2  
In fact, a number of genetic variants have been previously 
identified at several genomic regions associated with CAD.2

Until now, the risk attributable to any individual variant has 
been modest. However, discovering and combining multiple 
loci with modest effects into a global genetic risk score (GRS) 
could improve the identification of high-risk populations and 
improve individual risk assessment.

Therefore, the purpose of this work was to generate 
a multilocus GRS based on common variants previously 
shown to be associated with CAD, and evaluate whether it is 
independent of TRFs and improves the predictive ability of a 
model based only on TRFs.

Methods

Study Population
Study population was enrolled from GENEMACOR (GENEs 

in Madeira Island Population with CORonary artery disease), 
a population-based ongoing case-control registry of CAD with 
2,888 participants, 1,566 cases (mean age 53.3 ± 8.0 years, 
79.1% male) and 1322 controls (mean age 52.7 ± 7.8 years, 
76.4% male). Cases were selected from patients discharged 
after being admitted for myocardial infarction/unstable 
angina diagnosed according to the previously described 
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criteria,3 or with CAD confirmed by coronary angiography 
with ≥ 1 coronary lesions of ≥ 70% stenosis in ≥ 1 major 
coronary artery or its primary branches. Absent or non-flow 
limiting atheroma was excluded from the analysis. The control 
group consisted of healthy volunteers, without symptoms or 
history of CAD, selected from the same population. All controls 
underwent clinical assessment of conventional cardiovascular 
risk factors, an electrocardiogram (ECG), and, in doubtful 
cases, an exercise stress test, a stress echocardiography or 
computerized tomography for calcium scoring. Cases and 
controls were matched for gender and age.

Inclusion criteria comprised an age limit of 65 years and 
being a permanent resident to avoid genetic admixture. 
Principal Component Analysis (PCA)4 was used for analysis 
of population stratification for possible genetic admixture and 
detection of significant genetic outliers (< 5%).4

The study was approved by the Hospital ethics committee 
according to the Declaration of Helsinki and all patients 
provided written informed consent.

Data collection
Data was collected from all subjects in a standardized file 

comprising demographic, clinical characteristics and TRFs 
traditional risk factors (gender, age, level of exercise, smoking 
status, arterial hypertension, dyslipidemia, diabetes, family 
history of CAD, body mass index (BMI), heart rate and pulse 
wave velocity (PWV).

“Smokers” referred to current smokers or subjects with less 
than 5 years of smoking cessation.5

Essential hypertension was considered when patients, at 
the entry into this study, were already diagnosed and/or had 
been on antihypertensive medication for more than 3 months 
or newly diagnosed hypertensives with systolic blood pressure 
(SBP)/diastolic blood pressure (DBP) ≥  140/90  mmHg 
measured on at least 3 occasions.6

Dyslipidemia was defined for control population as 
low‑density lipoprotein (LDL) > 140 mg/dL, high-density 
lipoprotein (HDL) < 45 mg/dL for women and < 40 mg/dL  
for men, Triglycerides > 150 mg/dL and apolipoprotein 
(Apo) B > 100 mg/dL. For patients (at high risk) dyslipidemia 
was considered when LDL > 100, HDL < 45 mg/dL 
for women and < 40 mg/dL for men, triglycerides > 
150  mg/dL, Apo B >  100  mg/dL and non-HDL (total 
cholesterol‑HDL) > 130 mg/dL.7

Subjects were classified as having diabetes if they were 
taking oral anti-diabetic medication or insulin or if their fasting 
plasma glucose was higher than 7.0 mmol/L or 126 mg/dL.8

Subjects were considered to have a family history of 
premature cardiovascular disease (CVD) if the father or brother 
had been diagnosed with CVD under the age of 55 or mother 
or sister under the age of 65.

The definition of other TRFs was based on the standard 
criteria, as previously reported.9,10

Biochemical analysis
Blood samples were extracted after 12 hours’ fasting. 

Biochemical analyses were performed at the Central 

Laboratory of the Hospital, according to standard techniques. 
In order to determine total cholesterol, HDL, LDL, triglycerides 
and glucose, blood samples were placed in dry tubes, 
centrifuged half an hour later at 3,500 g and subsequently 
quantified by an enzymatic technique using an “AU 5400” 
(Beckman Coulter) autoanalyzer. Biochemical markers such as 
lipoprotein-a – Lp(a), (Apo B), and high-sensitivity C-reactive 
protein (hs-CRP) were quantified by immunoturbidimetry also 
using an “AU 5400” (Beckman Coulter) automatic system.

Single Nucleotide Polymorphisms (SNP) selection
Two parallel approaches were employed to identify 

SNPs for the GRS. In the first approach, we searched the 
National Human Genome Research Institute database, 
which included SNPs identified by means of GWAS and 
catalogued based on phenotype and/or trait. We searched 
for the keywords: “coronary artery disease”, “coronary 
disease”, “myocardial infarction” and “early myocardial 
infarction.” The second approach included SNPs that were 
identified through candidate gene approaches, included in 
a published GRS for CAD.

Including criteria included genes described in previous 
studies with an Odds Ratio (OR) for CAD ≥ 1.1 and a 
minor allele frequency (MAF) > 5%. Genes with low 
Hardy-Weinberg equilibrium (p < 0.002) (after Bonferroni 
correction) were excluded.

In total, 33 SNPs were selected according to their 
possible CAD-related function: association with cell cycle, 
cellular migration and inflammation (rs1333049 (9p21.3), 
rs4977574 (CDKN2B), rs618675 (GJA4), rs17228212 
(SMAD3), rs17465637 (MIA3), rs12190287 (TCF21), 
rs3825807 (ADAMTS7), rs11556924 (ZC3HC1), rs12526453 
(PHACTR1)); genes involved in pro-oxidative status 
(rs1801133 (MTHFR 677), rs1801131 (MTHFR 1298), 
rs705379 (PON 1), rs662 (PON 192), rs854560 (PON 55), 
rs6922269 (MTHFD1L); genes associated with modifiable 
risk factors such as lipids metabolism, hypertension and 
diabetes/obesity (rs3798220 (LPA), rs2114580 (PCSK9), 
rs20455 (KIF6), rs7412/rs429358 (APOE), rs964184 (ZNF259), 
rs599839 (PSRC1), rs5186 (AT1R), rs699 (AGT), rs4340 (ACE), 
rs4402960 (IGF2BP2), rs1326634 (SLC30A8), rs266729 
(ADIPOQ), rs7903146 (TCF7L2), rs17782313 (MC4R), 
rs1801282 (PPARG), rs1884613 (HNF4A), rs8050136 (FTO) 
and rs1376251 (TAS2R 50)) (Supplementary Table 1).

Genetic analyses
Genetic analyses were performed at the Human Genetics 

Lab of the University of Madeira. Genomic DNA was 
extracted from 80 µl of peripheral blood using a standard 
phenol-chloroform method. A TaqMan allelic discrimination 
assay for genotyping was performed using labelled probes 
and primers pre-established by the supplier (TaqMan SNP 
Genotyping Assays, Applied Biosystems).

All reactions were done on an Applied Biosystems 7300 
Real Time PCR System and genotypes were determined using 
the 7300 System SDS Software (Applied Biosystems, Foster 
City, USA) without any prior knowledge of individual’s clinical 
data. Quality of genotyping techniques was controlled by the 
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inclusion of one non-template control (NTC) in each plate 
of 96 wells. All SNPs TaqMan assays had blind duplicates 
accounting for 20% of all samples. Some SNP genotypes were 
randomly confirmed by conventional direct DNA sequencing, 
as 10-15% of all samples were re-amplified for sequencing. 
Call rates for SNPs in the GRS were 98%-100% and a minimum 
95% call rate was set for quality control.

Computation of the GENETIC RISK SCORE
We have tested several models to construct the GRS 

using both non-weighted and weighted scores, taking into 
consideration each pattern of inheritance for each gene locus. 
An additive score (AGRS) was generated, i.e., for each one of 
the 31 variants a score of 0, 1, and 2 was defined as there were 
0, 1 or 2 risk alleles, by calculating the accumulated sum of the 
risk alleles in these variants. Each individual could be assigned 
a GRS of 0-62. Additionally, a multiplicative GRS (MGRS) was 
calculated by multiplying the relative risk for each genotype.

Validation of the risk score calculation was performed in a 
random sample of 597 patients (20%).

Statistical analysis
Categorical variables were expressed by frequencies and 

percentages and compared by the Chi-squared test or 
Fisher’s exact test. Continuous variables were expressed as 
mean ± standard deviation (SD) or median (1st quartile – 
3rd quartile) and compared by Student's t-test (unpaired) or 
Mann-Whitney, as appropriate. The Kolmogorov-Smirnov 
test and the Levene´s test were used to test the assumption 
of normality and the homogeneity of the variables.  
All analyses were considered significant when p values 
were less than 0.05.

Binary logistic regression was used to determine the 
combined and separate effects of the variables on the 
risk for angiographic CAD. GRS was modeled using as a 
continuous variable and as quartiles, using the first quartile 
as the reference category. Multivariate analyses were used 
to adjust for 7 covariates also reported to be associated with 
CAD. We plotted receiver operating characteristic (ROC) 
curves and calculated the area under the curve (AUC) for 
logistic regression models including TRFs without and with 
GRS (quartiles). Pairwise comparison of ROC curves was 
performed using the Delong test.11 The model calibration 
was tested with Hosmer-Lemeshow goodness-of-fit test.  
A P-value less than 0.05 was considered statistically 
significant. Collinearity between the variables was measured 
by assessment of tolerance and variance inflation factor (VIF).

Associations of SNPs with CAD were considered significant 
at p < 0.05 and in aggregate with GRS models at p < 0.0015 
applying Bonferroni correction.

For MAF of 30%, the study had 70% power to detect an OR 
for CAD of 1.3 and > 90% for OR ≥ 1.35, for 2-sided alpha of 
< 0.05 for 2,000 cases and 1,000 controls. Power calculations 
used G power Statistical Power Analyses.

The potential of GRS to improve individual risk stratification 
then was measured using the net reclassification improvement 
(NRI) method,12 defined as the percentage of subjects in 

each subgroup changing categories when the new model of 
GRS (in quartiles) was added. The integrated discrimination 
improvement (IDI), defined as the incremental improvement 
prognostic value of GRS, was compared between cases and 
controls. NRI was computed by categorical and non‑categorical 
(continuous) variables using the PredictABEL package available 
in R software (version 3.2.0).

Statistical analyses were performed using SPSS version 19.0 
(IBM), MedCalc version 13.3.3.0 and R software version 3.1.2.

Results

Baseline characteristics of the population
Table 1 shows the baseline characteristics of our population. 

As expected, cases and controls showed no significant 
differences concerning gender and age, since this was a 
selection criterion. Higher frequency of dyslipidemia, diabetes, 
hypertension, physical inactivity, smoking habit, alcohol 
consumption, and family history of premature cardiovascular 
disease was found in CAD patients when compared to the 
controls (p < 0.0001). Also, PWV, BMI and waist-to-height 
ratio were higher in cases than in controls, with statistical 
significance (p < 0.05) (Table 1). The other biochemical 
variables analyzed such as hemoglobin, leucocytes, fibrinogen, 
homocysteine and hs-CRP > 3 showed significantly higher 
levels in the coronary patients group when compared to the 
controls (p < 0.05) (Table 1).

Computation and analysis of Genetic Risk Score
Deviation from Hardy-Weinberg equilibrium for the 

33 genotypes at individual loci were assessed using the 
Chi‑squared test and p < 0.002 with Bonferroni correction 
for all SNPs included. LPA gene variant was excluded for 
further analyses due to its low Hardy-Weinberg p-value  
(p < 0.002). Linkage disequilibrium for the mutually 
adjusted SNPs within the genes was studied. CDKN2B gene 
was excluded because of the strong linkage disequilibrium 
with another selected SNP, rs1333049, which resides in the 
9p21 region. The remaining 31 SNPs were included for 
further analysis (Supplementary Table 1).

In this study, the MGRS had the highest AUC value 
for assessing the risk for CAD disease with a specificity of 
62.3% and sensitivity of 54% (data not shown) and therefore 
this model was computed in the subsequent analyzes 
(Supplementary Table 2).

The MGRS of 31 SNPs was significantly higher in CAD cases 
than in controls (0.67 ± 0.73 vs 0.48 ± 0.53; p < 0.0001), 
even by quartile and gender discrimination (Table 2).

A normal distribution of risk alleles in the total sample 
set including cases and controls is shown in Figure 1. 
While CAD patients exhibited lower GRS values, risk alleles 
were more prevalent in this group than in controls. In CAD 
patients, a mean of 27 risk alleles was seen in 52% of the 
individuals, and a mean of 26 risk alleles was found in 53% 
of controls (Figure 1).

When analyzed in deciles, GRS showed that the increase in 
the number of risk alleles was significantly associated with CAD 
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as shown by inter-deciles p values (1st decile: OR = 0.612 
(0.439 – 0.853), p = 0.004; 9th decile: OR  =0.957 
(01.400 – 2.734), p < 0.0001 and last decile: OR = 2.472 
(1.755 – 3.482), p < 0.0001) (Figure 2).

A logistic regression analysis was performed with 
GRS quartiles, using the first as the reference category. 
Results  showed an increase in CAD risk with statistical 
significance across the 2nd, 3rd and 4th quartiles with respective 
ORs and CIs of 1.372 (1.114 – 1.689), 1.878 (1.522 – 2.317) 
and 2.588 (2.090 – 3.204), respectively (data not shown).

A multivariable predictive model for CAD incorporating 
GRS quartiles and TRFs is presented in Table 3. The 4th GRS 
quartile has intermediate contribution to CAD phenotype 

– OR = 2.727 (2.162 – 3.439), greater than dyslipidemia – 
OR = 1.298 (1.023 – 1.646) and hypertension – OR = 2.067 
(1.744 – 2.450). The reduced contribution of dyslipidemia on 
CAD risk may be due to standard use of statins in CAD patients. 
Extended adjustment for cofounding variables (gender, age, 
heart rate, PWV, low exercise level, BMI and family history of 
CAD) revealed modest increases in the OR for TRFs and the 
2nd and 3rd quartiles of GRS.

We used VIF to test for multi-collinearity among the 
variables included in our GRS adjusted logistic regression 
model. Tolerance and VIF were respectively > 0.1 and < 10 
attesting for no significant collinearity between variables 
included in the adjustment model.

Table 1 – Baseline characteristics of our study population

Variables Cases (n = 1566) Controls (n = 1322) P value

Age, years 53.3 ± 8.0 52.7 ± 7.8 0.053

Male Gender, n (%) 1238 (79.1%) 1010 (76.4%) 0.087

Dyslipidemia†, n (%) 1398 (89.3) 1103 (83.4) 0.0001

Total Cholesterol, mg/dl 180.0 (154.0 – 213.0) 205.0 (181.0 – 234.0) < 0.0001

LDL, mg/dl 104.6 (82.8 – 128.7) 127.2 (104.7 – 152.3) < 0.0001

HDL, mg/dl 41.0 (35.0 – 49.0) 48.0 (41.0 – 57.0) < 0.0001

Triglycerides, mg/dl 141.0 (102.0 – 210.0) 121.0 (89.0 – 174.0) < 0.0001

Apolipoprotein B, mg/dl 93.9 (75.5 – 113.3) 92.5 (43.0 – 115.8) < 0.0001

Lipoprotein (a), mg/dl 20.4 (9.2 – 62.0) 12.8 (8.8 – 29.3) < 0.0001

Diabetes, n (%) 533 (34.0) 175 (13.2) < 0.0001

Fasting glucose, mg/dl 106.0 (96.0 – 129.0) 99.0 (91.0 – 109.0) < 0.0001

Hypertension, n (%) 1114 (71.1) 700 (53.0) < 0.0001

SBP, mmHg 137.9 ± 20.8 136.2 ± 18.1 0.024

DBP, mmHg 82.6 ± 11.8 83.9 ± 11.1 0.002

Heart rate, bpm 68.8 ± 12.5 72.3 ± 11.5 < 0.0001

PWV, m/s 8.6 ± 1.9 8.3 ± 1.7 < 0.0001

Smoking status•, n (%) 730 (46.6) 309 (23.4) < 0.0001

Level of exercise*, n (%) 573 (36.6) 761 (57.6) < 0.0001

Alcohol, g/day 24.7 ± 49.7 18.2 ± 28.2 < 0.0001

BMI, kg/m2 28.6 ± 4.2 28.1 ± 4.5 0.007

Waist/Height 0.61 ± 0.06 0.59 ± 0.07 < 0.0001

Family history, n (%) 373 (23.8) 167 (12.6) < 0.0001

Hemoglobin, g/dl 14.6 (13.8 – 15.4) 14.7 (14 – 15.4) 0.001

Leucocytes, 103/µl 7.1 (6 – 8.3) 6.6 (5.6 – 7.8) < 0.0001

Fibrinogen, mg/dl 387 (337 – 444) 361 (315 – 409) < 0.0001

Homocysteine, µmol/L 12.2 (10 – 14.9) 11.4 (9.7 – 13.6) < 0.0001

Hs-CRP, mg/L > 3, n (%) 648 (41.4) 496 (37.5) 0.035
† Controls: LDL > 140 mg/dL, HDL < 40 mg/dL for men and < 45 mg/dLfor women; triglycerides > 150mg/dL, APO B > 100 mg/dL. Cases: LDL > 100 mg/dL; 
triglycerides > 150 mg/dL, HDL < 40 mg/dL for men and < 45 mg/dL for women; APO B > 100 mg/dL, non HDL > 130 mg/dL; *More than 40 min/week; •Current smokers 
or < 5 years of cessation; HDL: high density lipoprotein; LDL: low density lipoprotein; SBP: systolic blood pressure; DBP: diastolic blood pressure; PWV: pulse wave 
velocity; BMI: body mass index; Hs-CRP: high sensitivity C-reactive protein. Categorical variables compared by the Chi-square test. Continuous variables expressed 
as mean ± standard deviation (using Student’s t-test) and biochemical variables as median (1st quartile – 3rd quartile) (using Mann-Whitney’s test). Statistical 
significance: p < 0.05.
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Figure 1 – Distribution of the number of risk alleles by cases and controls. A logistic regression model was used to determine the coronary artery disease risk by 
the number of risk alleles compared to the number of reference alleles (23 alleles, in relation to the median value of the controls). Dots: regression analysis odds 
ratio for coronary artery disease.
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Table 2 – Distribution of multiplicative genetic risk score (MGRS) for cases and controls by quartiles and gender

Variables Cases (n = 1566) Controls (n = 1322) p value

MGRS 0.67 ± 0.73 0.48 ± 0.53 < 0.0001

1st Quartile 0.18 ± 0.05 0.17 ± 0.05

< 0.0001
2nd Quartile 0.33 ± 0.05 0.33 ± 0.05

3th Quartile 0.52 ± 0.07 0.52 ± 0.07

4 th Quartile 1.35 ± 1.02 1.18 ± 0.88

MGRS male 0.67 ± 0.77 0.48 ± 0.44 < 0.0001

MGRS female 0.65 ± 0.58 0.51 ± 0.74 0.006

MGRS was expressed as mean ± standard deviation (SD) (using Student’s t-test). Statistical significance: p < 0.05.

Two ROC curves were plotted based on the TRFs without and 
with the GRS (Figure 3). The first ROC curve estimated an AUC 
of 0.72, which increased to 0.74 when the GRS was added, 
revealing a better fit of the model (p < 0.0001) (Figure 3).

The NRI and its p value were used to make conclusions 
about improvements in prediction performance gained by 

adding a set of biomarkers to an existing risk prediction 
model. The addition of GRS quartiles to TRF improved the 
risk classification of the models (Table 4). This new marker 
provided a continuous NRI of 31% (95% CI: 23.8-38.3%; 
p < 0.0001) with 14.6% reclassification of CAD patients and 
16.4% of healthy control population (Table 4).
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Figure 2 – Distribution of genetic risk score in deciles by cases and controls. A logistic regression model was used with the 5th decile of the controls as the reference class.
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Table 3 – Multivariate analysis performed with the multiplicative genetic risk score (MGRS) (quartiles) and traditional risk factors

Variables OR* (95% CI) p value OR+ (95% CI) p value

MGRS (Quartiles) ------ ------ ------ < 0.0001

2nd 1.355 (1.082 – 1.698) 0.008 1.406 (1.107 – 1.786) 0.005

3rd 1.934 (1.539 – 2.429) < 0.0001 2.006 (1.575 – 2.554) < 0.0001

4th 2.727 (2.162 – 3.439) < 0.0001 2.657 (2.083 – 3.389) < 0.0001

Smoking 3.440 (2.887 – 4.100) < 0.0001 3.651 (3.030 – 4.401) < 0.0001

Diabetes 3.138 (2.559 – 3.847) < 0.0001 3.436 (2.763 – 4.273) < 0.0001

Hypertension 2.067 (1.744 – 2.450) < 0.0001 2.187 (1.816 – 2.633) <0.0001

Dyslipidemia 1.298 (1.023 – 1.646) 0.032 1.344 (1.044 – 1.731) 0.022

Constant 0.186 < 0.0001

Using forward Wald method (SPSS vs. 19.0); Dyslipidemia. Controls: LDL > 140 mg/dL, HDL < 40 mg/dL for men and < 45 mg/dLfor women; triglycerides> 150 mg/dL,  
APO B > 100 mg/dL. Cases: LDL > 100 mg/dL; triglycerides > 150 mg/dL, HDL < 40 mg/dL for men and < 45 mg/dL for women; APO B > 100 mg/dL, non HDL > 130 mg/dL; 
OR*: odds ratio adjusted for age and gender; OR+: odds ratio adjusted for gender, age, heart rate, pulse wave velocity, sedentary life style, alcohol, body mass index and family 
history; CI: confidence interval; Statistically significant for p < 0.05.

NRI was also computed using categorical variables 
and applied to this case-control study and was defined 
as the percentage of subjects changing categories in each 
subgroup when adding the new marker (CAD quartile score). 
Movement towards a better category (higher in patients than 
in controls) was calculated to address a potential impact for 
clinical use. NRI showed higher improvement capacity in 
reclassifying 19.5% of patients from the 50-75% category 
to the highest risk (75-100%) category. Likewise, 14.1% of 
healthy controls were moved down into a lower risk category, 
from 25-50% risk category to < 25% one (Table 5).

Furthermore, the inclusion of GRS quartiles to TRF also 
provided an IDI of 2.5% (95%CI: 1.9-3.1%; p < 0.0001) 
(data not shown).

Discussion
Several years ago, polymorphisms involved in specific 

biological pathways, relevant to coronary atherosclerosis, 
were genotyped to determine their association with 
CAD. This candidate gene approach revealed about 30 
high-confidence SNPs loci with significant effects on 
atherosclerosis.13 However, following traditional candidate 
gene approach has generated many conflicting results or 
with weak associations; replication studies are necessary 
for consistent validation of these results.

In 2004, Mendonça et al. first genotyped angiotensin-
converting enzyme (ACE) I/D polymorphisms in a Portuguese 
population yielding similar reports as described in literature.14
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Figure 3 – ROC curves based on the baseline model (traditional risk factors, TRFs) and after adding the genetic risk score (GRS) (quartiles) in predicting the risk 
for coronary artery disease. The two curves are based on logistic regression models incorporating conventional risk factors (diabetes, dyslipidemia, smoking and 
hypertension) with and without the GRS. AUC indicates area under curve. The Delong test compares the difference between the two AUCs (p < 0.0001).
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Table 4 – The category-free net reclassification index (cfNRI) after addition of the GRS quartiles

Group n Higher risk n (%) Lower risk n (%) p (cfNRI) cfNRI (%) cfNRI (95% CI)

CAD patients 1566 897 (57.3%) 669 (42.7%) < 0.0001 14.6% (9.7-19.5%)

Healthy controls 1322 553 (41.8%) 769 (58.2%) < 0.0001 16.4% (11.2-21.8%)

Total 2888 --- --- < 0.0001 31% (23.8-38.3%)

GRS: genetic Risk Score; CAD: coronary Artery Disease; CI: confidence Interval; cfNRI: category-free net reclassification index. This analysis uses the function 
“improveProb” from R software package “Hmisc”.

After the development of high capacity arrays in 2008,15 
GWAS examined millions of polymorphisms simultaneously 
in several ethnical subpopulations with a case-control 
design. The standardized minimum significance level set 
at 1x10-5 added reliability to cardiovascular genetics and 
put it into perspective.16

In 2007, Samani et al.17 first identified chromosomal loci 
that were strongly associated with CAD in the Wellcome 
Trust Case Control Consortium (WTCCC) study (which 
involved 1,926 case subjects with CAD and 2938 controls) 
and looked for replication in the German MI (Myocardial 
Infarction) Family Study.17

In the following years, a surprisingly large number of 
gene variants were consistently reported to be associated 
with CAD. The 9p21 variant was the most frequently gene 
variant reported across populations. The huge consortium of 
Wellcome Trust and three other European research groups 
joined for the CARDIOGRAM project that confirmed, in a 

very large sample (> 22,000 cases) of individuals of European 
ancestry, a 29% increase in risk for MI per copy of the 
rs1333049 9p21 variant (p = 2×10-²0).18

Our research group replicated this 9p21 variant analysis 
in the Portuguese population and found a CC genotype 
prevalence of 35.7% in CAD patients, with an adjusted OR of 
1.34, p = 0.010. The adjusted OR for TRF of CC genotype was 
1.7 (p = 0.018) and CG genotype of OR = 1.5, p = 0.048. 
The authors concluded that although the mechanism 
underlying the risk is still unknown, the robustness of this risk 
allele in risk stratification for CAD has been consistent, even 
in very different populations. The presence of the CC or CG 
genotype may thus prove to be useful for predicting the risk 
of developing CAD in the Portuguese population.19

The most recent meta-analysis of GWAS for (CAD) 
identified 46 genome-wide loci with significant association 
and 104 genome-wide loci potentially associated with 
increased risk.20,21
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Table 5 – Reclassification table comparing predicted coronary artery disease (CAD) risk with and without genetic risk score (GRS) quartiles

Predicted risk (without GRS) Reclassified predicted risk (with GRS) % Increase %/ Decrease

CAD patients (n = 1,566) < 25% 25-50% 50-75% 75-100%

< 25% 6 11 0 0 0,7% 0%

25-50% 44 335 123 0 7,9% 2.8%

50-75% 0 59 471 305 19,5% 3.8%

75-100% 0 0 9 203 0% 0.6%

NRI CAD patients 20.9%

Healthy controls (n = 1,322)

< 25% 65 36 0 0 2,7% 0%

25-50% 186 504 88 0 6,7% 14.1%

50-75% 0 60 268 79 6% 4.5%

75-100% 0 0 1 35 0% 0.1%

NRI controls 3.3%

NRI total 24.2%

NRI: net reclassification improvement (categorical NRI); CAD: coronary artery disease.

In our study, we found a gradual and continual increase in 
CAD risk with increasing number of CAD risk alleles carried. 
Individuals in the bottom decile are naturally protected and 
subjects in top decile of the GRS had a CAD risk of 2.472 
(1.755 – 3.482). Even though the score distribution overlaps 
between cases and controls, the GRS is significantly associated 
with CAD risk and can be used to identify subjects at highest 
risk in terms of lifestyle or therapeutic interventions.

Our results are similar to others reports in Caucasians 
populations where GRS with 13, 29 or 109 SNPs22-24 were 
independent and marginally increased the predictive power 
of TRF conferred either by AUC increases, C-index changes 
or more modern discriminative statistical methods like 
reclassification measures or improved discrimination.

We report a higher OR for the 4th quartile of GRS (2.59) 
compared to 1.66 reported by Ripatti et al. in the highest 
quintile.22 When comparing the relative weight of the GRS in 
the multivariate logistic analysis we found slightly lower OR 
than smoking, hypertension, and dyslipidemia. In Ripatti´s22 
cohort, a weighted GRS was also an independent predictor 
even after adjusting for age, sex and TRFs in a Northern 
European population-based trial. The relative risk of the GRS 
based on 13-SNP was also lower than that of dyslipidemia 
and comparable to the effects of hypertension.22

An increased power to TRFs definition has been given in this 
study. For instance, we have used a broad dyslipidemia term 
including Apo B levels as indicated by 2016 lipid guidelines.7 
Moreover, we have not considered ex-smokers until 5 years of 
cessation to account for the risk for CV disease events decrease 
be comparable to a nonsmoker.5

Thanassoulis et al.24 demonstrated that adding to a 13 
SNP-based GRS, 89 SNPs associated with modifiable risk 
factors did not increase the power of the GRS reporting a 
HR of 1.01 (95% CI 0.99 –1.03; p = 0.48). This revealed 
that the weak association of polymorphisms with CAD risk 

factors in GRS analysis could be masked by the relative 
stronger effect of other polymorphisms. Considering the lack 
of a significant association of lipid profiles with CAD risk, 
Jansen et al. reported in 2015 that several SNPs associated 
with type 2 diabetes mellitus were related with CAD risk.25 
Recently, Webb et al. identified 6 new loci associated with 
CAD at genome-wide significance. The study confirmed a 
pleiotropy between lipid traits, blood pressure phenotypes, 
body mass index, diabetes, and smoking behavior.26 Our GRS 
is an assembly of risk factors and non-risk factors-related SNP, 
reinforcing the genotype-phenotype interactions.

Limitations of this study
The main clinical utility of the GRS in our population is a 

modest improvement in risk stratification. GRS seems to be 
a better indicator of patients at a higher than average risk for 
DAC as compared with TRF stratification. The number and 
type of SNPs included is limited in our study and a larger 
number of GWAS hit SNPs should be included in further 
studies. Nevertheless, the increasing capability of analyzing 
multiple SNPs in GRS so far have not been translated into 
increasing ability of risk prediction.

Finally, this study did not include a gene-gene (G-G) and 
gene-environment (G-E) analysis. It is expected that, as better 
statistical significance arises from those interplays, the G-G and 
G-E incorporation in GRS plus TRF will increase our ability to 
accurately and individually predict risk.

Conclusions
 We conclude that a multilocus GRS based on multiple 

variants of genetic risk was associated to an increased 
cardiovascular risk in a Portuguese population. We found 
that a GRS calculated with the 31 studied SNPs was 
significantly associated to CAD and that 25% of individuals 
who carry the greatest risk alleles have, approximately, 
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Supplementary Table 1 – List of the 33 genetic variants previously associated with coronary artery disease risk, used for the development of 
the genetic risk score in the study population

SNP ID Nearest 
gene Chr Position Genotypic OR (95%CI) p value Allelic OR (95%CI) p value MAF (%) Potential Mechanism

of Action

rs1333049 9p21.3 9 22125504 1.147 (1.036-1.270)+ 0.008 1.155 (1.041-1.282) 0.007 45.8 Cellular

rs4977574 CDKN2B 9 22098575 1.161 (1.049-1.286)+ 0.004 1.172 (1.056-1.302) 0.003 42.0 Cellular

rs618675 GJA4 1 34922761 1.143 (0.792-1.649)* 0.475 1.046 (0.918-1.191) 0.502 19.6 Cellular

rs17228212 SMAD3 15 65245693 1.202 (0.888-1.629)* 0.234 1.025 (0.910-1.155) 0.684 25.3 Cellular

rs17465637 MIA3 1 222650187 1.088 (0.971-1.220)+ 0.148 1.088 (0.971-1.220) 0.147 28.6 Cellular

rs12190287 TCF21 6 134256218 1.230 (1.100-1.375)+ < 0.0001 1.226 (1.098-1.368) 0.0003 32.7 Cellular

rs3825807 ADAMTS7 15 76876166 1.073- (0.967-1.191)+ 0.185 1.074 (0.967-1.194) 0.181 41.2 Cellular

rs11556924 ZC3HC1 7 130023656 1.227 (1.058-1.423)* 0.007 1.157 (1.037-1.290) 0.009 34.3 Cellular

rs1332844 PHACTR1 6 12927312 1.113 (1.003-1.235)+ 0.044 1.113 (1.003-1.236) 0.043 44.3 Cellular

rs2114580 PCSK9 1 55167236 1.079 (0.821-1.417)* 0.587 0.974 (0.866-1.096) 0.665 26.3 Lipids

rs3798220 LPA 6 160540105 1.484 (1.212-1.816)+ < 0.0001 2.167 (1.452-3.235) < 0.0001 2.1 Lipids

rs20455 KIF6 6 39357302 1.129 (0.896-1.424)* 0.306 1.060 (0.949-1.184) 0.302 32.8 Lipids

rs7412/ 
rs4293581 APOE1 19 44908822/

44908684 1.261 (1.062-1.497)# 0.008 1.231 (1.056-1.435) 0.008 13.4 Lipids

rs964184 ZNF259 11 116778201 1.131 (0.986-1.298)+ 0.078 1.130 (0.986-1.295) 0.079 17.7 Lipids

rs599839 PSRC1 1 109279544 1.059 (0.933-1.203)+ 0.375 1.058 (0.933-1.201) 0.379 21.4 Lipids

rs1801133 MTHFR 677 1 11796321 1.178 (1.017-1.365)# 0.029 1.114 (0.998-1.243) 0.055 33.5 Oxidation

rs1801131 MTHFR 1298 1 11794419 0.944 (0.816-1.093)# 0.443 0.958 (0.854-1.075) 0.465 28.0 Oxidation

rs705379 PON -108 7 96324583 1.135 (0.950-1.355)# 0.163 1.068 (0.962-1.184) 0.217 46.4 Oxidation

rs662 PON 192 7 95308134 0.836 (0.652-1.072)* 0.157 0.927 (0.828-1.037) 0.186 30.1 Oxidation

rs854560 PON 55 7 95316772 1.161 (1.044-1.290)+ 0.006 1.161 (1.044-1.290) 0.006 40.4 Oxidation

rs6922269 MTHFD1L 6 150931849 1.067 (0.804-1.416)* 0.653 0.996 (0.887-1.118) 0.943 27.3 Oxidation

rs5186 AT1R 3 148742201 1.245 (0.906-1.710)* 0.177 1.062 (0.942-1.198) 0.323 24.7 RAS

rs699 AGT 1 230710048 0.932 (0.798-1.090)# 0.380 0.969 (0.873-1.076) 0.552 42.9 RAS

rs4340 ACE 17 61565892 1.165 (1.001-1.355)* 0.048 1.083 (0.973-1.205) 0.143 38.1 RAS

rs4402960 IGF2BP2 3 185793899 1.124 (0.876-1.443)* 0.358 1.020 (0.911-1.141) 0.736 30.8 Diab/Obes

rs1326634 SLC30A8 8 117172544 1.213 (0.914-1.609)# 0.181 1.081 (0.961-1.217) 0.195 25.8 Diab/Obes

rs266729 ADIPOQ 3 186841685 1.209 (1.041-1.403)# 0.013 1.165 (1.030-1.318) 0.015 23.3 Diab/Obes

rs7903146 TCF7L2 10 112998590 0.961 (0.862-1.072)+ 0.480 0.962 (0.863-1.072) 0.482 35.3 Diab/Obes

rs17782313 MC4R 18 60183864 1.314 (0.931-1.855)* 0.120 1.016 (0.896-1.152) 0.806 21.6 Diab/Obes

rs1801282 PPARG 3 12351626 1.427 (0.717-2.843)# 0.309 1.164 (0.970-1.396) 0.102 8.8 Diab/Obes

rs1884613 HNF4A 20 44351775 1.159 (0.987-1.360)# 0.072 1.106 (0.960-1.273) 0.163 16.2 Diab/Obes

rs8050136 FTO 16 53782363 1.194 (1.026-1.390)# 0.022 1.129 (1.016-1.255) 0.025 39.7 Diab/Obes

rs1376251 TAS2R 50 12 11030119 1.556 (0.767-3.155)* 0.217 1.080 (0.920-1.267) 0.349 11.9 Diab/Obes

SNP: Single Nucleotide Polymorphism; Chr: Chromosome; OR: Odds Ratio; CI: Confidence Interval; MAF: Minor Allele Frequency; RAS: Renin-Angiotensin System; 
Diab/Obes: Diabetes/Obesity; +Additive model;*Recessive model; #Dominant model; 1Resulting from a Haplotype; Table shows susceptibility loci for coronary artery 
disease, genotypic and allelic ORs and p values for the lead SNP within each locus reported in genome-wide association studies and candidate gene studies. 
Genotypic ORs are given for additive, recessive and dominant models. Potential mechanism of action is on the basis of what is already known about the function of 
the nearby genes. It includes “Cellular” (genes associated to cell cycle, cellular migration and inflammation); “Oxidation” (genes involved in pro-oxidative status) and 
associated with modifiable risk factors such as “Lipids” metabolism, hypertension (“RAS”) and Diabetes/Obesity.
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Supplementary Table 2 – Logistic regression with respective ORs and ROC curves with respective AUCs of the GRS models

GRS models OR (95% CI) P value1 AUC (95% CI) Sensitivity (%) Specificity (%) P value2

Multiplicative 1.78 (1.52 – 2.10) < 0.0001 0.61 (0.59 – 0.62) 54.0 62.3 < 0.0001

Additive 1.06 (1.04 – 1.09) < 0.0001 0.56 (0.54 – 0.58) 58.7 50.5 < 0.0001

Weighted (Best model OR) 1.02 (0.94 – 1.10) 0.660 0.57 (0.55 – 0.59) 41.0 70.3 < 0.0001

Weighted (Beta) 2.23 (1.88 – 2.65) < 0.0001 0.60 (0.58 – 0.61) 43.0 71.5 < 0.0001

Weighted (Literature OR) 1.35 (1.12 – 1.62) 0.001 0.54 (0.52 – 0.55) 53.4 54.1 0.008

Classic weighted 3.01 (2.32 – 3.89) < 0.0001 0.59 (0.57 – 0.61) 59.4 54.4 < 0.0001

OR: Odds ratio; ROC: Receiver Operating Characteristic; AUC: Area under curve; GRS: Genetic Risk Score; CI: Confidence interval; P value1: Obtained by logistic 
regression to evaluate the significance of the odds ratio; P value2: Obtained by the ROC Curve to verify the significance of the area under the curve; Statistically 
significant for p < 0.05.


