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ABSTRACT 

Predictive models have been largely used in organizational scenarios with the increasing 

popularity of machine learning. They play a fundamental role in the support of customer acquisition 

in marketing campaigns. This report describes the development of a propensity to buy model for 

personal accident insurance products. The entire process from business understanding to the 

deployment of the final model is analyzed with the objective of linking the theory to practice. 
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1. INTRODUCTION AND MOTIVATION 

The Master’s degree in Advanced Analytics at NOVA IMS offers the option of writing a thesis or 
developing a practical project through an internship with the purpose of applying the theory studied 
during the first year of the master to earn the degree in Advanced Analytics. The aim of this report is 
to describe the development of a predictive model for understanding the propensity to buy a 
Personal Accident Insurance product at Ocidental Seguros. 

One of the main reasons for studying predictive models is due to the enormous amount of data 
that business produce today. As a result, the need to process this information to gain insights and 
make improvements has become fundamental to stay competitive. The insurance industry is an 
example of an industry that has taken advantage of analytics. One of the main objectives of an 
insurance company, besides increasing its client base, is to increase the number of policies held by its 
clients. Data mining techniques are applied to achieve this goal, especially predictive modelling. 

Predictive modelling is used in the marketing of many products and services. Insurers can use 
predictive models to analyze the purchasing patterns of insurance customers in addition to their 
demographic attributes. This information can then be used to increase the marketing success rate, 
which is a measure of how often the marketing function generates a sale for each contact made with 
a potential customer. Predictive analytics used to analyze the purchasing patterns may allow the 
agents to focus on the customers who are more likely to buy, thereby increasing the success of 
marketing campaigns. 

This report is structured in two main parts. Part I is focused on the literature review and 
explanation of the predictive modelling process, while Part II comprises the application of the theory 
outlined in the first section relating it to a practical business scenario. Additional business 
specifications are described to achieve this goal throughout the development of a predictive model 
applied to a propensity to buy personal accident insurance products. 
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2. PART I 

Developing a predictive model it is one of the steps that are encompassed in the data mining 

process. As such, Part I of this report starts with a brief explanation of the data mining process and 

proceeds with the explanation of the predictive modelling task. 

 

2.1. DATA MINING PROCESSES 

Before analyzing the techniques applied to predictive modelling, it is crucial to have an overview 

of the whole data mining process. Two main methodologies with similar approaches are presented 

below. Their applications are detailed in the practical section. 

2.1.1. CRISP-DM 

CRISP-DM1 (Olson & Delen, 2008) is a process widely used by the industry members. This 

process consists of six phases that can be partially cyclical (Figure 1): 

                                                           
1 Cross-Industry Standard Process for data mining 
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Figure 1 - CRISP-DM 

 Business Understanding: Most of the data mining processes aim to provide a solution to a 

problem. Having a clear understanding of the business objectives, assessment of the current 

situation, data mining goals and the plan of development are fundamental to the achievement 

of the objectives. 

 Data Understanding: Once the business context and objectives are covered, data 

understanding considers data requirements. This step encompasses data collection and data 

quality verification. At the end of this phase, a preliminary data exploration can occur. 

 Data Preparation:  In this step, the data cleaning techniques are applied to prepare the data to 

be used as input for the modelling phase. A more thorough data exploration is carried during 

this phase providing an opportunity to see patterns based on business understanding. 

 Modelling: The modelling stage uses data mining tools to apply algorithms suitable to the task 

at hand. The next section of this report is dedicated to detail a few techniques applied during 

this step. 



 

4 
 

 Evaluation: The evaluation of the models is done by taking into account several evaluation 

metrics and comparing the performance of the models built during the modelling phase. This 

step should also consider the business objectives when choosing the final model.  

 Deployment: The knowledge discovered during the previous phases need to be reported to 

the management and be applied to the business environment. Additionally, the insights gained 

during the process might change over time. Therefore, it is critical that the domain of interest 

be monitored during its period of deployment. 

 

2.1.2. SEMMA 

In addition to CRISP-DM, another well-known methodology developed by the SAS Institute is the 

SEMMA2 process (Olson & Delen, 2008) shown in Figure 2.  Each phase of the process is described 

below: 

 

Figure 2 - SEMMA 

 Sample: Representative samples of the data are extracted to improve computational 

performance and reduce processing time. It is also appropriately partition the data into 

training validation and test data for better modelling and accuracy assessment; 

 Explore: Through the exploration of the data, data quality is assured and insights are gained 

based on visualization and summary statistics. Trends and relationship can also be identified in 

this step; 

 Modify: Based on the discoveries during the exploration phase it might be necessary to 

exclude, create and transform the variables in the data set before the modelling phase. It is 

                                                           
2 Sample, Explore, Modify, Model and Assess 
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also important to verify the presence of outliers, which can damage the performance of the 

models; 

 Model: During this phase, the search task of finding the model that best accomplish the goals 

of the process is performed. The models might serve different purposes, but are generally 

classified into two groups. The first concerns the descriptive models, also known as 

unsupervised learning models, this set of techniques aim to describe the structure and/or 

summarize the data. Clustering and association rules are examples of descriptive/unsupervised 

algorithms. The second group comprehends the predictive models, also known as supervised 

learning models, the objective of these models is to create structures that can predict with 

some degree of confidence the outcome of an event based on a set of labeled examples. A 

more precise definition is given in the next section; 

 Assess: In this final step of the data mining process the user assesses the model to estimate 

how well it performs. A common approach to assess the performance of the model is to apply 

the model to a portion of the data that was not used to build the model. Then, an unbiased 

estimative of the performance of the model can be analyzed. 

 

The two data mining processes mentioned give an overview of the development of a predictive 

model. These two approaches were shown because the CRISP-DM relates the data mining process 

with the business context, while SEMMA details the technical steps needed to build a model once the 

business objectives have been defined. The table below (Table 1) shows the similarity between each 

phase of both processes. 

CRISP-DM SEMMA 

Business 
Understanding 

- 

Data Understanding Sample 
Explore 

Data Preparation Modify 

Modelling Model 

Evaluation Assessment 

Deployment - 

Table 1 – CRISP-DM & SEMMA 

After giving an overview of the data mining process, we can now concentrate on the modelling 

part of the process. The next section is dedicated to describing the predictive models used during the 

practical section.  
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2.2. PREDICTIVE MODELS 

As mentioned in the previous section, the modelling step of a project can have two approaches 

according to the objective, a predictive or descriptive modelling analysis. In this section, the 

predictive models discussed are focused on a binary classification problem since it is the scenario of 

the practical section of this report. A few concise definitions of predictive modelling are presented 

below. 

“Predictive modeling is a name given to a collection of mathematical techniques having in 

common the goal of finding a mathematical relationship between a target, response, or “dependent” 

variable and various predictor or “independent” variables with the goal in mind of measuring future 

values of those predictors and inserting them into the mathematical relationship to predict future 

values of the target variable” 

 (Dickey, D. A., 2012, Introduction to Predictive Modeling with Examples) 

“Predictive Analytics is a broad term describing a variety of statistical and analytical techniques 

used to develop models that predict future events or behaviors. The form of these predictive models 

varies, depending on the behavior or event they are predicting. Most predictive models generate a 

score (a credit score, for example), with a higher score indicating a higher likelihood of the given 

behavior or event occurring” 

(Nyce C., 2007, Predictive Analytics White Paper) 

“Predictive modelling (also known as supervised prediction or supervised learning) starts with a 

training data set. The observations in a training data set are known as training cases (also called 

training examples, instances, or records). The variables are called inputs (also known as predictors, 

features, explanatory variables, or independent variables) and targets (also known as response, 

outcome, or dependent variable). For a given case, the inputs reflect your state of knowledge before 

measuring the target” 

(Christie et al., 2011, Applied Analytics Using SAS Enterprise Miner) 

The definitions above state that predictive model is a relationship between a target variable and 

a set of inputs. This relationship is detected by analyzing the training data set. Additionally, other 

data sets are used to improve the performance of a predictive model and its ability to generalize for 

cases that are not in the training data, validation data and test data address this problem. The 

former is used to evaluate the error of the model and gives an indication when to stop training to 

improve its generalization, while the latter is used exclusively to give an unbiased estimation of the 

performance of the model. 

Regardless of the predictive model, it must fulfill the following requirements: 

 Provide a rule to transform a measurement into a prediction; 

 Be able to attribute importance among useful input from a vast number of candidates; 

 Have a mean to adjust its complexity to compensate for noisy training data. 
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In the following subsections, the three most commonly used predictive modelling methods and 

a combination of them  are detailed,  considering the implementations provided by the SAS EM3 data 

mining tool.  

2.2.1. Logistic Regression 

Logistic Regression is a type of regression applied when the target variable is a dichotomous 

(binary) variable and it belongs to a class of models named GLM (generalized linear models). The goal 

of logistic regression is to estimate the probability of an event conditional to a set of input variables 

(Hosmer, Lemeshow, 1989).  After estimating the probability of an instance, the classification of it as 

event or non-event can be made.  

As mentioned previously, the target variable can take value 1 with probability of success p or 

value 0 with probability (1-p).  Variables with this nature follow a Bernoulli distribution, which is a 

special case of the Binomial distribution when the number of trials is equal to 1. The relationship 

between the target variable and the inputs is not a linear function in a logistic regression, a link 

function denominated logit is used to establish the association between the inputs and the target 

variable. 

𝑙𝑜𝑔𝑖𝑡(𝑝) =  ln (
𝑝

1 − 𝑝
) 

However, the probability p is unknown, it has to be estimated conditional to the inputs. As a 

result, the following equation describes the relation between the probability and the inputs: 

ln (
𝑝

1 − 𝑝
) =  𝛽̅𝑇𝑋̅ 

With some algebra, the relationship can be simplified as the equation below.  

𝑝̂ =   
1

1 + 𝑒−𝛽̅𝑇𝑋̅
 

The term on the right side of the equality is known as logistic function. If we define u = 𝛽̅𝑇𝑋̅, the 

relationship between the sigmoid function f and u can be visualized in Figure 3. Large values of u give 

high values of the dependent variable (𝑝̂=f(u)), while high negative values of u give values of the 

dependent variable close to 0.The values of f(u) are interpreted as the estimated posterior 

probabilities 

                                                           
3 SAS Enterprise Miner 
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Figure 3 – Sigmoid Function. 

 

The goal of logistic regression is to correctly predict the category of the outcome for individual 

cases using the most parsimonious model. The coefficients 𝛽̅ are estimated through maximum 

likelihood, but the choice of the most parsimonious model is subject to a variable selection method. 

Essentially, the choice of an adequate model is based on the significance of the coefficients 

associated with the input variable. The first possibility of variable selection method is the Backwards 

Selection, with this option the training begins with all candidate inputs and removes the inputs until 

only inputs with p-values determined by an F-test or t-test are lower than a predefined significance 

level, typically 0.05. The Forward Selection method starts with no input variable, the inputs are 

included in the model sequentially based on the significance of each variable. At each iteration, the 

variable with the lowest p-value lower than the significance level is included in the model. This 

process is repeated until there are no more variables that fulfill this entry criterion. Lastly, the 

Stepwise Selection starts as Forward Selection, but the removal of inputs is possible if an inputs 

becomes non-significant through the iterations. This process continues until no variable meets the 

entry criterion or other stop condition is reached. 

The final model, depending on the selection method, can also be evaluated on the validation 

data. An alternative for not relying exclusively on the statistical significance of the model consists of 

evaluating the model at each step of the model selection. Then, the model with the highest 

performance on the validation set is chosen regardless if any of the inputs is significant or not. 
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2.2.2. Decision Trees 

Decision Trees are among the most popular predictive algorithms due to their structure and 

interpretability. Additionally, they are applied in various fields, ranging from medical diagnosis to 

credit risk. 

2.2.2.1. Decision Trees Representation 

Decision trees classify instances by sorting them down from the root node to a leaf node. Each 

node in the tree test an if-else rule of some variable of an observation, and each branch descending 

from that node corresponds to one of the possible values of this attribute. This process is repeated 

until a leaf node is reached. Figure 4 represents this procedure. 

 

Figure 4 – Decision Tree Representation. 

The first rule, at the base (top) of the tree, is named the root node. Subsequent rules are named 

interior nodes. Nodes with only one connection are leaf nodes. A tree leaf provides a classification 

and an estimate (for example, the proportion of success events). A node, which is divided into sub-

nodes is called parent node of sub-nodes, whereas sub-nodes are the child of parent node (Rokach & 

Maimon, 2015). 

 

2.2.2.2. Growing a Decision Tree 

The growth of a decision tree is determined by a split-search algorithm. To measure the 

goodness of a split different functions can be used, the most known are Entropy and Chi-Square, both 

approaches are available in SAS EM.   
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2.2.2.3. CHAID (Chi-Square Automatic Interaction Detection) 

The splitting criterion in CHAID is based on the p-value of the Pearson Chi-Square of 

Independence, which defines the null hypothesis as the absence of a relation between the 

independent variable and the target variable. By selecting the input variable with the lowest 

significant p-value, the algorithm is intrinsically selecting the variable that has the highest association 

with the target variable at each step (Ritschard, 2010). 

This algorithm has two steps: 

1) Merge step: The aim of this step is to group the categories that are not significantly different 

for each input variable. For example, if a nominal variables X1 has levels c1, c2 and c3. Then, a 

chi-square test for each pair of levels is computed. The test with the highest p-value indicates 

what levels should be aggregated. This process repeats until only significantly aggregated 

levels are eligible for splitting; 

2) Split search: In this step, each input resulting from the previous step is considered for split. 

Then, for each input, the algorithm searches for the best split. That is, the point (or the classes 

for nominal variables) that maximizes the logworth function. The logworth of a split is a 

function of the p-value associated with the Chi-Square test of the input obtained in the 

previous step and the target variable,  it is given by the following equation: 

𝑙𝑜𝑔𝑤𝑜𝑟𝑡ℎ =  − log10 (𝐶ℎ𝑖 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑝 − 𝑣𝑎𝑙𝑢𝑒) 

The input that provides the highest logworth is selected for split. Then, another split is 

calculated if no termination criterion is met. 

The termination criteria in CHAID trees are the following: 

1) No split produce a logworth higher than the threshold defined; 

2) Maximum tree depth is reached; 

3) Minimum number of cases in a node for being a parent node is reached, so it cannot split any 

further; 

4) Minimum number of cases in a node for being a child node is reached. 

 



 

11 
 

In SAS EM the default value for comparison of the logworth is 0.7, which is associated with a p-

value of 0.2. Then, if an input has a logworth higher than 0.7, it is eligible to be used in a split. The 

logworth function can be analyzed in Figure 5, the dashed line represents the threshold.  

 

 

Figure 5 – Logworth function. 

  

 

 

2.2.2.4. Impurity Based Trees 

Differently from the Chi-Square splitting criterion, which is based on statistical hypothesis 

testing, the entropy reduction criterion is related to information theory. Entropy measures the 

impurity of a sample. The entropy function E of a collection S in a c class classification is defined as: 

E(S) = − ∑ 𝑝𝑖
𝑐
𝑖=1 × 𝑙𝑜𝑔2(𝑝𝑖) 

Where  𝑝𝑖  is the proportion of S belonging to class 𝑖. For a binary target variable S, the entropy 

function is displayed in Figure 6 and it is computed as: 

E(S) = −[𝑝 ∗ 𝑙𝑜𝑔2(𝑝) + (1 − 𝑝) ∗ 𝑙𝑜𝑔2(1 − 𝑝)] 
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Figure 6 – Entropy of a Binary Variable 

Figure 6 shows the variation of the entropy for a binary target variable. The maximum is reached 

when there is no distinction for the target variable, which corresponds to a 50%-50% proportion of 

event and non-event. As a result, the aim of the algorithm is to find the split that minimizes the 

entropy, which provides the largest difference in proportion between the target levels.  

Entropy measures the impurity of a split in the training examples. To define the effectiveness of 

a variable in classifying the training data the algorithm uses a measure called information gain (Gain), 

which is the reduction in entropy caused by the partitioning of the examples according to an input 

variable (Mitchel, 1997). The Gain relative to a collection S and an input A is defined as: 

Gain(S, A) ≡ Entropy(S) - ∑
|𝑆𝑣|

|𝑆|𝑣 ∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)  Entropy(𝑆𝑣) 

Values(A) is the set of all possible values for input A, and 𝑆𝑣 is the subset of S for which input A 

has value 𝑣. This measure is computed for each variable. Then, the variable that gives the largest 

Gain is chosen to split. It is important to notice that the initialization of the algorithm computes the 

initial entropy of the system by computing the entropy of the target variable. The previous formulae 

presented in this section assume nominal features, but decision trees use information gain for 

splitting on numeric features as well. To do so, a common practice is to test various splits that divide 

the values into groups greater than or less than a numeric threshold. This process binds the numeric 

features, allowing the information gain to be calculated as usual. 
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The stopping criterion is reached when there is no possible increase in information gain for a 

split in a branch or all training examples belong to the same target class. Because information gain 

criteria lack the significance threshold feature of the chi-square criterion, they tend to grow 

enormous trees. Pruning and selection of a tree complexity are based on validation data. 

 

 

2.2.3. Artificial Neural Networks 

Neural Networks are a class of models that belong to a set called black box methods because the 

mechanism that transforms the inputs into the outputs is obfuscated by an imaginary box (Lantz, 

2013). However, the mechanism behind neural networks is derived from the knowledge of how a 

biological brain responds to stimuli from sensory inputs (Mitchel, 1997).  

 

Figure 7 - Artificial Neural Network Representation 

 

Figure 7 illustrates an artificial neural network, the type of neural networks shown has three 

layers. The first layer is called input layer (the inputs are 𝑥1, 𝑥2, and 𝑥3), the second layer is the 

hidden layer and the third layer is the output layer. The connections between the layers a𝑘
𝑖  are called 

weights, the superscripts identify the layer, while the subscripts show the number of the weight. In 

each neuron in the hidden layer and output layer an activation function f is applied to the linear 

combination of weights and inputs as follow: 

𝑦(𝑥) = 𝑓 (∑ a𝑖𝑥𝑖 + a𝑛+1𝑏𝑖𝑎𝑠

𝑛

𝑖=1

) 
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The elements of a neural network are described below: 

 Network topology: The topology of network describes the number of neurons in the model as 

well as the number of layers and the manner they are connected; 

 Activation function:  This is a function that transforms a neuron’s combined input signals into 

a single output to be transmitted further in the network; 

 Training algorithm: The training algorithm specifies how connection weights are set in order to 

inhibit or excite neurons in proportion to the input signal. 

 

2.2.3.1. Network Topology  

As it might expected, the number of layers and neurons increase the complexity of the neural 

network and the ability of the network to adapt to the training data more accurately. As a result, 

adding too many hidden layers or neurons might lead to overfitting. There is no general rule to 

determine the number of hidden neurons or layers. However, the evaluation on the validation data 

can be used to indicate an appropriate number of hidden neurons and layers.  

In this section, also in the practical section, the only network topology considered is the feed 

forward topology, which implies that the neural network has three layers, the input layer, the hidden 

layer and the output layer. Moreover, all the neurons in a layer are connected to all the other 

neurons in the subsequent layer, except the bias term. Figure 7 shows an example of a feed forward 

network. 

2.2.3.2. Activation Function 

The activation function is the tool that enables the information pass through the network. A 

common activation function is the sigmoid activation function because of its properties such as non-

linear, monotonically increasing, easily differentiable and bounded between 0 and 1 (Anthony, 2001), 

as shown in Figure 8. 
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Figure 8 – Sigmoid Activation Function. 

  

 

2.2.3.3. Training Algorithm 

The topology of a network itself has not learned anything. To gain knowledge, it must be trained 

on the input data. As the neural network processes the input data, connections between the neurons 

are strengthened or weakened. This process is computationally expensive, only after the 

development of efficient algorithms to update the weights neural networks started being applied. An 

algorithm commonly used is the backpropagation algorithm. This algorithm has two main phases: 

 Forward phase: The neurons are activated in sequence from the input layer to the output 

layer, applying each neuron’s weights and activation function along the way. When iteration 

reaches the output layer, an output signal is produced; 

 Backward phase:  The network’s output signal resulting from the forward phase is compared to 

the true value in the training data. The difference between the network’s output signal and the 

true value results in an error that is propagated backward in the network to modify the 

connection weights between neurons and reduce future errors.   

 

Over the iterations of forward and backward phases, the weights are updated in order to reduce 

the error. The amount by which each weight changed is determined by a technique named gradient 

descent. This technique uses the derivative of each neuron’s activation function to determine the 
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direction that each weight should be updated by an amount known as the learning rate to reduce the 

error. 

A noticeable disadvantage of neural networks, besides being computationally expensive, is the 

absence of a variable selection mechanism, which can cause premature overfitting. Other 

weaknesses of neural networks can be identified, such as the tendency to overfitting and the 

impossibility of interpretation. 

 

2.2.4. Ensemble Models 

Ensemble models have many advantages (Lantz, 2015), some of them are: 

 Generalization: Since the output of several models are incorporated into a single final 

prediction, the bias of each model are attenuated; 

 Improved performance on massive or small datasets: Many models run into memory or 

complexity limitations. Then, a possible strategy to overcome this issue is to train several small 

models than a single full model. Oppositely, in small data sets ensemble models provide a 

good performance because resampling methods such as bootstrapping are inherently a part of 

many ensemble designs. 

 Synthesize data from distinct domains: Since there is no one-size-fits-all learning algorithms, 

the ensemble’s ability to incorporate evidence from multiple types of models with data drawn 

from different domains. 

 

Ensemble methods are based on the idea that by combining multiple learners, a strong learner 

is created. Two main considerations have to be taken into account when building an ensemble 

model: 

1) The differences  in the models selection and creation; 

2) The method of combining the prediction of the different models into a single prediction. 

To address the first consideration, it must be decided if the models are going to be trained with 

different partitions of the data or the whole data set, and if all the inputs are going to be used for all 

the models. These decisions are made by an allocation function. The aim of the allocation function is 

to increase diversity by artificially varying the input data to bias the resulting learners, even if they 

are of the same type. If the ensemble already includes a diverse set of algorithms such as neural 

networks, decision trees and regression models, the allocation function might pass the data on to 

each algorithm relatively unchanged.  

The second issue is resolved by defining a combination function that manages how the output of 

each one of the models are combined. For example, the average of the posterior probabilities of the 

models for an observation in a binary classification problem might be taken as the posterior 

probability. Another popular approach is the voting strategy, which classifies an instance based on 

the majority of the votes given by the models. 
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It is fundamental to notice that the ensemble model can be more accurate than the individual 

models only if the individual models disagree with one another. If all input models have no variability 

in the prediction amongst themselves, the ensemble of them does not give better results. The 

performance comparison between the ensemble model and the input models should always be 

made. 

 

2.3. PREDICTIVE MODELS EVALUATION 

The process of evaluating machine learning algorithms is crucial to the selection of the final 

model. The evaluation metrics have to be chosen taking into account the objective of the model, the 

nature of the target variable and the characteristics of the data (Solokova & Lapalme, 2009). 

 

2.3.1. Performance Measure of Binary Classification 

To illustrate the many possibilities used to measure the performance of a binary classifier, the 

confusion matrix below is used as a base for the analysis of the metrics discussed in this section. 

              True     Value 
Predicted Value 

0 1 Totals 

0 TN FN TN + FN 

1 FP TP FP + TP 

Totals TN + FP FN + TP TN+FN+FP+TP 

Table 2 – Confusion Matrix 

TN: True negative 

FN: False negative 

FP: False positive 

TP: True positive 

 

2.3.1.1. Accuracy and Misclassification Rate  

The first metric that is used to measure the performance is accuracy. Accuracy is the ratio 

between the correctly classified instances and the total number of instances. 

Accuracy = 
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝐹𝑃+𝑇𝑃
 

Although this metric can be applied to many classification problems, when modelling a class 

imbalanced problem accuracy is not an appropriate measure because it may give an outstanding 

performance level by classifying all the instances as the majority class.  

In SAS EM, instead of calculating accuracy, misclassification rate is computed. The 

misclassification rate is easily computed with the following equation: 

Misclassification rate = 1 – Accuracy 
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Consequently, a high value for accuracy results in a low misclassification rate. 

2.3.1.2. Sensitivity (True Positive Rate) 

The sensitivity of a model measures the capability of the model to correctly classify the event 

instances.  

Sensitivity = 
𝑇𝑃

𝐹𝑁+𝑇𝑃
 

 

2.3.1.3. Specificity (True Negative Rate) 

The specificity of a model measures the capability of the model to correctly classify the non-

event instances.  

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

2.3.1.4. ROC Curve and AUC 

The ROC curve is often used to examine the trade-off between the detection of true positives, 

while avoiding the false positives. The characteristics of a typical ROC diagram are represented in 

Figure 9. The proportion of true positives is shown on the vertical axis, while the proportion of false 

positive can be seen on the horizontal axis.  
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Figure 9 – ROC Curve 

 

A good classifier has a curve that comprises points with high vertical values (sensitivity) and low 

horizontal values (false positivity). As a result, models with these characteristics tend to have high 

areas under the curve (AUC), which is one of the metrics used to compare the performance of 

different models. The perfect model has 1.00 AUC, a model with no discriminant power has AUC 

around 0.5 and an acceptable model has AUC at least greater than 0.7. 

2.3.1.5. Average Squared Error (ASE) 

Average Squared Error (ASE) is commonly associated with regression problems. However, it can 

also be applied to a classification problem. In this case, it is known as Brier’s score (Mauboussin & 

Callahan, 2015). ASE measures the deviance of the estimated posterior probability to the true value 

of the target binary value, it can be computed as follows: 

𝐴𝑆𝐸 =  
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)2

𝑁

𝑖=1
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N is the number of observations classified, 𝑝𝑖  is the estimated posterior probability of the 𝑖𝑡ℎ 

observation and 𝑜𝑖  is its actual value. Small values for ASE indicate a high performance. 

 

2.3.1.6. Cumulative Lift 

The idea behind the cumulative lift is the assumption that a group of instances with high 

estimated posterior probability should also be correlated with the actual success proportion (the 

proportion of 1’s in a binary target data set). Therefore, if the observations are ranked according to 

the posterior probabilities provided by a model, the group with the highest probability should also 

have the highest success rate. Then, the success rate in this group has to be compared with the 

success rate in the whole data set.  

To compute the cumulative lift, a percentage that corresponds to the proportion of the data 

that are going to be analyzed must first be defined. For example, if the proportion of the data to be 

analyzed is 10% of a 100 instances data set, then the success proportion in the top 10 instances with 

the highest probability is going to be compared to the success in the whole 100 instances in the data 

set. The cumulative lift is computed as follows: 

Cumulative Lift = 
𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑥% 𝑔𝑟𝑜𝑢𝑝 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑆𝑢𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡
 

This metric is extremely useful when we wish to have a classifier that is able to rank instances 

based on their posterior probability, not only if the posterior probability exceeds a specific threshold. 

Figure 10 represents of a lift chart. Notice that when the whole data set is used, the cumulative lift is 

1. 

 

Figure 10 - Lift Chart 
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3. PART II 

This part of the report is dedicated to detail the approach taken to build a propensity to buy 

personal accident insurance model at Ocidental Seguros. The objective of the model is to identify the 

clients that are likely to buy. These clients are called leads, which are going to be contacted through a 

campaign by sales agents. 

 

3.1. METHODOLOGY 

As mentioned in the first section, the methodology followed was a combination of CRISP-DM 

and SEMMA. This section is focused on the description of each step of the methodology and relating 

it to the theory presented in Part I. 

 

3.1.1. Business Understanding 

The marketing department at Ocidental Seguros has several campaigns to advertise their 

products and consequently increase its sales. By identifying clients that are likely to buy their 

products (leads), we can gain understanding of the clients and save resources that would be spent on 

valueless customers. That is the main reason why the company needs a predictive model designed to 

predict propensity to buy. 

Campaigns are evaluated according to several metrics. The three main metrics are: 

1. Success Rate (Hit Rate): Success rate shows the general success of a campaign. It is simply 

computed by the ratio between the number of sales divided by the number of contacts made 

in a campaign. 

 

𝑆𝑢𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =
# 𝑆𝑎𝑙𝑒𝑠

# 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑠 
 

 

2. Simulation Rate: The simulation rate is the ratio between the number of simulations and 

contacts made. This metric can also be interpreted as the effort that the sales agents put on 

advertising the insurance products.  

 

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
# 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠

# 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑠 
 

 

3. Conversion Rate: Conversion rate is the ratio between the number of sales and the number of 

simulation. As mentioned before, the simulations rate shows the effort of the commercial 

team, if the commercial team is putting effort to increase simulations but the sales leads are 

not appropriate, the conversion rate tends to be low. In comparison, if the leads are suitable to 

the campaign and the sales agents work effectively, then the conversion rate tends to be high. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
# 𝑆𝑎𝑙𝑒𝑠

# 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 
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Ultimately, the goal of a campaign is to increase the success rate. Having in consideration that 

not all leads are going to be contacted, it is essential that the final model is able to identify a group of 

leads who are likely to buy a personal accident insurance product.  

 

3.1.2. Data Understanding 

3.1.2.1. Data Sources 

The data used for modelling came from different sources and had different nature. First type of 

data collected was demographical data such as age, gender and marital status. Secondly, variables 

concerning insurance variables such as indications of owned products, counts of policies in each line 

of business and client’s segment classification were added to the data set. Finally, Millennium BCP 

provided financial variables, although they were codified because of privacy matters, having access 

to this data was a valuable resource. 

All variables were aggregated into one single ABT (Analytical Base Table) at client level. The 

whole list of variables can be found in Table 14 in the Appendix. 

 

3.1.2.2. Target Definition 

The target definition was a critical step because of its implications on type of observations 

selected. More importantly, the target definition had to take into account the business objectives. 

For the personal accident propensity to buy model, three options for the target variable were 

designed: 

1. Cross Sell: Cross Sell is a campaign that contact the leads and offers a discount on the product 

proportional to the number of distinct lines of business owned. Clients with a diverse portfolio 

are offered higher discounts. 

 Universe: All clients contacted through this campaign between 1st June 2016 and 1st June 

2017. 

 Target: The success events are the clients that were contacted and bought only a personal 

accidents product. 

 Rejection Reason: This target definition was rejected because the company needed a 

model that targeted clients without offering any associated discount. 

 

2. Simulations: The simulations target definition was based on the simulations of the clients not 

associated with any campaign. 

 Universe: All clients that made a simulation between 1st June 2016 and 1st June 2017. 

 Target: Clients that made a simulation and converted (purchased a personal accident 

policy). 

 Rejection Reason: Clients that make simulation already show interest in the product, 

which was not the appropriate type of clients to be targeted.  
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3. Possessions: This target definition was based on the assumption that all active clients (client 

that have at least one active policy) that never had personal accident before could have 

purchased a product within the period of analysis. 

 Universe: All clients that were active between 1st June 2016 and 1st June 2017 and 

had never had a personal accident product before. 

 Target: With this definition, the success events are the clients that purchased a personal 

accident policy without any discount. 

 Rejection Reason: Not rejected. 

Among the three possible options of the target variable, the option selected was the 

Possessions target because it avoided the selection of clients already prone to buy, as it was the case 

of the Simulations target. Furthermore, it also handled the effect of discounts by excluding the 

clients that bought products discount. Then, the target variable was specified as follows: 

 

1. Target variable: Binary variable that indicates if a client bought a Personal Accident product 

without a discount between 1st June 2016 and 1st June 2017. 

2. Data Universe: 

 1’s: All clients that have never had a Personal Accident product and purchased one without 

a discount between 1st June 2016 and 1st June 2017. 

 0’s: All active clients between 1st June 2016 and 1st June 2017 who had never owned a 

Personal Accidents product and did not purchased any Personal Accidents during the 

period of analysis. 

 

Once the target variable has been selected, the data concerning the instances in the target 

variable was collected and the data preparation phase was reached. Additionally, the data set had 

405886 observations of which 758 were success events. Therefore, the proportion of success was 

0.18%. 

 

 

3.1.3. Data Preparation 

In this step the input data started to be analyzed. The first step is importing the data to SAS EM, 

during this process the variable roles were defined (target, input, ID, etc.) and variables levels 

(binary, interval, nominal, etc.). A preliminary exploration is done during this operation. For instance, 

when creating the data source, only variables that had less than 20% of missing values and nominal 

variables with less than 20 classes were selected, and were not unary. The variables rejected during 

this phase are shown in Table 15 in the Appendix. 

Initially, the number of variables in the data set was 392. After creating the data source in SAS 

EM and applying the filtering criteria previously described, the total number of variables is 298, of 

which 284 are inputs. In addition, some variables were excluded for conceptual reasons. For 

example, the number of simulations in the last seven days was excluded because a sale is always 

associated to a simulation. Then, one of the most important variables would be the number of 
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simulations in the past seven days. Hence, leads that are likely to buy in a longer term should also be 

considered, but the variables associated with long term purchases would be disregarded by the 

model.   

The next step is to compute descriptive statistics to understand and gain acquaintance of the 

data. More importantly, the analysis of the distribution of the variables is important at this stage. It is 

visible that the age variable of the individuals in the data set has a bell shaped distribution (Figure 

11). However, the majority of the variables in the dataset are highly positively skewed, particularly 

the variables that are counts of events such as the number of claims, as shown in Figure 12. 

 

Figure 11 – Distribution of Idade_Adj 
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Figure 12 – Distribution of No_Claims_Ever_NH 

Based on the plots of the variables it is clear the presence of outliers in the data set. To diminish 

the impact of outliers in the modelling phase, a truncation strategy was employed. That is, for 

variables with values that exceeded a manual threshold defined by visual inspection, we replaced 

them by a specified threshold value. This approach was taken because it avoided the exclusion of 

more success event in the data set or introduce more bias by filtering only the non-event. 

Another fundamental obstacle that had to be overcome was the presence of missing values in 

some variables. For numeric variables, the median was assigned, since the vast majority of the 

variables are highly skewed. In case of nominal/categorical variables, the approach adopted was to 

assign the most frequent level.  

One of the most important decisions to be made during this phase is the sampling strategy. The 

proportion of success in the data set is almost negligible. To counter the imbalance in the data set, all 

the success events were selected and a random sample of the non-event observations was drawn to 

equally balance the data to a 50:50 proportion of events and non-events. Hence, the sample 

obtained has 758 events and 758 non-events.  

The consequences of equally balancing the data are reflected in the posterior probabilities 

because the models assume that the proportion of events in the population is equal to the training 

data, which is not true. The possible solutions for this problem are discussed in section 3.1.5. 

After drawing a sample, it is good practice to compare the distributions and descriptive statistics 

between the whole data set and the sample to verify that the sample is truly representative of the 

population. As an example, comparing Figure 13 to Figure 11 the similarity in the distribution of 

Idade_Adj can be observed, demonstrating that the sample is representative of the population. The 
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statistics comparison of the variable in the whole data set and the sample can be analyzed in Table 

16  and Table 17 in the Appendix. 

 

 

Figure 13 – Sample Distribution of Idade-Adj 

The last process of this stage consisted of partitioning the sample into training and validation 

sets. The sample could have been partitioned into training, validation and test data. However, 

because of the small size of the sample, it was decided to partition the sample into training and 

validation data to have more observations used to train the models. Yet, a test data set posteriorly 

collected to assess the performance of the final model, section 3.1.5 describes this process. The 

distribution of the sample was defined to be 70% training and 30% data. Table 3 displays the result of 

the data partition. 

     Data Role          Level 0 1 Totals 

Train 530 531 1061 

Validation 228 227 455 

Totals 758 758 1516 

Table 3 – Data Partition. 

As previously stated, the data set has a large number of inputs, before modelling a variable 

selection method must be determined to reduce dimensionality, especially if the modelling algorithm 

has no built-in method of selecting important variables, such as artificial neural networks. 
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3.1.3.1. Variable Selection 

Removing redundant and irrelevant variables from the training data set often improves 

prediction performance. A quick verification of redundancy in the data set can be made by looking at 

the correlation matrix. In Figure 14, a representation of the correlation matrix can be seen, the 

values highlighted in green indicate correlation higher than 0.65, while values highlighted in red 

indicate correlations lower than -0.65. The correlations between binary variables were also 

considered with φ correlation coefficient being considered in this case. The correlation between 

binary variables and numeric variables was computed as the point-biserial correlation. Lastly, the 

correlations between numeric variables were calculated using Pearson’s correlation coefficient, 

although this metric only measures the linear relationship between quantitative variables, it is still a 

popular approach to identify associations between variables. 

 

Figure 14 – Correlation Matrix 

Two variable selection procedures were used: 

 R-square: The R-Square method can be used with a binary as well as with an interval-scaled 

target. With this method, variable selection is performed in three steps: 
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1. In the first step, a correlation analysis between each input and the target variable is 

performed. All input variables with a squared correlation above a specified threshold (the 

default threshold is 0.005) are considered for the next step, all the other variables are 

rejected.  

2. All the variables selected in the previous step are evaluated sequentially thorough a 

forward stepwise regression. At each successive step, an additional input variable is 

chosen that provides the largest incremental increase in the model’s R-square. The 

stepwise process terminates when no remaining input variables can meet the Stop R-

Square criterion (the default minimum R-Square improvement is 0.0005). 

3. A final logistic regression analysis is performed using the predictive values that are output 

from the forward stepwise selection as the independent input. Because there is only one 

input, only two parameters are estimated (the intercept and the slope). All variables 

associated with significant models through an F-test are selected. 

 Chi-Square: When this criterion is selected, the selection process does not have two distinct 

steps, as in the case of the R-square criterion. Instead, a binary chi-square based tree is grown. 

Interval variables are binned to compute the chi-statistic, the number of bins can be specified 

(the default is 5). Only training data is used to grow the tree. As a result, the tree overfits the 

training data, which is not a problem, since predictive performance is not the goal at this stage. 

The inputs considered in the growth of the tree are passed on to the next node with the 

assigned role of Input. 

Each variable selection method gives a different input data set. Therefore, the approach 

adopted applies the modelling phase to each of the two resulting data sets. Then, a verification of 

redundant inputs was carried based on the correlation matrix. High correlations between numeric 

variables were not found. Since both methods are based on improvement of fit sequentially, it was 

expected not have much redundancy among the selected inputs. However, high values of correlation 

between pairs of binary variables and numeric variables were found, especially when the binary 

variable is a binned version of the numeric variable, these few occurrences were kept.  

3.1.4. Modelling 

The modelling phase is carried in a similar manner for all data sets. Four algorithms were 

employed during this stage, logistic regression, decision trees, neural networks and ensemble 

models. Various configurations of these algorithms were tested. The diagram below exemplifies this 

process. 
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Figure 15 – Modelling Process. 

 

3.1.4.1. Regression Models 

Logistic regression is an appropriate regression model for a binary response variable because it 

attempts to predict the probability of a success event of a binary target variable. The event of 

interest in this case is the purchase of a personal accident policy. 

Several model configurations were applied, the first set of models were created with the input 

variables unaltered but with different variable model selection methods. The three possible 

methods, backwards, forward and stepwise were tested. In addition to choosing a model selection 

method, a selection criterion must be determined. The selection criterion designated was the   

Average Squared Error. 

The second set of models was created similarly to the first set, the only difference is the addition 

of polynomial terms up to the second degree for numeric variables. By adding polynomial terms, the 

complexity of the model increases resulting in less prediction bias, but also increases the possibility 

of overfitting.  Another consequence of adding polynomial terms is some loss in interpretability. 

Another option to add flexibility to models is to consider interaction among the terms. SAS EM 

allows the inclusion of two factor interactions. When including interaction terms, it is also important 

to decide if keeping hierarchies is necessary, it implies that during the model selection phase two 

factor interaction terms are included in the model only if both main effects have been already 

included. A set of regression models were created considering interaction terms without hierarchies, 

allowing interaction between terms even if the main effects are not included in the model. 

Finally, the fourth and last set of models created for regression considers polynomial terms and 

interaction terms. The model selections tested were forward and stepwise. Backward selection was 

Modelling
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Data Source

R-Square
Predictive 

Models
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not considered in this set because since we are considering interaction and polynomial terms, the 

number of inputs is large, resulting in an immense number of coefficients that are computationally 

expensive to train and overly complex. 

 

Figure 16 - Regression Models  

Figure 16 illustrates the process described above. The regression model with the best 

performance was achieved with forward model selection and polynomial terms. Figure 17 represents 

the model selection method. The horizontal values indicate the iteration, while the vertical values 

show the average squared error. As it is observed, the lowest average squared error for the 

validation data is reached in the 18th iteration, which indicates that this model considers 18 inputs. 

The coefficients estimates are presented in Table 4. 
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Figure 17 – Regression model Average Squared Error 

 

 

Parameter Class Estimate 
Pr > 

ChiSq 

Intercept   127.768 0.5103 

G_REP_Cod_Segmento_New 0 307.605 0.6916 

G_REP_Cod_Segmento_New 1 -67.107 0.7292 

G_REP_Cod_Segmento_New 2 -70.026 0.7180 

G_REP_Cod_Segmento_New 3 -79.082 0.6834 

G_REP_Profession_class 0 45.362 <.0001 

G_REP_Profession_class 1 33.665 . 

G_REP_Profession_class 2 33.711 <.0001 

Ind_Sim_6Mth 0 -0.4561 0.0016 

Ind_hasActive_NaoVida 0 0.9129 <.0001 

Ind_hasActive_VR_VendaAtiva 0 -11.289 <.0001 

Ind_hasActive_VendaAssoc 0 0.5422 <.0001 

VAR_10 0 72.664 . 

VAR_17 0 0.6481 <.0001 

VAR_54   -0.1685 0.0005 

No_VR_VendaAtiva_Ever*No_VendaAssoc_Active   -0.8701 0.0214 

No_VR_VendaAtiva_Ever*SUM_of_Ind_CAP   -19.865 0.0111 

SUM_of_Ind_CAP*VAR_42   0.1140 0.0013 

SUM_of_Ind_CAP*VAR_54   -0.1165 0.0242 

VAR_29*VAR_42   0.0402 <.0001 

VAR_42*VAR_44   -0.0429 <.0001 

VAR_44*VAR_45   0.0248 0.0056 

VAR_44*Years_Client   -0.00646 0.0222 

VAR_44*Yrs_Since_Latest_Purchase   -0.0149 0.0008 

Table 4 – Regression Model Coefficients. 

The sign of the parameter estimates indicates the direction of contribution to the target 

variable. Parameters with positive values contribute to the success of the target variable considering 
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all the other variables static, while variables with negative estimated coefficients contribute to the 

non-success of the target variable. It is important to notice that class variables with c levels originate 

c-1 indicator variables, with c > 2. For example, the variable G_REP_Cod_Segmento_New has five 

levels from 0 to 4. Then, four binary variables are created to indicate if an observation belongs to the 

level indicated in column Class of Table 4. Level 4 is not shown because it is the reference level. 

 
Accuracy Sensitivity Specificity AUC Lift 10% ASE 

Train 0,829 0,823 0,836 0,918 1,998 0,115 

Validation 0,796 0,784 0,807 0,892 2,004 0,133 

Table 5 – Regression Model Evaluation 

The performance of this model according to various metrics is shown in Table 5, the complete 

list of metrics calculated in SAS EM is available in Table 18 in the Appendix. Moreover, the 

performance of the selected regression model can also be visually evaluated in Figure 18 and Figure 

19, which show the ROC curves and misclassification rates for training and validation data. Although 

the selected regression model has the lowest validation ASE, it does not have the lowest 

misclassification rate for the validation data, the reason for choosing the ASE over misclassification 

rate is discussed in section 3.1.5. 

 

 

Figure 18 – Regression ROC Curve 
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Figure 19 – Regression Misclassification Rate 

 

3.1.4.2. Decision Trees 

Similarly to the regression models, many configurations of decision trees were tested (Figure 

20). The first difference in configuration concerns the splitting rule criterion. As mentioned in section 

5.1, the two splitting rule analyzed were the Chi-square statistic (p-value) and entropy reduction. 

Then, the parameters varied in the two approaches are discussed separately below. 

 

 

1. Criterion Based on Statistical Hypothesis Test (CHAID) 

 Significance Level: The CHAID method of tree construction specifies a significance level of a 

Chi-square test to stop the tree growth. The split must have an associated p-value that 

provides a logworth (–log10(𝑝 − 𝑣𝑎𝑙𝑢𝑒)) greater than −log10(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙). 

Figure 20 – Decision Tree Models 
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Hence, increasing the value if the significance levels, less discriminating the branches are. 

The default significance level is 0.2, which generates a threshold value of approximately 0.7. 

Significance levels of 0.1, 0.2, 0.5 and 0.7 were tested, with the best results obtained with 

significance level equal to 0.5; 

 Maximum Branch: The number of branches determines how many splits a node can 

produce. Besides being the default value, the minimum number of branches is 2, resulting 

in a binary tree. Increasing the number maximum branches to 3 and 5 has not caused any 

improvement on performance.  

 Maximum Depth: This value specifies the maximum number generations of nodes that we 

want to allow in a decision tree. The maximum depth can be set to integers between 1 and 

50, the default number of generations for the Maximum Depth is 6. 

 Bonferroni Adjustment: Bonferroni adjustments accounts for multiple tests that might 

occur in a node. Applying this penalization causes the splitting to be more conservative. 

Better results were achieved with Bonferroni adjustment; 

 Minimum Categorical Size: The minimum categorical size specifies the minimum number of 

training observations that a categorical value must have before the category can be used in 

a split search. Increasing this value has not caused any improvement in performance.  

 Assessment: Average Square Error. 

 

 

2. Criteria Based on Impurity (Entropy) 

 Significance Level: Significance level is not applicable in the case of entropy based trees, 

since no statistical test is computed; 

 Maximum Branch: Allowing more branches did not improved performance. The default 

configuration of 2 branches (binary tree) resulted in lower Average Squared Error. One of 

the reasons for this outcome is the greedy nature of CART. 

 Maximum Depth: Trees grow until they meet the stopping criterion or the maximum depth 

is reached. Then, allowing a tree to grow further it can increase performance, but it also 

increases the chances of overfitting.  

 Bonferroni Adjustment: This option is not applicable for entropy based trees. 

 Minimum Categorical Size: Increasing the default value of 5 in the minimum categorical 

size resulted in better performance.  

 Assessment: Average Square Error. 

All the models were evaluated with ASE as a selection criterion, tress evaluated with this metric 

are known as probability trees. The tree model with the lowest ASE on validation data was obtained 

with entropy reduction set as splitting rule and configuration options shown in Table 6. 
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Decision Tree Configuration 

Nominal Target Criterion: Entropy 

Significance Level: - 

Maximum Branch: 2 

Maximum Depth: 10 

Minimum Categorical 
Size: 

10 

Assessment: Average Square Error 

Table 6 – Decision Tree Configuration 

The performance of the model according to the metrics discussed in section 2.3 are analysed in 
Table 7. 

 
Accuracy Sensitivity Specificity AUC Lift10% ASE 

Train 0,823 0,772 0,874 0,901 1,998 0,124 

Validation 0,800 0,727 0,873 0,868 1,917 0,145 

Table 7 – Decision Tree Evaluation 

Figure 21 illustrates the pruning phase and how the final tree was obtained by decreasing the 

ASE on validation set while avoiding overfitting. Decreasing the ASE error also causes a reduction in 

misclassification rate, as presented in Figure 22. Furthermore, the performance of the model can be 

visualized through the ROC curve in both training and validation data in Figure 23, both plots show 

large areas under the curve.  

 

 

Figure 21 – Decision Tree Average Squared Error 
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Figure 22 – Decision Tree Misclassification Rate 

 

Figure 23 – Decision Tree ROC curves. 
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In summary, the performance of the selected tree model is satisfactory. The interpretation of 

the tree mode is easily made by looking at the tree structure in Figure 24. For visualization purposes, 

only the top two levels are shown, the whole tree structure can be found in the appendix (Figure 35). 

The root node uses the variable G_REP_Cod_Segmento_New to split the data into two branches, the 

right branch indicates that the value of the class G_REP_Cod_Segmento_New variable is 0. 

Additionally, belonging to this class has a positive contribution to be a success event because the 

proportion of events, which is an estimation of the posterior probability, are higher than the 

preceding node on both training and validation data. Moreover, since the proportion of event in this 

node is 100% on training data, no further splitting is required and a leaf node is created, the 

observations that fall into this node are classified as success events. The blue scale of the colour of 

the nodes indicates the percentage of observations correctly classified in the training data. 

 

Figure 24 – Decision Tree Structure 

 

3.1.4.3. Artificial Neural Networks 

Following the same strategy of building regression models and decision trees, different 

configurations of neural networks were tested.  

Two parameters were analyzed, the number of hidden units and the activation function. The 

number of hidden units indicates the complexity of the models because only artificial neural 

networks with one hidden layer were built. The activation function of a unit defines the output of 

that unit given an input or set of inputs. Only two activation functions were considered, the sigmoid 

function and 𝑡𝑎𝑛ℎ (hyperbolic tangent) function. 

A key difference between neural networks and the models applied previously is the absence of a 

variable selection mechanism. As a result, the model has to estimate a large number of parameters, 

which can lead to overfitting. To counter this problem, the inputs selected in the regression and 
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decision tree models were used. This method reduced the number of inputs and led to better results. 

Figure 25 shows the process adopted for building the artificial neural network model. 

 

Figure 25 – Artificial Neural Networks Models 

The first step of reducing the number of inputs based on the other models was crucial. Figure 26 

illustrates the performance of the model using all the input variables available after the R-Square 

variable selection with the standard SAS EM configurations (3 hidden units and 𝑡𝑎𝑛ℎ activation 

function), it was clear that the model quickly overfits and its performance was poor compared to 

other models built previously.  

 

Figure 26 – Artificial Neural Network ASE with all inputs. 

 The lowest validation ASE was reached by configuring an artificial neural network with nine 

hidden units and 𝑡𝑎𝑛ℎ set as the activation function. The inputs of the model variables were the 

same variables used by the final regression model in section 3.1.4.1. Analyzing the performance 
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metrics in Table 8, it is evident that the model has a high performance and similarly to the other 

models built, the specificity is higher than the sensitivity. Additionally, this model has the lowest ASE 

among the artificial neural networks, decision trees and regression models. 

 

  Accuracy Sensitivity Specificity AUC Lift10% ASE 

Train 0,824 0,804 0,843 0,921 1,998 0,114 

Validation 0,809 0,793 0,825 0,897 2,004 0,129 

Table 8 – Artificial Neural Network Evaluation 

 

Figure 27 – Artificial Neural Network Average Squared Error. 

 

Figure 28 – Artificial Neural Network Misclassification Rate. 
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Figure 29 – Artificial Neural Network ROC curves. 

Based on Figure 27 and Figure 28 we can see how artificial neural networks can quickly overfit. 

Moreover, Figure 29 shows how the performance is similar on training and validation data. 

Despite having a decent performance, the lack of interpretability of artificial neural networks 

may be a disadvantage in a business context, due to the impossibility of explaining to the 

stakeholders the driving factors for purchasing a personal accident product. 

3.1.4.4. Ensemble Models 

The combination of several models usually produces better estimates. In SAS EM there are three 

possible ways of combining the output of different input models: 

 Voting: This method is available for categorical targets only. When we use the voting method 

to compute the posterior probabilities, the posterior probability is averaged among the models 

that agree with the majority of the votes; 

 Maximum: The maximum posterior probability is taken among the set of input models; 

 Average: The average of the posteriori probabilities is taken regardless of the target event 

level. 

If all the input models provide the same posterior probability, there is no variability and the 

ensemble model does not provide any enhancement in performance regardless of the function used 

to combine them. In Figure 30, the top 250 posterior probabilities of the regression, decision tree 

and artificial neural networks models combined in an ensemble model provide less extreme 

posterior probabilities. 
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Figure 30 – Posterior Probabilities 

 

The ensemble model with average combination function had the highest performance among 

the available options. The performance metrics in Table 9 demonstrate the high performance of the 

model, the same conclusion can be drawn looking at the ROC Curves in Figure 31. The lowest 

validation ASE among all the models is achieved with this model. The complete list of metrics 

computed in SAS EM is available in Table 18 in the Appendix. 

  Accuracy Sensitivity Specificity AUC Lift10% ASE 

Train 0,853 0,812 0,894 0,935 1,998 0,105 

Validation 0,822 0,775 0,868 0,907 2,004 0,124 

Table 9 – Ensembel Model evaluation 
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Figure 31 – Ensemble Model ROC Curves 

3.1.5. Final Evaluation and Results 

The evaluation of the models must take into account the business aspects of how the campaigns 

are implemented. For this reason, the evaluation of the models had two phases. The first phase is 

related to the development of the models and how their parameters are configured to achieve a 

good performance. During this phase, the choice of the models was mainly based on the average 

squared error because the objective was to provide posterior probabilities close to the target value, 

either 0 or 1. Then, the second phase determines the best model based on the lift of the model, 

which means that the model that not only correctly classifies the instances, but also is able to rank 

them based on the posterior probabilities. As a result, the lift is used as the final evaluation criterion 

for model selection because only a portion of the clients are contacted for marketing campaigns, 

which corresponds to the group with the highest posterior probability. 

Figure 32 shows the performance comparison of the best models according to the cumulative 

lift on the validation data. Except for the decision tree model, the other three models have the same 

performance for lifts up to around 15% of depth. Nonetheless, as the depth increases the model with 

the highest lift is the ensemble model. Also, comparing the metrics in Table 10 and Table 11, the 

highest performance in the majority of the metrics is obtained with the ensemble model.  
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Figure 32 – Cummulative Lift Comparison 

  
Ensemble 

Artificial 
Neural 

Network 
Regression 

Decision 
Tree 

Train: ASE 0,105 0,114 0,115 0,124 

Train: Roc Index 0,935 0,921 0,918 0,901 

Train: Accuracy 0,853 0,824 0,829 0,823 

Train: Sensitivity 0,812 0,804 0,823 0,772 

Train: Specificity 0,894 0,843 0,836 0,874 

Train: AUC 0,935 0,921 0,918 0,901 

Train: Lift 10% 1,998 1,998 1,998 1,998 

Table 10 – Training Performance Comparison. 

 

Ensemble 
Artificial 
Neural 

Network 
Regression 

Decision 
Tree 

      Validation: ASE 0,124 0,129 0,133 0,145 

Validation: Roc Index 0,907 0,897 0,892 0,868 

      Validation: Accuracy 0,822 0,809 0,796 0,800 

Validation: Sensitivity 0,775 0,793 0,784 0,727 

Validation: Specificity 0,868 0,825 0,807 0,873 

      Validation: AUC 0,907 0,897 0,892 0,868 

      Validation: Lift 10% 2,004 2,004 2,004 1,917 

Table 11 – Validation Performance Comparison. 

3.1.5.1. Posterior Probability Adjustment 

During the data preparation phase the sampling strategy defined included all the events of the 

whole data set and a random sample of the non-events in the whole data set was taken to balance 

the sample, this procedure is known as under-sampling the majority class. Then, the models were 

trained and evaluated on this sample. However, the true proportion of events in the population is 

not the proportion in the sample. As a result, the models do not reflect the actual circumstances.  

To counter the problem of balancing the data, the posterior probabilities must be adjusted. A 

possible way of performing the adjustment is presented below (Wielenga, 2017).  
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Assume: 

 𝑃 is the unadjusted predicted probability of the target event based on the model; 

 𝑃𝑎𝑑𝑗 is the adjusted predicted probability of the target event based on the model; 

 𝑝1 is the proportion of the target events in the sample; 

 𝑝0 = 1 − 𝑝1 is the proportion of non-events in the sample; 

 𝜏1 is the proportion of the target events in the population; 

 𝜏0 = 1 − 𝜏1 is the proportion of non-events in the population. 

𝑃𝑎𝑑𝑗 =
(𝑃 ∗ 𝜏1 ∗ 𝑝0)

[(𝑃 ∗ 𝜏1 ∗ 𝑝0) + ((1 − 𝑃) ∗ 𝜏0 ∗ 𝑝1)]
 

The adjusted probabilities keep the same order, but are rescaled. That is, if we rank the 

observations in decreasing order of unadjusted posterior probability, observations with high rank of 

unadjusted probability also have a high rank for adjusted posterior probability.  

3.1.5.2. Test Data Evaluation 

A test data set was collected to assess the performance of the model in a real contacted. As 

referred to earlier in section 3.1.2, the period of analysis for the training data is from 1st June 2016 

and 1st June 2017.  The test data involves all the active clients between 1st June 2017 and 31st 

September 2017 and were not used in the modelling phase. The success event in the test data is 

defined in the same way as in the training data (section 3.1.2.2), except for the period in which the 

observations bought the policies. 

The test data was scored with the final model and the unadjusted posterior probabilities 

obtained are shown in Figure 33, which can be compared with the adjusted probabilities in Figure 34. 

The adjusted probabilities reflect the true propensity to buy, which in reality is low for the majority 

of the population. Moreover, the difference in the median between the shown in Table 12 indicates 

the shift in probabilities after the adjustment. 

  Mean Std Dev Minimum Maximum Median N 

Unadjusted Probabilities 0,552 0,303 0,001 1 0,509 499393 

Adjusted Probabilities 0,215 0,358 0 1 0,029 499393 

Table 12 – Probabilities statistics. 
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Figure 33 – Histogram of Unadjusted Probabilities. 

 

Figure 34 – Histogram of Adjusted Probabilities. 

After adjusting the posterior probabilities, we can compute the cumulative lift on the test data. 

Although the rank of the observation is unaltered, which results in no difference in the lift, having a 
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more realistic estimate of the probability was important for the application of the model in other 

projects. The size of the data is large, so the depth of the cumulative lift can be small. The lift at 5% is 

1.95, resulting in a propensity to buy almost double in the top 5% highest probability group 

compared to a random client selection. Table 13 contains the lift at the specified depths. 

Depth Cum. Lift 

5% 1,954 

10% 1,437 

Table 13 – Test Data Cumulative Lift. 
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4. CONCLUSIONS AND DEPLOYMENT 

This project demonstrated an approach to developing a predictive model. The first part detailed 

the theoretical aspects along with some business specifications. Two main data mining processes 

(CRISP-DM and SEMMA) were presented and related to a predictive model development to establish 

guidelines for the practical part. Then, the algorithms applied during the practical phase and their 

evaluation were reviewed based on the literature. 

The practical section started with the business understanding: how campaigns are evaluated 

and how the predictive model applied to the propensity to buy can add value to the marketing 

campaigns. After gained the knowledge of the business and identified its requirements, the data 

related topics were discussed. 

The data understanding phase presented the data sources and the nature of the data used as 

inputs for the model. An important decision was also made during this phase: the definition of the 

target variable. Three target variable were considered and a detailed analysis was conducted to 

identify the most suitable target variable.  The last task of this phase was the aggregation of all input 

variables into one ABT (Analytical Base Table). 

Before proceeding to the modelling phase, data preparation techniques were applied to ensure 

that data was in the proper format to serve as input for modelling. During this stage, a descriptive 

analysis of the data was conducted with the aim of analyzing the distribution of the variables and 

investigate the existence of irregularities such as missing values, outliers, and redundancy. The 

approaches taken to handle these irregularities were described. On top of that, the sampling strategy 

was decided and the variable selection methods were explained and applied. 

Although data understanding and data preparation took a large portion of the process, the focus 

of the project was on the predictive modelling techniques. Several configurations of logistic 

regression models, decision trees, artificial neural networks, and ensemble models were created and 

evaluated. The final model was selected based on various metrics and its performance on test data 

was also analyzed, confirming that the model contributes to the improvement of campaigns’ success. 

Another important aspect to consider is the validation of the model, not only from a statistical 

perspective, but also from a business point of view. The driving factors leading to a higher propensity 

to buy were discussed with the product manager at Ocidental Seguros. These factors also provided 

possible business opportunities through the interpretation of the models. 

In conclusion, this project was an excellent opportunity to apply the theory in a commercial 

scenario. Although the deployment of the model was not made for a specific personal accident 

product campaign it has been integrated into other projects such as customer Next Best Offer (NBO) 

and Customer Lifetime Value (CLV): both projects require a probability estimate for personal accident 

acquisition. 

4.1. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

Some limitation were identified and listed below along with recommendations for future work: 
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1. One of the main limitations of the model was its broad purpose. As discussed in section 

3.1.2.2, the target definition was the most general among the three options, which resulted 

into a large portion of the customers to be taken into consideration. Alternatively, a model 

could have been designed for a specific segment of clients or a specific campaign.  

2. A more technical limitation concerns the sampling strategy. The sampling strategy adopted 

was under-sampling the majority target level (the non-events) to have a balanced dataset. 

Consequently, a great deal of information was lost by reducing the number of non-events in 

the sample. Many approaches could have attenuated the loss of information, SMOTE 

(Synthetic Minority Over-sampling Technique) is a possible approach that could have been 

adopted if it was available in SAS EM. 

3. SAS EM has many modelling techniques available. Because of time constraints and the number 

of topics that could be explored in this project, the modelling phase was limited to focus on 

decision trees, regression model, artificial neural networks and ensemble models. Other 

modelling techniques could have been applied to generate better results. 
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APPENDIX  

 

Name Type Label 

Cod_Nif Character Número fiscal de contribuinte 

Target_AP Numeric  Target Variable 

Date Date Reference Date 

ID_NIF_Date Character   

Ind_Tomador Character Indicador de tomador 

Ind_Pagador Character Indicador de pagador 

Ind_PessoaSegura Character Indicador de Pessoa Segura 

Profession_class Character Profession class  

SEGMENT_ID Character  Segment 

Dt_Nascimento Date Data de nascimento 

Idade Numeric Idade 

Idade_Adj Numeric Idade_Adj 

Cod_Genero Character Sexo 

Escalao_Etario Character Escalão Etário 

Cod_EstadoCivil Character Estado civil 

Ind_PrimTit_Num Numeric Ind_PrimTit_Num 

Ind_SegTit_Num Numeric Ind_SegTit_Num 

Ind_ClienteBCP_Num Numeric Ind_ClienteBCP_Num 

Cod_Segmento_New Character Cod_Segmento_New 

Cod_Macrosegmento_New Character Cod_Macrosegmento_New 

Ind_Country_PRT Numeric Ind_Country_PRT 

Ind_Nacionalidade_PRT Numeric Ind_Nacionalidade_PRT 

Cod_Postal Character Código Postal 

Cod_Postal_4Digit Character Cod_Postal_4Digit 

Camp_Contact Numeric Camp_Contact 

Camp_Contact_SalesCamp Numeric Camp_Contact_SalesCamp 

Camp_Contact_SimFollow Numeric Camp_Contact_SimFollow 

Camp_Succ Numeric Camp_Succ 

Camp_Succ_SalesCamp Numeric Camp_Succ_SalesCamp 

Camp_Succ_SimFollow Numeric Camp_Succ_SimFollow 

Camp_Unsucc Numeric Camp_Unsucc 

Camp_Unsucc_SalesCamp Numeric Camp_Unsucc_SalesCamp 

Camp_Unsucc_SimFollow Numeric Camp_Unsucc_SimFollow 

Camp_Unsucc_Price Numeric Camp_Unsucc_Price 

Camp_Unsucc_Price_SalesCamp Numeric Camp_Unsucc_Price_SalesCamp 

Camp_Unsucc_Price_SimFollow Numeric Camp_Unsucc_Price_SimFollow 

Num_Claims_Ever Numeric   

No_Claims_Ever_NH Numeric   

No_Claims_Vida Numeric   

No_Claims_Financials Numeric   

No_Claims_NaoVida_NH Numeric   

No_Claims_AP Numeric   

No_Claims_AT Numeric   

No_Claims_AU Numeric   

No_Claims_DI Numeric   

No_Claims_MR Numeric   

No_Claims_RC Numeric   
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No_Claims_Other Numeric   

No_Claims_PPP Numeric   

No_Claims_VR Numeric   

No_Claims_Ann Numeric   

No_Claims_CAP Numeric   

No_Claims_PPR Numeric   

No_Claims_UL Numeric   

No_Claim_1Yr_NH Numeric   

No_Claim_1Yr_H Numeric   

No_Claim_1Yr_NaoVida_NH Numeric   

No_Claim_1Yr_Fins Numeric   

No_Claim_6Mth_H Numeric   

No_Claim_6Mth_NH Numeric   

No_Claim_6Mth_NaoVida_NH Numeric   

No_Claim_6Mth_VR Numeric   

No_Claim_6Mth_Fins Numeric   

No_Claim_1Yr_VR Numeric   

No_Claims_MR_bad Numeric   

No_Claims_MR_good Numeric   

Val_Claims Numeric   

Val_Claims_Vida Numeric   

Val_Claims_Fins Numeric   

Val_Claims_NaoVida Numeric   

Val_Claims_VR Numeric   

Val_Claims_1Yr Numeric   

Val_Claims_6Mth Numeric   

Val_Claims_1Yr_Fins Numeric   

Val_Claims_1Yr_NaoVida Numeric   

Val_Claims_1Yr_VR Numeric   

Val_Claims_6Mth_Fins Numeric   

Val_Claims_6Mth_NaoVida Numeric   

Val_Claims_6Mth_VR Numeric   

No_Claims_7days Numeric   

Val_Claims_7days Numeric   

SUM_of_Ind_Complaint_Under4Days Numeric   

SUM_of_Ind_Complaint_Over17Days Numeric   

SUM_of_Ind_Request_Under3Days Numeric   

SUM_of_Ind_Request_Over7Days Numeric   

SUM_of_Ind_Any_Contact_6Mths Numeric   

SUM_of_Ind_Complaint_6Mths Numeric   

SUM_of_Ind_Request_6Mths Numeric   

SUM_of_Ind_CompFulfilled_6Mths Numeric   

SUM_of_Ind_Comp_rejected_6Mths Numeric   

SUM_of_Ind_Any_Contact Numeric   

SUM_of_Ind_Complaint Numeric   

SUM_of_Ind_Request Numeric   

SUM_of_Ind_CompFulfilled Numeric   

SUM_of_Ind_CompRejected Numeric   

SUM_of_Ind_Complaint_1Yr Numeric   

SUM_of_Ind_Request_1Yr Numeric   

SUM_of_Ind_Request_7days Numeric   

SUM_of_Ind_Complaint_7days Numeric   

Years_Client Numeric Years_Client 
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Active_Tenure Numeric Active_Tenure 

Years_First_Prod_Till_Date Numeric Years_First_Prod_Till_Date 

Yrs_Since_Latest_Purchase Numeric Yrs_Since_Latest_Purchase 

Ind_Inactive_Client Numeric Ind_Inactive_Client 

Ind_Inactive_Client_1Yr Numeric   

Ind_Inactive_Client_6Mth Numeric   

No_Active_Policies Numeric   

No_Ended_Policies Numeric   

No_Ever_Policies Numeric   

No_Annuled_Policies Numeric   

No_Annulled_FaltaPagamento Numeric   

No_Annulled_PedidoCliente Numeric   

No_Annulled_IniciativaBanc Numeric   

No_Annulled_Resgatada Numeric   

No_Annulled_TransCongenere Numeric   

SUM_of_Ind_Vida Numeric   

SUM_of_Ind_Financials Numeric   

SUM_of_Ind_NaoVida Numeric   

SUM_of_Ind_AP Numeric   

SUM_of_Ind_AT Numeric   

SUM_of_Ind_AU Numeric   

SUM_of_Ind_DI Numeric   

SUM_of_Ind_MR Numeric   

SUM_of_Ind_RC Numeric   

SUM_of_Ind_Other Numeric   

SUM_of_Ind_PPP Numeric   

SUM_of_Ind_VR Numeric   

SUM_of_Ind_Ann Numeric   

SUM_of_Ind_CAP Numeric   

SUM_of_Ind_PPR Numeric   

SUM_of_Ind_UL Numeric   

No_LOBs_Ever Numeric No_LOBs_Ever 

No_ProductLines_Ever Numeric No_ProductLines_Ever 

No_LOBs_Active Numeric No_LOBs_Active 

No_ProductLines_Active Numeric No_ProductLines_Active 

Ind_Monoproduto Numeric Ind_Monoproduto 

Ind_MonoProductLine Numeric Ind_MonoProductLine 

No_AP_Active Numeric No_AP_Active 

No_AT_Active Numeric No_AT_Active 

No_AU_Active Numeric No_AU_Active 

No_DI_Active Numeric No_DI_Active 

No_MR_Active Numeric No_MR_Active 

No_RC_Active Numeric No_RC_Active 

No_Other_Active Numeric No_Other_Active 

No_PPP_Active Numeric No_PPP_Active 

No_VR_Active Numeric No_VR_Active 

No_Ann_Active Numeric No_Ann_Active 

No_CAP_Active Numeric No_CAP_Active 

No_PPR_Active Numeric No_PPR_Active 

No_UL_Active Numeric No_UL_Active 

No_PL_Vida_Active Numeric No_PL_Vida_Active 

No_PL_Fins_Active Numeric No_PL_Fins_Active 

No_PL_NaoVida_Active Numeric No_PL_NaoVida_Active 
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No_VendaAtiva_Ever Numeric No_VendaAtiva_Ever 

No_VendaAssoc_Ever Numeric No_VendaAssoc_Ever 

No_VendaAtiva_Active Numeric No_VendaAtiva_Active 

No_VendaAssoc_Active Numeric No_VendaAssoc_Active 

Sum_PremPaid Numeric Sum_PremPaid 

Sum_PremPaid_Active Numeric Sum_PremPaid_Active 

Sum_PremPaid_Inactive Numeric Sum_PremPaid_Inactive 

Sum_PremPaid_VendaAtiva Numeric Sum_PremPaid_VendaAtiva 

Sum_PremPaid_VendaAssoc Numeric Sum_PremPaid_VendaAssoc 

Sum_PremPaid_PL_Vida Numeric Sum_PremPaid_PL_Vida 

Sum_PremPaid_PL_Fins Numeric Sum_PremPaid_PL_Fins 

Sum_PremPaid_PL_NaoVida Numeric Sum_PremPaid_PL_NaoVida 

Sum_PremPaid_1Yr Numeric Sum_PremPaid_1Yr 

Sum_PremPaid_1Yr_Active Numeric Sum_PremPaid_1Yr_Active 

Sum_PremPaid_1Yr_Inactive Numeric Sum_PremPaid_1Yr_Inactive 

Sum_PremPaid_1Yr_PL_Fins Numeric Sum_PremPaid_1Yr_PL_Fins 

Sum_PremPaid_1Yr_PL_NaoVida Numeric Sum_PremPaid_1Yr_PL_NaoVida 

Sum_PremPaid_1Yr_PL_Vida Numeric Sum_PremPaid_1Yr_PL_Vida 

Sum_PremPaid_1Yr_VendaAssoc Numeric Sum_PremPaid_1Yr_VendaAssoc 

Sum_PremPaid_1Yr_VendaAtiva Numeric Sum_PremPaid_1Yr_VendaAtiva 

Sum_PremPaid_6Mth Numeric Sum_PremPaid_6Mth 

Sum_PremPaid_6Mth_Active Numeric Sum_PremPaid_6Mth_Active 

Sum_PremPaid_6Mth_Inactive Numeric Sum_PremPaid_6Mth_Inactive 

Sum_PremPaid_6Mth_PL_Fins Numeric Sum_PremPaid_6Mth_PL_Fins 

Sum_PremPaid_6Mth_PL_NaoVida Numeric Sum_PremPaid_6Mth_PL_NaoVida 

Sum_PremPaid_6Mth_PL_Vida Numeric Sum_PremPaid_6Mth_PL_Vida 

Sum_PremPaid_6Mth_VendaAssoc Numeric Sum_PremPaid_6Mth_VendaAssoc 

Sum_PremPaid_6Mth_VendaAtiva Numeric Sum_PremPaid_6Mth_VendaAtiva 

Sum_PremPaid_NonFins Numeric Sum_PremPaid_NonFins 

Sum_PremPaid_NonFins_VendaAssoc Numeric Sum_PremPaid_NonFins_VendaAssoc 

Sum_PremPaid_NonFins_VendaAtiva Numeric Sum_PremPaid_NonFins_VendaAtiva 

Channel_Classification Character Channel_Classification 

Bank_ClientType_Class Character Bank_ClientType_Class 

Channel_Classification_Active Character Channel_Classification_Active 

Bank_ClientType_Active Character Bank_ClientType_Active 

No_1Yr_Issued Numeric No_1Yr_Issued 

No_1Yr_Issued_StillActive Numeric No_1Yr_Issued_StillActive 

No_1Yr_Issued_VendaAtiva Numeric No_1Yr_Issued_VendaAtiva 

No_1Yr_Issued_VendaAssoc Numeric No_1Yr_Issued_VendaAssoc 

No_1Yr_Issued_NaoVida Numeric No_1Yr_Issued_NaoVida 

No_1Yr_Issued_Fins Numeric No_1Yr_Issued_Fins 

No_1Yr_Issued_VR Numeric No_1Yr_Issued_VR 

No_6Mth_Issued Numeric No_6Mth_Issued 

No_6Mth_Issued_Fins Numeric No_6Mth_Issued_Fins 

No_6Mth_Issued_NaoVida Numeric No_6Mth_Issued_NaoVida 

No_6Mth_Issued_StillActive Numeric No_6Mth_Issued_StillActive 

No_6Mth_Issued_VendaAssoc Numeric No_6Mth_Issued_VendaAssoc 

No_6Mth_Issued_VendaAtiva Numeric No_6Mth_Issued_VendaAtiva 

No_6Mth_Issued_VR Numeric No_6Mth_Issued_VR 

No_1Yr_Annulled Numeric No_1Yr_Annulled 

No_6Mth_Annulled Numeric No_6Mth_Annulled 

Ind_had_Vida Numeric   

Ind_had_Fins Numeric   
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Ind_had_NaoVida Numeric   

Ind_had_AP Numeric   

Ind_had_AT Numeric   

Ind_had_AU Numeric   

Ind_had_DI Numeric   

Ind_had_MR Numeric   

Ind_had_RC Numeric   

Ind_had_Other Numeric   

Ind_had_PPP Numeric   

Ind_had_VR Numeric   

Ind_had_Ann Numeric   

Ind_had_CAP Numeric   

Ind_had_PPR Numeric   

Ind_had_UL Numeric   

Ind_hasActive_AP Numeric   

Ind_hasActive_AT Numeric   

Ind_hasActive_AU Numeric   

Ind_hasActive_DI Numeric   

Ind_hasActive_MR Numeric   

Ind_hasActive_RC Numeric   

Ind_hasActive_Other Numeric   

Ind_hasActive_PPP Numeric   

Ind_hasActive_VR Numeric   

Ind_hasActive_Ann Numeric   

Ind_hasActive_CAP Numeric   

Ind_hasActive_PPR Numeric   

Ind_hasActive_UL Numeric   

Ind_hasActive_Vida Numeric   

Ind_hasActive_Fins Numeric   

Ind_hasActive_NaoVida Numeric   

No_1Yr_Annulled_AP Numeric No_1Yr_Annulled_AP 

No_1Yr_Annulled_AT Numeric No_1Yr_Annulled_AT 

No_1Yr_Annulled_AU Numeric No_1Yr_Annulled_AU 

No_1Yr_Annulled_DI Numeric No_1Yr_Annulled_DI 

No_1Yr_Annulled_MR Numeric No_1Yr_Annulled_MR 

No_1Yr_Annulled_Other Numeric No_1Yr_Annulled_Other 

No_1Yr_Annulled_VR Numeric No_1Yr_Annulled_VR 

No_1Yr_Annulled_Fins Numeric No_1Yr_Annulled_Fins 

No_1Yr_Annulled_RC Numeric No_1Yr_Annulled_RC 

No_1Yr_Annulled_PPP Numeric No_1Yr_Annulled_PPP 

No_6Mth_Annulled_AP Numeric No_6Mth_Annulled_AP 

No_6Mth_Annulled_AT Numeric No_6Mth_Annulled_AT 

No_6Mth_Annulled_AU Numeric No_6Mth_Annulled_AU 

No_6Mth_Annulled_DI Numeric No_6Mth_Annulled_DI 

No_6Mth_Annulled_Fins Numeric No_6Mth_Annulled_Fins 

No_6Mth_Annulled_MR Numeric No_6Mth_Annulled_MR 

No_6Mth_Annulled_Other Numeric No_6Mth_Annulled_Other 

No_6Mth_Annulled_PPP Numeric No_6Mth_Annulled_PPP 

No_6Mth_Annulled_RC Numeric No_6Mth_Annulled_RC 

No_6Mth_Annulled_VR Numeric No_6Mth_Annulled_VR 

No_LOBs_Ended Numeric No_LOBs_Ended 

Sum_PremPaid_VendaAtiva_Active Numeric Sum_PremPaid_VendaAtiva_Active 

Sum_PremPaid_VendaAssoc_Active Numeric Sum_PremPaid_VendaAssoc_Active 
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Sum_PremAnual Numeric Sum_PremAnual 

Avg_PremAnual Numeric   

Avg_PremAnual_Active Numeric Avg_PremAnual_Active 

Ind_1Yr_Issued Numeric   

Ind_1Yr_Issued_StillActive Numeric   

Ind_1Yr_Issued_VendaAtiva Numeric   

Ind_1Yr_Issued_VendaAssoc Numeric   

Ind_1Yr_Issued_NaoVida Numeric   

Ind_1Yr_Issued_Fins Numeric   

Ind_1Yr_Issued_VR Numeric   

Ind_6Mth_Issued Numeric   

Ind_6Mth_Issued_Fins Numeric   

Ind_6Mth_Issued_NaoVida Numeric   

Ind_6Mth_Issued_StillActive Numeric   

Ind_6Mth_Issued_VendaAssoc Numeric   

Ind_6Mth_Issued_VendaAtiva Numeric   

Ind_6Mth_Issued_VR Numeric   

Ind_1Yr_Annulled Numeric   

Ind_6Mth_Annulled Numeric   

Ind_hasActive_VendaAtiva Numeric   

Ind_hasActive_VendaAssoc Numeric   

No_MR_VendaAtiva_Ever Numeric   

No_MR_VendaAssoc_Ever Numeric   

No_MR_VendaAssoc_Active Numeric   

No_MR_VendaAtiva_Active Numeric   

Ind_hasActive_MR_VendaAssoc Numeric   

Ind_hasActive_MR_VendaAtiva Numeric   

No_VR_VendaAtiva_Ever Numeric   

No_VR_VendaAtiva_Active Numeric   

No_VR_VendaAssoc_Ever Numeric   

No_VR_VendaAssoc_Active Numeric   

Ind_hasActive_VR_VendaAtiva Numeric   

Ind_hasActive_VR_VendaAssoc Numeric   

Ind_had_VendaAtiva Numeric   

Ind_had_VendaAssoc Numeric   

Ind_had_MR_VendaAtiva Numeric   

Ind_had_MR_VendaAssoc Numeric   

Ind_had_VR_VendaAtiva Numeric   

Ind_had_VR_VendaAssoc Numeric   

Ind_Ended_Pol_7days Numeric   

Ind_Annulled_Pol_7days Numeric   

Ind_Inactive_Cli_7days Numeric   

Ind_First_Purchase_7days Numeric   

Ind_Sim_Ever Numeric Ind_Sim_Ever 

Ind_Sim_1Yr Numeric Ind_Sim_1Yr 

Ind_Sim_6Mth Numeric Ind_Sim_6Mth 

Ind_Conv_Ever Numeric Ind_Conv_Ever 

Ind_Conv_1Yr Numeric Ind_Conv_1Yr 

Ind_Conv_6Mth Numeric Ind_Conv_6Mth 

Ind_Sim_NoConv_Ever Numeric Ind_Sim_NoConv_Ever 

Ind_Sim_NoConv_1Yr Numeric Ind_Sim_NoConv_1Yr 

Ind_Sim_NoConv_6Mth Numeric Ind_Sim_NoConv~_6Mth 

No_Sim_1Yr Numeric No_Sim_1Yr 
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No_Conv_1Yr Numeric No_Conv_1Yr 

Ind_Sim_AT_7days Numeric Ind_Sim_AT_7days 

Ind_Sim_AU_7days Numeric Ind_Sim_AU_7days 

Ind_Sim_DI_7days Numeric Ind_Sim_DI_7days 

Ind_Sim_MR_7days Numeric Ind_Sim_MR_7days 

Ind_Sim_PPP_7days Numeric Ind_Sim_PPP_7days 

AVG_of_Ind_Prem_GreaterThanAvg Numeric   

AVG_of_Ind_Prem_GreaterThanMedia Numeric   

Ind_has_BankVars Numeric   

DT_REF Numeric   

VAR_2 Numeric   

VAR_3 Numeric   

VAR_4 Numeric   

VAR_5 Numeric   

VAR_6 Numeric   

VAR_22 Numeric   

VAR_23 Numeric   

VAR_28 Numeric   

VAR_29 Numeric   

VAR_30 Numeric   

VAR_31 Numeric   

VAR_32 Numeric   

VAR_33 Numeric   

VAR_35 Numeric   

VAR_36 Numeric   

VAR_37 Numeric   

VAR_38 Numeric   

VAR_39 Numeric   

VAR_40 Numeric   

VAR_41 Numeric   

VAR_42 Numeric   

VAR_43 Numeric   

VAR_44 Numeric   

VAR_45 Numeric   

VAR_46 Numeric   

VAR_47 Numeric   

VAR_48 Numeric   

VAR_49 Numeric   

VAR_50 Numeric   

VAR_51 Numeric   

VAR_52 Numeric   

VAR_53 Numeric   

VAR_54 Numeric   

VAR_55 Numeric   

VAR_56 Numeric   

VAR_57 Numeric   

VAR_25 Character   

VAR_24 Character   

VAR_26 Character   

VAR_64 Character   

VAR_65 Character   

VAR_66 Character   

VAR_67 Character   
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VAR_69 Character   

VAR_34 Numeric   

VAR_60 Numeric   

VAR_61 Numeric   

VAR_17 Numeric   

VAR_7 Numeric   

VAR_9 Numeric   

VAR_13 Numeric   

VAR_16 Numeric   

VAR_10 Numeric   

VAR_18 Numeric   

VAR_21 Numeric   

VAR_19 Numeric   

VAR_12 Numeric   

VAR_20 Numeric   

VAR_14 Numeric   

VAR_11 Numeric   

VAR_15 Numeric   

VAR_58 Numeric   

VAR_62 Numeric   

VAR_63 Numeric   

VAR_68 Numeric   

VAR_59 Numeric   

VAR_70 Numeric   

VAR_8 Numeric   

Val_CapitalObjecto_N Numeric Capital do Objecto_N 

Val_CapitalObjecto_Median Numeric Capital do Objecto_Median 

Table 14 –List of Input Variables 

 

NAME LEVEL 

Bank_ClientType_Active NOMINAL 

Bank_ClientType_Class NOMINAL 

Channel_Classification NOMINAL 

Channel_Classification_Active BINARY 

Cod_Postal NOMINAL 

Cod_Postal_4Digit NOMINAL 

DT_REF INTERVAL 

Date INTERVAL 

Dt_Nascimento INTERVAL 

Escalao_Etario NOMINAL 

Idade INTERVAL 

Ind_Annulled_Pol_7days BINARY 

Ind_ClienteBCP_Num BINARY 

Ind_Ended_Pol_7days BINARY 

Ind_First_Purchase_7days UNARY 

Ind_Inactive_Cli_7days UNARY 

Ind_Inactive_Client UNARY 

Ind_Inactive_Client_1Yr UNARY 

Ind_Inactive_Client_6Mth UNARY 

Ind_Pagador UNARY 
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Ind_PessoaSegura UNARY 

Ind_PrimTit_Num BINARY 

Ind_SegTit_Num UNARY 

Ind_Sim_AT_7days UNARY 

Ind_Sim_AU_7days UNARY 

Ind_Sim_DI_7days UNARY 

Ind_Sim_MR_7days UNARY 

Ind_Sim_PPP_7days UNARY 

Ind_Tomador UNARY 

Ind_had_AP UNARY 

Ind_had_AT BINARY 

Ind_had_AU BINARY 

Ind_had_Ann BINARY 

Ind_had_CAP BINARY 

Ind_had_DI BINARY 

Ind_had_Fins BINARY 

Ind_had_MR BINARY 

Ind_had_MR_VendaAssoc BINARY 

Ind_had_MR_VendaAtiva BINARY 

Ind_had_NaoVida BINARY 

Ind_had_Other BINARY 

Ind_had_PPP BINARY 

Ind_had_PPR BINARY 

Ind_had_RC BINARY 

Ind_had_UL BINARY 

Ind_had_VR BINARY 

Ind_had_VR_VendaAssoc BINARY 

Ind_had_VR_VendaAtiva BINARY 

Ind_had_VendaAssoc BINARY 

Ind_had_VendaAtiva BINARY 

Ind_had_Vida BINARY 

Ind_hasActive_AP UNARY 

Ind_has_BankVars UNARY 

No_1Yr_Annulled_AP UNARY 

No_6Mth_Annulled_AP UNARY 

No_AP_Active UNARY 

No_Claim_1Yr_Fins UNARY 

No_Claim_1Yr_VR UNARY 

No_Claim_6Mth_Fins UNARY 

No_Claim_6Mth_VR UNARY 

No_Claims_7days INTERVAL 

No_Claims_AP UNARY 

No_Claims_Ann UNARY 

No_Claims_CAP UNARY 

No_Claims_Financials UNARY 

No_Claims_MR_bad INTERVAL 

No_Claims_PPR UNARY 

No_Claims_UL UNARY 

No_Claims_VR UNARY 

No_Claims_Vida UNARY 

SUM_of_Ind_AP UNARY 

SUM_of_Ind_Complaint_7days BINARY 

SUM_of_Ind_Complaint_Under4Days INTERVAL 
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SUM_of_Ind_Request_7days INTERVAL 

SUM_of_Ind_Request_Under3Days INTERVAL 

VAR_2 INTERVAL 

VAR_22 INTERVAL 

VAR_25 NOMINAL 

VAR_26 NOMINAL 

VAR_3 INTERVAL 

VAR_33 INTERVAL 

VAR_35 INTERVAL 

VAR_36 INTERVAL 

VAR_37 INTERVAL 

VAR_38 INTERVAL 

VAR_39 INTERVAL 

VAR_4 INTERVAL 

VAR_40 INTERVAL 

VAR_41 INTERVAL 

VAR_48 INTERVAL 

VAR_5 INTERVAL 

VAR_55 INTERVAL 

VAR_56 INTERVAL 

VAR_57 INTERVAL 

VAR_6 INTERVAL 

VAR_8 BINARY 

Val_Claims_1Yr_Fins UNARY 

Val_Claims_1Yr_VR UNARY 

Val_Claims_6Mth_Fins UNARY 

Val_Claims_6Mth_VR UNARY 

Val_Claims_7days INTERVAL 

Val_Claims_Fins UNARY 

Val_Claims_VR UNARY 

Val_Claims_Vida UNARY 

Years_First_Prod_Till_Date INTERVAL 

Table 15 – Variables excluded 

 

Variable Mean Std Dev Minimum Maximum Mode Range N 

Target_AP 0,0019 0,0432 0 1 0 1 405886 

Idade_Adj 52,6496 15,6212 19 100 39 81 405886 

Ind_ClienteBCP_Num 0,9882 0,108 0 1 1 1 405656 

Ind_Nacionalidade_PRT 0,9494 0,2193 0 1 1 1 405886 

Camp_Contact 0,019 0,1524 0 9 0 9 405886 

Camp_Contact_SalesCamp 0,0181 0,1466 0 9 0 9 405886 

Camp_Contact_SimFollow 0,0009 0,0403 0 3 0 3 405886 

Camp_Unsucc 0,0175 0,1467 0 9 0 9 405886 

Camp_Unsucc_SalesCamp 0,0167 0,141 0 9 0 9 405886 

Num_Claims_Ever 3,9483 20,4362 0 1014 0 1014 405886 

No_Claims_Ever_NH 0,2365 0,8506 0 32 0 32 405886 

No_Claims_NaoVida_NH 0,2365 0,8506 0 32 0 32 405886 
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No_Claims_AU 0,0897 0,5998 0 32 0 32 405886 

No_Claims_DI 3,7118 20,3994 0 1012 0 1012 405886 

No_Claims_MR 0,1281 0,542 0 25 0 25 405886 

No_Claims_PPP 0,017 0,191 0 14 0 14 405886 

No_Claim_1Yr_NH 0,0427 0,2897 0 12 0 12 405886 

No_Claim_1Yr_H 0,4975 3,237 0 201 0 201 405886 

No_Claim_1Yr_NaoVida_NH 0,0427 0,2897 0 12 0 12 405886 

No_Claim_6Mth_H 0,2435 1,8028 0 112 0 112 405886 

No_Claim_6Mth_NH 0,0247 0,2221 0 12 0 12 405886 

No_Claim_6Mth_NaoVida_NH 0,0247 0,2221 0 12 0 12 405886 

No_Claims_MR_bad 0,0596 0,3222 0 9 0 9 405886 

No_Claims_MR_good 0,0686 0,3639 0 23 0 23 405886 

Val_Claims 439,468 2453,98 0 311649,04 0 311649,04 405886 

Val_Claims_NaoVida 439,468 2453,98 0 311649,04 0 311649,04 405886 

Val_Claims_1Yr 56,464 849,792 0 223083,31 0 223083,31 405886 

Val_Claims_6Mth 27,1801 692,283 0 223083,31 0 223083,31 405886 

Val_Claims_1Yr_NaoVida 56,464 849,792 0 223083,31 0 223083,31 405886 

Val_Claims_6Mth_NaoVida 27,1801 692,283 0 223083,31 0 223083,31 405886 

Val_Claims_7days 0,0149 0,1506 0 9 0 9 405886 

SUM_of_Ind_Request_Over7Days 0,2067 0,7038 0 47 0 47 405886 

SUM_of_Ind_Any_Contact_6Mths 0,1436 0,6106 0 76 0 76 405886 

SUM_of_Ind_Request_6Mths 0,1426 0,6075 0 76 0 76 405886 

SUM_of_Ind_Any_Contact 1,2796 2,5454 0 177 0 177 405886 

SUM_of_Ind_Complaint 0,0112 0,1333 0 12 0 12 405886 

SUM_of_Ind_Request 1,2684 2,5243 0 177 0 177 405886 

SUM_of_Ind_CompRejected 0,0071 0,1068 0 12 0 12 405886 

SUM_of_Ind_Request_1Yr 0,2831 0,9125 0 83 0 83 405886 

Years_Client 9,0897 5,6553 0,02 28,92 12,89 28,9 405886 

Active_Tenure 7,6213 5,4548 0,0218 28,9194 12,887 28,8975 405886 

Years_First_Prod_Till_Date 9,0897 5,6553 0,02 28,92 12,89 28,9 405886 

Yrs_Since_Latest_Purchase 4,1214 3,9841 0,02 26,42 12,89 26,4 405886 

No_Active_Policies 2,3321 2,2527 1 144 1 143 405886 

No_Ended_Policies 1,3239 2,6438 0 173 0 173 405886 

No_Ever_Policies 3,656 4,094 1 283 1 282 405886 

No_Annuled_Policies 0,4878 1,0342 0 41 0 41 405886 

No_Annulled_FaltaPagamento 0,1278 0,5093 0 16 0 16 405886 

No_Annulled_PedidoCliente 0,1802 0,5269 0 18 0 18 405886 

No_Annulled_Resgatada 0,1668 0,6082 0 41 0 41 405886 

No_Annulled_TransCongenere 0,0095 0,1415 0 30 0 30 405886 

SUM_of_Ind_Vida 2,323 3,8432 0 283 1 283 405886 

SUM_of_Ind_Financials 1,7251 3,9172 0 283 0 283 405886 
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SUM_of_Ind_NaoVida 1,333 1,4621 0 42 1 42 405886 

SUM_of_Ind_AT 0,0195 0,1633 0 8 0 8 405886 

SUM_of_Ind_AU 0,2174 0,633 0 20 0 20 405886 

SUM_of_Ind_DI 0,2089 0,5002 0 11 0 11 405886 

SUM_of_Ind_MR 0,5823 0,8862 0 36 0 36 405886 

SUM_of_Ind_RC 0,0126 0,1245 0 7 0 7 405886 

SUM_of_Ind_PPP 0,2896 0,6808 0 12 0 12 405886 

SUM_of_Ind_VR 0,5978 0,9483 0 17 0 17 405886 

SUM_of_Ind_CAP 0,3307 0,791 0 22 0 22 405886 

SUM_of_Ind_PPR 0,5851 1,0352 0 28 0 28 405886 

SUM_of_Ind_UL 0,8092 3,3583 0 280 0 280 405886 

No_LOBs_Ever 2,0867 1,0882 1 9 1 8 405886 

No_ProductLines_Ever 1,5996 0,6432 1 3 1 2 405886 

No_LOBs_Active 1,6372 0,8301 1 9 1 8 405886 

No_ProductLines_Active 1,4283 0,5736 1 3 1 2 405886 

Ind_Monoproduto 0,5413 0,4983 0 1 1 1 405886 

Ind_MonoProductLine 0,6138 0,4869 0 1 1 1 405886 

No_AT_Active 0,0131 0,1226 0 4 0 4 405886 

No_AU_Active 0,1314 0,4023 0 11 0 11 405886 

No_DI_Active 0,1312 0,3664 0 7 0 7 405886 

No_MR_Active 0,4534 0,6773 0 20 0 20 405886 

No_RC_Active 0,0098 0,1042 0 5 0 5 405886 

No_PPP_Active 0,1325 0,3938 0 8 0 8 405886 

No_VR_Active 0,4711 0,7608 0 13 0 13 405886 

No_CAP_Active 0,165 0,4708 0 12 0 12 405886 

No_PPR_Active 0,4225 0,8086 0 18 0 18 405886 

No_UL_Active 0,4006 1,8709 0 143 0 143 405886 

No_PL_Vida_Active 0,4711 0,7608 0 13 0 13 405886 

No_PL_Fins_Active 0,9882 2,136 0 143 0 143 405886 

No_PL_NaoVida_Active 0,8728 0,9325 0 23 1 23 405886 

No_VendaAtiva_Ever 2,5882 4,0665 0 283 1 283 405886 

No_VendaAssoc_Ever 1,0528 1,5588 0 24 0 24 405886 

No_VendaAtiva_Active 1,5912 2,2234 0 144 1 144 405886 

No_VendaAssoc_Active 0,7409 1,1492 0 14 0 14 405886 

Sum_PremPaid 18770,9 74129,8 0 10630000 0 10630000 405886 

Sum_PremPaid_Active 11966,8 44040,5 0 7930000 0 7930000 405886 

Sum_PremPaid_Inactive 6811,36 43232,8 0 9100000 0 9100000 405886 

Sum_PremPaid_VendaAtiva 17544 74263 0 10630000 0 10630000 405886 

Sum_PremPaid_VendaAssoc 1226,86 3120,94 0 149177,32 0 149177,32 405886 

Sum_PremPaid_PL_Vida 950,714 2769,38 0 147478,04 0 147478,04 405886 

Sum_PremPaid_PL_Fins 16651,1 74099,4 0 10630000 0 10630000 405886 
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Sum_PremPaid_PL_NaoVida 1169,1 2997,41 0 116027,05 0 116027,05 405886 

Sum_PremPaid_1Yr 1886,31 12888,9 0 2000010 0 2000010 405886 

Sum_PremPaid_1Yr_Active 1874,81 12853,9 0 2000010 0 2000010 405886 

Sum_PremPaid_1Yr_Inactive 12,4508 536 0 200000 0 200000 405886 

Sum_PremPaid_1Yr_PL_Fins 1574,92 12888,6 0 2000010 0 2000010 405886 

Sum_PremPaid_1Yr_PL_NaoVida 182,823 403,66 0 46326,18 0 46326,18 405886 

Sum_PremPaid_1Yr_PL_Vida 128,57 375,663 0 22201,12 0 22201,12 405886 

Sum_PremPaid_1Yr_VendaAssoc 159,465 424,833 0 23964,99 0 23964,99 405886 

Sum_PremPaid_1Yr_VendaAtiva 1726,85 12898,3 0 2000010 0 2000010 405886 

Sum_PremPaid_6Mth 751,428 8052,56 0 971158,76 0 971158,76 405886 

Sum_PremPaid_6Mth_Active 749,106 8020,66 0 971158,76 0 971158,76 405886 

Sum_PremPaid_6Mth_Inactive 2,6863 332,954 0 200000 0 200000 405886 

Sum_PremPaid_6Mth_PL_Fins 592,02 8047,66 0 970000 0 970000 405886 

Sum_PremPaid_6Mth_PL_NaoVida 93,3308 225,329 0 23620,94 0 23620,94 405886 

Sum_PremPaid_6Mth_PL_Vida 66,0774 209,605 0 11879,73 0 11879,73 405886 

Sum_PremPaid_6Mth_VendaAssoc 80,84 237,49 0 12428,76 0 12428,76 405886 

Sum_PremPaid_6Mth_VendaAtiva 670,588 8053,82 0 971158,76 0 971158,76 405886 

Sum_PremPaid_NonFins 2119,81 4353,03 0 160634,45 0 160634,45 405886 

Sum_PremPaid_NonFins_VendaAssoc 1226,86 3120,94 0 149177,32 0 149177,32 405886 

Sum_PremPaid_NonFins_VendaAtiva 892,944 2976,17 0 160634,45 0 160634,45 405886 

No_1Yr_Issued 0,3572 0,8209 0 60 0 60 405886 

No_1Yr_Issued_StillActive 0,3436 0,7917 0 60 0 60 405886 

No_1Yr_Issued_VendaAtiva 0,2343 0,6525 0 60 0 60 405886 

No_1Yr_Issued_VendaAssoc 0,1229 0,473 0 12 0 12 405886 

No_1Yr_Issued_NaoVida 0,1754 0,4798 0 14 0 14 405886 

No_1Yr_Issued_Fins 0,0959 0,501 0 60 0 60 405886 

No_1Yr_Issued_VR 0,0859 0,3171 0 6 0 6 405886 

No_6Mth_Issued 0,1787 0,6002 0 60 0 60 405886 

No_6Mth_Issued_Fins 0,0486 0,3875 0 60 0 60 405886 

No_6Mth_Issued_NaoVida 0,0897 0,3393 0 12 0 12 405886 

No_6Mth_Issued_StillActive 0,1748 0,5897 0 60 0 60 405886 

No_6Mth_Issued_VendaAssoc 0,0588 0,3231 0 12 0 12 405886 

No_6Mth_Issued_VendaAtiva 0,1199 0,4873 0 60 0 60 405886 

No_6Mth_Issued_VR 0,0405 0,2121 0 6 0 6 405886 

No_1Yr_Annulled 0,0578 0,2901 0 13 0 13 405886 

Ind_hasActive_AT 0,0122 0,1097 0 1 0 1 405886 

Ind_hasActive_AU 0,1115 0,3147 0 1 0 1 405886 

Ind_hasActive_DI 0,1225 0,3279 0 1 0 1 405886 

Ind_hasActive_MR 0,3681 0,4823 0 1 0 1 405886 

Ind_hasActive_RC 0,0093 0,0958 0 1 0 1 405886 

Ind_hasActive_PPP 0,1152 0,3193 0 1 0 1 405886 
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Ind_hasActive_VR 0,3381 0,4731 0 1 0 1 405886 

Ind_hasActive_CAP 0,1349 0,3416 0 1 0 1 405886 

Ind_hasActive_PPR 0,3029 0,4595 0 1 0 1 405886 

Ind_hasActive_UL 0,1212 0,3263 0 1 0 1 405886 

Ind_hasActive_Vida 0,3381 0,4731 0 1 0 1 405886 

Ind_hasActive_Fins 0,4782 0,4995 0 1 0 1 405886 

Ind_hasActive_NaoVida 0,6119 0,4873 0 1 1 1 405886 

No_1Yr_Annulled_AU 0,0115 0,1165 0 7 0 7 405886 

No_1Yr_Annulled_DI 0,0088 0,0988 0 5 0 5 405886 

No_1Yr_Annulled_MR 0,0102 0,1148 0 8 0 8 405886 

No_1Yr_Annulled_VR 0,0108 0,1265 0 6 0 6 405886 

No_1Yr_Annulled_Fins 0,0116 0,1361 0 10 0 10 405886 

No_1Yr_Annulled_PPP 0,0033 0,0597 0 3 0 3 405886 

No_6Mth_Annulled_AU 0,0057 0,0795 0 3 0 3 405886 

No_6Mth_Annulled_DI 0,0045 0,0693 0 5 0 5 405886 

No_6Mth_Annulled_Fins 0,0064 0,1009 0 10 0 10 405886 

No_6Mth_Annulled_MR 0,0056 0,0832 0 6 0 6 405886 

No_6Mth_Annulled_PPP 0,0017 0,0421 0 2 0 2 405886 

No_LOBs_Ended 0,7913 0,9804 0 8 0 8 405886 

Sum_PremPaid_VendaAtiva_Active 10944,5 44140,5 0 7930000 0 7930000 405886 

Sum_PremPaid_VendaAssoc_Active 1022,32 2785,07 0 149177,32 0 149177,32 405886 

Sum_PremAnual 21631,2 99728,3 -2709,34 19734693,9 0 19737403,2 405886 

Avg_PremAnual 4313,48 12167,4 -2709,34 2280000 0 2282709,34 405886 

Avg_PremAnual_Active 4232,8 13220,1 -2709,34 2280000 0 2282709,34 405886 

Ind_1Yr_Issued 0,2331 0,4228 0 1 0 1 405886 

Ind_1Yr_Issued_StillActive 0,2297 0,4206 0 1 0 1 405886 

Ind_1Yr_Issued_VendaAtiva 0,1777 0,3823 0 1 0 1 405886 

Ind_1Yr_Issued_VendaAssoc 0,0764 0,2657 0 1 0 1 405886 

Ind_1Yr_Issued_NaoVida 0,1426 0,3497 0 1 0 1 405886 

Ind_1Yr_Issued_Fins 0,0672 0,2503 0 1 0 1 405886 

Ind_1Yr_Issued_VR 0,0762 0,2652 0 1 0 1 405886 

Ind_6Mth_Issued 0,1227 0,3281 0 1 0 1 405886 

Ind_6Mth_Issued_Fins 0,033 0,1785 0 1 0 1 405886 

Ind_6Mth_Issued_NaoVida 0,0763 0,2655 0 1 0 1 405886 

Ind_6Mth_Issued_StillActive 0,1213 0,3265 0 1 0 1 405886 

Ind_6Mth_Issued_VendaAssoc 0,0378 0,1907 0 1 0 1 405886 

Ind_6Mth_Issued_VendaAtiva 0,0941 0,2919 0 1 0 1 405886 

Ind_6Mth_Issued_VR 0,0376 0,1903 0 1 0 1 405886 

Ind_1Yr_Annulled 0,0473 0,2124 0 1 0 1 405886 

Ind_hasActive_VendaAtiva 0,8084 0,3935 0 1 1 1 405886 

Ind_hasActive_VendaAssoc 0,3658 0,4817 0 1 0 1 405886 
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No_MR_VendaAtiva_Ever 0,2993 0,6634 0 31 0 31 405886 

No_MR_VendaAssoc_Ever 0,2829 0,5234 0 14 0 14 405886 

No_MR_VendaAssoc_Active 0,2077 0,4273 0 12 0 12 405886 

No_MR_VendaAtiva_Active 0,2457 0,5422 0 19 0 19 405886 

Ind_hasActive_MR_VendaAssoc 0,1995 0,3996 0 1 0 1 405886 

Ind_hasActive_MR_VendaAtiva 0,206 0,4044 0 1 0 1 405886 

No_VR_VendaAtiva_Ever 0,0438 0,2168 0 6 0 6 405886 

No_VR_VendaAtiva_Active 0,0355 0,1925 0 6 0 6 405886 

No_VR_VendaAssoc_Ever 0,5541 0,9052 0 17 0 17 405886 

No_VR_VendaAssoc_Active 0,4355 0,7248 0 13 0 13 405886 

Ind_hasActive_VR_VendaAtiva 0,0342 0,1819 0 1 0 1 405886 

Ind_hasActive_VR_VendaAssoc 0,3208 0,4668 0 1 0 1 405886 

Ind_Sim_Ever 0,5378 0,4986 0 1 1 1 405886 

Ind_Sim_1Yr 0,2396 0,4268 0 1 0 1 405886 

Ind_Sim_6Mth 0,1332 0,3398 0 1 0 1 405886 

Ind_Conv_Ever 0,3654 0,4815 0 1 0 1 405886 

Ind_Conv_1Yr 0,1314 0,3378 0 1 0 1 405886 

Ind_Conv_6Mth 0,0682 0,252 0 1 0 1 405886 

Ind_Sim_NoConv_Ever 0,1724 0,3777 0 1 0 1 405886 

Ind_Sim_NoConv_1Yr 0,1082 0,3106 0 1 0 1 405886 

No_Sim_1Yr 0,4138 0,9221 0 18 0 18 405886 

No_Conv_1Yr 0,1619 0,4625 0 12 0 12 405886 

AVG_of_Ind_Prem_GreaterThanAvg 0,337 0,3537 0 1 0 1 336693 

AVG_of_Ind_Prem_GreaterThanMedia 0,4795 0,3672 0 1 0 1 336693 

VAR_23 5,3593 2,5829 0 9 5 9 329389 

VAR_28 2,6982 2,7053 0 9 0 9 405886 

VAR_29 1,8213 2,241 0 9 0 9 405886 

VAR_30 2,6863 2,7613 0 9 0 9 405886 

VAR_31 2,7975 3,0215 0 9 0 9 405886 

VAR_32 2,4388 2,5558 0 9 0 9 405886 

VAR_42 4,4449 2,9376 0 9 5 9 396217 

VAR_43 3,0114 2,7748 0 9 0 9 396217 

VAR_44 6,3703 2,6259 0 9 9 9 405886 

VAR_45 2,7469 2,7398 0 9 0 9 405886 

VAR_46 2,9259 2,3268 0 9 2 9 405886 

VAR_47 2,6683 2,7796 0 9 0 9 405886 

VAR_49 2,8605 3,0552 0 9 0 9 405886 

VAR_50 2,6032 2,784 0 9 0 9 405886 

VAR_51 2,6316 2,6734 0 9 0 9 405886 

VAR_52 2,7843 2,7672 0 9 0 9 405886 

VAR_53 2,8632 2,9633 0 9 0 9 405886 
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VAR_54 2,6332 2,7138 0 9 0 9 405886 

VAR_34 4,8198 4,5268 2 91 4 89 392126 

VAR_60 0,087 0,2818 0 1 0 1 405886 

VAR_61 0,3342 0,4717 0 1 0 1 405886 

VAR_17 0,7095 0,454 0 1 1 1 405886 

VAR_7 0,6158 0,4864 0 1 1 1 405886 

VAR_9 0,6459 0,4782 0 1 1 1 405886 

VAR_13 0,6109 0,4875 0 1 1 1 405886 

VAR_16 0,8897 0,3132 0 1 1 1 405886 

VAR_10 0,9997 0,0163 0 1 1 1 405886 

VAR_18 0,8117 0,3909 0 1 1 1 405886 

VAR_21 0,4393 0,4963 0 1 0 1 405886 

VAR_19 0,8078 0,3941 0 1 1 1 405886 

VAR_12 0,6341 0,4817 0 1 1 1 405886 

VAR_20 0,7043 0,4564 0 1 1 1 405886 

VAR_14 0,5075 0,4999 0 1 1 1 405886 

VAR_11 0,6777 0,4674 0 1 1 1 405886 

VAR_15 0,7043 0,4564 0 1 1 1 405886 

VAR_58 0,7939 0,4045 0 1 1 1 405886 

VAR_62 0,9472 0,2236 0 1 1 1 405886 

VAR_63 0,639 0,4803 0 1 1 1 405886 

VAR_70 0,2952 0,4561 0 1 0 1 405886 

VAR_8 0,5252 0,4994 0 1 1 1 405886 

Val_CapitalObjecto_N 18,6797 30,4055 1 516 2 515 369873 

Val_CapitalObjecto_Median 65048,1 39231,8 498,8 3018500 30000 3018001,2 369873 

Ind_Sim_NoConv_6Mth 0,0651 0,2467 0 1 0 1 405886 

Table 16 – Data set quantitative var. descriptive statistics. 

 

Variable Mean Std Dev Minimum Maximum Range N 

Target_AP 0,500 0,500 0 1 1 1516 

Idade_Adj 53,088 16,321 19 96 77 1516 

Ind_ClienteBCP_Num 0,979 0,144 0 1 1 1506 

Ind_Nacionalidade_PRT 0,941 0,235 0 1 1 1516 

Camp_Contact 0,036 0,213 0 3 3 1516 

Camp_Contact_SalesCamp 0,028 0,185 0 2 2 1516 

Camp_Contact_SimFollow 0,008 0,096 0 2 2 1516 

Camp_Unsucc 0,034 0,208 0 3 3 1516 

Camp_Unsucc_SalesCamp 0,026 0,180 0 2 2 1516 

Num_Claims_Ever 2,946 17,514 0 337 337 1516 

No_Claims_Ever_NH 0,168 0,734 0 16 16 1516 
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No_Claims_NaoVida_NH 0,168 0,734 0 16 16 1516 

No_Claims_AU 0,060 0,574 0 16 16 1516 

No_Claims_DI 2,778 17,443 0 337 337 1516 

No_Claims_MR 0,084 0,402 0 4 4 1516 

No_Claims_PPP 0,021 0,226 0 4 4 1516 

No_Claim_1Yr_NH 0,030 0,225 0 5 5 1516 

No_Claim_1Yr_H 0,390 3,354 0 86 86 1516 

No_Claim_1Yr_NaoVida_NH 0,030 0,225 0 5 5 1516 

No_Claim_6Mth_H 0,172 2,012 0 69 69 1516 

No_Claim_6Mth_NH 0,019 0,196 0 5 5 1516 

No_Claim_6Mth_NaoVida_NH 0,019 0,196 0 5 5 1516 

No_Claims_MR_bad 0,047 0,281 0 4 4 1516 

No_Claims_MR_good 0,038 0,239 0 4 4 1516 

Val_Claims 328,105 1931,460 0 47160,69 47160,69 1516 

Val_Claims_NaoVida 328,105 1931,460 0 47160,69 47160,69 1516 

Val_Claims_1Yr 39,960 685,787 0 25500 25500 1516 

Val_Claims_6Mth 27,480 667,011 0 25500 25500 1516 

Val_Claims_1Yr_NaoVida 39,960 685,787 0 25500 25500 1516 

Val_Claims_6Mth_NaoVida 27,480 667,011 0 25500 25500 1516 

Val_Claims_7days 0,007 0,092 0 2 2 1516 

SUM_of_Ind_Request_Over7Days 0,178 0,652 0 10 10 1516 

SUM_of_Ind_Any_Contact_6Mths 0,116 0,451 0 5 5 1516 

SUM_of_Ind_Request_6Mths 0,115 0,442 0 5 5 1516 

SUM_of_Ind_Any_Contact 1,216 2,546 0 34 34 1516 

SUM_of_Ind_Complaint 0,007 0,106 0 2 2 1516 

SUM_of_Ind_Request 1,209 2,531 0 34 34 1516 

SUM_of_Ind_CompRejected 0,007 0,096 0 2 2 1516 

SUM_of_Ind_Request_1Yr 0,238 0,785 0 12 12 1516 

Years_Client 8,249 5,738 0,02 27,32 27,3 1516 

Active_Tenure 6,838 5,419 0,021858 24,552287 24,530429 1516 

Years_First_Prod_Till_Date 8,249 5,738 0,02 27,32 27,3 1516 

Yrs_Since_Latest_Purchase 3,846 3,930 0,02 20,42 20,4 1516 

No_Active_Policies 2,210 2,428 1 37 36 1516 

No_Ended_Policies 1,370 3,266 0 70 70 1516 

No_Ever_Policies 3,580 4,811 1 81 80 1516 

No_Annuled_Policies 0,475 1,017 0 10 10 1516 

No_Annulled_FaltaPagamento 0,110 0,457 0 6 6 1516 

No_Annulled_PedidoCliente 0,165 0,533 0 5 5 1516 

No_Annulled_Resgatada 0,187 0,621 0 8 8 1516 

No_Annulled_TransCongenere 0,011 0,128 0 3 3 1516 

SUM_of_Ind_Vida 2,527 4,583 0 80 80 1516 
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SUM_of_Ind_Financials 1,922 4,640 0 80 80 1516 

SUM_of_Ind_NaoVida 1,053 1,439 0 13 13 1516 

SUM_of_Ind_AT 0,023 0,218 0 6 6 1516 

SUM_of_Ind_AU 0,151 0,554 0 6 6 1516 

SUM_of_Ind_DI 0,193 0,490 0 5 5 1516 

SUM_of_Ind_MR 0,376 0,770 0 8 8 1516 

SUM_of_Ind_RC 0,011 0,111 0 2 2 1516 

SUM_of_Ind_PPP 0,298 0,719 0 7 7 1516 

SUM_of_Ind_VR 0,605 0,922 0 8 8 1516 

SUM_of_Ind_CAP 0,340 0,763 0 8 8 1516 

SUM_of_Ind_PPR 0,639 1,276 0 28 28 1516 

SUM_of_Ind_UL 0,943 3,808 0 75 75 1516 

No_LOBs_Ever 1,962 1,061 1 8 7 1516 

No_ProductLines_Ever 1,517 0,636 1 3 2 1516 

No_LOBs_Active 1,509 0,775 1 5 4 1516 

No_ProductLines_Active 1,319 0,521 1 3 2 1516 

Ind_Monoproduto 0,629 0,483 0 1 1 1516 

Ind_MonoProductLine 0,708 0,455 0 1 1 1516 

No_AT_Active 0,014 0,151 0 4 4 1516 

No_AU_Active 0,083 0,344 0 4 4 1516 

No_DI_Active 0,110 0,328 0 2 2 1516 

No_MR_Active 0,270 0,582 0 6 6 1516 

No_RC_Active 0,009 0,102 0 2 2 1516 

No_PPP_Active 0,137 0,399 0 4 4 1516 

No_VR_Active 0,473 0,714 0 4 4 1516 

No_CAP_Active 0,183 0,471 0 4 4 1516 

No_PPR_Active 0,435 0,801 0 7 7 1516 

No_UL_Active 0,495 2,083 0 36 36 1516 

No_PL_Vida_Active 0,473 0,714 0 4 4 1516 

No_PL_Fins_Active 1,114 2,363 0 36 36 1516 

No_PL_NaoVida_Active 0,623 0,894 0 10 10 1516 

No_VendaAtiva_Ever 2,702 4,779 0 81 81 1516 

No_VendaAssoc_Ever 0,869 1,455 0 13 13 1516 

No_VendaAtiva_Active 1,645 2,434 0 36 36 1516 

No_VendaAssoc_Active 0,565 0,977 0 6 6 1516 

Sum_PremPaid 22136,750 92325,190 0 1899035,8 1899035,8 1516 

Sum_PremPaid_Active 13617,800 44435,050 0 737193,68 737193,68 1516 

Sum_PremPaid_Inactive 8540,150 66299,890 0 1662500 1662500 1516 

Sum_PremPaid_VendaAtiva 21173,270 92403,150 0 1899035,8 1899035,8 1516 

Sum_PremPaid_VendaAssoc 963,484 3097,300 0 41699 41699 1516 

Sum_PremPaid_PL_Vida 862,112 2866,890 0 40232,16 40232,16 1516 
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Sum_PremPaid_PL_Fins 20405,810 91886,920 0 1862500 1862500 1516 

Sum_PremPaid_PL_NaoVida 868,832 2896,380 0 44063,06 44063,06 1516 

Sum_PremPaid_1Yr 2740,240 14841,960 0 305010 305010 1516 

Sum_PremPaid_1Yr_Active 2733,260 14839,040 0 305010 305010 1516 

Sum_PremPaid_1Yr_Inactive 8,181 60,930 0 1072,85 1072,85 1516 

Sum_PremPaid_1Yr_PL_Fins 2476,550 14853,350 0 305010 305010 1516 

Sum_PremPaid_1Yr_PL_NaoVida 132,157 355,011 0 3983,12 3983,12 1516 

Sum_PremPaid_1Yr_PL_Vida 131,534 415,000 0 5298,82 5298,82 1516 

Sum_PremPaid_1Yr_VendaAssoc 133,837 432,117 0 5477,92 5477,92 1516 

Sum_PremPaid_1Yr_VendaAtiva 2606,400 14855,670 0 305010 305010 1516 

Sum_PremPaid_6Mth 1465,010 11506,770 0 305010 305010 1516 

Sum_PremPaid_6Mth_Active 1463,540 11506,850 0 305010 305010 1516 

Sum_PremPaid_6Mth_Inactive 1,860 22,485 0 537,17 537,17 1516 

Sum_PremPaid_6Mth_PL_Fins 1329,010 11513,800 0 305010 305010 1516 

Sum_PremPaid_6Mth_PL_NaoVida 65,181 182,306 0 2225,38 2225,38 1516 

Sum_PremPaid_6Mth_PL_Vida 70,813 250,220 0 3810,79 3810,79 1516 

Sum_PremPaid_6Mth_VendaAssoc 70,727 264,319 0 3810,79 3810,79 1516 

Sum_PremPaid_6Mth_VendaAtiva 1394,280 11511,450 0 305010 305010 1516 

Sum_PremPaid_NonFins 1730,940 4454,410 0 55421,27 55421,27 1516 

Sum_PremPaid_NonFins_VendaAssoc 963,484 3097,300 0 41699 41699 1516 

Sum_PremPaid_NonFins_VendaAtiva 767,460 2872,110 0 44063,06 44063,06 1516 

No_1Yr_Issued 0,422 0,880 0 8 8 1516 

No_1Yr_Issued_StillActive 0,408 0,845 0 8 8 1516 

No_1Yr_Issued_VendaAtiva 0,286 0,709 0 8 8 1516 

No_1Yr_Issued_VendaAssoc 0,136 0,483 0 6 6 1516 

No_1Yr_Issued_NaoVida 0,160 0,474 0 5 5 1516 

No_1Yr_Issued_Fins 0,146 0,595 0 8 8 1516 

No_1Yr_Issued_VR 0,115 0,360 0 4 4 1516 

No_6Mth_Issued 0,228 0,654 0 8 8 1516 

No_6Mth_Issued_Fins 0,084 0,489 0 8 8 1516 

No_6Mth_Issued_NaoVida 0,089 0,328 0 3 3 1516 

No_6Mth_Issued_StillActive 0,225 0,645 0 8 8 1516 

No_6Mth_Issued_VendaAssoc 0,065 0,304 0 3 3 1516 

No_6Mth_Issued_VendaAtiva 0,164 0,570 0 8 8 1516 

No_6Mth_Issued_VR 0,055 0,237 0 2 2 1516 

No_1Yr_Annulled 0,067 0,319 0 5 5 1516 

Ind_hasActive_AT 0,011 0,105 0 1 1 1516 

Ind_hasActive_AU 0,067 0,249 0 1 1 1516 

Ind_hasActive_DI 0,106 0,307 0 1 1 1516 

Ind_hasActive_MR 0,216 0,412 0 1 1 1516 

Ind_hasActive_RC 0,009 0,092 0 1 1 1516 
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Ind_hasActive_PPP 0,121 0,326 0 1 1 1516 

Ind_hasActive_VR 0,366 0,482 0 1 1 1516 

Ind_hasActive_CAP 0,155 0,362 0 1 1 1516 

Ind_hasActive_PPR 0,313 0,464 0 1 1 1516 

Ind_hasActive_UL 0,146 0,353 0 1 1 1516 

Ind_hasActive_Vida 0,366 0,482 0 1 1 1516 

Ind_hasActive_Fins 0,515 0,500 0 1 1 1516 

Ind_hasActive_NaoVida 0,437 0,496 0 1 1 1516 

No_1Yr_Annulled_AU 0,010 0,099 0 1 1 1516 

No_1Yr_Annulled_DI 0,015 0,128 0 2 2 1516 

No_1Yr_Annulled_MR 0,009 0,099 0 2 2 1516 

No_1Yr_Annulled_VR 0,007 0,092 0 2 2 1516 

No_1Yr_Annulled_Fins 0,015 0,162 0 4 4 1516 

No_1Yr_Annulled_PPP 0,009 0,102 0 2 2 1516 

No_6Mth_Annulled_AU 0,004 0,063 0 1 1 1516 

No_6Mth_Annulled_DI 0,009 0,092 0 1 1 1516 

No_6Mth_Annulled_Fins 0,005 0,077 0 2 2 1516 

No_6Mth_Annulled_MR 0,007 0,092 0 2 2 1516 

No_6Mth_Annulled_PPP 0,005 0,068 0 1 1 1516 

No_LOBs_Ended 0,780 1,013 0 6 6 1516 

Sum_PremPaid_VendaAtiva_Active 12815,640 44530,090 0 737193,68 737193,68 1516 

Sum_PremPaid_VendaAssoc_Active 802,158 2872,800 0 41699 41699 1516 

Sum_PremAnual 25199,370 126880,630 -646,04 3547628,1 3548274,2 1516 

Avg_PremAnual 4716,640 10649,060 -646,04 112500 113146,04 1516 

Avg_PremAnual_Active 4688,730 11331,590 -646,04 150000 150646,04 1516 

Ind_1Yr_Issued 0,276 0,447 0 1 1 1516 

Ind_1Yr_Issued_StillActive 0,276 0,447 0 1 1 1516 

Ind_1Yr_Issued_VendaAtiva 0,209 0,407 0 1 1 1516 

Ind_1Yr_Issued_VendaAssoc 0,094 0,292 0 1 1 1516 

Ind_1Yr_Issued_NaoVida 0,128 0,334 0 1 1 1516 

Ind_1Yr_Issued_Fins 0,096 0,294 0 1 1 1516 

Ind_1Yr_Issued_VR 0,104 0,305 0 1 1 1516 

Ind_6Mth_Issued 0,159 0,366 0 1 1 1516 

Ind_6Mth_Issued_Fins 0,050 0,218 0 1 1 1516 

Ind_6Mth_Issued_NaoVida 0,078 0,268 0 1 1 1516 

Ind_6Mth_Issued_StillActive 0,159 0,366 0 1 1 1516 

Ind_6Mth_Issued_VendaAssoc 0,050 0,218 0 1 1 1516 

Ind_6Mth_Issued_VendaAtiva 0,119 0,324 0 1 1 1516 

Ind_6Mth_Issued_VR 0,053 0,225 0 1 1 1516 

Ind_1Yr_Annulled 0,053 0,225 0 1 1 1516 

Ind_hasActive_VendaAtiva 0,823 0,382 0 1 1 1516 
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Ind_hasActive_VendaAssoc 0,324 0,468 0 1 1 1516 

No_MR_VendaAtiva_Ever 0,199 0,551 0 6 6 1516 

No_MR_VendaAssoc_Ever 0,177 0,464 0 8 8 1516 

No_MR_VendaAssoc_Active 0,114 0,328 0 2 2 1516 

No_MR_VendaAtiva_Active 0,156 0,470 0 6 6 1516 

Ind_hasActive_MR_VendaAssoc 0,111 0,314 0 1 1 1516 

Ind_hasActive_MR_VendaAtiva 0,126 0,332 0 1 1 1516 

No_VR_VendaAtiva_Ever 0,117 0,343 0 3 3 1516 

No_VR_VendaAtiva_Active 0,103 0,306 0 2 2 1516 

No_VR_VendaAssoc_Ever 0,488 0,847 0 7 7 1516 

No_VR_VendaAssoc_Active 0,370 0,648 0 4 4 1516 

Ind_hasActive_VR_VendaAtiva 0,102 0,303 0 1 1 1516 

Ind_hasActive_VR_VendaAssoc 0,292 0,455 0 1 1 1516 

Ind_Sim_Ever 0,514 0,500 0 1 1 1516 

Ind_Sim_1Yr 0,239 0,427 0 1 1 1516 

Ind_Sim_6Mth 0,135 0,342 0 1 1 1516 

Ind_Conv_Ever 0,297 0,457 0 1 1 1516 

Ind_Conv_1Yr 0,121 0,327 0 1 1 1516 

Ind_Conv_6Mth 0,074 0,262 0 1 1 1516 

Ind_Sim_NoConv_Ever 0,217 0,412 0 1 1 1516 

Ind_Sim_NoConv_1Yr 0,117 0,322 0 1 1 1516 

No_Sim_1Yr 0,399 0,882 0 8 8 1516 

No_Conv_1Yr 0,154 0,464 0 4 4 1516 

AVG_of_Ind_Prem_GreaterThanAvg 0,311 0,355 0 1 1 1199 

AVG_of_Ind_Prem_GreaterThanMedia 0,451 0,374 0 1 1 1199 

VAR_23 5,034 2,602 0 9 9 1192 

VAR_28 2,745 2,701 0 9 9 1516 

VAR_29 1,998 2,327 0 9 9 1516 

VAR_30 2,622 2,672 0 9 9 1516 

VAR_31 2,906 3,065 0 9 9 1516 

VAR_32 2,092 2,392 0 9 9 1516 

VAR_42 4,099 3,066 0 9 9 1495 

VAR_43 3,035 2,703 0 9 9 1495 

VAR_44 5,638 3,062 0 9 9 1516 

VAR_45 3,055 3,009 0 9 9 1516 

VAR_46 3,418 2,433 0 9 9 1516 

VAR_47 2,717 2,802 0 9 9 1516 

VAR_49 2,949 2,965 0 9 9 1516 

VAR_50 2,615 2,695 0 9 9 1516 

VAR_51 2,668 2,742 0 9 9 1516 

VAR_52 2,844 2,803 0 9 9 1516 
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VAR_53 3,039 3,096 0 9 9 1516 

VAR_54 2,385 2,658 0 9 9 1516 

VAR_34 5,307 4,354 2 91 89 1480 

VAR_60 0,087 0,282 0 1 1 1516 

VAR_61 0,201 0,401 0 1 1 1516 

VAR_17 0,599 0,490 0 1 1 1516 

VAR_7 0,658 0,475 0 1 1 1516 

VAR_9 0,625 0,484 0 1 1 1516 

VAR_13 0,577 0,494 0 1 1 1516 

VAR_16 0,857 0,350 0 1 1 1516 

VAR_10 0,929 0,257 0 1 1 1516 

VAR_18 0,779 0,415 0 1 1 1516 

VAR_21 0,414 0,493 0 1 1 1516 

VAR_19 0,789 0,408 0 1 1 1516 

VAR_12 0,637 0,481 0 1 1 1516 

VAR_20 0,722 0,448 0 1 1 1516 

VAR_14 0,484 0,500 0 1 1 1516 

VAR_11 0,695 0,461 0 1 1 1516 

VAR_15 0,679 0,467 0 1 1 1516 

VAR_58 0,768 0,422 0 1 1 1516 

VAR_62 0,924 0,266 0 1 1 1516 

VAR_63 0,679 0,467 0 1 1 1516 

VAR_70 0,308 0,462 0 1 1 1516 

VAR_8 0,561 0,497 0 1 1 1516 

Val_CapitalObjecto_N 18,772 29,617 1 339 338 1418 

Val_CapitalObjecto_Median 63491,310 45361,790 4976,42 967584,6 962608,18 1418 

Ind_Sim_NoConv_6Mth 0,061 0,240 0 1 1 1516 

Table 17 –Sample quantitative variables descriptive statistics 

 

 

Statistic Ensemble 
Neural 

Network 
Log. 
Reg. 

Dec. 
Tree 

Train: Akaike's Information Criterion   1199,286 806,469   

Train: Average Error Function   0,352 0,357   

Train: Average Squared Error 0,105 0,114 0,115 0,124 

Train: Bin-Based Two-Way Kolmogorov-Smirnov 
Probability Cutoff 

0,557 0,589 0,591 0,55 

Train: Bin-Based Two-Way Kolmogorov-Smirnov Statistic 0,704 0,663 0,666 0,646 

Train: Cumulative Lift 1,998 1,998 1,998 1,998 

Train: Cumulative Percent Captured Response 20,151 20,151 20,151 20,151 

Train: Cumulative Percent Response 100 100 100 100 
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Train: Degrees of Freedom for Error   835 1037   

Train: Divisor for ASE 2122 2122 2122 2122 

Train: Error Function   747,286 758,469   

Train: Final Prediction Error   0,176 0,121   

Train: Frequency of Classified Cases 1061 1061 1061 1061 

Train: Gain 99,812 99,812 99,812 99,812 

Train: Gini Coefficient 0,87 0,841 0,836 0,801 

Train: Kolmogorov-Smirnov Probability Cutoff 0,48 0,59 0,53 0,51 

Train: Kolmogorov-Smirnov Statistic 0,714 0,668 0,681 0,646 

Train: Lift 1,998 1,998 1,998 1,998 

Train: Maximum Absolute Error 0,924 0,974 0,985 0,9 

Train: Mean Square Error   0,145 0,118   

Train: Misclassification Rate 0,147 0,176 0,171 0,177 

Train: Model Degrees of Freedom   226 24   

Train: Number of Estimate Weights   226 24   

Train: Number of Wrong Classifications 156 187 181 188 

Train: Percent Captured Response 9,981 9,981 9,981 9,981 

Train: Percent Response 100 100 100 100 

Train: Roc Index 0,935 0,921 0,918 0,901 

Train: Root Average Squared Error 0,324 0,337 0,34 0,353 

Train: Root Final Prediction Error   0,419 0,348   

Train: Root Mean Squared Error   0,38 0,344   

Train: Schwarz's Bayesian Criterion   2321,821 925,677   

Train: Sum of Case Weights Times Freq   2122 2122   

Train: Sum of Frequencies 1061 1061 1061 1061 

Train: Sum of Squared Errors 223,243 241,651 245,058 263,718 

Train: Total Degrees of Freedom   1061 1061 1061 

Valid: Average Error Function   0,4 0,411   

Valid: Average Squared Error 0,124 0,129 0,133 0,145 

Valid: Bin-Based Two-Way Kolmogorov-Smirnov 
Probability Cutoff 

0,55 0,587 0,576 0,471 

Valid: Bin-Based Two-Way Kolmogorov-Smirnov Statistic 0,639 0,639 0,613 0,604 

Valid: Cumulative Lift 2,004 2,004 2,004 1,889 

Valid: Cumulative Percent Captured Response 20,264 20,264 20,264 19,1 

Valid: Cumulative Percent Response 100 100 100 94,253 

Valid: Divisor for ASE 910 910 910 910 

Valid: Error Function   363,999 373,576   

Valid: Frequency of Classified Cases 455 455 455 455 

Valid: Gain 100,441 100,441 100,441 88,921 

Valid: Gini Coefficient 0,814 0,794 0,784 0,736 

Valid: Kolmogorov-Smirnov Probability Cutoff 0,47 0,54 0,55 0,36 

Valid: Kolmogorov-Smirnov Statistic 0,653 0,644 0,626 0,609 
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Valid: Lift 2,004 2,004 2,004 1,889 

Valid: Maximum Absolute Error 0,976 0,965 0,99 1 

Valid: Mean Square Error   0,129 0,133   

Valid: Misclassification Rate 0,178 0,191 0,204 0,2 

Valid: Number of Wrong Classifications 81 87 93 91 

Valid: Percent Captured Response 10,132 10,132 10,132 9,55 

Valid: Percent Response 100 100 100 94,253 

Valid: Roc Index 0,907 0,897 0,892 0,868 

Valid: Root Average Squared Error 0,352 0,359 0,365 0,381 

Valid: Root Mean Square Error   0,359 0,365   

Valid: Sum of Case Weights Times Freq   910 910   

Valid: Sum of Frequencies 455 455 455 455 

Valid: Sum of Squared Errors 112,461 117,476 121,4 132,063 

Table 18 – Statistics Comparison 
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Figure 35 – Decision Tree Structure. 
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