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Abstract 

dSTORM is a super resolution technique capable of breaking the diffraction limit present in conventional 

light microscopy. As a molecular imaging technique it gives access to a new kind of data that other super 

resolution techniques cannot. Some relevant findings were a) identification of nuclear pore proteins 

symmetry, b) protein distribution inside clusters at the plasma membrane c) organization between proteins 

in axons. Alzheimer’s disease is the most frequent dementia and one of the biggest problems in our aged 

society. Genomic studies identified variants in the gene CD2AP associated with the disease. Recent studies 

showed that CD2AP silencing traps the amyloid precursor protein in early endosomes, increasing the 

production of beta-amyloid: the Alzheimer’s disease hallmark toxic protein. It is unclear, however, the link 

of CD2AP as actin cytoskeleton regulator and therefore the link of F-actin on the CD2AP dependent beta-

amyloid production. Preliminary results using conventional light microscopy showed less perinuclear F-actin 

puncta upon CD2AP silencing. We aimed to merge cell biology and super-resolution microscopy to study 

F-actin patterns with nanometric precision in the perinuclear region and their relationship with endosomes. 

By accessing individual molecules, their location and by implementing quantification analysis we found F-

actin more proximal to early endosomes than late endosomes, suggesting an early role for F-actin during 

endosomal sorting and maturation. Importantly, CD2AP silencing and overexpression of wild-type and of an 

Alzheimer’s mutant form, altered the quantity of F-actin in the perinuclear region, its clustering ability and 

association with early endosomes. Our results indicate that F-actin regulation has a role in the CD2AP-

dependent mechanism of beta-amyloid production in early endosomes, thus contributing to the development 

of Alzheimer’s disease. 

 

Keywords: Alzheimer, CD2AP, dSTORM, Actin, Intracellular Traficking, Point Pattern Analysis
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Resumo 

dSTORM é uma técnica de super resolução que permite ultrapassar o limite imposto pela difração da luz 

presente em microscopia óptica convencional. Como técnica de microscopia molecular fornece novos tipos 

de informação que outras técnicas da super resolução não fornecem. Entre algumas descobertas 

relevantes tem-se: a) identificação de simetrias em proteínas do poro nuclear, b) distribuição de proteínas 

em aglomerados na membrana celular, c) organização entre proteínas em axónios. Alzheimer é o caso de 

demência mais frequente e um dos maiores problemas da nossa sociedade envelhecida. Estudos 

genómicos identificaram variantes no gene CD2AP associadas com a doença. Estudos recentes mostraram 

que ao remover CD2AP, um conhecido regulador de actina, a proteína percursora de amiloide beta é retida 

na membrana de endossomas precoces, aumentando a produção de beta amiloide, a proteína distinta da 

doença de Alzheimer. No entanto é pouco claro se a actina tem um papel na produção de beta-amiloide 

dependente de CD2AP. Resultados preliminares baseados em microscopia óptica convencional mostram 

menos quantidades de actina filamentosa na zona adjacente ao núcleo, na ausência de CD2AP. O nosso 

objectivo foi juntar a biologia celular com microscopia de super resolução para estudar os padrões de actina 

na região adjacente ao núcleo com precisão nanométrica e a sua relação com os endossomas. Acedendo 

a cada molécula, à sua localização e implementando análises de quantificação, acabámos por observar 

que a actina filamentosa presente nesta região tem uma maior proximidade com os endossomas precoces 

comparando com endossomas tardios, sugerindo um papel primário durante a maturação e distribuição da 

carga dos endossomas. Ao remover e ao sobre expressar uma forma normal e uma forma mutante de 

CD2AP também foi observada uma alteração na quantidade de actina filamentosa nesta região, bem como 

na sua capacidade de agregação e na relação com os endossomas precoces. Em suma, os nossos 

resultados indicam que a regulação de actina está implicada nos mecanismos de produção de beta amiloide 

nos endossomas precoces, que podem contribuir para o desenvolvimento de Alzheimer. 

 

Palavras-chave: Alzheimer, CD2AP, dSTORM, Actina, Tráfico Intracelular, Análise Espacial de Pontos
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1. Introduction 

 Contextualization and Pathophysiology of Alzheimer’s Disease 

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders responsible for 

60 % to 80 % of dementia cases. The hallmarks of the disease are the accumulation of amyloid-β (Aβ) 

plaques, originating from the Amyloid precursor protein (APP), outside the neurons and of 

hyperphosphorylated tau neurofibrillary tangles (NFT’s) inside neurons both ending in damage and eventual 

death of neurons 1,2. There are two forms of the disease: Early-Onset Alzheimer’s Disease (EOAD) and 

Late-Onset Alzheimer’s Disease (LOAD). EOAD happens in people under 65 years-old and is only 

responsible for 1 % to 6 % of the cases and it is potentiated by mutations in three genes involved in the 

generation of Aβ: APP, Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2). LOAD, the most common, happens 

after 65 years old. Here the major risk factors are: environmental, ageing and the inheritance of the E4 

polymorphism in APOE gene 1,3,4. The APOE-E4 is the most significant genetic risk factor and was replicated 

in multiple DNA sequences from across the human genome to identify common gene alterations in AD 

(Genome Wide-Association Study - GWAS) 5–7. Meta-analysis of several GWAS ranked these genes and 

CD2AP is among the top ten risk factors for AD, a gene involved in endocytosis and regulation of the actin 

cytoskeleton, both critical for the normal processing cascade of APP 8–10. 

 CD2AP and Intracellular Trafficking 

CD2AP is a multifunctional adapter type molecule localized in the cytoplasm, membrane ruffles and 

leading edges of cells. It has a molecular weight of approximately 70 kDa, three SH3 domains in the N 

terminus, a proline-rich region containing and a coiled-coil domain at the C terminus of the protein. SH3 

domains are found in molecules related to signaling and cytoskeleton 11 (Figure 1.1).  

 

Figure 1.1 - Schematic of CD2AP protein.  Numbers indicate the limits of each domain. Orange indicates SH3 

domains: Src homology 3 domain where the second one links to the c-Cbl protooncogene 12. Blue indicates the proline 
rich domain that interacts with the Sh3 domain of cortactin 13,14. Green is the coiled coil domain with an F-actin binding 
site15. Between proline rich and coiled coil domain there is capping protein binding site 14,16. Adapted from 12. 

The name CD2AP (CD2 – associated protein) comes from being first identified as a scaffold protein 

necessary for clustering CD2 and polarizing the actin cytoskeleton at the immunological synapse, that is, 

the interface between a T lymphocyte and an antigen-presenting cell 11. In other studies, CD2AP colocalized 

with cortactin, a protein involved in polymerization of F-actin, through interaction with the Arp2/3 complex. 

Direct interaction between the two molecules has been mapped to the proline rich region of CD2AP 13,14. 

Moreover, CD2AP is known to interact as well with capping protein (CP) 14,16, another regulator of F-actin 
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assembly. This strong connection with molecules related with actin could link CD2AP and actin in several 

mechanisms of vesicular trafficking. In addition, actin and CD2AP, were shown to colocalize when 

associated to MVBs (Multi-Vesicular Bodies) belonging to late endosomal compartments 17 and to control 

dynamic F-actin structures in early endosomes necessary to transfer VacA to late endosomes 18. These 

findings indicate that CD2AP could be necessary to sort protein into the degradative pathway (like APP) 

and this is corroborated by the fact that the formation of MVBs is required to downregulating activated 

signaling receptors and that CD2AP has been involved in EGF receptor trafficking13, PDGF receptor 12 and 

in VEGF receptor degradation19.  

 F-Actin and Intracellular Trafficking 

Actin is the most abundant protein in most eukaryotic cells, it participates in more protein to protein 

interactions than any other protein and it is an essential component of the cytoskeleton. The actin 

cytoskeleton functions in the generation and maintenance of cell morphology and polarity, endocytosis and 

intracellular trafficking and in motor functions like contraction, cell division and motility. The monomeric form, 

G-Actin interacts with other actin monomers, transforming the monomeric form in a polymerized or 

filamentous form called F-actin 20,21. 

 

Figure 1.2 - Actin treadmilling scheme and associated Actin Binding Proteins (ABPs). The barbed end (+) is the 

polymerization site where new monomers are added and the minus end (-) is the depolymerization site 22. The Arp 2/3 

complex promotes nucleation and branching activity 21,23,24. Cortactin stimulates a new conformation of the “mother” 

branch by interacting with F-actin and mediates Arp 2/3 and WASP/WASH recruitment 25–27. Capping protein binds to 

the barbed-end (+) blocking the addition or loss of actin subunits 14,16,28. Adapted from 24. 

The resultant filaments are polarized (plus and minus end). The addition of monomers is made on 

both ends but the plus end grows faster than the minus end. Monomers to be added carry ATP which can 

be hydrolyzed and converted to ADP (more instable), making easier to dissociate at the minus end, in a 

mechanism known as actin filament treadmilling 20–22,29. This is a dynamic process mediated by a large pool 

of proteins called Actin Binding Proteins (ABPs) (Figure 1.2). 

Endocytosis is required to recycle plasma membrane lipids, traffic proteins and for uptake or 

downregulation of cell surface receptors or proteins. Actin is present in the formation of clathrin coated 

endocytic vesicles, the most common endocytosis mechanism, in a polymerization process dependent of 

others ABPs like Arp2/3 complex, N-WASP and cortactin 30–32. Here actin is thought to provide the pressure 

necessary to invaginate the membrane 33–35. Preventing actin polymerization was shown to alter vesicle 
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formation and its separation from the plasma membrane 31,33. A similar mechanism might happen after 

vesicle fusion with early endosomes where the transported cargo can be sorted into tubular extensions, 

being recycled to the plasma membrane, or incorporated in endosomal intraluminal vesicles (ILVs) and 

follow to the degradative pathway 36,37. The recycling route is Arp2/3 and WASH dependent. These two 

proteins both stimulate the development of F-actin networks at the tubular extensions  to help separating 

them from endosomes 38. Upon WASH knockdown, endosomes were reported to form exaggerated tubules 

or no tubules at all, indicating that the branched F-actin networks are crucial for cargo exiting 38,39.  

Cargo for degradation depends on sorting signals. Ubiquitin is one of the responsible signals 

working through covalent attachment to cellular proteins. It changes the stability, localization, or activity of 

the target protein 40. Recognition of ubiquitinated proteins is made by the hepatocyte growth factor-regulated 

tyrosine kinase substrate (Hrs) 41. Hrs also binds to clathrin, present in early endosomes exclusively involved 

in sorting cargo to the degradative pathway. The binding of Hrs to ubiquitin and clathrin leads to the 

formation of sorting microdomains that take the cargo into ILVs, separating the two types of cargo: recycled 

and for degradation 41,42. Endosomal clathrin was reported to stimulate polymerization of F-actin at the 

immunological synapse 43 and a similar mechanism could evolve actin polymerization in ILV formation. 

 F-Actin, CD2AP and Aβ 

APP is a transmembrane protein with large extracellular domains. Its precise function remains 

unknown but several studies have shown that APP is necessary for the normal cell growth, motility, neurite 

outgrowth and survivability 44. The protein has several processing pathways and some lead to the generation 

of Aβ. After being synthesized in the endoplasmatic reticulum (ER) APP is carried to the TGN following the 

secretory pathway to the plasma membrane 45–47. At the plasma membrane, APP is either cleaved by α-

secretase to produce a soluble domain of APP called sAPPα (soluble APP) which is neuroprotective, or it 

is endocytosed 48,49. Upon entering endosomes, cleavage by β-secretase can occur, being the most 

important one BACE 1, crucial for cleavage of APP at the N-terminal β controlling the rate of generation of 

Aβ 50,51. After this, the resultant domain of APP (known as β Carboxyl Terminal Fragments – βCTF) is 

cleaved by γ-secretase, producing p83 and two main forms (depending on the cleavage site) of Aβ: Aβ 40 

and Aβ 42, being the last the most neurotoxic 52. Both BACE 1 and γ-secretase are found in endosomes. In 

normal cells the Aβ generation is kept to a minimum 53–57 since BACE 1 recycled back to the plasma 

membrane (through fission processes and recycling endosomes) 55,58 and APP is marked for degradation 

and incorporated in ILVs of the endosome and to follow the degradative pathway until the lysosomes (Figure 

1.3 a)58,59. 
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Figure 1.3 - Model for the role of CD2AP in Aβ endocytic generation in neuronal cells. a) Normal early/sorting 

endosome. In the presence of CD2AP endosomal F-actin is present at normal levels and regulates sorting mechanisms. 
APP is normally processed and Aβ levels are kept to a minimum. Some APP is cleaved by BACE1 and y-secretase. 
The major part is sorted for degradation through the degradation pathway. b) Alzheimer’s early/sorting endosome. 

Absence of CD2AP keeps unusual quantities of APP at the membrane where it is cleaved and increasing endosomal 
Aβ levels. Sorting for degradation is affected since most of APP was already cleaved, originating Aβ. F-actin levels also 
decrease and this could be in the origin of deficient sorting mechanisms for degradation. Adapted from 60. 

In a recent study, Ubelmann et al 60 showed that CD2AP knock down increased Aβ levels through 

trapping of APP at the early endosome membrane and thus increasing meeting chances between APP and 

BACE1. It was also observed, in results yet to be published, that in the in the absence of CD2AP that bright 

puncta of F-actin visualized through conventional fluorescence microscopy in the perinuclear region suffer 

a great decrease in its intensity (Figure 1.3 b). These data suggest a potential role for F-actin dynamics in 

the CD2AP-dependent sorting of APP for degradation. CD2AP could be controlling actin polymerization and 

thus control APP sorting or the membrane invagination process required for ILV formation. 

 Super Resolution Microscopy and dSTORM 

For many years the most used technique to understand biological processes was fluorescence light 

microscopy 61. However, the resolution was diffraction limited due to the wave nature of the light when 

passing through the objective of a microscope. Both Ernst Abbe and Rayleigh described it, differing only in 

the criteria of when two objects are distinguishable from each other 62 (Figure 1.4 a).  

 

Figure 1.4 - Conventional resolution limits and SMLM dSTORM protocol. a) Different resolution criteria. Both 
assuming 510 nm emission wavelength and a 1.4 objective numerical aperture. On top the individual emitter intensity 
profiles of the PSF’s (Point Spread Function). On bottom the profile of merged PSF’s. b) Raw image of a PSF. c) Fitting 
a Gaussian model to b). The black dot indicates the calculated center of the emitter. d) SMLM dSTORM localization 
protocol. From top to bottom: Top) An array of diffraction limit and indistinguishable PSF’s. Middle) After inducing the 
initial dark state, the stochastic nature of dSTORM stochastically activates fluorophores in a transient process. Bottom) 

The set of PSF’s is well resolved through determination of each center by the procedures of b) and c), resulting in higher 
resolution. Adapted from 63,64. 



Quantitative nanoscopy of endosomal F-actin: Impact of an Alzheimer’s risk factor 

5 
 

In order to watch biological processes at protein levels led to the creation of super resolution 

techniques. One of these techniques is dSTORM and it belongs to the group known as Single Molecule 

Localization Microscopy (SMLM) 65 because it detects the emitter center individually.  

The response of a microscope to a point of light is described by a model known as the Point Spread 

Function (PSF) that reflects the intensity distribution of the light coming from the emitting source 62,65–68. 

Illuminating a labeled structure results in an array of several PSFs making impossible to distinguish 

individual point sources within the same diffraction limited area due to the merging of their PSFs 67, Figure 

1.4 d-Top. dSTORM enables the presence of only one emitter present at this area at a time by using a 

combination of reversibly switchable probes like Alexa-647 and specific imaging mediums to induce 

fluorophore switching between a bright (ON) and dark (OFF) state, Figure 1.4 d-Middle, and fulfilling the 

requirements necessary to achieve the higher precision possible 69. These requirements are: a) Emitting a 

high number of photons and b) Low ONstate/OFFstate ratio (Duty Cycle). High photon count per molecule 

improves the Signal to Noise Ratio (SNR) and it’s a prime parameter to calculate with accuracy the position 

of the molecule (equation 1.1), Figure 1.4 d-Bottom. A low duty cycle lowers the probability of having more 

than one molecule in the ON state in a diffraction limited area 70.  

 𝑑 ≈  
𝜎𝑥

√𝑁
 (1.1) 

The stochastic switching behavior is a consequence of: oxidation and reduction reactions happening 

between the fluorophore and the imaging medium, stimulated by illumination with laser powers high enough 

to trigger the transition of the molecule from singlet state to triplet state. Triplet state is an intermediate state 

where the electron is still in a high energy level, without recovering to ground state and therefore not emitting 

a photon. After being able to have one emitter at a time in a diffraction limited area, the individual emitter 

positions can be extracted by fitting the emitter signal, by an appropriate PSF model function (Figure 1.4 c) 

which is an estimate between molecular position and its intensity, before they bleach (enter in a permanent 

dark state). A two dimensional Gaussian for example, described in the next equation 67, 

 
ℎ𝐺(𝑥, 𝑦 |𝜃) =  

𝜃𝑁

2𝜋𝜎2
 × 𝑒

(−
(𝑥−𝜃𝑥)2−(𝑦− 𝜃𝑦)

2

2𝜎2 )

+  𝜃0 
(1.2) 

ℎ𝐺(𝑥, 𝑦 |𝜃) represent the photon count at position (x, y), knowing the parameters 𝜃 =

{𝜃𝑥 , 𝜃𝑦 , 𝜃𝑁, 𝜃0} .Here, 𝜃𝑥 , 𝜃𝑦 are coordinates of the emitter center, 𝜃𝑁is the total number of photons, 𝜃0 is the 

background offset (signal coming from the background that is neither from camera baseline nor from the 

molecule itself) and 𝜎 is the width of the fitted Gaussian in the respective direction (x or y in 2D) 63. 

The fitted signal comes from raw images, as represented in Figure 1.4 b. Hence, it is critical that 

the acquisition is performed by cameras with high quantum efficiency and pixel size matching Nyquist 

criteria. Normally, EMCCD (Electron Multiplying Charge-Coupled Device) or sCMOS (Scientific 

Complementary Metal Oxide Semiconductor) devices are used for this ending. EMCCD have a higher 

quantum efficiency, lower read noise but suffer from excess noise per pixel (consequence of the probabilistic 

nature of the electron multiplying gain). sCMOS have a smaller quantum efficiency and higher read noise 

but they don’t suffer from excessive noise per pixel and can enable much faster acquisitions. Besides, when 

the number of collected photons is high enough, sCMOS can perform better than EMCCD cameras 71,72.
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 Materials and Methods 

 Cell Culture 

Neuroblastoma Neuro2a (N2a) cells (ATCC CCL-131) are a mouse neuroblastoma cell line. These 

cells are like neuronal precursors that can differentiate into neurons, and are able of unlimited proliferation 

in vitro. N2a cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) (DMEM + GlutaMAX 

supplement, Gibco, Life Technologies) supplemented with 10 % fetal bovine serum (FBS) (Sigma-Aldrich) 

in a humidified incubator at 37 °C with 5 % CO2. After reaching 80-90% confluence they were washed once 

with phosphate buffered saline (PBS, pH 7.4) (Gibco, Life Technologies) and trypsin (Life Technologies) 

was added to dissociate adherent cells from the dish. After trypsin addition, cells were incubated 5 minutes 

at 37 °C with 5 % CO2. Trypsin activity was stopped by adding complete medium (DMEM + GlutaMAX 

supplement + 10% FBS). To maintain cell culture, the resulting cell suspension was split in a dilution of 1:10 

to a dish. Cells were counted using a Neubauer Chamber and platted in different amounts to perform 

different experiments. 150 000 cells per mL were plated to evaluate the effect of CD2AP wild type and 

mutant form on early endosomes. To assess the effect of CD2AP downregulation (siRNA for CD2AP) on F-

actin patterns and their relation with early endosomes, 50 000 cells per mL were plated to reach the best 

confluence after 72h of incubation. 

 DNA Transfection 

N2a cells were plated in glass coverslips inside a 6-well plate and cultured in complete medium in 

5% CO2 at 37 °C. After 24h of culture, the confluence was about 80%–90% and cells were transiently 

transfected with 0.5µg of cDNA with Lipofectamine 2000 (Life Technologies). Cells were analyzed after 24h 

of treatment. We used the following DNA plasmids encoding: CD2-associated protein in expression vector 

pEGFP, hereafter referred as wild type, and gently ceded by M. Cormont (University of Nice); CD2-

associated protein with a gene variation on the 633 position (K633R) in expression vector pEGFP, hereafter 

referred as the mutant form; the empty vector pCS2 with GFP; and also, Rab5 in expression vector pEGFP, 

a gift from M. Arpin (Institut Curie). 

 siRNA Transfection 

For small interfering RNA (siRNA) treatment, N2a cells were transiently transfected with 10 nM 

specific siRNA with Lipofectamine RNAiMax (Life Technologies). The amounts and volumes are given on a 

per well basis. The following siRNA oligonucleotides were used: as siControl a non-targeting control siRNA 

(10uM) (UUC UCC GAA CGU GUC ACG UTT ACG UGA CAC GUU CGG AGA ATT) (Life Technologies) 

and for knockdown of CD2AP, siCD2AP (10uM) (Santa Cruz). Cells were analyzed after 72 h of treatment. 

When indicated, cDNA was transfected after 48 h of siRNA treatment and cells were analyzed after 24 h 

(when transfecting with Rab5). 

 Immunofluorescence 

Cells were washed 2 times with PBS 1X to remove the reminiscent culture medium. They were then 

fixed with PFA/PEM solution (Appendix A) in order to preserve the actin cytoskeleton the best way possible 
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73 for 10 min, after which were washed four times with PBS 1X. After this, cells were permeabilized using a 

solution of 0.1 % (w/v) of saponin (Sigma Aldrich) in PBS 1X for 30 minutes. Then, cells were washed with 

PBS 1X four times and blocked using a solution of 2 % (w/v) BSA (Sigma-Aldrich) in PBS 1X for 30 minutes, 

washed again with PBS 1X four times. After this cells were incubated at 4 ºC overnight with primary 

antibodies (Appendix A). Cells were then washed four times with PBS 1X to remove the excess of primary 

antibody. Appropriate secondary antibodies or probe (Appendix A) diluted in blocking solution were used 

for 1 hour at room temperature. After washing four times with PBS 1X, cells were fixed again in PFA/PEM 

solution for 5 minutes and washed four times with PBS 1X.  

 Imaging Medium Preparation 

Before dSTORM acquisitions, samples were mounted in concave slides (VWR) using a modified 

version of the imaging buffer previously reported in several studies 70,74. All the intermediate solutions are 

described in the Appendix A. It is composed by 140 µL PBS 1X (74.6 %), 20 µL MEA (10.6 %), 20 µL 

Glucose 40 % (10.6 %), 4 µL cyclooctatetraene (2.1 %) and 4 µL oxygen scavenger (2.1 %). Slides were 

then sealed with twinsil (Picodent). Percentages indicate solution volume fraction. 

 Image Acquisition and Analysis 

Images were acquired on a custom made system based on a Nikon Ti microscope body, equipped 

with a sCMOS camera, Hamamatsu Flash ORCA 4.0, using the a Nikon 100X 1.45 NA Oil immersion 

objetive. A 642 nm Vortran Stradus was used to excite Alexa-647 at 350 W/cm2. For maximum specificity a 

Chroma 640LP filter for 642 excitation were used. Images were acquired with MicroManager microscope 

control software 75. Each acquisition was composed by 20000 frames with an exposure time of 10 ms. 

Reconstructed images using ThunderSTORM 76 were rendered to a pixel size 10 times smaller than the 

camera pixel size, yielding to a pixel size in dSTORM images of 14.1 nm x 14.1 nm. The output of 

ThunderSTORM is in the form of pointillist x-y coordinates of the localized fluorophores that can have up to 

millions of entries. All measurements are performed in RStudio 77, a free and open-source integrated 

development environment (IDE) for R, a programming language for statistical computing and graphics. 

Before feeding the coordinates of the localized emitters to Rstudio every list passes through an optimization 

protocol that includes choice of ROI (Appendix B), population culling and a merging algorithm (explained 

and discussed section 3.2.2). F-actin pattern study and measurements are described in Appendix D. All 

the data is presented as mean ± SEM (Standard Error of the Mean). 
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 Results and Discussion 

 dSTORM vs Conventional Fluorescence Microscopy 

In this section we discuss the improvement in resolution offered by dSTORM when compared with 

conventional epifluorescence imaging but also the main challenges arising when using dSTORM. For that 

we used F-actin super resolved images acquired in our setup (described in section 2.6).  

Colocalization of signal is a strong indicative of protein interaction in biology. However, the 

resolution in conventional epifluorescence imaging is limited and so is the certainty of this colocalization. 

Super resolution like dSTORM enables to see under the PSF and detect colocalization with more accuracy. 

 

 

Figure 3.1 - Comparison between conventional epifluorescence microscopy and dSTORM. a), d) 
Epifluorescence images of N2a cells stained with phalloidin and EEA1 antibody, respectively. b), c) White boxes 
magnification a) and d) respectively. Background was subtracted to visualization purposes. c) dSTORM reconstruction 
of b). f) Endosome segmentation of e). g) Merging of b) and f). Some Endosomes colocalize with F-actin epifluorescence 
signal. h) Merging of c) and f). White Arrows indicate areas with clear differences of colocalization with conventional 
epifluorescence microscopy vs colocalization with super resolution. Scale bars: a, d 5 µm. b, c, e, f, g, h 1 µm 

 

As observed in Figure 3.1 the epifluorescence signal is broader than the signal in dSTORM images. 

The points of highest intensity match both in epifluorescence and dSTORM, indicating that a higher intensity 

in an epifluorescence image corresponds to a higher presence of the labelled protein. The blob like signal 
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is much smaller in dSTORM images because it is no longer limited in resolution. This difference leads to an 

apparent colocalization of signal in epifluorescence images that in the end is just a superimposition of the 

molecule PSF’s, as exemplified in section 1, Figure 1.4 d. This can lead to erroneous conclusions of 

protein-protein interaction. For example, in Figure 3.1 g the top white arrow indicates an area where the F-

actin seems to colocalize with both endosomes. In Figure 3.1 h we see that in the same area there is only 

colocalization between the F-actin agglomerate and one of the endosomes. Besides improving 

colocalization analysis, dSTORM also enables the visualization of structures unresolvable by 

epifluorescence microscopy. In this case it is very important to note that although this is a technique that 

enables resolutions of a few tens of nanometers, it also requires a great deal of optimization, especially in 

terms of labeling (further discussed in section 3.2.3), and could introduce different kinds of artifacts. One 

also will never have 100 % certain of every detail presented in a super resolution image because there are 

many sources of possible errors 78. Figures 3.2 b) and e) represent epifluorescence and dSTORM 

reconstruction of the same area, respectively. One can clearly see that there is a huge improvement in the 

detail between both images. The resolution improvement is due to the sub pixel localization and because 

of it, one can transform each pixel in image b) in 10 pixels in image e) (reconstruction input of our 

implementation), and map detections with sub pixel accuracy. This procedure is explained in detail in 

section 3.2.1. 

To answer the question “Is the structure, approximately, real?” there are two common methods. The 

first one is to screen a lot of samples, increasing the comparison population of the structures in study, to 

establish common characteristics or to average the resultant images to have a better approximation of the 

real structure 79. The other one is to image known and well characterized structures like microtubules, the 

Nuclear Pore Complex (NPC), the space between the pre and postsynaptic cell, among others. They have 

an expected output and could also serve has a calibration method or a setup optimization tool to other error 

sources like setup temperature, exciting wavelength and intensity, coverslip thickness, refractive index 

mismatch between the lens immersion media and the specimen and imaging medium composition 80. 

Having said this, Figure 3.2 e) is only a possible structure of its corresponding epifluorescence image. 

Resolution wise, Figures 3.2 c) and f) also translate the improvement given by this technique.  

The resolution measurement given by the Full Width at Half Maxima (FWHM) in Figure 3.2 g), a 

common method to measure resolution, is only an approximation because the place of choice for the 

measurement has associated errors like labeling density variability, local SNR or changes in the structure 

itself 81. Again, multiple measurements are necessary in order to achieve an average with high enough 

confidence and associated errors 78. 
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Figure 3.2 - dSTORM enables sub diffraction limit imaging and higher resolution. a) Representative N2a cell 
labeled for F-Actin. d) dSTORM image of a). b) and c) Epifluorescence magnifications of white boxes in a). Both images 
were background subtracted for enhanced contrast. e) and f) Magnifications of white boxes in d). No longer being 
diffraction limited, the images enable to b) with higher detail. g) Transversal measurement of the branch represented in 

f) (red line) shows a branch width of 73 nm. Super resolution measurements are performed by fitting the intensity profile 
along a line and fitting it to a Gaussian curve. The Full Width at Half Maxima (FWHM) indicates an approximate value 
for the distance measurement and it is defined as  𝐹𝑊𝐻𝑀 = 2.35 ×  𝜎𝑥 , where 𝜎𝑥 is the standard deviation of the 
Gaussian fit of the intensity profile. Scale bars a, d 5 µm. b, e 200 nm. c, f 500 nm. 

 

Compared with conventional epifluorescence, dSTORM offers an important improvement in 

resolution but also increased error sources that must be dealt with optimization and with a considerable 

sample size to reduce possible artifacts coming from those error sources.  

 dSTORM, Single Molecule Detection and Quantitative SMLM 

Another important feature discussed in this section about dSTORM is the possibility of having 

access to individual locations of the detected molecules and being able to quantify them. This enables new 

kind of analysis but also to the necessity of implementing certain protocols to prevent errors caused by 

fluorophore behavior or by poor detections 82–87. 
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3.2.1 Detection Protocol 

Figure 3.3 a shows an epifluorescence image where all fluorophores are emitting at the same time. 

After illuminating the sample with a laser matching the absorption spectrum of the fluorophore and with 

enough power, the sample starts to show a switching behavior, illustrated in Figure 3.3 b. The fluorophore 

changes between bright and dark are transient and stochastic and each frame shows a stochastic subset 

of molecules in the ON state (activated). After having acquired enough frames similar to Figure 3.3 b, 

ThunderSTORM sweeps to every frame and starts by identifying single emitters by filtering the raw 

acquisition frames (Figure 3.3 c) and applying a threshold to the pixel intensity values obtained in the filter 

output image. Our filter settings were chosen according to Ovesny, 2016 63 and our threshold was set to 2.2 

times the frame pixel intensity values standard deviation. With lower threshold values, it was visually 

inspected that a lot of detections were coming from background fluctuations and not only from those bright 

spots observed in Figure 3.3 b. These background fluctuations are unwanted and could arise from emitters 

out of the Field of View (FOV). After this step, the filter output images are analyzed and the pixels with the 

highest intensity in an 8-connected neighborhood (a 3 × 3 matrix around central pixel) are set to be a 

putative emitting fluorophore. If these pixels have a higher value than the defined threshold they are 

considered an emitting fluorophore and the approximated location of the molecule is set to that pixel (Figure 

3.3 d red dots and Figure 3.3 e red square).  

 

 

Figure 3.3 - Detection protocol in dSTORM experiments. a) Epifluorescence image of N2a cell with labeled F.actin. 
b) Representative frame of dSTORM acquisition. The small light dots represent labeled F-actin molecules stochastically 
activated. c) Filtered frame of b). d) After identifying local maxima in c) that fulfill threshold requirements a set of 
approximated locations of molecules is determined (red dots in d). e) Sub image around identified emitter in d (white 
box) Red square is the pixel with highest intensity and the approximated location of the emitter. f) PSF Gaussian fit of 
e) and sub pixel emitter localization by least square fitting (black dot). Scale bars a-d 5 µm. Scale bars e, f 280 nm. 
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In every dSTORM experiment there is a time interval where the fluorophores are being induced to 

the metastable dark state, characterized for a high density of emitting fluorophores. Therefore we only 

included in our analysis the molecules detected after 10000 frames, allowing for the fluorophores to enter 

the metastable dark state and giving a margin to reach an equilibrium state where they switch between the 

on and off states as much separated from each other as possible. This leads to a compromise between 

erroneous detections undetected emitters because they could bleach completely before detection, also 

considered as an artifact 78. A sparse activation of the emitters is vital when using an algorithm for sub pixel 

localization that assumes to be only a single activated emitter present in the sub-image where the 

localization is performed 63,78,80. With our settings, a sub-image corresponds to an area of 7 × 7 pixels 

centered on the pixels of the molecules approximated locations (Figure 3.3 e). If we take our system pixel 

value (141 nm x 141 nm) this results in a square of 987 nm × 987 nm. The choice of this area is based on 

the PSF geometry of the fluorophore in question. That could be determined or approximated with a high 

confidence if we run the algorithm in a few frames, in the same conditions of our experiments 88. We 

observed that the standard deviation of the fitted Gaussian (σ) profiles had a mean value around 180 nm 

(that is equivalent to 1.3 in pixel units). According to ThunderSTORM creators guidelines the fitting radius 

should be an integer close to the value 3 × σ 88. The reason is because the fitting is going to assume a 

Gaussian profile of the PSF. Values of 3 × σ in this profile means that there is a 99.73 % of probability of 

the real emitter center to be within this area. By choosing a fitting radius of 3 pixels we are using a value of 

2.3 × σ which means that we are between the known percentiles of 2 × σ (95.44 %) and 3 × σ (99.73 %). 

The other alternatives were a fitting radius of 2 pixels or 4 pixels that would lead to an area of 564 nm × 564 

nm and 1128 nm × 1128 nm, respectively. Even though 4 pixels would lead to an area broad enough to 

ensure a probability > 99.73 %, the sub image area would be 1.3 times bigger than the one with 3 pixels, 

increasing the probability of finding another molecule in the same area. On the other hand, with a fitting 

radius of 2 pixels we would be only between 1 × σ (68.26 %) and 2 × σ (95.44 %), losing too much 

localization precision. Solutions based on Multi Emitter Fitting algorithms 89 enable more than one emitter 

per sub image but the image processing is very time consuming so we choose speed at the cost of some 

inaccurate detections. After having the sub image the raw image is approximated by a PSF function 

following a Gaussian model (Figure 3.3 f) (equation 1.2), where the difference between the intensity 

observed in the raw image (Figure 3.3 e) and the value returned by equation 1.2 is minimized by the least 

squares fitting method. The position where that happens is the subpixel location (Figure 3.3 f, black dot). 

3.2.2 Population optimization  

After having sub pixel localizations of emitters, we still needed to optimize our population. First of 

all, fluorophore behavior is very dependent of the nano environment that influences its photophysical 

properties 63,78,80. It was also already reported that standard deviations of the fitted Gaussians (𝜎) are 

normally distributed around expected values (fluorophore characteristic) 86 and in our experiments they were 

indeed approximately described by this distribution. To further guarantee that the sub-pixel localization was 

correctly done, we excluded detected emitters based on (𝜎) and intensity values. To know the acceptable 

interval we needed a population on which we could make decisions based on the distributions (𝜎). So, we 

first restricted the analysis to the ROI, removed the localization performed in the first 10000 frames, limited 
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the intensity per detection to 10000 photons and also removed emitters with a standard Gaussian deviation 

bigger than 400 nm (false detections). Having our population we limited the acceptable 𝜎 interval to 𝜇 ±

1.5 × 𝑆 86, represented in Figure 3.4, 

 

 

Figure 3.4 - Population culling based on the standard deviations (σ) of the fitted PSF model. The resultant 

distribution after restricting to the ROI, removing the first 10000 frames as well as emitters exhibiting a photon count 
superior to 10000 and a sigma superior to 400 nm is given by the black curve. A Gaussian fit is performed and the 
interval of σ is calculated based on the standard deviation of this fit (S). The interval (light blue) is defined as µ ± 1.5 

× S, where µ is the mean of the fitted Gaussian. 

 

This procedure removes detections originating from multiple emitters in the same sub image that 

are the most likable reason for the distribution to stretch towards the right because multiple emitters increase 

the size of the PSF. The smaller values being filtered could represent detections originating from 

background fluctuations.  

The last step was to apply a merging algorithm 86,87,90,91 that is of the most importance since we are 

studying the F-actin patterns distribution, counts and clustering. Not applying it has been reported as one 

of the most frequent artifacts in quantitative SMLM 78,80,84. In Figure 3.3 b is represented a single frame 

exhibiting some of the fluorophores in the ON state. The rate at which these fluorophores go back to ground 

state is also stochastic, which means that some could be ON through 5 frames while others could be through 

10 or 15 frames. ThunderSTORM performs emitter detection frame by frame and the detection protocol that 

we already discussed in section 3.2.1 is repeated every frame. This means that if an emitter stays in the 

ON state longer than one frame it will be erroneously considered as a different molecule in the next frame 

and localized at approximately the same position (approximately because there could be slight variations in 

the emission profile that lead to slightly different sub pixel localization). So, in order to correct this 

undesirable situation when doing cluster analysis and studying patterns we had to know until what distance 

emitters appearing in consecutive frames are still considered the same one and merging all consecutive 

detections of that same emitter into a single detection. The distance threshold criteria we used to merge 

was a function of localization uncertainty without any temporal capping (for how long this consecutive 

blinking lasts), Figure 3.5. Similarly, to the 𝜎 parameter, we could also have a distribution of localization 

uncertainty with a Gaussian shaped error. In practice, an emitter is localized but its exact position has always 

an error associated with the system acquisition instrumentation, nano environment conditions, and 
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fluctuations in the emitter photon emission among others. In our implementation, the approximate value for 

uncertainty is mathematically given by, 

 (∆�̂�𝑥𝑦)2|𝐿𝑆𝑄 =  
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Where (∆�̂�𝑥𝑦)2|𝐿𝑆𝑄 is the uncertainty of the emitter localization by least-squares method (our choice), �̂�𝜎2 is 

the standard deviation of the fitted Gaussian PSF in nm, 𝑎 is the pixel size in nm, �̂�𝑁 the estimate of the 

number of photons to a given emitter, 𝑏 the background signal (standard deviation of the residuals between 

raw data and the fitted PSF model and 𝑔 and 𝑟 correction factors dependent of the type of camera used (in 

our case sCMOS being both equal to 2) 63. Since the average localization precision of single emitters in our 

dSTORM experiments can be determined by fitting a normal distribution to our population uncertainty 

values, the 2-dimensional Gaussian PSF error profile would have a maximum of 3 times the acquisition 

average uncertainty value. An emitter has 99.7% probability of being within an area with radius equivalent 

to 3 times of the PSF 90. Having performed this merging step we reduced putative clusters originating from 

a single fluorophore emitting through several consecutive frames and an over counting of emitters since 

many localization were merged into a single localization. This procedure is very important when performing 

quantitative kind of analysis in dSTORM experiments 87  

 

Figure 3.5 - Localization uncertainty and merging same molecules appearing on consecutive frames. a) Top 

view representation of the sub-pixel localization of a molecule. Its center (x, y) is determined with an associated 
uncertainty. Using a Gaussian error model the uncertainty values correspond to the standard deviation of the Gaussian 
curve for molecular position (σ) and we can determine the known quantile 3σ. b) Transversal view of a).The percentages 
indicates the probability of having the molecule in a circle with radius corresponding to σ (yellow) and 3σ (green). c) 
Detected molecules in 15 consecutive frames without applying the merging algorithm. d) c) after applying merging 

algorithm. Scale bars 70 nm. 
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3.2.3 dSTORM Phalloidin Labeling 

Another important aspect when using dSTORM is the labeling itself. This is a technique that uses a 

lot of computational processing power to complete all the calculations necessary to obtain the super 

resolution image. But even with the perfect processing steps, meaning without input errors and an ideal 

acquisition system, the final image could not be corresponding with the real structure. This is due to the fact 

that the labeling of a structure “increases” the size of the structure that is now composed by the protein plus 

the probe with the fluorophore. Besides that, when dealing with known and unknown structures, it is 

important to perform labeling density studies to ensure the desired local density because of the random 

nature of probe binding. Furthermore, it was demonstrated by Nyquist and Shannon and Legant et al, 2016 

81 that the desired resolution is only obtained if there is a labeling density high enough to ensure the 

presence of two fluorophores separated by a distance that must be half of the desired resolution. For 

example, if the primary/secondary antibody increases the effective size of the protein by 20 nm, the 

resolution is already limited to 40 nm. Although we didn’t study the labeling density in this work, we still 

optimized the process by staining the actin filaments with phalloidin probes instead of primary and 

secondary antibody typical staining. When comparing with primary/secondary antibody complex with 

phaloidin staining the possible obtainable resolution goes from 40 nm to 5 nm. Phalloidin is a toxin that 

binds with high affinity to F-actin and has the size in the order of the 10 Å to 20 Å, and thus compatible with 

dSTORM 92,93 . 

 F-Actin Correlation with Early/Late Endosomes 

To study the F-actin patterns in N2a cells and to determine if the perinuclear F-actin is more 

associated with early or late endosomes we resort to the mapping capabilities of dSTORM. After culturing 

and fixing N2a cells, the protein of interest, F-actin, was stained with the conjugate Alexa647-phalloidin. 

Since EEA1 and LAMP1 are proteins characteristic of the early and late endosomes, respectively we co-

stained cells with primary antibody against EEA1 or with primary antibody against LAMP1. We repeated this 

experiment twice but there were some technical difficulties with the image acquisition in one experiment and 

thus the results are not included in the thesis. In the excluded experiment was obtained a very different 

number of F-actin particles detected between cells stained against EEA1 and cells stained against LAMP1. 

In fact, if we consider the mean number of F-actin particles detected per cell there is a variation of almost 

100 % between the two staining conditions. This can be explained by a deficient staining or by an insufficient 

imaging medium penetration into the cells.  

Differential and uneven staining is avoided as much as possible by staining both conditions at the 

same time, with the same preparations of phalloidin. On the other hand, the preparation of the imaging 

medium is done individually for each sample. If the buffer fails to reach the cells effectively, all the dynamic 

changes between triplet and singlet state are altered. Moreover, the blinking behavior is known to be linked 

to an environment without oxygen, being the oxygen scavenger present in the buffer critical to this end 70. If 

the blinking behavior is not efficient it will influence the detection of fluorophores. Having into account this 

big variation of F-actin particles, and since we are studying spatial patterns and their distributions, we 

decided not to include those results. In the second experiment, the mean variation of F-actin detections 

between conditions was 14 %. It is hard to say if this is acceptable or not, however it is perfectly normal to 
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have a variation in the number of particles as there are a lot variation sources, for example: metabolic or 

cell cycle status of the cell, or heterogeneous labeling density. All the measurements should be interpreted 

as relative variations, tendencies or averages instead of absolute counts.  

Before looking into the F-actin patterns we measured the presence of both types of endosomes in 

the perinuclear area because this is also an indicative of the putative relation between actin and both types 

of endosomes (Figures 3.6 a-f).  

 

 

Figure 3.6 - Early endosomes are more present in the perinuclear region than late endosomes. a), d) 

Representative epifluorescence images of N2a cells with labeled early endosomes and late endosomes. The white 
frame indicates endosomal ROI and green frame indicates Actin ROI. b), e) White frame magnification of a) and d) 
respectively and background subtraction for visualization purposes. c), f) Endosome segmentation (See Appendix B). 
g), h) Early and late endosome quantification within Actin ROI (green square) in percentage and absolute counts, 
respectively. Scale bars a, d 5 µm. Scale bars in b, c, e, f 1 µm. 
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We observed that there are more early endosomes in the region rich in actin puncta, the perinuclear 

region (Figures 3.6 g and h). In previous results from our lab, these actin puncta were found to colocalize 

often with early endosomes as observed by confocal fluorescence microscopy. This indicates that the F-

actin puncta are clusters of actin filaments polymerized at the early endosomal membrane 18. These 

structures have been described associated with endosomes of non-neuronal cell to control tubule fission 

and endosomal maturation 38,39.  

To better characterize this endosomal F-actin in neuronal cells we compared the distance of each 

F-actin detection to endosomes present in the perinuclear region. For that we calculated the distance 

between the position of each dSTORM detection and the nearest endosome, considering the perimeter of 

the segmented endosome, to obtain the percentage of F-actin detections in the vicinity of endosomes 

(Figure 3.7). It is important to note that each F-actin particle is only linked to the nearest endosome, ensuring 

no repetitions when obtaining the results. This analysis demonstrated a higher percentage F-actin 

detections in close range to early endosomes than to late endosomes. Interestingly, we observed a steep 

increase in the percentage of F-actin detections in close range with early endosomes. On average about 20 

% of the F-actin is detected at a 20 nm distance of an early endosome. On the contrary, only 6 % of the F-

actin is detected at a 20 nm distance of late endosomes, indicating a preference towards early endosomes. 

These can be consequence, as shown in Figure 3.5 h, of the superior number of early endosomes present 

in this region.  

 

Figure 3.7 - Distance between F-actin detections and endosomes. The lines are the result of the averaging 

between F-actin patterns in all cells analyzed for each type of endosomes. Distribution plot until 210 nm with a 
measurement every 20 nm. Every 20 nm is measured the percentage of F-actin. The slope in the curves is proportional 
to the increase in F-actin detections in each 20 nm interval. 

 

After having a general distribution of F-actin detections relative to endosomes, we also inspected 

the F-actin fractions and quantities present within a certain threshold distance from each endosome. We 

choose 50 nm as threshold distance because it is 2.5 times the 20 nm distance at which we observed the 



Quantitative nanoscopy of endosomal F-actin: Impact of an Alzheimer’s risk factor 
 

19 
 

greatest increase of F-actin detections. We measured the percentage of the total detections to eliminate 

sample variability, Figure 3.8 a), but also of the absolute counts, Figure 3.8 b), to eliminate the potential 

bias introduced by the choice of a ROI.  

 

Figure 3.8 - Quantification of F-actin detections per endosome. A threshold of 50 nm was fixed for each endosome. 
a) F-actin detections per endosome as percentage of the total F-actin present in the interest ROI. b) Absolute F-actin 

detections per endosome in the same ROI. 

 

Together the dSTORM analysis suggest that an early endosome has, on average, more F-actin in 

its surroundings than late endosomes, supporting the initial epifluorescence data. F-Actin found associated 

with late endosomes may originate from either novel polymerization at late-endosomes or from remaining 

partially associated during early endosome maturation 18,38,39.  

In biology a lot of interactions occur through clustering events 91. Besides that, it is known that 

mechanisms present in sorting events usually require a pressure source either to separate tubules from 

their endosome parents or possibly in invagination processes, since they require membrane deformation. 

So, it is logical to think that, having a greater concentration of protein, there is also a greater exertion of 

pressure. The main challenge in this analysis is to differentiate between clusters and non-clusters. Normally, 

if the protein in study is already well documented and there are certain parameters that tend to occur, like 

number of particles per cluster or cluster size, and one can always follow these metrics and have an output 

supported by the literature. In our case we are studying F-actin patterns that, to our knowledge, are not 

characterized in this way. So, in order to be able to identify these clusters we had to find a way of standardize 

the inputs that will define what belongs to a cluster and what does not. We decided to implement an empirical 

strategy based on DBSCAN 94, a density based cluster algorithm, described in the Appendix C.  

Having identified F-actin clusters, we performed a cluster colocalization analysis by determining the 

fraction of endosomes within 20 nm of a cluster. 
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Figure 3.9 – F-actin clusters exhibit more colocalization with early endosomes than with late endosomes. a), 
b) show a representation of F-actin clusters (colored aggregates) and early and late endosomes (black islands), 
respectively. The black arrows shows what seems to be endosomal tubule with a big cluster. c) Shows the percentage 

of endosomes in the Actin ROI colocalizing with a F-actin cluster. 

 

Early endosomes are, on average, more associated with F-actin clusters than late endosomes 

(Figures 3.9 a-c), further suggesting that the F-actin present at late endosomes might be originated at early 

endosomes and some of its remains might still persist after maturation processes. However, this is a 

preliminary result that needs to be confirmed with more experiments. Interestingly we could observe in one 

endosome (arrows) an actin cluster (green) associated with an endosomal tubular extension (Figure 3.9 a).  

From all our results, we can conclude that early endosomes are more present in the perinuclear 

region where F-actin puncta is enriched and that F-actin is associated with both early and late endosomes. 

Importantly, there seems to be overall more F-actin and bigger association of F-actin clusters at early 

endosomes.  

 F-Actin Patterns and CD2AP 

In this section, we studied the impact of silencing CD2AP on perinuclear F-actin. CD2AP was 

knocked down using specific interference RNA following a standard protocol implemented in our lab that 

results in around 90 % decrease of CD2AP levels. The F-actin staining protocol was the same mentioned 

in the previous section but early endosomes were labeled with a plasmid encoding Rab5 and we did not 

label late endosomes.  

We started by analyzing the number of F-actin detections in CD2AP knockdown (KD) cells 

(siCD2AP) compared to cells treated with non-targeting siRNA (siCtrls). When observing a control cell, by 

epifluorescence, it had bright puncta in the perinuclear region, consistent with high clustering of F-actin in 

those locations (Figures 3.10 a, b). On the contrary, the intensity of these puncta was greatly decreased in 

CD2AP KD cells show a great decrease in (Figures 3.10 d, e). Since intensity is correlated with the amount 

of probe binding to F-actin, we predicted a decrease in dSTORM detections of F-actin in cells KD for CD2AP. 

Indeed, we obtained a reduced number of F-Actin detections and they seem more scattered in CD2AP KD 

cells (Figure 3.10 f) as opposed to control cells (Figure 3.10 c). To confirm this we plotted the number of 
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detections per cell and computed the nearest neighbor distance to analyze the compactness of F-actin 

detections (Figures 3.10 g and h). We found a considerable reduction of 64 % in mean F-actin detections 

in CD2AP KD cells and the resulting patterns were less compact. It is important also to refer that applying 

the merging algorithm explained in section 3.2.2 enabled a more accurate nearest neighbor measurement 

by avoiding distances of almost zero because of multiple consecutive detections, likely resulting of the same 

molecule. In the literature, CD2AP was found to interact with proteins involved in F-actin polymerization like 

cortactin 13,17. Cortactin interacts directly with the Arp2/3 complex, crucial for actin polymerization and 

therefore to the increase of actin particles 95,96. The lack of recruitment of cortactin may explain the overall 

reduction in F-actin observed. 

 

 

Figure 3.10 - CD2AP influences F-actin quantities and organization in the perinuclear region. a), d) 
Representative images of N2a cells labeled for F-actin in Control and in the absence of CD2AP, respectively. b), e) are, 
respectively, the white frame magnifications of a) and d). c), f) dSTORM images of b) and e). g) Shows quantity 
measurement, represented as the number of dSTORM detections. h) Shows nearest neighbor analysis being averaged 
between the cells analyzed for each condition. Scale bars a, d 5 µm. Scale bars b, c, e, f 1 µm. 

dSTORM 
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To understand if endosomal F-actin is affected in the absence of CD2AP we analyzed the dSTORM 

F-actin detections in the area of influence of early endosomes. This area of influence was defined using a 

threshold as function of each endosome radius, meaning that bigger endosomes will have a bigger 

threshold. In the previous section we fixed the radius of the endosomal area of influence at 50 nm because 

we were comparing different types of endosomes with different size distributions. Now, because all 

endosomes are of the same type, the size distribution should be approximately the same and we used it as 

our variable to the area of influence. 

 

 

Figure 3.11 - Absence of CD2AP reduces endosomal F-Actin. a), b) Representation of endosomal F-actin in control 

and in the absence of CD2AP, respectively. Red represents F-actin associated with endosomes. The threshold for 
considering a part of endosomal F-actin is a function of endosomal size. Blue is F-actin not belonging to endosomes. 
Black represents endosomes. c) Percentage of total F-actin present in the ROI that considered endosomal F-actin. 

 

We found that CD2AP KD cells have less F-actin in early endosome surroundings when comparing 

with control conditions (Figures 3.11 a, b). In control conditions the endosomal F-actin corresponds on 

average to 34 % of all F-actin present in this region (Figures 3.11 c). On the other hand, in CD2AP KD 

cells, there is a decrease of 29 % in the mean endosomal F-actin. We observed a variability in the fraction 

of endosomal F-actin in CD2AP KD cells which might be a consequence of a variable depletion of CD2AP 

or in a higher variability in the organization of the endosomal F-actin pool. When computing absolute F-actin 

counts (Figure 3.12), we observed that in CD2AP KD cells there is a mean decrease of 69 % of endosomal 

F-actin, suggesting that the polymerization of F-actin occurring at early endosomes is impaired in CD2AP 

KD cells as already observed in Gauthier et al., 2007 18. Also, from previous results of our lab, we know that 

there is a significant decrease in the intensity of F-actin puncta associated with early endosomes 

corroborating this analysis.  
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Figure 3.12 - Effect of the absence of CD2AP in absolute counts of F-actin detections per endosome. 

 

Next we performed cluster analysis following the protocol described in Appendix C. Again, this 

analysis had the purpose of identifying the clusters and to segment them. After calculating the input 

parameters of the cluster algorithm, we obtained the cluster patterns of both conditions as illustrated in 

Figures 3.13 c and f. 

 

 

Figure 3.13 - dSTORM super resolution images reveal organization of diffraction limited F-actin puncta. a), d) 

Representative epifluorescence images of N2a cells labeled for F-Actin and transfected with non-targeting siRNA (a) 
and siRNA against CD2AP (d). b), e) dSTORM reconstructions of a) and d), respectively. c), f) representation of 
DBSCAN F-actin cluster identification of b) and e), respectively. Scale bars a, d 1 µm. 

dSTORM 
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First of all, we compared the F-actin puncta in epifluorescence images (green boxes, Figures 3.13 

a and d) with dSTORM reconstructions (green boxes, Figures 3.13 b and e) and observed that almost all 

epifluorescence puncta corresponded to dSTORM clusters in control cells while in CD2AP KD cells the 

epifluorescence F-actin puncta often corresponded to unclustered or small F-actin clusters structures 

(Figures 3.13 d and e), Quantification and plot of the number of clusters as well as the number of particles 

per cluster showed a decrease of 77 % in the mean number of clusters (Figure 3.14 a) and of 48 % in the 

mean number of F-actin detections per cluster (Figure 3.14 b) when comparing CD2AP KD cells to control 

conditions. The decrease in the number of clusters corroborates the results from the nearest neighbor 

analysis (Figure 3.10 h) because if the particles are more scattered then the DBSCAN density requisites 

are not so often fulfilled and there will be less clusters.  

 

 

Figure 3.14 – Cluster Analysis in CD2AP KD cells. a) Number of Clusters per ROI per condition. b) Number of F-

actin detections per Cluster.  

 

We also calculated the fraction of clustered F-actin (Figures 3.15 a-c). This is a useful 

measurement because it can translate the capacity of F-actin assembly/stabilization and can be used in 

future studies that include proteins responsible for actin dynamics, cytoskeleton organization and regulation. 

We found a 69% reduction in clustered F-actin further supporting that upon CD2AP KD F-actin 

assembly/stability decreases (Figure 3.15 c). When looking at the number of F-actin detections we pointed 

the lack of cortactin recruitment caused by the absence of CD2AP as a possible reason for the decrease in 

polymerization activity and therefore for the decrease in F-actin detections. When looking to clustering 

activity, one possible explanation for the decrease in number of F-actin clusters, detections per cluster and 

fraction clustered might be the lack of activity of CP, known to stabilize dense F-actin networks by keeping 

the filaments short but stimulating the growth of new filaments. CP is not normally recruited in the absence 

of CD2AP and that might explain low clustering ability 14. 

Previous analysis made in our lab using conventional fluorescence microscopy indicated that the 

percentage of early endosomes showing F-actin puncta colocalization decreased very slightly in the 

absence of CD2AP. In contrast, the cluster analysis based on dSTORM detections indicated that CD2AP 

KD cells had a 83 % decrease in the mean percentage of early endosomes in the perinuclear region with 
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colocalizing F-actin clusters (Figures 3.15 d-f). First of all, apparent colocalization of F-actin puncta with 

endosomes in conventional epifluorescence imaging can be refuted by using dSTORM as was already 

discussed in section 3.1 (Figures 3.1 g-h). Second, the wide-field F-actin puncta taken as clusters can be 

dismantled after dSTORM reconstruction into more than one cluster or in no cluster at all (might not fulfill 

density requisites). Nevertheless, we need to increase our sample before being able to confirm this 

tendency. 

 

 

Figure 3.15 - F-Actin exhibits limited clustering assembly and a decrease in cluster colocalization with early 
endosomes without CD2AP. a), b) Clusters with and without CD2AP, respectively. Red indicates clusters and black 
dots are detections not belonging to any cluster identified by DBSCAN. c) Quantification of the percentage belonging 
to a cluster for both conditions. d), e) Cluster colocalization with endosomes. Color aggregates represent the clusters 
and black islands represent the endosomes. f) Percentage of endosomes with colocalizing clusters. 

 

Overall, the results in this section seem to place CD2AP as a major perinuclear F-actin regulator, having a 

great influence not only in the assembly of F-actin into clusters but also in its the presence at early 

endosomes and in the perinuclear region in general. 

 F-Actin and CD2AP Mutant 

After the identification of a rare mutation in CD2AP predicted to be deleterious in AD 97 we decided 

to investigate its impact in F-actin patterns using dSTORM. Previous results reported in the literature 

associate the C-terminal of the CD2AP protein to interact with F-actin and necessary to form F-actin 

structures at the cytoplasm and in early endosomes 18. In order to be able to observe the effects that this 

particular mutation has on the perinuclear F-actin patterns we transfected cells with specific DNA plasmids 

encoding CD2AP Wild Type (WT), the mutant form tagged with GFP (MUT) and a vector expressing GFP 
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as control (GFP). GFP fluorescence signal was used to identify the transfected cells. We labeled F-actin 

and early endosomes following the same protocol as in section 3.3. 

 

 

Figure 3.16 - Perinuclear F-Actin is altered when overexpressing Wild Type and Mutant CD2AP. a), d), g) 

Epifluorescence images of N2a cells stained against F-Actin in control, wild type and mutant conditions, respectively. 
b), e), h) white frames magnifications of a), d) and g) respectively. c), f), i) are dSTORM reconstructions of b), e) and 
h). j) F-Actin dSTORM detections in the perinuclear region. k) Cumulative Nearest neighbor distances in percentage of 
total F-actin detected in this region. Scale bars a, d, g 5 µm. Scale bars b, e, h, c, f, i 1 µm. 

 

Figures 3.16 a-i shows the perinuclear F-actin in all experimental conditions. Both control and Wild 

Type conditions (Figures 3.16 a-f) exhibited similar F-actin puncta as visualized by epifluorescence and 

dSTORM 
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similar F-actin clusters as visualized in dSTORM reconstructions. In CD2AP mutant cells, the F-actin pattern 

appeared more scattered in opposition to the big clusters and compact structures detected in control and 

Wild-Type conditions (Figures 3.16 g-i). Interestingly, when analyzing the number of F-actin detections 

(Figure 3.16 j), we detected a 45 % mean decrease of F-actin detections in cells expressing wild-type and 

mutant CD2AP compared to control cells. The decrease in wild type conditions suggests that an excess of 

CD2AP disturbs F-actin polymerization and with these results we have no evidences that the mutation 

affects the F-actin polymerization in a different way. Besides that, with these results we could hypothesize 

that there is more than one mechanism through which CD2AP affects F-actin polymerization since 

interaction with cortactin should not be affected neither in Wild Type and Mutant forms. In addition, the 

nearest neighbor curves (Figure 3.16 k) confirmed a gradual decrease in the patterns compactness, 

indicating that both the wild type and the mutation are altering F-actin stabilization.  

 

 

Figure 3.17 - Endosomal F-Actin is similar when comparing overexpression of Wild Type and Mutant CD2AP. 
a), b) Percentage of endosomal F-Actin and Absolute F-Actin dSTORM detections within endosomal distance threshold. 

 

When overexpressing wild type and mutant CD2AP we noted that the average endosomal F-actin 

percentage decreased 16 % and 4 %, respectively, compared with control conditions (Figure 3.17 a). In 

contrast, we observed a steeper decrease in the absolute count of detections per endosome of nearly 50% 

for both wild-type and mutant CD2AP (Figure 3.17 b). The lack of difference between Wild-Type and Mutant 

form of CD2AP suggests that the mutation has an effect similar of having an excess of healthy protein in 

the F-actin polymerization at early endosomes.  

We also did a cluster analysis (Figures 3.18 c, f, i) and found an important 52 % mean decrease 

of F-actin clusters in CD2AP mutant cells while observing a 38 % decrease in CD2AP wild-type cells. 

Additionally, the absolute number of F-actin detections in each cluster was more reduced in CD2AP mutant 

(56 %) than in wild-type cells (38 %) in comparison with control cells. We observed a larger variability in the 

number of clusters of the mutant condition which may be consequence of the also variable number of F-

actin detections (Figure 3.16 j) or because of different quantities of mutant protein expressed between cells. 
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Figure 3.18 - Cluster analysis overexpressing Wild Type and Mutant CD2AP. a), d), g) Representative 
epifluorescence images labeled against F-Actin in control, wild type and mutant overexpression, respectively. b), e), h) 
dSTORM reconstruction of a), d) and g) respectively. c), f), i) DBSCAN cluster identification of b), e) and h), respectively. 
The input parameters are k = 30 and ε = 60 nm. j) Number of identified clusters per condition. k) Number of dSTORM 

F-Actin detections per cluster. Scale bars 1 µm. 

 

Finally, we determined the percentage of clustered F-actin (Figures 3.19 a-c) and inspected their 

colocalization with early endosomes (Figures 3.19 d-f). In wild type conditions there was a 29% reduction 

in clustered F-actin and a 28 % reduction in colocalization with early endosomes. Differently in CD2AP 

mutant cells the F-actin pattern exhibited a more important 67 % reduction in the percentage of clustered 

F-actin and a similar 51% reduction in the colocalization of these F-actin clusters with early endosomes. 
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Our cluster analysis showed dissimilarities between the Wild Type and Mutant forms. The decrease 

observed in the mutant conditions suggests that the mutation at the actin binding site of CD2AP might have 

great influence in the formation and stabilization of F-actin clusters in N2a cells (Figure 3.19 g). Additionally, 

F-actin structure formation at early endosomes is also greatly decreased in this condition (Figure 3.19 h). 

 

 

Figure 3.19 - Wild Type and Mutant CD2AP overexpression affect cluster assembly and its colocalization 
with early endosomes. a), b), c) Representation of F-Actin in cluster and non-cluster form in control, wild type and 

mutant overexpression, respectively. Red agglomerates are clusters identified by DBSCAN with input parameters k -= 
30 and ε = 60 nm. Black dots are DBSCAN noise points. d), e), f) Representative F-Actin cluster (color agglomerates) 
colocalization with early endosomes (black islands) in control, wild type and mutant overexpression, respectively. g) 
Percentage of total F-Actin dSTORM detections per cell that belong to a cluster. h) Percentage of early endosomes per 

cell that have a colocalizing cluster. 

 

In this experiment we observed a similar negative behavior between wild type and mutant conditions 

in the amount of F-actin in the perinuclear region and polymerization at early endosomes. Interestingly, 

different results were obtained in the cluster analysis between both conditions, suggesting a negative role 

of this particular mutation in F-actin cluster formation and stabilization. Wild type also had a lighter negative 

effect indicating another mechanism through which an excess of CD2AP also impacts F-actin clusters. 
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 Conclusion and Future Trends 

The objective of this work was to apply dSTORM in the study of intracellular traffic, more specifically, 

in studying F-actin patterns and their relation with early endosomes as a function of CD2AP, a protein 

expressed by a gene known to be altered in AD. In order to accomplish that, our work was divided into two 

major parts. 

In the first part, we explored the super resolution technique and applied procedures essential to our 

analysis. We planned to use the mapping capabilities of dSTORM to observe the distribution of F-actin in 

the perinuclear region. In order to be able to trust in our localizations the probe used to label F-actin was 

phalloidin conjugated with Alexa Fluor 647 combined with an imaging buffer known to give excellent 

performs to this fluorophore. With this probe we also ensured that the labeling had a high affinity with F-

actin and the size of the structure was not significantly increased. The fluorophore is described as one of 

the top performers, giving the localization algorithms a bright enough signal to determine the localization 

with high precision. Our measurements had, on average, a localization precision of 20 nm which is within 

previous reports using dSTORM analysis. We also corrected artifacts coming from the photophysical 

behavior of the fluorophores by: a) implementing filters to our detected population based on parameters 

given by the localization algorithms; b) applying a merging algorithm, eliminating consecutive detections of 

the same fluorophore, that is critical when performing quantitative analysis in SMLM methods. However, it 

still remains a challenge to correct for detections coming from the same fluorophore that are separated in 

time. 

In the second part we aimed to understand if F-actin could be implicated in CD2AP dependent beta 

amyloid production at early endosomes. We started by finding out if perinuclear F-actin is located more 

towards early endosomes than late endosomes by accessing dSTORM F-actin detection locations and 

mapping them against endosomes. Our results point in the direction that this perinuclear F-actin might be 

more present at early endosomes and thus could be essential to endosomal sorting events such as the 

ones necessary for beta-amyloid production.  

After, we compared the F-actin patterns in control cells with cells with CD2AP KD. From the results, 

summarized in Table E.1 we found that: A) F-actin levels in the perinuclear region decreased based on the 

number of dSTORM detections; B) The compactness of the F-actin pattern, analyzed by measuring the 

nearest neighbor (NN) distance to each particle, decreased in CD2AP KD cells; C) Less early endosomal 

F-actin; D) The clustering of F-actin was greatly decreased, with the percentage of the total F-actin pattern 

belonging to clusters was 70 % reduced and the few existent clusters had less particles. We detected a very 

small percentage of early endosomes colocalizing with F-actin clusters indicating that clustering of 

perinuclear actin is controlled at early endosomes by CD2AP. 

Finally, we found that an AD mutation in CD2AP alters the F-actin patterns. Overall we observed 

similarities between CD2AP KD cells and mutant CD2AP expressing cells, especially when comparing the 

number of detections, number of clusters, fraction clustered and detections per cluster. Indeed, the mutant 

form of CD2AP seems to affect the F-actin clustering capabilities by controlling its polymerization and 

stabilization (Table E.2). However, there was lot of variability in the mutant conditions, thus we need a larger 
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sample size to draw conclusions. CD2AP wild type overexpression led to an intermediate standing in our 

measurements, suggesting that an excess of CD2AP also compromises the normal F-actin dynamics. 

Cell biology is known for being a field with a lot of variability because the cell is a very complex 

system and upon treatments or even in cell culture procedures the resultant population of cells shows a lot 

of variability due to metabolic or cell cycle status. dSTORM also has a lot of variability with analysis involving 

molecule counting. We need to further increase the number of experiments to reduce our overall variability 

but also to validate the results by other means. For example, in this work we implemented a clustering 

algorithm, DBSCAN. DBSCAN is used when the clusters have arbitrary shapes and with points not 

belonging to any cluster, characteristics that fit our data. It also facilitated the analysis output by integration 

in R, through an available package. However, without any biological reason for the input parameters due to 

the lack of characterization of these F-actin patterns in the literature, we had to adopt an empirical protocol 

to find them, which may not be that precise. In the future, analysis could be performed by other cluster 

algorithms like the one presented by Levet et al, 2015 98 or Andronov et al., 2016 99, based on tessellation 

segmentation. This means that individual polygons are centered on each molecule, creating an area of 

influence with geometrical properties (morphometric parameters such as shape, surface area, and 

eccentricity) that allow more precise methods for cluster identification. 

We should also perform endosomal super resolution in order to reduce associated errors coming 

from the fact that we used conventional epifluorescence to segment endosomes. As already discussed for 

actin, the endosome objects may be bigger than they actually are, due to the resolution limitations of 

epifluorescence. In this work we did not performed endosomal super resolution because of time restrains 

since it requires some extent of optimization, both in labeling, acquisition and analysis thus we opted to 

optimize F-actin first. 

Actin is very dynamic in intracellular processes. Its own nature is to be continuously polymerized, 

depolymerized and stabilized as a function of many actin binding proteins. With the imaging of fixed cells 

we lose a lot of information. So, in the future we want to be able to apply live cell imaging to better understand 

the role of CD2AP in endosomal actin dynamics. More specifically, we want to apply live super resolution 

based on radial fluctuations 100.  

Another important experiments will be to investigate the flat clathrin pool associated with early 

endosomes whose cargo is going to follow for degradation. First of all it will be interesting to see through 

dSTORM super resolution if endosomal F-actin colocalizes with endosomal clathrin has it colocalizes with 

the clathrin present at the plasma membrane where it is known to have a role in endocytosis by supplying 

the force necessary to complete endocytic vesicle formation 30–35. From there on, connections between Hrs, 

ESCRT complexes and ubiquitin will be studied as they are crucial in invagination processes 41,101–103, still 

not well understood that could help explain APP trapping at early endosomes membrane. Cortactin and 

capping protein will be investigated as function of CD2AP through conventional fluorescence microscopy 

with the objective of establishing a possible explanation for the decreasing of perinuclear F-actin levels. 

Finally, to reduce the variability of the mutant results, we will repeat the measurements experiment but 

altering the cell culture protocol by knocking down completely the CD2AP in the cell and then expressing 

the mutant form to eliminate the mixture of healthy and mutant protein.
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Appendix A: Reagents, Antibodies and Solutions 

PFA/PEM solution 

A stock solution of 50 ml was prepared. PFA (Sigma-Aldrich) obtained from a stock powder form was diluted 

to a solution of 16 % (v/v). This one was then diluted into a concentration of 4 % PFA in cytoskeleton 

preserving buffer (PEM) solution composed of 80 mM at p.H 6.8 of PIPES (Sigma-Aldrich), 5mM EGTA 

(Sigma-Aldrich) and 2 mM MgCl2 (Sigma-Aldrich) 12.5 ml of PFA 16 % (v/v) were added to 37.5 ml of PEM 

solution. 

Imaging Buffer intermediate solutions 

 DBuffer: Composed by 50 mM Tris and 10 mM NaCl. 

 Catalase Solution: Catalase was diluted in deionized water to a concentration of 20 mg ml-1. 

 Oxygen scavenger (Stored up to 2 weeks):  

1. Dissolving 7 mg of Glucose Oxidase in 100 µl of DBuffer. 

2. Vortex to mix. 

3. Add 25 µl of Catalase Solution to Glucose Oxidase Solution. 

4. Centrifuge at maximum speed for 1 minute. 

5. Precipitate may be visible at the end of the tube. Use the yellow supernatant. 

 MEA: Diluting Cysteamine in Hydrochloric Acid at 360 mM to a concentration of 77 mg ml-1. 

 

Table A.1 - Imaging Medium Reagents. 

Reagent Purity Company 

Glucose Oxidase from 

Aspergillus niger, Type VII 
- Sigma-Aldrich TM 

Cyclooctatetraene 98 % Sigma-Aldrich TM 

Catalase from bovine liver - Sigma-Aldrich TM 

Cysteamine 98 % Sigma-Aldrich TM 

Hydrochloric Acid 37 %- Sigma-Aldrich TM 
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Table A.2 - Antibodies and probes. 

Primary Antibody Dilution Company 

EEA1 1:250 Santa Cruz Biotechnology 

LAMP1 1:250 BD Biosciences 

Secondary Antibody Dilution Company 

Alexa-555 anti-Goat 1:250 Invitrogen 

Alexa-555 anti-Rat 1:250 Life Technologies 

Probe Dilution Company 

Phalloidin-647 1:100 Life Technologies 
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Appendix B: Image Processing 

Endosomal and Actin ROIs  

For actin, the ROIs were selected as being the areas in the perinuclear region that include all or the greatest 

and more important parts of the perinuclear F-actin puncta. After evaluating in several cells for the same 

experiences, an area for this ROI was fixed for all cells. When testing actin correlations with early/late 

endosomes the actin ROI was fixed to a 5 µm × 5 µm square. For endosomal presence in the perinuclear 

region measurements the actin ROI was enlarged by 2.5 µm, resulting in an endosomal ROI of 10 µm × 10 

µm. For all the experiences regarding actin and CD2AP the actin ROI was fixed to a square of 6.4 µm x 6.4 

µm. 

Endosomes 

While F-actin images are obtained through dSTORM, endosome images are obtained from an 

epifluorescence snap. This implies a different kind of post-process. The objective is to have endosomes 

segmented the best way possible in order to create a binary mask of them and be able to introduce them in 

R to allow the possibility of analysis between the endosome patterns and the F-actin patterns. That being 

said, the epifluorescence image in the ROI (Figure B.1 a) starts by being filtered by a bandpass filter that 

highlights the bright spots corresponding to endosomes (Figure B.1 b). After, the highlighted signal is 

thresholded using the default threshold in FIJI (Figure B.1 c). After being thresholded, the mask (Figure B.1 

d) is converted to individual dots so that it could be interpreted as a spatial point pattern in R. 

 

 

Figure B.1 - Endosomal segmentation protocol. 
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Appendix C: DBSCAN Working Principle and Parameter 

Determination 

DBSCAN identifies clusters in large datasets of points by a propagative method that links points 

belonging to a common cluster based on two parameters; ε, the search radius and K, the minimum number 

of neighbors. These two criteria define whether a point belongs to a cluster or not. If a point has at least K 

neighbors within a radius ε or if a point is a neighbor of a point belonging to a cluster, this point is assigned 

to the cluster. The unassigned points are assigned to noise 94. Our empirical protocol is described in the 

following Figure C.2. 

In our experiments we found that the best combination of parameters was: A) ε = 66 nm, K = 30 

section 3.3. B) ε = 60 nm, K= 30 for sections 3.4 and 3.5. 

The following code determines the K parameter for clusters. After having the uncertainty distribution, 

Figure C.2 a, several K parameters are tested and their score is saved. Then, an overall plot as a function 

of K parameter gives us the best one, Figure C.2 f. The best K is the one that has the higher number of 

localizations of F-actin clusters identified in Figure C.2 d within identified clusters with that K. To check if 

the localizations are inside, an ellipse is computed around each cluster and the localizations are tested to 

see whether they are inside or outside the ellipse. 

 

 

Figure C.1 - K parameter determination. 
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Figure C.2 - DBSCAN input parameters determination protocol.. a) ε determination. For every experience all 

localization uncertainties are merged and the population mean value (µ) serves as reference to calculate ε as ε = 3µ. 
Once that parameter has been fixed, we determine the minimum number of neighbor (K). The super resolution image 
is taken as reference (b), a median filter is applied to reduce noise (c) and the identification of putative clusters is done 
by finding intensity local maximums (d). Each local maxima is recorded as a coordinate. A swipe through several K 
parameters with fixed ε is performed in R, each one giving a certain score. e) Representation of identified clusters for a 

given K. Black dots represent localizations from d) that were within an identified cluster. White dots represent clusters 
not identified in d) but identified with DBSCAN. f) Score plot. Points inside represents the black dots inside a cluster 

determined by DBSCAN. Centers of mass represents putative clusters identified in the d) step. Extra clusters represent 
white dots in e) (Points that were not identified in d) but fulfill the density requirements of clusters. Points Outside 
represent putative clusters identified in d) that are not inside a cluster determined by DBSCAN. The K parameter chosen 
is the one with more point inside. Protocol adapted from 91. 
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Appendix D: Source Code 

F-Actin Pattern Analysis 

After all processing steps for actin, the list of resulting molecules is fed into R studio. In every 

analysis the points were transformed in a spatial point pattern using the RStudio package Spatstat 104. This 

package requires both X and Y coordinates of the points as well a window which defines the limits of the 

pattern (ROI). After this, a home maid script was elaborated to characterize the correlations between both 

patterns. This procedure is divided in two main parts: Data Introduction and Pattern Analysis. A list is a basic 

structure in R that could contain different kinds of objects. A hyperframe is a structure of Spatstat that 

contains several lists. The following examples refer to section 3.4 but the calculations for the other sections 

are adaptations.
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Data Introduction 

In this step we introduce the putative cluster localizations (Cluster.CM.SiCntrl.3), the F-actin detections (SiCntrl.Actina.3), Endosomes 

(SiCntrl.Endossomas.3), the ROI limits (ROI), meaning the limits of the point pattern. The F-actin detections and the endosomes together with the 

ROI limits form an object of class ppp (planar point pattern), (PPPSiCntrl.Actina.3) and (PPPSiCntrl.Endossomas.3). 

 

 

Figure D.1 - Data Introduction 
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Pattern Analysis 

Number of Detections 

Takes the hyperframe created All.SiCntrl or All.SiC2AP and counts the number of points in the 

object of class ppp Actina. 

 

 

Figure D.2 – Number of Detections. 

 

Nearest Neighbor (NN) 

Takes each pattern present in the hyperframe All.SiCntrl, measures the nearest neighbor distance 

and saves the results as a percentage of the overall F-actin pattern each 5 nm from 0 nm to 100 nm 

(NNdist.Control). Each ROI is saved in the list All.NNdist.Control. 

 

 

Figure D.3 - Nearest Neighbor. 

 

Endosomal F-actin 

In this step we calculated the percentage of F-actin that is inside the area of influence of each 

endosome. Since the endosome pattern comes has one pattern instead of being separated by endosome, 

we applied DBSCAN to identify each agglomerate of points has being one endosome 

(EndossomasSiCntrl). Besides that we also included the center of mass and the endosome radius for each 

endosome (CMsEndossomasSiCNtrl).  
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Figure D.4 - Endosome identification. 
 

 

After having these information about endosomes we can measure F-actin quantities for endosome.  

1. We measure the minimum distance of each F-actin point to an endosome (first column 

ActinaEndossoma). 

2. We save the number of the endosomal point (EndossomePoint). 

3. We transform that endosomal point in a number of endosome (Endossoma). 

4. We subset actin per endosome (Actina) and find the number of points and percentages 

(ActinAbs.Thresh and ActinPercent.Thresh). Thresh means it depends of the endosomal radius. 

 

 

Figure D.5 - Endosomal F-actin. 
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Measuring Cluster Parameters 

Following the protocol described in Appendix C we found that the best combination of input 

parameters to DBSCAN algorithm was ε = 60 nm and K = 30. The resulting clusters were assumed to have 

a decreasing density towards the cluster boundaries. We plotted a 95 % confidence ellipse from the data 

points and points falling outside this ellipse were removed from the cluster. We measured the number of 

clusters (ClustersCMSSiCntrlAll), the points per cluster (first column ClusterStatsSiCntrl) and fraction 

clustered (FractionClusteredSiCntrl). 

 

 

Figure D.6 - Cluster Parameters. 

 

Cluster Colocalization with Endosomes 

To see if any cluster is colocalizing with an early endosome the script takes the actin that belongs 

to each endosome (Actina) and checks if there is any identified cluster in that subset. If there is any, its 

distance towards the endosome is measured and if it is less than 20 nm then there is colocalization. The 

result is saved in binary form in Colocalize.   
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Figure D.7 - Colocalization with Early Endosomes. 
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Appendix E: Summarized Results 

Table E.1 - Summary of the results for CD2AP KD cells (Section 3.4) . Results are presented as average and 

standard error of the mean. 

Condition 
Number of 
Detections 

Detections at 
20 nm NN (%) 

Number of 
Detections at 
Endosomes 

Detections at 
Endosomes (%) 

siCtrl (1.69 ± 0.28) × 104 69.0 ± 3.4 (3.98 ± 0.54) × 102 34.6 ± 1.2 

siCD2AP (6.07 ± 0.92) × 103 52.7 ± 4.0 (1.23 ± 0.22) × 102 24.6 ± 7.1 

Condition 
Number of 
Clusters 

Fraction 
Clustered (%) 

Detections Per 
Cluster 

Cluster 
Colocalization with 

Endosomes (%) 

siCtrl 39.0 ± 7.0 29.1 ± 8.1 (1.25 ± 0.16) × 102 56.9 ± 7.2 

siCD2AP 9.0 ± 2.0 8.8 ± 1.5 (0.65 ± 0.05) × 102 8.3 ± 8.3 

 

Table E-2 - Summary of the results for Wild Type and Mutant CD2AP (Section 3.5) . Results are presented as 

average and standard error of the mean. 

 

Condition 
Number of 
Detections 

Detections at 
20 nm NN (%) 

Number of 
Detections at 
Endosomes 

Detections at 
Endosomes (%) 

GFP (1.30 ± 0.08) × 104 72.6 ± 3.0 (4.09 ± 0.42) × 102 49.7 ± 2.5 

WT (7.15 ± 0.40) × 103 67.1 ± 2.0 (2.08 ± 0.24) × 102 41.8 ± 4.6 

MUT (6.93 ± 1.60) × 103 61.7 ± 3.0 (1.98 ± 0.25) × 102 47.8 ± 6.0 

Condition 
Number of 
Clusters 

Fraction 
Clustered (%) 

Detections Per 
Cluster 

Cluster 
Colocalization with 

Endosomes (%) 

GFP 29.0 ± 2.0 34.9 ± 7.8 (1.65 ± 0.17) × 102 51.4 ± 11.8 

WT 18.0 ± 2.0 24.6 ± 4.4 (1.02 ± 0.10) × 102 36.7 ± 7.6 

MUT 14.0 ± 6.0 11.2 ± 3.7 (0.72 ± 0.08) × 102 24.9 ± 8.0 
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