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Abstract 

Left-Right (LR) axis establishment is a complex process that happens early in development. It 

requires the interplay of several genetic pathways like TGF-β, Notch, Wnt and Calcium 

signalling. It also involves the integration of fluid dynamics, morphogen diffusion and cilium 

biosynthesis to correctly position the internal organs in their final destinations. Problems in LR 

axis establishment are often associated with chronic diseases. The first asymmetric decision 

commonly happens in a small transient structure, the Left-Right Organizer (LRO), a ciliated 

structure present in many vertebrates. Motile cilia generate an asymmetric fluid flow that is 

perceived differently between the left and the right side, which generates a calcium response 

and asymmetric gene expression. These signals are then transferred to the Lateral Plate 

Mesoderm, the tissue that will later give rise to the heart and influence the endoderm derived 

organs such as the liver and pancreas. 

In Chapter 2, we focused in understand the pathways behind deciding between being a motile 

vs immotile cilium in the LRO. Although all cilia are made motile in terms of ultrastructure due 

to Foxj1a expression, the decision to move or not is dependent on Notch signalling alone. 

Then, we focused on further characterization of an important calcium channel, Pkd2, in the LR. 

This channel is thought to partner with Pkd1l1 and sense flow, an important feature in LR. In 

Chapter 3, we asked if having no flow had the same impact as having no Pkd2-mediated 

sensing. The only manipulation that did not affect the LRO architecture was to target Pkd2 on 

the LRO cells only, which still left visible Pkd2 protein and a slower flow. Still, all our 

manipulations had the same phenotype: randomization of organ situs. In Chapter 4, we 

performed a LRO-specific microarray between WT and pkd2 morphant embryos in order to 

find other asymmetric genes present in the LRO. Although we did not find any gene expressed 

asymmetrically between left and right side, we indeed find four new genes with minor roles in 

LR: cacybp, frzb, pvalb6 and ncl1. In Chapter 5, we further focused in manipulating ncl1, a new 
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gene in LR that is known to act as a TGF-β antagonist by facilitating Lefty secretion and 

impacting on mesendoderm patterning. Indeed, we found that it has an impact on LR, probably 

by influencing the secretion of some TGF- β signalling player. In Chapter 6, we set to establish 

zebrafish as a good model to study kidney toxicity when metabolizing drugs. 

Together, the results presented in this thesis provide new clues for LR axis establishment, from 

cilia motility to new downstream genes of Pkd2 and calcium. It also highlights the zebrafish as 

a good model to study human disease. 

Key-words: Left-Right axis establishment, Pkd2, Cilia motility, TGF- β signalling, Notch 

signalling 
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Resumo 

Estabelecimento do eixo Esquerda-Direita (ED) é um processo complexo que ocorre cedo 

durante o desenvolvimento. Exige a integração de várias vias de sinalização, tais como TGF-

β, Notch, Wnt e Cálcio. Também envolve a coordenação de dinâmica de fluídos, difusão de 

morfogénios e movimento ciliar. Tudo junto e coordenado no tempo leva à correta localização 

dos órgãos internos. Problemas no estabelecimento deste eixo estão normalmente 

associados a doenças crónicas. As primeiras decisões assimétricas acontecem numa 

pequena e transiente estrutura chamada o Organizador Esquerda Direita, uma estrutura ciliar 

que existe em vários vertebrados. Cílios móveis geram um fluxo de fluido assimétrico que se 

traduz numa expressão génica assimétrica entre o lado esquerdo e o lado direito. Estes sinais 

são depois transferidos à Mesoderme Lateral, o tecido que mais tarde dá origem ao coração 

e influencia a endoderme que dá origem a órgãos como o fígado e o pâncreas. 

No Capítulo 2, focámo-nos em tentar compreender como é que as vias de sinalização se 

coordenavam para decidir entre um cílio móvel e imóvel no Organizador. Embora a expressão 

de Foxj1a em todas as células do Organizador produza cílios com ultra-estrutura compatível 

com motilidade, a decisão entre mover ou não é exclusiva da via de sinalização Notch. A 

seguir, focámo-nos em caracterizar Pkd2, um canal de cálcio importante no estabelecimento 

do eixo ED. Este canal está associado ao Pkd1l1, uma molécula com domínios capazes de 

sentir fluido e responder com entrada de cálcio na célula. No Capítulo 3, questionámos se não 

ter fluxo no Organizador tinha o mesmo impacto que não ter um mecanismo para sentir esse 

fluxo através da ausência do Pkd2. A única manipulação que não afetou a arquitetura do 

Organizador foi remover o Pkd2 apenas nas células do Organizador, o que não é muito 

eficiente e tem impacto na velocidade do fluxo dentro do Organizador. Ainda assim, todas as 

manipulações efetuadas deram o mesmo fenótipo: randomização da posição dos órgãos. No 

Capítulo 4, fizemos um estudo de transcritómica usando apenas as células do Organizador 
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em embriões normais ou injetados com morpholino contra o Pkd2. Embora não tenhamos 

encontrado genes com expressão assimétrica à volta do Organizador, encontramos quatro 

novos genes que influenciam o estabelecimento do eixo: cacybp, frzb, pvalb6 e ncl1. No 

Capítulo 5, focámo-nos na ncl1, um gene nunca antes associado ao estabelecimento do eixo 

e que atua como antagonista da via de sinalização TGF-β ao influenciar a secreção de Lefty 

e influenciando a padronização da mesoderme-endoderme. Nós descobrimos que este gene 

impactua no estabelecimento do eixo, provavelmente ao influenciar a secreção de algum 

elemento da via de sinalização TGF-β. No Capítulo 6, focámo-nos em estabelecer o peixe-

zebra como um bom modelo para estudar toxicidade no rim em resposta a fármacos.  

Em suma, os resultados apresentados nesta tese providenciam novas pistas para o 

estabelecimento do eixo ED, desde o movimento do cílio a novos genes a jusante do Pkd2 e 

do cálcio. Também reforçámos a ideia de que o peixe-zebra pode ser um bom modelo para 

estudar doenças humanas.  

Palavras-Chave: Estabelecimento do eixo Esquerda-Direita, Pkd2, Motilidade ciliar, Via de 

sinalização TGF-β e Notch 
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Resumo Alargado  

O correto estabelecimento dos órgãos internos no seu devido lugar dentro do organismo é 

importante para o correto funcionamento dos mesmos. É um processo comum a vertebrados 

e invertebrados, embora a forma como o atingem nem sempre é a mesma. Algo em comum 

é a expressão assimétrica de genes da via de sinalização TGF-β nos tecidos embrionários 

que vão dar origem a estes órgãos mais tarde durante o desenvolvimento. Em alguns 

vertebrados, incluindo nós seres humanos, as primeiras decisões assimétricas ocorrem numa 

pequena e transiente estrutura denominada Organizador Esquerda Direita (ED). Esta 

estrutura é composta por células que têm à sua superfície um cílio inclinado. Este tem a 

capacidade de mexer e a combinação de vários cílios móveis faz com que se gere um fluxo 

de líquido assimétrico da direita para a esquerda. Este fluxo gera uma resposta assimétrica 

nas células do Organizador: as células da esquerda têm uma subida da concentração de 

cálcio intracelular e expressão de nodal enquanto as células do lado direito expressam 

cerl2/dand5, o primeiro sendo um ativador e o segundo um inibidor da família TFG-β. Esta 

primeira assimetria é propagada pelos tecidos até chegar à Mesoderme Lateral, o tecido que 

origina o coração e influencia a endoderme, que dá origem aos órgãos viscerais.  

Muitas questões permanecem em aberto neste processo, particularmente como é que o fluxo 

é interpretado pelas células do Organizador. Tipicamente, o Organizador é composto por 

células com cílios móveis, responsáveis por gerar o fluxo, e células com cílios imóveis, 

potenciais sensores desse mesmo fluxo. Há duas grandes teorias sobre isto: o fluxo 

transposta um morfogénio em vesículas que embatem do lado esquerdo do Organizador e 

libertam aí o seu conteúdo, dando assim origem à expressão assimétrica de genes; ou a força 

e direção do fluxo são de alguma forma percebidos pelos cílios imóveis. A descoberta de um 

complexo proteico composto por polycysteins (Pkd2, um canal de cálcio e Pkd1l1, um recetor) 

nos cílios do Organizador deu força redobrada a esta segunda hipótese. Este complexo 
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proteico é conhecido por ser expresso nos cílios dos rins e ser capaz de responder à força 

mecânica do fluxo de urina, respondendo com uma entrada de cálcio nas células. A ausência 

deste complexo dá origem à doença dos rins policísticos e em ratinho original também 

problemas de lateralidade – perde-se a expressão assimétrica de genes da família TFG-β na 

proximidade do Organizador e na mesoderme lateral e tem impacto na posição dos órgãos.  

Com esta tese, começámos por tentar compreender melhor a base molecular por detrás da 

decisão entre ser um cílio móvel ou imóvel no Organizador. Depois, tentámos averiguar se há 

diferenças entre abolir completamente o fluxo ou não ter uma forma de sentir esse fluxo atrás 

do knockdown do Pkd2 em termos de fenótipos ao nível da expressão génica e da posição 

final dos órgãos. Através de um estudo de transcritómica, averiguamos quais os genes que 

estão a jusante do Pkd2 e debruçámo-nos sobre 4 em particular: parvalbumin6, calcyclin 

binding protein, frizzled-related protein e nicalin1. Por fim, fizemos uma comparação mais 

exaustiva entre dois inibidores pertencentes à via de sinalização TFG-β: Dand5, que já era 

conhecido por influenciar o estabelecimento ED, e Nicalin1, que nunca tinha sido descrito 

neste processo. Todos estes trabalhos usaram o peixe-zebra como animal modelo. É possível 

encontrar 70% de genes humanos neste vertebrado, o que o torna bastante atrativo para 

investigar processos que ocorram de forma semelhante em humanos. O facto de os embriões 

terem propriedades óticas que os tornam atrativos para microscopia e gerar um grande 

número de embriões são algumas das características mais apreciadas pelos cientistas. Por 

isso, terminámos com uma avaliação do peixe-zebra como um bom modelo para testar 

toxicidade renal à exposição de fármacos.  

Todas as células do Organizador expressam foxj1a, um gene necessário e suficiente para 

especificar cílios móveis. No entanto, os resultados apresentados no segundo capítulo desta 

tese mostraram que a via de sinalização Notch é responsável pela decisão móvel vs imóvel. 

Recorrendo a estudos transcricionais, microscopia eletrónica com amostragem exaustiva do 



xiii 
 

Organizador e microscopia de multifotão de aquisição lenta, percebemos que a despeito de 

todos os cílios expressarem foxj1a e os axonemas ciliares terem dynein arms e radial spokes 

responsáveis pela motilidade, alguns cílios se mantém imóveis durante todo o processo. Esta 

decisão é tomada cedo e parece ser a jusante da transcrição de her12, um elemento da via 

de sinalização Notch. A sobrexpressão de her12 aumenta o número de cílios imóveis em troca 

de cílios móveis, o que leva à perturbação do fluxo normal dentro do Organizador e tem 

impacto na posição dos órgãos.  

A importância do canal de cálcio Pkd2 no estabelecimento do eixo ED está bem fundamentada 

no número de trabalhos feitos com este gene em vários animais modelo. Há várias evidencias 

que apontam para esta proteína fazer parte do mecanismo capaz de sentir o fluxo e iniciar a 

onda de cálcio observada no lado esquerdo. No terceiro capítulo desta tese perguntámos se 

abolir o fluxo, que se sabe estar a montante da expressão assimétrica de dand5, originava 

defeitos tão graves como abolir a forma de sentir este fluxo. Através deste trabalho 

percebemos que tirar diferentes níveis de Pkd2 em todo o peixe-zebra levam a diferentes 

respostas em termos de volume e arquitetura do Organizador. A única abordagem que 

minimiza a interferência com a arquitetura do Organizador é quando se tira o Pkd2 

exclusivamente das células do Organizador. No entanto, esta abordagem não remove 

completamente o Pkd2 e resulta numa velocidade de fluxo mais baixa. De qualquer forma, 

todas as manipulações deram o mesmo resultado em termos de dand5 (maioritariamente 

simétrico) e randomização da posição dos órgãos.  

Embora haja evidencias que suportam a importância da onda de cálcio observada à esquerda 

do Organizador, pouco se sabe sobre o que é ativado a jusante da mesma. Por isso, no 

Capítulo 4, fizemos um estudo de transcritómica usando apenas as células do Organizador 

de embriões normais e embriões sem Pkd2. Da lista de genes obtida, escolhemos 4 para 

manipular individualmente e perceber o seu impacto no eixo ED. Primeiro avaliou-se o padrão 
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de expressão, onde nenhum mostrou um padrão assimétrico semelhante ao observado para 

dand5, o primeiro gene que se sabe ser assimétrico no Organizador do peixe-zebra. A seguir 

avaliámos o impacto da sua manipulação na assimetria de dand5 e na posição dos órgãos. 

Nenhum revelou ter impacto tão forte como manipular Pkd2, mas todos parecem ter algum 

papel no estabelecimento do eixo ED. Em suma e para futura verificação, parvalbumin6 pode 

estar a controlar a cálcio do lado esquerdo, frizzled-related protein pode afetar o tamanho 

ciliar, calcycling binding protein pode influenciar a degradação de dand5 através de β-catenin 

e nicalin1 pode influenciar a secreção de outros elementos da via TGF-β como Dand5 ou 

Lefty. 

Uma vez que Ncl1 está descrito na literatura como inibidor de TGF-β e nunca foi associado 

ao estabelecimento do eixo ED, no Capítulo 5 decidimos explorar o impacto deste gene. 

Knockdown deste gene leva a um aumento de defeitos de posição dos órgãos com um efeito 

dependente da dose de morfolino usado. Afeta a expressão de dand5 e spaw, randomizando 

o padrão e levando a uma menor expressão dos mesmos. Experiências onde se fez o 

knockdown de ambos dand5 e ncl1 mostraram mais defeitos em termos de posição de órgãos, 

apontando para uma potencial epistasia dos dois genes. Sobrexpressar dand5 em embriões 

com knockdown de ncl1 não consegue melhorar os efeitos da ausência de ncl1, o que aponta 

para potenciais vias separadas. Dados preliminares do mutante de ncl1 suportam os fenótipos 

observados com o morfolino.  

Finalmente, no Capítulo 6, confirmámos que o peixe-zebra pode ser um bom modelo para 

testar a metabolização de fármacos como anti-retrovirais usados no tratamento da SIDA. Os 

prónefros presentes nas larvas do peixe-zebra apresenta elevada homologia com o que se 

encontra no rim humano. Neste estudo, através de várias técnicas como espectrometria de 

massa para avaliar metabolismo, estudos de filtração de inolina para testar a função renal, 

microscopia com multifotão e eletrónica de transmissão, avaliámos os danos que a exposição 
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a certos fármacos provocam nos prónefros do peixe-zebra. Todos os defeitos encontrados 

estão em concordância com o tipicamente se observa nos rins humanos expostos aos 

mesmos fármacos, confirmando o peixe-zebra um animal modelo bastante atrativo para este 

tipo de estudos.   

Os capítulos desta tese ilustram a versatilidade do peixe-zebra para testar o estabelecimento 

do eixo ED nos vários níveis que influenciam este processo. Podemos estudar a formação 

dos cílios no Organizador e podemos estudar em detalhe a expressão génica dos vários 

intervenientes das diferentes vias de sinalização ao nível do Organizador e ao nível dos 

tecidos que vão dar origem aos órgãos. Descobrimos novos interveniente nunca antes 

descritos neste processo, adicionando novos níveis de complexidade a um processo já de si 

fascinante.  
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1. INTRODUCTION 

Correct Left-Right (LR) axis establishment comes from a combination of cell morphology, 

ciliogenesis, fluid flow physical dynamics, several signalling pathways (calcium, Nodal, Notch 

and Wnt), signal transduction and organogenesis. Although a lot has been done do address 

all these steps and we already have a good idea how these steps coordinate to give rise to 

correct organ position, still a lot is missing. One of the biggest questions that remains highly 

debated in the field is how the biophysical properties of fluid flow are interpreted from the 

Left-Right Organizer (LRO) cells. Is there a morphogen being released in the LRO space or 

is it the mechanical force that is being somehow interpreted? Other related question regards 

the two cilia types present in the LRO; what are the relevant differences between motile and 

immotile cilia and whether these immotile cilia are the predicted sensors by McGrath et al. in 

2003. What is also still unknown is what are the downstream targets of the asymmetric 

calcium signalling on the left, and its relationship to the complementary asymmetry observed 

for dand5. This thesis aims to answer to some of these questions and add more knowledge 

to the field. 

 

1.1 WHAT WE NEED TO KNOW ABOUT CILIA (for this study) 

For many vertebrates, LR is decided downstream of the beating motion of cilia. So, in order 

to understand LR, one needs to acquire some notions about this organelle. Cilia are hair-like 

structures that occur on the surface of most cells. There are several subtypes of cilia but, 

typically, cells have a primary, sensory cilium. These tend to be very dynamic in terms of 

morphology and molecular composition, so they can sense fluid flow, light, odorants or 

signalling molecules. Primary cilia are seen like a hub for signalling pathways like sonic 

hedgehog (Huangfu et al., 2003), Wnt signalling (Corbit et al., 2008), Notch signalling 
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(Ezratty et al., 2011; Leitch et al., 2014) and others further reviewed in Pala et al., (2017). 

The ultrastructure of a primary cilium is typically 9+0, which means that it has only 9 doublets 

of microtubules and lacks motility components. Conventional motile cilia on the other hand 

have a 9+2 organization, presenting an extra central pair of microtubules connected to the 9 

outer doublets by radial spokes (Figure 1C). They also present dynein motors arranged in 

outer and inner arms that allow for movement (as reviewed in Choksi et al., 2014). This kind 

of cilia generally beat in a wavelike or corkscrew fashion to generate fluid movement or to 

allow cells to move through fluid (Kramer-Zucker et al., 2005a) (Figure 1D). These 9+2 motile 

cilia are what is typically observed in the LRO of zebrafish and Xenopus. The mouse LRO 

presents motile cilia with a 9+0 configuration, with dynein arms but without central pair 

(Hirokawa et al., 2006; Nonaka et al., 1998; Takeda et al., 1999) (Figure 1A). Odate et al. 

(2016) observed very few 9+2 cilia in the mouse LRO, these being randomly distributed 

(Odate et al., 2016). The absence of central pair and radial spokes makes the cilia 

ultrastructurally more fragile than 9+2 cilia, but allows stable unidirectional rotation of node 

cilia (Shinohara et al., 2015) (Figure 1B). In the mouse model, the direction of the flow is 

Figure 1 – Cilia in Left-Right axis establishment  

(A) Motile cilium 9+0 typically found in the mice LRO. It has 9 pairs of microtubule doublets, with inner 

(yellow) and outer (blue) dynein arms. (B) Rotational movement of a 9+0 cilium. Scheme from (Huang 

et al., 2009). (C) Motile cilium 9+2 typically found in the zebrafish LRO. It has 9 pairs of microtubule 

doublets plus a central pair, with inner (yellow) and outer (blue) dynein arms and radial spokes 

(black). (D) Typical movement of a 9+2 cilium. Scheme from Pintado et al. (2017) 
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determined by two features: posterior tilt and clockwise rotation. Due to these two features, 

mice cilia can generate a leftward effective stroke and a rightward recovery stroke on the cell 

surface (Cartwright et al., 2004; Nonaka et al., 2005; Okada et al., 2005). Cilia tilt is given by 

the basal body position in the cell. The basal body is initially positioned centrally but then 

gradually shifts toward the posterior side of the node cells. Positioning of the basal body and 

unidirectional flow were found to be impaired in mice lacking Dishevelled (Hashimoto et al., 

2010), Prickle (Antic et al., 2010) or Vangl (Antic et al., 2010; Song et al., 2010). All these are 

components of the noncanonical Wnt signalling planar cell polarity (PCP) pathway. While 

Dishevelled protein is localized to the posterior side of the apical membrane of mice LRO 

cells (Hashimoto et al., 2010), Vangl and Prickle localized to the anterior side (Antic et al., 

2010). Vangl is also critical for LR determination in zebrafish and Xenopus (Antic et al., 2010; 

Borovina et al., 2010). Also at play are opposing gradients of Wnt5a/b posteriorly and 

secreted Frizzled-related proteins (Sfrp) inhibitors anteriorly that help polarize node cells 

along the anterior-posterior axis (Minegishi et al., 2017).    

The transcription factor Forkhead box J1 (Foxj1) is important to regulate the motile 

ciliogenesis. Loss of Foxj1 in mice disrupts 9+2 motile cilia, leading to defective ciliogenesis 

in airway epithelial cells and Left-Right axis establishment defects due to abnormal centriole 

migration and/or apical membrane docking (Brody et al., 2000). Foxj1 is also important to 

make motile monocila, including the 9+0 subtype found in the mice LRO (Alten et al., 2012; 

Chen et al., 1998). Knockdown of Foxj1 in both Xenopus and zebrafish can cause loss of all 

motile cilia (Stubbs et al., 2008; Yu et al., 2008) revealing that Foxj1a has a larger role than 

motility per se. Foxj1 is considered a master regulator of motile cilia since it is responsible for 

the regulation of a cohort of ciliary genes required for different structural and functional 

aspects of motile cilia, such as the ones used to make, assemble, transport and dock the 

inner and outer dynein arms, radial spokes and central pair (Didon et al., 2013; Jacquet et 
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al., 2009; Newton et al., 2012; Stubbs et al., 2008; Yu et al., 2008). In zebrafish, fibroblast 

growth factor (FGF) signalling induces foxj1 expression in LRO (Neugebauer et al., 2009) 

and Wnt signalling seems to act downstream of FGF to directly control foxj1 expression 

through TCF/LEF transcription factor-binding sites within the foxj1 promoter (Caron et al., 

2012). This relationship between Wnt signalling and foxj1 expression is conserved in 

Xenopus GRP (Walentek et al., 2012). Notch signalling has also been linked to motile cilia 

through length and motility control. In zebrafish LRO, Notch signalling is required for proper 

foxj1 expression, deltaD homozygous mutants showed significantly shorter cilia and 

abnormal motile/immotile ratio, making more motile cilia at the expense of the immotile. 

Overactivation of Notch signalling through Notch Intracellular Domain (NICD) lead to longer 

and more immotile cilia in the zebrafish LRO (Lopes et al., 2010; Tavares et al., 2017). In 

terms of length, two other studies reported opposing results. While, overactivation of Notch 

signalling led to shorter cilia in CL4 cells (Jurisch-Yaksi et al., 2013), it led to neural tube 

longer primary cilia in vitro and in vivo. In terms of motility, data from Xenopus LRO had 

suggested a similar role for Notch signalling, through Galnt11 and NICD manipulation, 

regarding motile/immotile cilia ratio (Boskovski et al., 2013). Although decreasing cilia length 

has a high impact on left-right axis establishment, increasing length seems to cause milder 

left-right defects in zebrafish. Arl13b overexpression, which increases cilium length without 

affecting cilia beat frequency, results in reduced beat amplitude and similar flow strengths as 

control embryos (Pintado et al., 2017).  

 

1.2 WHAT WE NEED TO KNOW ABOUT NODAL SIGNALING (for this study) 

LR axis establishment requires TGF-β family ligands to function at many different levels: from 

LRO establishment, to interpretation of symmetry breaking fluid flow, to transducing and 

propagating this asymmetric information into the presumptive tissues that will give rise to 
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organ positioning, the lateral plate mesoderm and the endoderm. The main players so far 

studied in LR development of mouse, xenopus and fish are Nodal/Southspaw (Spaw) and its 

auto-induction capabilities (Long et al., 2003; Ohi and Wright, 2007; Oki et al., 2007; Osada 

et al., 2000; Saijoh et al., 2000; Wang and Yost, 2008), the inhibitors Cerberus/Dan and Lefty 

(Branford et al., 2000; Hashimoto et al., 2004; Katsu et al., 2012; Marques et al., 2004; Meno 

et al., 1996; Schweickert et al., 2010; Vonica and Brivanlou, 2007; Wang and Yost, 2008; 

Yokouchi et al., 1999) and the transcription factor Pitx2 (St. Amand et al., 1998; Campione et 

al., 1999; Essner et al., 2000; Logan et al., 1998; Piedra et al., 1998; Yoshioka et al., 1998).  

Figure 2 – TGF-β signalling pathway overview 

There are many ligands in TGF-β signalling. Focusing on Nodal protein, it has to be processed in 

the extracellular space by Convertases to become fully mature. Mature Nodal binds to Type I and 

Type II receptors and the co-receptor from the EGF/CFC family. When activated, the receptors 

phosphorylate SMAD, which can bind to SMAD4. This complex can enter the nucleus and activate 

transcription by binding to transcription factors like FoxHI. The ligand Nodal and its repressor Lefty 

are both expressed in response to Nodal signalling. The interaction of Nodal with inhibitors like 

Lefty or Cerl2 in the outside of the cells affects its ability to bind to the receptors and activate the 

pathway. Scheme adapted from Schmierer and Hill, (2007). 
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Nodals are synthesized as proproteins that are proteolytically processed extracellularly by 

conversates (subtilisin-like proprotein 1 and 4, also known as Furin and Pace4) (Beck et al., 

2002; Le Good et al., 2005). Several experiments led to the understanding that Nodal acts 

via activin receptors, Smad transcription factors and associated transcription factors such as 

FoxH1 (as reviewed in Shen and Schier, 2000; Whitman, 2001). Nodal/Spaw bind to a 

receptor complex composed of type I and type II receptors that can function as 

serine/threonine kinases (Attisano and Wrana, 2002; Shi and Massague, 2003). 

Ligand/receptor assembly results in phosphorylation and activation of type I receptor through 

the type II receptor, which in turn starts the phosphorylation of a downstream Smad cascade. 

Nodal signalling acts by regulating the phosphorylation of Smad2 (Kumar et al., 2001; Lee et 

al., 2001; Yeo and Whitman, 2001), which forms a complex with Smad4 and enter the 

nucleus. Then, it binds to transcription factors like FoxH1 (previously known as Fast2) and 

activates transcription of lefty1/2, nodal itself and pitx2, as well as other genes (reviewed in 

Whitman, 2001). Multiple receptors/ligands can diversify the output of Nodal signalling. 

Members of the epidermal growth factor (EGF-CFC) family are extracellular and GPI-linked 

proteins that include zebrafish one-eyed pinhead (Oep), frog FRL-1, chick CFC and 

mouse/human Cripto/Cryptic (reviewed in Shen and Schier, 2000). These are important 

components of the Nodal signalling pathway by acting as coreceptors for Nodal ligands. Its 

absence leads to defects in germ layer formation, organizer development and positioning of 

the anterior-posterior axis (Gritsman et al., 1999). Lefty action is also EGF-CFC-dependent, 

by interacting with EGF-CFC proteins and competing with Nodal for binding to these 

coreceptors (Cheng et al., 2004). In the LR context, EGF-CFC is expressed at both right and 

left Lateral Plate Mesoderm (LPM), where it is thought to interact with Nodal and induce 

Nodal signalling, and at the notochord, where it physically binds to Lefty1 to antagonize 

Nodal signalling (Shen et al., 1997; Yan et al., 1999).  LR nodal antagonists Lefty proteins 

are secreted and can compete with Nodals by binding to common receptors and by 
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physically binding to Nodal (Chen and Schier, 2002; Cheng et al., 2004). Nodal signalling 

induces the expression of both nodal and of its antagonists (Hamada et al., 2002). In 

zebrafish, lefty1 is expressed first in the posterior notochord, prior to asymmetric gene 

expression, where it might be inhibiting Nodal signalling from happening before the 

asymmetric cues from the LRO. An oep-dependent signalling event in the midline weakens 

the midline lefty1, alleviating the repression and allowing for the asymmetric left cue from the 

LRO to start Nodal signalling in the left LPM (Burdine and Grimes, 2016). Another important 

inhibitor is Dand5, a member of the differential screening-selected gene in neuroblastoma 

(DAN) family of predicted secreted proteins, that exhibits a finger-wrist-finger architecture 

with the cystine-knot motif, which makes the overall architecture similar to other cystine-knot 

containing proteins including BMP and Noggin (further reviewed in Nolan and Thompson, 

2014). Cerberus2 in mouse, Coco in xenopus and Charon in zebrafish were all renamed as 

Dand5 and are potent secreted inhibitors of Nodals, impacting on mesendoderm patterning 

and left-right establishment (Bell et al., 2003; Belo et al., 2000; Hashimoto et al., 2004; 

Pearce et al., 1999; Piccolo et al., 1999). Most of TGF-β signalling interactions are illustrated 

in Figure 2. 

Since Nodal act as a morphogen, it is important to understand how gradients are formed. 

Alan Turing, in his paper entitled “The Chemical Basis of Morphogenesis” in 1952 predicted a 

chemical mechanism for biological gradient pattern formation (Turing, 1952). He suggested a 

reaction-diffusion system where chemicals react to each other and diffuse across the space. 

This concept was redefined by Lewis Wolpert in his “French Flag Model” (Wolpert, 1969), 

where morphogens affect a field of cells in a concentration-dependent fashion – more 

morphogen activate certain genes while less morphogen activates other genes. Only 

decades later, it was formally demonstrated by Christiane Nüsslein-Volhard in Drosophila, 

with the identification of bicoid as a morphogen (Berleth et al., 1988). There are many models 
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for morphogen gradient formation based in complex mathematical equations, it can be put in 

simplified terms (thoroughly reviewed in Müller et al., 2013). It is possible to describe five 

major models: free diffusion, tortuosity and binding-mediated hindered diffusion, facilitated 

diffusion, transcytosis and directed transport via filopodial extensions known as cytonemes 

(Figure 3). Free diffusion is the simplest case, where molecules move freely from the source 

to the target tissue. However, this would not produce a gradient since this would result in 

uniform distribution of morphogen in the target tissue. Gradient formation happens when 

either the morphogen is degraded or is permanently trapped by a cell, producing a graded 

distribution of morphogens on the target tissue. Hindered diffusion assumes that the target 

tissue is densely packed with cells, which can cause hindrance by making the morphogens 

going around them (tortuosity-mediated hindrance), and/or by transiently binding 

morphogens through receptors or extracellular matrix components (binding-mediated 

Figure 3 - Theories of Morphogen Transport 

There are 5 major models to explain gradient formation of a morphogen: free diffusion, hindered 

diffusion by tortuosity or binding, facilitated diffusion, transcytosis and cytonemes. Scheme adapted 

from Müller et al. (2013). 
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hindrance). This would allow a faster gradient formation. Facilitated diffusion and shuttling 

assumes that a morphogen is largely immobile until a “positive” diffusion regulator comes 

and release the hindrance exerted by the “negative” diffusion regulators. In this scenario, 

morphogens and “negative” diffusion regulators are uniformly distributed while the “positive” 

diffusion regulators have a localized source and help to generate the morphogen gradient. 

These diffusion-based models have four potential weaknesses: length of patterning fields, 

solubility of morphogens, reliability of patterning and geometry of patterning fields. Because 

of that, two additional models were proposed. Transcytosis, where morphogens bind to cell 

surface and are endocytosed, only to be exocytosed again and endocytosed by other cells. 

This process leads to a slow shaped gradient over time. The final model is through 

cytonemes, where long dynamic filopodia-like structures project from target cells and contact 

morphogen-producing cells. Therefore, morphogens are ‘handed over’ to and transporter 

along cytonemes, forming a concentration gradient (reviewed by Müller et al., 2013).   

Nodal and Lefty have signal peptide sequences required for secretion (Beck et al., 2002; 

Blanchet et al., 2008; Le Good et al., 2005; Jing et al., 2006; Marjoram and Wright, 2011; 

Meno et al., 1996; Müller et al., 2012; Sakuma et al., 2002; Tian et al., 2008; Zhou et al., 

1993) and experiments with fused GFP support an extracellular localization (Müller et al., 

2012). This supports the idea that these two proteins move through tortuosity-mediated 

diffusion, where cells increase the path length of molecules diffusion in the extracellular 

space. Therefore, global effective diffusion coefficient of molecules moving through a tissue 

should be lower than the local diffusivity. Lefty and Nodal have similar local diffusivity (which 

could explain by having similar molecular weight) (Müller et al., 2013). However, while Lefty 

showed a local diffusivity double of its effective diffusivity, Nodal had a local diffusivity 90% 

higher than its effective diffusivity. This suggests that Lefty is mostly hindered by cell packing, 

while Nodal is hindered by cell packing and extracellular diffusion regulators (Müller et al., 
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2013), explaining why Lefty is long range while Nodal is short range (Chen and Schier, 2002; 

further reviewed in Schier, 2003). Diffusional movement can be altered by transient binding 

to other molecules such as receptors or components of the extracellular matrix (Baeg et al., 

2004; Belenkaya et al., 2004; Wang and Yost, 2008). Also, different affinities for receptors 

might account for different ranges of distribution (Müller et al., 2012). Another mechanism 

might be rapid clearance of molecules during diffusion (Kicheva et al., 2007). All data seems 

to indicate that Nodal gradient is dependent of diffusion, binding and degradation of the 

morphogen (Wang et al., 2016).  

 

1.3 LEFT-RIGHT AXIS ESTABLISHMENT 

1.3.1 MICE 

Left-Right Hypothesis 

Immotile cilia syndromes in Humans, such as Kartagener syndrome, are typically 

accompanied with LR axis abnormalities of organ situs which were thought to be associated 

with ciliary dysfunction (Afzelius, 1976; Kosaki and Casey, 1998). Finding asymmetric gene 

expression like lefty (Meno et al., 1996) and nodal (Collignon et al., 1996; Lowe et al., 1996) 

and motile cilia (Nonaka et al., 1998) in the embryonic node linked both fluid flow dynamics 

and gene expression. Two mice models were extremely important for the progress of LR 

studies: situs inversus viscerum (iv) and inversion of embryonic turning (inv). While the first 

was a mouse with a spontaneous mutation in the axonemal dynein heavy-chain 11 gene 

(also known as left/right-dynein) that led to random organ situs (Hummel and Chapman, 

1959; Supp et al., 1997), the second was an insertion mutation that affected inversin gene 

and always resulted in situs inversus (Mochizuki et al., 2002; Morgan et al., 2002; Yokoyama 

et al., 1993). These mutants presented problems in nodal expression around the node and in 
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the Lateral Plate Mesoderm (LPM), becoming bilateral or reversed (Lowe et al., 1996). Both 

iv and inv mutants had flow abnormalities, but while iv had all cilia immotile and no flow, inv 

mutant had motile cilia that produced a very weak and disorganized leftward flow. Besides, 

inv mutants had a misshaped node (Okada et al., 1999) which confirmed the shape of node 

was also important for proper flow. A third mutant, a KIF3B knockout mice, was done around 

the same time and also showed LR randomization problems. Disruption of KIF3B, a 

microtubule-dependent motor, was shown to be important for cilia assembly and 

maintenance. Without it, the node lacked cilia and therefore showed randomization of organ 

position and randomization of lefty2, a nodal antagonist (Nonaka et al., 1998). Mutations in 

KIF3A, that heterotrimers with KIF3B (Kondo et al., 1994; Yamazaki et al., 1995), showed 

similar phenotypes (Takeda et al., 1999). In fact, Nonaka et al. (1998) proposed the first 

morphogen model for LR axis establishment, where a secreted factor X would be transported 

by the fluid flow. Moreover, this model can explain why cultured embryos frequently reverse 

their body situs. A mature node comprises approximately 250 cells, with 50-60um wide and 

70-90um long, and up to 50um deep (Sulik et al., 1994; Bellomo et al., 1996; Yamanaka et 

al., 2007). It is a concave, tear-drop-shaped epithelial field of cells located distally on the 

ventral surface of the embryo, covered by the Reichert’s membrane (Figure 4A). The removal 

of this membrane during the culture procedure exposes the node to the outer environment, 

increasing the external turbulence and allowing diffusion of the factor X.  

Further confirmation that motile cilia were crucial in LR came from targeted deletion of the 

ATP binding domain of lrd, which also resulted in randomization of laterality due to immotility 

of node cilia (Supp et al., 1999). All this body of information indicates that flow occupies an 

upstream position in this process, elegantly backed up by the manipulative flow experiments 

done by Nonaka et al. (2002). This work showed that artificially provided strong or weak 

leftward flow did not affect pitx2 or heart looping, while strong (but not weak) rightward flow 
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could reverse organ situs in cultures of WT mice submitted to a fluid peristaltic chamber. The 

same experiments were repeated with iv mutant embryos, that lack fluid flow due to immotile 

cilia. When iv mutant embryos were submitted to strong or weak leftward flow, they showed 

left sided pitx2 and normal heart looping, while strong or weak rightward flow induced 

reversal LR situs (Nonaka et al., 2002). 

Figure 4 – Left-Right axis establishment in Mice 

(A) Schematic of a mice LRO, with immotile cilia in the periphery and motile cilia in the pit. The flow 

generated has two main directions: from right to left in the middle plane and from left to right ventrally, 

near the Reichert’s membrane and dorsally on the LRO cell surface. NVPs are depicted in yellow 

spheres with blue content, that are released on the right side by microvilli (in yellow) and break on the 

left side, releasing there the content and leading to an intracellular calcium rise (orange end). Scheme 

adapted from Tanaka et al. (2005). (B) Schematics of Nodal signalling pathway in LR. The node has a 

tear-drop shape with motile cilia (black dots). Nodal is expressed on the left side of the LRO (yellow 

crescent moon) where is also observed an intracellular calcium rise (black dots on the yellow crescent 

moon). The antagonist cerl2 is expressed on the right side (light blue crescent moon). Another 

antagonist, lefty is expressed in the midline. Since there is stronger Nodal signalling on the left side 

versus the right side, Nodal protein can travel to the left Lateral Plate Mesoderm (LPM) and start 

Nodal signalling there (big crescent moon in orange). Blue contours around the LPM and midline 

means EGF/CFC expression. A – Anterior, P – Posterior, D – Dorsal, V – Ventral, L – Left, R - Right 
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A few years later, work from Tanaka et al., 2005 shed some light on the identity of the 

potential morphogens working on LR axis establishment: FGF-dependent release of small 

membrane-bound vesicles called nodal vesicular parcels (NVPs) carrying Sonic Hedgehog 

and Retinoic Acid. Node cells and cilia expressed receptors for Fibroblast Growth Factors 

(FGFR) and when FGF signalling was antagonized, the typical intracellular calcium elevation 

was suppressed. Giving SHH or RA to mice embryos in culture could restore Ca2+ elevation 

on the left margin of the node. Confocal microscopy time-lapse showed that these NVPs 

labelled with lipophilic fluorescent dye DiI were released every 5-15 seconds from the 

protruding microvilli on floor of the node and were transported towards the left side of the 

node where they were fragmented by the ciliated surface into several smaller particles. 

Scanning and transmission electron microscopy detected several NVPs in the cell surface 

and, when FGF signalling was inhibited, showed an accumulation of unsheathed particles, 

potentially reflecting a failure in launching.  Live imaging showed that in immotile cilia 

mutants, NVPs were still released but were slowly being carried in every direction by 

Brownian motion. In cilia-free mutants, NVPs still formed but took longer to break, which 

suggested that cilia are important for breaking these vesicles (Tanaka et al., 2005). All this 

data together gave a new look into the morphogen hypothesis first laid down by Nonaka et al. 

(1998). The reformed morphogen hypothesis claimed that NVPs (instead of free 

morphogens) would be transported by the flow towards the left side of the node, delivering 

SHH and RA and inducing the calcium wave, culminating with differential nodal expression 

on the cells lining the node (Figure 4A). Nevertheless, these experiments were never 

confirmed by other labs and the role of SHH and RA is controversial in LR because these 

molecules have other functions in important organs such as the midline (Tsukui et al., 1999).  

Concomitantly with this body of work, other evidence started to appear. The knockout of 

Polycystin 2 (Pkd2), a calcium channel that when mutated causes autosomal dominant 
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polycystic kidney disease, led to randomization of organ situs and defects in asymmetric 

gene expression like loss of expression of lefty2 and nodal on the lateral plate mesoderm 

and symmetric expression of pitx2 (Pennekamp et al., 2002). This calcium channel is known 

to partner with a sensing molecule called polycystin 1 (Pkd1) and together sense the urine 

flow in the primary cilia of kidney epithelium and respond with a calcium intake. Lack of any 

of the polycystins makes cells unable to respond mechanically to flow (Nauli et al., 2003, 

2006). In the node, all cilia express Pkd2 and can be divided in two categories: motile and 

expressing Dnah9, centrally localized in the pit region, and immotile, peripherally localized in 

the crown cells (McGrath et al., 2003).  Besides, a wave of calcium signalling was observed 

at the left margin of the node, coinciding with directional flow. In the absence of Pkd2, this 

calcium wave was not observed (McGrath et al., 2003). Moreover, it was shown that specific 

localization of Pkd2 in the cilium of perinodal crown cells was important for correct LR axis 

establishment. Only when using Pkd2 constructs that were able to localize in the crown cells 

cilia of Pkd2-/- embryos, these were able to rescue LR (Yoshiba et al., 2012). Importantly, 

Pkd2 mutants still show normal leftward flow and normal beating cilia in mice (Yoshiba et al., 

2012). By using a flow responsive enhancer ANE (Kawasumi et al., 2011), Yoshiba et al. 

(2012) showed that, in normal flow conditions ANE gave more expression on the left side 

while with artificially reversed flow ANE gave more expression on the right side. In Pkd2 

mutant embryos, ANE activity was equal on both sides, which would suggest that the lack of 

Pkd2 in the crown cells makes embryos fail to sense the flow. Calcium signalling was still 

detected in crown cells of Pkd2 mutants, but it was present bilaterally and not asymmetric to 

the left as in WT (which is in contrast to the absence of signal found by McGrath et al., 2003). 

Restoration of Pkd2-positive primary cilia on crown cells of Kif3a mutant embryos that lack 

beating cilia conferred capacity to respond to artificial flow, reinforcing that immotile cilia in 

the crown cells were indeed fundamental to elicit a flow response (Yoshiba et al., 2012). All 

together these data strengthened the mechanosensation hypothesis first laid down by 
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McGrath et al. (2003), where one population of cilia would create the flow and the immotile 

population would have the ability to sense the flow and respond accordingly.  

Nodal – the left-side determinant 

It was shown by Collignon et al. (1996) and Lowe et al. (1996) that in mice nodal has two 

asymmetric (stronger on the left) expression domains: one around the node and another in 

the lateral plate mesoderm (LPM). They also showed that these expressions were strongly 

affected in the inv/inv and iv/iv mutants and these correlated with heart looping and 

embryonic turning defects (Collignon et al., 1996; Lowe et al., 1996). The nodal expression 

around the node at early head-fold stage (embryonic day 7.0) is first symmetric between left 

and right, only becoming asymmetric (strong on the left) between late head-fold stage and 

early somitogenesis (embryonic day 7.5-8.0) (Collignon et al., 1996; Lowe et al., 1996). 

Another asymmetric gene observed around the node was the nodal antagonist cerl2 

(Marques et al., 2004). Similar to nodal, expression of cerl2 is initially symmetric at early 

headfold stage but, in contrast to nodal, becomes strongly expressed on the right side at late 

headfold stage, earlier than the observed asymmetry for nodal (Marques et al., 2004). 

Experiments with Xenopus and mouse nodal and cerl2 mRNA injections suggested that 

Cerl2 might antagonize Nodal in the extracellular space by physical interaction (Marques et 

al., 2004). cerl2 knockout leads to 50% bilateral nodal expression in the LPM and 10% 

asymmetric expression of the right LPM. It also affects lefty2 expression, while lefty1 in the 

midline remains normal. In terms of organs, 54% of cerl2-/- mutant embryos show leftward or 

ventral loop instead of the WT rightward heart loop. Embryos also showed left isomerism of 

the lungs or situs inversus (Marques et al., 2004). In the absence of Pkd2, cerl2 never 

becomes asymmetric and nodal expression in LPM is absent (Yoshiba et al., 2012). In the 

double mutant Pkd2-/-;Cerl2-/-, nodal loses its direct repressor and becomes randomized, just 

like in the Cerl2-/- mutant alone, making Cerl2 the major target of Pkd2 (Yoshiba et al., 2012). 
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This cerl2 mRNA asymmetry was found to occur post-transcriptionally and via its 3’UTR. 

Careful analysis of the subcellular localization of cerl2 mRNA revealed a preference for the 

apical side of the crown cells on the right side of the node that was dependent on the integrity 

of the 3’UTR. In sum, it was suggested that asymmetric fluid flow induces the degradation of 

cerl2 mRNA in the apical side of the crown cells through the 3’UTR, a degradation that then 

is further enhanced through a feedback loop involving Wnt3, that in turn becomes strongly 

expressed on the left. The stronger the wnt3 expression, more cerl2 becomes degraded on 

the left side (Kitajima et al., 2013; Nakamura et al., 2012). The fact that cerl2 becomes 

symmetric in the absence of Pkd2 puts cerl2 degradation downstream of calcium signaling 

(Nakamura et al., 2012; Yoshiba et al., 2012). Furthermore, Cerl2 mRNA 3’UTR is rich for 

AU-rich elements which confer instability to mRNA (Schoenberg and Maquat, 2012). 

Interestingly, Cerl2 protein starts by localizing and prevent Nodal activation on the right side, 

but from 3 somite stage onwards seems to translocate from right to left in a flow-dependent 

manner and help to shut down Nodal activity on the left side of the node, in a time where 

cerl2 mRNA is no longer observed on the left (Inácio et al., 2013). In sum, this fine balance 

between nodal and cerl2 at the node seems to influence Cerl2 protein dynamics by the 

presence of flow and greatly impacts on peri-nodal phosphorylated Smad (Nodal signalling 

activity readout) which is markedly stronger on the left side (Kawasumi et al., 2011; 

Nakamura et al., 2012) and at the LPM (Oki et al., 2009). Many of the Nodal signalling 

pathway elements in LR are illustrated in Figure 4B.  

Other players help fine-tune this process. One is GDF1, which is required as a binding 

partner of Nodal and is necessary for Nodal full activity (Tanaka et al., 2007). It is expressed 

in crown cells and LPM (Rankin et al., 2000). Also, the enhancer regulating node-specific 

Nodal expression (NDE), which is indispensable for peri-node expression, showed the 

presence of binding sites for RBP-J protein, the primary transcriptional mediator for Notch 
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signalling. Without this sites, the enhancer loosed the ability to regulate nodal expression in 

the node (Krebs et al., 2003; Raya et al., 2003). Tbx6, a T-box transcription factor, is 

upstream of Delta-like 1 (Dll1) and is important for Nodal signalling in the node. Tbx6 mutant 

show shorter and thicker cilia in the node, with erratic motion and higher proportion of 

immotile cilia in the pit region compared with WT embryos, which impacted on intracellular 

calcium at the node periphery (Hadjantonakis et al., 2008).  Finally, Wnt3a expressed in the 

primitive streak and dorsal posterior node can act as a long-range signalling molecule and 

directly activate Notch signalling pathway to regulate the left perinodal expression of nodal 

(Nakaya et al., 2005). Important to restrict Nodal expression only on the left LPM is the 

presence of the embryonic midline – notochord and/or floorplate of the neural tube (Danos 

and Yost, 1996). Expression of lefty1 in the midline has been shown to be important to 

prevent the passage of Nodal to the right side and this lefty1 expression is induced by Nodal 

itself (Meno et al., 1998; Yamamoto et al., 2003).  

Since Nodal can induce its own transcription and the transcription of its antagonists, it has 

the necessary features to constitute a SELI (Self-Enhanced and Lateral-Inhibition) system 

(Nakamura et al., 2006; Saijoh et al., 1999, 2000; Yashiro et al., 2000). According to this 

system, nodal flow generates an initial small difference in signal strength between left and 

right peri-nodal cells. Although the signal is transmitted to left and right LPM, the fact that the 

signal is stronger on the left leads to an asymmetric induction of the initial burst of nodal 

transcription on the left vs the right LPM. Concomitantly, Nodal induces lefty1 and lefty2 in 

the midline and LPM. Mathematical modelling shows that this set of starting conditions can 

resolve itself in a robust amplification into the stable pattern of left LPM nodal expression 

observed in vivo (Nakamura et al., 2006). This model can provide explanations for the LR 

phenotypes of various mouse mutants and is very consistent with the observed dynamics of 

nodal and lefty mRNA expression dynamics. It has been suggested that the initial signal 
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strength might be the perinode Nodal activity and this is consistent with the fact that perinode 

expression is necessary for the expression of nodal LPM expression (although the 

establishment of a left asymmetry is not) (Brennan et al., 2002; Saijoh et al., 2003). This 

would indicate that Nodal protein produced at the node can travel to the left LPM, perhaps 

through the interaction with sulphated glycosaminoglycans that are specifically localized to 

the basement membrane-like structure between the node and LPM and therefore starting 

nodal expression on the LPM (crypto, nodal co-receptor, is only expressed on the LPM) 

(Kawasumi et al., 2011; Oki et al., 2007). Another possibility is that it could be travelling 

through gap junctions on the endoderm cells that are just opposed to the node (Saund et al., 

2012; Viotti et al., 2012). Either way, when Nodal reaches the LPM it can activate its own 

expression via a Nodal-responsive transcriptional enhancer (ASE) (Saijoh et al., 2000). 

However, another more recent report stated that Man1, an inner nuclear membrane protein 

that regulates TGF-β, is sufficient to induce Nodal in the LPM even in the absence of peri-

node Nodal (Ishimura et al., 2008). So, there might still be another molecule around the 

node, symmetric or not, that influences the travelling of nodal to the LPM.  

1.3.2 ZEBRAFISH 

Left-Right establishment 

Left-right in zebrafish starts in a vesicular organ called Kupffer’s Vesicle (KV). The KV 

derives from the dorsal “forerunner” cells (DFCs). Cooper and D’Amico (1996) used BODIPY 

and live confocal microscopy time-lapses to visualize how deep cells within the non-

involuting endocytic marginal cell cluster rearrange and move to the distal edge of the 

blastoderm between 50 and 60% epiboly. Here they contribute to the formation of the dorsal 

“forerunner” cells (DFCs) and between 60 and 80% epiboly they coalesce into a cell cluster 

that will later give rise to the KV (Cooper and D’Amico, 1996). Another study by Oteíza et al. 

(2008) used 2-Photon microscopy and the transgenic line Tg(β-actin:HRAS-EGFP) 
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expressing a membrane marker and observed a subset of marginal and submarginal dorsal 

surface epithelial cells internalize beneath the surface epithelium in a Nodal signaling-

dependent way at the dorsal germ ring margin prior to gastrulation. They then migrate ahead 

of the shield region attached to the overlying surface epithelium and rearrange into rosette-

like epithelial structures at the end of gastrulation (Oteíza et al., 2008). Oteíza et al. (2008) 

claimed that the differences observed between this work and Cooper and D’Amico (1996) 

work could be due to different labeling and imaging methods to identify DFCs. Despite this, 

DFCs migration is dependent on endogenous calcium release that inactivates β-catenin 

nuclear translocation through naked cuticle (Nkd) binding to Disheveled. Affecting this initial 

calcium release or knocking down Nkd resulted in nuclear localization of β-catenin, disrupting 

DFCs migration and impairing the KV formation (Lin and Xu, 2009; Schneider et al., 2008, 

2010). In addition, it was demonstrated that suppression of the sarco/endoplasmic reticulum 

calcium ATPase with thapsigargin elevates cytosolic Ca2+ and impairs KV formation (Kreiling 

et al., 2008).  At early somitogenesis, the epithelial rosettes coalesce into a single rosette, 

open a lumen and each cell starts to generate a cilium on its apical surface (Kramer-Zucker 

et al., 2005a; Oteíza et al., 2008). DFCs express motility genes like left-right dynein and 

videomicroscopy confirmed that most cilia are motile and are capable of creating a directional 

fluid flow prior to asymmetric gene expression (Essner et al., 2005). spadetail and notail are 

both required for formation of a functional KV (Bisgrove et al., 2005; Essner et al., 2005). As 

development proceeds, this first radially symmetric structure starts to get asymmetric along 

the AP axis, with more ciliated cells packed into the anterior region creating a dorsal anterior 

cluster of cilia (Wang et al., 2012). This coordinated cell movement is dependent on Rho 

kinase gene rock2b and non-muscle myosin II (Wang et al., 2012) and it is important for the 

generation of the anterior dorsal cluster of motile cilia that generates stronger leftward flow 

on the anterior side and weaker rightward flow on the posterior side (Wang et al., 2011, 

2012), also confirmed by the flow studies that followed by Sampaio et al., (2014). Affecting 
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Rock2b or Myosin II affected this AP position of cells without affecting the number or length 

of cilia. This was enough to homogenize the anterior and posterior flow velocities and to lose 

directionality (Wang et al., 2011, 2012). One factor that contributes to these cell reshaping is 

the increase in KV volume that occurs during normal development of the LRO, through a 

process involving CFTR (Navis et al., 2013), later demonstrated to be involved in a crosstalk 

between Pkd2 (Roxo-Rosa et al., 2015). This anterior dorsal cluster was also reported to be 

induced and maintained by the extracellular matrix (ECM) accumulation that the notochord 

produces and assembles in the anterior-dorsal region. In fact, affecting the function of 

laminin-γ1 with a morpholino or using a truncated version of fibronectin abrogated the dorsal 

anterior cluster (Compagnon et al., 2014). This ECM accumulation restricts the apical 

expansion of cells in the anterior dorsal region so, as the lumen inflates, only cells in the 

posterior ventral side undergo apical expansion. These differences in apical expansion are 

accompanied by Rock2b-dependent actin cytoskeleton reshaping and lead to an 

accumulation of cilia in the anterior dorsal region, compared with the posterior ventral region 

(Compagnon et al., 2014; Wang et al., 2011).  

Sampaio et al. (2014) showed that the flow speed pattern inside the KV has a biological 

relevance that correlates with organ situs. They showed that whenever the flow pattern 

changed from stronger on the anterior dorsal pole to other patterns the organ situs became 

abnormal. Then, through mathematical simulations, Sampaio et al. (2014) showed that a 

minimum number of 30 motile cilia was necessary for robust fluid flow and consistent correct 

organ situs (Sampaio et al., 2014). It is known that KV size and cilia number are variable 

among WT fish, but cilia length is not so variable (Gokey et al., 2015). Notch signaling seems 

to play a role for cilia length control in the KV (Lopes et al., 2010). While increased cilia 

length through Arl13b overexpression does not seem to strongly impact on flow pattern and 

intensity (Pintado et al., 2017), decreased cilia length through inactivating Notch signaling 
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(dld-/- mutant) slows down fluid flow velocity and compromises the asymmetric gene 

expression and organ situs (Lopes et al., 2010; Sampaio et al., 2014). The shorter cilia 

phenotype found in dld-/- mutants could be rescued by overexpression of the transcription 

factor foxj1a, a motile ciliogenic factor (Lopes et al., 2010). Like in other models, Foxj1 is 

upstream of cilia formation and is expressed in DFCs, KV and other ciliated structures 

(Aamar and Dawid, 2008). Besides length, Notch signaling also impacts on motile/immotile 

cilia ratio (Sampaio et al., 2014; Tavares et al., 2017). Through a thorough electron 

microscopy protocol, Tavares et al., (2017) were able to show that all cilia present in the KV 

have the necessary ultrastructure to move. Despite that, there are 20% of immotile cilia that 

never beat in the KV of WT embryos. This was confirmed by time-lapse 2-Photon microscopy 

and by using a mild arl13b-GFP mRNA overexpression that allowed following individual cilia 

and tracking their behaviors during KV inflation. Again, less Notch signaling led to more 

motile cilia, while having more Notch signaling led to less motile cilia (Tavares et al., 2017). 

This feature is common to the Xenopus LRO, where motile/immotile cilia ratio was affected 

by Galnt11 - an enzyme needed for the proper cleavage of the Notch receptor. So, mediated 

Notch1 signaling modulates the spatial distribution and motile/immotile ratio: galnt11 or 

notch1 knockdown increases the motile cilia ratio while overexpression decreases it 

(Boskovski et al., 2013). In zebrafish, this motile/immotile ratio could not be rescued by foxj1a 

overexpression; in fact, it seemed to be regulated by the transcription factor Her12 (Tavares 

et al., 2017). An interesting observation was that more immotile cilia at the expense of motile 

slowed down fluid flow velocity and thereby affected organ situs, as it approached the 30 

minimum motile cilia number modeled by Sampaio et al. (2014).  

Another molecule that seems to regulate cilia length and motility comes from the heparan 

sulfate O-sulfotransferase (OST) family. 3-OST-5 seems to control Foxj1 to regulate cilia 

length, while 3-OST-6 regulates cilia motility through kinesin motor molecule (Kif3b) 
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expression and cilia arm dynein assembly (Neugebauer et al., 2013). Wnt signaling also 

affects ciliogenesis by regulating foxj1a, since Foxj1a promotor has binding sites for Lef1/Tcf 

that are indispensable for foxj1a expression in the KV (Caron et al., 2012). Indeed, 

overexpression of wnt8a in a single cell in a 128-cell stage embryo is sufficient to induce the 

formation of an ectopic protrusion with ectopic foxj1a expression and ectopic cilia-like 

structures (Zhu et al., 2015). Disruption of Lef1 or Tcf7 or both lead to downregulation of 

foxj1a in the DFCs and affect ciliogenesis in the KV, leading to shorter and fewer cilia (Zhu et 

al., 2015). Finally, cilia are positioned with a posterior tilt and Vangl2, a core component of 

PCP signaling pathway, is required for this (Borovina et al., 2010), similar to what has been 

shown in mice (Hashimoto et al., 2010; Song et al., 2010).  

The global flow in the KV is circular having a counterclockwise direction (Figure 5A). This 

means that in the anterior part of the KV flow goes towards the left, while it moves towards 

the right in the posterior part. This is generated by the dorsal anterior cluster, but the local 

flow differs in direction dependent on the location within the KV (Okabe et al., 2008). “Useful” 

cilia are mainly present in the KV’s dorsal side and in the equatorial line with a dorsal tilt and 

these are important to give the leftward direction that breaks the symmetry, while the dorsal 

anterior cluster is important only to strengthen the flow in the anterior region vs the posterior 

(Montenegro-Johnson et al., 2016; Smith et al., 2014).  

According to mathematical simulations, assuming the dorsal anterior cluster was eliminated, 

if the dorsal side still had more cilia than the ventral this would still generate a 

counterclockwise flow that would be homogeneous in strength in all KV (Figure 5A). This 

should still be enough to break symmetry if it was done by morphogens or vesicles carrying 

molecules, because the transport by the flow would still be available, but would not be 

heterogeneous enough to break symmetry by a mechanosensor system. To reverse the flow, 

one would need to have more cilia beating in the ventral side of the KV, since these generate 
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an antagonistic flow (Montenegro-Johnson et al., 2016). This theoretically would produce  

similar results to the experiments of flow reversal in mice (Nonaka et al., 2002). All these 

predictions remain to be experimentally demonstrated. Another striking difference between 

zebrafish and mice is the fact that the locally generated flow seems to be extremely important 

for the zebrafish and not to the mouse. Accordingly, zebrafish with motile cilia on the left or 

Figure 5 – Left-Right axis establishment in Zebrafish 

(A) Schematic of a zebrafish LRO, with arrows depicting stronger leftward flow on the anterior dorsal 

region and weaker rightward flow on the posterior ventral region (B) Schematics of Nodal signalling 

pathway in LR. The Kupffer’s Vesicle has a sphere-like shape, with motile cilia showing an anterior 

bias (black dots) and the immotile cilia evenly distributed. spaw is expressed on two domains dorsally 

localized in relation to the KV (orange rectangles). The antagonist dand5 is expressed on the right 

side (light blue crescent moon), while on the right side of the LRO it is possible to observe a calcium 

wave (black dots in the left-sided crescent near the KV). Another antagonist, lefty is expressed in the 

midline. Since there is stronger Nodal signalling on the left side versus the right side, Nodal protein 

can travel to the left Lateral Plate Mesoderm (LPM) and start Nodal signalling there (big crescent 

moon in orange). Blue contours around the LPM and midline means EGF/CFC expression. A – 

Anterior, P – Posterior, D – Dorsal, V – Ventral, L – Left, R – Right.  
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right side of the KV showed consistent normal situs or reversal of organ position, respectively 

(Sampaio et al., 2014). On the other hand, mice with as few as 2 cilia beating, irrespectively 

of their position, would show normal organ situs (Shinohara et al., 2012). This is explained by 

their LRO shapes being so different. While all cilia in the mouse LRO are “useful”, meaning 

that they are all located in the pit region and therefore contributing to the leftward flow, in 

zebrafish there are productive flow regions and unproductive flow regions. Therefore, while 

two beating cilia in the mouse are enough to originate productive flow, in zebrafish there is 

need of a certain number and localization. In a normal embryo, this corresponds to the 

equatorial line for flow direction and anterior dorsal region for flow strength (Pintado et al., 

2017). 

Pkd2-mediated sensing and Nodal pathway 

Pkd2 is also expressed in Zebrafish DFCs from gastrulation to early somite stages. 

Knockdown of Pkd2 also leads to LR problems in zebrafish. However these are different from 

the phenotypes seen in the mouse PKD2-/- mutant by Pennekamp et al. (2002), despite the 

similar loss of asymmetric dand5 gene expression and the clear randomization of organ situs 

(Bisgrove et al., 2005; Schottenfeld et al., 2007) in zebrafish there is also a randomization of 

LPM markers, different when compared to the loss of expression of lefty2 and nodal on the 

LPM and symmetric expression of pitx2 reported in the mouse model.  

The precursors of the Kupffer’s vesicle, the DFCs, have an interesting and advantageous 

feature that allows for unique and specific manipulations in the fish LRO. Since DFCs are the 

last cluster of cells to close their bridges with the yolk (Cooper and D’Amico, 1996), they can 

be exclusively targeted by injecting substances, such as antisense oligos, at 500-1000 cell 

stage instead at 1 cell stage (Amack and Yost, 2004). This approach allows for genetic 

manipulations in the KV only, making possible to distinguish between KV cell autonomous 

processes from other contributions. Knocking down Pkd2 in the DFCs alone produced milder 
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results in terms of organ situs and asymmetric gene expression in the LPM than knocking it 

down at 1 cell stage (Bisgrove et al., 2005). This suggests that the Pkd2 contribution to LR is 

not exclusively coming from the DFC cells but may be coming from other tissues as well. 

This is not surprising since that expression of pkd2 is very broad in the developmental stages 

important for LR (Bisgrove et al., 2005; England et al., 2017). Overexpression of full-length 

zebrafish pkd2 mRNA at 1 cell stage can rescue the organ situs of pkd2 morphants to some 

extent (Bisgrove et al., 2005) but a DFC rescue was not tried. Interestingly, a human Pkd2 

construct that had an important Serine in the position 812 substituted to an Aspartic Acid and 

therefore resulted in a protein that was predicted to be trapped in the endoplasmic reticulum 

via a strong interaction with PACs molecules was more effective at rescuing zebrafish 

abnormalities of LR asymmetry than the human Pkd2 WT version in pkd2 morphant zebrafish 

embryos (Fu et al., 2008).  

Yuan et al. (2015) used genetically encoded calcium indicators targeted to zebrafish LRO 

cilia and was able to observe intraciliary calcium oscillations (ICOs). These were observed in 

KV midplane of some cilia on the left side of the KV, which preceded a leftward calcium wave 

that extended through the mesendodermal cells beyond the LRO. These calcium oscillations 

were abolished in the absence of Pkd2 by morpholino knockdown or when targeting calcium 

chelators into the cilium (by using arl13b-parvalbumin construct), having significant impact on 

left right outcomes (Yuan et al., 2015). Temporally speaking, these ICOs happened at the 

onset of flow, just when cilia start to beat, and peak earlier than the cytosolic waves, which 

suggests that cumulative ICOs are necessary for a robust cytosolic calcium signal to occur 

and spread (Yuan et al., 2015). Although still unreported in zebrafish, in mouse and in 

medaka it has been found that the sensory partner of Pkd2 in the LRO is Pkd1l1 (Field et al., 

2011; Kamura et al., 2011). In medaka it seems to be present in all KV cilia along with Pkd2 

(Kamura et al., 2011). Together these results explained the lack of laterality defects observed 
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when Pkd1 was absent (Karcher et al., 2005) and suggest a dual role for cilia: generate flow 

and sensing it through a pkd2-pkd1l1 mediated sensing mechanism.  

Associated with the calcium wave now observed by Yuan et al., (2015) there was a previous 

study reporting a transient activation of Ca2+/Calmodulin-dependent protein kinase (CaMK-II) 

in the four interconnected cell layers along the anterior left wall of the KV (Francescatto et al., 

2010). These studies showed that knocking down CaMKII leads to randomization of organ 

situs and disturbed expression of asymmetric genes. Indeed, the phosphorylated form of 

CaMKII was the first identified left-sided calcium sensitive target in LR asymmetry, which 

could be transducing the Pkd2-dependent calcium signals from the KV to the LPM 

(Francescatto et al., 2010; Rothschild et al., 2011). Embryos injected with CaMKII morpholino 

showed around 60% of abnormal heart situs and around 70% of abnormal gut situs 

(Francescatto et al., 2010), while embryos injected with pkd2 morpholino showed only 

around 30% of abnormal hearts and guts (Bisgrove et al., 2005) or around 46% of combined 

situs inversus and heterotaxia (Schottenfeld et al., 2007). On the other hand, pkd2/cup-/- 

mutants have a much stronger phenotype for organ situs, with only 35% of situs solitus 

(Schottenfeld et al., 2007). In sum, if we compare Pkd2 and CaMKII morphants, there are still 

space for something else besides Pkd2 to affect the calcium signalling on the left side, while 

if we compare it with the pkd2/cup-/- mutant, then the levels of organ situs defects observed 

are similar. More work with mutants needs to be done on this level to further clarify the 

mechanism.   

Zebrafish homologue for nodal, (southpaw or spaw) is first expressed in two symmetric 

domains flanking the KV and then on the left lateral plate mesoderm (Figure 4D). Spaw 

knockdown leads to severe organ situs defects and downregulation of other LR genes like 

pitx2, lefty1 and lefty2 (Long et al., 2003; Soroldoni et al., 2007). Spadetail and notail overlap 

in the region around the KV and are known to trans-activate peri-KV spaw expression 
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(Gourronc et al., 2007). dand5 is expressed exclusively in KV cells in zebrafish and medaka. 

Dand5 is a homologue for Cerl2, which acts as a secreted antagonist for Nodal proteins 

(Hashimoto et al., 2004; Hojo et al., 2007; Pearce et al., 1999). Overexpression of dand5 in 

the whole embryo counteracted the action of all the three zebrafish nodals: cyclops, squint 

and spaw, important genes for dorsal-ventral patterning of the embryo. On the other hand, 

knockdown of dand5 led to specific laterality defects such as bilateral expression of spaw, 

lefty1, lefty2 and pitx2 and associated organ situs problems (Hashimoto et al., 2004).  Loss of 

notail has a stricking impact on dand5 production due to a direct role of notail in dand5 

transcriptional regulation (Gourronc et al., 2007). Also, Notch signaling seems to have a role 

in restricting dand5 expression (Gourronc et al., 2007). Curiously, foxj1a seems to be 

important for dand5 initial expression because ectopic expression of foxj1a in ntla mutants 

recovered dand5 expression (Zhu et al., 2015). Many of the Nodal signaling pathway 

elements in LR are illustrated in Figure 5B. 

From mouse studies we know that Nodal is a potent activator of its own transcription, as well 

as of its two antagonists lefty1 and lefty2 (Saijoh et al., 1999, 2000; Yashiro et al., 2000). Due 

to that, a midline barrier of lefty1, which codes for a Spaw inhibitor, is a conserved 

mechanism that restricts Spaw protein to the left side of the midline (Bisgrove et al., 1999). 

Regarding the midline barrier, in left-right development the midline is extremely important 

because it separates the two sides of the embryo physically and molecularly. β-catenin2 is 

essential for establishing a physical midline (when β-catenin2 is absent, the notochord and 

floorplate are lost) and β-catenin1 is important only for lefty1 expression (Zhang et al., 2012). 

An extra anterior and posterior midline barriers were also described in zebrafish: posterior 

barrier mediated by BMP signaling that represses Spaw and prevents its passage from the 

posterior left side towards the right posterior side; and an anterior barrier mediated by lefty2 

expression in the cardiac left field, that helps prevent the passage of Spaw from left anterior 
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PSM to right anterior and posterior PSM (Lenhart et al., 2011; Long et al., 2003). The 

initiation of both pitx2 in LPM and lefty1 in the midline depends on Spaw. On the other hand, 

embryos lacking lefty1 have premature spaw expression on the left LPM, meaning that lefty1 

expression in the midline helps timing the beginning of spaw expression in the LPM. Physical 

interaction of Lefty1 with one-eyed pinhead (oep), the zebrafish EGF-CFC receptor, in the 

midline leads to a reduction of the free Lefty1, alleviating its repression on LPM Nodal 

signaling and allowing it to happen. Absence of dand5 also leads to premature spaw initiation 

in the LPM but without a left bias (Burdine and Grimes, 2016; Wang and Yost, 2008). 

Interestingly, recent pitx2 mutants made in zebrafish have shown that this gene, despite 

being asymmetrically expressed in the LPM, is not required for LR establishment. Instead, a 

gene adjacent to pitx2 that encodes a fatty acid elongase, elovl6, was showed to contribute 

to LR, by being asymmetrically expressed in the left LPM and dependent on Nodal activity (Ji 

et al., 2016). Zebrafish spaw mutants show randomization of both heart and gut laterality, 

although hearts exhibit a preferential dextral loop direction, which is independent of Nodal 

activity. This study also suggested that Nodal signaling might act by regulating actin gene 

expression and that asymmetric Nodal signaling may enhance cytoskeleton-based tissue-

intrinsic mechanisms of heart looping (Noël et al., 2013). A very recent work by Ocaña et al. 

(2017) showed that BMP can mediate the activation of an epithelial-to-mesenchymal 

transition (EMT) inducer Prrx1a, a snail related gene, on the LPM. This new pathway is 

stronger on the right than on the left LPM. Through an actomyosin-dependent mechanism, 

Prrx1a-positive cells undergo EMT and lead to a leftward displacement of the cardiac 

posterior pole. The authors showed that when prrx1a was downregulated, embryos 

developed central hearts (Ocaña et al., 2017).  
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1.4 CILIA, FLOW AND LRO ARCHITECTURE – MECHANOSENSORY VS 

CHEMOSENSORY 

Flow direction at the LRO is fundamentally asymmetric. The first asymmetry that must be 

considered is the clockwise rotation of the cilium itself, which is determined by the motor 

proteins that power its movement. These are made up of chiral amino acids in just one of 

their two possible forms: laevo. An equivalent molecular motor using the same amino acids in 

their opposite (dextro) configuration would be predicted to rotate in the reverse direction. 

Cartwright et al. (2004) discusses that, ultimately, LR symmetry breaking is determined by 

the chirality of natural amino acids that compose cilia which, by being in laevo conformation, 

impose a leftward direction to the flow (Cartwright et al., 2004). The second asymmetry to 

consider is the posterior tilt found in these cilia. Mathematical modelling predicted cilia tilting 

to be important for further establishment of a directional flow (Cartwright et al., 2004; Smith et 

al., 2007). This was later experimentally verified by Okada et al. (2005), further followed by 

Hashimoto et al. (2010) and Song et al. (2010) in mice and by Borovina et al. (2010) in 

zebrafish, and happens due to a process that is dependent on Planar Cell Polarity (Borovina 

et al., 2010; Hashimoto et al., 2010; Song et al., 2010).  

With that established, one must think about the flow itself and how it is conveying the 

asymmetric message. In the mice LRO, the flow is extremely slow, with a low Reynolds 

number. In the reformed morphogen model with NVPs (Tanaka et al., 2005), the authors saw 

by time-lapse confocal microscopy that the NVPs were fragmented by the cilia or cell wall 

into smaller particles on the left side after being transported across the node. The majority of 

NVPs are indeed transported in the leftward flow, while some stay around each cilium and 

collide at other points of the node (Cartwright et al., 2007). However, physics states that the 

observed flow is not enough to just mechanically break the vesicles. This suggests that there 

must exist an active rupture mechanism that acts when the vesicle collides with a particular 
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region of the node or cilium, which would destabilize the membrane in a chemical way 

(Cartwright et al., 2007). A piece of data that seems to support this idea is the fact that 

mutant mice embryos in which NVPs are released but cilia are immotile, still seem to have 

NVP rupture (Tanaka et al., 2005). It was suggested that it might even be possible that this 

rupture mechanism is associated with the immotile cilia present around the mice node 

(Cartwright et al., 2007).  

Interestingly, mice leftward fluid flow starts to be locally generated at early headfold stage 

and is fully developed at two-somite stage, increasing from 1 to 3ums-1 (Shinohara et al., 

2012). However, gene asymmetry is established around the node at late headfold stage, 

soon after the local flow is generated but before global flow becomes maximal, suggesting 

that the system does not need strong flow to properly establish LR (Shinohara et al., 2012). 

Shinohara et al. (2012) confirmed this by methylcellulose experiments, where ciliary motion 

and fluid flow were abolished when using a medium containing 1% (w/v) methylcellulose, but 

using half the concentration impacted mildly on average rotating speed and established a 

weak flow of less than 2ums-1. Treating with 1% of methylcellulose made asymmetric gene 

expression randomized, but embryos where weak flow was present (treated with 0.5%) had 

normal LR asymmetric gene expression (Shinohara et al., 2012). In addition, mutants with 

variable number of motile cilia (Dpcd and Rfx3 mutants) were shown to have severe 

phenotypes with only zero to one motile cilia, and mild phenotypes with more than four motile 

cilia (Shinohara et al., 2012). The severely affected embryos (zero to one cilia beating) 

showed bilateral cerl2 expression in the node and nodal expression in LPM was lost. The 

mildly affected embryos had normal asymmetric expression of cerl2 and pitx2, despite losing 

the global flow and only showing weak leftward flow similar to embryos at early headfold 

stage (Shinohara et al., 2012). The weak local flow that remained in the embryos with only 

two rotating cilia was 1ums-1 in the area close to the cilia, which would decrease steeply with 
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distance, making the flow at the edge of the node too low for detection (Shinohara et al., 

2012). When these mildly affected mutants were treated with 0.5% methylcellulose, which in 

WT embryos do not affect LR, they started to exhibit LR defects, suggesting that the LR 

decision indeed depends on the flow generated by these few rotating cilia. Also, these mildly 

affected mutants exhibited normal LR irrespective of the positions of the cilia regarding the 

node cavity. The authors argue that their data support mechanosensation since this weak 

leftward flow would take a very long time to transport morphogens and their data indicated 

that 2h of flow was enough to establish LR (Shinohara et al., 2012). 

Curiously, in zebrafish the flow also starts slow (Tavares et al., 2017) and the intraciliary 

calcium oscillations described in Yuan et al. (2015) also happen prior to the strong flow is 

established (Yuan et al., 2015). By using experimental data and modelling, Ferreira et al. 

(2017) tried to test in zebrafish if the system was sensitive enough for mechanosensation to 

happen. They analysed the system from individual cilia to the entire LRO and showed that 

the local variability of flow velocities is too high to be well interpreted by such a small 

percentage of immotile cilia (less than 5% at 8 somite-stage), stating that chemosensation 

would be more likely to happen in zebrafish LRO (Ferreira et al., 2017). However, our own 

data showed that, at the same time-point as studied by Ferreira et al. (2017), there are not 

5% but 20% of immotile cilia. If we consider that Yuan et al. (2015) showed calcium signalling 

is happening even earlier, when flow is slower, then the number of immotile cilia would be 

even higher (Tavares et al., 2017). Therefore, more should be done to proper understand if 

slow flow and higher number of immotile cilia are indeed sufficient for supporting 

mechanosensation and/or chemosensation.  

Mechanosensation has been the latest fashion since the discovery that Pkd2 is key for LR 

patterning, with several reports showing that embryos lacking Pkd2 had numerous LR 

defects, in terms of organs and asymmetric gene expression (Bisgrove et al., 2005; Kamura 
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et al., 2011; Schottenfeld et al., 2007; Yoshiba et al., 2012). The general concept behind the 

role of Pkd2 was that the flow would bend the immotile cilia in the mice LRO crown cells or, 

in case of the zebrafish, the immotile cilia distributed throughout the LRO, and that this cilium 

bending would be sensed by the complex Pkd1l1 – Pkd2 so that a calcium influx of 

extracellular calcium would enter through the ciliary compartment and start a calcium-

induced calcium release mechanism specifically on the left sided cells. However, it was 

reported that despite primary cilia are indeed unique calcium compartments with calcium 

concentration in the cilium ~7 times higher than the cytoplasmic concentration, calcium 

changes in the cilium rapidly dilute in the large cytoplasmic volume without initiating a 

measurable calcium-induced calcium release wave in the cytoplasm (Delling et al., 2013). 

Also, it was recently shown, using a calcium genetically encoded probe, that intraciliary 

calcium increase was not observed in the mouse LRO in response to physiological and 

supra-physiological flow forces, suggesting that indeed the primary cilia is not a good 

calcium-responsive mechanosensor (Delling et al., 2016). At the moment, the field needs to 

be clarified if the appropriate calcium sensors are being used as they differ across studies 

according to several properties such as the correct dissociation constant for observing small 

and fast variances in calcium concentrations. Nevertheless, there are alternative 

explanations.  For instance, Pkd1 proteins have been described to be activated by signalling 

molecules, such as Wnt ligands (Kim et al., 2016), and still respond with an intracellular 

calcium signalling, therefore chemosensation poses as a possible alternative for 

mechanosensation. In sum, this is still a very hot topic in the field, with many labs 

continuously working to comprehend the full picture.  

1.5 ZEBRAFISH AS A DISEASE MODEL 

The potential of Zebrafish as a disease model is reflected by the increasing number of 

publications and meetings, such as the Zebrafish Disease Models. Genetically speaking, it is 
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possible to find 70% of human genes in zebrafish (Howe et al., 2013). Many of the genes and 

genetic pathways involved in organ formation are shared between humans and zebrafish and 

the genetic base of many human diseases can be mimicked in zebrafish. Only in 2017, 

zebrafish has been used to model myeloid malignancy (Potts and Bowman, 2017), liver 

diseases (reviewed in Pham et al., 2017),  vascular development and disease (reviewed in 

Hogan and Schulte-Merker, 2017), infection (Madigan et al., 2017), diabetes (Heckler and 

Kroll, 2017) and other metabolic diseases (Kamel and Ninov, 2017), just to name a few 

examples.  

Roxo-Rosa et al. (2015) as shown that the Kupffer’s vesicle in the zebrafish embryo model 

can work as a simplified kidney cyst model (Roxo-Rosa et al., 2015). It is a fluid-filled 

vesicular structure that resembles an ADPKD kidney cyst, in which cells facing the lumen 

bear a cilium (Roxo-Rosa et al., 2015). These cells both express Pkd2 (Bisgrove et al., 2005; 

Schottenfeld et al., 2007) and CFTR (Navis et al., 2013; Roxo-Rosa et al., 2015;), which can 

be manipulated through morpholinos and drugs (Compagnon et al., 2014; Navis et al., 2013; 

Schottenfeld et al., 2007). KV lumen inflation is mediated by CFTR (Navis et al., 2013) and it 

has been shown that by manipulating Pkd2 and CFTR levels, it is possible to manipulate the 

KV volume. Knockdown of Pkd2 leads to an increase of volume that is mediated by an 

overactivation of CFTR. This was shown by using drugs that inhibit CFTR like the CFTRinh-

172 (Li et al., 2004). All this together makes the zebrafish a good model system to study the 

molecular mechanisms involved in ADPKD and even to test new compounds that may 

prevent cyst enlargement, since KV volume can be a direct readout for treatment 

effectiveness (Roxo-Rosa e tal., 2015).  

Despite the kidney cysts in zebrafish are not real cysts and look more like dilations of the 

pronephros (Schottenfeld et al., 2007), zebrafish is a very good model to test compound 

toxicity in the kidney. It is easy to obtain hundreds of zebrafish larvae to allow high 
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throughput screenings but the larvae are still small enough to fit in 96-well plates, allowing 

easy and fast drug administration in small amounts. Besides, zebrafish shares several 

features with mammals regarding genetics, metabolism and physiology (Peterson and 

MacRae, 2012). The larval pronephros is fully mature at 4 days post-fertilization and consists 

of two nephrons with a glomerulus fused at the embryo midline. Although much more 

simplified, the structures maintain several features that are similar to those found in mammal 

nephron tubules (Kramer-Zucker et al., 2005b; Wingert et al., 2007). Many studies have 

addressed acute toxicity response in zebrafish larvae to drugs known to cause tubular 

damage in humans: paracetamol, gentamicin and tenofovir (Gorgulho et al., 2017; Hentschel 

et al., 2005; Peng et al., 2010; Rider et al., 2012; Westhoff et al., 2013). A recent analysis of 

the drug-induced morphological and functional tubular alterations showed high homology 

between zebrafish and mammals in terms of drug metabolism and demonstrated in detail 

proximal tubule morphological defects in 3D by optical microscopy and detailed mitochondrial 

defects by Electron Microscopy (Gorgulho et al., 2017). All these papers together strongly 

support further use of zebrafish as a disease model.  

Coming back to the left right field, zebrafish offers huge advantages as a disease model for 

laterality disorders because it allows researchers to manipulate the LRO mechanically or 

genetically and then observe the results along the development of the LPM and organs. Our 

own work can attest to these advantages (Sampaio et al., 2014; Tavares et al., 2017). 

2. AIMS 

In this study I intended to investigate several events that occur upstream and downstream of 

the Pkd2-dependent calcium mediated signalling in zebrafish left-right development. 

This first chapter reviewed and highlighted the many similarities and differences between two 

animal models (mouse and zebrafish) in terms of Left-Right axis establishment, from LRO 
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formation to ciliogenesis, passing through Calcium signalling and Nodal signalling pathways. 

We reviewed the main findings in fluid flow mathematical simulations and how different 

experiments support different views for early LR establishment: chemosensory versus 

mechanosensory hypotheses are explained and debated. We finish presenting some studies 

that indicate how zebrafish is becoming more and more interesting to study human diseases 

and help finding therapeutic approaches.  

In Chapter 2, we assessed the role of Notch signalling on the fate decision between a motile 

and an immotile cilium in the Kupffer’s vesicle of the zebrafish embryo. In order to do that, we 

manipulated Notch component levels by using mutants and overexpression studies and 

assess their impact on foxj1a and dnah7 mRNA levels by qRT-PCR and in motile/immotile 

cilia ratio through microscopy. We uncovered by Electron Microscopy that all KV cilia have 

dynein arms and that Notch, through its effector Her12, is making some cilia stay immotile 

while others move.  The study presented in this chapter was published in eLife 6:e25165 

In Chapter 3, we tried to isolate the impact of absence of flow from the impact of the absence 

of Pkd2-mediated signalling on asymmetric gene expression and organ situs. Conceptually, if 

Pkd2 channel is the sole calcium channel responsible for the flow sensory pathway then the 

output results should be the same. By knocking down Pkd2 in whole embryo or only on KV 

precursor cells, we assessed the impact of these manipulations versus abrogating flow via 

dnah7 knock down. We assessed the expression pattern and levels of the first asymmetric 

gene dand5 by in situ hybridization and qRT-PCR, respectively, and the impact on organ 

situs by scoring heart and liver positions in the same embryos. The work presented in this 

chapter was done in collaboration with Pedro Sampaio and will be part of a manuscript, 

which is in preparation.  

37 



CHAPTER 1 

In Chapter 4, we assessed the impact of Pkd2 in the KV ciliated cells by looking to the 

downstream targets of this calcium signalling pathway and trying to understand how they 

influence the early left-right (LR) axis specification. In order to achieve these goals, a tissue-

specific mRNA profiling of the Zebrafish KV cells was performed. The results were analysed, 

clustered and candidate genes were chosen and validated by qPCR for further testing. I then 

studied the localization of four candidate genes in the KV at the correct time through in situ 

hybridization: parvalbumin6, calcyclin binding protein, frizzled related protein and nicalin1. 

None of these four genes had an asymmetric expression pattern around the KV in WT 

embryos.  I used morpholinos to knockdown their function and cloned the four genes to 

perform mRNA overexpression and explored if they generated any laterality phenotypes. 

This study was done in collaboration with Dr Mónica Roxo-Rosa who performed the 

microarrays and data analysis of transcript list. Follow up studies of some of these genes will 

be performed in the future. 

In Chapter 5, we investigated the role of the Nodal antagonist Nicalin1 (Ncl1) in Left-right axis 

establishment, a protein which has never been described in this process. Ncl1 is known to 

inhibit Nodal signalling at the endoplasmic reticulum level, by impairing the trafficking of Lefty 

and affecting mesendoderm patterning. We show here that absence of ncl1 affects LR in a 

dose-dependent manner. Knockdown of ncl1 does not produce as severe LR defects as 

knockdown of dand5, but abrogating both leads to a stronger phenotype. The work presented 

in this chapter will be part of a manuscript that is in preparation. 

The study presented in Chapter 6 was done in collaboration with Rita Gorgulho where we 

validated zebrafish as a useful animal model to study drug toxicity and its impact on kidney 

function and morphology. We treated zebrafish larvae with gentamicin, paracetamol and 

tenofovir and observed the effects on metabolites profile, urine production, macro and micro 

morphological defects. The metabolites profile showed striking similarities between zebrafish 
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and human drug metabolism. In terms of morphological defects, my contribution to this work 

provided for the first time detailed imaging of zebrafish pronephros that allowed 3D 

reconstructions of the structure for volume measurements. We saw defects typically found in 

acute tubular injury like tubular dilations and epithelium disorganization. This study was 

published in Archives of Toxicology (DOI 10.1007/s00204-017-2063-1). 

Finally, in the Chapter 7, we discuss the main findings described in the previous chapters 

with an integrative perspective regarding the existing literature. We also highlight the 

contribution of this work towards understanding the role of Pkd2 and Nicalin1 in left-right axis 

establishment. 
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Figure 3 – figure supplement 1 

In situ hybridization with dnah7 specific probe in zebrafish embryos. 

(A–C) WT 8 ss zebrafish embryo stained with antisense (A–B) and sense 
(C) dnah7 specific probes. (A) White dotted square delimits the KV, which is detailed 
in (B). (D–E) WT zebrafish embryos at bud stage, stained with antisense (D) and sense 
(E) dnah7 specific probes. White dotted line circles the DFCs in (D). In all images 
Anterior is to left and Posterior is to right. 
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Figure 4 – figure supplement 1 

foxj1a expression analysis and loss and gain of function assays. 

(A–B) In situ hybridization with foxj1a riboprobe; (A) at bud stage showing the labelled 
purple dorsal forerunner cells; (B) later at 8 somite-stage showing the purple staining 
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is absent from the KV cells (dotted circle) but is visible in the neural tube (asterisk) and 
in both pronephros (arrow heads). (C–E) Still from Video 3 representing the immuno-
staining of a KV from the transgenic line Foxj1a:GFP. foxj1a-positive KV cells in green 
(anti-GFP antibody) (C), and KV cilia in magenta (anti-acetylated α-tubulin antibody) 
(D). (E) Nuclei stained with DAPI. Anterior is to the top and Left is to left. Scale bar 
represents 20 μm. (F) Relation between the number of foxj1a-positive cells (green ■) 
and the number of cilia (magenta ●) in zebrafish embryos at 8 ss. Averages were not 
significantly different (p=0.9479, paired t-test; 8 embryos, 514 cells, 513 cilia). (G) Cilia 
Beat Frequency (CBF) in WT (37.27 ± 7.202 Hz, 8 embryos, 41 cilia), and in Foxj1a 
OE (36.30 ± 6.877 Hz, 12 embryos, 61 cilia). p=0.4990, unpaired t-test with Welsh’s 
correction (averages not significantly different). (H) Transcription levels of several 
genes in whole zebrafish embryos. Normalized fold change (log2) in expression levels 
of foxj1a, rfx4, dnah7, dnah9, and her12 in whole embryos at bud stage from 
the dld−/− mutant. Unpaired t-test with Welsh’s correction; **p<0.01 and ***p<0.001. (I) 
Transcription levels for foxj1a. Fold change (log2) in expression levels of foxj1a in 
whole embryos with different Notch Signalling and Foxj1a manipulations at bud stage 
(a – o). dld−/−;dlc−/− – deltaD and deltaC double 
mutant; dld−/− – deltaD mutant; dlc−/− – deltaC mutant; WT – Wild Type, non-injected 
controls; NICD OE – overexpression of Notch Intracellular Domain by injecting NICD 
mRNA; Foxj1a KD – knock-down of foxj1a by Morpholino injection; Foxj1a NM – 
Foxj1a no-manipulation; Foxj1a OE – overexpression of Foxj1a by 
injecting foxj1a mRNA. Statistical significance tested with Mann-Whitney U-test 
(*p<0.05, **p<0.01, and ****p<0.0001). Kruscal-Wallis one-way analysis of variance 
with Dunn’s correction for multiple comparisons was used to determine significant 
differences between different Foxj1a treatments in the same NS assay 
(*p<0.05,**p<0.01, ***p<0.0001, and ****p<0.0001), and to determine significant 
differences between different NS treatments in the same Foxj1a assay (Foxj1a KD – 
**p<0.01, and ****p<0.0001. Foxj1a OE – **p<0.01). 
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Figure 4 – figure supplement 2 

Arl13b-GFP enables live imaging of cilia motility and normalizes cilia length. 

(A) KV cilia length was measured in 3D in live imaged KVs, immotile cilia were sampled 
for each condition from 8 ss embryos expressing arl13b-GFP (400 pg). In total we 
analyzed: WT – 36 cilia, 11 embryos; Foxj1a OE – 18 cilia, 5 embryos; dld−/−;dlc−/− – 24 
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cilia, 6 embryos; dld−/−;dlc−/− + Foxj1a OE – 25 cilia, 7 embryos; NICD OE – 29 cilia, 8 
embryos; NICD OE +Foxj1 a OE – 24 cilia, 7 embryos; Her12 OE – 18 cilia, 7 embryos. 
(B) Frequence distribution of the cilia number per KV in a population of WT zebrafish 
from the AB background. Data was acquired from the WT live embryos at 8 ss used in 
our assays from Figure 4F. Fiji software was used to visualize and count the number 
of cilia found in each KV (24 embryos; 1047 cilia). The histogram was fitted with a 
Gaussian expression (Amplitude = 45.61, Mean = 41.30, SD = 7.318). 
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Figure 5 – figure supplement 1 

Immotile cilia are homogeneously distributed in the KV. 

3D projections of representative KVs, where the position of motile (red dots) and 
immotile cilia (blue dots) is shown in Foxj1a OE (A–C), and dld−/−;dlc−/− (D–F). (A, D) 
Dorsal view – Anterior is to the top and Left is to left. (B, E) Lateral view – Anterior is 
to the top and Dorsal is to left. In all images, scale bar represents 20 μm. (C, F) 
Distribution of the position of the immotile cilia along the three axes: D – V (Dorsal – 
Ventral); A – P (Anterior – Posterior); L – R (Left – Right), in Foxj1a OE (C) (9 embryos; 
89 cilia), and dld−/−;dlc−/− (F) (7 embryos; 38 cilia). Distance from center represents the 
distance from the origin of the Cartesian referential (placed at the KV’s center). Fisher's 
Exact Test, p<0.05. 
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Figure 5 – figure supplement 2 

Positions of immotile cilia in the anterior-posterior axis change through 
development. 

(A) Transition of an immotile cilium from a Posterior position to an ever more Anterior 
position as development of the embryo progresses from 3 ss to 8 ss. (B) Number and 
type of transitions of Immotile cilia along the three axes (Anterior – Posterior; Dorsal – 
Ventral; Left – Right) from 3 to 8 somites stage (4 embryos, 9 cilia transitions, 19 
immotile cilia tracked). L to R – Left to Right; R to L – Right to Left; A to P – Anterior to 
Posterior; P to A – Posterior to Anterior; D to V – Dorsal to Ventral; V to D – Ventral to 
Dorsal. (C–G) Localization of the DlD ligand by immune-histochemistry with an 
antibody anti-DlD (D) in sox17:GFP transgenic embryos at bud stage in Control. An 
antibody anti-GFP was simultaneously used in order to highlight the DFCs (C), with 
the resulting merged image in (E). Scale bar represents 20 μm. Anterior is to the top 
and Left is to left. (F–G) Orthogonal projections emphasising DLD expression. (F) 
Anterior is to the top and Dorsal is to left. (G) Dorsal is to the top and Left is to left. (H) 
Model depicting how the NS is occurring between the DLD positive surrounding cells 
and the Notch positive DFC in the posterior region of the cluster. 
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Video 1 - Scan of Wild Type KV showing motile and immotile cilia. 
Embryo was injected with 400 pg Arl13b-GFP at 1 cell stage and imaged as described 
in Figure 1. Anterior is to the top and Left is to left. 
https://doi.org/10.7554/eLife.25165.004 
 
Video 2 - Time lapse from 3 to 8 somites stage with respective cilia trackings. 
Tracking of the cilia was performed with Imaris software. Anterior is to the top and Left 
is to left. 
https://doi.org/10.7554/eLife.25165.005 
 
Video 3 - Immuno-staining of a KV of an 8 ss embryo from the transgenic line 
Foxj1a:GFP. 
In blue are the nuclei stained with DAPI; in green the foxj1a positive KV cells; and in 
magenta are the KV cilia stained with antibody against acetylated α-tubulin. This 
experiment allowed us to determine if all monociliated KV cells expressed Foxj1a. 
Anterior is to the top and Left is to left. 
https://doi.org/10.7554/eLife.25165.020 
 
Figure 2 – video 1 - Wild-type fluid flow at 3 ss. 
Movie from 1 WT, non-injected embryo. At this development stage, the native particles 
only present Brownian motion. Anterior is to the top and Left is to left. 30 frames per 
second. 
https://doi.org/10.7554/eLife.25165.007 

Figure 2 – video 2 - Wild-type fluid flow at 5 ss. 
Movie from 1 WT, non-injected embryo. At this development stage the KV presents a 
homogeneous directional fluid flow. Anterior is to the top and Left is to left. 30 frames 
per second. 
https://doi.org/10.7554/eLife.25165.008 

Figure 2 – video 3 - Wild-type fluid flow at 8 ss. 
Movie from 1 WT, non-injected embryo. At this development stage, the directional fluid 
flow is no longer homogeneous, presenting higher speeds at the anterior-left part of 
the KV. Anterior is to the top and Left is to left. 30 frames per second. 
https://doi.org/10.7554/eLife.25165.009 

Figure 5 – video 1 - In situ hybridization + immuno staining with her12 RNA 
probe and antibody anti-GFP of a cluster of DFCs at bud stage from 
a sox17:GFP embryo. 
In green are the DFCs (sox17:GFP positive cells) highlighted by the anti-GFP 
antibody. her12expression is visualized with the Fast Red (Roche) fluorescent 
precipitate in magenta. Anterior is to the top and Left is to left. 
https://doi.org/10.7554/eLife.25165.027 
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Figure 5 – video 2 - 3D reconstruction of the WT her12 expression in the DFCs 
cluster at bud stage. 
3D reconstruction was performed with Amira software. Anterior is to the top and Left is 
to left. 
https://doi.org/10.7554/eLife.25165.028 

Figure 5 – video 3 - In situ hybridization + immuno staining with her12 RNA 
probe and antibody anti-GFP of a cluster of DFCs at bud stage from 
a sox17:GFP embryo injected with 100 pg of NICD mRNA at 1 cell stage.  
In green are the DFCs (sox17:GFP positive cells) highlighted by the anti-GFP 
antibody. her12expression is visualized with the Fast Red (Roche) fluorescent 
precipitate in magenta. Anterior is to the top and Left is to left. 
https://doi.org/10.7554/eLife.25165.029 
 
Figure 5 – video 4 - 3D reconstruction of her12 expression in the DFCs cluster 
in an embryo over-expressing NICD at bud stage. 
3D reconstruction was performed with Amira software. Anterior is to the top and Left is 
to left. 
https://doi.org/10.7554/eLife.25165.030 

Figure 5 – video 5 - 3D reconstruction of the WT DLD localization around the 
DFCs cluster at bud stage. 
3D reconstruction was performed with Amira software. Anterior is to the top and Left is 
to left. 
https://doi.org/10.7554/eLife.25165.031 

 

Additional files 

Supplementary file 1 - Microarray data. 
Excel file that contains Table S1a - List of 706 genes with significantly altered 
transcription. This list contains 706 genes with a fold change in transcription higher 
than 2, in the DFCs from dld−/− mutant zebrafish embryos. Table S1b – List of motility 
associated genes from the Table S1a that have been associated with cilia in the 
different model organisms. Analysis performed with Cildb v2. Table S1c – List of 
primers sequences used for genotyping dld−/− mutant zebrafish embryos and for qPCR 
validations. 

https://doi.org/10.7554/eLife.25165.034 
Download elife-25165-supp1-v2.xlsx 

 
Supplementary file 2 - Contains the R script for creating and analysing the flow 
maps. 

https://doi.org/10.7554/eLife.25165.035 
Download elife-25165-supp2-v2.pdf 
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No fluid flow and different levels of Pkd2-mediated sensing affect 

left-right axis establishment in the same manner 

 

 

 

 

 

 

 

 

“I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.” 

Abraham Maslow, Toward a Psychology of Being (1962) 
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axis establishment in the same manner 
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Summary  

The left-right (LR) field recognizes the importance of the mechanism involving the calcium 

permeable channel Polycystin-2 (Yuan et al., 2015; Yoshiba et al., 2012; Field et al., 

2011; Kamura et al., 2011). However, whether the early LR symmetry breaking 

mechanism is exclusively occurring via Polycystin-2 has not been fully tested. 

By stopping the extracellular fluid flow, we negated any potential mechanosensory and 

flow-derived morphogen gradient mechanisms. We then asked whether this situation was 

similar to impairing the calcium permeable Polycystin-2 channel (Pkd2), crucial for correct 

LR patterning in mouse and zebrafish (Bisgrove et al., 2005; Pennekamp et al., 2002; 

Schottenfeld et al., 2007). Unfortunately, we could not make this comparison using the 

zebrafish mutant pkd2-/-/cup-/-  or the pkd2 morphant at 1 cell stage because affecting 

Pkd2 in the whole embryo also affected the architecture of zebrafish left-right organizer 

and thereby influenced fluid flow dynamics. The only approach to get rid of Pkd2 

contribution that minimizes the impact on architecture and flow dynamics was the DFC-

specific pkd2 knockdown that still left Pkd2 protein and resulted in LRO with a slower fluid 

flow. Still, all our manipulations gave the same result: majority of symmetric dand5 and 

randomization of organ situs. 
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Introduction 

The presence of asymmetric intracellular calcium in LR axis establishment seems to be a 

constant in many model organisms, such as chick (Raya et al., 2004), zebrafish and 

Xenopus (Webb and Miller, 2006; Yuan et al., 2015)and mouse (McGrath et al., 2003). 

Although the exact role and time-window of action might vary, calcium seems to act as a 

very important player in this early process. In mice and zebrafish, the calcium oscillations 

seem to typically happen as a response to the directional fluid flow seen in the LRO of 

both models (node and Kupffer’s vesicle KV, respectively), which is generated by the 

action of rotating cilia - hair-like structures on the surface of cells (Essner et al., 2005; 

Supp et al., 1997). Importantly, these calcium oscillations seem to be downstream of the 

calcium channel Pkd2 and influence the asymmetric expression of genes from the nodal 

signalling pathway (Bisgrove et al., 2005; Pennekamp et al., 2002; Schottenfeld et al., 

2007; Yoshiba et al., 2012). In zebrafish it has also been shown that calcium is important 

not only at KV stages (Yuan et al., 2015) but also earlier to allow the correct migration of 

KV cell precursors, the dorsal forerunner cells (DFCs) and proper KV establishment 

(Schneider et al., 2008). It has been shown that calcium can interact with wnt signalling 

(Schneider et al., 2008) in zebrafish DFCs and with notch signalling in the chick embryo 

Hensen’s node (Raya et al., 2004) for correct left-right axis establishment.  

Polycystin 2 (Pkd2) is a known calcium channel that has been described as part of a 

mechanosensory complex first described in kidney cells (Nauli et al., 2003). Paired with 

its sensory partner Pkd1, which is capable of sensing urine fluid flow by the N terminus 

extracellular part, that supposedly signals to Pkd2 by the interacting C terminal parts of 

both proteins. The signalling output responds by opening the channel and allowing 

calcium to enter the kidney cells. Absence of either one of the partners leads to polycystic 

kidney disease, which is characterized by the formation of large fluid filled cyst due to 

overactivation of CFTR (Harris and Torres, 2009). Recent work from our lab established 

the zebrafish KV as an organ model for a fluid filled cyst, since the KV inflation is also 
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dependent on the crosstalk between Pkd2 and CFTR. pkd2 knockdown induces an 

increase in KV volume via CFTR activation (Roxo-Rosa et al., 2015). Such volume is 

proportional to the levels of Pkd2 and provide an indirect indication of the amount of Pkd2 

protein present in the KV cells. In this study the authors also confirmed that the pkd2 

knockdown technology results in the presence of less Pkd2 protein than the pool of Pkd2 

that remains in cup-/- mutants, likely due to maternal contribution in the mutants (Roxo-

Rosa et al., 2015). By in situ hybridization, pkd2 and pkd1l1 are strongly expressed in 

DFCs and KV cells from 8.3 to 12 hours post fertilization (England et al., 2017). Pkd2 

protein is expressed in all KV cells in the cytosol around the nucleus and along the cilia in 

a punctuated manner and it has been shown in both models, zebrafish and mouse, to be 

important for left-right axis establishment (Bisgrove et al., 2005; Pennekamp et al., 2002; 

Schottenfeld et al., 2007; Yoshiba et al., 2012; Yuan et al., 2015). It is known that for left-

right, Pkd2 sensory partner is Polycystin 1-like 1 (Pkd1l1) in mice and medaka (Field et 

al., 2011; Kamura et al., 2011). 

There are two main hypotheses for left-right axis establishment: the chemosensory 

hypothesis and the mechanosensory hypothesis. The first is now based on the 

observation of nodal vesicular parcels (NVPs), small membrane-bound vesicles traveling 

in the mouse node. Their production and release are dependent of FGF signalling and 

they seem to transport sonic hedgehog and retinoic acid towards the left, which seemed 

to have an impact on the calcium elevation. Blocking FGF leads to a loss of calcium 

elevation on the left that was partially rescued by providing SHH and RA (Tanaka et al., 

2005). The second is based on the clear regional distinction between motile and immotile 

cilia present in the mice node, where an enrichment of immotile cilia in the crown cells 

surround the motile cilia in the pit (McGrath et al., 2003). This distinction allows the 

regional separation of functions: while the motile cilia are responsible for generating fluid-

flow, the immotile cilia can sense it and respond accordingly (McGrath et al., 2003). The 

fact that the presence of Pkd2 on the crown cells is crucial for left-right establishment is 
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very strong evidence that these are the sensory cells (Yoshiba et al., 2012). However, the 

evidence that cilia are the sensory organelles where Pkd2 exerts its function comes from 

an elegant experiment where restoration of primary cilia in crown cells of kif3a mutants 

rescued the response to the artificial flow and allowed normal laterality to be recovered 

(Yoshiba et al. 2012). 

The KV architecture in zebrafish does not show any clear distinction between the 

localization of the two cilia types, in fact, Tavares et al. (2017) have shown that 20% of 

the cilia population is immotile and randomly distributed. However, morphologically, KV 

cilia are all equal and even after an ultrastructural study where three KVs were sampled 

every 5 microns, all KV cilia showed dynein arms despite that 20% are immotile (Tavares 

et al. 2017). In zebrafish, it was showed that the motile/immotile cilia ratio is very 

important for robust fluid flow pattern and strength (Sampaio et al., 2014; Tavares et al., 

2017). Nevertheless, Tavares et al. (2017) did not advocate for mechano- or 

chemosensation because both models are compatible with their observations. A piece of 

evidence that strongly supports the mechanosensory hypothesis was provided by Yuan et 

al, (2015) using a genetically encoded calcium indicator (GECIs) targeted specifically into 

cilia via fusion with Arl13b (arl13b-GCaMP6). They observed a burst of intracellular 

calcium on the left side of the KV preceded by intraciliary calcium oscillations (ICOs) that 

then propagated into the left sided tissue. This was also dependent on Pkd2 – knockdown 

of pkd2 completely abrogated the ICOs and the left sided intracellular calcium wave 

(Yuan et al., 2015). On the other hand, subsequent work by Clapham’s group has 

challenged the view that the immotile cilia in the mouse node can act as a 

mechanosensors. By using another calcium molecular sensor, (Arl13b-mCherry-

GECO1.2) they saw that the first calcium signals did not originate in the cilium, but rather 

started in the cytoplasm and then propagated back into the cilium. They also showed that 

physiological flow could not induce a calcium response in the cilium (Delling et al., 2016). 

So, either they are correct and their discoveries will have a big impact in field by making 
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everybody redesign their hypotheses or their technology is not sensitive enough or have 

the appropriate time-resolution to discern the very first calcium events.   

Pkd2 is expressed in the ciliary and cytoplasmic membranes and in the endoplasmic 

reticulum (ER), so this raised the question: which Pkd2 compartment, is the important one 

for left-right? There is evidence from rescue assays in zebrafish supporting a stronger 

role in LR for the pool of Pkd2 at the ER rather than the pool in cilia. This was showed by 

using three different constructs: a WT version, TRPP2S812A and TRPP2S812D. The first 

mutation inhibited the interaction of TRPP2/Pkd2 with PACS proteins on the ER, allowing 

for the trafficking of TRPP2 to other subcellular compartments, while the second 

enhanced the interaction with PACS, thereby trapping it in the ER. TRPP2S812D rescued 

LR defects more effectively than either WT and TRPP2S812A versions, suggesting a 

stronger role of Pkd2 pool present in the ER in LR axis establishment  (Fu et al., 2008). 

Also, Vermont’s lab recently showed by mathematical models that the noise inside the KV 

might be too high for mechanosensory to reliably work with the amount of immotile cilia 

reported by them, which is less than 5% (Ferreira et al., 2017). However, work from 

Tavares et al. (2017) found 20%, which would be a good enough number to distinguish 

between noise and real signal, according to the mathematical models from Ferreira et al. 

(2017). In the end, is it possible that both hypotheses for left-right, mechanosensory and 

chemosensory, are working together for robust left-right axis establishment. 

Problems either in cilia motility or cilia flow sensing capability can lead to laterality defects 

with various degrees of severity: situs inversus, a mirror image of the normal situs (situs 

solitus) or various abnormal combinations of thoracic and abdominal situs – heterotaxy - 

which is more severe and can even result in early death in humans (Fliegauf et al., 2007). 

Whether heterotaxy is increased by impaired ciliary motility or defective ciliary signalling 

through Pkd2, or both, is a question we address here. One of the advantages of using 

zebrafish to answer this question is the ability to manipulate cilia in early development, 

and later assess flow and situs in the exact same embryo. We previously characterized 
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flow maps inside the KV by following native particles present in this organ (Sampaio et 

al., 2014). We reported that there are two main spots of faster flow in the WT, one in the 

anterior and one in the left side. The latter inversely correlates with expression of dand5 

(ortholog of cerl2) mainly present on the right side (Sampaio et al., 2014). As in mouse 

(Marques et al., 2004; Nakamura et al., 2012; Oki et al., 2009) and xenopus (Schweickert 

et al., 2010), dand5 starts to be symmetrically expressed and by a flow dependent 

process that is still unclear, its expression decreases on the left side. This early dand5 

asymmetry is fundamental for generating the left sided nodal cascade of gene expression 

(Hojo et al., 2007; Lopes et al., 2010; Sampaio et al., 2014). 

We previously demonstrated that by knocking down an inner dynein arm (dnah7) present 

in motile cilia, we were able to generate embryos with flow speeds close to zero, i.e 

where all cilia were stopped upon verification by high-speed videomicroscopy (Sampaio 

et al., 2014). This ‘no flow’ experimental setting allowed us to address a fundamental 

basic question that remains unanswered in the LR field: is ‘no flow’ the same as impaired 

Pkd2, or do these treatments render different outcomes, which would indicate the 

presence of other potential players apart from Pkd2. We also wanted to investigate if the 

absence of both flow and Pkd2 resulted in a worse situs scenario, i.e in more heterotaxy. 

Our study involved careful confirmation of all the premises required for such comparison 

to be made, such as decreasing Pkd2 without impacting on flow and stopping flow without 

removing cilia. Additionally, for the ‘no flow’ experiments we imaged the embryos to select 

those with total cilia immotility upon manipulations. 

Experimental Procedures 

Fish stocks and genetics 

The following zebrafish lines were maintained and used as described elsewhere (Westerfield, 

2000): wild-type (AB), Tg(foxj1a:GFP) (Caron et al., 2012)  and cup(+/-;Tg(foxj1a:GFP))tc321. 

Embryos were raised at 28 or 30ºC, depending on the experiment, in E3 embryo media and 
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staged accordingly (Kimmel et al., 1995). Procedures with zebrafish were approved by the 

Portuguese DGAV (Direcção Geral de Alimentação e Veterinária). 

Injections of morpholino oligonucleotides and Ouabain treatment 

dnah7 morpholino (Sampaio et al., 2014) was diluted in sterile water and injected at one cell stage 

at a dose of 3 ng per embryo. pkd2 morpholino (Schottenfeld et al., 2007) was diluted in sterile 

water and injected at one cell stage at a dose of 2.5ng per embryo. To generate chimeric pkd2 

knockdown in DFCs, pkd2 morpholino (Schottenfeld et al., 2007) was diluted in 10,000 MW 

rhodamine-dextran solution (1:4; Sigma-Aldrich) and injected at a dose of 4.2 ng per embryo into 

the yolk of 512 to 1000-cell-stage embryos as previously described (Amack and Yost, 2004). 

Morpholino injection efficiency was thoroughly controlled as follows: specific pkd2 MO targeting to 

DFCs (called pkd2MODFCs) was determined by the rhodamine lineage tracer in KV and yolk cells of 

the selected embryos (Amack and Yost, 2004) (Fig. 2A, A’ and A’’); embryos injected with dnah7 

morpholino oligonucleotide were carefully screened by high speed-videomicroscopy for confirming 

cilia immotility throughout the entire KV. Double morphant (called DMDFCs) were generated by 

injecting dnah7 morpholino at 1 cell stage embryos and later pkd2 morpholino into the yolk of 512 

to 1000-cell-stage embryos. Embryos were screened as explained above. A mismatch pkd2 

morpholino was injected in the same conditions (4.2ng per embryo) as control. Treatments with 

5µM Ouabain were performed as detailed in Roxo-Rosa et al., 2015. 

Live imaging for flow recording 

Mounted embryos between 13–14 hpf were set under the 100x/1.30 NA oil immersion objective 

lens on a Nikon Eclipse Ti-U inverted microscope at room temperature (26ºC). All images were 

taken with the dorsal roof of the KV facing the objective lens. Bright field images were recorded 

with a FASTCAM MC2camera (Photron Europe, Limited) controlled with PFV (Photron FASTCAM 

Viewer) software. Native KV particles were filmed at 60 fps for 30 seconds while cilia were 

recorded at 500 fps for 2 seconds. KV flow and CBF measurements were analysed using Fiji 

software as described previously (Sampaio et al., 2014). We have successfully analysed 8 WT 

embryos, 7 pkd2MO 1-cell stage, 4 dnah7MO injected embryos, 6 pkd2MODFCs injected embryos 

and 8 Double Morphants(DM)DFCs injected embryos.  

Immunofluorescence and in in situ hybridization  
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Whole-mount immunostaining and in situ hybridization were performed as described previously 

(Lopes et al., 2010). Antibodies used for immunostaining were mouse anti-acetylated alpha-tubulin 

(1:400; Sigma), Goat anti-mouse Alexa Fluor 488 (Invitrogen; 1:500) and Alexa fluor 546 Phalloidin 

(Invitrogen/ molecular probes 1:100). Pkd2 immunostaining was performed as described in Roxo-

Rosa et al., 2015. Individual dand5 in situ hybridizations were performed at 8-10 somite stage in 

37 WT embryos, 13 pkd2MO in 1-cell stage, 14 pkd2MODFCs, 9 dnah7 MO and 11 DMDFCs. foxa3 in 

situ hybridizations at 53 hpf were performed as described elsewhere (Thisse and Thisse, 2008) 

and were used 205 WT controls, 56 pkd2MODFCs, 112 cup-/- mutants, 140 pkd2MO in 1 cell-stage, 

31 dnah7MO and 15 DMDFCs. Gene expression and situs scoring were performed double blind by 

two investigators and the results were analysed by Fisher’s exact test with Bonferroni correction 

for multiple comparisons and by Binomial exact test for comparisons in the same genetic 

background. 

Cell shape and cilia motility assay 

cup(+/-;Tg(foxj1a:GFP))tc321 embryos were mounted live in 2% (w/v) agarose mold and covered 

with E3 medium for confocal microscopy live imaging in a Zeiss LSM710 with a Olympus 40x water 

immersion lens (NA 0.8) at room temperature. To assess cell shape, whole KVs were scanned with z 

sections of 0.5 µm, with an acquisition rate of less than 1 fps. After acquisition, embryos were 

retrieved from the agarose mold and let develop for heart situs scoring and to observe curved or 

straight tail phenotypes. We successfully imaged 12 cup-/- embryos and 19 sibling embryos. 

pkd2MO 1 cell-stage, pkd2MODFCs and DMDFCs injected embryos were immunostained at 14 hpf for 

actin cytoskeleton and mounted in PBS 1X for confocal epifluorescence microscopy in the same 

conditions. We imaged 15 controls, 11 pkd2MO 1 cell-stage, 15 pkd2MODFCs, 5 DMDFCs embryos 

and 4 embryos pkd2MO 1 cell-stage treated with 5µM Ouabain. Selected stacks were 

subsequently analysed in Amira for 3D cell shape in KV midplane (5 to 6 embryos for each 

condition). Results were statistically analysed by using the paired t-test and statistical significance 

was set at p-value < 0.05. For cilia motility, embryos were injected with 400pg of Arl13b-mCherry 

mRNA and 2.5ng of pkd2 morpholino into 1-cell stage. Embryos were allowed to develop until 8 

somite stage and then mounted live as explained above. Live imaging was performed in the same 

conditions as described above. To assess motility, whole KVs were scanned with z sections of 0.5 

μm, with an acquisition rate of 9.6 slices per minute (6.25 sec per slice) (Tavares et al., 2017). 
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Stacks were then processed in Fiji for identification of motile and immotile cilia. We analysed 8 

controls and 5 pkd2 morphant embryos.  

 

 

Heart and gut laterality  

At 30 hpf we evaluated heart jogging using a stereoscopic zoom microscope (SMZ745, Nikon 

Corporation) to observe the embryos from the ventral side. These embryos were then allowed to 

develop in separated petri dishes and at 53 hpf, embryos were fixed and processed for foxa3 in 

situ hybridizations to assess gut laterality. We could then pair the heart situs with gut situs for each 

treatment and attribute an embryo situs. We scored organ situs in 159 WT, 31 dnah7 knockdown 

embryos, 56 pkd2 DFCs knockdown embryos, 15 double morphants and 31 pkd2 mismatch 

control-MODFCs injected embryos. 

Quantitative PCR  

Four groups of eight to ten embryos were used; one group for untreated (control) and the others 

were injected as explained above and let develop until 8-10 somite stage. After thorough scoring of 

rhodamin expression only in KV and yolk cell and complete cilia immotility, total RNA was 

extracted using the Qiagen RNeasy Mini Kit (ref number 74104) and reverse transcribed using 

both oligo(dT)18 and random hexamer primers with the RevertAid First Strand cDNA Synthesis Kit 

(ref number K1622) following the manufacturers' instructions. This was repeated three times for 

three different biological replicates. Expression was quantified by PCR using Roche SYBR Green I 

Master (ref number 04887352001) and run in a Roche LightCycler® 96 Real-Time PCR System. 

Results were analysed and depicted as fold-change of transcript levels in injected embryos relative 

to transcript levels in control embryos. The p-value represents significance in the pairwise 

comparison of transcript levels between injected and control embryos as determined using the 

paired t-test. Statistical significance was set at p-value < 0.05. dand5 levels were normalized in 

relation to eukaryotic elongation factor 1 alpha 1 like 1 (eef1al1) and ribosomal protein L13a 

(rpl13a) expression. Primer sequences used were as follows: dand5 forward 5′-

CCGCAATCCTGACCCATAGCAA-3′ and reverse 5′-CTCCTCCGTTATGCGCTGTGTA-3′; eef1al1 
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forward 5’-CCTTCAAGTACGCCTGGGTGTT-3’ and reverse 5’-

CACAGCACAGTCAGCCTGAGAA-3’; rpl13a forward 5’-TGACAAGAGAAAGCGCATGGTT-3’ and 

reverse 5’-GCCTGGTACTTCCAGCCAACTT-3’. 

 

 

Results  

 Different Pkd2 levels affect KV volume and architecture and impact on fluid flow pattern 

To understand if no flow and no Pkd2-mediated sensing rendered the same LR 

phenotypes, we had to find the best Pkd2 manipulation possible to compare with our well 

established no flow situation. First, we decided to explore the already published pkd2 

morpholino (Schottenfeld et al., 2007). To evaluate the flow speed, we recorded the 

native particles inside the KV of multiple embryos at 8 somite-stage (ss) using high speed 

videomicroscopy (Sampaio et al., 2014). Sampaio et al. (2014) had already described the 

typical flow pattern: stronger flow in the anterior region compared with the posterior region 

and also stronger on the left side than on the right side (Figure 1A). Knockdown of pkd2 

with a morpholino led to a decrease in total flow speed (from 10 in the WT to 4µms-1 in 

pkd2 morphants, Figure 1A and C respectively), with a loss of the anterior and left 

hotspots of strong flow. Also, we observed a significant decrease in cilia beat frequency 

(from 34Hz in WT controls to 32Hz in pkd2 MO 1 cell-stage, Wilcox test p-value <0.05, 

Figure 1B and D respectively). Morphants also showed strong volume increase (59pL in 

WT to 92pL in pkd2 morphants, Roxo-Rosa et al., 2015). Interestingly, when we looked 

for the ratio of motile/immotile cilia with the same method used in Tavares et al. (2017) in 

pkd2 morphants, there was a significant increase of the immotile cilia population at the 

expense of motile cilia (from 20% of immotile cilia in WT controls to 35% in pkd2 

morphants p-value<0.05, Figure 1). All these features together could explain why the flow 

is much slower in pkd2 morphants, since bigger KVs with less motile cilia that beat slower 
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can account for an overall slower fluid flow speed. In sum, we could not use a 1-cell 

injection pkd2 morphants in our comparison since they also showed problems with flow 

pattern.  

It has been previously reported that Pkd2 is present in many tissues, including notochord 

(Mangos et al., 2010) which has been recently shown to play an important role in KV 

architecture (Compagnon et al., 2014). Therefore, we decided to inject the pkd2 MO in a 

later developmental stage and specifically target the precursors of the KV – the dorsal  

Figure 1. Different pkd2 manipulations impact on fluid flow pattern and KV volume.  

(A, C, E, G and H) Fluid flow heatmap and quantification of WT siblings (n=8) and pkd2 knockdown into 1-cell 

stage morphants (n=140), pkd2 MODFCs (n=6), dnah7 MO (n=4) and DMDFCs (n=8), respectively. Asterisks 

represent statistical significance (Wilcoxon Test, p-value < 0.05). L left, R right, A anterior and P posterior. (B, 

D, F and I) Cilia beat frequency (CBF) of WT, pkd2 knockdown into 1-cell stage morphants, pkd2 MODFCs 

morphants and dnah7 MO/Double MorphantsDFCs; WT embryos an average of 34Hz, pkd2 knockdown into 1-

cell stage morphants an average of 32Hz, pkd2MODFCs an average of 34Hz and dnah7MO/Double 

MorphantsDFCs an average of zero (paired t-test, p-value < 0.05). (J) Immunostaining for cortical actin and 

rhodamine showing the result of a successful injection of pkd2 MO into KV precursors, anterior (J’) and 

posterior (J’’) panels in the different channels allow for better contrast/brightness balance.  
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forerunner cells (DFCs) (Essner et al., 2005). By co-injecting the pkd2 MO with the 

lineage tracer rhodamine-dextran, we could later select the embryos that only showed 

fluorescence in the yolk cell and the KV (Figure 1J, J’ and J’’). Below we shall refer to 

these embryos as pkd2MODFCs. This treatment did not significantly increased KV volume 

(Roxo-Rosa et al., 2015). We checked the flow maps and found that embryos injected 

with pkd2MODFCs had significant differences between anterior/posterior and left/right KV 

regions (Figure 1E), as in WT embryos (Figure 1A). These characteristics generated a 

heterogeneous flow map similar to that found in controls, though with a slower total speed 

(average 5 µms-1 while controls have average 10 µms-1, Figure 1E and Figure 1A, 

respectively). Since we do not see differences in cilia beat frequency with this KV-

targeted knockdown (Figure 1F), a possible explanation for this slower flow could be the 

motile/ immotile cilia ratio, where in this situation we might see more immotile cilia, similar 

to the pkd2 knockdown in 1 cell-stage embryos. It would be important to check cilia 

motility in this treatment. Still, this situation is also not ideal: although with normal pattern, 

we have in general slower flow. We could not truly compare a no Pkd2-mediated sensing 

with a no flow situation since this manipulation of pkd2 still affected flow speed.  

KV volume seems to impact on flow pattern. Alterations in KV volume lead to differences 

in KV cell shape and overall architecture (Roxo-Rosa et al., 2015). To further evaluate 

this, we measured length and width of cells in the midplane of the KV and calculated the 

length width ratio (LWR) of cells in the anterior and the posterior part of the KV midplane. 

Typically, from 6-7 somite stage onwards, WT KVs present cells in the anterior region that 

have higher lengths and smaller widths (LWR>1), while cells in the posterior region are 

smaller in length and higher in width (LWR<1) (Figure 2A). This re-shaping is what allows 

for the formation of an anterior dorsal cluster that is responsible for the hotspot of flow in 

the anterior region (Compagnon et al., 2014; Sampaio et al., 2014; Smith et al., 2014; 

Wang et al., 2011). In contrast to what was found in the WT KVs, pkd2 morphants had 

significant differences in LWR compared to controls, with both cells in the anterior and  
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Figure 2. pkd2 knockdown in the DFCs rescues KV fluid flow pattern but is still present in 

KV cilia.  

(A) Quantification of the differences in length to width ratio in the KV of WT, pkd2 knockdown 

into 1-cell stage (pkd2MO), pkd2 knockdown into 1-cell stage morphants treated with 5µM 

Ouabain, pkd2 MODFCs, DMDFCs, cup+/+;+/- and cup-/- embryos. Asterisks represent statistical 

significance; t-student p-value<0.05 (B) Quantification of the differences in cellular length, width 

and height, in WT, pkd2 knockdown into 1-cell stage (pkd2MO), pkd2 knockdown into 1-cell 

stage morphants treated with 5µM Ouabain and pkd2 MODFCs injected embryos. Asterisks 

represent statistical significance; t-student p-value<0.05 (C-F, C’-F’ and C’’-F’’) Pkd2 and 

acetylated α-tubulin immunostaining for WT (C-C’), pkd2 knockdown into 1-cell stage morphants 

(D-D’), 4ng pkd2MODFCs (E-E’) and 9ng pkd2MODFCs (F-F’) morphants.  
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posterior part more severely affected (Figure 2A, p-value<0.05). Cells in the anterior part 

had lower lengths and cells in the posterior region had lower widths, both compensating 

the increase in volume by increasing their heights in the z-axis (Figure 2B, blue bars 

versus red bars; p-value<0.05). This caused the dilution of the anterior dorsal cluster and 

a loss of the anterior-posterior bias that cilia typically show, which had a strong impact on 

the flow pattern of the morphants. To confirm that the architectural problems seen in this 

situation resulted only from the increase in volume and not directly from the absence of 

Pkd2, i.e., an indirect outcome of the absence of Pkd2, we treated pkd2 morphants with 

5µM of Ouabain. This drug impacts on CFTR activity and abrogates the increase in 

volume that we observed with pkd2 knockdown (Roxo-Rosa et al. 2015). By using this 

treatment, cells in the anterior and posterior part of the KV presented normal LWR (Figure 

2A), with all 3 measurements (length, width and height) similar to the controls (Figure 2B, 

green bars). Therefore, we conclude that the architectural problems seen in the KV are 

likely due to the increase in volume resulting from an overactivation of CFTR when pkd2 

is knockdown.  

We then checked if the KV architecture was compromised in pkd2MODFCs. Cells in the 

anterior and posterior region of pkd2MODFCs presented normal LWR (Figure 2A, WT 

controls are not statistically different from either pkd2MODFCs), which was a good indicator 

that the anterior dorsal cilia cluster could generate the crucial anterior flow hotspot 

(Montenegro-Johnson et al., 2016; Sampaio et al., 2014; Smith et al., 2014).The only 

difference was that in embryos injected with 4 ng of pkd2MODFCs, KV cells had slightly 

smaller heights than control cells (Figure 2B, purple bars; p-value < 0.05). We also 

checked LWR in the zebrafish homozygous mutant line for pkd2 called curly up-/- (cup-/-) 

mutant line tc321 that likely generates a non-functional truncated protein and the pkd2 

morpholino injected in 1-cell stage (Schottenfeld et al., 2007). We knew from previous 

work that the cup-/- mutants also had problems with KV volume (Roxo-Rosa et al., 2015). 

Our analysis showed that cup-/- mutants still retained the anterior normal cell shape, with 
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length to width ratio (LWR) >1, while the more posterior cells were significantly less wide 

compared to their siblings, showing a LWR proximate to 1, which indicates square cells 

(Figure 2A, p-value<0.05). When analysed in more detail, we found that posterior KV cells 

in cup-/- mutants had different widths than those from their siblings (Figure 2B, dark blue 

versus orange bars, p-value < 0.05), likely to accommodate the differences in volume 

previously seen. Considering the number of cells surrounding the KV in cup-/- mutants 

was not significantly different from their siblings (12 cells average in cup+/+;+/- WT and 13 

cells average in cup-/- mutant siblings), we therefore concluded that differences in cell 

morphology affected the spacing between posterior KV cilia, resulting in a higher 

concentration of cilia in the posterior region of cup-/- mutants and should affect flow 

pattern. In summary, through attempting to impair the mechanosensory pathway using 

cup-/- mutants and 1 cell stage pkd2 morphants, we generated fluid flow problems that 

were not anticipated. While this situation remains interesting from a fluid mechanics point 

of view, it also rendered these mutants and these morphants inadequate to answer our 

original question. The volume problems could only be averted by either controlling for 

volume increase with the CFTR inhibitor or targeting pkd2 morpholino into DFCs, which 

created other problems on their own. 

Finally, we checked by immunostaining how Pkd2 protein was being affected by our 

manipulations. While injecting pkd2 morpholino into 1 cell-stage was very effective to 

bring down Pkd2 protein (compare Figure 2C’ to 2D’; white arrowheads mark Pkd2-

positive cilia), injecting the same morpholino in 500 cell-stage to target DFCs still showed 

Pkd2 in KV cells and along the ciliary axoneme (compare Figure 2C’ with E’; white 

arrowheads mark Pkd2-positive cilia). Even when injected with a higher dose of 

morpholino, we could still see Pkd2-positive cilia (Figure 2F’; white arrowheads mark 

Pkd2-positive cilia). If there is a difference in protein levels, it is not one that we can easily 

assess by immunostaining. An alternative method to test this difference would be doing a 

western blot, but since the injection targeted only the KV precursors, performing a 
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western with samples of whole embryos would not be sensitive enough to detect 

differences either. The alternative would be to FACS the KV cells and do a western on 

that purified sample. Unfortunately, the amount of cells needed for such an experiment 

was not feasible.  

In sum, none of the used approaches for knocking down pkd2 rendered a perfect 

manipulation: taking all Pkd2 affected KV volume and therefore flow pattern, while 

targeting only to KV cells did not take enough protein to be visible by immunostaining. 

Still, we decided to proceed with the original experimental design until the end. The 

reason why was the observation that cup-/- mutants also have more Pkd2 protein due to 

maternal contribution and still have severe left-right defects in heart and gut situs (Roxo-

Rosa et al., 2015; Schottenfeld et al., 2007). Therefore, we could be in a position where 

different levels of Pkd2 protein could have different ranges of phenotypes and that would 

be an interesting result. Additionally, a ‘no flow’ situation and a double knockdown 

situation (where Pkd2 was knocked down from KV cells and ~100% of cilia were rendered 

immotile – called DMDFCs) were also evaluated (Figure 1G and H). DMDFCs did not show 

any significant differences in LWR (Figure 2A).  

Impairment of Pkd2 and fluid flow affect dand5 expression pattern similarly, but 

show differences in expression level 

For this comparative experiment we used two readouts: a) dand5 expression, a nodal 

inhibitor known to be the first asymmetric expressed gene during the left-right axis 

establishment (Lopes et al., 2010) and b) internal organ situs. In WT embryos, dand5 is 

mainly expressed on the right side from 8 somites onwards (Lopes et al., 2010) (Figure 

3A). Our results showed that in the ‘no flow’ scenario (as in Sampaio et al., 2014), dand5 

became predominantly symmetric (Figure 3D, Fisher test with Bonferroni correction, p-

value<0.0125). Next, when we impaired Pkd2-mediated sensing mechanism either in 

whole embryo or specifically in the KV, and these treatments also resulted in a symmetric 

dand5 expression pattern (Figure 3B and C, respectively; Fisher test with Bonferroni  
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Figure 3. Impact of lack of fluid flow and knockdown of pkd2 in dand5 

expression pattern and level  

(A-E) dand5 expression pattern quantification by in situ hybridization of WT 

embryos, pkd2 MO 1 cell stage, pkd2 MODFCs, dnah7 MO and DMDFCs. (F) 

dand5 expression level in fold change quantified by qRT-PCR; asterisks 

represent statistical significance (paired t-test, p-value<0.05).  
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correction, p-value<0.0125). In addition, we found that when both processes were 

affected, the expression pattern distribution was again very similar to the previous cases 

(Figure 3E; Fisher test with Bonferroni correction, p-value<0.0125). This points to the fact 

that, in terms of expression pattern, dand5 becomes highly symmetric both when there is 

‘no flow’ (67%), when there is ‘reduced pkd2 mediated sensing’ of that flow (64%), or both 

(64%). This fact confirms that Pkd2-mediated flow sensing is very important to define 

dand5 expression pattern, which in WT embryos may be accomplished by higher 

degradation rates of its mRNA on the left side of the LRO (Nakamura et al., 2012; 

Schweickert et al., 2010; Oki et al., 2009). After comparing all different treatments 

between each other, we found no statistically significant differences between them 

(Fisher test with Bonferroni correction, p-value>0.008).  

As for mRNA expression quantification of dand5, qRT-PCRs were performed for each 

condition. For all the cases where motility was abolished, embryos were observed with 

high-speed videomicroscopy to ensure that all cilia were immotile. Although there were no 

differences between WT, pkd2 MO at 1 cell stage, pkd2 MODFCs and dnah7 MO, embryos 

injected with both morpholinos expressed significantly less dand5 (Figure 3F; t-student, p-

value<0.05). So, regardless of the expression pattern being mainly symmetric in all 

conditions, abolishing both processes seem to additionally affect dand5 mRNA 

expression level. This could indicate the presence of a downstream effector of both flow 

and Pkd2-mediated sensing, responsible for maintaining dand5 expression levels 

independently of its pattern. Such an effector would be sensitive to the combined ‘no 

flow’/no Pkd2 mediated sensing situation, but would still be active in an independent ‘no 

flow or ‘no Pkd2’ situation.  

Fluid flow abrogation shows more severe effects on organ situs than pkd2 

knockdown 

Lastly, we analysed organ situs. Controls typically display a left heart and left liver (97.5% 

of the cases), which means situs solitus in zebrafish (Figure 4A). All three pkd2 
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knockdown treatments randomize situs, making it equally possible to fall in one of the 

three categories (Figure 4B-D; Fisher test with Bonferroni correction, p-value<0.007). In 

fact, there are no statistically significant differences in terms of organ situs between these 

three approaches (Figure 4G; Fisher test with Bonferroni correction, p-value>0.008) and 

they are not different from a total randomization (Figure 4G in the last column all 

situations were compared with a random fate of 33%; Fisher test with Bonferroni 

correction, p-value>0.006). This points to the hypothesis that even when Pkd2 protein is 

marginally reduced, it still has a huge impact on left-right axis establishment, pointing to a 

minimal threshold. This result is different from what happens with the volume increase, 

since it seems you need a more complete pkd2 knockdown to see a big impact on CFTR 

activation and therefore KV volume.  

Abrogation of flow also led to a randomization of organ situs (Figure 4E and last column 

in Figure 4G; Fisher test with Bonferroni correction, p-value>0.006). Blocking both flow 

and Pkd2-mediated sensing showed the same phenotype (Figure 4F and M). This is in 

line with what we saw with dand5 expression pattern, since there were also no 

differences between treatments. The only difference observed was the level of dand5 

expression in the double morphants. We can hypothesize that the reason why we do not 

observe a stronger phenotype in the double morphants in terms of organ situs might be 

because, without flow, more or less dand5 has no impact on organ situs. On the other 

hand, our results seem to suggest that flow and Pkd2 are important for the maintenance 

of dand5 levels of expression and not only for the correct pattern. Without flow but with 

normal levels of Pkd2, dand5 is symmetric but has a normal level of expression (Figure 

3F). The same happens when the flow has a normal pattern and we knockdown pkd2 

(Figure 3F). Only when we affect both we also affect the maintenance of dand5 levels 

(Figure 3F).  
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Figure 4. Comparison of organ situs between lack of fluid flow and different knockdown levels of 

Pkd2  

(A-F) Organ situs quantification by scoring heart and liver laterality in the same larvae; experimental 

conditions involved injecting dnah7 MO, pkd2 MO 1 cell stage, pkd2 MODFCs and DMDFCs and cup-/- mutants. 

(G) Statistical analysis of organ situs for different treatments using a Fisher test with p-value corrected for 

multiple comparisons with Bonferroni correction. SS – situs solitus; SI – situs inversus; H – heterotaxia. 

Green values show tests where H0 could be rejected and red values show tests where H0 could not be 

rejected. 
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Discussion 

What started as a simple question - is no flow the same as no Pkd2-mediated sensing for 

left-right axis establishment – ended in a realization that manipulating Pkd2, was trickier 

than we first anticipated. Changing the amount of Pkd2 in the zebrafish KV not only had 

an impact on left-right but also influenced the whole KV architecture and flow pattern and 

strength. Although we tried all manipulations currently available, the best compromise we 

could achieve was a situation where we still had a considerable amount of Pkd2 protein 

and normal flow pattern but weaker in strength (compare pkd2MO in 1 cell-stage in 

Figure 1C with pkd2MODFCs in Figure 1E). The reason why we still have Pkd2 protein 

might be explained by the fact that a later injection is not as efficient at blocking the 

maternal contribution and the half-life of this channel makes it very stable for a long 

period of time. How fair is to compare this pkd2MODFCs with weaker flow to a no flow 

situation is very debatable. We cannot assure that, although we see the same range of 

LR phenotypes, both in terms of dand5 expression and organ situs (Figure 3 and 4), this 

actually results from a slower flow. When we increased the amount of morpholino injected 

into DFCs (from 4 to 9ng) we started to see KVs with more volume, meaning that we 

were likely succeeding in taking more Pkd2 protein out (Roxo-Rosa et al., 2015). 

However, we still saw Pkd2 protein by immunostaining in KV cells and cilia despite we 

saw the same degree of defects in organ situs (48% of situs solitus, 18% of situs inversus 

and 33% of heterotaxia). On the other hand, cup-/- mutants showed that, with maternal 

contribution alone, there were minimal architectural problems (when compared with 

pkd2MO in 1 cell-stage) and still had a randomization of organ situs. Also, one study 

reports that the KV size is not tightly controlled during development, impacting on organ 

situs only if exceeding a certain threshold (Gokey et al., 2015). Further work should be 

done to address the differences found between mutant and morphant. An alternative 

would be to chemically maintain the volume (with Ouabain or a more specific CFTR 

inhibitor, CFTRinh-172) in the hope that this would keep the KV architecture constant and 
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do a stronger knockdown for Pkd2 by injecting the morpholino into 1 cell-stage (where it 

was proven to be more effective). It is still interesting to note that it was needed a 

stronger pkd2 knockdown to see a volume and architectural problem than to see left-right 

problems, which would suggest that left-right must be more sensitive to decreases in 

Pkd2 protein doses in this system. 

A big problem that we faced with our approaches was the flow speed. This could be 

happening either because the KV was too big for proper flow speed or because there 

were more immotile cilia and therefore less motile cilia producing flow. In our 

pkd2MODFCs situation, we had a proper flow pattern, but slower flow, which made us 

ask what is the minimum flow speed necessary for correct LR axis establishment. Some 

works from the mice model states that all LR decisions in the node are done when flow is 

still very slow: asymmetric gene expression is established prior to stronger flow and the 

fact that only two motile cilia can still produce enough flow for correct LR establishment 

(Shinohara et al., 2012). It the zebrafish model, dand5 asymmetric expression is only 

established after the flow is strong, becoming weaker in the cells on the left side that feel 

the strongest flow  (Sampaio et al., 2014). When flow is abrogated, dand5 becomes 

mostly symmetric, stronger on both sides, which coincide with the absence of flow 

(Sampaio et al., 2014). On the other hand, Yuan et al. (2015) shows that the intraciliary 

calcium oscillations on the left side happen earlier, when flow is weaker, pointing to the 

beginning of the process happening before strong flow. More experiments should be 

done in the zebrafish model in order to clarify if LR decisions are made with weak or 

stronger flow. Either way, mice and zebrafish LRO have very different topologies. The 

mice model has all cilia present in the dorsal roof of the LRO (Sulik et al., 1994) and 

being useful for flow production, while zebrafish has cilia all around the LRO, with more 

incidence in the dorsal anterior region (Wang et al., 2012) . 

118 



CHAPTER 3 

 

Autossomal dominant polycystic kidney disease (ADPKD) is the most common genetic 

disorders and result from mutations in PKD1 and/or PKD2. The clinical manifestations of 

this disease include renal cysts that lead to kidney failure, cyst in many other organs like 

liver, mitral valve prolapse and intracranial aneurysms (Grantham et al., 2006; Pirson, 

2010; Pirson et al., 2005). Although mutations on PKD2 can only account for 15% of all 

the ADPKD disease, there are 278 different PKD2 mutations already described to be 

associated with this disease, which 48 are reported as being nonsense mutations and 

most likely leading to having no protein at all (Autosomal Dominant Polycystic Kidney 

Disease: Mutation Database - http://pkdb.mayo.edu/index.html). Despite that fact, there 

are only 3 cases of unrelated patients both presenting PKD2 mutations and laterality 

problems: a large deletion in one patient with dextrocardia and two different duplications 

(one in exon 1 and another in exon 3) in two patients with situs inversus totalis (Bataille et 

al., 2011). This makes laterality problems deriving from PKD2 mutations an extremely 

rare situation. At this point, we must ask if PKD2 in humans has the same importance for 

left-right as observed in other animal models like mice and zebrafish. There can be some 

explanations for this lack of penetrance of laterality disorders. There might be happlo-

sufficiency for PKD2 in the human node, where half of the normal protein amount is 

sufficient for left-right to be established normally. Or maybe other calcium channels like a 

PKD2L1 and several others (as reviewed in Nauli et al., 2016) might be expressed in the 

human node and compensate the lack of PKD2 in left-right axis establishment. Or the 

mutations are so lethal that are not even reported due to early miscarriages. Either way, 

more work is needed to understand how different are humans from our current model 

animals in terms of Pkd2 and left-right. 
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“If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck” 

Duck test of Abductive Reasoning 
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Summary  

Calcium permissive channel Polycystin-2 plays an important role on Left-Right axis 

establishment in many animal models (Field et al., 2011; Kamura et al., 2011; Yoshiba et al., 

2012; Yuan et al., 2015). However, what are the activated or blocked targets downstream of 

the activation of this permissive calcium channel and the calcium oscillations and waves that 

follow are not yet known. 

By performing a tissue specific microarray in WT embryos vs pkd2 morphant embryos (using 

the morpholino referred by Schottenfeld et al., 2007), we got a list of differentially expressed 

genes between these two conditions. Among these we selected four genes of interest to 

further assess their impact on left-right: parvalbumin 6, frizzled-related protein, calcyclin 

binding protein and nicalin 1. First, we evaluated their expression patterns; second, we 

manipulated them in order to mimic the same up or downregulation as found in the 

microarray. Our readouts were both dand5 expression pattern and mRNA expression levels 

and later we assessed the effect of our manipulations in organ situs. Subsequently, we 

evaluated the impact on left-right of the inverse manipulations. Finally, we summarized the 

results in a model, where we put these new players in their potential new roles for left-right 

axis establishment. 
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INTRODUCTION 

Vertebrates establish left-right (LR) organization of the internal organs during development. This starts 

by the action of rotating cilia – hair-like structures on the surface of cells – in the left-right organizer 

(LRO) known as the node in mammalians and Kupffer’s vesicle (KV) in fish (Essner et al., 2005). 

Zebrafish motile cilia generate an anticlockwise fluid flow that is stronger anteriorly and on the left side 

of the KV (Sampaio et al., 2014). Independently, corresponding asymmetric intracellular calcium 

oscillations (ICOs) (Yuan et al., 2015) were detected in the first layers of cells surrounding the KV. 

Such ICOs were observed mainly on the left side of the KV midplane and were shown to be 

dependent on the presence of Pkd2. Therefore, in zebrafish predominant anterior and left flow forces 

and ICOs in the LRO seem to precede a left-sided calcium wave in the adjacent tissues and a left-

biased asymmetric expression of genes in the lateral plate mesoderm (such as nodal, pitx2 and 

lefty2). Later, this asymmetric genetic cascade will lead to laterality formation revealed by the 

asymmetric localization of internal organs (for review see Pennekamp et al., 2015). 

The cation channel Pkd2 together with the mechanosensor Pkd1, form a complex, which in the kidney 

has the ability to sense the urine flow and induce an intracellular calcium signal (Nauli et al., 2003). 

Pkd2 and its new partner Pkd1l1 have also been proposed as the mechanosensor channel complex 

responsible for sensing the flow in the LRO and conveying the information into the adjacent tissues 

(Field et al., 2011; Kamura et al., 2011). Despite working as a complex, it has been shown that 

decreasing the levels of Pkd2 alone is sufficient for a strong LR randomization both in mice (Yoshiba 

et al., 2012) and in zebrafish (Bisgrove et al., 2005; Schottenfeld et al., 2007). However, how the 

extracellular fluid flow is ‘perceived’ by the node/KV cells, is still controversial and has not been 

demonstrated. One explanation provided by the ‘two-cilia hypothesis’, is based on the fact that there 

are two types of cilia in the mouse node cells: one immotile, the alleged sensory type, capable of 

detecting changes in the flow, and another population of motile rotating cilia generating the fluid flow 

movement (McGrath et al., 2003). An important finding supporting this hypothesis was that absence of 

Pkd2 in perinodal mouse cells inhibits the usual asymmetric expression of cerberus-like2 (cerl2 or 

dand5) on the right side, important for further LR asymmetry, but a tissue specific perinodal rescue 
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recovers normal LR patterns (Yoshiba et al., 2012). The perinodal cells are enriched in immotile cilia 

promoting the idea that these are the important sensors in the murine system. Motile and immotile cilia 

have also been found in the zebrafish KV but in a intermingled arrangement (Sampaio et al., 2014; 

Tavares et al., 2017) and Pkd2 is present in all zebrafish KV cells including ciliary axoneme and basal 

body (Roxo-Rosa et al., 2015). As in mice, knockdown of pkd2 in zebrafish leads to symmetric dand5 

expression (Yoshiba et al., 2012). Altogether, there is evidence indicating a possible connection 

between the rise of intracellular calcium and dand5 decrease in expression on the left side of the LRO, 

possibly through the stimulation of more Pkd2 channels in a sided manner. In mice, Pkd2 dependent 

calcium signalling seems to be upstream the initial degradation of dand5 mRNA on the left side that is 

then further established by a positive feedback loop involving Wnt3 (Nakamura et al., 2012).  

However, such mechanism remains to be formally demonstrated in other animal models. At this stage 

we can ask if apart from dand5 regulation there are other left-right targets of the intracellular calcium 

signalling mediated by Pkd2. And what is the mechanism by which intracellular calcium modulates 

gene expression. To answer these questions, we decided to do a tissue-specific mRNA profiling of the 

KV ciliated cells. To do this, we used a zebrafish line that specifically labels KV cells (tg(foxj1a:GFP) 

(Caron et al., 2012) and then performed pkd2 knockdown experiments using a well established 

translation blocking morpholino (Schottenfeld et al., 2007). The results were analysed and clustered 

and candidate genes were chosen and validated by qRT-PCR for further testing. We chose four 

potential candidates to further analyse their mRNA and protein localization, when possible. Then we 

manipulated these genes by overexpression and knockdown to assess their individual impact on left-

right axis establishment by looking at dand5 expression pattern and levels and later scoring for organ 

situs.   

EXPERIMENTAL PROCEDURES 

Fish stocks and genetics 

Wild-type (AB) and Tg(foxj1a:GFP) (Caron et al., 2012) zebrafish lines were maintained and used as 

described elsewhere (Westerfield, 2000). Embryos were raised at 28ºC, depending on the experiment, 
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in E3 embryo media and staged accordingly (Kimmel et al., 1995). Procedures with zebrafish were 

approved by the Portuguese DGAV (Direcção Geral de Alimentação e Veterinária). 

Fluorescence activated cell sorting (FACS) 

pkd2 morpholino (Schottenfeld et al., 2007) and pkd2 mismatch morpholino was diluted in sterile water 

and injected at one cell stage at a dose of 2.5ng per embryo from the Tg(foxj1a:GFP) zebrafish line. 

Embryos were allowed to develop until 16 hours post-fertilization (hpf) and dechorionated using 

pronase (MERCK)(2mg ml-1). Embryos were then rinsed 3 times with Danieu’s solution and collected 

into 15mL falcons. To deyolk embryos, 1mL of CO2-independent medium (GibcoTM) complemented 

with 5mM EDTA was added to the falcons and embryos were dissociated by gently pipetting up-and-

down with filter tips. Then 4mL of medium was added and falcons were centrifuged at room 

temperature for 3 minutes at 700g. The supernatant was removed and new medium was added. The 

dissociation and centrifuge was repeated until the removed supernatant was pink. Cells were then 

finally resuspended in 1mL of medium and transferred into FACS tubes. Cells were then FACS sorted 

and GFP positive cells were collected to 75uL of RLT Buffer from the RNeasy® micro Kit (Qiagen Inc., 

Valencia, CA), and stored at -80ºC. We collected three independent samples for WT, pkd2 morphant 

embryos and pkd2 mismatch morphant embryos, each with around 15000 cells per sample.  

Microarray 

RNA isolation and quality evaluation: Total RNA was isolated with the RNeasy® micro Kit following the 

manufacturer’s instructions. RNA quantification was done by using a nanophotometer P-class (Implen) 

and integrity was confirmed using an Agilent 2100 Bioanalyzer for an Eukaryote total RNA pico assay 

(Agilent Technologies). Three biological replicates were produced with an equivalent number off cells 

and used in the microarray. 

The foxj1a:GFP reporter line was injected with pkd2-augMO. This procedure blocked pkd2 translation 

and allowed us to identify the genes that were affected transcriptionally in motile ciliated cells 

expressing the foxj1a reporter. Embryos were raised until 10 somites stage. We have also injected 

embryos from the foxj1a:GFP background with the control MO mismatch. We have as predicted in 

TASK 4 performed Fluorescent Activated Cell Sorter (FACS) on these embryos that are on the 
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foxj1a:GFP transgenic background. So, we selected the foxj1a:GFP positive cells by FACS. We have 

used a FACSAria High- Speed Cell Sorter (BD) available at the IGC facilities. We collected 100306 

cells from non-injected, 56353 cells from MO-pkd2 injected and 39383 cells from MO mismatch 

injected embryos. For each situation, the collected cells were in three replicates and the total RNA was 

isolated with a micro RNAeasy kit (Qiagen). The quality of the total RNA was analyzed on the Agilent 

2100 Bioanalyzer (Affymetrix Core Facility in the IGC). Demonstrating the quality of the extracted 

RNA, all the samples presented a RIN factor above 7.70. 

Microarray procedure: The new Zebrafish Gene 1.1 ST Array Strip (Affymetrics) was used. This array 

is based on the Zv9 version of the zebrafish genome. The strips were run on the GeneAtlas System at 

the IGC Gene expression facility. This allowed us to analyze and compare the expression of 23878 

properly annotated genes.  

The crossing between the results from the MO pkd2 with MO mismatch and wt was very informative 

because we could exclude all the genes that were being differentially expressed due to Morpholino 

toxicity. After excluding differences caused by MO toxicity, we found 623 genes to be differentially 

expressed in the pkd2-morphants compared to wt embryos. We have only considered genes 

presenting an expression 1.3 times higher or lower in the pkd2 morphants compared to wt embryos. 

Strengthening our results, among the differentially expressed genes we found some encoding proteins 

that are dependent of Ca2+.  

Validation of microarray expression data: We performed quantitative PCR (qPCR) using cDNA from 

KV’s cells at 10 somite stage (selected as in the microarray experiment). qPCR was performed on the 

Roche Real-Time PCR Detection System using the Roche SybrGreen. Primers for amplification of 

cacybp (calcyclin binding protein), pvalb6 (parvalbumin 6), frzb (frizzled-related protein) and ncl1 

(nicalin 1) were designed with Primer-BLAST (NCBI). Two reference genes rpl13a (ribosomal protein 

L13a) and eef1al1 (eukaryotic elongation factor 1 alpha 1 like 1) were used. All reactions were 

performed with three biological replicates and three technical replicates. Significant differences in the 

transcription level were determined using t-student test (p < 0.05).  
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Cloning for overexpression and in situ hybridization and Morpholinos 

Primers were designed to amplify full coding sequence of pvalb6, cacybp, frzb and ncl1 into a pCS2+ 

plasmid. Primer sequences: pvalb6 forward 5’- GCGATATGGATCCATGGCGATGAGCAGCATC-3’ 

and reverse 5’-CGCGCGAATTCTTCACGAACCAGAGCAGCAAAC-3’; frzb forward 5’-

GCGCCGGCGGATCCATGCAAAACATGTTTTCCTACG-3’ and reverse 5’- 

GCGCGCGGAATTCTTAGTGGTGGTTCCATTTGG-3’; cacybp forward 5’-

GCGGCGCATGGATCCATGGACATCAATGAAC-3’ and reverse 5’-

GCGGGCGCCCCGCGAATTCTTAGAAGTCAAAATCATCTGG-3’; ncl1 forward 5’-

GCTGCTATCGATATGTTCGAGGAGGCTGGT-3’ and reverse 5’-

GCGCAGAATTCTCAGTGCTGCTTGACCCG-3’. PCRs were performed using iProofTM High-Fidelity 

DNA Polymerase (Bio Rad). Double digestions were performed in the plasmid and amplified genes, 

according to primer design (data summarized in Table 1) and T4 ligation (NEB) was performed 

overnight at 16ºC. DH5α competent E. coli were transformed with ligation product and plated in LB-

Agar (Carl Roth) with 100mg/mL Ampicilin resistance. Colonies were screened by PCR using pCS2+ 

specific primers and positive colonies were sent to sequence to assess the quality of PCR 

amplification. Colonies with correct sequences for all 4 genes were selected and grown on secondary 

cultures. High quality and very concentrated plasmids were obtained with a ZymoPURE™ Plasmid 

Midiprep kit. The same plasmid can be linearized for mRNA production and in situ hybridization probe 

synthesis. For mRNA production, 2µg of linearized plasmid were processed with mMESSAGE 

mMACHINETM Sp6 Transcription Kit (Ambion), aliquoted and stored at -80ºC. For in situ hybridization 

probe synthesis, 2µg of linearized plasmid were processed with T7 RNA Polymerase (Promega) and 

labelled with DIG (Roche) and finally diluted 30-50ng in 200µL of Hybridization Mix. 

Morpholinos targeting the 5’UTR excluding the initial ATG for all 4 genes were ordered online from 

GeneTools:  pvalb6 5’-AACGAGACCGGCAACGCACAGACAG-3’; frzb 5’-

AGCGGAGTTGATAGAAGAATGACAT-3’; cacybp 5’-TGCTGTCTTGGAAAAACCTCTGTAT-3’; ncl1 

5’- CGGGAGATTCCCACCGACAGAAACA-3’.  
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Overexpression and Knockdown experiments  

WT (AB) embryos were injected at 1 cell stage with several doses of each morpholino and mRNA. 

Toxicity was assessed by discarding all doses that produced high mortality rates. The doses chosen 

for the final experiments were: 3ng of pvalb6 morpholino (KD), 800pg of pvalb6 mRNA (OE), 800pg of 

frzb mRNA (OE), 2ng of frzb morpholino (KD), 3ng of cacybp morpholino (KD), 1000pg cacybp mRNA 

(OE), 1000pg ncl1 OE, 3ng ncl1 morpholino (KD), 1000pg ncl1 OE/800pg frzb OE/3ng cacybp KD and 

finally 2,5ng of pkd2 morpholino (KD). Embryos were allowed to develop to the desire stages to study 

dand5 expression pattern and level, heart and gut situs. 

Immunofluorescence and in in situ hybridization  

Whole-mount immunostaining for parvalbumin was performed as described previously (Lopes et al., 

2010). Antibodies used for immunostaining were mouse anti-parvalbumin (1:400; clone PARV-19, 

Sigma), Goat anti-mouse Alexa Fluor 488 (Invitrogen; 1:500) and Alexa fluor 546 Phalloidin 

(Invitrogen/ molecular probes 1:100). Whole-mount in situ hybridizations for all 4 genes were 

performed at 8-10 somite stage and 24hpf in wt embryos as described in Thisse Lab - In situ 

Hybridization Protocol 2010 update Zfin (https://goo.gl/XdcfCH). dand5 in situ hybridizations were 

performed at 8ss as described elsewhere (Thisse and Thisse, 2008) and were used 241 WT controls, 

53 frzb OE, 43 cacybp KD, 49 ncl1 OE, 75 pvalb6 OE, 101 cacybp OE and 45 ncl1 KD. The results 

were analysed by Fisher’s exact test with Bonferroni correction for multiple comparisons. 

Heart and gut laterality  

At 30 hpf we evaluated heart jogging using a stereoscopic zoom microscope (SMZ745, Nikon 

Corporation) to observe the embryos from the ventral side. These embryos were then allowed to 

develop in separated petri dishes and at 53 hpf, embryos were fixed and processed for foxa3 in situ 

hybridizations to assess gut laterality. We could then pair the heart situs with gut situs for each 

treatment and attribute an embryo situs. We scored organ situs in 1438 WT, 55 pvalb6 KD, 120 pvalb6 

OE, 103 frzb OE, 76 frzb KD, 18 cacybp KD, 84 cacybp OE, 79 ncl1 OE, 188 ncl1 KD, 84 ncl1 OE/ 

frzb OE/ cacybp KD and 140 pkd2 KD. 
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Quantitative PCR  

Embryos from different treatments were pooled in 3 groups of 20-50 embryos in order to have three 

different biological replicates. Total RNA was extracted using the Qiagen RNeasy Mini Kit (ref number 

74104) and reverse transcribed using both oligo(dT)18 and random hexamer primers with the 

RevertAid First Strand cDNA Synthesis Kit (ref number K1622) following the manufacturers' 

instructions. Expression was quantified by PCR using Roche SYBR Green I Master (ref number 

04887352001) and run in a Roche LightCycler® 96 Real-Time PCR System. Results were analysed 

and depicted as fold-change of transcript levels in injected embryos relative to transcript levels in 

control embryos. The p-value represents significance in the pairwise comparison of transcript levels 

between injected and control embryos as determined using the paired t-test. Statistical significance 

was set at p-value < 0.05. Expression levels of all our genes of interest were normalized in relation to 

eukaryotic elongation factor 1 alpha 1 like 1 (eef1al1) and ribosomal protein L13a (rpl13a) 

expression. Primer sequences used were as follows: dand5 forward 5′-

CCGCAATCCTGACCCATAGCAA-3′ and reverse 5′-CTCCTCCGTTATGCGCTGTGTA-3′; pvalb6 

forward 5’-GCGAAGGCATCTGACGATGTGAA-3’ and reverse 5’-GCAAACTCTTCCGCTCCAATCTT-

3’; frzb forward 5’-ACTTCCAGCACGACCCGATCAA-3’ and reverse 5’-

GAATTATCTGGCCCCTCCGCTT-3’; cacybp forward 5’-GCAGCTTCACAGAGAGAGGCTT-3’ and 

reverse 5’-ACTTGTGTCAAGCAGTCCCACTT-3’; ncl1 forward 5’- CGTCGCTATACTGCTGGAGCTT-

3’ and reverse 5’-GAGCAGACTGGCATCTGTGTGAT-3’; eef1al1 forward 5’-

CCTTCAAGTACGCCTGGGTGTT-3’ and reverse 5’-CACAGCACAGTCAGCCTGAGAA-3’; rpl13a 

forward 5’-TGACAAGAGAAAGCGCATGGTT-3’ and reverse 5’-GCCTGGTACTTCCAGCCAACTT-3’. 

RESULTS  

Expression patterns of downstream targets of Pkd2 in left-right axis establishment 

To identify what target genes are downstream of the Pkd2 signalling pathway and how it influences the 

early left-right axis specification, a tissue-specific mRNA profiling of the KV ciliated cells was 

performed. To achieve this, a foxj1a:GFP transgenic line was used where all the ciliated cells of the 
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Figure 1. KV specific microarray of 

WT versus Pkd2 morphant embryos.  

(A) Zebrafish embryo at 8 somite stage 

from the transgenic line tg(Foxj1a:GFP), 

showing in bright grey the KV cells. (B-

C) Pkd2 (in green) and acetylated α-

tubulin (in red) immunostaining in WT 

(A) and pkd2 morphant (B) embryos, 

focusing in the KV cilia. Scale bars 

represent 10µm. (D) Schematics of the 

FACS sorting of GFP-positive cells. (E-

F) GFP-positive cells that were selected 

for RNA extraction that are only present 

in the transgenic line (E), but not in a 

pool of WT embryos (F). (G) Table 

summarizing the results of the 

transcriptome profiling separated by 

clusters and further validated by qRT-

PCR. In green are the genes followed 

during this study.   

 

KV are GFP-positive (Figure 1A). This line was injected with 1,8ng of Pkd2 augMO (Schottenfeld et 
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al., 2007) that blocks translation and can successfully abrogate the Pkd2 that is present along the KV 

cilia (Figure 1B and C). After this, embryos were let to develop until 10 somite stage and then the KV 

cells were sorted through an optimized protocol using the Fluorescent Activated Cell Sorter (FACSAria 

High-Speed Cell) (Figure 1D-F). This tissue-specific screen allowed a strict selection and avoided 

contaminations with cells that are not from the KV. After the sorting, RNA was extracted with a 

microRNAeasy kit. cDNA was produced and the transcripts were investigated with the Zebrafish Gene 

1.1 ST Array Strip from Affymetrics and run in the GeneAtlas System in the IGC. The results were 

analysed by Hierarchical Clustering to reveal potential genes that are being regulated by the Pkd2 

signalling pathway. The qRT-PCR results were normalized with two housekeeping genes: eukaryotic 

elongation factor 1 like 1 (eef1l1) and ribosomal protein L13a (rpl13a).  

A list with 16 targets that were differently expressed between wt and pkd2 morphants was curated and 

several genes of interest were clustered into four categories, such as Ion channel, wnt signalling, 

calcium binding and others (summarized in Figure 1G). In the ion channels class we found that there 

was an up regulation of two genes coding for subunits of a voltage dependent calcium channel which 

in Paramecium is important to control the frequency and direction of ciliary beating (Thiele and 

Schultz, 1981). Since this gene was the only calcium channel to be differentially expressed in our 

array, it was a very interesting gene to study. Unfortunately, we were not able to validate this gene 

through qRT-PCR due to its very low level of expression, rendering this gene unfit for further 

investigation. For further study, we chose frizzled related protein (frzb) from the wnt signalling cluster, 

parvalbumin 6 (pvalb6) and calcyclin binding protein (cacybp) from the calcium binding cluster and 

nicalin1 (ncl1) from the others cluster. First we assessed if any of these genes had an asymmetric 

gene expression like dand5, a known inhibitor of nodal signalling that has been shown to be important 

for left-right axis establishment. 

Parvalbumin 6 (pvalb6) 

Parvalbumin is a well-known calcium binding protein expressed at high levels in muscle and neuronal 

cells. In muscle it can bind intracellular Ca2+, increasing the rate of muscle relaxation (Müntener et al., 

1995). In neuronal cells it might act as a cytosolic intracellular Ca2+ buffer, protecting the neurons from 
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high cytotoxic amounts of intracellular Ca2+, facilitating a more efficient signalling (Chard et al., 1993). 

Parvalbumin does not alter resting intracellular Ca2+ levels, only seems to reduce the peak and the 

rate of rise, promoting a faster decay (John et al., 2001). In zebrafish, there are 9 different 

Parvalbumins, more widely known for their role in retina neuron specification and muscle. Importantly, 

Figure 2. Expression pattern of parvalbumin 6, frizzled-related protein, calcyclin-binding 

protein and nicalin 1.  

(A-B) In situ hybridization of parvalbumin 6 in embryos at 8 somite stage (A) and 24 hours post-

fertilization (hpf) (B). Black arrows identify the acoustic ganglion. (C) Table comparing the protein 

sequence of Pvalb5 and Pvalb6, showing in green conserved amino acids between the two 

sequences. (D-I) Immunostaining of cortical actin (in magenta, D and G) and Parvalbumin (in green, E 

and H) in the olfactory pit in embryos at 48 hours post fertilization (F) and in the KV region in embryos 

at 8 somite stage (I). (J-L) In situ hybridization of frizzled-related protein in the head region (J) and KV 

region (K) of embryos at 8 somite-stage and in the tail region of 24 hours post fertilization (L). (M-N) In 

situ hybridization of calcyclin-binding protein in WT embryos at 8 somite stage (M) and 48 hours post 

fertilization (N). (O-P) In situ hybridization of nicalin 1 in WT embryos at 8 somite stage (O) and a 

detail of the KV region (P). Scale bars represent 20µm. 
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Parvalbumin has been recently used as a tool for abolishing intracellular calcium signalling in the KV 

by Yuan et al. (2015). By targeting Xenopus Parvalbumin specifically to cilia, by fusing it to arl13b, 

Yuan et al. (2015) were able to reduce the intracellular calcium oscillations found in cilia, which they 

showed to be important for propagating the calcium wave into the left lateral plate mesoderm. 

Importantly, our array showed that all nine parvalbumin genes are expressed in the KV cells but only 

one (pvalb6) is significantly different between WT and pkd2 knockdown being downregulated in 

morphant embryos. According to John et al. (2001), we predict that downregulating pvalb6 gene would 

help to increase the calcium peak as well as the rate of rise, slowing down the decay. Therefore, even 

with low calcium due to absence of Pkd2, it might still be possible for the KV cells to detect slight 

changes in calcium downstream of flow. 

The in situ hybridization probe showed no expression of this gene in embryos of 8-10 somite stage 

(Figure 2A), as already had been reported (Thisse and Thisse, 2004). This indicates that microarray 

and qRT-PCR are much more sensitive to low doses of expression than in situ hybridizations. When 

we compared the levels of relative expression found by qRT-PCR of pvalb6 and for example dand5, a 

gene that is well visible by in situ, we realized that these values were much lower than the ones 

presented for dand5 (pvalb6 relative expression was 0.009 while dand5 relative expression was 5). To 

confirm that the lack of expression at 8ss was not due to a defective in situ hybridization probe, we 

used it in embryos with 24hpf and it successfully showed expression in the acoustic ganglion as 

predicted by Thisse and Thisse, (2004) (Fig 2B, black arrows). For further confirmation that indeed the 

level of expression was very low in WT and lower even in morphants, a commercial monoclonal 

antibody against a frog Parvalbumin from Sigma was used to assess the expression of this protein in 

the KV. Zebrafish has 9 Parvalbumins and although many are present in muscle (Pvalb 1, 2, 3, 4 and 

7), others exist in other structures like the olfactory pit (Pvalb5) and the acoustic ganglion and ganglion 

cell layer of the retina (Pvalb6). Since the commercial antibody detects cells of the olfactory pit (Figure 

2D-F) and the Amacrine cell subtype of Zebrafish retina (Zhang et al., 2014), it must identify a 

conserved region between Pvalb5 and Pvalb6 proteins. When comparing the sequence of these two 

Parvalbumins, they have 56% peptide sequence homology (Figure 2C). Despite all this, the antibody 
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did not show any staining in the KV (Figure 2G-I). This shows further confirmation that the level of 

expression is so low that is likely not to produce any protein.  

Frizzled-related protein (frzb) 

This gene was up-regulated in pkd2 morphants in our microarray and qPCR validation experiments 

(Figure 1G). Frizzled related proteins are molecules with a similar frizzled motif but without the 

transmembrane domains and containing a signal sequence, which means they can be secreted (as 

reviewed in Zorn, 1997). Frzb has been shown to be capable of acting as a Wnt signalling inhibitor by 

binding to Wnt ligands and inhibiting their binding to frizzled receptor (Leyns et al., 1997; Wang et al., 

1997a). Frzb-1 has been described to be able to antagonize Wnt1 and Wnt8 but not Wnt3A, Wnt5A or 

Wnt11 (Wang et al., 1997b). Wnt signalling is an important pathway in the KV formation and 

ciliogenesis. Intracellular calcium release at 60% epiboly in the DFC (dorsal forerunner cells, the KV 

precursors) is required for regulation of β-catenin activity and therefore KV formation. Without early 

Wnt function, KV cells appear to be unable to coalesce into a vesicle (Schneider et al., 2008). Also, 

Wnt/β-catenin signalling is important for foxj1a expression and ciliogenesis (Caron et al., 2012; Zhu et 

al., 2015) and knockdown of wnt8 or wnt3 leads to reduced cilia length and less dand5 expression (Lin 

and Xu, 2009).  

Pkd2 morphants and mutants still develop a KV with cilia (Bisgrove et al., 2005; Schottenfeld et al., 

2007), which points out to the fact that these initial steps of KV formation, where Wnt signalling is 

acting, must be independent of Pkd2. Wnt5A has been shown to induce calcium signalling responses 

in developing embryos in 8-16 cell stage (Slusarski et al., 1997) and has also been shown in the mice 

model to antagonize Wnt canonical pathway by promoting β-catenin degradation via E3 ubiquitin 

ligases like Siah-1 during limb development (Topol et al., 2003). In mice, it was shown that dand5 left 

sided degradation happens through a negative feedback loop via Wnt3 (Nakamura et al., 2012). 

Therefore, we envisage that an upregulation of frzb at this developmental stage might be negatively 

regulating Wnt signalling in the process of left-right establishment in zebrafish, more likely affecting 

dand5 expression pattern and levels. 
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In situ hybridyzation experiments performed at 8-10ss in WT embryos showed expression only in a 

structure called polster (Figure 2J), a hatching gland rudiment as reported before (Thisse et al., 2001). 

No other structures were visibly stained, particularly in the tail region (Figure 2K). Even though our 

microarray identified frzb in the KV cells, again we could not detect it by in situ. Similar to what was 

found for pvalb6, frzb has a very low relative expression when compared with dand5 (relative 

expression detected by qRT-PCR was 0.08). As a control for effective probe production we also 

detected expression in cells of the hypochord in the tail region at 24hpf (Figure 2L). We know from 

unpublished work in our lab, that these cells can derive from the KV cells after the KV lumen closes. 

Calcyclin binding protein (cacybp) 

On the calcium binding cluster (Table 1), one of the genes selected was the calcyclin binding protein 

(cacybp), this gene was found to be down-regulated in pkd2 morphants. cacybp encodes a protein 

with three domains: a N-terminal and a central domain of globular character and a C-terminal domain 

that is unstructured (Bhattacharya et al., 2005). It is a multi-ligand protein, capable of binding to S100 

proteins (mainly S100A6, which is also known as Calcyclin), components of E3 ubiquitin ligases like 

Siah-1 and Skp1, cytoskeletal proteins and ERK1/2 (Topolska-Woś et al., 2016). Cacybp seems to be 

mainly present in several organ tissues in the mouse model, such as stomach, skeletal muscle, heart, 

lung, kidney and spleen, mainly present in fibroblasts and epithelial cells (Filipek et al., 2008). In 

addition, its presence in the cerebellum at postnatal day 21 points to a role in rat brain development 

(Jastrzebska et al., 2000). Most interesting to this study is the fact that it has been previously shown 

that Cacybp is normally present in the cytoplasm and has the ability to translocate to the perinuclear 

region or nucleus after an increase in the intracellular calcium (Schneider and Filipek, 2011). In 

addition, there is a link of Cacybp with β-catenin degradation through E3 ubiquitin ligases (Topolska-

Woś et al., 2016). So, we selected it because we predicted that downregulation of cacybp could mean 

a transcriptional response to less calcium entry in pkd2 morphants and thus downregulation of cacybp 

alone would show how important this gene was in the Pkd2 pathway. 
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By in situ hybridization in WT embryos, cacybp seemed to be a widely expressed gene (Figure 2M), as 

was previously shown (Thisse and Thisse, 2004). At 48hpf the expression became more restricted to 

the head (Figure 2N). 

Nicalin1 (ncl1) 

The gene transcripts for ncl1 was found to be upregulated in the absence of Pkd2. Nicalin1 is a 

transmembrane protein distantly related to the γ-secretase component Nicastrin but with a different 

function, since interfering with Ncl1 failed to produce phenotypes related to Notch signalling 

deficiencies (Haffner et al., 2004). Its major binding partner is a protein called Nomo (Nicalin-Nodal 

modulator, also expressed in our array), forming a complex that is mainly expressed in the 

endoplasmic reticulum. They are type I proteins with a large luminal and a short cytoplasmic domain 

(Haffner et al., 2007). Ncl1 and Nomo have been reported to collaborate to modulate the activity of 

Nodal (Haffner et al., 2004). These authors showed that while ectopic expression of both factors 

interferes with midline development, generating cyclopic eyes, blocking Nomo function increases the 

amount of anterior mesendodermal derivatives at the expense of the posterior ones, in a dose-

dependent manner. Nomo is also able to counteract the effect of Nodal inhibitor Lefty. All these 

experiments were interpreted as suggesting that Nomo/Ncl1 act as Nodal modulators in a dose-

dependent manner (Haffner et al., 2004). Due to its presence on the ER, this complex might be 

affecting Nodal signalling by modifying and/or trapping Nodal pathway components that route through 

the ER (Haffner et al., 2004, 2007). Ncl1 looked like an interesting candidate for further analysis 

because upregulation of this gene might reflect a cell transcriptional regulation trying to increase the 

control over the secretion of proteins such as Nodal pathway players. For instance, in pkd2 morphants 

we do see more spaw being expressed which could mean that more protein Spaw is being made since 

Spaw regulates its own expression.  

ncl1 in situ hybridization in WT embryos showed widely spread expression, very strong in the head 

and along the somites (Figure 2O). A zoom in the KV region shows some diffuse expression (Figure 

2P).   
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Figure 3. Organ situs and dand5 expression phenotypes resulting from manipulating the four 

candidate genes as in the Microarray.  

(A) Organ situs quantification by scoring heart and liver laterality in the same larvae; experimental conditions 

involved injecting at 1-cell stage (A) pkd2 KD, pvalb6 KD, frzb OE, cacybp KD, ncl1 OE and the three together 

(ncl1OE/frzb OE/cacybp KD). Statistical analysis of organ situs for different treatments was performed using a 

Fisher test with p-value corrected for multiple comparisons with Bonferroni correction: black asterisks represent 

statistical significance when comparing treatments with WT; red asterisks represent statistical significance when 

comparing treatments with pkd2 KD. (B-C) Quantification by qRT-PCR of the performed overexpressions: frzb 

(B), ncl1 (C); asterisks represent statistical significance (paired t-test, p-value < 0.05). (D, E, G, H) dand5 

expression pattern quantification by in situ hybridization of WT embryos (D), frzb OE (E), cacybp KD (G), ncl1 OE 

(H). Asterisks represent statistical significance (Fisher test with Bonferroni correction for multiple comparisons). (F 

and I) dand5 expression level in fold change quantified by qRT-PCR; asterisks represent statistical significance 

(paired t-test, p-value < 0.05). 

 

In sum, not one of the genes analysed showed a typical asymmetric expression around the KV like 

dand5 shows. Also, in terms of levels of expression, only ncl1 shows similar levels to the ones 

observed for dand5, meaning we can trust that it might be actually coding for a functional protein. 

Manipulating the four candidates as observed in the microarray induces milder organ 

situs and dand5 expression phenotypes than pkd2 knockdown alone 

Despite the fact that none of these genes has an expression similar to the known left-right genes like 

dand5 and spaw, we decided to manipulate their levels to assess their impact on left-right.  

First, we manipulated the levels according to what was observed in the microarray. Therefore, we 

individually knockdown pvalb6 and cacybp with specific morpholinos and overexpressed frzb and ncl1. 

The objective was to understand if any of these genes was strong enough to mimic what we observed 

with the pkd2 knockdown. That would indicate that one of them could be the direct downstream 

effector of the calcium oscillations observed upon Pkd2 activation by Yuan et al. (2015).  

We evaluated their impact on organ situs (Figure 3A) and on both dand5 expression pattern and levels 

(Figure 3D-I). Overexpression of frzb and ncl1 were controlled by qRT-PCR and compared with the 

overexpressions obtained with pkd2 knockdown (Figure 3B and C, respectively). While pkd2 

knockdown produced a statistical significant frzb mRNA overexpression of 12 ± 9.3 fold change (T-test 

p-value˂0.05), our overexpression had a much greater impact (310 ± 226.7 fold change, T-test p-
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value˂0.05) (Figure 3B). The same was observed in ncl1 overexpression (Figure 3C): when 

comparing the overexpression levels with those previously found for pkd2 morphants (2-fold increase, 

T-test p-value<0.05), we observed that our overexpression led to a 5 fold-change increase (Figure 3C, 

T-test p-value<0.05). Despite our stronger manipulations, we realized that none of them alone was 

similar to pkd2 knockdown in terms of organ situs. The strongest manipulation was the overexpression 

of frzb showing around 30% of defects, but it was still statistically different and weaker than pkd2 

knockdown (more than 50% defects, Figure 3A; Fisher test with Bonferroni correction for multiple 

comparisons, red asterisk p-value<0.0083). Still, all manipulations but pvalb6 knockdown had 

significant impact on organ situs (Figure 3A, Fisher test with Bonferroni correction for multiple 

comparisons, black asterisk p-value<0.005). Then we evaluated the impact on dand5 expression level 

and pattern of frzb and ncl1 overexpression and cacybp knockdown. frzb overexpression did not affect 

dand5 pattern in a significant way (Figure 3E; Fisher test with Bonferroni correction for multiple 

comparisons, p-value>0.007), but affected its expression level (Figure 3F, T-test p-value<0.05). This 

might explain that the dose of dand5 protein produced might not be enough to restrain spaw 

expression solely on the left side of the lateral plate mesoderm and therefore impact on organ situs. 

On the other hand, cacybp knockdown and ncl1 overexpression affected greatly dand5 expression 

pattern (Figure 3G and H, respectively; Fisher test with Bonferroni correction for multiple comparisons, 

p-value<0.007), but ncl1 overexpression did not affect dand5 expression levels (Figure 3I; T-test p-

value>0.05).  

At this point, as pvalb6 did not show any organ situs defects we did not used it for the next 

experiments. Next, we asked if a combined manipulation of the three genes (ncl1, frzb and cacybp) 

could render a stronger phenotype than each manipulation alone. Since manipulating pkd2 alone 

affected so many different genes, maybe they all contribute to left-right axis correct establishment in a 

cumulative way. Doing the triple manipulation (ncl1 OE; frzb OE and cacybp KD) in the same wt 

embryos did not produce a stronger phenotype than overexpressing frzb alone (Figure 3A, around 

30% of defects; Fisher test with Bonferroni correction for multiple comparisons, black asterisk shows 

different from control experiment p-value<0.005, red asterisk shows different from pkd2 knockdown p-

value<0.008).   
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Figure 4. Organ situs and dand5 expression phenotypes resulting from manipulating the four 

candidate genes in the opposite direction.  

(A) Organ situs quantification by scoring heart and liver laterality in the same larvae; experimental conditions 

involved injecting at 1-cell stage (A) pvalb6 OE, frzb KD, cacybp OE and ncl1 KD. Statistical analysis of organ 

situs for different treatments was performed using a Fisher test with p-value corrected for multiple comparisons 

with Bonferroni correction: black asterisks represent statistical significance when comparing treatments with WT; 

red asterisks represent statistical significance when comparing treatments with pkd2 KD. (B-C) Quantification by 

qRT-PCR of the performed overexpressions: pvalb6 (B) and cacybp (C); asterisks represent statistical 

significance (paired t-test, p-value < 0.05). (D, F, H) dand5 expression pattern quantification by in situ 

hybridization of pvalb6 OE (D), cacybp OE (F), ncl1 KD (H). Asterisks represent statistical significance (Fisher test 

with Bonferroni correction for multiple comparisons). (E, G, I) dand5 expression level in fold change quantified by 

qRT-PCR; asterisks represent statistical significance (paired t-test, p-value < 0.05). 

 

In sum, not one of the genes studied rendered a left-right as strong as the pkd2 knockdown alone. 

This might suggest that there could be other genes in our profiling list that might explain the strong 

phenotype of pkd2 knockdown in left-right axis establishment.  

Manipulating the four genes in the opposite direction uncovered new roles in left-right 

To complete our study, we then decided to look at the impact of each of these four genes when 

manipulated in the opposite direction of what we found to be in the microarray. Therefore, we 

overexpressed pvalb6 and cacybp and we knocked-down frzb and ncl1. Again, we confirmed the 

overexpressions by qRT-PCR. We could observe that overexpressing pvalb6 led to a 20-thousand-fold 

change increase when compared with controls (Figure 4B; T-test p-value<0.05) and overexpression of 

cacybp led to a 10-fold increase (Figure 4C; T-test p-value<0.05). Also, overexpressing cacybp led to 

mild organ situs defects (Figure 4A) and, although dand5 expression level was not affected (Figure 

4G; T-test p-value>0.05), its expression pattern was significantly affected (Figure 4F; Fisher test with 

Bonferroni correction for multiple comparisons, p-value<0.007). This is a very strange result and 

should be further investigated, since these levels of dand5 pattern defects typically have huge impact 

on organ situs. On the other hand, pvalb6 overexpression led to stronger phenotypes on organ situs 

(Figure 4A, more than 30% defects; Fisher test with Bonferroni correction, p-value<0.005) but not a 

huge impact on dand5 expression pattern (Figure 4D; Fisher test Bonferroni correction, p-

value>0.007) or levels (Figure 4E; T-test p-value>0.05). Therefore, overexpression of pvalb6 might be 
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affecting some other pathway that impacts on organ situs that is independent of dand5. Interestingly, 

knockdown of frzb showed no organ situs phenotype (Figure 4A), while as we described before, its 

overexpression led to a significant phenotype (compare with Figure 3A). Finally, ncl1 knockdown led to 

the strongest organ situs phenotypes (Figure 4A, more than 40% of LR defects were detected; Fisher 

test with Bonferroni correction, p-value<0.005). We observed a complete randomization of dand5 

expression pattern (Figure 4H; Fisher test with Bonferroni correction, p-value<0.07) and also a 

downregulation of dand5 expression levels (Figure 4I; T-test p-value<0.05). 

In sum, from four genes we uncovered some interesting new potential roles for two of them, pvalb6 

and ncl1 on left-right axis establishment. 

DISCUSSION 

The link between intracellular calcium oscillations, asymmetric dand5 and left-right axis establishment 

is far from being completely understood. Our microarray allows a quick look into this process in a very 

specific time-point. It has advanced some interesting new players like parvalbumin6, calcyclin binding 

protein, frizzled related protein and nicalin1. Although none of them presented an asymmetric 

expression pattern like dand5 (Figure 2), they all impacted left-right one way or another.  

parvalbumin6 expression was not detected by in situ hybridization and only produced left-right defects 

when was overexpressed. This made sense since all other parvalbumin genes were present in the KV 

gene profiling and therefore could compensate its absence upon knockdown. When overexpressed, it 

did not affect dand5 expression pattern or level, but affected organ situs in a significant way. This 

requires further repetition. Parvalbumin can work as a calcium modulator, affecting its peak and 

allowing a faster decay (John et al., 2001). Overexpressing pvalb6 in the KV might affect calcium 

normal homeostasis, which has been proved to have impact of left right development in mice 

(McGrath et al., 2003). However, the fact that it does not affect dand5 pattern might indicate that the 

levels of intracellular calcium were not that affected and only calcium imaging could test this suspicion. 

Another gene that was not detected by in situ hybridization was frzb and, in a similar fashion to pvalb6, 

only affected left-right establishment when overexpressed. Overexpressing frzb gave the strongest 
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phenotype, in terms of organ situs, of all the single manipulations that mimicked what we saw in the 

microarray (Figure 3A). Yet, it did not affect dand5 expression pattern, only decreased dand5 

expression level. This is interesting and in line with what has already been seen for Wnt signalling 

downregulation with wnt3 and wnt8 knockdown in zebrafish (Lin and Xu, 2009). These authors 

showed that knockdown of wnt8 and/or wnt3 led to reduced cilia length and significantly less dand5. 

Also, although the midline was structurally normal, it no longer showed normal lefty1 expression, 

meaning it is no longer signalling properly. Overexpression of frzb might be affecting the KV cilia 

length and midline in a similar fashion, which would need further experiments to confirm. Also, our 

overexpression of frzb is far stronger than what we see in a pkd2 morphant context. This might explain 

the phenotypic differences observed since our overexpression is likely to have a stronger inhibition of 

Wnt signalling. This can be further confirmed by looking at cilia length and midline’s lefty1 expression 

as in Lin and Xu (2009). 

cacybp expression in the KV region was diffuse and both types of manipulations (overexpression and 

knockdown) led to randomization of dand5 expression pattern. However, this randomization was 

accompanied by very mild organ situs defects. This situation in uncommon and should be further 

addressed in future experiments. Nevertheless, Cacybp is a very interesting candidate for further 

studies mainly because it can connect to calcium binding proteins and E3 ubiquitin ligases like Siah-1 

(present in our microarray) that degrade β-catenin (Topolska-Woś et al., 2016). β-catenin plays an 

important role in DFCs migration and KV formation (Schneider et al., 2008). In a WT situation we 

should have normal levels of Cacybp and therefore normal levels of β-catenin. Some β-catenin will be 

in the Adherens Junctions (AJ), impacting on the cell-cell adhesions and cell shape, or in the nuclei 

acting as a transcription factor downstream of canonical Wnt signalling (Figure 5A and B). Also, 

accumulation of β-catenin might be helping stabilize dand5 mRNA, since this role of β-catenin has 

already been described for other RNAs (Briata et al., 2003). These authors discovered that pitx2 

mRNA becomes more stable upon Wnt/β-catenin signalling activation by targeting of the AU-rich 

elements present in its 3’UTR by β-catenin. Indeed, further analysis of dand5 mRNA 3’UTR revealed 

the presence of some AU-rich elements. So, we could speculate that the raise of intracellular calcium 

on the left side might induce the degradation of dand5 mRNA (Figure 5A), while on the right side the 
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absence of calcium and maybe some Wnt signalling might be increasing β-catenin levels and 

Figure 5. Model integrating the four new genes in the KV cells in WT and pkd2 KD situations.  

(A-B) WT situation: (A) represents a typical cell on the left side of the KV while (B) represents a typical cell on the 

right side of the KV. Flow induces a calcium rise on the left side that induces the degradation of dand5 mRNA, 

possible because β-catenin is being targeted for degradation and therefore cannot stabilize dand5 mRNA. On the 

right side, absence of flow and Wnt signalling induces an accumulation of β-catenin on the cytoplasm and 

therefore an accumulation of dand5 mRNA, explaining the observed asymmetry by in situ hybridization (D). (C) 

KV cell on the left side of a pkd2 KD embryo. Absence of cacybp can lead to an accumulation of β-catenin in the 

cytoplasm and a stabilization of dand5 mRNA on the left side, resulting in the loss of dand5 asymmetry as 

observed in pkd2 morphant embryos (E).  
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therefore stabilizing the mRNA there, explaining the asymmetry (Figure 5B and D). To better 

understand the differences occurring between both sides of the dand5 expression pattern, we could try 

to obtain separate KV cells from the left and from the right side and then perform gene expression 

studies. Then we would see which pathways are activated on one side vs the other. When we reduce 

Pkd2, cacybp becomes downregulated, which could indicate that there might be an accumulation of β-

catenin in the cytoplasm (Figure 5C and E). This could have an impact on the adherens junctions and 

therefore on the cytoskeleton, changing the cell shape, or could activate gene expression. Indeed, we 

have evidence for both processes: cell shape changes (Roxo-Rosa et al., 2015; Chapter 2 of this 

Thesis) and microarray data for some upregulated genes that are known downstream targets of β-

catenin, like Follistatin (significant increase from 4.4 in WT sample to 5.1 in pkd2 morphant sample) 

and BMP2b (significant increase from 3.6 in WT sample to 4.3 in pkd2 morphant sample). To further 

confirm if indeed increasing β-catenin leads to stabilization of dand5 mRNA, we could manipulate β-

catenin in time and space and assess the impact on dand5 expression pattern. Interestingly, we might 

see the overexpression of frzb in the pkd2 morphant context as an attempt to bring down β-catenin, by 

inhibiting Wnt signalling and sending it to degradation. 

Finally, nicalin1 was the last gene chosen for further studies. There was not a lot known about this 

gene, besides the fact that it codes for a transmembrane protein that works in a complex with at least 

two other proteins (Nomo and TMEM147) (Dettmer et al., 2010; Haffner et al., 2004). This complex is 

present on the endoplasmic reticulum and affects Lefty trafficking to the extracellular space, impacting 

on Nodal signalling and consequently dorsal-ventral axis establishment (Haffner et al., 2004, 2007). It 

has never been associated with left-right and it is known that ncl1 overexpression alone is not effective 

in producing Nodal signalling phenotypes during gastrulation, since it also needs the overexpression of 

its partner nomo. Still, since only ncl1 but not nomo, was differently expressed in our microarray, we 

decided to only manipulate ncl1 levels. Like cacybp, it has a general ubiquitous expression pattern and 

is strongly expressed. Overexpression of this gene led to mild defects in both dand5 expression and 

organ situs. It might be interesting to do a co-overexpression with nomo to further assess their impact 

on left-right. On the other hand, knocking down ncl1 revealed a strong phenotype in all the parameters 

assessed: strong impact on organ situs, randomization of dand5 and less expression level of dand5. 
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These results suggest that lack of Ncl1 somehow affects dand5 expression level, probably in an 

indirect way. Due to what is already known for the function of this protein, we suggest it might even 

affect the trafficking of both Lefty and Dand5 from the KV cells to the extracellular environment.  

Although our approach to interpret the microarray data revealed some new interesting players, as far 

as we could detect, it did not reveal any new gene that might work at the same level as dand5. So, at 

this point, we cannot confidently say that dand5 might be the only player with a direct effect on left-

right. One thing we realized with this work was that, when looking at the microarray data, it will be 

important in the future to look more carefully at the expression levels per se and compare those with 

known control genes. One important control, dand5, is highly expressed but not differently expressed 

between WT and pkd2 morphants. The pattern is affected, but not its expression level. Expression 

levels might work as an additional factor when choosing future candidates. Also, since zebrafish 

genome is still not completely annotated, we are still missing some unnamed genes with number 

codes that could in the future reveal to be interesting candidates as well. This work showed that 

knocking down pkd2 led to a variety of gene expression changes, revealing a higher level of 

complexity downstream of this pathway. We realized that even by manipulating three genes at the 

same time and respecting the same trend as found in the microarray, we could not reproduce the 

phenotype of pkd2 knockdown. This confirms that much more remains to be understood downstream 

of this protein.  
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Summary  

Dand5 is a well-established Nodal pathway inhibitor in left-right (LR) axis establishment. It is also 

common between mice, zebrafish, medaka and xenopus (Bell et al., 2003; Belo et al., 2000; 

Hashimoto et al., 2004; Hojo et al., 2007; Pearce et al., 1999). To the present day, it is the only Nodal 

antagonist present in the Left-Right Organizer (LRO) cells. Here we describe another nodal inhibitor 

with a broad expression pattern that had not yet been associated with LR. A LRO-specific microarray 

performed in our lab identified Nicalin1, a nicastrin-like protein without γ-secretase activity. Nicalin1 

was described to be present in the endoplasmic reticulum in a complex with two other partners 

(Dettmer et al., 2010; Haffner et al., 2004) and to play a role in mesendoderm patterning in the 

zebrafish model (Haffner et al., 2004).  

In this study we have showed that while overexpression of nicalin1 (ncl1) leads to mild defects in LR 

patterning, knocking-down its function causes increasing defects in LR in a dose-dependent fashion. 

We were able to rescue some of these defects by injecting ncl1 mRNA. ncl1 morphants presented 

weaker LRO fluid-flow speed and a clear randomization of the main nodal pathway components like 

dand5 and spaw expression patterns. Interestingly, knockdown embryos presented higher percentage 

of heterotaxy than situs solitus or situs inversus. Experiments where we knocked-down both dand5 

and ncl1 led to more defects than just affecting each one separately, indicating a potential new 

epistatic effect. ncl1 overexpression cannot rescue dand5-/- mutant organ situs and dand5 

overexpression cannot rescue ncl1 knockdown, pointing to two separate pathways. All data combined 

pointed to a potential new antagonist of the Nodal signalling pathway in zebrafish LR. 
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INTRODUCTION 

Nodal signalling was first associated with left-right axis establishment in the chick embryo, with the 

finding that cNR-1 (chick Nodal Related gene 1) was expressed on the anterior left side of the 

Hensen’s node and was stronger on the left lateral plate mesoderm (LPM) (Levin et al., 1995). One 

year later the same was described for mice, with the observation that nodal mRNA started symmetric 

on both sides of the node to then becoming asymmetric towards the left of the node. At the same time, 

expression on the left LPM was reported to start and expand (Lowe et al., 1996). It has been shown 

that the side of nodal expression correlates well with heart laterality and that mice lacking nodal 

expression around the node led to its absent expression in the LPM and consequently to multiple 

organ situs defects (Brennan et al., 2002; Collignon et al., 1996). Concomitantly with asymmetric nodal 

expression around the node it was also possible to observe asymmetric activation of Nodal signalling 

itself by using an antibody against phosphorylated Smad2/3, that showed a stronger signal on the left 

side of the node and left LPM (Kawasumi et al., 2011). Also in zebrafish, southpaw (spaw, nodal 

homolog) was observed to be expressed bilaterally around the Kupffer’s vesicle (KV, node homolog in 

zebrafish) and in the left LPM (Long et al., 2003). Knocking-down spaw did not abolish its KV domains 

of expression but caused LPM absent spaw expression, lack of cyclops, lefty1/2 and pitx2 expression, 

together with disruption of heart and gut situs (Long et al., 2003). These other components of the 

nodal pathway were described to participate in LR establishment, like the two inhibitors lefty1, which 

shows an mRNA expression in the left diencephalon, and lefty2 that presents an mRNA expression in 

the anterior left LPM, in the cardiac field (Bisgrove et al., 1999). Antibodies for these inhibitors were 

never described to work in zebrafish. Since Nodal can indirectly activate its own transcription and the 

transcription of its own inhibitors lefty1/2 through activation of the transcription factor FAST2 (Saijoh et 

al., 1999, 2000), it was found that there are physical and molecular barriers present to help define 

nodal expression domains. For instance, there is a midline molecular barrier provided by lefty1 mRNA 

expression, that prevents the traveling of Nodal molecules from left to right LPM (Bisgrove et al., 

1999). Also, there are two additional barriers described by Lenhart et al. (2011): a posterior barrier of 

BMP signalling independent of Lefty1 that impedes nodal propagation through the posterior LPM; and 
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an anterior barrier mediated by Lefty2, seen by mRNA delimited expression, in the left cardiac field 

that avoids transfer of nodal towards the right LPM and downward propagation (Lenhart et al., 2011).  

On the actual left-right organizer (LRO), it is possible to find a common Nodal antagonist named 

Dand5, that is asymmetrically expressed towards the right side, known previously as cerl2 in mice 

(Marques et al., 2004), coco in Xenopus (Schweickert et al., 2010) and charon/dand5 in zebrafish and 

medaka (Hashimoto et al., 2004). In mice, cerl2 KO mice show randomization of organ situs which can 

be partially rescued with the removal of one nodal allele (Marques et al., 2004). The asymmetric 

expression of cerl2 mRNA seems to be a downstream target of fluid flow typically observed in the LRO 

(Nakamura et al., 2006) and this was further confirmed in xenopus model (Schweickert et al., 2010). 

Elegant work has showed that cerl2 mRNA decay occurs in the apical region of LRO cells, initiated by 

the leftward fluid flow and further established by a Wnt3-mediated degradation at the cerl2 3’UTR 

(Nakamura et al., 2012). Interestingly, Cerl2 protein localization seems not to correlate with its mRNA 

expression pattern (Inácio et al., 2013). While cerl2 mRNA first starts symmetric and then gradually 

becomes asymmetric towards the right until it completely disappears at 5-6 somite stage, Cerl2 protein 

first localizes and prevents Nodal activation on the right side (Inácio et al., 2013). However, later, Cerl2 

protein was observed to gradually become bilateral and then to become restricted to the left-side. This 

protein shifting seemed to be a flow dependent process, because this localization was not observed in 

iv/iv mutant mice. This translocation of the Cerl2 protein was interpreted as having a role in stopping 

Nodal activity on the left side of the LRO (Inácio et al., 2013).  

In zebrafish, dand5 knockdown leads to bilateral expression of spaw, lefty1/2 and pitx2, as well as 

organ situs defects (Hashimoto et al., 2004), but nothing is known about the protein dynamics. So far, 

Dand5 is the only known Nodal antagonist present in the LRO cells. However, a recent KV-specific 

microarray performed by our lab revealed the presence of another Nodal inhibitor expressed at the 

same levels as dand5 mRNA. Nicalin1 is a 60kDa protein, part of a previously unknown membrane 

protein complex that localizes to the endoplasmic reticulum with another two transmembrane proteins: 

Nomo (Nodal modulator, previously known as pM5, with 130kDa) and TMEM147 (Dettmer et al., 2010; 

Haffner et al., 2004, 2007). TMEM147 is highly conserved with a putative topology similar to APH-1 

161 



CHAPTER 5 

(another component of the γ-secretase complex)(Dettmer et al., 2010). All the three known 

components of this complex appear expressed in our microarray. Previous studies by Haffner et al. 

(2004) reported that ectopic expression of both Nicalin1 and Nomo in zebrafish can cause cyclopia 

and mesendoderm patterning defects that are mediated by Nodal signalling pathway. Downregulation 

of Nomo leads to increase of anterior axial mesendoderm and development of an enlarged hatching 

gland. Inhibition of Nodal signalling by overexpression of lefty1 was rescued when Nomo levels were 

reduced. This suggested that Ncl1/Nomo have an antagonistic role on Nodal signalling (Haffner et al., 

2004). Work with cell culture showed that Nicalin1 and Nomo become unstable in the absence of the 

respective binding partner, with Nomo being produced in excess and Ncl1 acting as the limiting 

reagent (Haffner et al., 2007). To this date, there is no report on these proteins having a role on left-

right axis establishment. Therefore, in this work, we use the zebrafish model to explore the role of 

Nicalin1 in LR and we further compare it with the known Nodal antagonist, Dand5. Since ncl1 has a 

very broad expression pattern (Haffner et al., 2004), it was important to first understand which LR 

players could be interacting with Ncl1. For this, we first assessed the expression patterns of known LR 

elements like lefty1, spaw and dand5 in the vicinity of the zebrafish LRO. Then we manipulated ncl1 

and dand5 and compared the results in terms of flow pattern and the expression pattern/level of 

dand5, pitx2 and spaw. We proceeded to knockdown ncl1 with a morpholino and compared its LR 

readouts with those for the dand5-/- mutant. In the end, we tried to rescue the phenotypes observed in 

dand5-/- mutants and ncl1 KD embryos with overexpression of ncl1/nomo and dand5, respectively. 

Finally, we showed preliminary data on the ncl1-/- mutant generated by CRISPR-Cas9 and hypothesize 

on what role can this new player have in LR axis establishment.  

EXPERIMENTAL PROCEDURES 

Fish stocks and genetics 

dand5+/- mutant line was kindly given by Alex Schier. Wild-type (AB) and dand5-/- mutant lines were 

maintained and used as described elsewhere (Westerfield, 2000). Embryos were raised at 28ºC, 

depending on the experiment, in E3 embryo media and staged accordingly (Kimmel et al., 1995). 
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Procedures with zebrafish were approved by the Portuguese DGAV (Direcção Geral de Alimentação e 

Veterinária). 

Cloning full length ncl1, dand5 and nomo 

Primers were designed to amplify full coding sequence of ncl1, nomo and dand5 into a pCS2+ 

plasmid. Primer sequences: dand5 forward 5’-ATATATGGATCCCATGACTTTTCAGGTCGGC-3’ and 

reverse 5’- CCCCCCGAATTCTTATAAATTAAACATATCTGTGTTCTG-3’; nomo forward 5’- 

ATATATGGATCCATGGGTGGAATTAAAGAGCTAGC-3’ and reverse 5’- 

ATATATCTCGAGTCATGTACGTCTCGTCTTCG-3’; ncl1 forward 5’-

GCTGCTATCGATATGTTCGAGGAGGCTGGT -3’ and reverse 5’-

GCGCAGAATTCTCAGTGCTGCTTGACCCG-3’. PCRs were performed using iProofTM High-Fidelity DNA 

Polymerase (Bio Rad). Double digestions were performed in the pCS2+ plasmid and amplified genes, 

according to primer design and T4 ligation (NEB) was performed overnight at 16ºC. DH5α competent 

E. coli were transformed with ligation product and plated in LB-Agar (Roth) with 100mg/mL Ampicilin 

resistance. Colonies were screened by PCR using pCS2+ specific primers and positive colonies were 

sent to sequence to assess the quality of PCR amplification. Colonies with correct sequences for all 4 

genes were selected and grown on secondary cultures. High quality and very concentrated plasmids 

were obtained with a ZymoPURE™ Plasmid MidiPrep kit.  

In vitro RNA synthesis for overexpression, in situ hybridization and morpholino 

For mRNA for overexpression production, plasmids were linearized downstream of the polyA tail and 

2µg of linearized plasmid were processed with mMESSAGE mMACHINETM Sp6 Transcription Kit 

(Ambion). For in situ hybridization probes, plasmids were linearized and 2µg of linearized plasmid 

were transcribed in vitro using Promega T7 RNA polymerase. Both RNAs were further processed with 

Zymo RNA Clean and Concentrated and quantified using nanodrop. The mRNA was aliquoted and 

stored at -80ºC while the in situ hybridization probe was diluted in Hybridization Mix (30-50ng in 

200µL). Morpholino targeting the 5’UTR excluding the initial ATG for ncl1 was ordered online from 

GeneTools:  ncl1 5’- CGGGAGATTCCCACCGACAGAAACA-3’.  
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Overexpression and Knockdown experiments  

WT (AB) and dand5-/- mutant embryos were injected at 1 cell-stage or 500 cell-stage with several 

doses of ncl1 morpholino and mRNA of ncl1, nomo and dand5. Toxicity was assessed by discarding 

all doses that produced high mortality rates. The doses chosen for the final experiments were: 3ng and 

4,5ng of ncl1 morpholino (KD), 500pg of ncl1 mRNA (OE), 500pg of nomo mRNA (OE), 100pg dand5 

mRNA (OE). Embryos were allowed to develop to the desire stages to study the expression pattern of 

several genes and organ situs. 

Fluid flow speed and pattern quantification  

We used the methods described in previous work (Sampaio et al., 2014) for mounting and filming 

embryos and quantifying fluid flow. We tracked native particles and calculated flow velocity with an R 

script in WT and treated embryos at 8-10 somite stage (Tavares et al., 2017). Embryos were 

developed at 25ºC until the desired stage and then filmed at room temperature. We used 9 WT control 

embryos, 9 embryos injected with ncl1 full length mRNA, 4 ncl1 MO injected embryos and 8 embryos 

mutants for dand5-/-. 

In situ hybridization and immunostaining 

Whole-mount immunostaining-in situ hybridization was performed by combining the two protocols on 

the second day of the in situ hybridization, as described in Tavares et al., 2017. The new steps were 

added to the in situ hybridization protocol as follows: on the second day, antibody anti-GFP 1:200 was 

added with antibody Anti-Digoxigenin AP Fab Fragments (Roche) 1:5000 in blocking solution and 

incubated at 4ºC in a horizontal rotator; on the third day, the secondary antibody anti-rabbit Alexa 

Fluor 488 (Invitrogen) 1:500 was added to blocking solution and incubated overnight at 4ºC in a 

horizontal rotator; on the fourth day, embryos were developed with Fast-Red tablets substrate (Roche) 

in 0.1mM Tris-HCl pH 8 at 37ºC until red fluorescence was observed in a fluorescent stereoscope. 

They were then flat-mounted for confocal microscopy. The probes used were for dand5, spaw and 

lefty1 at 8-10 somite stage. Whole-mount in situ hybridizations for dand5 at 8-10 somite stage, pitx2 

and spaw at 14-16 somite stage, and foxa3 at 53 hours post fertilization (hpf) as described in Thisse 
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Lab - In situ Hybridization Protocol 2010 update ZFIN. For dand5 in situ hybridization used 273 WT 

controls, 56 ncl1 MO, 57 ncl1 OE and 80 dand5-/- mutant embryos; for pitx2 used 82 WT controls, 92 

ncl1 MO, 47 ncl1 OE and 63 dand5-/- mutant embryos; for spaw used 53 WT controls, 69 ncl1 MO, 50 

ncl1 OE and 66 dand5-/- mutant embryos. The results were analysed by Fisher’s exact test with 

Bonferroni correction for multiple comparisons. 

Heart and gut laterality  

At 30 hpf we evaluated heart jogging using a stereoscopic zoom microscope (SMZ745, Nikon 

Corporation) to observe the embryos from the ventral side. These embryos were then allowed to 

develop in separated petri dishes and at 53 hpf, embryos were fixed and processed for foxa3 in situ 

hybridizations to assess gut laterality. We could then pair the heart situs with gut situs for each 

treatment and attribute an embryo situs as situs solitus, situs inversus or heterotaxy. The results were 

analysed by Fisher’s exact test with Bonferroni correction for multiple comparisons. 

Quantitative PCR  

Embryos from different treatments were pooled in 3 groups of 20-50 embryos in order to have three 

different biological replicates. Protocol was implemented as described previously (Tavares et al., 

2017). Primer sequences used were as follows: dand5 forward 5′-CCGCAATCCTGACCCATAGCAA-

3′ and reverse 5′-CTCCTCCGTTATGCGCTGTGTA-3′; lefty1 forward 5’- 

CCAGACGACAACACTCTGGGAAAA-3’ and reverse 5’- ACTGTTCCCTGCAGCACATTTCA-3’; spaw 

forward 5’-CTTTGCCGGCGGGTTGATATGT-3’ and reverse 5’-GCTCCGGTTGGTAGAGCTTCAA-3’; 

eef1al1 forward 5’-CCTTCAAGTACGCCTGGGTGTT-3’ and reverse 5’-

CACAGCACAGTCAGCCTGAGAA-3’; rpl13a forward 5’-TGACAAGAGAAAGCGCATGGTT-3’ and 

reverse 5’-GCCTGGTACTTCCAGCCAACTT-3’. 

ncl1 CRISPR-Cas9 approach 

Two short guide RNAs targeting the beginning of the ncl1 coding sequence were found using the 

website CRISPRscan (www.crisprscan.org) with the sequences 5’-GGTGTCGTTCCCGCTCAGCC-3’ 

and 5’-GGTGTTGGAGAACATGCTGA-3’. These were ordered as DNA sequences with BsaI 
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restriction sites and were cloned into the pDR274 vector. These were used to transform bacteria and 

sent to sequencing for further confirmation. These vectors were linearized and transcribed in vitro into 

RNA. Then, 50ng/µL of each short guide was co-injected with 100pg/µL of Cas9 mRNA into 1-cell 

stage embryos and let develop until 24 hours post fertilization. At 24hpf, 3 batches of 8 embryos each 

were used to extract DNA and perform PCR to amplify a 200bp region flanking the target sequence. 

These were run in a 15% PAGE gel for 3h at 150V. Batches that showed a mixture of indel mutations 

and WT alleles, forming heteroduplexes and homoduplexes of DNA, indicated the success of the 

injection and sibling embryos were let develop until adulthood. This generation was genotyped by 

outcross each fish with a WT fish and repeating the PAGE protocol in batches of 8 embryos until 

heteroduplexes were found in the progeny. Sibling embryos of these batches were allowed to grow 

until adulthood and were genotyped by fin clip and repeating the PAGE protocol. Heterozygotes were 

crossed and the progeny was genotyped by sequencing and evaluated for gross morphology defects 

and heart situs (n=82 embryos). 

RESULTS  

3D gene expression patterns for left-right genes around the KV 

In the mouse model, the periphery cells of the node both express nodal and dand5, with nodal 

becoming asymmetric towards the left and dand5 asymmetric towards the right (Lowe et al., 1996; 

Marques et al., 2004). In the zebrafish model, the published expression patterns for these two genes 

did not seem to overlap in the LRO cells (Hashimoto et al., 2004; Long et al., 2003). To confirm, we 

started by looking at the three-dimensional expression pattern of three players of Nodal pathway in 

left-right at 8 somite-stage. We first looked at lefty1, an inhibitor expressed in the midline (Figure 1A). 

By using Fast Red in situ hybridization in a tg(sox17:GFP) line and confocal microscopy, we could 

visualize that lefty1 domain of expression is indeed dorsal to the KV (Figure 1B, B’ and B’’ and Figure 

1C and C’). Despite the fact that a microarray produced in our lab has identified lefty1 expressed in 

KV, we could not detect any expression there by in situ hybridization, maybe due to a very low level of 

expression (2,5 compared with 8,4 of dand5). This could be explained by very low levels of expression 

that are undetectable by in situ hybridization. We think we can exclude contamination of midline cells 
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because we used FACS technique to isolate KV cells labelled by a foxj1a:GFP reporter line that at that 

time is specific for the KV cells (Caron et al., 2012). 

The second gene that we investigated by the same techniques was spaw (Figure 1D). This gene was 

also expressed in KV cells by the same KV-specific microarray, at the same level as lefty1. 

Fluorescent in situ hybridization showed that spaw expression pattern was dorsal to the KV cells 

labelled by sox17:GFP (Figure 1E, E’ and E’’). There was no KV cell that was positive for spaw 

expression. We confirmed this in different Anterior-Posterior slices and also checked in the Dorsal-

Ventral Axis (Figure 1E’’, E1 and E2). As for differences between left and right sides, more embryos 

should be analysed to have a meaningful quantification. In sum, 3D reconstruction showed broad 

expression domains on both left and right sides, in the neighbouring cells dorsal to the KV (Figure 1F 

and F´).  

The third gene studied was dand5 (Figure 1G). This gene was expressed in KV cells, stronger and 

more broadly in the right side by being expressed in more cell layers surrounding the KV (Figure 1H 

and I). In a more dorsal level (KV upper level) we could see more cell layers on the right side 

expressing dand5 than on the left side (Figure J, J’ and J’’). By looking at a KV mid-plane level, we 

could clearly observe that all KV cells expressed this gene (Figure 1K, K’ and K’’). Indeed, dand5 level 

of expression in our KV-specific microarray was much higher than the expression levels found for 

lefty1 and spaw.  

Looking at the expression of all these genes together (Figure 1L and L’), we can say that there are 

three expression domains: 1) at midline domain anterior to the KV and not overlapping with KV cells, 

for lefty1; 2) at dorsal domain straight above the KV and not overlapping with KV cells for spaw; and 3) 

at the KV cells and adjacent cell layers on the right side, for dand5. In conclusion, none of these 

domains are visibly overlapping with each other in terms of mRNA expression. These results further 

confirm the work of Hashimoto et al. (2004) that had already shown by 2D in situs that indeed these 

domains do not seem to overlap. Since ncl1 and nomo expression domains seem to overlap in all 

these three domains, the resulting protein complex might be interacting with any of these Nodal 

players. Their level of expression in the KV-specific microarray is very similar to that of dand5 (ncl1  
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 Figure 1 - 3D Expression patterns of lefty1, spaw and dand5 around the KV in 8-10ss embryos 

168 



CHAPTER 5 
 

In situ hybridization using (A, D and G) NBT/BCIP staining of lefty1, spaw and dand5, respectively; Scale bars in 

black correspond to 50µm. In situ hybridization using (B-B’’, E-E’’, H, J-J’’ and K-K’’) Fast-red staining with 

immunostaining against GFP in sox17:GFP embryos for lefty1 (B-B’’), spaw (E-E’’, E1 and E2 show different Z 

planes) and dand5 (H shows maximum intensity projection, J-J’’ shows KV dorsal level; K-K’’ shows KV mid-

level). Scale bars in white correspond to 20 µm. We used 5 embryos per gene and reconstructed 2 embryos for 

this 3D analysis (C-C’, F-F’, I) 3D reconstructions of lefty1, spaw and dand5 in purple and the KV cells in green. 

DV – Dorsal view, LV – Lateral View, Scale bar corresponds to 20µm. (L-L’) Schematics representing the dorsal 

view (L) and Lateral view (L’) of the zebrafish embryo with the expression domains of the 3 genes in 3D. PSM – 

Pré-somitic Mesoderm, LPM – Lateral Plate Mesoderm.  

 

expression level 6,1 and dand5 expression level 8.4), so we trust and assume that these gene 

expression levels are going to be meaningful in terms of protein function. 

Manipulating ncl1 and dand5 impacts differently on different players of left-right axis 

establishment 

We first assessed the impact of ncl1 manipulations and dand5 absence on fluid flow speed pattern.  

Overexpression of ncl1 or observation of dand5-/- mutants showed no defects on flow speed pattern, 

with stronger flows on the anterior part of the KV (Figure 2A, B and D). Also, flow speed was not 

different from WT situations (Figure A’, B’ and D’). This suggests an overall normal KV architecture, 

with the typical anterior dorsal cluster of cilia, and normal cilia in terms of beat frequency and length. In 

contrast, knockdown of ncl1 led to a slower fluid flow, with no differences between the anterior and the 

posterior halves of the KV (Figure 2C and C’). This slower fluid flow could be due to inefficient ciliary 

beating, either due to cilia shorter length or slower cilia beat frequency. KV architecture could also be 

affected and therefore impact on the flow pattern. Further experiments should be done to understand 

the underlying causes for slower and homogeneous flow. At this point, further analysis of left-right 

markers for this treatment should have in consideration the fact that flow is not normal and thus could 

account for many of the defects observed.  

Since flow impacts directly on dand5 expression pattern (Nakamura et al., 2012; Sampaio et al., 2014; 

Schweickert et al., 2010), we proceeded to analyse the impact of these treatments in dand5 

expression patterns and expression levels. Manipulating nicalin1 and dand5 led to different 

phenotypes in dand5 expression pattern. While overexpressing ncl1 led to 50% of misdirection of  
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 Figure 2 - Flow speed patterns and dand5, pitx2 and spaw expression patterns when affecting ncl1 and 

dand5  

(A-A’, B-B’, C-C’ and D-D’) Fluid flow heatmap and quantification of WT control embryos (n=9), ncl1 OE (n=9), 

ncl1 MO (n=4) and dand5-/- mutant embryos (n=8). Asterisks represent statistical significance (Wilcoxon Test, p-

value<0.05). L left, R right, A anterior and P posterior. (E-E’, J-J’, O-O’) Normal and altered expression patterns of 

dand5, pitx2 and spaw, respectively. Scale bars in black correspond to 50µm. (F-I) Quantification of dand5 

expression pattern for WT (n=273), ncl1 MO (n=56), ncl1 OE (n=57) and dand5-/- (n=80) at 8-10 somite stage. (K-

N) Quantification of pitx2 expression pattern for WT (n=82), ncl1 MO (n=92), ncl1 OE (n=47) and dand5-/- (n=63) 

at 20 somite stage. (P-S) Quantification of spaw expression pattern for WT (n=53), ncl1 MO (n=69), ncl1 OE 

(n=50) and dand5-/- (n=66) at 20 somite stage. Asterisks represent statistical significance (Fisher test with 

Bonferroni correction for multiple comparisons, p-value<0.0125). Magenta in the graphs represent absent 

expression (T) qRT-PCR quantification for dand5, spaw, lefty1 and ncl1 in WT, ncl1 OE, ncl1 MO and dand5-/-. 

Asterisks represent statistical significance (t-test, p-value<0.05).  

 

dand5 asymmetry (either symmetric or asymmetric on the left; Figure 2G), knocking-down ncl1 led to a 

randomization of pattern (ncl1 MO not different from random; Figure 2H, Fisher test with Bonferroni 

correction, p-value>0.01).  Also, ncl1 MO affected the dand5 expression level, as observed by qRT-

PCR (Figure 2T, t-test p-value<0.05). Still, more interesting was that dand5-/- mutants had mainly 

dand5 asymmetric on the left or symmetric, with embryos with asymmetric on the right only appearing 

in 5% of the cases. Also, we saw a strong downregulation of dand5 levels by qRT-PCR (Figure 2T; t-

test p-value<0.05). Interestingly, we did not observe any significant changes in the number of absent 

expression cases in all our manipulations. 

We then investigated genes in the lateral plate mesoderm, the tissue that will later give rise to the 

heart and that will influence the endoderm derived organs such as the liver and pancreas through 

signalling pathways (Chung et al., 2008; Ober et al., 2006) and extracellular matrix deposition (Yin et 

al., 2010). pitx2 and spaw are both typically expressed in the left lateral plate mesoderm in WT 

embryos. For pitx2, we found that knocking down ncl1 led to 50% of laterality defects, most of the 

embryos presenting bilateral pitx2 expression (ncl1 MO different from control; Figure 2M, Fisher test 

with Bonferroni correction, p-value<0.0125). On the other hand, dand5-/- mutants had a great majority 

(over 70%) of bilateral pitx2 expression (dand5-/- different from control; Figure 2N, Fisher test with 

Bonferroni correction, p-value<0.0125).  
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As for spaw, all three manipulations caused defects in its expression pattern. Overexpression of ncl1 

still had 50% of normal cases (Figure 2Q, Fisher test with Bonferroni correction, p-value<0.0125), 

while knocking down ncl1 led a more severe phenotype, with more bilateral and more absent cases 

(Figure 2R, Fisher test with Bonferroni correction, p-value<0.0125). Interestingly, spaw was found 

downregulated by qRT-PCR when ncl1 was knockdown (Figure 2T; t-test p-value<0.05), which might 

be either a direct effect of Ncl1 manipulation or downstream of the flow abnormalities. As Spaw 

indirectly influences its own transcription it may be interesting to explore if Spaw protein and activity is 

being affected by ncl1 knockdown using a phospho-Smad antibody. Conversely, dand5-/- mutants 

presented a majority of bilateral spaw expression in the LPM (Figure 2S, Fisher test with Bonferroni 

correction, p-value<0.0125), as previously reported for the dand5 knockdown (Hashimoto et al. 2004) 

and by qRT-PCR we showed a strong upregulation of spaw mRNA (Figure 2T; t-test p-value<0.05). In 

the same line as before, this data supports that more spaw is being transcribed in the absence of the 

Spaw inhibitor Dand5. 

Finally, we checked by qRT-PCR the impact of these 3 treatments in lefty1 expression and found no 

significant differences (Figure 2T; t-test p-value>0.05). We also checked if ncl1 was differently 

expressed in dand5-/- mutants and found no significant differences either (Figure 2T; t-test p-

value>0.05). In sum, manipulating ncl1 had no impact on lefty1 expression level and having no Dand5 

protein had no impact on lefty1 expression levels. It will be interesting in the future work to see if the 

lefty1 expression patterns are affected despite the levels were not. 

Nicalin1 knockdown causes organ situs defects in a dose-dependent manner and can 

be rescued by its overexpression 

To test if the knockdown of ncl1 has impact on organ situs, embryos were injected at one cell stage 

with increasing doses of morpholino against the 5’UTR of ncl1 mRNA. Increasing doses of morpholino 

led to increasing organ situs defects, with a preponderance of heterotaxy (Figure 3A), without 

increasing mortality rate above 40%. Situs inversus did not increase substantially with decreasing 

amounts of ncl1. An important control for morpholino validation was a rescue experiment. We tried to 

rescue 0.26mM of ncl1 morpholino with 1000pg of ncl1 mRNA, but it proved to be too damaging, with  
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Figure 3 – ncl1 MO affects organ situs in a dose-dependent manner and can be partially rescued by ncl1 

mRNA 

(A) Organ situs for different doses of ncl1 MO; WT control embryos (n=107), 0,13mM ncl1 MO (1,5ng) (n=69), 

0,17mM ncl1 MO (2ng) (n=72), 0,26mM ncl1 MO (3ng) (n=82), 0,39mM ncl1 MO (4,5ng) (n=88), 0,52mM ncl1 MO 

(6ng) (n=44). Asterisks represent statistical significance (Fisher test with Bonferroni correction for multiple 

comparisons, p-value<0.008). (B-D) Rescue experiments. (B) Rescue of 0,26mM ncl1 MO (3ng) with 1000pg ncl1 

OE (n=50), ncl1 MO (n=88), ncl1 OE (n=72) and WT control embryos (n=48). (C) Rescue of 0,39mM ncl1 MO 

(4.5ng) with 500pg ncl1 OE (n=162), ncl1 MO (n=128), ncl1 OE (n=60) and WT control embryos (n=48). (D) 

Rescue of 0,39mM ncl1 MO (4.5ng) with 100pg ncl1 OE (n=79), ncl1 MO (n=82), ncl1 OE (n=83) and WT control 

embryos (n=51). Black asterisks represent statistical significance of WT vs the other treatments (Fisher test with 

Bonferroni correction for multiple comparisons, p-value<0.0125). Red asterisks represent statistical significance of 

rescue vs other treatments (Fisher test with Bonferroni correction for multiple comparisons, p-value<0.0167).  

 

more organ situs defects than any of the conditions alone (Figure 3B). We thus decided to increase 

the concentration of morpholino to 0.39mM and decrease the amount of ncl1 mRNA to half (500pg). 

This condition showed a mild rescue, with the cases of situs solitus increasing from 48% in the 

knockdown to 62% in the double injection (Figure 3C). We also tried to rescue 0.39mM of ncl1 MO 

with 100pg of ncl1 mRNA, but it proved to be insufficient to rescue (Figure 3D). This further confirmed 

that ncl1 seems to work in a dose-dependent manner, typical of a nodal signalling player (Chen and 

Schier, 2001). With this rescue, we validated this morpholino and were able to proceed to the next set 

of experiments. 

Overexpressing both ncl1/nomo and dand5 in 1 cell-stage leads to embryo 

ventralization  

Nicalin1 is described to work in a protein complex in the endoplasmic reticulum (ER) membrane with 

at least two other proteins: Nomo and TMEM174 (Figure 4A). TMEM147 has been identified as a 

potent negative regulator of M3R muscarinic acetylcholine receptor by interacting with it on the ER and 

impairing its trafficking towards the membrane (Rosemond et al., 2011). Ncl1 was also described as 

inhibiting Lefty secretion through its interaction with Nomo (Haffner et al., 2004, 2007). Although Ncl1 

has been presented as the limiting reagent, only when both ncl1 and nomo were overexpressed did 

the defects of mesendoderm patterning arise (Haffner et al., 2004). So, we further confirmed this by 

cloning and overexpressing different doses of nomo mRNA. Injecting nomo alone up to 1000pg did not  
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Figure 4 – Overexpression of ncl1 with its partner nomo leads to embryo ventralization 

(A) Schematics of Ncl1 complex with Nomo and TMEM147 in the endoplasmic reticulum membrane. (B) Impact 

on organ situs of overexpression of different doses of nomo mRNA, nomo+ncl1 mRNA and dand5 mRNA at 1-cell 

stage embryos. WT control embryos (n=176), 100pg nomo mRNA (n=51), 200pg nomo mRNA (n=55), 500pg 
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nomo mRNA (n=83), 1000pg nomo mRNA (n=70), 100pg nomo+100pg ncl1 mRNA (n=97), 200pg nomo+200pg 

ncl1 mRNA (n=88). (C) Normal WT larva with 33 hours post fertilization (hpf). (D) Ventralized larva upon injection 

of 500pg nomo + 500pg ncl1 mRNA. (E) Organ situs of DFCs-targeted injection with dand5 mRNA (n=72), 

nomo+ncl1 mRNA (n=80) and ncl1 MO (n=35) compared with WT control embryos (n=144). Asterisks represent 

statistical significance (Fisher test with Bonferroni correction for multiple comparisons, p-value<0.0125). 

 

affect organ situs (Figure 4B). Co-overexpression of nomo and ncl1 up to 200pg did not give any left-

right defects either. Only when we tried to increase these amounts to 500 and 1000pg, we started to 

see defects in embryo dorsal-ventral patterning, with increasing amount of cyclopic and ventralized 

embryos (Figure 4D compared with Figure 4C). Injecting 100pg of dand5 mRNA at 1-cell stage gave 

the same phenotypes as injecting ncl1+nomo. This result had already been described for both genes 

(Haffner et al., 2004; Hashimoto et al., 2004). Due to these severe defects, organ situs could not be 

properly determined.  

To circumvent this situation, we injected ncl1 and nomo mRNA, dand5 mRNA and ncl1 morpholino in 

500-1000 cell stage WT embryos in order to target specifically the KV precursors, the dorsal 

forerunner cells (DFCs). By doing this, we manipulated the levels of these three genes only on the KV 

and not in the whole embryo, allowing to score for LR defects in normal looking embryos. As expected, 

overexpressing dand5 and ncl1+nomo mRNAs in DFCs did not give rise to cyclopia or ventralized 

embryos, but still had an impact on left-right (Figure 4E). Between 20 and 30% of defects in organ 

situs were found in both treatments. On the other hand, injecting 0,39mM of ncl1 morpholino in the 

same conditions gave rise to the same level of laterality defects as the injection of ncl1 morpholino in 

the whole embryo at 1 cell stage. This strongly indicates that the role of ncl1 in left-right is likely to be 

KV specific. 

ncl1 cannot rescue dand5-/- mutant embryos and vice-versa 

Since we have seen by qRT-PCR that in dand5 homozygous mutants ncl1 is not differentially 

expressed (Figure 2T), we decided to manipulate ncl1 levels in both directions on these mutants. The 

rationale was to see if there was a crosstalk between these two inhibitors in left-right axis 

establishment and see if ncl1 could somehow rescue dand5 mutant defects in terms of organ situs. 
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dand5-/- mutants have very severe left-right organ situs defects, with almost 70% of embryos showing 

heterotaxy (Figure 5A). By overexpressing 100pg of dand5 mRNA specifically on DFCs, we could 

rescue the phenotypes, by reducing heterotaxy in ~20% and increasing both situs solitus and situs 

inversus. Since the mRNA we injected did not have the 3’UTR region, it might explain why we did not 

see a more substantial increase on situs solitus – mice data showed that, without the 3’UTR, mRNA 

should not be properly regulated (Nakamura et al., 2012). Knocking down ncl1 on dand5-/- mutants 

made the organ situs defects even worse, increasing the heterotaxia from 70 to 90% (Figure 5A) and 

suggesting a synergistic epistasis. Since ncl1 knockdown led to weaker flow (Figure 2C-C’), dand5 

mutants without ncl1 might accumulate flow problems that further impact on organ situs beside the 

loss of dand5 asymmetric expression. Overexpressing ncl1 and nomo on DFCs (500pg of each 

construct) cannot rescue any organ situs defects and higher amounts of nomo and ncl1 mRNAs 

(750pg) led to increasing amounts of defects.  

We also decided to try to do the inverse experiment, where we rescued ncl1 knockdown with dand5 

overexpression (Figure 5A). Since dand5 is downregulated when ncl1 is knockdown, this might 

indicate that dand5 is somehow downstream of ncl1. However, injection of dand5 mRNA into DFCs of 

ncl1 knockdown embryos did not showed any noticeable rescue. A potential explanation for this is the 

fact that our dand5 mRNA does not have a 3’UTR to proper respond to flow (Nakamura et al., 2012). 

To further test this, it would be interesting to clone dand5 with its 3’UTR. Still, due to the flow problems 

detected in the ncl1 knockdown, having the 3’UTR alone might not be enough for proper rescue, since 

slow flow strongly impacts on dand5 expression pattern (Sampaio et al., 2014).  

ncl1-/- have stronger heart situs phenotype than ncl1 knockdown by morpholino 

By using CRISPR technology, we produced a ncl1 mutant fish line. The mutation was an insertion of 6 

nucleotides, which changed the nature of one amino acid (from a Leucine into a Histidine) and 

inserted two new amino acids (both Methionine), leaving the rest of the protein intact. This mutation is 

situated in the signal sequence, an N-terminal extension which helps nascent or completed proteins 

from the cytosol to the membrane of the endoplasmic reticulum in eukaryotic cells, which is typically 

cleaved from the protein after membrane insertion (as reviewed in Martoglio and Dobberstein, 1998).  
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Figure 5 – dand5 and ncl1/nomo DFC injection prevent embryo ventralization, but only dand5 OE is 

effective in rescuing dand5-/-  mutant embryos 

(A) Organ situs of dand5-/- mutant embryos (n=329) or injected with 100pg dand5 mRNA into DFCs (n=87), 

0.36mM ncl1 MO 1 cell-stage injection (n=116), 500pg ncl1+nomo mRNA DFCs injection (n=80) and 750 pg 

ncl1+nomo mRNA DFCs injection (n=44). Also, organ situs of 0.39mM ncl1 MO (n=88) and morphants DFCs-

injected with 100pg dand5 mRNA (n=18). Asterisks represent statistical significance (Fisher test with Bonferroni 

correction for multiple comparisons, p-value<0.008) (B-B’) WT and (C-C’) ncl1-/- mutant larvae with 5 days post 

fertilization in (B,C) lateral view and (B’,C’) dorsal view. (D) Schematics of the signal peptide sequence of WT and 

ncl1-/- mutation (labelled at yellow). Red marks the N-region, yellow marks the H-region and green marks the C-

region. -3 and -1 mark the last and third to last amino acids before the cleavage site (E) Heart situs of ncl1+/+;+/- 

(n=100) and ncl1-/- (n=84) embryos scored at 30 hours post fertilization. (F) Table summarizing flow defects, heart 

situs, spaw expression pattern and level from this work and other in several conditions from literature: ncl1 

overexpression, ncl1 knockdown by morpholino, ncl1-/- mutant, dand5 overexpression in the DFCs, dand5-/- 

mutant, dand5 knockdown by morpholino, spaw knockdown by morpholino, spaw overexpression and lefty1 

knockdown. (G) Schematics of Ncl1 interaction with NOMO and TMEM147 in the ER membrane and how is 

impacting on Lefty secretion towards the extracellular space in mesendoderm patterning and might be influencing 

LR axis establishment by impacting on Nodal signalling inhibitors (Dand5 and Lefty) or agonists (Spaw or others). 

 

Signal sequences have characteristic features like hydrophobic core region (H-region), a C-terminal 

side and a N-terminal side. The hydrophobic core comprises six to fifteen amino acid residues and is 

important for membrane insertion. The C-terminal side is a polar region that determine the site of 

signal peptide cleavage and the N-terminal is a polar region, typically with a net positive charge and is 

the most variable region (reviewed in Martoglio and Dobberstein, 1998). Analysis of the WT Ncl1 

sequence with the SignalP 4.1 prediction website (http://www.cbs.dtu.dk/services/SignalP/) (Petersen 

et al., 2011) indicated the presence of a signal peptide that is cleaved between amino acid 35 and 36. 

It has an N-region with 17 amino acids, most of them hydrophobic and negatively charged, an h-region 

with 10 hydrophobic amino acids, and a C-region with 7 amino acids, having two Alanines in the -3 

and -1 position which is typical of this region (Figure 5D). The mutated version inserted the two 

Methionines in the N-region, making it even more hydrophobic than what is typically found. According 

the website predictions, this mutation does not affect the cutting site of the signal peptide in the C-

region.  

The first observable phenotype in the mutants is the shape of the eyes, which are very different 

compared with the WT version. A much more striking phenotype can be observed in 5dpf larvae, with 
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very small eyes and strong oedema around the heart (Figure 5C and C’ compared with B and B’). 

Having a phenotype in the eyes is concordant with the fact that ncl1 is strongly expressed there 

(Haffner et al., 2004). Very preliminary data of heart scoring showed a majority of central hearts 

(>50%), supporting our data with the morpholino when using the highest concentration (Figure 5E). 

More experiments should be done to understand what is this mutation doing to the protein: it might be 

impacting the proper localization of Ncl1 in the cell.  

DISCUSSION 

This work allowed us to compare two inhibitors of LR axis establishment, Dand5, which was already 

known, and a new one not previously described as associated with LR – Nicalin1. According to the 

literature, Ncl1 works as a Nodal signalling antagonist due to the fact that helps secrete Lefty, the 

Nodal antagonist and impacting on mesendoderm patterning (Figure 5G) (Haffner et al., 2004). It is 

possible that, in LR, Ncl1 is doing something similar (Figure 5G). However, our in situ hybridizations 

showed that lefty1 is not expressed strongly in the same domains than ncl1: while lefty1 is strongly 

expressed in the midline but not in the KV region (Figure 1A-C’), ncl1 is present in the KV and our 

DFCs injection point to the fact that Ncl1 impact in LR comes mainly from the KV (Figure 4E). Since 

dand5 is strongly expressed in the KV cells (Figure 1H-I), Ncl1 could be helping secrete Dand5 

instead of Lefty1 (Figure 5G). dand5 absence does not affect flow pattern or strength (Figure 2D-D’), 

but strongly affects pitx2 and spaw expression patterns, making the majority of embryos become 

bilateral for these LPM markers (Figure 2N and S). ncl1 knockdown strikingly slows down the fluid flow 

(Figure 2C-C’) and seems to randomize dand5 and spaw expression patterns (Figure 2H and R). In 

terms of mRNA quantification, dand5-/- mutants show strong downregulation of dand5 and strong 

upregulation of spaw, without significant differences detected for lefty1 and ncl1 (Figure 2T). This 

makes sense, since dand5 is a strong antagonist of spaw, making it become asymmetric towards the 

left. Without dand5, spaw can activate on both sides of the LPM (Hashimoto et al., 2004; Wang and 

Yost, 2008) due to its ability to activate its own transcription and become strongly upregulated (Saijoh 

et al., 2000). Inversely, ncl1 knockdown led to mild downregulation of dand5 and, curiously, to a mild 

downregulation of spaw (Figure 2T). This highlights a difference between Ncl1 and Dand5: absence of 
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each protein affects spaw differently. If they were in the same pathway, i.e., if Ncl1 was responsible for 

Dand5 secretion, absence of Ncl1 should have the same impact as lack of Dand5. Therefore, it might 

have another role on other tissues and impact on spaw as well. It will be important to check how is 

spaw expression pattern and level in a ncl1 DFCs-specific knockdown. Also, more experiments should 

be done on the ncl1 mutant in terms of flow speed pattern and how spaw expression is affected in the 

mutant. Preliminary data in the mutant are pointing to stronger heart situs defects, similar to what is 

found in dand5-/- mutants. Checking the literature, the only situation that is similar to ncl1 knockdown 

via morpholino injection in 1 cell stage is spaw knockdown: downregulation of spaw, with many absent 

cases, and mild heart problems, with a majority of left heart positioning (compare in Figure 5F ncl1 KD 

MO with spaw KD) (Long et al., 2003). So, another potential element that Ncl1 might be helping 

secrete is Nodal/Spaw itself (Figure 5G). In this case, Ncl1 would be working as an agonist in LR axis 

establishment while working as an antagonist in mesendoderm patterning. 

An interesting result that we observed in the dand5 mutants was the expression pattern and quantity 

of dand5 itself. By qRT-PCR we saw that this gene was highly downregulated (Figure 2T) and the in 

situ hybridization took much longer to develop visible mRNA. The dand5 mutant we analysed here has 

a four nucleotide deletion, leading to a premature stop codon at the nucleotide 166. This mRNA would 

be a good candidate for nonsense mediated mRNA decay, where mRNAs with premature stop codons 

50-55 nucleotides upstream an exon-exon junction are degraded (Hwang et al., 2010 but further 

reviewed in Schoenberg and Maquat, 2012). Also, almost half of the cases were asymmetric left and 

not asymmetric right or symmetric (Figure 2I). This is a striking result and hard to explain since the 

flow was shown to be normal and normally dand5 mRNA gets degraded where the flow is stronger 

(Sampaio et al., 2014). One possible explanation is that might be possible that the mutation somehow 

affects the 3’UTR and therefore affects its degradation downstream of flow (Nakamura et al., 2012), 

but more experiments should be done to address this question, like checking for 3’UTR integrity by 

PCR and sequencing in the mutants. Another interesting result was the fact that, in zebrafish, lack of 

Dand5 led to a great majority of bilateral spaw and heterotaxia, while in the mouse absence of Cerl2 

led to randomization of spaw expression pattern and organ situs (Marques et al., 2004). This might be 

an indication that Dand5 has a stronger role in zebrafish than Cerl2 in the mouse. By injecting dand5 
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mRNA into DFCs of dand5-/- mutant embryos, we were able to partially rescue the organ situs, 

reducing heterotaxia into equally more situs solitus and situs inversus (Figure 4A). This might be 

happening because our dand5 cloning did not contain the 3’UTR, which has been identified as 

important for flow mediated degradation on the left side dand5 domain of mice’s node (Nakamura et 

al., 2012). Therefore, even in the presence of normal flow, dand5 mRNA may not respond to it and 

could be accumulating either more on the left or more on the right, producing more situs solitus or 

situs inversus correspondingly (Figure 4A). It will be interesting to re-clone this gene with the 3’UTR 

and see if there is any difference in these results. Interestingly, injection of ncl1 MO into the dand5 

mutant background made almost all embryos become heterotaxic. This suggests a cumulative function 

of these two elements, since both treatments decrease the amount of dand5 mRNA (Figure 2T). It 

might also be because of the weaker flow observed. It would be interesting to analyse the flow on 

these dand5/ncl1 KD embryos. On the other hand, overexpressing ncl1+nomo into dand5 mutant 

DFCs did not rescue the dand5 mutant organ situs phenotype (Figure 5A). Actually, injecting 750pg 

also caused more defects, similar to ncl1 KD although weaker. Doing the reverse experiment, injecting 

dand5 into ncl1 MO DFCs also did not rescue the ncl1 morphant (Figure 4A). This would reinforce the 

idea that Ncl1 and Dand5 are not in the same pathway.  

In sum, dand5 is still currently the stronger nodal pathway inhibitor in the KV for LR axis 

establishment, with the mutant showing stronger heart situs phenotypes than the morphant (compare 

in Figure 4F the dand5-/- with dand5 KD MO) (Hashimoto et al., 2004). Nicalin1 seems to occupy the 

second place, showing the same trend as Dand5: knockdown by morpholino seem to lead to milder 

heart situs phenotypes than ncl1-/- mutant (compare in Figure 5F ncl1 KD MO with ncl1-/-). At the 

moment, it is unclear if it is acting in the trafficking of Dand5, Nodal/Spaw or other Nodal pathway 

components towards the outside of the cell, as it has been suggested for Lefty in mesendoderm 

patterning (Haffner et al., 2004). We are currently not considering Lefty1 since it is only strongly 

expressed in the midline (Bisgrove et al., 1999), or Lefty2 which is expressed in the left heart field and 

left habenula nucleus many hours later (Thisse and Thisse, 1999).  
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Abstract 

Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the 

mechanisms of drug insult and on the availability of appropriate animal models to explore it. 

Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval 

pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 

days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a 

model of renal tubular toxicity through a comprehensive analysis of the renal alterations 

induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and 

tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the 

inulin clearance assay, the 3D morphology of the proximal convoluted tubule by 2 photon 

microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission 

electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further 

detoxification with glutathione. Renal clearance was reduced with gentamicin and 

paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs 

induced mitochondrial alterations including dismorphic shapes (“donuts”, “pancakes” and 

“rods”), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results 

are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and 

demonstrate that zebrafish larvae might be a good model to assess functional and structural 

damage associated with DIRI. 

 

Keywords: nephrotoxicity, proximal tubule, mitochondria, renal clearance, zebrafish 
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Introduction 

The kidney is a vulnerable organ to xenobiotic toxicity due to its rich blood supply and its 

important role in drug metabolism and excretion. Proximal tubular cells are the primary sensor 

of either ischemic or oxidative renal injury as a consequence of their high metabolic rate and 

strong dependence on oxidative phosphorylation. Thus, it is consensual that mitochondrial 

damage plays a key pathogenic role in drug-induced renal injury, (Basile et al. 2012; Chevalier 

2016) which is partially explained by this dependence. 

 

Animal experiments remain essential for understanding the mechanisms of drug toxicity and 

testing the safety of new compounds. However, rodent species, the most widely used animal 

model, predict only 41% of human toxicities (Olson et al. 2000) and are not useful for high 

throughput screenings. Thus, it is urgent to find better predictive animal models that capture 

all the complexities of human physiology while enabling for testing large libraries of 

compounds. Zebrafish larvae up to 5 days of development have unique features that make 

them potentially excellent models in toxicology: transparency, rapid development, small size 

that allows them to fit in 96 well-plates, easy and fast drug administration in small amounts, no 

need for feeding, transgenic capabilities and high homology with mammals in terms of 

genetics, metabolism and physiology (McGrath and Li 2008; Peterson and MacRae 2012). 

Regarding the zebrafish kidney, the larval pronephros is fully mature at 4 days post-fertilization 

(dpf) and consists of two nephrons with the glomeruli fused at the embryo midline. Although 

simple in form, the glomerulus is composed of cell types that are typical of higher vertebrate 

kidneys, including fenestrated capillary endothelial cells and podocytes; the tubules are 

composed of polarized epithelial cells that exhibit primary cilia and possess a segmental 

organization where each segment is specialized for the secretion and reabsorption of 

particular molecules in a similar fashion as mammal nephron tubules (Kramer-Zucker et al. 

2005; Wingert et al. 2007; Drummond and Davidson 2010). These features make zebrafish a 

potential model for nephrotoxicity assessment. Indeed, paracetamol and gentamicin, two 

drugs associated with renal tubular damage in man, (Mazer and Perrone 2008; Lopez-Novoa 

et al. 2011) have been proved to cause morphological and/or functional alterations in the 
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zebrafish pronephros (Hentschel et al. 2005; Peng et al. 2010; Rider et al. 2012; Cianciolo 

Cosentino et al. 2013; Westhoff et al. 2013). 

 

Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of tubular toxicity 

through a comprehensive analysis of the functional and morphological tubular alterations 

induced by three drugs known to cause tubulopathy in man: gentamicin, paracetamol and 

tenofovir in the form of tenofovir (TFV) and its prodrug tenofovir disoproxil fumarate (TDF) 

(Mazer and Perrone 2008; Smith et al. 2009; Lopez-Novoa et al. 2011). 

 

Material and Methods 

Zebrafish larvae 

The transgenic and mutant zebrafish line Tg(wt1b:EGFP,cdh17:EGFP);mitfa-/-;roy-/+ or +/+ was 

chosen for this study due to the expression of GFP at the renal tubules and transparency of 

the nacre mutant throughout the embryonic and larvae stages. Adult zebrafish were grown 

and mated at the Fish Facility of Gulbenkian Institute of Science, Lisbon, Portugal. Embryos 

were grown at 28 °C in embryo media of standard E3 solution (NaCl 5mM, KCl 0.17 mM, CaCl2 

0.33 mM, MgSO4 0.33 mM) plus HEPES buffer 10 mM till 4 dpf, time when zebrafish 

pronephros is completely mature (Kramer-Zucker et al. 2005). 

 

Drug exposure 

Gentamicin and paracetamol were purchased from Sigma-Aldrich. Tenofovir was 

administered in two forms: a) the prodrug TDF, b) TFV (Sequoia Research Products, UK). 

Stock solutions were prepared for all drugs at solubility concentrations: gentamicin 5000 

µg/mL, paracetamol 12000 µg/mL, TDF 6000 µg/mL and TFV 5000 µg/mL. All drugs except 

TFV were dissolved in sterile distilled water. TFV was prepared in embryo media. All stock 

solutions were aliquoted and stored at -20 ºC till further use. 

Zebrafish larvae of 4 dpf were transferred to 96-well plates, 2 larvae per well. Embryo media 

was completely removed from each well and immediately after that, a specific volume of 

embryo media plus a specific volume of drug stock solution or drug vehicle (negative controls) 
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were added into each well to achieve the desired drug concentration (total volume per well = 

350 μL). Zebrafish larvae were incubated for 24 hours at 28 ºC. 

 

Lethality curves 

Lethality curves were defined with five or six different concentrations for each drug. Drug 

concentrations were empirically chosen to cover all lethality percentages: gentamicin 200, 600, 

1000, 1400, 1800, 2200 µg/mL; paracetamol 2000, 2500, 3000, 3500, 4000, 4500 µg/mL; TDF 

1000, 1500, 2000, 2500, 3000 µg/mL; TFV 2500, 3000, 3500, 4000, 4500, 5000 µg/mL. 10 

larvae of 4 dpf were tested per each concentration in triplicate or quadruplicate. After drug 

exposure, all larvae were observed under a stereoscope (Nikon SMZ 745) to evaluate body 

curvature, tail-flip response, swimming pattern, heart oedema, heartbeat and necrosis. 

Lethality was defined as the absence of heartbeat and/or the presence of body necrosis. 

Percentages of lethality were calculated and plotted against the logarithm of drug 

concentration in μM. Lethal concentrations for 10% of the larvae (LC10) and curve slopes were 

manually obtained after probit transformation (Randhawa 2009). LC10 concentrations were 

used for the rest of the experiments. 

 

Mass Spectrometry for drug and metabolite identification 

Pools of 50 zebrafish larvae of 4 dpf were exposed to the LC10 of paracetamol (n=10), 

gentamicin (n=10), TDF (n=10), TFV (n=5) or water (n=6). After drug exposure, dead larvae 

were discarded and 40 larvae were transferred from each well to a clean eppendorf. Larvae 

were immediately washed 4 times with cold water to remove drugs and/or drug metabolites 

from the embryo media. After that, larvae were euthanized by rapid chilling to remove all 

remaining embryo media before snap freezing in liquid nitrogen to quench any enzymatic 

activity.  

Metabolite extraction was performed with methanol:water 2:1 (Huang et al. 2013). The 

extracted supernatant was dried under vacuum and reconstituted in half volume of water for 

further injection into the RPLC-Q-TOF (UPLC Ultimate 3000 RS tandem LC system, Dionex, 

Amsterdam, The Netherlands; ESI-UHR-QqToF impact HD, Bruker Daltonics, Bremen, 
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Germany). The details of the RPLC-Q-TOF method have already been reported 

(Nevedomskaya et al. 2011; Pacchiarotta et al. 2012).  

Drugs and metabolites were identified by extracting the chromatograms of the expected m/z 

of the protonated drugs and/or metabolites of gentamicin (Clarot et al. 2004) paracetamol 

(Pacchiarotta et al. 2012) or TDF (Kurmi et al. 2016). To confirm those identifications, rational 

chemical formulas were generated based on the internally calibrated monoisotopic masses 

within 5 mDa mass error using the SmartFormula tool (version 4.2, build 395, Bruker 

Daltonics). Two parameters were registered for each ion-drug or metabolite assignment: mass 

error and mSigma. Only those m/z with an intensity > 10,000 units in at least half of the 

samples were registered. MZmine version 2.3 was used to build the chromatograms for each 

drug and metabolite (Pluskal et al. 2010). 

 

Assessment of renal function 

Renal function was assessed with a modified clearance assay from Rider et al (Rider et al. 

2012). The casper zebrafish line (mitfa-/-;roy-/-) was used for these experiments due to its 

transparency and absence of fluorescence. After LC10 exposure, live larvae were 

anesthetized with tricaine and injected with 1.4 nL of fluoerescein isothiocyanate (FITC)-inulin 

2.5% w/v in the duct of cuvier. FITC intensity was imaged over the caudal region 10-15 minutes 

(baseline) and 2 hours after injection (Zeiss Lumar V12). FITC intensity was quantified using 

the image-J software (Schindelin et al. 2015) selecting the area on the caudal artery between 

somites 16 and 18. Clearance of inulin was calculated as the percentage of decrease of FITC 

intensity on the caudal artery using the formula (FITC intensity at baseline - FITC intensity at 

2 hours)*100 / FITC intensity at baseline. A minimum of 15 larvae were injected per group. 

 

Two photon microscopy for evaluation of tubular morhology 

After LC10 exposure, Tg(wt1b:EGFP,cdh17:EGFP);mitfa-/-;roy-/+ or +/+ zebrafish larvae were 

fixed overnight with PFA 4% and washed with PBS 1X. Due to the central localization of the 

pronephros, zebrafish larvae were further processed for imaging by removing the head, yolk 

and gut with a sharp needle and bistoury.  This procedure was easily performed under a 

fluorescent stereoscope because our transgenic zebrafish expressed GFP in the pronephros 
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and the gut. In a petri dish with a base of 2% agarose, the remaining tissue was mounted in a 

drop of low melting agarose 1% and oriented with the ventral side up. The petri dish was filled 

with PBS 1X. Embryos were then imaged on a Praire Multi-Photon microscope equipped with 

an Olympus 20x XLUMPLAN FL N (NA 1) water immersion lens and laser tuned to 890 nm. 

Stacks were obtained with 0.7 µm sectioning and further pre-processed with the FIJI software 

(Schindelin et al. 2012). 4 or 5 larvae were imaged for each condition. 3D reconstructions of 

the proximal convoluted tubule were performed using the Amira software (version 5.3.3). For 

the lumen caliber measurement, two orthogonal diameters were measured in transverse 

planes of the lumen at regular intervals along all the reconstructed proximal convoluted tubule 

(PCT). Both diameters were divided by two to obtain the radius and the formula 

𝜋*radius1*radius2 was applied to calculate the transverse section area of the lumen. An 

average of 15 measurements was done per larvae across one PCT.   

 

Transmission Electron Microscopy for evaluation of tubular mitochondria 

After LC10 exposure, Tg(wt1b:EGFP,cdh17:EGFP);mitfa-/-;roy-/+ or +/+ zebrafish larvae were 

euthanized by rapid chilling. Larvae were fixed following a modified protocol from Schieber et 

al (Schieber et al. 2010). In brief, larvae were fixed overnight with 2.5% glutaraldehyde and 

2% PFA in 0.1M PHEM buffer. In a Pelco BioWave Microwave Processor (Ted Pella, Redding 

USA) larvae were post-fixed in 1% osmium tetroxide (EMS, Hatfield, PA, USA) in 0.1M PHEM 

Buffer on ice, and en-block stained with 1% aqueous uranyl acetate (EMS, Hatfield, PA, USA) 

before being dehydrated in a graduated ethanol series and embedded in EPON resin (EMS, 

Hatfield, PA, USA.  Larvae were left in 100% EPON resin overnight before orientation, 

embedding and resin polymerization in a 60 oC oven. All larvae were processed 

simultaneously except gentamicin treated larvae. 

Transverse portions of the proximal convoluted tubule were serial sectioned at 70 nm (for 

micrographs), 100 nm (for serial section TEM (ssTEM)) or 120 nm (for tomography) with a 

diamond knife (Diatome, Biel Switzerland) on a Reichert Ultracut S (Leica, Vienna, Austria). 

10 nm Protein A Gold was added (UMC, Utrecht, The Netherlands) to the grids for tomography 

analysis. All grids were post-stained with uranyl acetate and lead citrate.  
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Data was collected on a Hitachi H-7650 Transmission Electron Microscope (Tokyo, Japan) at 

100 kV using 3 approaches: (1) micrographs at a magnification of 1k, 3k, and 10k (a minimum 

of 50 tubular cells were screened from 10-20 micrographs per condition); (2) ssTEM to build 

coarse cellular 3D models with 24 or 36 micrographs covering an area of ~10 x 11 x 2.4µm or 

3.6µm; (3) tomograms to build 3D mitochondrial models for an area of 3.8 x 4.4 x 0.36 µm and 

with an angle range from -55o to 55o, with a 1o tilt increment. Data was aligned and modeled 

with the IMOD software (Kremer J.R. 1996; Mastronarde 1997). Due to the complexity of the 

3D modelling, only one cellular model and one mitochondrial model were built for each 

condition. However, those models were carefully chosen to be the best in describing the 

changes observed from each condition (supplementary videos).  

Mitochondrial swelling was assessed by measuring mitochondria grey intensities from 14 to 

24 mitochondria from a total of 3 micrographs using the FIJI software. Mitochondrial granules 

were counted from 11 to 18 mitochondria from a total of 3 micrographs using the FIJI software. 

The volumes of the mitochondria, cristae and granules were measured with the IMOD software 

and expressed as percentage of the cellular or mitochondrial volume captured by the 3D 

model. All analyses were performed at the same time for the five different conditions of the 

study 

 

Statistical analysis 

Statistical analyses were performed with SPSS (IBM SPSS Statistics for Windows, version 

22.0. Armonk, NY: IBM Corp). Differences in quantitative variables among treatment groups 

were analyzed with one-way ANOVA test followed by Games-Howell post-hoc test. All 

parameters were expressed as means and standard deviation. P values < 0.05 were 

considered statistically significant. 

 

Results 

Lethality curves 

After 24 hours of exposure to each drug concentration, zebrafish larvae were observed under 

a stereoscope for macroscopic alterations. Swimming behaviour was reduced and the escape 

response to tail stimuli was retarded or absent in living larvae exposed to any drug  
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Fig. 1 Zebrafish exposure to LC10  
(a) Lethality curves that were obtained to calculate the LC10 of gentamicin (G), tenofovir disoproxil 
fumarate (TDF), tenofovir (TFV) and paracetamol (P) (b) Chromatogram of untreated zebrafish 
larvae (c) Chromatogram of zebrafish exposed to gentamicin; a zoom of the chromatogram shows 
the extracted ion chromatograms (EICs) for [gentamicin 1 + H]+ (m/z 478.3231), [gentamicin C2 
C2a and C2b + H]+ (m/z 464.3076) and [gentamicin C1a + H]+ (m/z 450.2920) (d) Chromatogram 
of zebrafish exposed to paracetamol showing the EIC of [paracetamol + H]+ (m/z 152.0706), 
[paracetamol glucuronide + H]+ (m/z 328.1029), [paracetamol sulfate + H]+  (m/z 232.0275), 
[paracetamol cysteine + H]+ (m/z 271.0748) and [paracetamol N-acetylcysteine + H]+ (m/z 
313.0858); a zoom of the chromatogram shows in more detail the four paracetamol metabolites 
(e) Chromatogram of zebrafish exposed to TDF showing the EIC of [tenofovir disoproxil + H]+ (m/z 
520.1808), [tenofovir monoisoproxil + H]+ (m/z 404.1336) and [tenofovir + H]+ (m/z 288.0857) (f) 
Chromatogram of zebrafish exposed to TFV showing the EIC of [tenofovir + H]+ (m/z 288.0859). 
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concentration when compared with control larvae. Albeit rarely, some larvae exposed to the 

second-fourth drug concentrations (in ascendant order) experienced upwards body curvature 

and/or heart oedema with visible heart haemorrhage. Dead larvae presented i) no heartbeat 

with no necrosis at the lowest lethal concentrations or ii) necrosis and body decomposition at 

the highest lethal concentrations (data not shown). 

The percentages of lethality were calculated for each drug concentration and plotted against 

the logarithm of the drug concentration (Fig. 1a). Regarding the left-right position of the curves, 

the order of the drugs was gentamicin, TDF, TFV and paracetamol. LC10 (µM) calculated from 

the lethality curves after probit transformation were: 491 for gentamicin, 2338 for TDF, 11542 

for TFV, and 17179 for paracetamol. All drugs exhibited sigmoidal lethality curves but with 

different slopes. Paracetamol, TDF and TFV curves were steeper than gentamicin curve as 

reflected by the values of the slopes (% of lethality/µM): 12 for paracetamol, 10 for TDF, 9 for 

TFV and 4 for gentamicin.  

 

Identification of drugs and metabolites in zebrafish larvae 

To test if drugs were absorbed and followed similar biotransformation patters as in man, 

extracts of whole zebrafish larvae exposed to the LC10 of each drug were analyzed by mass 

spectrometry. 

Chromatograms of zebrafish exposed to paracetamol showed all known paracetamol 

metabolites found in man. We detected phase II metabolites derived from conjugation with 

glucuronic acid and sulfonic acid and paracetamol metabolites derived from the unstable and 

toxic phase I metabolite N-acetyl-p-benzoquinone imine (NAPQI) after conjugation with 

glutathione (Fig. 1d).  

Chromatograms of zebrafish exposed to TFV showed only the peak corresponding to TFV 

(Fig. 1f). No traces were found for the intracellular phosphorylated metabolites of tenofovir. 

Regarding the prodrug of TFV, the chromatograms of zebrafish larvae exposed to TDF 

included the diester tenofovir disoproxil, the monoester tenofovir monoisoproxil and its non 

esterified metabolite TFV (Fig. 1e). The retention time and mass spectrum of TFV were similar 

to the ones described for zebrafish exposed to TFV (Fig. 1f, Supplementary Tables 2 and 3).  
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Fig. 2 Renal clearance is decreased in zebrafish larvae exposed to the LC10 of 
gentamicin and paracetamol  
(a, b) Detail of the common cardinal vein (CCV) where inulin-FITC was injected to evaluate 
the renal clearance (c, d) Lateral posterior view of the FITC-intensity in blood 10-15 minutes 
(c) and 2 hours (d) after FICT-inulin injection (e) Clearance of inulin, expressed as the 
percentage of decrease of FITC-intensity in blood 2 hours after FICT-inulin injection, is 
decreased with gentamicin and paracetamol. 
* for p-value < 0.05; *** for p-value < 0.001 
 
 
In-source fragmentation occurred for paracetamol, TFV, TDF and their respective metabolites, 

which confirmed their identifications (Supplementary Tables 1-3). 

Finally, zebrafish larvae exposed to gentamicin sulfate produced chromatograms that were 

unexpectedly identical to the chromatograms of untreated larvae (Fig. 1, b and c). The m/z of 

the five major components of gentamicin (C1, C1a, C2, C2a and C2b gentamicin) were found 

in the spectra from zebrafish larvae exposed to gentamicin but the intensities were < 2,000 

units in all samples (Fig. 1c). In-source fragmentation (to m/z 322.1963 and 160.0966) was 

detected but with intensities between 2,000 and 10,000 units. 

 

Renal function 

Renal function was evaluated with the inulin clearance assay after exposure to the LC10 of 

each drug. Two hours after FITC-inulin injection, FITC intensity decreased by 67 ± 8% in 

untreated larvae (n=100) due to glomerular filtration of most of the FITC-inulin present in the 

blood (Fig. 2e). Larvae exposed to gentamicin (n=18) or paracetamol (n=15) had significantly 
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lower clearances with 54 ± 17% and 17 ± 14% of decrease of FITC intensity, respectively. 

TDF (n=29) or TFV (n=19) treatments did not affect inulin clearance (69 ± 9% and 64 ± 10%, 

respectively). 

 

Microscopic alterations 

General tubular morphology, epithelium organization and luminal area of the proximal 

convoluted tubule (PCT) were carefully compared between controls and treated larvae using 

3D reconstructions.  

Untreated zebrafish larvae showed PCT as coiled and intricate structures with a typical 

curvature. At the exit of the glomeruli, each of the PCT came dorsally and distally before 

curving ventrally and to the middle. Then, it continued posteriorly with several undulations or 

convolutions until the proximal straight tubule (PST) (Fig. 3). The two tubules were symmetric 

and diverged from each other at the exit of the glomerulus and then were brought closer from 

the beginning of the PST (Fig. 3). The fluorescent transgenic line cdh17:EGFP and wt1b:EGFP  

revealed a single layer of tightly packed epithelial cells surrounding the lumen of each tubule. 

Apical membranes were enriched with cadherin 17 (here seen by fusion with EGFP) and 

showed cells with a regular shape. The fluorescence from wt1b:EGFP reporter showed big 

nuclei, usually in the basal portion of the cell (Fig. 3a’’ and a’’’). The lumen caliber of the PCT 

had a mean area of 57 ± 43 µm2, with some variations throughout the length of the PCT (Fig. 

3f).  

In general, there were no apparent differences regarding the curvature of the tubules between 

treated and untreated larvae, except for the terminal section of the PCT, which presented a 

simplified structure with less curves upon drug exposure (Fig. 3a’, b’, c’, d’ and e’). Tubular 

enlargements were observed with all drugs except gentamicin (53 ± 29 µm2, Fig. 3f). 

Paracetamol showed irregular lumens and the most severe dilations with an average area of 

136 ± 92 µm2 (white asterisks in Fig. 3f, e’’ and e’’’) followed by TFV with 114 ± 73 µm2 (Fig. 

3d’’ and d’’’). TDF treated larvae showed milder defects with more regular lumens. The lumen 

was also dilated compared to controls but the increase was not statistically significant (81 ± 

71 µm2, Fig. 3f). 
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Fig. 3 The lumen of the proximal convoluted tubules is enlarged in zebrafish larvae 
exposed to the LC10 of TFV and paracetamol (a, a’, b, b’, c, c’, d, d’, e, e’) Dorsal and 
lateral views of the proximal convoluted tubule of untreated larvae and larvae exposed to the 
LC10 of gentamicin, TDF, TFV or paracetamol. Compared to controls, the complexity of the 
coiled structure of the proximal convoluted tubules is reduced in the treated zebrafish larvae 
(a’’, a’’’, b’’, b’’’, c’’, c’’’, d’’, d’’’, e’’, e’’’) Transversal and longitudinal amplifications of the 
proximal convoluted tubule of untreated larvae and treated larvae exposed to LC10 of 
gentamicin, TDF, TFV or paracetamol. GFP labels the nuclei and the membrane of the tubular 
cells (d’’, d’’’, e’’, e’’’) The lumen of the tubule is enlarged in zebrafish exposed to TFV and 
paracetamol (f) Transversal area of the proximal convoluted tubules. 
Scale: 20 µm 
G: glomeruli; N: nuclei; PCT: proximal convoluted tubule; PST: proximal straight tubule. 
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White asterisks mark tubule enlargements; white arrowheads show misplaced nuclei. 
*** for p-value < 0.001 
 
Paracetamol, TDF and TFV lead to epithelium disorganization with displaced nuclei towards 

the middle portion of the cell (Fig. 3e’’ and e’’’, Fig. 3d’’ and d’’’, Fig. 3c’’ and c’’). 

 

Tubular mitochondrial alterations  

Mitochondria morphology was evaluated using three different approaches: micrographs, serial 

section transmission electron microscopy 3D reconstructions of proximal tubular cells, and 

tomographic 3D reconstructions of mitochondria. 

Micrographs from control larvae showed mitochondria as tubular organelles with smooth 

contours and regular shapes differing in size (Fig. 4b-b’’). 3D cellular models enabled us to 

notice that they were interconnected, forming a vast mitochondria network (Fig. 5b’). Cristae 

were thin and long cylindrical structures distributed throughout the mitochondrion in different 

orientations. They branched from several places creating bridges that interconnected with 

each other (Fig. 5m’). Matrix granules occurred outside the cristae as tiny electron dense 

puncta.  

3D cellular models revealed changes in mitochondria shape and size from drug exposed 

larvae. Gentamicin and TFV caused “donut”-like shapes (Fig. 5g). Paracetamol caused 

“pancakes” (Fig. 4d’’, Fig. 5h) and “rods”-like shapes (Fig. 5i). TDF and TFV produced 

mitochondria with irregular contours (Fig. 5j) and huge mitochondria (Fig. 5k). There were no 

differences in the volume occupied by mitochondria (Supplementary Table 4). However, 

mitochondrial electron densities were significantly lower in gentamicin, TDF and TFV than in 

controls (141 ± 6 in controls, gentamicin 172 ± 5, TDF 161 ± 6, TFV 163 ± 6) (Fig. 4g). These 

results are in agreement with the enlarged mitochondria that were seen in the micrographs 

and 3D cellular models of gentamicin, TDF and TFV (Fig. 4c’’, e’’, f’’ and 5k). 

3D mitochondrial models showed no differences in the volume occupied by cristae 

(Supplementary Table 4). However, cristae from treated larvae, were clearly fragmented 

and/or degraded when compared with control larvae (Fig. 4c’’, e’’ and f’’, 5n’, o’, p’ and q’). 

The number of mitochondrial granules was reduced in all treated larvae, although it was only 

statistically significant for gentamicin, TDF and TFV (5 ± 2 granules/mitochondrion in controls, 

0.7 ± 0.4 in gentamicin, 3 ± 1 in paracetamol, 2 ± 0.9 in TDF p = 0.031, 2 ± 1 in TFV) (Fig. 4h).  
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Fig. 4 Mitochondrial morphological alterations in electron micrographs after exposure 
to the LC10 of gentamicin, paracetamol, TDF and TFV  
(a) Scheme of the sectioning of the proximal convoluted tubule for single micrographs; each 
section had a z of 70 nm (b, c, d, e, f) Micrographs at 1000x showing the proximal tubular 
epithelium as one cell layer with the basal membrane leading to blood and the apical 
membrane ending in microvilli that gave in to the lumen of the tubule (b’, c’, d’, e’, f’) 
Micrographs at 3000x showing one proximal tubular cell with the nucleus in the center and the 
mitochondria in the basal and lateral sides for all condition (b’’, c’’, d’’, e’’, f’’) Micrographs at 
10000x showing some mitochondria. Thin and long mitochondria like “pancakes” are seen in 
larvae exposed to paracetamol. Swollen mitochondria are observed in larvae exposed to 
gentamicin, TDF and TFV. Mitochondria cristae are fragmented and mitochondria granules 
are missing in all treated larvae (g) The mean gray intensity reveals mitochondrial swelling in 
larvae exposed to gentamicin, TDF and TFV (h) Mitochondrial granules are decreased by all 
drugs and significantly for gentamicin, TDF and TFV. 
Scale: 1000x – 2 µm; 3000x – 2 µm; 10000x – 500nm. 
Bs: basolateral membrane; C: cilia; L: lumen; Mv: microvilli; M: mitochondria; N: nucleus. 
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Arrows mark granules; arrow heads mark fragmented cristae; asterisks mark phospholipidosis; 
square boxes, when present, indicate the area that was zoomed in and presented in the next 
image. 
* for p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001 
 
The volume occupied by granules from each representative mitochondrion 3D model was also 

reduced in all treated larvae (Supplementary Table 4). 

 

Discussion 

In the present study, acute toxicity was induced in zebrafish by three drugs associated with 

tubular damage in man. For all tested drugs, morphological and/or functional tubular 

alterations were found, which supports the usefulness of the zebrafish model to evaluate 

tubular toxicity. 

 

Physiological and biochemical characterization of zebrafish is of utmost importance to support 

its use in toxicology studies. Vertebrate kidneys play essential roles in the excretion of 

metabolic waste products and in the maintenance of the internal electrolyte and acid–base 

balances. Similarly to man, the nephron of zebrafish larvae consists of a glomerulus, 

responsible for blood filtration, followed by a renal tubule and duct, which are responsible for 

solute reabsorption and secretion (Drummond and Davidson 2010). Likewise, the zebrafish 

tubular epithelium expresses ion channels, transporters and claudins in a segment-specific 

manner that confer unique absorptive and secretory properties to each nephron segment. 

Among other examples, the PCT expresses the Na+/ bicarbonate cotransporter Slc4a4a and 

the endocytic receptors megalin and cubilin; the distal early tubule (equivalent to the human 

thick ascending limb) expresses the Na+/Cl-/K+ cotransporter Nkcc2; the distal late tubule 

(equivalent to the human distal convoluted tubule) expresses the Na+/Cl- cotransporter Ncc 

(Kersten and Arjona 2017). Information about regulation of renal ion transport in zebrafish is 

limited, but the renin-angiotensin system plays a very important role in the control of Na+ 

reabsorption (Kumai et al. 2014; Rider et al. 2015). Despite these similarities, functional 

differences exist between zebrafish and human nephrons: i) absence of water-absorptive 

segments such as the human thin descending limb because freshwater fish do not need to 

concentrate urine; ii) absence of aldosterone (although zebrafish have mineralocorticoid 

receptors); iii) presence of unique structures with no clear human counterpart like the  
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Fig. 5 Mitochondrial morphological alterations in ssTEM and tomograms after exposure 
to the LC10 of gentamicin, paracetamol, TDF and TFV  
(a) Scheme of the serial sectioning of the proximal tubule for ssTEM to build 3D cellular 
models; 24-36 sections were cut for each ssTEM with a z of 100 nm per section (b, c, d, e, f) 
Micrographs at 3000x showing the cell that was chosen to build the cellular 3D representative 
model for each condition (b’, c’, d’, e’, f’) Frontal section of the cellular 3D model for each 
condition (g, h, i, j, k) Weird mitochondrial shapes caused by the drugs: (g) “donuts” with 
gentamicin, (h) “pancakes” with paracetamol, (i) “rods” with paracetamol, (j) fragmented 
mitochondria with irregular shapes with TDF and TFV, (k) huge mitochondria occupying a big 
part of the cytosol with TDF and TFV. 
(l) Scheme of the serial sectioning of the proximal tubule for tomograms to build 3D 
mitochondrial models; 3 sections were cut for each tomogram with a z of 120 nm per section 
(m, n, o, p, q) Micrographs at 8000x with Protein A Gold showing the mitochondrion that was 
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chosen to build the representative mitochondrial 3D model for each condition (m’, n’, o’, p’, 
q’) Frontal section of the mitochondrial 3D model for each condition; cristae are fragmented in 
drug treated larvae. 
Scale: b, c, d, e, f – 2 µm; b’, c’, d’, e’, f’ – 2.5 µm; g, h, i, j, k – 1 µm; m, n, o, p, q – 500 nm; 
m’, n’, o’, p’, q’ – 95 nm. 
 
Corpuscle of Stannius, a renal gland involved in the regulation of calcium and phosphate levels 

potentially linked with the human macula densa (Wingert and Davidson 2008; Kersten and 

Arjona 2017). 

ADME processes have been insufficiently characterized in zebrafish and are restricted to 

some metabolizing enzymes and membrane transport proteins. Phase I (CYPs) and phase II 

(UGT1A1, SULTs) enzymes have been identified (Hill et al. 2012), but most of functional 

information is only known for CYPs. The genetic homology of the most relevant CYPs between 

zebrafish and man is diverse. While there are orthologous relationships for most of CYP1s 

and CYP3s, only 26 from the 46 zebrafish CYP2s genes have human CYP orthologs 

(Goldstone et al. 2010). In line to what is well known in man, the expression of most of CYPs 

throughout zebrafish development is variable. With regards to CYP activity, zebrafish and 

human CYPs share some substrates, inhibitors and inducers. Moreover, some of those 

inducers proved to be agonists of the zebrafish pregnane X receptor (PXR) or aryl hydrocarbon 

receptor, which suggests common regulatory pathways of CYPs expression. However, there 

are important differences in the response to many substrates, inducers and inhibitors as 

reviewed by Saad and collaborators (Saad et al. 2016). Membrane transport proteins involved 

in the uptake and excretion of drugs and/or metabolites (i.e. SLC, ABC proteins) are also 

present in zebrafish. The most relevant ABC drug efflux pumps in man, namely ABCB1, 

ABCC1-5 and ABCG2, are expressed in zebrafish tissues that are involved in absorption, 

excretion or serving as a barrier function (intestine, liver, kidney, gills, brain blood barrier). 

Interestingly, despite the lack of data about transcriptional regulation of ABC transporters, an 

association was found between PXR, CYP3A and ABCB1 in zebrafish (Luckenbach et al. 

2014). This example supports a similar regulation of detoxification enzymes and transporters 

between zebrafish and man. 

 

Due to the limited information about pharmacokinetics in zebrafish, we assessed the drug 

metabolic profile of 5-day zebrafish larvae. In the case of paracetamol, all metabolites were 
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detected except NAPQI and paracetamol glutathione probably due to their high instability 

(Cook et al. 2015). Upon these results, we can conclude that zebrafish and man share the 

same pathways for paracetamol metabolism: glucuronidation, sulfonation and oxidation with 

posterior detoxification to paracetamol N-acetylcysteine. In the case of TDF, MS experiments 

identified tenofovir monoisoproxil and TFV in zebrafish extracts. TDF follows enzymatic 

hydrolysis through intestinal and blood esterases but also non enzymatic hydrolysis in water 

(Kurmi et al. 2016). Although we cannot exclude the possibility of some TDF hydrolysis in the 

embryo media, zebrafish expresses esterases (Levi et al. 2012), which supports TDF 

metabolism in zebrafish. TFV phosphorylated metabolites were not detected in zebrafish 

exposed to either TFV or TDF. Zebrafish expresses both organic anion transporters, 

necessary for intracellular TFV uptake, and nucleotide kinases, necessary TFV 

phosphorylation (Pannicke et al. 2009; Mihaljevic et al. 2016). So, a plausible explanation for 

the absence of TFV metabolites might be related with technical limitations of our extraction or 

LC-MS methods. Finally, gentamicin, which is not metabolized, was present in the zebrafish 

extracts but at very low concentrations probably due to its low bioavailability (Gemer et al. 

1983). 

 

Renal clearance was decreased by 19% and 74% by gentamicin and paracetamol, 

respectively. Drugs can decrease renal clearance by different mechanisms that do not 

necessarily involve damage to the renal parenchyma. For instance, drugs that inhibit renal 

prostaglandin-mediated vasodilation such as paracetamol (Graham and Scott) and gentamicin 

(Lopez-Novoa et al. 2011) and hepatotoxic drugs such as paracetamol (Mazer and Perrone 

2008) can decrease renal clearance. Neither the liver nor the renal blood flow were evaluated 

in this work but previous studies found that gentamicin decreases the venous erythrocyte 

velocity and the heart rate in zebrafish larvae (Hentschel et al. 2005; Rider et al. 2012). 

Besides these indirect mechanisms, drugs that directly damage the glomeruli and/or the renal 

tubule can also decrease the renal clearance via several mechanisms (Basile et al. 2012). In 

this study all tested drugs caused morphological tubular alterations but only gentamicin and 

paracetamol reduced inulin clearance. Interestingly, similar results are seen in men:  HIV 

patients on TDF can develop proteinuria, a specific marker of tubular injury, with normal values 
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of glomerular filtration rate (Tourret et al. 2013). Thus, tubular morphological alterations 

associated with TFV seem to precede the decline in the renal clearance. In the case of 

gentamicin and paracetamol, a combination of their intrinsic tubular effects and their potential 

pre-renal effects could explain the observed decrease in renal clearance. Besides, gentamicin 

can cause intraglomerular mesangial cell contraction (Lopez-Novoa et al. 2011), which can 

also decrease the renal clearance. 

 

The intrinsic complexity of the PCT represented a big challenge for imaging. Previous works 

applied confocal or conventional optical microscopy to image the pronephros but with poor 

quality results (Peng et al. 2010; Westhoff et al. 2013). We provide for the first time exhaustive 

imaging of the PCT that allowed building 3D images to objectively measure the caliber of the 

tubular lumen. Paracetamol, TDF and TFV induced tubular dilatations and epithelium 

disorganization with nuclei delocalization. Tubular dilatations are one of the earliest 

morphological alterations of acute tubular injury followed by loss of cytoskeletal integrity and 

cell polarity (Bonventre and Yang 2011; Basile et al. 2012). We didn’t perform any 

immunostaining for apical or basal markers but epithelium and nuclei disorganization found in 

our study could be associated with the loss of cell polarity. 

 

The loss of the structure of the tubular epithelium is associated with ATP depletion and thus 

mitochondrial damage (Price 2002; Basile et al. 2012). Mitochondrial morphology is highly 

variable and dynamic due to the ability of mitochondria to undergo the highly coordinated 

processes of fusion and fission. Mitochondrial fusion allows the exchange and 

complementation of partially damaged mitochondria contents when the stress is below a 

critical threshold while mitochondrial fission is required to remove damaged mitochondria 

during high levels of stress (Youle and van der Bliek 2012; Rafelski 2013). Thus, quantification 

of mitochondria volume and number can be regarded as a measure of the insult intensity. We 

provide for the first time 3D models of PCT cells and mitochondria. These models were very 

useful to understand the complexity of mitochondria networks, to get accurate measurements 

of mitochondria volume and number and to identify alterations in mitochondria shape and 

cristae fragmentation. However, because 3D modeling at the ultrastructural level is a laborious 
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task, only one model was made for each condition. Although each model was carefully chosen 

to represent each condition, there was a substantial number of mitochondria that were not fully 

captured by the models. Thus, we cannot conclude about drug-induced changes in the volume 

or number of mitochondria. 

Drug-induced mitochondrial defects were manifested as: mitochondrial shape alterations 

including “donuts” with gentamicin and TFV in comparison to “pancakes” and “rods” with 

paracetamol; mitochondrial size alterations in the form of mitochondrial swelling with 

gentamicin, TDF and TFV; mitochondrial cristae fragmentation and reduction in the number of 

mitochondrial granules with all drugs. Mitochondrial morphological alterations have a direct 

impact on mitochondrial functions, which are vital for cellular functioning, from ATP generation 

to regulation of apoptosis (Galloway and Yoon 2012). For example, mitochondrial swelling, 

considered to be an early sign of functional deterioration of the organelle, is an indicator of the 

opening of the mitochondrial permeability transition pore (Arpagaus et al. 2002; Herlitz et al. 

2010). Thus, mitochondrial swelling together with cristae damage can result in a disruption of 

the electron transport chain, leading to a decrease in the ATP production. 

 

In conclusion, this work demonstrates the high homology between zebrafish and mammals for 

drug metabolism and drug-induced morphological and functional tubular alterations. Together, 

these results support the use of zebrafish in toxicological studies. 

 

 

Corresponding author 

Judit Morello Bullón 

orcid.org/0000-0002-1148-9329 

Chronic Diseases Research Centre, NOVA Medical School, NOVA University of Lisbon 

Rua Câmara Pestana, 6, 1150-082 

Lisbon, Portugal 

judit.morello@nms.unl.pt 

 

Acknowledgments 

We would like to thank Maysa Franco and Ana Cristina Borges from the Fish Facility of the 

Gulbenkian Institute of Science. 

 

 

208 

mailto:judit.morello@nms.unl.pt


CHAPTER 6 
 

Funding 

This work was supported by the Calouste Gulbenkian Foundation, Gulbenkian Professorship 

121986/2012; the Foundation for Science and Technology through the grant ANR/BEX-

BID/0153/2012, contract IF/00951/2012 (to SSL), fellowship PD/BD/52420/2013 (to RJ) and 

travel ship SFRH/BSAB/114291/2016 (to JM); iNOVA4Health Research Unit, LISBOA-01-

0145-FEDER-007344. 

 

 

Ethical statement 

All procedures performed in studies involving animals were in accordance with the ethical 

standards of the institution or practice at which the studies were conducted. 

 

Conflict of interests  

None. 

 

 

References 

Arpagaus S, Rawyler A, Braendle R (2002) Occurrence and characteristics of the 

mitochondrial permeability transition in plants. J Biol Chem 277:1780–1787. 

Basile D, Anderson M, Sutton T (2012) Pathophysiology of Acute Kidney Injury. Compr Physiol 

2:1303–1353. 

Bonventre J, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin 

Invest 121:4210–4221. 

Chevalier RL (2016) The proximal tubule is the primary target of injury and progression of 

kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol 

311:F145-61. 

Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, et al (2013) Histone deacetylase inhibitor 

enhances recovery after AKI. J Am Soc Nephrol 24:943–53. 

Clarot I, Chaimbault P, Hasdenteufel F, et al (2004) Determination of gentamicin sulfate and 

related compounds by high-performance liquid chromatography with evaporative light 

scattering detection. J Chromatogr A 1031:281–7. 

Cook SF, King AD, van den Anker JN, Wilkins DG (2015) Simultaneous quantification of 

acetaminophen and five acetaminophen metabolites in human plasma and urine by high-

performance liquid chromatography-electrospray ionization-tandem mass spectrometry: 

Method validation and application to a neonatal pharmacok. J Chromatogr B Analyt 

Technol Biomed Life Sci 1007:30–42. 

Drummond IA, Davidson AJ (2010) Zebrafish kidney development. In: Detrich HW, Westerfiled 

M, Zon LI (eds) Methods in cell biology, Third Edit. Elsevier Inc., pp 233–60 

Galloway CA, Yoon Y (2012) Perspectives on: SGP symposium on mitochondrial physiology 

and medicine: what comes first, misshape or dysfunction? The view from metabolic 

209 



CHAPTER 6 

excess. J Gen Physiol 139:455–63. 

Gemer O, Zaltztein E, Gorodischer R (1983) Absorption of orally administered gentamicin in 

infants with diarrhea. Pediatr Pharmacol (New York) 3:119–23. 

Goldstone J V, McArthur AG, Kubota A, et al (2010) Identification and developmental 

expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC 

Genomics 11:643. 

Graham GG, Scott KF Mechanism of action of paracetamol. Am J Ther 12:46–55. 

Hentschel DM, Park KM, Cilenti L, et al (2005) Acute renal failure in zebrafish: a novel system 

to study a complex disease. Am J Physiol Ren Physiol 288:F923-929. 

Herlitz LC, Mohan S, Stokes MB, et al (2010) Tenofovir nephrotoxicity: acute tubular necrosis 

with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int 

78:1171–1177. 

Hill A, Mesens N, Steemans M, et al (2012) Comparisons between in vitro whole cell imaging 

and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants 

earlier in pharmaceutical development. Drug Metab Rev 44:127–140. 

Huang SM, Xu F, Lam SH, et al (2013) Metabolomics of developing zebrafish embryos using 

gas chromatography- and liquid chromatography-mass spectrometry. Mol Biosyst 

9:1372–1380. 

Kersten S, Arjona FJ (2017) Ion transport in the zebrafish kidney from a human disease angle: 

possibilities, considerations, and future perspectives. Am J Physiol Renal Physiol 

312:F172–F189. 

Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA (2005) Organization of the 

pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM 

domain protein Mosaic eyes. Dev Biol 285:316–329. 

Kremer J.R. DNM and JRM (1996) Computer visualization of three-dimensional image data 

using IMOD. J Struc Biol 116:71–76. 

Kumai Y, Bernier NJ, Perry SF (2014) Angiotensin-II promotes Na+ uptake in larval zebrafish, 

Danio rerio, in acidic and ion-poor water. J Endocrinol 220:195–205. 

Kurmi M, Golla VM, Kumar S, et al (2016) Stability behaviour of antiretroviral drugs and their 

combinations. 4: Characterization of degradation products of tenofovir alafenamide 

fumarate and comparison of its degradation and stability behaviour with tenofovir 

disoproxil fumarate. J Pharm Biomed Anal 131:146–155. 

Levi L, Ziv T, Admon A, et al (2012) Insight into molecular pathways of retinal metabolism, 

associated with vitellogenesis in zebrafish. AJP Endocrinol Metab 302:E626–E644. 

Lopez-Novoa JM, Quiros Y, Vicente L, et al (2011) New insights into the mechanism of 

aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79:33–45. 

Luckenbach T, Fischer S, Sturm A (2014) Current advances on ABC drug transporters in fish. 

Comp Biochem Physiol Part - C Toxicol Pharmacol 165:28–52. 

Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that 

preserve resolution. J Struc Biol 120:343–352. 

210 



CHAPTER 6 
 

Mazer M, Perrone J (2008) Acetaminophen-induced nephrotoxicity: pathophysiology, clinical 

manifestations, and management. J Med Toxicol 4:2–6. 

McGrath P, Li C-Q (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. 

Drug Discov Today 13:394–401. 

Mihaljevic I, Popovic M, Zaja R, Smital T (2016) Phylogenetic, syntenic, and tissue expression 

analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics 17:626. 

Nevedomskaya E, Mayboroda OA, Deelder AM (2011) Cross-platform analysis of longitudinal 

data in metabolomics. Mol Biosyst 7:3214–22. 

Olson H, Betton G, Robinson D, et al (2000) Concordance of the toxicity of pharmaceuticals 

in humans and in animals. Regul Toxicol Pharmacol 32:56–67. 

Pacchiarotta T, Hensbergen PJ, Wuhrer M, et al (2012) Fibrinogen alpha chain O-

glycopeptides as possible markers of urinary tract infection. J Proteomics 75:1067–1073. 

Pannicke U, Hönig M, Hess I, et al (2009) Reticular dysgenesis (aleukocytosis) is caused by 

mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41:101–

105. 

Peng H-C, Wang Y-H, Wen C-C, et al (2010) Nephrotoxicity assessments of acetaminophen 

during zebrafish embryogenesis. Comp Biochem Physiol C Toxicol Pharmacol 151:480–

6. 

Peterson RT, MacRae CA (2012) Systematic Approaches to Toxicology in the Zebrafish. Annu 

Rev Pharmacol Toxicol 52:433–453. 

Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for 

processing, visualizing, and analyzing mass spectrometry-based molecular profile data. 

BMC Bioinformatics 11:395. 

Price VR (2002) ATP Depletion Of Tubular Cells Causes Dissociation of the Zonula Adherens 

and Nuclear Translocation of -Catenin and LEF-1. J Am Soc Nephrol 13:1152–1161. 

Rafelski SM (2013) Mitochondrial network morphology: building an integrative, geometrical 

view. BMC Biol 11:71. 

Randhawa MA (2009) Calculation of LD50 values from the method of Miller and Tainter, 1944. 

J Ayub Med Coll Abbottabad 21:184–185. 

Rider SA, Mullins LJ, Verdon RF, et al (2015) Renin expression in developing zebrafish is 

associated with angiogenesis and requires the notch pathway and endothelium. Am J 

Physiol - Ren Physiol 309:F531–F539. 

Rider SA, Tucker CS, Del-Pozo J, et al (2012) Techniques for the in vivo assessment of cardio-

renal function in zebrafish (Danio rerio) larvae. J Physiol 590:1803–9. 

Saad M, Cavanaugh K, Verbueken E, et al (2016) Xenobiotic metabolism in the zebrafish: a 

review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 

families 1 to 3. J Toxicol Sci 41:1–11. 

Schieber NL, Nixon SJ, Webb RI, et al (2010) Modern Approaches for Ultrastructural Analysis 

of the Zebrafish Embryo. In: Methods Cell Biol. pp 425–442 

Schindelin J, Arganda-Carreras I, Frise E, et al (2012) Fiji: an open-source platform for 

211 



CHAPTER 6 

biological-image analysis. Nat Methods 9:676–682. 

Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: An open 

platform for biomedical image analysis. Mol Reprod Dev 82:518–529. 

Smith KY, Patel P, Fine D, et al (2009) Randomized, double-blind, placebo-matched, 

multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir 

for initial HIV treatment. AIDS 23:1547–1556. 

Tourret J, Deray G, Isnard-Bagnis C (2013) Tenofovir effect on the kidneys of HIV-infected 

patients: a double-edged sword? J Am Soc Nephrol 24:1519–27. 

Westhoff JH, Giselbrecht S, Schmidts M, et al (2013) Development of an automated imaging 

pipeline for the analysis of the zebrafish larval kidney. PLoS One 8:1–13. 

Wingert R a, Davidson  a J (2008) The zebrafish pronephros: a model to study nephron 

segmentation. Kidney Int 73:1120–1127. 

Wingert RA, Selleck R, Yu J, et al (2007) The cdx genes and retinoic acid control the 

positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938. 

Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 

337:1062–5. 

 

 

212 



 

 

 

 

 

 

 

 

 

CHAPTER 7 

 
Discussion 

 

 

 

 

 

“What if it’s not everything I dreamed it would be?” 

“It will be.” 

“And what if it is? What do I do then?” 

“Well, that’s the good part I guess. You get to go find a new dream.” 

Tangled, Disney 
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GENERAL DISCUSSION 

 

Establishing a correct body plan in terms of LR is very important for the correct function of 

the internal organs and overall wellbeing. Understanding the several mechanisms that lead to 

correct organ positioning has clinical relevance since, for example in humans, defects in 

heart positioning can lead to severe congenital chronic heart problems. Besides, in the LR 

field we assist to the coordination between the physical properties of a fluid flow, potential 

morphogens, several signalling pathways and overall cell and tissue biology. All together 

makes LR field an interesting and lively one, with still many questions to tackle. 

With this Thesis, we tried to provide new insights into different steps of left-right axis 

establishment. First, we delved into the motility nature of cilia that constitute the zebrafish 

LRO (Kupffer’s Vesicle, KV) and further understood what is the importance of the ratio 

between motile and immotile cilia in order to generate a functional fluid-flow in the LRO. We 

focused on what determines being an immotile vs being a motile cilium. We have 

demonstrated via unprecedented transmitted electron microscopy thorough sampling that all 

KV cilia seem to have a motile ultrastructure. However, we found out that Notch signalling, 

through its effector Her12, is instructing around 20% of these cells to switch off ciliary motility. 

This finding was new and opened a new research line regarding what are the target genes 

for Her12, previously known to be a transcription inhibitor involved in somitogenesis 

(Shankaran et al., 2007). 

We next investigated events that are responding to the flow mediated signalling. We tried to 

evaluate the difference between having no flow and having no Pkd2-mediated way of 

sensing that flow. Evidence for mechanosensation are strongly supported by mutants without 

this calcium channel or its sensing partner, Pkd1l1 (Field et al., 2011; Kamura et al., 2011), 

which suggests that having no Pkd2-mediated flow sensing is the same as having no flow. 

215 



CHAPTER 7 

The experimental difficulties faced on this work made impossible this comparison but gave us 

the surprising suggestion that manipulating Pkd2, even by mildly reducing its levels, had a 

huge impact on LR organ situs.  

We proceeded with further investigating how the lack of Pkd2 was impacting on KV cells 

transcriptome. By doing a KV specific transcriptome profiling, we were able to identify four 

genes: parvalbumin6, frizzled related protein, calcycling binding protein and nicalin1, that are 

differentially expressed in the KV cells between Pkd2 knockdown embryos and controls, 

although none of them was expressed in an asymmetric fashion like dand5. Unfortunately, 

none of these 4 genes had a huge impact on LR when manipulated independently mimicking 

the trends present in the array. Actually, even when the genes were manipulated at the same 

time the resulting organ situs phenotypes showed only around 30% of abnormal laterality, 

which was still not as strong as the phenotype found in the knockdown of Pkd2 (around 60% 

laterality defects). This might indicate that Pkd2 affects left-right in a very broad manner, 

affecting many players downstream. It might also be the case that we are still missing the 

central players affected downstream of Pkd2.  

Among the gene profiling study, we identified a new nodal player in the LR pathway – 

nicalin1 (ncl1). While overexpressing this gene did not produce many defects in terms of LR, 

knocking it down gene by morpholino antisense technology showed a dose-dependent 

phenotype in terms of organ situs defects that increased to as high as 70%. It also affected 

the expression levels and pattern of dand5, the first known right sided asymmetric gene 

expressed in the KV, and left sided lateral plate mesoderm genes like spaw and pitx2. Since 

Ncl1 was identified as a Nodal signalling antagonist acting at the ER to regulate secretion of 

TGF beta proteins, we compared it with another known LR nodal antagonist, dand5. By using 

a null mutant for dand5-/- we were able to assess the role of these two inhibitors and infer on 

how they cooperate to establish a correct LR. We understand now that they are most likely 
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working independently, and both converge on the regulation of the available Nodal/Spaw 

protein levels or other element of the TGF-β signalling pathway. 

To move or not to move  

Cilia motility has been formally demonstrated to be connected to LR axis establishment in 

1998 by Hirokawa’s lab (Nonaka et al., 1998) followed by work done by Supp et al. (1999) 

where they demonstrated that the ATP binding domain of dynein motors was fundamental for 

cilia motility.  Subsequently, the mechanosensation hypothesis (McGrath et al., 2003) gained 

popularity that states the need for motile cilia to generate the flow and immotile cilia to sense 

the flow and transmit this asymmetric information into the cells and tissues. Finding motile 

and immotile cilia and the players of a sensing mechanism in mice, frog and zebrafish LRO 

gave strength to this hypothesis (Bisgrove et al., 2005; McGrath et al., 2003; Sampaio et al., 

2014; Schottenfeld et al., 2007; Schweickert et al., 2007). Yet, some questions remain to be 

answered. How strong does the flow need to be for reliable LR? Reports in mice show that 

slow flow is very effective in establishing LR. Flow starts very slow in the beginning of the 

process in mice LRO (Shinohara et al., 2012), and our flow analysis in Chapter 2 confirmed 

the same progression for zebrafish, showing a strong correlation between increasing cilia 

motility and increasing flow strength (Tavares et al., 2017). Interestingly, in mutant mice for 

dpcd-/-, a ciliary gene that when mutated makes most motile cilia immotile and reduces the 

number of immotile cilia in the crown cells) embryos with flow generated by only two motile 

cilia or reducing the flow with low concentration methylcellulose in WT mice embryos still 

generated embryos with normal expression of LR genetic markers like cerl2 and pitx2. Also, 

it has been shown in mice that asymmetric gene expression happens hours before the flow 

becomes strong (Shinohara et al., 2012). In fish, intraciliary calcium oscillations are already 

observed with a very slow flow (Yuan et al., 2015) but whether these are meaningful for LR 

was not addressed in a time specific manner. The differences between the two models might 
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be solely explained by the differences in the topography of the two LROs. While mice LRO is 

a concave, tear-drop-shaped epithelial field of cells located distally on the ventral surface of 

the embryo (Sulik et al., 1994) where all cilia are useful for flow production, the zebrafish 

LRO is a ciliated vesicle that has to have motile cilia in the equatorial line and dorsal anterior 

region for flow direction and strength, respectively (Pintado et al., 2017). 

If immotile cilia are indeed the sensors, a second question we can ask is what is the 

minimum number of immotile cilia needed for sensing flow reliably. For this the evidence is 

even scarcer and mostly relies on mathematical modelling. In mice it is known that immotile 

cilia in the crown cells, present in the periphery of the node, are crucial for LR (Yoshiba et al., 

2012). Mice mutants for dpcd (a ciliary gene) also have a significant reduction of immotile 

cilia in the crown cells accompanying the shortage of motile cilia and still have normal 

expression of LR genetic markers (providing the existence of at least two motile cilia) 

(Shinohara et al., 2012). Mathematical simulations for the zebrafish LRO predict that the 

number of immotile cilia present in zebrafish are not sufficient to reliably sense the flow due 

to its variability and high noise level (Ferreira et al., 2017). However, by using a slower 

scanning speed our own work contradicted Ferreira et al. (2017) observations: while they 

only see around 5% of immotile cilia, we see around 20%. This value, according to their 

mathematical modelling, would be enough for mechanosensation to occur (Tavares et al., 

2017). Although recent work by Clapham lab by Delling et al. (2016) has disputed the role of 

node primary cilium as a mechanosensor in mice, many labs are still working to build on this 

hypothesis. One of the reasons being the fact that in Delling et al. (2016) study, the calcium 

probe used had a very high dissociation constant, which means that it is good for time-

resolution, but it has less affinity for calcium when in low, resting, concentrations (Delling et 

al., 2016). This might indicate that small calcium oscillations occurring in the cilium, like the 

ones observed in Yuan et al. (2015), might have been missed by Delling et al. (2016).  
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Another pertinent unanswered question is if the Pkd2-mediated sensing mechanism is the 

only one necessary for reliable LR. Pkd2 and its partner Pkd1l1 are present in mice (Field et 

al., 2011) and medaka (Kamura et al., 2011) and are both needed for correct LR. Field et al. 

(2011) showed that Pkd2 and Pkd1l1 physically interact and are co-localized in the cilium. 

Also, Pkd1l1 mutant phenocopies the Pkd2 mice mutant, leading to no nodal or pitx2 

expression on the LPM, indicating a failure to activate Nodal signalling in the LPM, while 

nodal and cerl2 are still expressed around the node in a symmetric fashion (Field et al., 2011; 

Pennekamp et al., 2002). Since the node architecture and cilia motility are not affected, this 

evidence strongly supports that Pkd2-Pkd1l1 are mechanically sensing the flow and without 

it, cerl2 remains symmetric and blocks further Nodal signalling from occurring. In zebrafish, 

pkd2 mutant leads to a majority of bilateral spaw in the LPM while pkd2 morphant shows 

near randomization (Bisgrove et al., 2005; Schottenfeld et al., 2007). As for dand5, it is 

reported normal in the mutants (Schottenfeld et al., 2007) and mainly symmetric in the 

morphants (present in this Thesis, Chapter 3). When compared with mice model, Pkd2 in 

zebrafish does not seem to have such a strong impact on Nodal signalling, i.e., Nodal 

signalling still occurs but the asymmetries are strongly affected, resulting in randomization of 

organ situs. However, dand5 showed the same phenotype as cerl2 in mice in the absence of 

Pkd2. Therefore, in this Thesis Chapter 3, we aimed to compare absence of flow in the LRO, 

that we know causes severe organ situs defects in zebrafish (Sampaio et al., 2014), and 

reduced levels of Pkd2-leading to a defective calcium mediated signalling situation. We 

wanted to see if there were any differences between these two situations in terms of 

outcomes: dand5 and organ situs. This revealed to be hard to execute, since lowering the 

levels of Pkd2 led to defects in the KV cell shape and overall architecture, impacting severely 

on the flow. Since Pkd2 is expressed in many tissues and regulates extracellular matrix in the 

notochord (Mangos et al., 2010), which has been shown to influence KV architecture 

(Compagnon et al., 2014), we decided to use a very well-established technique to 
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knockdown Pkd2 only on the LRO cells (Amack and Yost, 2004). Although it has been 

published that lack of Pkd2 in the LRO alone produced mild results (around 13% of reversed 

heart or gut) (Bisgrove et al., 2005), in our hands and with a lower pkd2 MO concentration, 

we observed organ situs defects similar to what was found in embryos injected at 1-cell stage 

with the same pkd2 MO. Curiously, we still observed the presence of Pkd2 by 

immunostaining along the cilia and in the LRO cells in the pkd2 MODFCs, but so did we find 

Pkd2 protein in the Pkd2 null mutant cup-/- at later stages (Roxo-Rosa et al., 2015). This is 

likely to be due to maternal contribution and long protein half-life, which makes it impossible 

to completely knockdown Pkd2 in the DFC type of morphants. Nevertheless, all these 

treatments still showed severe organ situs defects. All this together suggested that slightly 

reducing the levels of Pkd2 has a huge impact on LR, reinforcing the importance of this 

protein and pointing to the existence of a threshold type of activity for this channel in terms of 

impact in LR. Finally, we still decided to proceed and compare this pkd2 MO DFC injection 

with the absence of flow situation. Our results showed that there were no significant 

differences between reducing Pkd2 (even partially) or eliminating flow. 

Putting it all together, we still cannot rule out the compatible hypothesis that, travelling with 

the flow, there might be morphogens (likely inside vesicles) that will elicit asymmetric 

responses between the left and right sides of the LRO. For example a feasible explanation is 

that it is still possible that Pkd1l1 is not only sensing flow by mechanosensory mechanisms 

but it may be  binding to proteins, like Wnts, and mediating calcium responses as reported by 

Kim et al., (2016). Pkd1 has a G-protein-coupled receptor that, when cleaved, produces a C-

terminal fragment that can enter the nucleus and bind to β-catenin (reviewed in Dalagiorgou 

et al., 2010). This interaction reduced the affinity between β-catenin and T-cell factor 

transcription factor, inhibiting gene transcription and attenuating Wnt signalling (Lal et al., 
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2008). More work can and should be done to identify potential morphogens and further 

testing the potential sensing alternatives of the LR relevant complex Pkd1l1- Pkd2.   

Downstream of calcium 

Calcium is an important signalling pathway in the cell and impacts on cell survival (Yano et 

al., 1998). In LR, calcium is important for the asymmetric oscillations, being present in the 

LRO’s cilia and cells (McGrath et al., 2003; Tanaka et al., 2005; Yuan et al., 2015). A leftward 

calcium wave is the first asymmetric event found, that precedes asymmetric gene expression 

(McGrath et al., 2003). The nodal antagonist cerl2, mouse homologue of dand5, is thought to 

be the first asymmetric gene (Marques et al., 2004), after an asymmetric calcium wave on 

the left also happens (McGrath et al., 2003). In fact, cerl2 mRNA is expressed first 

symmetrically around the mice LRO and then, downstream of flow and upon the calcium 

wave, a Wnt3-dependent cerl2 mRNA degradation starts on the left side, establishing an 

asymmetry towards the right (Marques et al., 2004; Nakamura et al., 2012). Only then, nodal 

asymmetric expression around the node is also established in the mouse, being stronger on 

the left. One interpretation was  that such bias was a direct consequence of the presence of 

less Nodal inhibitor Cerl2, predicted by the degradation of cerl2 mRNA on the left side and 

not directly because of left calcium waves or flow (Kawasumi et al., 2011). In zebrafish, the 

way that this animal achieves the same result is slightly different, dand5 also starts by being 

symmetrically expressed and, as the flow grows stronger, a right-sided asymmetry is 

observed (likely due to a left sided degradation). This asymmetry seems to be completely 

dependent on flow, since lack of flow renders dand5 mostly symmetric (Sampaio et al., 

2014). This raised the question: is dand5 the only asymmetric gene downstream of calcium 

and flow in the LRO? To answer this, our lab decided to do a transcriptomic profile for the 

LRO cells of WT and Pkd2 knockdown embryos, which we detailed in Chapter 4. This strictly 

designed microarray gave us an interesting list of differently expressed genes between these 
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two situations and an even more interesting list of all genes expressed at this time (13-14 

hpf). We therefore looked for obvious candidates such as Wnts, as these had already been 

involved in studies with the mouse model (Nakamura et al., 2012). We looked for Wnt3 and 

Wnt8, genes that have expression domains in the KV region (Lin and Xu, 2009). However, 

although they are expressed at the zebrafish LRO, they are not strongly expressed nor 

asymmetrically expressed, and they were not differently expressed in our microarray. 

Besides, if these genes were responsible for dand5 degradation, overexpressing them would 

lead to less dand5 and knocking them down would lead to more dand5. The authors 

observed exactly the opposite (Lin and Xu, 2009). Other Wnt signalling related gene 

observed was the wnt signalling inhibitor frizzled-related protein. Overexpressing this gene 

led to a significant decrease of dand5 expression level without affecting its pattern. It is 

known that Wnt signalling downregulation leads to cilia length decrease and lefty1 

expression problems in the midline (Lin and Xu, 2009). Our frzb overexpression is 

concordant with this data and might be affecting the LRO in a similar fashion. This is strongly 

contrasting with what is found in mice, suggesting that these two animal models might be 

regulating cerl2/dand5 expression pattern/level differently.  

On the other hand, another interesting candidate was the gene coding for Calcyclin binding 

protein, since its mRNA manipulations led to randomization of dand5 expression pattern. 

Cacybp is known as a central protein that can connect to calcium via calcium binding 

proteins and E3 ubiquitin ligases that degrade β-catenin. β-catenin might be stabilizing dand5 

mRNA, a role that has been described for other mRNAs (Briata et al., 2003), and therefore 

could be mediating a dand5 targeted degradation on the left side dependent on Cacybp. We 

will in the future manipulate β-catenin and assess the impact on dand5 expression pattern.   

We also investigated calcium effectors and found parvalbumin6 to be differently expressed 

between WT and Pkd2 morphants. Knocking down parvalbumin6 did not affect organ situs, 
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while overexpressing it had an impact, suggesting that other parvalbumin genes might 

compensate for its absence while its overexpression might affect calcium normal 

homeostasis. Interestingly, manipulating parvalbumin6 did not have any impact on dand5 

pattern or level, which is against the idea that calcium impacts on dand5 regulation. A way to 

confirm this is to ensure by calcium imaging that manipulating parvalbumin6 levels leads to 

changes in calcium dynamics in the zebrafish LRO. 

Although we found new and interesting and also minor players in LR axis establishment, our 

search did not find any new asymmetrically expressed gene between left and right sides of 

the LRO, as dand5. This raises the question: is dand5 the only asymmetrically expressed 

gene in the LRO or were we looking in the wrong list? In fact, dand5 itself does not appear in 

our differently expressed list, since pkd2 knockdown does not alter dand5 expression level, 

only pattern. To find other asymmetrically expressed genes, we might need to focus on the 

list of all expressed LRO genes and screen for asymmetric candidates with similar 

expression levels as dand5.  

Two inhibitors, One pathway (or maybe two?)  

Cerl2/Dand5 protein is thought to be important on the right side of the mouse LRO to inhibit 

Nodal protein by binding directly to it (Inácio et al., 2013; Marques et al., 2004). More 

recently, Inácio et al. (2013) suggested a new later role of Cerl2/Dand5 on the left side 

where, in a flow dependent manner, Cerl2/Dand5 is needed to terminate Nodal signalling 

(Inácio et al., 2013). This is an interesting observation that suggests new ways of thinking 

about Cerl2/Dand5. So, first, Cerl2/Dand5 protein is secreted locally from the right sided cells 

of the LRO and bind secreted Nodal in the peri-node region. Concordantly, an asymmetry in 

Nodal activity towards the left is detected by phosphorylated Smad2/3 antibody in the peri-

node region at a time when nodal expression is still symmetric. Therefore, this first role of 

Cerl2/Dand5 would occur in the extracellular space on the right side, blocking the Nodal 
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activity there and therefore enforcing the downregulation of nodal on the peri-node region 

that is later observed (Kawasumi et al., 2011). At the same time, flow-triggered cerl2/dand5 

degradation would occur on the left side, allowing Nodal activity there (Nakamura et al., 

2012). Secondly, Cerl2/Dand5 would be secreted into the node lumen from the right side and 

would travel with the flow towards the left side in a time where flow is much stronger (Inácio 

et al., 2013). This is a different concept altogether. The authors show that Cerl2 only 

disappears from the right side of the node in the presence of flow because, when using 

mutants with compromised flow, Cerl2 stays symmetric (Inácio et al., 2013). To assess if this 

termination of Nodal signalling is indeed relevant and necessary, a conditional cerl2-/- mutant 

activated at different timings would be needed. 

When we look to the zebrafish model, the major difference is that the LRO cells do not 

express both dand5 and spaw. Our 3D reconstruction of these expression domains in 

Chapter 5 confirmed what has already been published by Hashimoto et al. (2004): dand5 

expression domain is restricted to the LRO cells and to one extra cell layer laterally, very 

strong in the dorsal cells, while spaw domains are dorsally located and do not overlap with 

those of dand5. Therefore, if Dand5 was being released into the KV lumen on the right side 

and travelling towards the left side, it would have to be incorporated into the KV cells by 

endocytosis and then exocytosed towards the Spaw domain dorsally in order to terminate the 

Nodal signalling there, as it is suggested in mice. Although possible, it is more likely that 

Dand5 protein is being released to the extracellular domain and impacting on Spaw being 

released by this spaw domain on both sides, stronger on the right than on the left. If this has 

an impact on spaw expression domain, it remains to be further validated, but it certainly 

seems it should be affecting Spaw travelling towards the LPM. Experiments using a 

phosphorylated SMAD antibody would be useful to clarify this question in zebrafish. Also, to 

ensure if Dand5 is being secreted into the lumen or not, it would be interesting to collect the 
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LRO liquid and analyse it through mass spectrometry. Unfortunately, due to the minute liquid 

amounts (60 picoliters per KV) these experiments are still technically very challenging. 

Our microarray also identified a novel Nodal antagonist that has not been associated with LR 

before. Nicalin1, expressed on the endoplasmic reticulum and thought to be responsible for 

the correct trafficking of Lefty in mesendoderm patterning (Haffner et al., 2004, 2007). 

Knocking down ncl1 in the whole embryo or just in the LRO cells leads to the same organ 

situs defects, meaning that it has an important role in the LRO. When we compare Nicalin1 

knockdown to dand5-/- mutants, we can appreciate that lack of dand5 is more severe for LR 

than that of ncl1, since the first leads to 70% of heterotaxia and the second to less than 50%. 

However, when both Nodal inhibitors are downregulated, 90% of embryos end up showing 

heterotaxia, pointing to a potential synergistic epistasis. Due to its ER function, and since we 

do not detect any Lefty1 expression in the zebrafish LRO by in situ hybridization, we can 

hypothesize that Ncl1 could have a role in Dand5 or for Nodal secretion. In the dand5-/- 

mutant, ncl1 overexpression cannot rescue LR because Dand5 protein is probably not being 

produced. This is further confirmed with the very high and bilateral spaw expression pattern 

in the LPM. Dand5 mutants have a majority of bilateral spaw due to the absence of Dand5 

secretion by the LRO cells. On the other hand, ncl1 morphants show less spaw mRNA levels 

which is incompatible with the idea as Ncl1 being regulating Dand5 secretion. In a situation 

where Ncl1 would be needed for Dand5 secretion more spaw mRNA levels should be 

expected because Spaw regulates its own expression positively (Saijoh et al., 2000). Also, 

overexpressing dand5 in ncl1 morphants cannot rescue the organ situs defects. All this 

together indicates that these two proteins might work independently and Ncl1 might be 

responsible for the trafficking of other TGF-β signalling elements. 

To further address the role of Ncl1, we decided to mutate ncl1 with CRISPR-Cas9 technique. 

Although it has been described that mutants can sometimes develop compensatory 
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mechanisms to overcome the impact of the mutations (Rossi et al., 2015), morpholinos have 

been looked upon with mistrust by the scientific community due to high toxicity and off-

targets. Also, an approach with morpholinos in early stage of development blocks even 

mRNAs maternally provided, leading to stronger phenotypes compared with mutations that 

do not affect the maternal contribution. Although our ncl1 morpholino was partially rescued 

by ncl1 mRNA, we still intend on ordering a mismatch morpholino in order to control for 

developmental delay (Stainier et al., 2017). Another important control is indeed producing a 

mutant that can phenocopy the morphant (Stainier et al., 2017). So, by using CRISPR-Cas9 

technology, we produced a mutant for ncl1 that has a six base pair insertion, altering one 

amino acid (a Leucine into an Histidine) and inserting 2 new ones (both Methionine). This 

detected mutation happens in the signal peptide sequence that impacts on protein 

localization to the endoplasmic reticulum. Very preliminary data show that embryos 

homozygous mutant had smaller eyes, which can be explained by the strong expression of 

ncl1 found in the eyes during development. Also, these embryos showed strong heart situs 

phenotypes, with a majority of central hearts. In the future, we will be analysing these 

mutants with all the LR markers and we will study flow and dand5 patterns. In addition, 

crossing these new mutants with dand5 mutants will enable for epistatic tests and for 

potential rescue experiments by spaw and dand5 overexpression in a much cleaner 

approach.  

Zebrafish as a good model for Human Diseases 

Despite many differences between animal models and humans, animal models are still 

unparalleled to study many human related diseases. Zebrafish has been continuously 

growing as disease model, mainly due to their physical characteristics like transparency and 

giving numerous progeny, all of which allow cutting costs at many levels, but also due to 

incredible similarities with the human species in terms of genetics and metabolism. Work 
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from our lab has shown how zebrafish LRO can be used as a model to study cyst inflation 

mechanisms and assess the impact of compounds that would ameliorate patients with 

Polycystic Kidney Disease (Roxo-Rosa et al., 2015). The similarities between zebrafish 

pronephros and human kidney in terms of compound metabolism and acute response were 

described in chapter 6 (Gorgulho et al., 2017). In sum, zebrafish is attractive and less 

expensive alternative to the mouse model, and a more complete system than cell cultures.   

Final remarks 

Science progression is nowadays, and more than ever, done by small incremental steps. I 

hope that, with this Thesis, we shed new light in some aspects of zebrafish LR axis 

establishment, like the role of Notch signalling in cilia motility and new potential targets 

working downstream of the calcium signalling. The addition of a new Nodal signalling 

inhibitor to the already complex network of genes working on LR is a new important piece 

that was until now unknown and will be further validated in the future. LR is a very interesting 

field that brings together scientists from very different grounds of expertise. It also needs 

more people working in the same direction: analysing the same readouts with fairly similar 

methods and presenting the results in a way that can be comparable between different labs. 

It is an area with still many interesting unanswered questions that will keep bringing people 

together in the future.  
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